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PREFACE

At its Third Ice Symposium in 1975 in Hanover, New Hampshire, USA, the IAHR
Section on Ice Problems formed the following working groups, proposed by its
chairman, Dr. 0. Starosolszky:

Working Group on Standardizing Testing Methods
Working Group on Ice Jamming
Working Group on Ice Forces on Structures

The Section gave the working Groups the task of presenting state-of-the-art
reports to the Fourth Ice Symposium in Lulea, Sweden, in 1978.

The Working Group on Ice Forces has the following members:

T. Carsten~s, Norway (Chairman)
K.R. Croasdale, Canada
R.Y. Edwards, Canada
V.A. Korenkov, USSR
M. ?4flttlnen, Finland
D.E. Nevel, USA

It has not been found practical or even desirable to mould the working group
reports in the same form. The present report consists of four parts written
by named individuals. The function of the working group has essentially been
to provide general guidelines at the start and to review the manuscripts at
the end. The report is thus more a result of individual efforts than of teamwork.

The main advantage of this mode of operating is that it produces results faster
than the other mode, in which the collective efforts predominate. To gather
an international group for intensive discussions and unifying modifications of
the submitted drafts is a practical problem of considerable magnitude, and it
is very time consuming.

In this first report we have sacrificed, to some degree, coherence and uniformity,

in order to avoid the worst fate of any report: obsolescence.

The printing and distribution of this and forthcoming reports present another

their printing costs. IAHR does not have budgets for such publishing, so out-
side sponsors are necessary. The predicament was overcome by a generous offer
from the U.S. Army Cold Regions Research and Engineering Laboratory, Hanover,
New Hampshire (CRREL). This renowned institution has members in all the working
groups and is very active in international ice research.

The present report is an attempt to distribute information in a useful format to
the international community of ice engineers. Your response will indicate whether
the effort was worthwhile.

Trondheim, August 1979

Torkild Carstens
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PART

THERMAL ICE FORCES

3y J.H. Kjeldgaard and T. Carstens

The River and Harbour Laboratory,

The Norwegian Institute of Technology,

Trondheim, Norway

Abstract

A short review is presented of the literature on thermal

ice pressure against extended hydraulic structures such

as dams.

Some of the methods suggested for the computation of ice

loads caused by temperature changes are reviewed. As a

means of comparison measurements of thermal ice pressure

and empirical values used at present for estimating these

loads are referred to.

As will appear there still exists some divergencies in the

results of the methods Suggested and there seems to be a

need for further field measurements to clarify some of the

problems.



INTRODUCTION

When an ice cover is subjected to a temperature increase the

ice will attempt to expand. The forces exerted on the sur-

roundings e.g. on hydraulic structures such as dams will depend

on a number of parameters describing:

* the temperature variation as a function of time and

depth in the ice cover

0 the material properties of the ice

0 the geometrical form of the ice cover including cracks

and other irregularities

* restrictions to expansion along the boundaries of the

ice cover

The theories suggested for the computation of such ice forces

and the experimental verification of the theories are compli-

cated by the complex mechanical behaviour of ice under load

of long duration and by the variety of forms in wich ice may

occur,

Some of the methods and theories that have been proposed for the

calculation of thermal ice forces are reviewed below.

As will be seen there still exists some uncertainties and

divergencies in this field.

Units used in the reviewed literature:

1 kp/cm 2 = 98066.5 N/m
2

1 t/m 2  = 9806.65 N/m
2

1 t/m = 9806.65 N/m
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1.1. THEORIES OF THERMAL ICE PRESSURE

In this section is given a short survey of the theories suggested

for calculation of thermal ice pressure. It has been the inten-

tion to outline some of the ideas used in the theories and to

give some of the fundamental drawbacks that may reduce their

utility.

Many of the points mentioned can be found in the works of Korzhavin

[1] and Drouin and Michel [2, 3, 4, 18]. In these works also a

more quantitative description of the theories can be found.

1.11 Royen (1922)

In 1922 the Swede N. Royen published a method for determining

thermal ice pressure [5].

His formula was the basis for the Russian norm SN 76-59 used

until 1967. The fundamental law used by Royen was

cat
1 / 3

1+e (i)

where e : strain in compression (uniaxial)

a : stress [kp/cm 2]

t : duration of load [hours]
6 : the ice temperature [0C numerical value]

c : an experimental constant 60x10 - 90x10 - 5

The relation c-a had been found by tests with paraffin wax

while emt I / 3 was based mainly on tests with take ice. Both
relations have later been shown to give an inadequate description
of the behaviour of fresh water ice.

The uniaxial strain rate from a nonrestricted thermal expansion

of ice can be written

d d8 (2)

*1~T j _____
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where a is the linear thermal expansion coefficient of ice
[l°C].

Royen equates (l) and (2) keeping a and 0 in (1) constant

during differentiation. It is further assumed that the tempera-

ture increase is Linear with time:

S5

e(t) 0. - (3)
i

(t) :mean temperature of ice [°C absolute value]
0() initial mean temperature of ice [°C absolute value]

: the mean temperature increase [0C/h]

By means of equations (1), (2) and (3) Royen finds the maximum

stress developed during a temperature increase

0max lS140(Bi+I) / 6(i+l)2 [kp/cm 2] (4)

or with a = 5.5"10- 5/ C the usual form of Royens equation

becomes

Pmax = 0.9d (6i+i) Y(6l+l)2 (5)

Pmax : force [t/m]

d ice cover thickness [m]

To find the value of P relevant to Sweden, Royen assumes
max

a minimum air temperature of -40 C, a maximum ice thickness

of 0.75-1.0 m and an initial temperature for the ice of -12°C.

If then the ice temperature is increased to 00C during 100, 170

or 360 hours as suggested by Royen the corresponding values of

P max will be 34.5, 28.7 and 22.5 t/m for an ice thickness of 1 m.

In admitting a certain elastic deformation Royen assumes a

maximum value of 30 t/m for an ice cover biaxially restrained

in areas where the minimum air temperature is -40°C.
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In the light of later research on thermal ice pressure a number

of drawbacks are found in Royen's theory, for instance:

1) Paraffin wax does not simulate the

properties of fresh water ice.

2) Elastic deformation is ignored.

3) No distinctions are made between different

creep states of the ice.

4) Uniaxial theory is used for biaxial restraint.

5) Because the temperature is assumed uniform over

the ice thickness, Pmax will be proportional to

the thickness.

1.12 USSR norm SN 76-59. (1959)

The formula in this norm, operative until 1967, was based on

the Royen theory with minor modification. See for instance

Korzhavin [1].

From observations in Siberia it was found that the initial mean

ice temperature ei should be expressed as

ei  = 0.35 • e (6)

where 8a  is the mean air temperature during the preceding

24 hours [0C absolute value]

The increase of the ice mean temperature should be

0.35 a (7)

where A0 a is the maximum increase of the air temperature
[0C1 during a given period of time At [hours]

.1 within the preceding 24 hours.

_ _ _ _ _ _ _ _ _.....__ _ _ _ _ _ _ _ ( q*
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Finally replacing the constant 1640a by the empirical form

0.78. - 0.88 the Royen formula becomesa

(0.35 a+l) 5/ 3  AO 1/3
Pmax 5.52d 0.88 . _a) (8)

a

where d ice thickness [m]

P max maximum force [t/m]

When there is a snow cover (thickness d [m]) on the ice the
s

values of Pmax should be multiplied by the factor

r d (9)
d+9.1d

following the SN 76-59. If the extent L of the ice is more

than 50 m Pmax should be multiplied by the factor p = 0.9-0.6

for L = 50 m - 150 m or more.

According to Korzhavin [i] the pressure values for 10 points

in the USSR will fluctuate from 15 to 30 t/m 2 when based on the

recommendations of SN 76-59.

It is noticed that in spite of the Russian refinements of the

Royen formula the value of Pmax is still proportional to the

ice thickness.

1.13 Brown & Clarke (1932)

In connection with a hydraulic project in Canada Brown & Clarke

1932 [61 made some laboratory investigations to obtain at least

the order of magnitude of the expected thermal ice pressure.

In the two experiments that were reported, ice cubes were

subjected to a temperature rise that was intended to be linear

with time while two opposite cube faces were loaded exactly as much

-. --*-- - - - - ----
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as needed to avoid any expansion in that direction. The results

of the experiments were a few (primarily three) points on a graph

showing temperature increase rate versus load increase rate.

As is seen the results are few and furthermore the experimental

equipment was not able to realize the intended test conditions

with any high degree of accuracy.

1.14 Rose (1947)

In spite of the drawbacks Brown & Clarke's experimental results

were used by Rose [7] to make some general computations of ice

pressure. Rose's main contribution to the ice pressure problem

was that he showed how the temperature distribution will develop

in an ice cover that is subjected to a linear temperature rise

* at the top.

The computations of ice forces were carried out by first using

finite difference integration of the heat conduction equation

to give the rate of change of temperature at a certain level

* in the ice cover. Using this and a curve based mainly on Brown

* & Clarke's results, the ice pressure at that level in the ice

was found by summing up the pressure increases. Rose made cal-

culations with or without lateral restraint and also with or

without accounting for absorption of solar energy. According

to Drouin [2] the results found by Rose have been widely known

and used by engineers.

Among the objections made against Rose.J3 results some of the

most important ones might-be:

1) The experi-mental basis is weak.

2) No account is taken of the initial ice temperature,

only changes are considered.

3) According to L8fquist [8] the summation process used is

not legal: "An integration of component forces will be

mathematically permissible only if a linear relation

~1 exists between the stress and the strain. In the present
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case this is true only with a linear temperature rise

according to the experiments. From the physical point

of view, it is not permissible as a rule, to add to a

component of force set up in the ice at a given point

of time, in consequence of restrained temperature expan-

sion, another component of force set up at a later point

of time ..... I... because of stress relaxation.

1.15 Monfore (1947-1953)

A major research project was begun in 1947 by the U.S. Bureau of

Reclamation. The intention of the project was to determine

the thermal ice pressure on some darns in Colorado. Both in

situ measurements of ice pressure and laboratory investiga-

tions of the creep properties of natural ice were conducted

Monfore [9, 10, 11, 12].

The laboratory investigations were made in much the same way as

the ones by Brown and Clarke, but the equipment was better.

Small cylindrical ice samples could be loaded axially. A meter

in direct contact with the sample measured the axial strain.:1 1 The temperature of the ice sample could be controlled by means
of cold air-circulation and the ice temperatures were measured

both at the periphery Of the ice sample and at the axis.

Before a test was made the sample was kept at one of the follwing

initial temperatures -30, -20, -10, 0, 10, 20 0 for some time.

Then the circulation of air was changed in such a way that the

temperature of the ice was made to increase with one of the
0following rates 2, 5, 10, 15 F/h. During the first 30 minutes

the load was adjusted to give zero total strain every 5 minutes.

Thereafter adjustment of load was done every 15 minutes.

The samples had been taken from two reservoirs where the ice

cover thickness was approximately 45 cm. The samples were
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taken from different levels in these covers. They were made in

such a way that the axis of the cylinders were parallel to the

ice cover surface.

Monfore made several tests with the above mentioned temperature

conditions. When the stress necessary to mai..itain zero strain is

drawn as a function of time (or temperature), the curves look

qualitatively the same. First the stress increases nearly

linearly with time, the curve having a weak tendency of decreasing

slope. The slope decreases more and more and at a certain time

the stress attains a maximum after which it decreases markedly.

The curves look qualitatively the same but by testing different

samples at the same initial temperature and the same rate of

temperature increase, Monfore found a large scatter in the two

characteristic parameters of the load curve: the maximum stress

and the time used to attain this stress. Variation in the order

of 25% was recorded.

To find the reproducibility of the tests a number of samples

were loaded twice under identical temperature conditions. This

showed that the mean value of the difference between 1st and

2nd loading was less than 6%.

This difference in scacter could be attributed to variations in

the crystal structure of the ice. Monfore studied the crystal

orientations in a few samples and did find some marked diffe-

rences but the crystal structure was not used as an independent

parameter in the tests.

The fact that he neglected the crystal structure may be the most

important reason for objections from later investigators.

It is also claimed that when the load is not adjusted more

often than every 5th or 15 th minute the measured stress will

be too high.

A final objection is of course that the tests are uniaxial while

nature is often biaxial.

In spite of the drawbacks Monfore's investigation was a great

step forward in the understanding of thermal ice pressure.
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1.16 L6fquist (1952)

In 1952 the Swede L6fquist published the results of a single

experiment with thermal ice pressure [8].

He made use of a cylindrical container with a diameter of 50 cm

appropriately insulated. In this container he let the ice

develop in the same way as it happens in nature by cooling the

water/ice at the top surface.

When the ice had reached a thickness at about 60 cm the ice sur-

face was exposed to an approximately exponential temperature in-

crease from -30 0 C to 0 0 C during 25 hours.

During the temperature increase both temperature and the corre-

sponding biaxial stress were measured at several levels in the

ice. It was seen how the temperature profile,

first approximately linear through the ice thickness,

develops into the shape of a semi-pear with a minimum moving

down through the ice. The form of the stress profile also

develops into the shape of a semi-pear with a maximum moving

down through the ice. The stress maximum however is lagging the

temperature minimum by some hours. A maximum total load corre-

sponding to 20 ton/meter was recorded about 14 hours after the

start of the temperature increase. At that time the maximum of

the stress distribution had moved about 1/5 of the way down

through the ice cover.

The cylindrical container used by L6fquist was made of concrete.

He assumes that the thermal and elastic expansion of the concrete

and some cracks in the ice cover during heating have caused the

measured stress to be less than it ought to be.

1.17 USSR norm SN 76-66 (1966)

In 1967 the USSRnorm SN 76-59 was succeeded by the one mentioned

above. The norm was translated into English by the National

Research Council of Canada in 1973 [14].

Vt.-
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This norm obviously contains a set of formulas quite different

from the ones that were used in the SN 76-59. But in fact we

have found no publication (in non-Russian language) explaining

the sources and the development of the formulas and graphs given

in SN 76-66 for determining thermal ice pressure.

Apparently the theory is the one referred to by Korzhavin 1972

[15]. According to him it is based on the work of B.V. Pros-

kuryakov: "Proceeding from the basic assumption that pressure

developed due to the thermal expansion of ice exceed its yield

point, he regards ice within the range of plastic deformations

as a viscous fluid".

In 1967 Proskuryakov submitted a paper to the 12th IAHR confe-

rence [161. In this paper he gives a short survey of the pro-

blems of thermal ice pressure and reviews the USSR norms for

determining this pressure, but no details of the SN 76-66 are

given. So for the present it appears to us that only the com-

putational results of the SN 76-66 can be studied.

However one point may be mentioned: The temperatures to be

used as input to the formulas of SN 76-66 are air temperatures

and account is taken of the thermal boundary layer between ice/

snow and air. The formulas used for these two values of thef coefficient of heat transfer are those suggested by 0. Devik
[17]. From these formulas it is seen that the thermal boundary

layer will play a significant role in the temperature distri-

bution. This is contradictory to what is said by Michel [3].

1.18 Lindgren (1968)

In 1968 S. Lindgren published the results of an investigation

on thermal ice pressure [13].

The work contained laboratory tests with both uniaxia. and

biaxial load. Only little information is given about the struc-

ture of the ice used for the experiments.
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The samples that were used by Lindgren for uniaxial tests were of

the size 7x7x20 cm3. They were made in such a way that a

load along the longer axis would simulate an ice cover loaded

horizontally.

The samples were subjected to a constant stress at a constant

temperature. The results of the tests are thus strain as a

function of time. At the temperature -10 0 C Lindgren used the

loads 2, 6, 8, 10 and 14 kp/cm 2 and at the load 6 kp/cm 2 the

temperatures -0.5, -5, -10 and -200 C were used.

To reduce the results of the deformation tests to a common form,

Lindgren tried to fit the parameters in a linear visco-elastic

model composed of a Maxwell and a Voigt element coupled in series.

The rheological equation for such a model is

a -E t
S=E + 2- (l-exp (- )) + - (10)E E2 n2 n3

where E1 E2 : elastic moduli

n2 n3 : viscosity moduli

C : strain

a : stress

Concerning the suitability of such a model Lindgren says:

"Several studies have shown that this equation does not give

a complete picture of the deformation characteristics of ice.

-- However a simple form in accordance with the equation is

used in the following. As ice is not linearly visco-elastic

the moduli of deformation are therefore governed by stress."

After mentioning that: "Only a few tests were carried out and

it is therefore only possible to show the general effect of

different factors", Lindgren gives the following values:

I E1 :(66000 - 800 • e) kp/cm2
2

E 2  ~70000 kp/cm

n2  1.1 10 8 kp sec/cm
2

18.5 • a-(0.20-0.080)(--t ) 0.5 • 108 kp sec/cm2
q3 r600kpscc
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where t is time [see] and 8 is temperature [0C].

According to Lindgren '-' seems to be independent of stress

and previous load. It was not possible to show the effect of the

size of crystals. E 1  was determined on the basis of the de-

formation occurring 30 sec after the load was applied. (This

time period may be too long according to [4] because of the

viscous deformation.)

E2and rl2are difficult to determine and only approximate

values are given.

The value given for n3is applicable only to "normal crystals"

such as those used for the experiment.

"The value of n3is considerably lower when the crystals are

small and shows tendencies to decrease with the period of load".

Lindgren also made experiments with biaxial stress.

In these tests a steel ring with an inner diameter of 80 cm was

placed around a circular ice plate with a diameter of about 80

* cm and a thickness of about 7 cm. Then the space in between

was filled with water. The tests were started at a low tempera-

ture after which the temperature was raised. The temperature,

the strain and the stress were recorded as a function of time.

The values for E and E used in the rheological model are esti-

mated to be the same as for the case of uniaxial tests, on condi-

tion that the coefficient for contraction during elastic defor-

mation is "10.36. (According to Drouin and Michel [4] this is

* a necessary assumption because of difficulties in determining

those parameters.) The value of n2is assumed the same as

before. n)3 on the other hand has been assigned a new value,

n 31 - -1(0.30-0.07e) * (..t 0 .2 5 . 10 8 kp sec/cm2

on condition that the contraction coefficient is 0.5 when theI deformation is viscous.
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According to Drouin and Michel [4] a fundamental objection to

this work is that the rheological model used by Lindgren cannot

represent the properties of the ice. Further the experimental

results are very scattered. So the final results can only be

an approximation.

One of Lindgrens concluding remarks is: "---- calculations of

the values of maximum ice pressure are somewhat unreliable.

With this in mind, rough estimates can be used to assess maxi-

mum ice pressure."

1.19 Drouin and Michel (1971)

A couple of years after Lindgren's publication Drouin and

Michel (in the following abbreviated D & M) made their con-

tribution to the research of thermal ice pressure [4].

D & M have made a critical survey of former thermal ice pres-
sure research relevant to their work. Furthermore they have
given a thorough treatment of the question of temperature

distribution in an ice cover by conduction considering both

stationary and transient conditions. But the question of

thermal boundary layers has been totally neglected except for

some qualitative considerations in the concluding part of

their work.

As a natural basis for the treatment of the ice pressure pro-

blems they have included information on the temperature varia-

tions in the Quebec area.

By computing the temperature distribution in an ice cover sub-

jected to a cyclic temperature variation at the surface D & M

find that because of attenuation an ice cover thicker than 40

cm can be looked upon as a semi infinite body when ice pres-

sure caused by usual temperature variations are considered.

This fact leads to a great simplification in temperature com-

putation.



D & M have made several laboratory tests with uniaxial as well

as biaxial stress to find the connection between time, tempera-

ture, stress and the structure of ice.

In uniaxial tests cylindrical samples (length 7.62 cm and dia-

meter 2.54 cm) were deformed along the axis at a constant strain

rate and a constant temperature. The results of such a test is

a graph showing the applied load versus time.

A number of such tests were made with artificial snow ice.

The density of this ice was about 0.89 g/cm 3 , the diameter of

the grains was about 1 mm and the direction of the crystallo-

graphic orientations was random.

Apparently tests were run with a range of strain rates

= 1.8"10-8 sec to 1.8.10 sec-

and a temperature range of

T = -3.20 C to -28.3°C

(Some .of the tests are not shown on certain graphs and tables.)

The second sort of ice examined was columnar ice of the type

Sl i.e. where the c-axes of the crystals are vertical or nearly

vertical. The stress was perpendicular to the c-axes. Test

conditions were

3.710 - 8  sec -  to 1.8.10- 7  sec - I

T -4.1 0 C to -26.8 0 C

(The number of test results shown vary somewhat from table

to table.)

The third type of ice tested was columnar ice with horizontal

c-axis (M2). The direction of stress was in the plane of the

optical axes.
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After some tests had been made D & M concluded that the samples

of the S2 ice were too small compared to the grain size. Only

a two tests with bigger samples are reported (dimensions: height

10.16 cm, diameter 5.08 cm).

The general form of the resulting stress versus time curves

shows a nearly constant increase of stress during the first

period of time. Then the increase becomes less and a maximum

is reached.

In the case of snow ice the stress decreases only little after

the maximum has been reached.

For the Sl ice a marked decrease of stress is found after the

maximum is reached. (The very sudden decrease in the load recor-

ded in some of the tests just after the maximum is attributed to

some sudden lateral deformation of these ice samples.)

The deformation curves for the S2 ice resemble the curves for

snow ice.

D & M use the following formula to give their experimental results

a general form:

42 -2b$E ((2+ -a()(-)m(1

dt a a Ea

where

a :stress

£: strain rate

t : time

Ea : apparent elastic modulus

n0initial number of dislocations

:rate of multiplication of dislocations

b : the Burger vector

p :a constant

*1m a constant
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As said by D & M this rheological model is somewhere in between

the conventional models consisting of Maxwell and Voigt elements

on one hand and models making use entirely of theories of mole-

cular mechanisms on the other.

When the constants Ea , n, , p, b, and m have been found for a

certain type of ice the uniaxial pressure from an ice cover made

of this type of ice can be computed if the temperature variations

in the ice are known.

Biaxial stress was also investigated. The ice samples used were

formed as cylinders (height- 5 cm, diameter - 15 or 30 cm). The

cylinders were placed in air invar ring with the same height as

the cylinders and a diameter a couple of millimeters larger than

the diameters of the samples. The space between ring and sample

was filled with water.

During the tests the temperature of the ice was raised from a cer-

tain initial value to 0°C. The thermal pressure was measured by

strain gauges attached to the ring.

Using such a procedure five tests were made with snow ice For

each of the tests the formula (11) was used to find the stresses

that would develop in the uniaxial case under the same tempera-

ture conditions. In this way the maximum measured stress in the

biaxial case could be compared to the maximum computed stress in

the uniaxial case.

The value of the ratio:

a(max,biax,snow ice) / a(max,uniax,snow ice)

were 1.81, 1.51, 1.83, 1.72, 1.56 leading to the following

values of the apparent Poisson modulus: 0.45, 0.34, 0.45, 0.42

0.36.

Some considerations on the validity of the different tests make

D & M exclude the two smallest values from the series of five.

After that they conclude that the snow ice will deform in the

same way as a nearly perfectly plastic material when the state
* ,1 .. ....... ._. :
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of maximum stress has been reached.

The arguments made for the exclusion of the two small Poisson

values seem difficult to follow. If all five values are re-

tained the mean value is - 0.40. The same value for perfectly

plastic material is 0.50 whereas for isotropic elastic materials

it is in the order of 0.3.

With the ice of the type S1 eight biaxial tests were made.

The values for the ratio

a(max,biax, Sl) / a(max,uniax, Sl)

were found in the range 1.97 to 1.0. The variation in this

value is attributed by D & M to a variation in the direction of

the optical axis in the biaxial case. For the tests with a high

value of the ratio the directions of the c-axis were found to be

scattered very little about the vertical, whereas a much larger

scatter was found for the samples giving low values of the ratio.

It is confirmed by Lindgren [13] that

a(max,biax,Sl,c-axis scattered)/c(max,uniax,Sl,c-axis vertical)- 1

This leads D & M to a convenient conclusion (translated freely

from French): In nature it is impossible that all of the optical

axes of an ice cover consisting of columnar ice are directed

vertically. For this reason the determination of the thermal ice

pressure of columnar ice (not nucleated) that is restricted

biaxially can be based upon the results of maximum stress ob-

tained from samples uniaxially restricted and deformed perpendi-

cular to the optical axis.

With ice of type S2 eight biaxial tests are reported. In the

same way as before a comparison of maximum stresses is given.

Due to lack of results for uniaxial tests of S2 ice the

following ratio has been used

a(max, biax, S2) / a(max, uniax, Sl)

The values of this ratio vary between 0.83 and 1.16 with a mean
1 l value of 1.02.
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D & M conclude: On the basis of this mean value the magnitude

of the thermal ice pressure exerted by an ice cover consisting

of nucleated columnar ice is considered, in the scope of this

work, as not being able to attain a higher value than the ther-

mal stresses exerted by columnar ice with the optical axes pre-

ferentially in the vertical direction.

From the conclusions by D & M cited in the preceding sections

it is seen that the results of the uniaxial tests with ice of

the type S1 attains a very central and important position in

their work. On the basis of these tests they have computed

graphs showing the maximum total thermal ice pressure (t/m)

that is exerted by an ice cover (composed of S1 ice and

uniaxially restrained) as a function of cover thickness and

with the initial surface temperature of the ice and the time

for increasing this temperature to 0°C as parameters.

Similar curves are shown for a uniaxially restrained cover of

snow ice.
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1.110l Metge (1976)

Based on observations of cracks in the ice on Lake Ontario near

Kingston, Canada, Metge r221 in an unpublished Ph D thesis to

Queen's University presented some new thoughts on pressure due

to temperature variations. Metge focused not on the continuous

ice sheet, but on the cracks which have so far been almost to-

tally neglected, although they occur in every ice cover. He

suggests two crack mechanisms influencing ice pressure in oppo-

site ways:

Wet cracks, when refreezing, develop thin ice bridges that are

subjected to crushing forces when the ice moves due to thermal

expansion or otherwise. Their sudden failure releases elastic

energy stored in the ice sheet and may cause high impact forces

when the edges of the two ice sheets meet.

Dry cracks, developed during cooling, act as bellows during

warming of the ice, delaying the build-up of thermal pressures.

Formation of dry cracks is often associated with compression in

the lower part of the ice cover as evidenced by flaking.

1.111 Bergdahl (1978)

In 1978 yet another Swedish contribution to the literature on

thermal ice pressure appeared. Bergdahl [23,2i41. submitted a

doctoral dissertation to Chalmers Institute of Technology and

later summarized his work at the LuleA Ice Symposium.

Bergdahl suggested a rheological equation

+~ K D n (12)E

where K and n are functions of strain rate and temperature, while

E and D are functions (,f temperature only. Physically D is the

..... 1e
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coefficient of self-diffusion for the ice molecules, and K and

n are parameters discribing the viscous deformation (dashpot

characteristics in the Maxwell unit).

The model (12) is nonlinear, but lends itself fairly well to

numerical computations. If one describes the time history of

deformation due to loading and unloading by three terms as in

Fig. 1, equation (12) accounts for elastic and viscous de-

formation, but neglects elastic lag. When considering rare

events such as extreme rates of change of temperature, this does

not seem a serious deficiency.

Deformation

E3

t 0 V E4 Time

Fig. 1. Time history of ice deformation.
9

The calculation of ice temperature is thorougly discussed. The

resulting ice temperatures for a clear night and an overcast

night, assuming constant heat and flux v, are given in Fig. 2

for three ice thicknesses.

clear sky overcast

10

20 2

Fig 2.Temperatures in snow-free ice covers.
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The weather conditions for Fig. 2 were: air temperature -100C,

wind speed 2 m/s, and vapour pressure 300 Pa.

It is clear that noen of the simpler assumptions, such as To -

T air (Drouin & Michel) or To =0,35 T air (USSR, Sn 76-66), can

account for more than a few of the examples shown in Fig. 2.

The cases of interest have rising ice temperature, however, and

Bergdahl made parametric studies with various numerical schemes.

He claims that the method used by Drouin & Michel gives incorrect

results, and warns that the choice of boundary conditions is

more important than the choice of ice parameters.

! 4

II

11
,(
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1.2. MEASUREMENTS OF THERMAL ICE PRESSURE

Many of the authors mentioned above conclude the description

of their theories by the remark that the theoretical formulas

should be tested against appropriate field measurements.

We have found only a few descriptions of in situ measurements

of thermal ice pressure made recently and in fact none of these

measurements considered the case of thermal ice pressure against

a nearly vertical, flat wall and at the same time reported suf-

ficient data to make possible a comparison between theory and

nature.

The measurements often referred to by investigators are the ones

reported by Monfore about 1950 [111. Measurements were made at

several reservoirs in the mountains of Colorado. Indenter and

strain gauges were set in thin mortar panels that could be in-

stalled on the face of the walls. Unfortunately these measure-

ments can not be analysed as a function of the temperature condi-

tions because the method used only records the maximum stress

developed during a winter at different levels in the ice. A

mean value of the stresses measured at different levels in the

ice cover is interpreted as the maximum load.

In this way it was found that the maximum load varied between

22.4 and 35.8 t/m in reservoirs with steep and rocky shores

(Eleven Mile Canyon). A maximum load of 14 t/m was found in

the Evergreen reservoir where the shores are moderately steep.

In reservoirs with flat and sandy shores (Antero and Shadow

Mountain) values of 5.4 and 8.6 t/m were measured.

In connection with an application of the linear viscoelastic

theory in a simplified form to the problem of thermal ice pres-

sure on the Saima ChannelJumppanen [211 reports the result of

a single measurement of ice pressure (1972-73).

Only the pressure measured at a single level in the ice cover( (8 cm below the surface) during 28 hours is reported. It shows

a rather good agreement with the pressure calculated by means

of the theory on the basis of the measured temperature varia-

tions at the same level on the ice cover.
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It seems hard to believe that no one has tried to make more

extensive measurements of thermal ice pressure recently.

According to Drouin & Michel [41 such a measurement should con-

tain the following parameters:

a) measurement of the stress as a function of time at

several levels in the ice cover,

b) measurement of the ice thickness,

c) measurement of the air temperature,

d) measurement of temperatures in the ice,

e) measurement of thickness of snow cover,

f) measurement of solar radiation,

g) measurement of direction and speed of wind,

h) analyses of the structure and the texture of the ice,

i) measurement of the water level,

j) a complete and global description of cracks in the ice cover,

k) measurements of displacements of the ice cover.

*J
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1.. EMPIRICAL VALUES

For different locations and climates one finds empirical

values for the maximum thermal ice pressure used by designing

engineers.

According to Michel [31 empirical values used in Canada at pre-

sent vary form 15 t/m to 22 t/m for rigid structures. For more

flexible structures such as sluice gates values in the vicinity

of 7 t/m are more commonly used.

Drouin [181 gives a somewhat higher value of 15 - 30 t/m for

Canada and suggests himself that when account is taken of cracks

and snow an appropriate value for a thick ice cover moderately

restrained would be 22 t/m.

In [19] the usual practice in North America used to estimate the

total pressure is given as a thrust varying linearly with the

* ice thickness. For zero thickness the ice thrust is zero and

for a thickness of 4 feet the thrust is 20 kips per linear foot.

* This corresponds to the commonly used design loads of 15 t/m

and 22 t/m when the ice thickness is 2 and 3 feet.

According to Starosolszky [201 in the Soviet*Union for the

regions Siberia, Leningrad and Caucasus 30, 20 and 15 tons

per sq. m are recommended as a first approximation for design

purpose.

For the somewhat less severe conditions in Norway 10 t/m is

estimated under usual conditions. Under especially unfavour-

able conditions the value will be as high as 15 - 20 t/m.r

. .........(- - ... ..... .... .. ..f .. ._ ., :
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1.4. A COMPARISON OF ICE PRESSURE VALUES

In his paper "State of research on ice thermal thrust" [18]

Drouin makes a comparison between the result of some of the

thermal ice pressure theories using a specific example:

- The temperature of the ice surface initially at -40°C

is made to rise at a rate of 2.80 C/h. The ice cover

is uniaxially restricted and without a snow cover.

No solar energy is absorbed. Pressure values are

computed for two thicknesses of the ice cover 0.45 m

and 0.90 m. -

Under these conditions Drouin computes the pressure values by

means of Rose's theory, by means of Monfore's experimental

results combined with an appropriate theory of the temperature

destribution and finally by means of the USSR norm SN 76-59.

(As far as the norm SN 76-59 is concerned it is assumed that

the initial air temperature is -40 C and the rate of change

in air temperature is 2.8 °C/h). The results are shown in the

table below.

The table has been extended, first by Kjeldgaard [241

and later by Bergdahl [23]. Kjeldgaard found the

pressure values based on Drouin and Michel's work [4] for ice

of the type Sl and for snow ice. (It should be noticed that

the pressures given on the graph of [4] for a certain tempera-

ture increase are computed for a sinusoidal variation of the

temperature with time. The values given below have been cal-

culated for a linear temperature increase taking into account

the correction factors given in [4]. For a sinusoidal varia-

tion within the same temperature limits the values would be

approximately 40% larger.)

Also results obtained from the USSR norm SN 76-66 are shown.

In this norm no distinction is made between different types

of ice but the pressure values are very dependent on the velo-

city of wind i.e. the thermal boundary layer. The temperature

data that is to be used in SN 76-66 is air temperature data. 0

So it is assumed that the initial air temperature is -40°C and

that the increase rate of the air temperature is 2.8 C/h.

*1 !
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Values of the thermal ice pressure have been computed for a

wind velocity of 0, 5 and 20 m/sec.

(It is assumed that the extent of the ice cover is less than

50 m, otherwise the values should be multiplied by a reduction

factor according to SN 76-66.)
TABLE 1.

T = _400C, T1  = 0C 
KN/m 2

Ice thickness
AT 2,8°C/h 0.45 m 0,90 m

Rose 1947 (Drouin 70) 47 86

Monfore 54 " 222 232

SN 76-59 59 " 128 255

Drouin & Michel (Kjeldgaard)

S1 ice 330 390

Snow ice 220 270

0 m/s 30 60

5 " 310 440

20 " 410 580

Bergdahl 78
0 m/s 459 752
5 502 830

20 " 531 829

The question of the type of restraints relevant to the examples

given in the table will be considered in more detail:

Drouin has computed the forces exerted by Monfore ice in the

uniaxial case. In cohnection with a similar calculation

Michel [3] mentions that for the biaxial case the results

for Monfore ice would be about 60% larger using elastic

theory as the first approximation in extending the results

from the uniaxial to the biaxial case.

As far as we know [1] the SN 76-59 does not distinguish be-

tween the uniaxial and the biaxial case of restriction.
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" Referring to the conclusions made by Drouin & Michel in [41

and cited in section 1.9 above, it seems to be in agreement

with their train of thoughts to look upon the results of the

uniaxial tests with Si ice as a reasonable estimate of the

pressure exerted by biaxially restricted S1 ice as it occurs

in nature with some scatter in the directions of the c-axes.

Further these results can be taken as a reasonable upper

limit of the forces exerted by biaxially restrained S2 ice

according to [4].

" In the Russian norm SN 76-66 no distinction is made between

uniaxial and biaxial restraints, i.e. the users of the norm

do not have to decide which sort of restraints exist in the

actual case.

It is seen from the table that the values computed by means of

the SN 76-66 are very dependent or the speed of wind w i.e. on

the thermal boundary layer in air above the ice/snow surface.

The later Canadian investigators Drouin and Michel do not

attach the same importance to the boundary layer. In fact

Michel in [3] says that the difference between the temperature

of the ice surface and the temperature of the air "is small and

measurements made for a whole winter on clear ice have shown

jthat it rarely exeeds 3 F (1.7 C). It is thus safe and accep-

table to neglect this effect".

Further in [41 Drouin & Michel gives an example of application

of their test results for S1 ice. The example is for an air
temperature originally at -36°C. To take account of both the

effect of the boundary layer and the weak possibility of the

initial temperature gradient in the ice being a straight line

they assume an initial ice surface temperature of -300 C. No

further account is taken of the boundary layer in their example.

Thus it seems that the question of temperature distribution

above the ice/snow surface is one of the main divergencies be-

tween the later methods for computing the ice pressure.

When comparing the theories and methods of computation with each

other it should be remembered that they may have developed along
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different lines.

For instance Monfore's, Lindgren's and Drouin & Michel's con-

tributions are almost entirely based upon laboratory tests and

theoretical considerations. In this way it has been possible

to study in detail different effects taking part in the problem

and to establish a reliable basis for further research. However,

the next step, to translate these observations into a usable and

safe set of rules for the designing engineer, has not yet been

taken.

The Russian norm SN 76-66 may have gone much further in this

direction. Possibly the Russian theories, whatever their

origin, have been tested against field measurements and adjusted

to the conditions occurring in nature.

' " '
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1.5. CONCLUDING REMARKS

From the short review of the methods suggested for the computa-

tion of thermal ice pressure it appears that the knowledge of

the phenomenon has become more detailed during the previous

decades.

However, in spite of a considerable amount of experimental work

conducted in laboratories, there still exists some divergencies

concerning the difficult question of which stress-strain rela-

tionships or constitutive laws should be considered appropriate

as the basis for the methods of computation.

The somewhat simpler problem of calculating the temperature

variation in an ice cover seems to be solved, except for some

divergencies concerning the importance of the thermal boundary

layer in the air above the ice/snow surface.

In laboratory tests and by theoretical considerations single

physical effects have been studied with great care without

disturbance from variations in non-relevant associated para-

meters and a detailed knowledge of effects important to the ice

pressure problem has been reached in that way. However, there

seems to be a lack of accessible field experiments that show
to what extent the theories and methods can give the magnitude
of ice pressure occurring in nature where conditions are more

mixed.

Such field measurements should take into account all the para-

meters that at present are thought to play a role in the en-

tire problem of thermal ice pressure or at least a set of para-

meters that constitutes an independent part of the problem e.g.

the temperature distribution including the thermal boundary

layer in the air.

Table 1 illustrates a rather striking development which has

led to an order of magnitude higher estimates in 1978 than in

1947. It is interesting to note that our increased understanding
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and perception has uniformly gone in the direction of increasing

thermal pressures. Perhaps this reflects the prudence of a worst

case design philosophy more than the actual but largely unknown

reality. We are now in the most active period ever of ice re-

search. There will be new information available, and one may

wonder where the upper bond lies. Physically still higher press-

ures than those of Table 1 are conceivable. Bergdahl has Dointed

out that an untested combination of simultaneously increasing

air temperature, wind speed and cloud cover will boost thermal

ice pressure beyond the present estimates.

On the other hand the response to this kind of extreme atmos-

pheric forcing depends on the previous history of the ice. If

the ice is too thin, or too thick, or too warm, or has a snow

cover, or is cracked up, the resulting pressures will not be

extreme.

In view of all the parameters influencing the phenomenon, a sta-

tistical approach seems to make sense. One could then either ob-

serve ice pressure directly, or observe inputs in a model and

compute the ice pressure.

The former approach has been advocated by all researchers, but

it is only recently that the necessary instrumentation has been

developed in connection with offshore structures.

The latter approach has been followed by Bergdahl [231. Based on

12-16 years records of weather and ice conditions he estimated

ice pressures and extrapolated the observed series of annual

maxima to recurrence periods of 100, 500 and 1000 years.

The advantage of using a model is primarily that one can then

generate time series of ice pressures by hindcast.ng where the

input variables are available. However, even for this case it

is imperative with direct measurements of thermal ice pressure

to verify the propoced model.
*1
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P A RT I I

ICE FORCES ON FIXED, RIGID STRUCTURES

By K.R. Croasdale

Imperial Oil Ltd., Calgary, Alberta, Canada

ABSTRACT

Ice forces on structures are determined either by the
environmental driving force or by the force to fail the ice sheet
and move the ice around the structure; which ever is the least.
State-of-the-art techniques for predicting these forces on fixed,
rigid structures are presented. A rigid structure is defined as one
where the ice interaction process is not influenced by the defor-
mation of the structure itself. Structures are considered in three
broad categories; structures with sloping sides, structures with
vertical sides, and wide structures such as artificial islands.
Both uniform and ridged ice is considered. The problem of ice
ride-up on sloping beaches is also discussed.
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2.1 DEFINITION OF FIXED, RIGID STRUCTURES.

Fixed rigid structures can be defined as having negligible
deformations under the action of ice forces. Any deformations that do
occur are heavily damped so that the dynamic response of the structure
is not siginficant. In this category~interacti 'ok between the ice failure
process and the response of the structure does not have to be considered
in design.

Examples of fixed rigid structures would be artificial islands
(with frozen surfaces), massive concrete or steel docks and break-waters.
Conical shaped piers and platforms will generally be rigid enough for
their dynamic response to be ignored, and will also be considered in this
category of structure. Docks, piers and platforms with cylindrical
members might also fall into this category if the length of the cylindrical,
members is short and the structure is very stiff.

2.2 EXAMPLES OF FIXED, RIGID STRUCTURES

Examples of fixed, rigid structures are shown in .the first
series of Figures.

An artificial dredged island for petroleum exploration in the
Beaufort Sea is shown in Figure 1. Such islands have been built out to
13 m of water ai~d are subject to the forces generated by moving ice up
to 2 m thick. They are typically about 120 m in diameter at the water
line.

In deeper water an island might be retained by concrete caissons
with sloping sides and ice deflectors as shown in Figure 2. This
arrangement is being considered for water depths out to 20 m in the
Beaufort Sea. At this depth ice features such as multi-year ridges have
to be considered in design.

Another possible concept for deeper Arctic waters is the
concrete or steel conical platform which might be held on location by
friction between the large base and the sea floor (Figure 3). Designs
for these structures exist but none have yet been built. One could
envisage them being installed out to the 100 m water depth where they
would be subject to ice forces generated by the movement of thick polar
ice containing ridges up to 30 m thick.

In less severe climates, conical-shaped light piers have been
installed in the St. Lawrence Seaway, Canada, Figure 4. These structures

are subject to action by sheet ice up to about one metre thick.
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Figure 1. Artificial drilling island.

: _.- ~ . / :

Figure 2. Caisson Retained Island. Schematic showing
cutaway through island.

.1
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Figure 3. Cone 135, maximum design water depth
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Figure 4. Cross-section of Prince
Shoal Lighthouse.
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2.3 LOGIC FOR CONSIDERING ICE FORCES

Before one can accurately predict ice forces on a structure
(or even consider the right problem to solve) some preliminary con-
siderations have to be made.

One should be aware for instance that the forces transmitted
to a structure by the ice are generated by natural forces such as winds,
currents or thermal strains. These natural forces can be concentrated
on the structure by large ice sheets and represent an upper limit for
the ice forces. The more usually addressed upper limit for the ice
forces, is the force to fail the ice against the structure in the
easiest mode of ice failure. Sometimes one can select the mode of
failure which gives the lowest force but often one has to check
several modes.

Another consideration relates to the clearance of ice around
the structure; if ice rubble builds-up on the structure the mode of ice
failure (and hence the force) can change.

A suggested logic for considering some of the above mentioned
points is presented in Figure 5.

Environmental driving forces can be calculated separately and
compared with ice interaction forces to indicate the design force.
Environmental forces, as will be discussed later in this report are not
easily estimated to any degree of accuracy. But usually they are much
greater than the ice interaction force so that accuracy is not that
important. Sometimes a short to the environmental force can be made
by using observed ice velociti and floe sizes to estimate kinetic energy
prior to impact. If this energy is much greater than the work done in
deforming the ice to reach the maximum interaction force then the latterforce governs the design force.

Environmental factors such as rate and magnitude of ice move-
ment also input to other parts of the logic diagram as shown.

For the ice interaction force, the mode of ice failure is the
most important factor to consider. Intuitively one can expect ice
crushing against vertical structures. However it is well known that thin
ice can buckle at lower forces than crushing. Furthermore ice rubble
in front of a vertical structure can lead to bending failure in a similar
way to the formation of first-year ridges. Bending failure will occur
against a sloping structure, but the presence of re-frozen rubble or
high friction due to ice freezing to the structure can lead to ice
crushing at higher loads. All these possibilities may have to be
considered.

q4
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The ice-type governs both the failure mode and the actual
interaction force. Such factors as thickness, ridge shapes and sizes,
crystal structure, salinity, and temperature are known to be important
and will need to be specified.

Structure shape has already been discussed in terms of side
angle. For sloping structures, the friction between the ice and the
sides is also important in determining the horizontal force. In
addition, the width of the structure will influence two things; first
the way ice rubble clears around the structure; and second whether ice
failure is simultaneous across the full width of the structure.

For certain low-freeboard structures the problem of ice en-
croaching onto the structure may have to be seriously considered. As
shown in the logic diagram such factors as structure shape, extent of
ice movement and characteristics such as strength or thickness will all
have to be considered in determining the extent of ice ride-up or pile-up
on the structure.

2.4 ICE TYPES

Under the topic of ice type we have to specify ice strength
and geometry (e.g. thickness) in order that modes of ice failure and ice
forces against any particular structure can be calculated.

In order to calculate interaction forces it is usually necessaryJ
to know the following strengths:

- compressive (uniaxial)
- shear
- bending or flexuralI It is well known that the above strengths are functions of ice

temperature, crystal structure, direction of loading, rate of loading or
strain, confining force, sample size, presence of impurities such as salts
and air.

It is beyond the scope of this report to discuss the above
effects on ice strength but this topic has been addressed extensively in
the literature.

Another aspect of ice strength which is important is the
integrity of ice rubble piles and first-year pressure ridges. Can they
be treated as a pile of granular material or do they also have cohesion
due to refreezing of the water between the ice blocks. This problem has
not yet been properly addressed.
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For uniform sheets, ice thickness in any geographic area is
generally known well enough. However, the thickness of ridges is often
not known, and assumptions will have to be made.

2.5 ENVIRONMENTAL DRIVING FORCES

Ice motion in large bodies of water is caused mainly by wind
stress.

A typical wind force on an ice surface can be calculated using

the classical expression for drag (K).

K = C10 Pa V2A (1)

where:
C10 is the drag coefficient at the 10-metre level

Pa is the air density

V is the air velocity at the 10-metre level

A is the "fetch area"

Danys (1977) has recently reviewed the topic of wind induced
ice forces. In his paper he lists drag coefficients measured or
calculated for a variety of ice surfaces. An average value for a rough
ice cover is given as 0.0022.

Other investigators have suggested values for the drag coefficient
of arctic sea ice. Karelin and Timoichov (1972) obtained values in the
range 0.00335 <C10 <0.0049 by direct measurements on unridged ice. Banke
and Smith (1973) recommend doubling the drag coefficient to allow for the
form drag on ridges, whereas Arya (1973) suggests an increase by about 40%.
For ridged arctic sea ice a value of C10= 0.005 has been recommended
(Metge, 1976).

Some typical sheet sizes needed to impose critical ice forces
on various structures are given in Table 1. For ice sheet sizes greater
than those shown the ice forces will be governed by the ice failure
mechanism and not by wind stress. It can be seen that only on relatively
small bodies of water will the wind induced ice force control the design
load for the structure.

For floes of limited extent moving at a velocity determined
by the current or wind, ice forces can be calculated using energy
considerations. The initial kinetic energy of the floe is equated to the
work done in failing the ice as the edge of the ice floe is penetrated by
the structure. Floes below a certain size will be brought to rest before
full penetration at lower-than-maximum ice force. However this condition
is unlikely to govern ice design criteria.

-7 -7
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TABLE 1 ICE SHEET SIZES TO GENERATE TYPICAL ICE FORCES

Typical Ice Sheet Size to
Structure Force for Ice Generate Ice Force

Sheet Failure (For V = 15 ms-1)
(KN) () x ()

Conical Light Pier
(3 m diameter) 1500 1600 x 1600

Conical Drilling
Platform
(60 m diameter) 30000 2630 x 2630

Cylindrical Pier
(4 m diameter) 10000 4150 x 4150

Dredged Island
(150 m diameter) 500000 18600 x 18600

1WNVRONME NTAL

I _. STIRUCTURE HAPL

.,, . ..... ... .__.MODE OF ICE FAILURE
_ r k AGAINT STRU TUREI

Figure 5. Logic for considering ice
action on fixed, rigid structures.
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2.6 UNIFORM ICE ACTING ON A SLOPING STRUCTURE

2.61 Interaction Mechanism

Consider the simplified two-dimensional system shown in
Figure 6. As the advancing ice sheet first encounters the sloping
structure, local crushing occurs on the underside of the ice sheet.
The local crushing causes an interaction force normal to the structure
surface. In addition, because the ice is moving relative to the
surface, a frictional force is also generated.

The normal and tangential forces can be resolved into
vertical and horizontal components V and H acting at the centre of
the crushed area. In the simple two-dimensional model shown in
Figure 6, the forces acting on the ice will be V, H, gravity and
buoyancy forces; the latter can be considered as an elastic foundation.

As the ice sheet continues to advance the crushed area
will increase causing V and H to increase. Assuming an unlimited
driving force, V and H will continue to increase until the ice fails.
For a properly designed sloping structure the ice should fail in
bending.

Except for very steep structures the effect of H on the
bending failure of the ice can be ignored. The ice sheet then
behaves like a beam or plate on an elastic foundation. The load
V to fail the ice sheet governs the initial lateral load on the
structure. Subsequent loads are generally higher because of the
additional load required to push the ice pieces up the slope.

2.62 Simple Theory - Two-Dimensions

To gain an appreciation of the influence of various
parameters it will be useful to consider a two-dimensional system
and derive some simple equations.

Consider the initial interaction between ice and the

sloping face. The relationshipbetween V, H, N and u can be
derived by resolving forces, that is;

H = Nsina + PNcosa (2)

V = Ncos - ANsina (3)
i therefore,

H = V(sina + Pcosa 
(4)

cos - usin
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In the limit, the maximum value of V will be limited by
the strength of the ice sheet with an edge loading. In this simple
analysis, assume the ice sheet can be represented by a beam or an
elastic foundation. Assume its strength is limited by its bending
moment capacity Mo. Most beam strength tests on ice measure bending
moment capacity but with the results converted to a flexural
strength(af) using simple bending theory, that is;

af = 6Mo (5)(5)

Where b is the width of the beam and t is the ice thickness.

For a semi-infinite beam on an elastic foundation it can
be shown (Hetenyi, 1946) that the maximum bending moment (Mo) due to
an edge load(V)is given by

110 - 06w4 (6)
7r/4

Where 1 is a characteristic length, defined by,

(7)
K4El

Where K is the foundation constant equal to pwgb for a floating
beam, pw is the density of water, g is the gravitational constant,
E is the elastic modulus, and I is the second moment of area of
the cross section (bt3/12).

Li Combining equations (5), (6) and (7) we get

V = 0.68 afb(Pwgt5 (8)
:, E )

and therefore, the initial horizontal force on the structure per
unit width is given by

H/b = 0.68 awt4 sin + ucosa (9)
H 0cosa - psin(

The above can be thoughtof as the component required to
break the advancing ice. For subsequent interactions a component
is also required to push the ice up the slope. The force system
in this latter case is shown in Figure 7. P is the force required
to push the ice up the slope, then

P = I t b pig (sina + UCOS) (10)
sina-
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Where Z is the height reached by the ice on the slope, and pi is.
the density of the ice, then,

H = (V + Psina) (sin + pcosa + Pcoscsn(11)

(cosct - JPsina/
substituting for V and P gives

0.68 af (pwt5) sint + scost + Ztpig(sin_+1cosa) + sin+ Pcos\ (12)
E coscs - jisinai~ cosct -Iisina tana/

Equation (12) above is similar to equation (9 ) except for the
additional term. The equation can be simplified to

H pWE_) C1  + Ztpig C2  (13)

where C1 and C2 are functions only of otend p. Values for the
coefficients C1 and C2 are plottedin Figures-(8) and (9) for typical
values of a and P.

In the simple two-dimensional theory given above, the
first term can be considered to be the force necessary to break the
ice, and the second term can be considered to be the force necessary
to push the ice pieces up the sloping structure. As a 2-D theory
it might be considered accurate for a very wide structure, but as
will be discussed later it is probably inaccurate for narrow structures.
For structures which are narrow relative to the characteristic length
the zone of ice failure will be wider than the structure itself, also
most of the ice pieces will not necessarily ride-up the structure
but more around it. Nevertheless it will be useful to discuss the
importance of some of the key parameters in the context of the simple
2-D theory.

2.63 Effect of Friction and Slope Angnle

For a typical example of a structure with a freeboard of
5 m subject to forces imposed by ice 1 m thick with a flexural
strength of 700 kPa, the effect of friction and slope angle is shown
in Figure 10. It can be seen that the effectof friction and slope
angle becomes s~gnificant above an angle of 45 . For a structure with
an angle of 55 the horizontal ice force increases from 125 KNm "1 for

= 0.1, to 450 KNm "1 for P = 0.5. For steep angles and high friction
the ice may fail in crushing rather than bending. Figure 10 emphasizes
the need to maintain smooth surfaces on sloping structures so that
ice forces are minimized. Even for very shallow angled structures
high friction can increase loads significantly. Other investigators
(Bercha and Danys, 1977 and Ralston, 1977 ) have also
shown the importance of friction.
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2.64 Effect of Ice Strength

The ice strength affects the ice breaking component but
not the ride-up component. As shown in Figure 11, in this simple
2-D elastic analysis, the ride-up force in a typical example is
larger than the breaking force, so the effect of ice strength on
total force is not as significant as one might suppose. This
observation however is not true for narrow struc4 ures - s will be
discussed later.

2.65 Effect of Ice Thickness

Ice thickness is probably the most significant parameter
affecting ice forces on sloping structures. In the simple 2-D
analysis, the ice breaking component is pr6portional to (t)1. 25

and the ride-up force is directly proportional to t. The effect
of thickness for a typical example is shown in Figure 12.

Again, it is interesting to note from Figure 12 that the
ice ride-up force is larger than the ice breaking force. However
as already discussed, this observation can only be considered
relevant to 2-l theory as might be applicable to a very wide
structure. For a narrow structure, the ice breaking component will
be larger and the ice ride-up component smaller (see the next
section).

2.F6 Three Dimensional Theory

In the three dimensional case the same mechanisms apply
but the zone of ice failure extends wider than the structure. Also
for structures of circular section the effective angle for ice ride-
up is reduced and ice pieces can slide around the structure without
fully riding-up. These effects are illustrated conceptually in
Figure 13. Intuitively it will be appreciated that 3-D effects
cause divergence from the simple theory more for narrow structures
than for wide structures.

For the ice breaking component, the simple beam theory
ireplaced by a more complex plate theory for which elastic

analyses have been made using theories developed for plates on
* elastic supprts. Nevel (1972) has proposed equations for the

ultimate failure of ice plates which can be applied to this problem.

It is generally assumed that the essence of the ice force
problem on a conical structure reduces to the predic tion of the
forces necessary to fail a series of ice wedges formed by radial
cracking of the ice as it advances against the cone, see Figure 13.
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SIMPLE 2-0 THEORY

LENGTH OF TRANSVERSE CRACK

EQUAL TO WIDTH OF STRUCTURE

3-0 THEORY

LENGTH OF CIRCUMFERENTIAL

CRACK GREATER THAN

WIDTH OF STRUCTURE

Figure 13. Ice action on sloping structures (3-D effects).
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Nevel's (1972) equation for the force to fail these
wedges is given as;

6P = 1.05 + 2.00(a/z) + 0.50(a/x)3

b0oat
2  (14)

where P is the failure force on the tip of the wedge, a is the
ice flexural strength, t is the ice thickness, a is the distance
from the tip of the wedge over which it is loaded, bo is a constant
defining the width of the wedge (b) in the equation

b = box '15)

where x is the distance along the wedge, bo is a constant and k
is the characteristic length for the plate given by

Et3 )0.25
2 = 12pwg (16)

Bercha and Danys (1975) have made use of the above theory to present
an elastic analysis for the ice breaking component of the ice force
on a conical structure. Their results are repeated here in Figures (14)
and (15) for structures with water-line diameters up to 18.3 m (60 ft)
subject to ice 0.91 m (3 ft) thick.

Bercha and Danys (1975) have also analyzed the effect of
in-plane compressive stresses on the flexural failure of the ice
sheet. For steep, rough structuresthe effect can be significant
and increases the horizontal force.

An approach for ice forces on a conical structure using
plastic limit analysis has been proposed by Ralston (1977). His
results can be expressed in the form

H = A4 [Alat2 + A2PwgtD2 + A3PWgt(D2 - D2) (17)

V = B1H + B2Pwgt(D
2 - D ) (18)

where DT is the top diameter and D is the water line diameter. A,
and A2 are coefficients dependent on pwgD

2/ot , and A3, A4 , B1 and B2
are coefficients dependent on the cone angle a and friction v. Values
for these coefficients are reproduced in this report in Figure 16.

It should be noted that Ralston's analysis includes both
the forces due to ice ride-up and ice breaking. In equation (17)
the first two terms are due to ice breaking and the third term results
from the ice pieces sliding over the surface of the cone.
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It's of interest to note that for narrow structures,
Ralston's theory predicts the ride-up component to be small compared
with ice breakingsee Figure (17). For wide structures the ice ride-
up component becomes a larger part of the total force, see Figure (18).

2.67 Experimental Data

At this time there are only two series of laboratory
experiments for which data are available.0 In 1970, tests were
conducted in the Arctec model basin on 45 angle cones up to 100 cm
in diameter with ice up to 7 cm thick. Results from these tests
have been reported by Edwards and Croasdale (1976). In 1971, tests
were conducted with cones up to 28 cm in diameter with ice up to
3.5 cm thick by Afanasev, Dolgopolov and Shvaishtein (1971).

An empirical relationship derived by Edwards and Croasdale
from their tests is given as;

H = 1.6ot 2 + 6.OpgDt2  (19)

(for a 450 angle cone with an ice to cone friction coefficient of
0.05).

The investigators proposed that the first term represents
the ice breaking portion of the ice force and the second term
represents the ice clearing component.

From observations of their tests Afanasev et al (1971)
proposed the following formula based on elastic plate theory

ot2Sx tanx
H - 1.93I (20)

where Sx is the length of the circumferential crack given as

Sx = 1.76(r + 7/4i) (21)

where r is the cone radius at ice level, and x is the characteristic
length given by

= (12pg(l- 2) (22)

where E is Young's modulus and v is Poisson's ratio.

Measurements of ice forces on an inclined pieg have been
published by Neill (1976). The piqr was inclined at 23 to the
vertical and forces up to 788 KNm "1 were measured for ice 0.75 m thick.
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Experiments have been conducted in a large outdoor
test basin in Calgary on a 450 angle cone with a 3.1 m (10 ft) water
line diameter with ice up to 0.6 m (2ft) thick (Robbins et al, 1975,
Croasdale, 1977). Results from these experiments have not yet been
published.

Tryde (1975 and 1977) has investigated ice acting
on a narrow wedge-shaped pier by conducting model tests. He proposed
the following empirical method for predicting ice forces on a narrow
sloping wedge.

H = CFoctD

where acis the ice compressive strength and CF is a 'reduction
coefficient' expressed as,

5.2 ECF=

where c 0.16 E IC2 C3  
2

LoPUc si noj3

where = o/ , where a is the bending strength and ac is the compression
strength of tfe ice, E is the Young's modulus, p is Lne ice density
and U the velocity of the floe. The coefficients Cl , C2 and C3 are
givenc as,

Cl tana
C1 = 1 - s-1 -

~tana
C2 = + sTn

C1
c3:6(t osa +

C3 = 6 (t 0 2
where 28 is the included angle at the point of the wedge in the
horizontal plane, a is the inclination of the slope of the wedge to
the horizontal and P the coefficient of friction.

Tryde suggests that the value of CF is most likely
to be in the range 0.1 to 0.3, implying that ice failing in bending
imposes forces which are 10 to 30% of the ice crushing forces. As
far as can be determined Tryde's formula does not account for ice
ride-up and is quite sensitive to modulus of elasticity. The formula
is not strictly applicable to conical towers.
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2.68 Comparison of Formulae

2.68.1 Narrow Structures

In his review of ice forces on piers and piles
Neill (1976) used an example of a 10 ft (3.05 m) diameter
conical tower to compare various formulae for ice forces on
sloping structures. This example is repeated here and extended
to include the additional correlations published since Neill's
paper. Horizontal forces compared for the four original methods
discussed by Neill are presented in Table 2 together with forces
calculated using the formulas discussed in this report. Also,
typical crushing forces, assuming the structure is vertical
sided, are presented.

An immediate observation from the forces shown in
Table 2 is that all the more recent formulae and correlations
generally give higher forces than the methods originally listed
by Neill.

- I None of the original formulae listed by Neill took
account of friction, but even if we set Pi= 0 the formulae of
Bercha and Ralston still yield higher forces than the first four
methods. it should be appreciated that the 3-D math models of
Bercha and Ralston presumably assume simultaneous failure of
the ice sheet in the affected zone, and this perhaps represents
an upper bound. For example in Bercha's model the ice force is
derived assuming all the loaded ice wedges fail simultaneously.
If in fact they do not, then presumably the peak ice breaking
force will be lower.

It is of interest to note that the model data of
Edwards and Croasdale if extrapolated to this example gives
forces comparable with those predicted by Bercha and Ralston.
This fact lends support to the validity of their predictions.

As expected, the simple 2-D theory underpredicts
the ice breaking component. This is because the structure width
is small compared with the characteristic length of the ice sheet.
If we adjust the 2-D force by the ratio of the length of the
circumferential crack to the structure width, then the force
predicted by the 2-0 theory agrees quite well with methods (5)
and (7). The length of the circumferential crack =0.25fl2Z
where i is the characteristic length defined by equation (22).
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TABLE 2 HORIZONTAL FORCE ON CONICAL TOWER

CALCULATED BY TEN METHODS

ASSUMPTIONS: DlOft. (3.05), t=3ft.(O.91m), a=150psi (lO5OkPa)

v-0.33, E=lxlO 6 psi (7 xlO 6kPa), a 450

Freeboard= 5ft. (1.53m)

Source of Formula Breaking Ride-Up Total
Force Force Force
(kN) (kN) (kN)

(1) Afanasev etal (1971) 694 - 694

(2) Dany's Procedure as Reported 249 126 375

by Neill (1976)

(3) USSR Code SN 76-66 (Appendix 2) 543 - 543

(4) Korzhavin's Formula 463 - 463

(5) Bercha and Dany's (1975) u-O 954 - 954

gaO.15 1335 - 1335

(6) Ralston PaO 1400 22 1422
Pa0.15 1964 30 1994

(7) Edward's and Croasdale 1384 150 1534

(8) Simple 2-D Theory (P=O.15) 84 70 154

(9) Simple 2-D Theory
Adjusted (u-0.15) 1200 70 1270

(10) Tryde E- 7x106 kPa 485 - 485
(sloping wedge)_

E- 2x10 5 kPa 1200 1200

Crushing Force
p - 400 psi (2800kPa) 3886 3886
k = 0.5

Crushing Force
p a 600 psi (4200kPa) 5829 5829

-k - 0.5
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Also, we see from Table 2 that even using the
most conservative predictions,the forces on the conical tower
are significantly less than typical crushing forces on a 10 ft
(3.05 m) diameter cylindrical structure.

Finally, we see from the table that for narrow
conical structures the ride-up force is small compared to the
ice breaking force.

Until better test data is available, designers
would be wise to use the most conservative prediction techniques
(e.g. Ralston, Bercha and Danys, or adjusted 2-D theory).

2.68.2 Bercha's Example - 18.3 m Diameter Cone

To examine results for a wider structure consider
the example of an 18.3 m diameter cone, with the other variables
as defined in Table 3. This is the largest diameter structure
considered by Bercha and Danys (1975) in their paper.

Again the Ralston formula predicts the highest
force,but the ice breaking force is in reasonably close agree-
ment with Bercha and Danys.

The most significant point about-the data presented
in Table 3 is that the ice ride-up or clearing forces are now
quite large. The simple 2-D theory probably over predicts the
ride-up forces but both the correlations of Ralston and Edwards
and Croasdale suggest ride-up forces of around 1000 KN. Clearly
for a structure of this width the ride-up forces cannot be ignored.

2.68.3 A Wide Sloping Structure

The horizontal forces acting on a structure 60 m
wide are compared in Table 4. In this case only forces
derived using the Ralston formula and simple 2-D theory are
compared. The agreement for total force is quite good, but the
2-D theory consistently predicts lower ice breaking forces. This
is to be expected for the reasons already discussed.

Again the ice ride-up or clearing forces are very
significant and cannot be ignored for such a wide structure.
Perhaps more importantly the actual clearing mechanism needs to
be further addressed when considering such wide structures.

( _ _
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It should be remembered that the method of calculation of ice
ride-up forces assumes simply that the surface of the structure
is covered by ice pieces; and the force is that necessary to
push the ice pieces up the surface. In reality the ice pieces
may not continue to clear around the structure and a large ice
rubble field may be generated. This ice rubble ma'y then inter-
fere with the ice structure interaction and coula lead to even
higher forces. For wide structures, model tests should be
conducted to investigate this phenomenon.
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TABLE 3 HORIZONTAL FORCE ON AN 18.3m DIAMETER CONICAL TOWER

(BERCHA'S EXAMPLE)

ASSUMPTIONS: D=6Oft. (18.3m), t=3ft. (O.91m), a=lO0 psi (700kPa)

v=0.33, E=IxlO 6psi (7 xlO 6kPa), a = 450

P=0.15, freeboard = 20 ft (6.1 m)

Breakinq Ride-Up Total
Force Force Force
(kN) (kN) (kN)

Bercha and Dany's (1975) 1558 1558

Ralston (1977) 1964 1196 3160

Simple 2-D Theory 355 1896 2251

Simple 2-D Theory 845 1896 2741
(Adjusted)

Afanasev Et Al (1971) 711 711

Edwards and Croasdale (1977) 922 900 1822



-60-

TABLE 4 HORIZONTAL FORCE ON WIDE CONICAL STRUCTURE

ASSUMPTIONS: D=60m, a=700kPa, E=7xlO 6kPa, = 450

P=O.15, freeboard = lOm, t=O.5, 1.0, 2.Om

t Breaking Ride-Up Total
Force Force Force

(m) (kN) (kN) (kN)

Ralston (1977) 0.5 1574 4385 5959

Simple 2-D Theory 0.5 559 5625 6184

Ralston (1977) 1.0 4822 8770 13592

Simple 2-D Theory 1.0 1330 11250 12580

Ralston (1977) 2.0 14855 17540 32395

Simple 2-0 Theory 2.0 3162 22500 25662

I'
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2.7 SOLID ICE RIDGES ACTING ON SLOPING STRUCTURES

Solid multi-year ridges which occur amongst the polar ice
represent a severe loading condition for arctic offshore structures.
Multi-year ridges up to 15 m thick are not uncommon and are fully
consolidated (Kovacs, 1971).

As a first approximation multi-year ridges can be considered
as floating beams infinitely long. Failure loads can be calculated
using the theory of elastic beams on elastic foundations (Hetenyi, 1946,
Croasdale, 1975).

Observations of ridge structure interaction in model tests
(Lewis and Croasdale, 1978) indicates that the ridge usually fails first
with a centre crack at the point of interaction with the structure
(see Figure 19). Using simple beam theory the vertical load necessary
to cause this initial crack is given by

V,1  4 Ia (23)

where I is the second moment of area of the ridge cross section about
its neutral axis, a&is the ice flexural strength, y is the distance to
the surface in tension (in this case the top surface) and i- is the
characteristic length given by;

4EI 
0.25

= 9T (24)

where b is the width of the ridge.

Although when the first centre crack has occurred, the ridge
can be considered broken, it cannot pass around the structure without
further breaking. Again, observations of tests indicate that the
subsequent interaction mechanism is the formation of hinge cracks as
shown in Figure 19. The vertical force to cause the hinge cracks is
calculated by considering the simultaneous failure of two semi infinite
beams on elastic foundations, that is;

- 6.17 Ia (25)2 y2.

In this case y is the distance from the neutral axis to the bottom of
the ridge.
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It will be noted from the above equation that the formation of the
hinge cracks will generally cause greater loads on a structure than
the load due to the initial crack.

For a ridge 15 m deep and 30 m wide with a flexural strength
of 700 kPa and elastic modulus of 7 x 106 kPa, the vertical force to
create the initial crack is 18,736 KN whereas the force to create the
two hinge cracks is 28,900 KN.

The corresponding horizontal forces depend on the cone angle
and ice-to-structure friction, that is:

= n(si + PCscs)
1 1 Vlcosa - pina (26)

H = + cosa) (27)
2  V2(cos - psina

Typical horizontal f8rces are shown in Figure 19 for the ridge

described above acting on a 60 cone with P = 0.3.

More sophisticated analyses of ridge loads can be done using
a more realistic ridge cross-section to calculate I and y. Also, the
equations given above are for an infinitely long ridge. Ralston (1977)
has pointed out that shorter ridges can cause greater loads than
infinitely long ridges. The relationship derived by Ralston showing the
effect of ridge length is repeated in this report as Figure 20. Obviously
as the ridge gets shorter there is more chance of other interactions
taking place. The ridge may simply rotate or the ice sheet may fail
behind. Therefore Figure 20 should be used with care, and more work is
required in this area.

The only published experimental data on ice forces due to ice
ridges is that by Lewis and Croasdale (1978). Their work was conducted
in 1970 in a saline ice model basin. Mod8 l ridges up to 23.5 cm thick
and 28.6 cm wide were tested against a 45 angle cone.

A summary of their results adjusted to full scale values is
iven in Table 5. For comparison, theoretical values using equations
25) and (27) are included. The theoretical values are corrected for

length using Figure 20.

The comparison between theory and experiment is not good for
the small ridge but reasonably good for the deeper ridge. It is possible
that the effect of the surrounding sheet ice which was present in the
model tests leads to the higher loads observed compared to those
predicted.

/ ~-.
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TABLE 5 RIDGE LOADS: COMPARISON OF EXPERIMENTS AND THEORY

b

D H-

t

a=17xl0 5Nm-2  E =3x10 9NM-2

Db t Ridge 2. V Exp. V Theory H Exp. H Theor
____ ____ Lenqth _________ =O1 i=0.3

(in) (in) (in) (m) (in) (MN) (MN) (MN) (MN) (MN)

12.5 j 5.9 3.1 120 42 8.46 3.4 14.46 4.2 6.3

j12.5 11.3 5.8 120 67 17.29 22.03 27.70 27.21 40.8
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2.8 SOLID RIDGES ACTING AGAINST VERTICAL FACED STRUCTURES

Vertical faced structures would not be recommended where
multi-year ice ridges are common. Potential ice forces would be
very large because the ice ridge would have to fail by crushing,
shear or in-plane bending.

2.9 UNCONSOLIDATED ICE RIDGES

First year ridges are largely unconsolidated, that is,
they are composed of ice blocks held together by buoyancy, gravity
and frictional forces. Ice forces due to first year ridges can be
expected to be much lower than due to consolidated ridges. Ice forces
can be calculated approximately, the ice is a granular material with
an assumed friction angle.

For the arrangement shown in figure 21 (ignoring the ridge
sail):

Force on structure = 2F = -T-P.bgtan' (28)

Where B is the ridge width, t is the ridge thickness pb is the
buoyant density of the ice and 4' is the friction angle of submerged ice
blocks.

As an example consider an unconsolidated ice ridge 15 m thick
by 30 m wide with 0 = 300, and pbg = 981 NM 3;

2F = 2570 kN

This is about one tenth the load due to a multi-year ridge
of the same dimensions.

2.10 ADFREEZE FORCES

In the nearshore arctic environment the ice surrounding a
structure can remain stationary long enough for the ice to freeze to
the structure. Also, vertical motions of the ice due to tidal action
can be so small that an adfreeze bond can develop between the ice
sheet and the structure. Once the ice sheet starts to move again,
sliding motion between ice and structure first requires breaking the

adfreeze bond. For certain types of sloping structures the force
required to fail the adfreeze bond can be significantly greater than the
to fail the adfreeze bond can become the design force for the structure.

L1
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In the arrangement shown in figure 22 the adfreeze force
is given by;

H = tqD (29)
tana

where t is the ice thickness, a is the slope angle, D is the structure
diameter and q is the adfreeze bond strength.

Little data is available on adfreeze strengths. Adhesion
strengths published by Michel (1970) are in the range 140 to 1050 kPa
(20 to 150 psi) for fresh ice. More recently Sackinger and Sackinger
(1977) have published adfreeze strengths for sea ice on steel. They
found that salinity and temperature affected adfreeze strengths. A
maximum value of 1590 kPa (227 psi) was measured at a temperature of
-23o C for ice with a salinity of 0.4 parts per 1000.

2.11 ICE CRUSHING ON A NARROW VERTICAL PIER

2.111 Introduction

The problem of ice crushing against a narrow vertical
pier has become a classic problem in the field of ice mechanics.
A proper review of this topic would constitute a major thesis
and is beyond the scope of this report. For a detailed review of
current engineering practice the reader is referred to Neill (1976).

2.112 Empirical Formula

The effective ice pressure or stress acting on a
narrow vertical pier can be defined as:

F =(30)

where p is the effective ice stress
F is the ice force
b is the width of the pier
t is the ice thickness

The essence of the ice force problem on a narrow
vertical pier is to be able to specify the appropriate value
of p for the particular ice conditions expected.
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Early work (Korzhavin, 1962) to address this problem
(primarily for bridge piers) suggested the following empirical
relationship for p.

p = Imko (31)

where a is the ice strength in compression
k is a contact coefficient which equals 1.0 for perfect contact
m is a shape factor which is close to 1.0 for circular piers
I is an indentation factor which tends to 1.0 for a wide

structure and is equal to 2.5 for narrow structures (d/t=l.O)

In Korzhavin's original equation a velocity term was
included, but it is generally accepted that this can be omitted
if the ice strength is specified for the appropriate velocity or
strain rate.

The usefulness of the above equation to the engineer is
limited because of the need to input a value for the ice compressive
strength. Compressive strength measured on small ice blocks is
notoriously variable, being highly sensitive to crystal orientation,
degree of confinement, temperature, strain rate and size of sample.

However, despite this limitation, equation (31) includes
some useful concepts for ice pressure on piles. It suggests that
for wide structures, with I = 1, the maximum pressure approaches
the uniaxial ice crushing strength, and for narrow piers, the ice
pressure could be 2.5 times greater. The equation also tells us
that the ice pressure is a function of the "goodness" of contact
between the ice and pier.

2.113 Plasticity Theory

For perfect contact the problem reduces to that of
pushing an indentor into the edge of a semi infinite ice sheet.
The theory which follows is relevant to the flat indentor con-
figuration shown in Figure 23. (The results for a circular
indentor would be similar.) The problem of penetration of an
ice sheet by a flat indentor has been addressed by Croasdale,
Morgenstern and Nuttall (1977); their solution is repeated here.

We assume ice to be an isotropic, homogeneous ideal
elastic-plastic material. Yielding is governed by a relation
between the principal stresses known as the yield criterion.

*1i
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It will be assumed in this analysis that ice behaves like
most metals and that yielding is independent of hydrostatic pressure.
In this case, the simple Tresca yield condition can be applied,
which states:

a1 - o2 = 2q (32)

where a, denotes the major principal stress, q2 denotes the minor
principal stress and q denotes the shear strength, and it follows
that:

o = 2q

wherea is the uniaxial compressive strength. Equation (2) states
that yield occurs when the greatest shear stress on any plane has
reached a limiting value.

The penetration of an ice sheet by a flat indentor can
be analysed by the Lower-and-Upper-Bound Theorems of plasticity
(Prager and Hodge, 1951, or Calladine, 1969).

The Lower-Bound Theorem states the following: If any
stress distribution throughout the loaded body can be found which
is everywhere in equilibrium internally and balances the externally
applied loads and at the same time does not violate the yield
condition, those loads will be carried safely by the body.

The Upper-Bound Theorem is as follows: If an estimate
of the plastic collapse load of a body is made by equating internal
rate of dissipation of energy to the rate at which external forces
do work in any postulated mechanism of deformation of the body, the
estimate will be either high or correct.

It should be noted that neither stress distribution in
the first case nor the mechanism of deformation in the second need
be the correct ones. The true solution is found when both upper
and lower bounds converge to the same result. When they do not,
the true solution will be between the lowest "upper bound" and
the highest "lower bound".

The problem of interpreting the indentation tests is onei of computing the resistance offered to incipient indentation of a

pier or indentor by the edge of the ice sheet. (In all the indentation
tests, a tensile crack first forms at right angles to the direction
of loading, so that subsequent crushing failure of the ice sheet
is the same as would occur due to edge loading of a thick plate, see
Figure 23.)

*1
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We can define the solution in the form,

poI (33)

where a denotes the compressive strength of the ice, p denotes the
average pressure on the indentor at failure and I is the indentation
factor which will depend on the geometry of the indentor, the ice
thickness and the boundary conditions.

To solve for I is the objective of this analysis, and
solutions are derived for two boundary conditions; first with the
ice free to slip at the face of the indentor, and second with the
ice frozen to the indentor.

The geometry of the arrangement is defined in Figure 23;
d is the width of the indentor and t is the ice thickness. When
d is much smaller than t, the problem reduces to the classical
Prandtl indentor for which there is an exact solution;

P 1 + ir/2 2.57o

Also when d is much larger than t, the lower-bound
solution shown in Figure 8 becomes exact, i.e.

P= 1.0

therefore

I = 1.0

Between these limits, the problem is three-dimensional
and I will depend on the ratio of d/t which is sometimes called the
aspect ratio. An upper bound solution for this problem will now be
derived.

Two kinematically admissible velocity fields are shown
in Figure 24. It can be shown that "solution I" gives a lower
upper bound (Morgenstern and Nuttall, unpublished). We will work
through one case for d/t = 1.0. The indentor moves with velocity V
and external work De is;

De = pd2V (34)
e[
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Internal dissipation due to shearing resistance q
occurs along the velocity discontinuity surfaces such as (abde),
(bcd), (afe). If the wedges are inclined at 9 to the edge of the
ice sheet, from synmetry the energy dissipated internally D: is;

D= d2sec + 2d2tane Vcosece (35)

Equating D and D., we get
e

Po=os (36)

To find the critical inclination, we put

which gives 0 = 410 and

= 1.34a

i.e. I = 1.34.

This calculation can be repeated for several values of
d/t to give the curve shown in Figure 25.

If there is adhesion between the interface and the ice
sheet, more dissipation of energy takes place internally due to
shearing resistance at the interface. Any value of shearing resis-
tance could be assumed at the interface up to the limiting value of
q the shear strength of the ice. In this case, accounting for the
extra resistance, the solution becomes;

t!

P- = sececosece + tanecosece + (37)

Following minimization with respect to 0, the critical
values of p/ may be found for the range of d/t of interest. Again
there is a plane-strain cut-off at d/t = 0. The size-effect curve
for the rough indentor is also shown in Figure 25.

*1!
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Solutions can also be found for circular indentors using
the same technique (Morgenstern and Nuttall, unpublished) but these
will not be discussed here.

The above theory is based on the simple Tresca yield
criterion. Other yield criteria have been discussed by Ralston
(1977).

2.114 Simplified Theory

The upper bound solution from the previous theory suggest
that a flaking type failure occurs for perfect contact between pier
and the ice (see figure 26). This failure concept has been observed
in the field; although some investigators also report the occurrence
of an inplane cleavage crack. (Schwarz etal 1974) However, staying
with the wedge type failure and assuming that the failure planes are
at 450 for all values of b/t then the previous theory can be simplified
to;

p : cl+ 0. 3047t')(8
Oc1 b (38)

This equation neatly explains the term I in Korzhavin's
equation, for as the width of the structure increases the second
term becomes negligible and p = oc.

The double wedge failure is obviously only applicable to
the initial failure peak for ice in intimate contact with the pier.
However, similar reasoning can be used to look at subsequent pressure
peaks (figure 27).

Intuitively by considering the area of the failure planes
after critical break out it can easily be seen that for subsequent
failures (or continuous crushing) the pressure peaks are about half
the initial peak. Also the icepressure for continuous crushing is
less sensitive to structure width. The lower pressures for continuous
crushing can be considered to be accounted for in Korzhavin's empirical
equation by the use of the contact factor, k. Korzhavin recommends
values for k in the range 0.4 to 0.7 which are compatible with the
0.5 factor indicated by simple theory.

Tryde (1977) also discussed a wedge-type failure mode for
ice crushing, and proposed the empirical formula

p= 0.8oc  + 2.1(0.4 + 1)c

where a is defined as the uniaxial compressive strength of the ice,
andO.1< D/t :s. It is not clear what the basis is for 0.8 factor
applied to Oc .
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2.115 Test Data - Indentation

Small scale indentation tests have been conducted by
Michel and Toussaint (1977), Frederking and Gold (1975), Nevel et
al (1972), Zabilansky et al (1975), Hirayama et al (1974) and
others. Field indentation tests have been conducted by Croasdale
(1974, 1977) and by Haynes et al (1975).

A composite plot of some of their results are shown in
figure 28. The results shown indicate a strong dependence on
strain rate and a possible dependence on ice thickness.

The effect of strain rate is discussed at some length
by Michel and Toussaint (1977) they propose that it is the major
parameter in determining ice forces on piles and that strain rate
effects can explain the indentation factor I. Their work also
clearly demonstrated that at high strain rates the ice pressures
during continuous crushing are less than the initial ice pressure
with good contact, see Figure 29.

Frederking and Gold (1975) performed tests at low strain
rates; they suggest that the indentation factor is dependent only
on indentor width, not thickness.

The field indentation tests by Croasdale (1974, 1977)
gave a slight indication of an aspect ratio (b/t) effect (Figure 30).
More important, the ice pressures were generally lower than those
obtained in the laboratory on thinner ice. This could be an
indication of a size effect implying that a larger volume of ice

*has a lower average strength. Or the lower field values could be
due to imperfect contact between ice and indenter.

*2.116 Theory of Michel and Toussaint

The experimental work of Michel and Toussaint (1977) led
them to develop a theory for indentation assuming a perfectly
plastic material close to the indenter surrounded by a circular
reqion of ductile deformation. This concept led them to define
strain rate as

= 4(39)

where V is the velocity of movement and b the structure width.

*1 _ _ _ _ _ _ __ _ _ _ _ _ _ _

_____________________ - - *

I I V
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Their analysis gave them the expression;

p = 2.97o (40)

where a is the uniaxial yield strength in the ductile region (at
the appropriate strain rate).

Using equation (40) they reduced a large number of indent-
ation data to uniaxial yield strengths and plotted them with other
uniaxial yield strengths to give the composite plot shown in
Figure 31. The plot is for S2 ice at -10O C. The data agrees
reasonably well with that reported by Croasdale et al (1977),
showing a maximum strength of about 7600 kPa at a strain rate of
around l0-4to10-3 S-1 . As a result of the strong strain rate effect
shown in Figure 31, and the proposed dependence of strain rate
on structure width, Michel and Toussaint went on to suggest that
the variation of effective ice pressure with b/t is because of strain
rate dependence.

They proposed the use of three separate equations for
ice pressure, each for a specific strain rate range, they are;

(a) ForlO-8 s 1 < < 5x104s 1 (ductile zone)

p = 2.97 m kao (.) 0.32 (41)

where m = 1 for a flat indenter 1.0 for initial qood contact,

k = 0.6 for continuous crushing, co = 7000kPa for ice at -10°C,

o 5 -4 -
(b) For 5xi0 - s < s < 10 s (transition zone)

p = 2.97 m ko (-) -0.126 (42)
0 0

where k = 0.25 for continuous crushing and the other parameter
have values as in (a).

(c) For > 10- 2 s - 1 (brittle zone)

P = 3nik a(43)

where k = 0.3 for continuous crushing and ab is the uniaxial
crushing strength under brittle conditions

1/
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-The highest values are those derived from Michel and
Toussaint for cold ice failing in the ductile condition. Michel
and Toussaint themselves do not recommend designing to these values.
They note that most ice motions are sufficiently fast to give
failures in the brittle condition. It will be noted that their
ice pressure for brittle failure of -100 C ice agrees reasonably
well with that obtained from the wedge theory.

We should also note that even in the arctic the mean ice
temperature is unlikely to get much below -100 C because of the
insulating effect of the snow cover. Furthermore, the values
calculated are based on fresh ice; sea ice is weaker and so the
ice pressures in crushing would be lower.

It seems as though the wedge formula with k = 0.5 gives
reasonable agreement with the quideline; for warm ice. It is
recommended that it be used for design dhere conditions may be
different fromi those of the guidelines e.g. in the arctic. The
wedge formula has the advantage of accounting for structure width,
thickness, and ice strength. For ice in more or less continuous
motion a value of contact factor of 0.5 is suggested. If ice can
freeze around a structure, then a value of k =1.0 or higher may
be appropriate, It would seem wise to prevent good contact from
occurring by the deployment of waste heat or use of other defence
measures.

Further measurements of ice forces on vertical structures,
particularly in Arctic re~gions, is desirable.

For very wide structures a further mitigation of ice
forces may occur due to non-similtaneous failure across the width
of the structure.
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For ice at other temperatures different uniaxial
strength values would be used.

2.117 Comparison of Crushing Formulae

Neill (1976) in his review of ice forces compares
effective ice pressures used in practice for vertical piles and
piers. His comparison is repeated in Table 6. Also, additional
ice pressures are included,calculated using the wedge theory,
and the equations of Michel and Toussaint (1977).

The ice pressures calculated using the wedge theory
(equation 38) are calculated on the basis of a contact factor
of 0.5. Also it is assumed that m = 0.9. For the narrow structure,
b = 3 m and t = lm. For the wide structure b = 30 m and t = l m.
Equation (38) then reduces to;

P = 0.59 ac  for the narrow structure

and

p = 0.46 ac for the wider structure

cc is taken to be 7000 kPa for ice at -100 C and 3000 kPa for
ice at -1.50 C.

Similar assumptions for ice strength and structure
width were made in using the equations of Michel and Toussaint.
It was assumed that the ductile ice pressure occurred at the
maximum ice strength value. Contact factors were 0.6 for the
ductile condition and 0.3 for the brittle condition.

In looking at the values listed in Table 6 several
points can be noted.

- The values given by existing guidelines are lower
than the highest values given by the formulae.

- The guidelines do not relate specifically to ice
temperature or to structure width. It is likely that the design
guidelines relate to warm ice as might be experienced at break-up.In which case the agreement with the values given by the formulae
for warm ice is quite good.
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TABLE 6 COMPARISON OF EFFECTIVE PRESSURES FOR VERTICAL
PILES AND PIERS

Source Range of Pressures
Specified or Implied

kPa

Korzhavin 1962: USSR rivers,
spring break-up 490 - 1860

AASHO and CSA (old), Highway
bridge codes 2760 (400 psi)

New CSA Code S-6 (1974), Highway Bridges 690 - 2760

USSR Code SN 76-66: River Structures j 295 - 1320

Canada Ministry of Transport - Navigation
Lightpiers, St. Lawrence 965 - 1210

Canada Dept. of Public Works - Wharf Piles 1380 - 1720

Wedge Formula 3 m dia structure 1755 (250 psi)
(warm ice -l.50C) 30 m dia structure 1390 (200 psi)

Michel and Toussaint Ductile 4811 (690 psi)
(warm ice -l.50C) Brittle 1 1620 (230 psi)

3m dia structure 3860 (554psi)
Tryde (-1.50 C) Im dia structure 2580 (370psi)

Wedge Formula 3 m dia structure 4095 (585 psi)
(cold ice -100C) 30 in dia structure 3244' (460 psi)

Michel and Toussaint Ductile 11226 (1600 psi)

(cold ice -10oC) Brittle 4050 (580 psi)

Tryde (-100C) 3m dia structure 9070 (1300psi)

Tryde (-10oc) 0m dia structure 5990 (859psi)
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2.118 Crushing Against Wide Structures

As an ice sheet continuously crushes against a very
wide structure, variation in local contact effects enhances the
opportunity for non-simultaneous ice failure across the structure
width. This suggests that the average ice pressure across a wide
structure will be less than for a narrow structure. In non-simultan-
eous failure, different zones of ice across the width are at different
stages of failure at any one time. Local stresses in any one zone
could be high, but the average crushing stress across the total width
would be low.

An approach using the concept of independent failure
zones has been developed by Kry (1978). He uses a statistical
approach to estimate the effect of structure width on design ice
pressure. It is shown that if movements of the thickest ice are
sufficiently limited there is a significant statistical reduction
in the expected peak stress for a wide structure compared to a
narrow structure.

This is an area where further work and field measurements
are required.

2.12 ICE FORCES ON ARTIFICIAL ISLANDS

2.121 Introduction

Artificial islands are being used in the shallow waters
of the Arctic Ocean for oil and gas exploration (Croasdale and
Marcellus, 1978). These islands are generally quite wide relative
to the ice thickness and therefore the mechanics of ice clearing
tends to dominate the ice to structure interaction. Islands and
wide structures become surrounded by extensive ice rubble fields
which can ground. These, rubble fields have to be considered when
assessing ice forces (Kry, 1977).

In the cold environment of the Arctic, islands acquire a
frozen surface very quickly after construction. If ice forces
become large enough there is a danger that the frozen surface of
the island can be moved laterally, although no such failures have
been observed in the sixteen islands built to date.

Because islands have such large diameters, the ice forces
to cause failure are also large. In some situations the environ-
mental driving forces are not large enough to cause island failure,
even if the ice were strong enough.



2.122 Typical Island Resistance

Ice movement during different times of the year creates
lateral ice forces on dredged islands, which must be resisted by
the shearing resistance of the soil along possible failure planes.
Three different potential failure planes have been identified for
evaluation. These are shown in Figure 32.

Failure plane 1 is considered unlikely because the frozen
saturated fill of the island is generally much stronger than the
surrounding ice and so the ice will fail first. With failure plane
2, the frozen crust of the island is considered to slide relative
to the unfrozen fill below it. In the case of a weak foundation,
failure plane 3 through the sea bed might be possible but generally
requires a higher lateral farce than for failure plane 2.

Approximate calculations of the sliding resistance of
an island are quite simple, especially if the material is of good
granular quality and its friction angle is known. The other un-
certainty is the depth of the frozen layer but this can be predicted
from previous measurements or from thermal calculations.

For an island its sliding resistance is given approxi-
mately by;

R (p1I V 1 + P2 V 2)tan (44)

where

V1 is the fill volume above water level
V 2is the fill volume between water level and the sliding plane
2. i the density of the fill
Pis the buoyant density of the fill

0 is the friction angle of the fill

For an island 122 m in diameter at the sliding plane
with a freeboard of 4.6 m and 3.1 m between t.Ve water level and fhe
sliding plane, and also using p 1925 kgm- and P2 = 963 kgm-
and tano 0.6, then

R = 800, 650 kN

From section 5 a typical environmental driving force might
be derived using the expression for wind drag;

K = C 10PagV2A

(r
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In this case assume K equals the island sliding resis-
tance and calculate the area of ice required to generate thp
equivalent environmental force (for a wind speed of 15 m S.)

A = 520 X 106 M3

In other words an ice cover 520 square km in extent is
needed to generate an ice force with the potential to fail the
island. In the landfast ice zone of the Arctic, continuous ice
covers of this areal extent are quite common. But in a pack ice
situation its unlikely that such a large ice force could be trans-
mitted to the island.

2.123 Ice Action on Islands in Shallow Sheltered Locations - Arctic Ocean

Islands in this category would be in 3 m of water or less
and would be in protected areas where ice movement is slow and limited.

2.123.1 Observations of Ice Action

A typical scenario for ice action at these sheltered islands
would be as follows.

Freeze-up occurs about mid-October and because of the
sheltered nature of the locations the ice quickly becomes landfast.
From then on, the movement of the ice is similar to that of lake
ice with small expansions and contractions occurring under the action
of wind stress or thermal expansion.

Observations of the ice around such islands indicate that
apart from the occasional tidal crack, the ice is well and truly
frozen around the islands and there is little evidence in the form
of cracks or ridges, of ice action due to lateral motion. During
break-up the ice around these islands usually melts in place.

2.123.2 Ice Forces on Shallow Islands in Landfast Ice

Given that observations of ice around shallow islands
indicate a 'frozen-in' condition exists, we can speculate on possible
ice failure modes and forces when ice movement occurs.
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Figure 33 indicates ice failure mechanisms which could
occur.

(a) Buckling

This mode of failure is sometimes observed in the thin
ice of refrozen leads. A lower-bound prediction for the ice stress
to cause buckling can be derived using simple theory for a slender
strip of material on an elastic foundation (Hetenyi, 1946).

Critical buckling load, P = 2JiKF (45)

where K = foundation modulus
E = elastic modulus
I = second moment of area

Solving the above for E = 7 X 106 kPa and in terms of
ice stress (p) and thickness (t) gives:

t () 0.3 1.2 2.15

p (kPa) 2660 5250 7000

In other words, an ice pressure or stress of at least
7000 kPa would be needed for buckling failure of 2 m of ice. As
discussed below, other failure modes probably require less force
and, therefore, buckling will not occur (and-has not been observed).
More accurate predictions of buckling failure are contained in the
paper by Sodhi et al (1977).

(b) Failure of Frozen Bond Between Ice and Island

If the adfreeze bond fails then the ice can ride-up the
island beach and fail in bending.

Consider the configuration shown in Figure 34 where:

p is the ice stress on the island
t is the ice thickness
q is the adfreeze shear strength of ice to island bond
is the island beach angle

Then

pt = (-T--.)qcosa

i.e. P
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Little data is available on adfreeze strengths of ice to
island beaches; for the purpose of this discussion assume q
1400 kPa and the beach slope is 1 in 3 then;

p = 4200 kPa

Again, this pressure is probably higher than alternates
discussed below so adfreeze bond failure is unlikely.

(c) Crushing Failure of Ice or Ductile Flow of Ice

Whether crushing failure or ductile flow occurs will
depend on the rate of ice movement or strain rate. At slow strain
rates this problem is somewhat similar to that of thermal ice pressures
on dams. At high strain rates, ice crushing forces as predicted for
a vertical pier can be considered as an upper bound.

As already discussed in Section 11.0 the ice crushing
pressure or stress can usefully be discussed using the equation
of Korzhavin (1971) namely,

p =Imko (31)

where p =ice stress on structure
I =a factor accounting for relative geometry of

system. I is nominally equal to 2.5 for
narrow structure and equal to 1.0 for wide
structure

m =shape factor (equal to 1.0 for flat face
and 0.9 for round face)

k =contact factor (1.0 for perfect contact may
be higher for frozen in condition)

a =ice strength in compression

The above equation and its implications have been dis-
cussed more fully in Section 11.0.

FFor a very wide structure, I can be considered as equal
to unity. For ice frozen to the island k = 1.0 and whether m = 1.0
or 0.9 is not important. The equation for this application can,
therefore, be simplified to p =awhere a is the compressive
strength of the ice.
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The problem remains, however, to define the appropriate
strength or yield criteria. It is well known that ice strength is
a function of temperature, strain rate, crystal orientation, degree
of confinement, salinity, and other poorly understood factors such
as the size of the piece of ice under stress.

For ice in compression whether it is confined or not,
strain rate has a significant effect on the mode of failure and
strength. At very low strain rates, ice tends to flow or creep
at low stresses with few visible surface failures. At higher
strain rates the ice fails in a brittle fashion by flaking or
shattering. A typical set of strength versus strain rate data for
columnar ice is shown in Figure 31.

The observations of ice action on shallow islands suggest
that the ice, as it slowly moves, deforms in a ductile fashion
with no obvious failure cracks or flakes. Is this observation
compatible with known ice strength data and ice movement rates?
Measurements of ice movements in water depths less than about
3 m indicate that a typical maximum movement rate is about 0.3 m
per hour. It is not clear what characteristic length should be
used to give a strain rate but lets assume it is the island width
or diameter.

then 6 = V/D

where 6 = strain rate
V = ice movement rate
D = island diameter

than typically

=0.3 1 0-6 sec -
100.3600

This strain rate is compatible with ductile or creep
deformation for ice. Furthermore, as indicated in Figure 31, for
uniaxial deformation it suggests an ice stress or pressure on the
island of about 700 kPa. However, this could rise to 3500 kPa or so,
if the plane strain or confined ice strength is more appropriate.
On the other hand, small-scale laboratory tests tend to give higher
strengths than in the field so the above mentioned ice stresses are
likely too high.
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In other words, it seems likely that because of the
small and slow rates of ice movement at shallow locations, ice
forces on shallow islands are governed by the creep or ductile
flow characteristics of ice. Therefore, ice pressures on very
shallow islands can be expected to be significantly less than
on the more exposed islands discussed in the next section.

2.124 ice Action on Exposed Islands - Artic Ocean

2.124.1 Observations of Ice Action

At deeper locations it takes longer for the ice to
become truly landfast, and even then, cyclic ice motion appears
sufficient to maintain an active zone of ice failure around the
island. Typically, although freeze-up occurs in mid-October
the first few weeks are characterized by large movements of ice
0.3 to 0.6 m thick. Under storm conditions, these movements can
be several thousand metres causing extensive ice rubble to form
around the island.

Once the ice becomes landfast in November or December,
ice movements are normally restricted to a few feet per day and
are cyclic. Later in the winter, the movement becomes less, but
seems sufficient to prevent the active cracks from freezing-up.

2.124.2 Modes of Ice Failure and Ice Forces

A typical sequence of ice action on the beach of an
exposed isl-and is shown in Figure 35. Initial movements of thin
ice fail at low loads in bending. The ice is too thin to ride-up
the island beach so rubble piles are formed.

The mechanics of rubble pile formation are uncertain.
In some cases, the rubble forms a ramp up which the oncoming ice
sheet advances and fails in bending. At other times the ice
penetrates the rubble but again is probably failed in bending by
differential buoyancy and weight forces as suggested by Parrnenter
and Coon (1972) for ice ridge formation. The rubble often grounds,
and once a certain height is reached, grows seawards. In the early
winter, the rubble height rarely exceeds 6 m. Ice forces at this
time might be predicted with the model for pressure ridge form-
ation mentioned above, and will be less than 350 kPa. In any
case, the rubble probably protects the island from most of these
forces. Because of the rubble resistance to lateral forces the
active zone remains on the outside of the rubble which consolidates
and freezes into a rigid ice annulus around the island, see Figure 36.
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The mechanics of rubble field formation have been discussed by
Kry (1977); he also notes that rubble heights can reach 13 m.

Eventually the ice becomes too thick to fail in bending
and begins to fail in crushing at much higher ice stresses. However,
by now the refrozen rubble is competent enough to maintain the active
zone at its outer boundary; but at the same time, transmit the ice
forces to the frozen island surface.

For a particular ice crushing stress (p) in the active
zone, the ice force (F) generated on the island rubble-pile combin-
ation as shown in Figure 36 is given by:

F = pWt (47)

where W is the width of the rubble in the direction of ice movement,
t is the ice thickness.

If R is the sliding resistance of the rubble then the

force on the is1'nd is given by:

Q = pWt - R (48)

An approximation for R can be made assuming the arrange-
ment shown in Figure 37.

At the sliding plane, the normal reaction per unit area
(w) is given approximately by:

w = (1- c)[hmPi + y (Pi - Pw) ]  (49)

where c is the porosity of the rubble
hm is the mean height of the rubble above sea level

y is the water depth
P, is the ice density
P is the water density

Sliding resistance of the rubble is then given by:

R = Awtan(

where A is the area of the rubble
* is the friction angle at the base of the rubble (either in

the soil or in the rubble, which ever is the least).

.*!
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For the arrangement shown in Figure 36;

TrD2
R = (WL - T)wtano (51)

For a typical situation assume:

D = 97.6 m
W = 137 m
L = 152.5 m

tan 0 = 0.6
c = 0.3
hm= 3.1 m

y = 7.6 m
p, = 914 kgm -3

Pw = 1000 kgm -3

Then, sliding resistance of rubble is given by:

R = 116 MN

As discussed in Section 12.2, a typical island might have
a sliding resistance of around 800 MN. Thus the effect of the rubble
around it would be to increase the total sliding resistance by about
10 - 15%. On the other hand the effective ice loading diameter is
also increased; in this case to 140 m or by 40%. In this example
then, the effect of refrozen rubble around the island is to decrease
the factor of safety against sliding by about 20%.

The preceding analysis is approximate. Kry (1977) has
presented a more rigorous analysis, but the general conclusions are
the same.

2.124.3 Ice Crushing Stress in the Active Zone

The ice crushing stress in the active zone is not easily
determined. The ice crushing pressures given in Section 11.0 can
be used as upper bounds, but mitigation of these values can be
expected because of the large width of the failure zone (as dis-
cussed in Section 11.8), particularly for small movements of the
landfast ice.

In-situ ice stress measurements conducted around artifical
islands to date indicate ice crushing stresses in the active zone
considerable less than the ice compressive strength.
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Figure 32. Possible island failure modes: (1) edge failure,
(2) failure through island fill, (3) failure through seabed.
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2.13 ICE RIDE-UP ON ARTIFICIAL ISLANDS

2.131 Introduction

Low freeboard structures with shallow slopes are suscept-
ible to ice encroachment onto their working surfaces. Ice move-
ment against such structures leads either to ice pile-up in front
of the structure or to ice ride-up. The nature of simple ice ride-
up is illustrated in Figure 38. With ice ride-up, not only can ice
encroach onto the working surface, but it advances at the speed of
movement of the surrounding ice field. In many cases this would
give little time for evasive action.

When designing low freeboard structures with sloping
beaches such as artificial islands, it is important to be able to
assess the likelihood of ice ride-up. This section examines factors
which may limit ice ride-up, and suggests procedures for designing
against ice ride-up.

2.132 Reported Ice Ride-Ups

One of the earliest references to ice ride-up was made
by the well known arctic explorer Stefansson (1913): "Under
such conditions (landward thrust of sea ice under wind pressure)
tongues of ice may slip-up on the beach and be shoved inland two
or three hundred feet beyond the limit of high tide and thirty or
forty feet above sea level".

Until recently, ride-up has been a concern only in the
more populated sub-arctic regions such as Scandinavia and the
Great Lakes. Several examples of damage to marine structures
and shoreline property are given by Bruun and Johanesson (1971),
Tryde (1972) and Tsang (1974). These authors have shown that even
small ice fields can cause ice pilings of considerable height,
up to 10 m for an ice thickness of 0.5 m. Although they refer to
"ice pilings", their experience is relevant to ice ride-up
because the maximum height of ice pilings is often reached by
ice pieces riding up on top of each other (Tsang 1974).

Several analyses of the maximum height of ice pilings
have been performed (Allen 1970). They assume that the height is
only limited by the horizontal thrust of the ice sheet or its
kinetic energy. Other limiting mechanisms (e.g. flexural strength)
are explored in the present paper but with specific reference to
ice ride-up.

*1



Wi th the recently increased activity in arctic regions,
more examples of ice ride-up with thicker ice have been witnessed.
Shapiro (1976) described how 1.2 m thick ice was driven ashore
near Barrow, Alaska and up the beach as a coherent unit for dis-
tances ranging up to 25 m. Irwin (1975) reports a similar occurr-
ence at Lincoln Bay, Ellesmere Island.

More recently, near Barrow, Alaska, ice rode-up a
shallow beach up to 105 m from the water line and 3 m above the
water level (Hanson, 1978). The ice was from I to 1.3 m thick.
Elsewhere on the same beach the ice stopped within 25 m from the
water line but at a similar elevation of 2.5 m.

Such occurrences emphasize the possibility of ice ride-up
on low freeboard structures such as artificial islands.

2.133 Factors Limiting Ice Ride-up

Ride-up can only occur if the capacity of the ice sheet
to push is greater than the resistance to movement of ice up the
slope. Ice push can be limited either by the environmental driving
force or by the strength of the ice sheet immediately in front of
the beach. Resistance to ice sliding up the beach can be caused
by instability of the broken ice pieces on the beach slope. These
limiting factors are discussed.

2.133.1 Simple Slope Resistance

Consider the configuration shown in Figure 39 where P
is the force necessary to move the ice pieces up the slope.

Now if, w is the mass of each ice piece
n is the number of ice pieces on the slope
a is the angle of the slope from the horizontal
P is the coefficient of friction
g is acceleration due to gravity

n
then, P -)3vg(sina + Pcosa) (52)

In another form, for a simple two-dimensional system,

P aLtbpg(sina + Pacosa) (53)
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Where, L is the length of slope covered by ice, t is
the ice thickness p is the density and b is width of the ice on
the slope.

If the steady state environmental driving force (F) is
greater than the horizontal component of the slope resistance then
the potential for ice ride-up exists.

That is, the potential for ice ride-up exists if,

F
Pcosct > (54)

As an example of slope resistance, consider a beach with
a slope angle of 150, 30 m long, 100 m wide, ice 1 m thick, and
a coefficient of friction of 0.3. Then from equation (53)
P = 14.6 MN.

The horizontal component, converted to an ice stress
=141 kPa (20 psi). These values will be compared with environ-
mental driving forces in the following section.

2.133.2 Environmental Driving Forces

In the Arctic Oceanshallow water islands are particularly
susceptible to collision with large ice floes during the break-up
of the landfast ice. At this time floes several kilometres in
extent are not uncommon.

Consider a floe 5 km in diameter with a wind speed of
20 ms -1 then the environmental driving force (F) is equal to 21.8
MN (from Section 5). Inserting this value into equation (54)
together with the slope resistance for the above example

F = 21.8 = 1.54
Pcosa (14.6) cos 15 "

Hence because the environmental driving force is
greater than the slope resistance the potential for ice ride-up
exists.

For floes of limited extent but which have considerable
kinetic energy, an additional check would involve equating theinitial kinetic energy of the moving floe to the work done in moving
the ice pieces up the beach.
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The work done against gravity and friction in moving ice
up the slope can be derived using simple calculus and is given by

U = 0.5tbpg(sna + Pcosa)L2  (55)

where t is the ice thickness, b is the ice width, p
is the ice density, a is the slope angle, p is the coefficient
of friction, L is the length of slope covered by ice, and g is
the gravitational constant.

The initial kinetic energy of the moving floe isgiven by; (56)
KE = (1/8)Doztpv z

where D is the diameter of the floe and v is its

initial velocity.

For ice ride-up to the top of the slope, KE > I
U -

that is,

2D2v2  > 1

4bL2g(sina + pcosa) (57)

Note that the above criterion ignores the work done
in bending failure of the ice sheet, but for a long shallow beach
this contribution will be small. In any case, ignoring the work
done to fail the ice will yield a conservative result.

To view the above criterion in perspective, consider the
following example.

A floe 300 m in diameter approaches an island at 1 ms
The island is 100 m wide, the beach has a 150 slope angle and the
length of che beach is 25 m. Assume a coefficient of friction
between ice and beach of 0.3.

Then,

+D2v2
4bL2g(sino + lics)
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Hence in this case ride-up by this individual floe is
not possible unless other floes impact it from behind and continue
to push it against the beach. The critical diameter of an individual
floe for which ride-up in this example is possible is 700 m.

2.133.3 Ice Sheet Failure

Although the force necessary to push the ice pieces up
the beach is caused by the environmental driving force, it is the
ice sheet just in front of the beach which transmits the force.
If the force due to slope resistance causes edge failure of the
ice sheet then pile-up will occur at the water line and ride-up
will be inhibited.

In general all possible failure modes of the advancing
ice sheet should be considered, but in most cases it will be
flexural failure which governs.

Consider again the configuration shown in Figure 39.
The force P required to push the ice pieces up the slope is
generated by vertical and horizontal forces on the edge of the
advancing ice sheet.

In the limit, when the ice edge is almost at the slope,
then

V = P sinq (58)

H = P coso (59)

For a simple two-dimensional system of width b, from (53)

V = btpgZ (sina + 4cosa)

but Lsina = Z, the vertical height from water line to the upper
point reached by the ice on the slope (in the limit, the freeboard)
then,

V = btpgl(sina + pcosa) (60)

and

H = btpgi(sina + 4cosa)cota (61)
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For bending, the in-plane force H can be ignored and
the critical condition for flexural failure can be derived by
considering a beam or plate on an elastic foundation (Hetenyi,
1946).

For a simple beam of width b, loaded at the end

Vc  0.68ob(P t 5 0 25  (62)

where a is the critical flexural stress Vc is the critical edge
load.

Comparing equations (62) and (60), we can see that for
ice ride-up to be possible.

V-->1
'I-

that is,

0 .6 8(t 0 "25( 1 0.75 1 > 1" (-') sine + pcose -
Pg s(63)

As an example in the use of equation (63) consider a
beach 30 m long with a slope of 150 and freeboard of 3 m, the
coefficient of friction is 0.1 and the ice is I m thick with a
flexural strength of 700 kPa, and modulus of 7 X 106 kPa.

Use equation (13)

0.68(E)()025 (1 )0.75 1 1.7a T pg sina +Pcos

which is greater than one therefore ride-up is possible.

It will be noted from equation (63) that the ride-up
criterion is directly proportional to ice strength and freeboard,
but is influenced less by thickness and elastic modulus. The
significance of friction becomes less for steeper slopes.

In the above example, let us consider the effect of
Increasing the freeboard to 7 m, and the coefficient of friction
to 0.3.

* Then,

10.60.4o.68( )(f)o.25rg o0.75 slc + coc
VT * "7'g" sine + ijCOSa 04

which is less than one therefore ride-up will probably not occur.

"'
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The preceding discussion on ice sheet failure is
very simplistic and is offered as an example of methodology rather
than a precise technique for assessing the limiting condition of
ice ride-up. For example, for slopes which continue at a very
shallow angle below the water line, there may not be enough clear-
ance for the ice to fall in downward bending as assumed in the
equation. In these cases ice would continue to ride-up beyond
the limiting condition defined in (63).

To assess the likelihood of other failure modes limiting
ice ride-up, consider further the example referred to above. Using
equation (60) we can calculate the horizontal stress in the ice
sheet close to the beach, it is;

H
Ft Pg~cott(sini + jicosa) =127 kPa (18psl)

Such a stress level is too low to cause crushing (by at
least a factor of 10) and is also too low to cause buckling except
for very thin ice.

2.133.4 Kinematic Instability

For ice to continue to ride-up past a change in slope,
certain geometric criteria have to be satisfied, otherwise a
kinematic instability can occur. Consider Figure 40 illustrating
what might happen at the top of a slope, and also at a point of
change in angle of the slope. It will be seen that as the first
ice block advances past a change in slope it can tilt clear of the
following block thus enhancing the likelihood of a pile-up. How-
ever, such an instability can only occur if the ice is thin rela-
tive to the change in slope. As shown conceptually in Figure 41
if the ice thickness is great enough, then contact between ice
blocks is maintained and the ice can continue to advance.

The limiting relationships between ice thickness, block
length and slope angle can be derived as follows.

h = isina

If h < t then ride-up can continue.

In reality local edge failure will probably occur if the
point of contact is too close to the corner. Thus a more realistic
condition might be

h < 0.8 t
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Therefore, condition for ride-up to continue is given by

t > 0.631sinz (64)

This limiting condition is plotted in Figure 41. For
the curve shown the length of the ice pieces is assumed to be
three times the thickness. Other curves could be drawn for different
length to thickness ratios.

Figure 41 suggests that for ice one metre thick a change
in slope of greater than 300 would be needed to cause an instability
from this mechanism. For a 1 in 3 (200) slope, ice one metre thick
would continue past the top of the slope without a pile-up starting.
The ice would have to be less than 0.25 m thick for a pile-up to
be generated. For longer ice pieces the critical thickness would
be greater.

2.133.5 Compression Instability

If the ice pieces are disturbed out of the plane of the
slope as they ride-up, a compression instability may develop

Consider the configuration shown in Figure 42 where e
is the height of a 'bump' in the slope. Simple equations of
equilibrium can be used to relate P to e at the limiting condition
of instability.

If for the purpose of this discussion we set a equal to
zero and consider a frictionless, two-dimensional system, then

=s=.2' (65)

or

oc A~ (66)

where aic is the compressive stress in the ice at the point of
I nstabi Ii ty.
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Consider the example of ice pieces 4 m long and I m
thick riding up a slope 30 m long at a 100 angle with a coefficient
of friction of 0.3. What would be the height of the eccentricity
or 'bump' required to initiate instability and hence a pile-up
before the ice pieces reached the top of the slope?

Use equation (53) to calculate simple slope resistance

in terms of an ice compressive stress.

ac = (30) 900(9.81)(sinl0 + 0.3coslO) Pa

ac = 125 kPa

Use equation (16) to calculate value for e
(4 2(90oo)9 .81 = o.s :

e = 0.57 m

That is, a 'bump' say 1 m high at the lower end of
the slope would lead to a pile-up being generated before the
ice pieces could ride-up to the top of the slope.

2.133.6 Jamming

On beaches which have a sudden steepening of slope angle
it is possible for the ice to 'jam' at the point of increasing
steepness. (See Figure 43). Jamming leads to a sudden increase
in slope resistance which can then cause ice pile-up by one of the
mechanisms already discussed.

By using simple equations of equilibrium an expression for
P can be derived. In this example, for simplicity assume **= 0,
then by simple mechanics

P=W stn0 + Ucos0
s64, -n sint (67)

The nature of the above equation is that for a particular
value of p a value of t exists for which P becomes infinite and
this is the jamming situation.

The 'jamming' situation is governed by the equation,

* = tan-l) (68)
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Variables of * for typical values of p are given below.

0.1 0.2 0.3 0.4 0.5 0.7

*(o) 84 79 73 68 63 55

2.134 Procedures for Designing Against Ride-up

In considering the problem of ice ride-up on a low free-
board structure, several distinct steps in the logic can be
identified, these are:

(a) Determine Ice Conditions Scenarios

A good knowledge of historical ice conditions is desirable
and information on ice movement as a function of ice thickness is
needed. Data on ice strength parameters, and coefficients of
friction between the ice and beach are also required. In assessing
various scenarios in ice conditions it is particularly important
to recognize that adverse conditions may only arise infrequently.
Statistical techniques may be required to determine design criteria
from relatively sparse data. It is also important to recogizp
mitigating factors. For example, in the Beaufort Sea, dredged
islands in shallow water are surrounded by landfast ice during
most of the winter. The landfast ice does not move sufficiently
to create ride-up problems. Furthermore, when large ice move-
ments do occur in the early winter, the ice is initially very
thin and forms rubble piles which protect the island from further
ride-up until the ice becomes landfast. It is in fact during
break-up, when large sheets of the previously landfast ice are in
motion, that ride-up on artificial islands in the Beaufort Sea is
most likely. Fortunately at this time the ice is extremely weak
and has ablated to about 1.5 m thickness, reducing its ability to
ride-up.

(b) Check the Preferred Beach or Island Design

The design of artificial offshore structures is determined
by many factors including wave action, ice forces, available
construction, equipment and materials, etc; (Croasdale and
Marcellus, 1978).I'
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As a first step in assessing the ride-up problems,
the design as determined by other criteria (such as wave conditions)
should be checked to assess whether ice ride-up is likely to be
a problem. In this step, the limiting factors discussed in the
previous section should be calculated for the most likely ice
condition scenarios. If none of the mechanisms appears to prevent
ice ride-up then special design factors may be needed to inhibit
ice ride-up.

(c If Necessary, Incorporate Design Features to Resist Ice Ride-Up

Features can be built into an island to discourage ice
ride-up. An obvious solution is to raise the freeboard of the
island and steepen the side slopes, but this approach is expensive
because of the additional construction material needed.

Obstacles can be placed on the beaches to inhibit ice
ride-up. This solution was used on a drilling island in the
Beaufort Sea where steel piles were placed in the beach to protect
the drilling rig during spring break-up. However, it turned out
that the ice was so week that rubble formed at the water-line and
never reached the piles.

Perhaps the best approach is to alter the geometry of
the island beach to encourage instability of ice pieces trying
to ride-up.

A design using this approach is illustrated in Figure
4.The steep upper slope of the beach causes a jammiing action

which leads to sufficient force being generated to trigger a
compression instability at the point of change in slope of the
beach. The resulting pile-up is centered on the point of change
in the slope which can be positioned so that the pile-up does

* not encroach onto the island surface. Equation (67) can be used
to specify the angle of the upper slope; and the height of
perturbation needed on the slope to initiate a pile-up can be
specified using equation (66). For an important structure, model
testing to confirm the design is desirable.
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PART III

ICE FORCES ON FIXED, FLEXIBLE STRUCTURES

By lHauri Mllttlnen

University of Oulu, Oul~u, Finland

Abstract

The modes of interaction between ice and structure are discussed,
and the properties of both ice and structure are seen in the context
of interaction. The key parameter of the ice is the dependence of
crushing strength on loading rate, in particular the inverse relation-
ship that exists for a certain range and gives rise to negative damping.

Self-excited vibrations leading to limit cycles are explained
and some design problems are discussed.
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3.1 Definitions and structure category

The necessary condition for the ice-structure dynamic interaction
is that either the displacement of structure or elastic deformation of
ice takes part in the ice crushing phenomenon. Physically this means
that one or the other of the components is capable of storing energy
and releasing it later in another phase when crushing is easier.

Depending on the relative magnitudes of elastic deformations of ice
and displacements of structure at the contact area the interaction
problem can be divided into three modes: elastic ice displacements are
insignificant, displacements of structure are insignificant, and both are
significant. In many cases the difficult problem of the general third
mode can be replaced by the simpler first or second modes.

The appearance of the ice-structure dynamic interaction is most
profound in slender single-pile bottom-founded cantilever-type struc-
tures with small internal damping. Typical examples are piles, light-
piers, lighthouses or monopod-type platforms (Fig. 3.1). Piles in groups,
such as in bridges or in platforms, may also exhibit dynamic interaction
during ice crushing, either in conjunction or separately.

Stiffness, mass and damping U-istributions in the structure also
affect the interaction phenomenon. Ice-induced vibrations in structures
ranging from 0.5 to 15 Hz have been reported under field conditions. If
natural frequencies of structure lie in this range, dynamic interaction
is more likely. The shape of natural modes is essential, since the
amplitude of the natural mode at the ice action point strongly affects
the excitation capability of ice force on that particular mode.

The source of energy for the ice crushing and the ice-structure
interaction has its origin in wind drag or water currents. This topic

to consider the effects of parameters in dynamic ice-structure inter-

action following the scheme in Figure 3.2.
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Figure 3.2

3.2 Ice propertiesThe strength properties of ice are dependent on its grain size and
type, grain orientation, temperature, salinity and loading history. The
most important parameter required is crushing strength, which means

the stress value at which ice is failing against the structure. In this
meaning both uniaxial compression strength values and the average failing
stress value on the whole projectional ice action area are used.
During ice crushing a three. dimensional state of stress exists. Hence
three dimensional yield conditions are required. The research in this
area has not yet proceeded so far as to give accurate enough yield
conditions for ice crushing purposes.

The size of the projectional area of the structure against which
ice is crushing is usually so large when compared to the crystal size of
ice that analysis need not be carried out at the crystal size scale but
an average crushing strength ac for practical calculations can be used.
Hirayama et al. (8) have observed that a dependence on grain size
appears only with d/d <25, and Michel ei al. (12) with d/d <7 (d
diameter of pile, d crc diameter of ice crystals). In practice the
grain size of columnar grained ice is from 1 to 20 m, Gold (4), in-
creasing with ice thickness. Hence, the average crushing strength from
the grain size point of view is justified for actual structures.

I



The properties of ice vary through the thickness of an ice sheet.
The main effect is due to temperature and salinity profiles. As the
thickness of ice is usually small when compared to the height of a pile,
averaging of properties through the thickness does not have any signifi-
cant effect on structural response or on ice interaction. The effect
of grain size and orientation may be handled in a similar way. The
properties of a natural ice sheet in macro scale do not change in its
plane but are different perpendicular to its plane. The effect of
averaged properties can be observed by repeating calculations using a
new combination of these parameters for ice crushing strength.

During the ice-structure interaction the viscoelastic behavior
of ice must also be considered. During dynamic interaction the frequency
of ice-induced vibrations with actual structures is however so high that
the effect of viscoelastic behavior of ice can be disregarded. According
to Gold (4) the behavior of ice is essentially elastic if it is loaded
to failure within two seconds. This requirement is well satisfied with
the observed range of frequencies from 0.5 to 15 Hz.

The key parameter in ice and structure interaction is the dependence
of crushing strength on loading rate. The first measurements of crushing
strength as a function of stress rate are by Peyton (17). His results
from uniaxial compression tests of Cook Inlet ice samples (Fig. 3.3),
indicate a decreasing strength with increasing stress rate. A similar
trend was also measured on total ice force, both with laboratory and
field test piles. The reduction in failure stress and ice force was
about 50% from the maximum.
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Figure 3.3 Crushing strength vs. strain rate, Peyton (17)



-112-

Michel et al. (12) carried out indentation tests with a square
indentor in the laboratory and also collected results from other authors
for crushing strength versus strain rate curve (Fig. 3.4). Ice behavior
is divided into three parts: the ductile region, the transition zone
and the brittle region, with boundaries as shown in Fig. 3.4. In the
brittle region failure occurs more randomly and the above curve repre-
sents an average crushing strength. Michel observed thinning of the ice
sheet by peeling off wedges from the upper and lower surfaces. Thinning,
together with strain rate, causes an average decrease to about 60% of
the maximum strength at the beginning of the transition zone.

UF. .
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Figure 3.4 Crushing strength vs. strain rate, Michel et al. (12)

Wu et al. (24) achieved in their laboratory tests strength-strain
dependence as shown in Fig. 3.5. They pointed out the effect of temp-
erature: with decreasing temperature the transition from ductile to
brittle occurs more abruptly and with lower strain rates. In uniaxial
tests the reduction in strength is much greater than in the plane state
of stress. The transition to brittle is explained by means of a disloca-
tion theory. With high strain rates dislocation velocity is too low to
allow ductile behavior by plastic yielding and,-therefore, cleavage
fracture and linking of grain boundary cracks occur. This also explains
the more random crushing behavior in the brittle region.
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Figure 3.5 Ice crushing strength vs. strain rate and
temperature, Wu et al. (58).

All researchers are of the same opinion with regard to the in-
creasing of ice strength with increasing loading rate in the ductile
region. Almost all agree that maximum strength occurs in the transition
zone, after which the average strength decreases considerably in the
brittle region. Exceptions are, for instance, Nevel et al. (16) and
Haynes et al. (6), who observed both in laboratory and in-situ field
tests that the speed of an indentor had no effect on crushing strength.
However, if stress rates are calculated it appears that almost all of
their data points fall in the brittle region.

The results of measurements by Hirayama et al. (8) showed the usual
reduction in average strength in the brittle region. However, no reduc-
tion was observed for a maximum value curve, which was defined in such a
way that 90% of all measured values lie under this curve.

Haynes (7) conducted uniaxial compression tests with dumbbell-
shaped snow ice specimens. His preliminary tests, three samples, indi-
cated that ever-increasing strength values can also be achieved beyond
the ductile region. This result is not, however, average, but from
carefully controlled small test samples, in which probability for initial
defects is very low and great strength values can be expected. Comparing
this to Hirayama's 90% curve and Peyton's measurements, it can be con-
cluded that for actual structures an average reduction in ice strength
in the brittle region exists. From the structural response point of

-I
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view, then, it makes no great difference if the reduction is due to
strain rate, or thinning of the ice sheet, or uneven contact between ice
and structure. The peeling off and local brittle failures occur simul-
taneously along the contact area, thus yielding to reduction in average
ice force.

The definition of strain rate in the crushing strength curves is
confusing as presented in the published research papers. There exist
definitions which have only right dimensions, such as the concept of
fracturing frequency (velocity divided by the crushing length per cycle),
and velocity divided by the plastic zone width before the indentor, or
the width of indentor or ice thickness.

In the elastic region, with uniaxial tests, the strain rate can be
easily measured directly or calculated by dividing the velocity of
crossheads by the length of test sample. In actual crushing the situa-
tion is more complicated: a two- or three-dimensional state of stress
exists and difference must be made between the cases of initial stress
increasing before yielding and continuous crushing.

The physically correct way to define strain rate is that of Gold
(4) according to the dislocation theory. Considering elastic effects
only the strain rate will then be directly achieved from the stress rate
by dividing by the modulus of elasticity. The stress rate can be cal-
culated by taking the time derivative from the stress history of a point
in the ice sheet approaching the indentor. This method has been used by
Blenkarn (7) and his formula for the maximum stress rate of ice before a
circular indentor is

40 va=- o (3.1)
A a

where ac is the maximum stress, vo the velocity of ice sheet and a the
radius of indentor. Depending on the shape of indentor, similar equa-
tions can be obtained starting from the corresponding stress field.

Frederking et al. (2) calculated the strain rate in the elastic
region by integrating displacements, eliminating the shear modulus using
strain values and taking the time derivative, which gives the strain
rate as a function of displacement rate. At the indentor edge the
latter is the same as indentor velocity. This definition is not valid
after the yield point has been exceeded. As the stress or strain equals
the yield point, the definitions of strain rate according to stress rate
and displacement rate should yield equal results. However, depending on
the value of modulus of elasticity and yield stress, a difference of two
to three decades in the strain rate magnitude exists. It seems that the

I
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strain rate obtained from displacement rate is only valid during the
initial loading and the strain rate obtained from the stress rate is
valid during continuous crushing. The discontinuity between the two
methods needs further research.

Randomness in the ice properties also affects the ice-structure
interaction. The meaning of grain size and orientation, salinity and
temperature variations is not so important from the structural response
point of view as variations in ice thickness, existence of cracks and
leads, piled-up layers of ice or pressure ridges. Although all in-situ
measurements indicate the existence of randomness, no general classifi1-
cation has been made. Reddy et al. (19) describe a method to utilize
the observed random response of the structure further. The aerial
strength distributions have been observed in Soviet Design Codes, but
the randomness of ice properties is not directly observed anywhere.

3.3 Contact system

The mode of ice failure against a structure may vary with the
properties and thickness of ice. In this context only vertical or
almost vertical structures are considered. Typical failure mode is then
crushing if the slope from vertical is less than about 200 and the
friction between the ice and structure is not especially low. However,
a bending type of ice failure may occur even with vertical structures
with thin ice, which first buckles and then fails by bending. In this
case no significant ice-structure interaction response has been reported.
Buckling loads with thin ice are usually insignificant when compared to
crushing loads with nominal design ice thickness.

The best contact with the ice and structure is after the ice has
frozen to the structure with extensions downwards due to better heat
conductivity of the structure. The initial ice load peak becomes high

when the ice starts to move, although the strain rates at the beginning
of movement are so low that significant stress relieving due to visco-
elasticity occurs. In the case of slightly conical structures it has
been observed that the contraction of ice during cooling tends to lift
the freezing ice collar upwards and break it into segments, which prevents
the formation of high initial ice loads.

In classical formulas for ice force, e.g. Korzhavin, the effect of
contact phenomena is taken into account by two factors: I for the
shape of the structure and m for the unevenness of contact. These
factors are based on experimental measurements. It should be noted that
the value of the contact unevenness factor depends strongly on ice
properties and loading rate. Cold ice has greater strength but it is
more brittle, especially at high loading rates, which leads to lower

k6'.'
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contact factors. In bridge piers in rivers the ice loading usually
occurs during spring when the ice is warm and its strength low but
contact factors greater. In design, all combinations should be considered.
The usual range for the shape factor of the structure is from 1.0 for a

flat indentor to 0.9 for a circular one and for the contact unevenness

factor from 1.0 to 0.5.

A typical expression for ice force acting against a vertical pile
is eq,. 3.2 by Korzhavin:

F - Imka hd (3.2)

c

which includes, in addition to the earlier mentioned factors I and m, a

coefficient k which takes into account the observed dependence of ice
force on the diameter of structure to ice thickness ratio, e.g. Fig.

3.6. This so-called "ratio effect" has been studied widely. Frederking
(3), Gold (5) and Michel et al. (12) are of the opinion that the increase
in effective crushing strength with small d/h ratios results from the
strain rate effect. Considering a constant strain rate and using the
power law in the ductile region a somewhat similar curve to Fig. 3.6 is
achieved. However, then all values of the ratio effect k could be
obtained just by changing ice velocity. In nature a wide range of
velocities may appear.

It
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Figure 3.6 The dependence of effective ac on d/h, Neill (15).

In addition to, or included in, contact and aspect ratio coeffic-
ients other phenomena occur during ice crushing and have an effect on
ice force. In the ductile region a small area of ice becomes plastic
before the pile, which increases the effective diameter of the structure.
The plastic region is not very wide but it extends more in the direction
of ice movement, about 1.6d with a flat indentor, Michel et al. (12).

... .. 4
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Schematically for a circular pile the situation is according to Fig.
3.7. The increase in effective diameter increases relatively more ice
force with low d/h values, since pushing away ice rubble then requires
relatively more tolerance between elastic ice and pile. Maybe this
is one of the reasons for the diameter to ice thickness effect.

Figure 3.7 Plastic zone in crushing

In the brIttle region during crushing the ice sheet is thinning by
flaking or pee ing off wedges from the upper and lower surfaces. Radial
cracks and lateral cracks in the ice middle plane may appear. These
yield a decrease in the ice thickness and relief in the state of stress
which results in a reduction in the ice force. This gives a physical
reasoning for the contact unevenness factor. The factor due to the
shape of the structure can also be based on the promotion effect of the
formation of radial cracks.

Although the contact between the ice and structure would be com-
plete, the maximum ice pressure would not occur simultaneously. The
failure of ice crystals with most unfavorable directions will start
first before others have reached the yield level. As the crushing
starts it may spread very fast to the whole contact area. Thus the
magnitude of ice force will always be somewhat random and smaller than
that calculated according to maximum ice strength.

During the dynamic ice-structure interaction the crushing strength,
and the contact pressure, depend on the loading rate, which depends on
the relative velocity v between ice and structure

r

v v + (3.3)

*1 o n

2(
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where A and ; are ice and structure velocities at the contact point n.n n
As the crushing strength a in eq. 3.1 is measured in uniaxial compression
and as the pressure againsi a circular pile obeys approximately the cosine
law, eq. 3.4, Frederking et al. (2),

a a8 = c (;) Cos e (3.4)

the final stress rate will be

4a c vrCos 2e (3.5)

To solve this equation it is required to iterate using a suitable crushing
strength vs. stress rate curve. After the stress rate is solved the
total ice load can be integrated along the periphery of the circular pile.
The above equations can be similarly obtained for other indentor shapes.
Alternatively a strain rate formulation could be used. In this way
starting from the ice crushing strength vs. stress rate curve MlttInen
(14) solved the interaction problem for circular piles in the case in
which ice elastic deformations can be neglected.

In the first year pressure ridge in which the ice floes are not
frozen together into one solid ridge, the dynamic interaction is rela-
tively less severe than the maximum ice force. The contact with separate
floes takes place only in a few corners or edges, and pushing aside
loose floes causes great damping effects, which is observed in labora-
tory tests, Keinonen et al. (9). However, no measurements in-situ have
been reported. In-situ observations, by this author, of a steel light-
house showed as large vibration amplitudes in a pressure ridge as in the
original even ice sheet. On the contrary in a concrete, caisson-type'I lighthouse considerably smaller vibrations occurred in a pressure ridge
than in the even ice sheet.

Friction also plays an important role in the dynamic ice-structure
Interaction. Its main contribution is to damping and it will be treated
separately in the next chapter. To the contact system the effect of
friction is otherwise insignificant on the ice force but it may change
the intended bending failure of ice against a sloped structure to crushing
failure with considerably greater ice forces in the slope angle range
between 10 to 30 degrees from the vertical.

3.4 Damping

In the ice-structure dynamic interaction the effect of damping is
most significant in the case of self-excited ice-induced vibrations.
The amount of damping controls to a great extent the amplitudes of limit

cycles and may suppress totally the self-excited vibrations so that a
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situation of "static" crushing may develop. In the case of transient
ice forces such as the edge of an ice floe hitting against the structure
damping has only a minor effect on structural response.

Total damping consists of structural and foundation hysteretic
dampings, hydrodynamic damping of water and aerodynamic damping of air
and of friction between the ice and structure. Also the energy dissi-
pated to crush and grind ice into rubble may be regarded as a damping
effect. On the other hand, the decreasing part of the ice crushing
strength curve as a function of loading rate can be interpreted as a
negative damping effect. All these are interfering during dynamic ice-
structure interaction which makes it very difficult to eliminate the
real positive damping from the total damping in measurements.

Most structural and hydrodynamic dampings are nonlinear in relation
both to deformation and its time derivative. The usual concept is to
linearize damping and to use equivalent linear damping coefficients,
Lazan (10). As damping forces are usually very small when compared
with stiffness or mass farces the vibratory response deteriorates only
insignificantly while the nonlinear damping dissipates as much energy
per cycle as the linear viscous damping.

Damping in structures is hysteretic and only slightly, or not at
all, dependent on the rate of loading, Lazan (10). Aerodynamic damping
is usually negligible and hydrodynamic damping is linear in small Reynolds
humdrdnai dmpin efecs bl21.Fudtiousuallyithe areh smalli Rosn(0)
numbrsnai Skopin tecs al. (1.Fundation exhbi both stereti and(0)
Considering a velocity dependent damping force, in which the above
effects are combined, the positive damping behaviour can be visualized
schematically according to Fig. 3.8. If in the same figure the negative
ice-induced damping force near the steepest descent point in the crushing

k! strength curve is plotted, it is observed that the positive damping
overcomes the negative and hence no self-excited vibrations should

4 occur. However, the always present random variations cause great enough
4 velocities to move the point of action to the area where the negative

damping is determined and self-excited vibrations may develop. If the

curve of positive damping is linearized, the greatest error will be just
near the point of origin, where a stable origin may be predicted as
unstable. In practice the constant part is small at the origin for the
positive damping force when compared with possible negative ice damping
forces. Hence, linearization means operation on the safe side in diesign.

The negative damping effect of ice should be observed following the
ice crushing strength curve with relative velocity. In addition, ice
crushing also includes positive damping. These effects are the energy
required to crush and grind ice into rubble, pushing the rubble away,



-120-

F 
rd

F-d +Fd
dd

Figure 3.8 Effect of damping curv shape

and friction between ice and structure. Partly these effects can be
taken into account already in the ice crushing strength curve, where in
the brittle region the average ice force values are used instead of
considering them to be zero after bursting like failure of ice. In
the ductile region positive damping effects are negligible - practically
no crushing - and, therefore, no additional positive ice damping effects
are required. Crushing strength curves measured in the laboratory
include these effects but no special attention has been paid to damping
phenomena. Corresponding curves with actual size in-situ structures are
not yet available and one must be careful when the results of laboratory
tests are extended to full size structures.

The easiest way to observe structural and hydrodynamic dampings is
to use natural mode relative damping coefficients, which can be measured
most reliably. Relative damping coefficients have been reported to be
from 2% by Blenkarn (1) to 6% by Matlock (11) and 10% by HMUtt~nen (13).
In the cases of Blenkarn and MUtt~nen positive and negative ice-induced
dampings were interfering; in some cases energy required for ice crushing
dissipated all the elastic energy of the structure, suppressing vibra-
tions in half a cycle. Ross (20) reports a value of 2.5% for a steel
tube vibrating freely. As for the structure and water alone, without
ice effects, relative linear damping coefficients of from 3 to 6% are
reasonable for the lowest modes.

3.5 Response of ice

The available information on dynamic response of ice is rather
limited. The travelling and attenuation of stress waves have been

I

*1:
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studied in connection with the elastic properties of ice but not in
connection with the dynamic ice-structure interaction. In the latter
case the elastic deformations of ice are usually so small that they are
not considered to be significant.

Depending on the relative magnitudes of elastic deformation of ice
and displacement of structure at the contact area the interaction problem
can be divided into three modes: elastic ice displacements are in-
significant, displacements of structure are insignificant, and both are
significant.

In the first mode ice interaction can be taken into account only
through the stress rate dependent crushing strength curve. In the second
mode the structure is infinitely stiff and its only interaction is
reaction force, which for its part is again stress rate dependent. In
the third mode both the ice and structure experience elastic displace-
ments simultaneously, and the dynamic equations of equilibrium for both
have to be solved simultaneously but separately with the only inter-
connection by the stress rate dependent ice force at contact points.

In the case of slender pile structures the first mode of interaction
is a sufficiently accurate approximation. In-f ield observations (13)
suggest this and the validity of approximation can be justified also by
calculations. The elastic ice displacement u r for a circular pile in
the middle of an ice field is, according to Frederking et al. (2),

ur = e *a [0.5 ( a _ 1) + 0.450 .5.1 L - 0.277] 36

where e r is the maximum radial ice strain at the contact point, a
radius of pile, and L is the distance to the fixed boundary of the ice
field. Evidently infinite ice fields induce infinite displacements in
static loading. In practice all ice fields are finite and the order of
magnitude of ur can be d termined by taking a typical pile diameter
d 2a - 1 m, C 5-10 (maximum elastic strain just before yielding

In a short dura~ion loading) and varying L/a ratio:

Table 3.1 Elastic ice displacement

L/a u r(mm)

10 20.72

10 30.98

10 41.24
5

10 1.50
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In slender pile structures the deflection due to maximum ice force
is typically several centimeters so that the elastic displacement of ice
is insignificant also in static loading. In the case of dynamic ice-
structure interaction the effects of elastic ice deformations should be
calculated using the wave equation. The order of practical L/a ratio
can be bounded by considering the time during which an elastic wave
starting from the interaction point travels to the edge of an ice field
and back. Observing the attenuation and considering the periods of
interaction frequencies from 0.5 to 10 Hz as the time limit for elastic
waves to proceed with a typical velocity of 2800 m/s, the limit of ice
field size L will be only 2800 ... 140 m in the case of a 1-rn-diameter
pile. Hence, also in infinite ice fields the elastic deformation of ice
is limited from the interaction point of view.

Theoretically the in-plane vibrations of an ice sheet could be
solved using the wave equation. In practice, however, initial conditions
are not adequately known. The existence and effective range of in-plane
vibration should be measured in-situ. In connection with In-plane
vibrations, flexural vibrations may also occur during dynamic ice-
strucure interaction. It is evidently the latter type of vibration
which can be felt under an observer's feet on the ice.

The failure mode of a thin ice sheet acting against a vertical pile
is buckling instead of crushing if the thickness of the ice is less than
a critical value. In this case the maximum ice force will be small and
usually insignificant when compared to design ice thickness ice forces.
However, the possibility of resonance exists again, since the length of
the buckles is constant for constant ice sheets and, hence, the velocity
of ice determines the frequency of appearing ice force peaks.

When ice gets thicker, the failure mode changes to that of crushing.
In the transition buckles may start to initiate and, depending on ice
thickness, either buckling or crushing will be the failure mode. With
thicker ice the initialization of buckles may be the origin for flexural
vibrations.

Ice failure by bending is dominant with ice acting against inclined
sloped structures. Methods for calculating ice forces are given in
Chapter 2 by Croasdale. Again the length of subsequent bending failures
is constant for a given ice sheet, and the frequency of resulting ice
force peaks is determined by the velocity of ice. The possibility of
resonance exists, but sloped structures are usually so stiff that no
significant energy change between ice and structure occur, making
dynamic interaction less pronounced.

3.6 Response of structure

Analytical numerical methods for predicting the dynamic response of
structures are currently so effective that any structures can be analyzed
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easily if time-dependent loading functions are known. In the case of
ice-structure interaction the system is autonomous and, hence, the
appearing ice force is the result of dynamic response of both the struc-
ture and ice. The problems encountered in numerical analysis are mostly
due to inadequate knowledge of ice forces. The damping phenomena are
also complicated since the loading-rate dependent part of the ice force
is interfering with damping. Hence, great attention should be paid
while using measured ice force functions as input for numerical analysis.

One of the most powerful methods for dynamic analysis of structures
is to use finite element idealizations (23). This leads to the dynamic
equation of motion

[k] (61 + [d] {b1 + [m] {61 (f(t)) (3.7)

where [k], [d] and [m) are the stiffness, damping and mass matrices of
the discretized system, {61 is the displacement vector of discretization
nodes, and (A} and {91 are its time derivatives, the,vectors of modal
velocities and accelerations. Schematically a similar equation as 3.7
can be written for the discretized ice floe as well:

[K] (A} + [D] {Al + [H] ({l = (F(t)) (3.8)

In the case of large or infinite ice fields, the wave equation must be
used instead of eq. 3.8.

The loading vectors {f(t)} and (F(t)} have nonzero terms only in
those modes in which ice is acting against the structure. These terms
are identical in both equations and cause the interconnection between
ice and structure. The appearing interactive ice force is loading rate
dependent (Section 3.2, eq. 3.2, 3.4 and 3.5). Considering the nodal
point n, the ice force *n can be expressed as a function of relative
velocity, eq. 3.3 between ice and structure at the point n:

n (' ' V f - F (3.9)

n n n n9 o n n
Substituting this into eq. 3.7 and 3.8 it is observed that the system is
autonomous, since time does not appear as an independent variable.

Initial conditAons for the group of equations 3.7 and 3.8 are that
{A}, (6, (A) and {A) are zero vectors, and {f} and (F) vectors contain
only that constant part of the interaction force that corresponds to
constant initial ice velocity v . The appearance of vibrations occurs
only if either or both of systems 3.7 and 3.8 are dynamically unstable.

I

(i
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The condition of stability can be deduced by solving the roots of
the dynamical equations of motion. These are usually complex conjugate
pairs, eg. for mode j

X P j + i W (3.10)

The real part p net damping, expresses the rate of decay or increase
of possible vibrations in mode j and w. expresses its angular velocity.
If P < 0, vibrations will die out expanentially and the situation is
stable with no vibrations occurring in mode j and with ice crushing
exposing constant loading against the structure. If p > 0 vibrations
in mode j will grow exponentially with time, the syste4 is dynamically
unstable and self-excited vibrations will occur. Although the initial
situation is static, only a small disturbance is required to start
vibrations with growing amplitudes. Always present random variations
in ice properties are enough to initiate self-excited vibrations.

For absolute dynamic stability it is required that all roots have
negative real parts. In practice it is enough to check only those modes
which can contribute significantly to dynamic response. With pile
structures the observed range up to 15 Hz is adequate.

An approximate stability condition for mode j can be calculated
from eq. 3.11, (14)

2

C> nn (3.11)
i 2M j i

where X is the amplitudehof natural mode j at the ice action-node n,
M. is Ne mass for the j principal mode (M = {x}l [m] {x} , where
{14 is the natural mode vector), wj is the uAdamped Angular velocity

:1 in lode j and 4n is defined as the rate of ice force from eq. 3.9:

n= *nn "n (3.12)

Eq. 3.11 states that mode j will be stable in case the relative modal
damping C is greater than the negative ice-induced damping through the
term * . While deriving eq. 3.11 it was supposed that *n is small.nn n
Hence, eq. 3.11 is valid only when the right hand side is smaller than
about 0.15 and this requirement should be extended to all significant
natural modes. Hence, results from eq. 3.11 are in close agreement with
those of eq. 3.10.

(l
*1 n
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The stability condition deduced from the roots of dynamical equations
of motion gives only answers to the question of stability in the small.
This means that amplitudes must be small. The ice-structure interaction
is strongly nonlinear and with increasing amplitudes the rate dependence
of ice force is changing. After a certain limit for relative velocities
the negative damping effect of ice disappears as the point of action in
the ice crushing strength curve moves out of the descending part (Fig. 3.4).
Hence, ever increasing amplitudes are impossible. After a while the
structure reaches a steady level of vibration amplitudes: limit cycles.

Dynamic stability in the large and limit cycles can be solved from
eq. 3.7 and 3.8 by integrating them numerically. A small initial dis-
turbance is required after which the nonlinear ice crushing strength
curve is followed with changing relative velocities. If the initial
disturbance decays, the system is stable; if after the initial dis-
turbance vibrations start to grow, the system is dynamically unstable in
the small. Limit cycles are then achieved simply by continuing inte-
gration until amplitudes and shape of vibration patterns no longer change.

The possibility of losing contact between ice and structure can
also be easily observed in numerical integration. The contact is lost
whenever the relative velocity gets negative after which a gap forms. At
this stage the interaction force will be zero. A new contact and ice
force according to the rate-dependent crushing strength curve is retained
after the gap has closed. This kind of behavior during crushing has
been observed in the field.

From the energy balance it is easy to deduce that steady limit
cycles will exist and the system is dynamically stable in the large.
The external energy imparted to the structure by ice will not grow for-
ever with increasing amplitudes and relative velocities but the energy
dissipated by damping will increase monotonically. Sooner or later,
then, asymptotically a constant situation develops in which the net
energy change is zero during each cycle of vibration.

The dynamic response and stability conditions of steel lighthouses

and piers were solved analytically with the method described above (14).
Only the first mode of interaction, elastic deformations of ice are
insignificant, was analyzed. Results showed conformity with the observed
and measured vibration patterns and limit cycle frequencies.

Another explanation for the rise of ice induced vibrations is given
by Peyton (17) and further refined by Neill (15). Peyton explains that
the frequency of ice crushing is a property of ice. Neill explains that
ice tends to break into floes of a certain size. Hence, the velocity of
ice determines the frequency. In either case no actual ice-structure
interaction exists.



-126-

The breaking pattern proposed by Neill is dominant with inclined
structures and also in the case when initial buckles occur. With brittle
ice and vertical indentor radial cracks first appear and proceed before
circumferential cracks appear. After this ice floes are pushed aside
until new contact is achieved and the process starts again. In this
case the resulting frequency of force peaks is mostly determined by the
properties and velocity of ice and the shape of indentor, not by the
stiffness or mass properties of structure. The response of the struc-
ture may then be integrated from eq. 3.7 by using an appropriate known
or supposed time-dependent ice force function. With ductile ice, e.g.
when ice starts to move in the spring, the crushing can occur without
radial cracks and ice is ground into small pieces. In this case dynamic
interaction is possible only by considering the loading-rate dependence
of ice crushing strength.

The dynamic response of the structure may include transients,
vibrations with constant amplitudes and frequencies and vibrations with
random amplitudes and frequencies. The latter form is most common but
from the structural safety point of view constant frequency vibrations
are most dangerous because a resonant condition is always possible.
Theoretical calculations seem to support the observed behavior of
structures, to vibrate more likely in those natural modes that are
unstable.

The frequency of ice-induced vibrations can be solved by inte-
grating limit cycles numerically. An upper bound can be calculated more
easily from eq. 3.13 (13)

k v
f 0 (3.13)
ahd

where k is the spring stiffness of the structure in the point of actionIand in direction of the ice force, v ice velocity, a effective ice0 c
crushing strength, h.ice thickness and d the diameter of pile. This
equation does'not take into account the time of deflection springback
during crushing and the elastic deformation of ice. Hence, its accuracy
is worse with higher frequencies where springback time becomes more
important. Depending on the type of structure the limit cycle frequencies
calculated by numerical integration have been about 0.6 to 0.9 of those
of eq. 3.13. However, considering the range of possible ice velocities
v or ice thickness L it can be concluded that eq. 3.13 is practical in
predicting the possibility of resonance.

The transient response of structure during the initial hit of an
ice edge or ice floe can be integrated also using eq. 3.7 and 3.8. Due
to dynamic amplification maximum deflections and stresses in the structure
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may rise up to two times that in the case of static crushing. Simplifying
the structural system to a one degree of freedom system and considering
only the maximum ice force without interaction but with rise time dependent
on the ice velocity, the amplification due to initial hit can be found
out directly from the curves of Timoshenko, et al. (22). Another possi-
bility instead of continuing crushing after the initial hit is the case
when the ice floe empinns to the pile and continues to vibrate with the
pile. The increased mass decreases the natural frequency but it causes
no additional loading (compared to initial hit loading) to the structure,
since then ice cannot impart any more energy to the structure.

Basically all ice-induced vibrations during crushing are random
by nature. This is due to random variation of ice thickness, strength,
crystal size and orientation, existence of pre-cracks, leads or layered
ice, etc. Thus, the resulting ice force will vary randomly and as the
time to failure with constant ice velocity will depend on the maximum
ice force, also the frequency of ice force peaks will be random.

Reddy et al. (19) have treated the ice-structure interaction as a
random phenomenon. The presented method is valuable in predicting
the random response of structures under ice loads in case probabilistic
properties of ice loads are known. However, only a limited amount of
data is available to date. The method to broaden the frequency range
of observed peaks in measured power spectras gives additional safety.
The applicability of generalized power spectras for other structures
is rather limited since the ice-structure interaction is autonomous and
a highly-nonlinear phenomenon. Changes of structural or ice parameters
may change, e.g. the condition of stability to opposite. Hence, the
original spectrum is no longer valid.

In the case of first year pressure ridge loading the dynamic re-
sponse of the structure will be equal to or less severe than in the case
of even ice sheet, and not in direct relation to the total ice force
(field observations by this author). The reason is that the essential
energy exchange in the dynamic ice-structure interaction will not work
since separate ice floes cannot deform elastically to a significant

Therefore, the first-year pressure ridge loading can be treated more

lieastatic loading condition. In the case of a multi-year ridge
enryexchange is possible and then also dynamic interaction. Measure-
methowever, are lacking.

3.7 Design considerations

From the dynamic ice-structure interaction point of view the type
of structure chosen is most important. Low aspect ratio structures are
more stiff and their natural frequencies higher than those of high aspect
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ratio structures. Low aspect ratio structures are not as sensitive to
ice-induced self-excited vibrations, see eq. 3.11, but their total
design ice force may be higher. This may happen also for conical struc-
tures that break ice by bending in case allowance is required for water
level changes, which makes diameters and with it ice forces great.

Moving ice field with bending failure against inclined structures
is giving an excitation with constant frequency, which depends on the
properties and velocity of ice and the angle of slope. Pulsating ice
force will be the result in every case. In the case of crushing failure
the arising of a pulsating ice force depends on the properties of both
ice and structure. With a successful design it will be possible to
achieve a situation where the most significant natural modes will be
dynamically stable. This gives possibilities for static crushing with
no vibrations at all. However, also in this case, structures must be
designed against transients and random ice force fluctuations.

The concept of a structure dynamically stable against ice-induced
autonomous vibrations is to date more theoretical than practical, although
experiences and a small number of measurements have verified the expected
behavior of a dynamically stable lighthouse.

Resonant vibrations are the most dangerous loading condition. The
whole range of changing ice velocity, strength and thickness values
should be considered, with eq. 3.13 for the case of crushing failure and
with a corresponding equation for the case of bending failure of ice.

Factors of safety in design should be reasonably great. Uncertain-
ties in effective crushing strength, amount of decrease of crushing
strength during transition from ductile to brittle ice failure and
damping phenomena during the crushing process require more additional
safety than normally used in dynamic loading conditions.

Both in-field and laboratory measurements are required to achieve a
better understanding of all those phenomena that are occurring during
dynamic ice-structure interaction. By field measurement the probabil-
istic properties of interaction force can be logged. While analyzing
measurements a mathematical model of the structure is required in order
to eliminate mass force and also partially damping effect out of the
interaction force. The further utilization of measured known spectra
requires the knowledge of dynamic stability characteristics in both test
and application structures. By laboratory mea *surements the effects of
basic parameters on interaction, phenomena can be tested one after another.
Also in this case the mathematical model is an essential part while
analyzing and utilizing results.
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PART IV

A REVIEW OF BUCKLING ANALYSES OF ICE SHEETS

by D.S. Sadhi and D.E. Nevel

Abstract

A review of the buckling analyses of floating ice sheets is presented. The
thieory used is that of a beam~ or plate on an elastic foundation. For beams, the
results for all possible boundary conditions are presented and discussed. For
Plates, results of numerical solutions for a semi-infinite plate loaded over part :
of its boundary are presented and discussed. one solution is presented for an
infinite plate loaded radially at a hole in the plate. In addition, results for
wedge-shaped beams and plates are presented and discussed. Wedge-shaped ice sheets
frequently occur due to previous cracking in the ice.
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INTRODUCTION

When an ice sheet impinges on a vertical structure, the generated force
cannot be larger than the force needed to fail the ice sheet in either the
crushing mode or'the buckling mode, whichever requires less force. Although
considerable experimental and analytical research has taken place to determine
the horizontal forces ice exerts on structures in the crushing mode, comparatively
little effort has been devoted to the study of ice sheet failure in the
buckling mode. The concentration on the crushing mode probably has occurred
because most structures placed in ice-infested waters have a small aspect
ratio (ratio of structure width to ice thickness), and so cause the ice
sheet to fail by crushing. However, it has been observed by many investigators
during small-scale tests (Hirayama et al. 1973, Nevel et al. 1977, Zabilansky
et al. 1975, Afanas'ev et al. 1972) and in the field (Perham 1977) that an
ice sheet fails in the buckling mode when the aspect ratio is large (generally
greater than 6), as with wide structures encountering thin ice.

Since buckling is a possible mode of failure for an ice sheet as it
impinges on a vertical structure, it is necessary to situdy the buckling of
floating ice sheets, which have been analyzed as beams or plates resting on
elastic foundations. The force offered by the elastic foundation is assumed
to be linearly proportional to the deflection of the ice sheet, an assumption
that is valid as long as the ice sheet does not submerge completely under
the water surface or emerge completely out of water. This assumption is
also adequate for the linear buckling analysis that determines the load for
the incipience of instability, but it is not valid for the post-buckling or
dynamic behavior of an ice sheet.

This review is presented in two sections: 1) buckling analysis of
beams on elastic foundations and 2) buckling analysis of plates on elastic
foundations.

BUCKLING ANALYSIS OF BEAMS ON ELASTIC FOUNDATIONS

Beams of rectangular cross section

The deflection and buckling analysis of beams on elastic foundations
has been presented by Hetenyi (1946). It is summarized briefly here for
the sake of completeness.

L L

Figure 1. Geometry of a beam with a rectangular cross section resting
on a elastic foundation with compressive axial load P.

The differential equation governing the buckling of a beam with a rec-
tangular cross section (Fig. 1) resting on elastic foundations and subjected
to an axial compressive force P can be shown to be:
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d4W d2w
EI + Pd + KBw- (1)

where E - modulus of elasticity
I - area moment of inertia
w - transverse deflection of the beam
x - distance along the beam
B - width of the beam
K - modulus of foundation (specific weight of water in the

case of floating ice sheets)

The characteristic length of a beam, L (EI/KB)1 /4 - (Eh3/12K)11 4

(h being the thickness of the beam), is an important parameter because it
expresses the relative magnitude of beam stiffness to foundation stiffness
in terms of an influence length parameter. Equation 1 may be rewritten by in-
troducing a nondimensional length variable x X/Lb:

4b

dw4 w d2w+ 2A- + w 0. (2)
dO dC2

where 2X = P/(BKI).

The general solution of eq 2 is a linear combination of four emt

terms where m is a complex number, and the solution takes three different
forms, depending on whether the value of A is greater than, equal to,
or ltss than 1. The determination of the buckling load depends on the form of
the solution assumed and the boundary conditions prescribed at the ends of
the beam. The boundary conditions may be any one of the following: frictionless
(shear force and bending moment are zero), hinged (deflection and bending
moment are zero), or fixed (deflection and slope are zero)..

The procedure for determining the buckling load from the general
solution of eq 2 is outlined in the Appendix. The buckling load depends
explicitly on the boundary conditions imposed at the ends of the beam and
implicitly on the length of the beam. A buckling load exists for each mode
of buckling of the beam, but we are only interested in the lowest buckling
load of a given2beam. The lower envelope plots of the nondimensional buckling
pressure P/(BKLb) with respect to the ratio of beam length to characteristic
length, L/Lb, are given in Figure 2 for the six different boundary combinations.

CC Fmed#. s

4. MC M~qm.d
FM F cImpJ

PC
BKO. M

FM

L/Lb

Figure 2. Lower Invelope plots of nondimensional buckling pressure
P/(BKLb) with respect to the ratio of length to characteristic
length, L/Lb.

b 4
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Several observations can be made by observing the plots in Figure 2.
When the length of a beam is small compared to the characteristic length,
the buckling load of a beam on elastic foundations consists mainly of the
Euler buckling load. For long beams, the Euler buckling load is low and
the elastic foundation influences the buckling mode and thereby the buckling
load of the beam. For beams that are long relative to2the characteristic
length Lh, the nondimensional buckling pressure P/(BKLb) approaches 2,
except when one2end is frictionless, in which case the nondimensional buckling
pressure P/(BKL-) approaches 1. For short beams with frictionless-frictionless
or frictionless2hinged boundary conditions, the nondimensional buckling
pressure P/(BKLb) increases from 0 to I as the ratio L/Lb increases from zero
to infinity because the rigid body movements of these beams are present in
the solution and the Euler buckling load of such beams without the elastic
foundation is zero. Since the buckling load can be small for small values
of L/L in the frictionless-frictionless and frictionless-hinged cases, in-
stability of this kind may exist when a broken ice sheet is pushed on a
beach, causing an ice pile-up or rubble field to form near the shore.

Beams of linearly varying width (tapered beams)

The buckling analysis of tapered beams is of considerable interest
because such a situation may occur when an in-plane force acting on an edge
of an ice sheet creates vertical cracks originating from the area of loading
and radiating outward into the ice sheet.

Referring to the geometry of the tapered beam shown in Figure 3, the
differential equation governing the buckling of such a beam may be written
as:

Eh3 d2  rx d2wl d2w Bx
12 +  P -x + K -w = 0 (3)

where B is the width of the beam at x = R (see Fig. 3 for the definition of
R) and the other parameters have been described previously. The buckling
load P is determined by seeking a nontrivial solution which satisfies the
imposed boundary condition at the ends of the beam. For a semi-infinite
beam, a fixed boundary condition is imposed at infinity, and a prescribed
boundary condition (either frictionless, hinged, or fixed) is imposed at x
=R.

Figure 3. Plan view of a semi-infinite tapered beam resting on an
elastic foundation with total axial force P.

Equation 3 may be written in the following 5orm byl~ntroducing a

nondimensional variable X/Lb, where Lb = (Eh /12K)
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d 2  d2 w] + P dw + w=O (4)

d 2 I R/Lb dC2  BKL d 2  Lb

It is evident flom the above equation that the nondimensional buckling
pressure P/(BKLb) of a semi-infinite tapered beam depends on the boundary
condition imposed at x - R and on only one geometrical parameter, R/Lb -

Kerr (1978) made an attempt to solve eq 3 by an approximate method
using a solution having two degrees of freedom and a buckling load derived
for fixed and hinged boundary conditions at x - R. Kerr (1978) postulated

from his analysis that the expression for the buckling load should be in
the form of the sum of two terms, the first being linearly dependent on B
and the second being a function of taper angle a. But this is not the case
according to the discussion presented here and the closed form solution pre-
sented by Nevel (1979).

Nevel (1979) obtained th2 exact solution of the differential equation

(3) and confirmed that P/(BKLD) does depend only on R/L b and boundary

conditions imposed at x = R. The results obtained by Nevel (1979) have
been plotted in Figure 4 along with the results obtained from a finite
element analysis (Sodhi 1979).

This buckling analysis of tapered beams is valid only for small

values of taper angle a, and the use of plate theory would be more appropriate

for the cases when a is large.

I00 : , , ,, , , • , , , ,[ , , . .

,oWm (isDPP/ P nN !

0.1 1 tO 0
R / L b 2

Figure 4. Plot of nondtmenstonal buckling pressure P/(BKL b) of a tapered
beam with respect to R/L b '

BUCKLING ANALYSIS OF PLATES ON ELASTIC FOUNDATIONS

The buckling behavior of a floating ice sheet is governed by the

following differential equation:

D74W + Kw -Nx a2 + 2Nx 12- +  Ny a-w (5)
R/Lb 2

Figurex 4. Plo ofnniesoa ucln rsueP(By)o aee
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where

D - flexural rigidity of ice sheet
w - transverse deflection of the ice sheet

x,y - Cartesian coordinates on the middle plane of the ice
sheet

V4 = biharmonic operator
K - modulus of foundation (specific weight of water in the

case of floating ice sheets)
N Ny, N Y in-plane stress resultants (force per unit length) which
XX, xare linearly dependent on the total in-plane force P

The general procedure for solving eq 5 is to determine the expressions
for N N , and N by solving a plane stress problem and then to solve
the e gnvaue problem that determines the buckling load and the mode of
buckling are determined. To find the non-dimensional form of the buckling
load, we normalize the coordinates (x,y) with respect to the characteristic
length of the plate

where v is Poisson's ratio, to get X/Lp and n = y/L , and we can rewrite
eq 5 in the following form:

V4w + w _ ( a2w a2w a2w(
= + n = (6)

N L_xx p e
where N = - p , etc., are the nondimensional expressions. The non-
dimensional buckling load P/(KL3 ) is determined according to the procedure
listed above, and the nondimenstonal buckling pressure is obtained by
dividing P/(KL3) by the aspect ratio B/L (width of structure/characteristic
characteristic length of ice sheet) to o~tain P/(BKL2 ), which has the same
form as that obtained for uniform beams and tapered teams.

A closed form solution of eq 5 or 6 may be obtained for simple plate
geometries and for uniform in-plane stresses, but it is very difficult to
obtain a solution for complicated plate geometries and boundary conditions,
it is advantageous to seek solutions using numerical techniques. The only
closed form solution known to the authors is that of Takagi (1978) who
presented a solution of the buckling problem of an infinite elastic plate
floating on water and stressed uniformly along the periphery of an internal
hole. In this case, the two-dimensional problem is reduced to a one-
dimensional problem using the condition of symmetry, and the equation
governing the linear buckling is

d2  Id 2 R2  d2wSD + - -a ) w + Kw = p I-- (- --_ + . -rL) (7)

where r is the radial coordinate, and p is the pressure applied at r - R.
By introducing F r/Lp, we may rewrite eq 7 as

2d (R/Lp)
d + 1 d 2 + (RL) d2w + dw

pd2I)w+w= z ( 8
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It is evident from the above equation that the nondimensional buckling
load p/(KL2 ) is dependent on the ratio R/L and the boundary condition
imposed on the circular edge r - R. Plots of the lowest nondimensional

pressure p/(K) with respect to R/L are given in Figure 5 for three
boundary condifions imposed at r - RP(frictionless, hinged, or clamped).
The value of Poisson's ratio v is taken to be 0.3 in the computation of
buckling pressure when a frictionless or hinged boundary condition is
specified at r - R. The nondimensional buckling load varies in a similar
manner with respect to R/L as in the case of tapered beams, but the values
are much higher for low values of R/L , which may be attributed to the
development of hoop stresses around t~e hole. The asymptote of the buckling
pressure for high values of R/L is 4 for hinged and fixed boundary conditions
and 1.07 for the frictionless b~undary condition. The corresponding values
for a floating ice beam are 2 and 1.

I, = Characteristic length of ice sheet
K = Specfic weight of water

2
Figure 5. Plots of the lowest buckling pressure p/(KL ) with respect to

R/L for an infinite ice sheet stressed uniormly along
the periphery of an internal hole (Takagi 1978).

In the following, only those studies that are relevant to the buckling
of floating ice sheets in ice-structure interactions are discussed. The
solutions in these studies were obtained by employing one of the numerical
techniques.

1. Sodhi and Hamza (1977), using a finite element method, presented a
buckling analysis of a semi-infinite ice sheet loaded by a uniformly
distributed load over a finite length of a straight boundary (see Fig. 6).
This study assumed a frictionless boundary condition on the straight edge
and fixed boundary conditions on the edges at infinity.

2. Wang (1978a,b), using a combined Fourier decomposition and finite
difference method, solved the buckling problem of a semi-infinite ice sheet
as it moves against a rigid cylindrical structure (see Fig. 7). In this
study, both frictionless and fixed boundary conditions are considered on the
circular boundary, frictionless boundary conditions on the straight boundaries,
and fixed boundary conditions on the edges at infinity.

A
__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _(
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3. Sodhi (1979), using a Fourier decomposition and finite elementmethod, solved the buckling problem of a semi-infinite wedge-shaped icesheet (see Fig. 8) that is loaded by a total load P, distributed on thecylindrical surface to create a radial stress field (i.e.

N 2P cosO N O) in the ice sheet Te boundaryrr (w+sinn) r' Nee M 0re nconditions considered in this study are fixed on the edges at infinity,
frictionless on straight radial edges, and fixed, hinged, or fixed on the
circular edge.

--- P12 R

Figure 6. Geometry of semi-infinite ice sheet acted on by a uniformly
distributed load over a finite length.

Figure 7. Geometry of a semi-infinite floating ice sheet moving
against a rigid cylindrical structure.

Figure 8. Geometry of a semi-infinite wedge-shaped floating ice sheet.

4
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The results of the first two studies and a particular case of the
third study are presented in Figure 9 in the form of plots of P/(2RKL2)
with respect to 2R/L , where 2R is the structure width or length overpwhich
the load P is distriguted. The results of the three studies are close to
each other for the frictionless boundary condition, whereas the results of
the second study are higher by 40% than those of the third study for the
fixed boundary condition. This difference can be explained by noting that
the stress field in the ice sheet is not strictly radial when fixed boundary
conditions are used to determine the pre-buckling stress field.

K -Modulus of Foundaton
($lwilc weight of wate-)

CLpharacteristic lenigth of ice she-et

P,,)Wm, -

71 1 b)

~t .f ~ Sadujandilawna (1977)

Sordg (979)

Figure 9. Plots of nondimensional buckling pressure P/(2RKL ) with
respect to 2R/Lp for semi-infinite ice sheets. P

The results of the third study on the buckling of wedges (Sodhi
1979) are presented in Figure 10 in the form of plots of nondimensional
buckling pressure P/(BKL2) with respect to R/L for different values of
wedge angle a and differKnt boundary conditiong (see Fig. 8 for explanation
of various parameters). Figure 11 shows the plots of buckling load P/(KL3 )
with respect to wedge angle a when P acts on a very small area (i.e. P is a
concentrated force).

(ZIk egt f-n o

L" Characteritic length of ace sheet

900

I. oweI

2 wt
Figure 10. Plots of nondimensional buckling pressure PI(BKL)

respect to R/Lp for semi-infinite wedge-shaped i~e sheets.

lb _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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K - Modulus of i idat . .

I

(specific Weight of water)}0

Lp -Charte4ristic length of ice shee

3
Figure 11. Plots of concentrated buckling force P/(KL ) with respect

to the taper angle a of semi-infinite wedgg-shaped ice
sheets.

In the study by Sodhi (1979), the buckling analysis is extended to wedges
having wedge angles greater than 1800. The results for these cases are
shown in Figures 12 and 13 in the form of plots of P/(2RKL2) with respect
to 2R/L . The cases considered in Figures 12 and 13 diffef in the way the
total P is distributed in the ice sheets; in Figure 12 the buckling load P
creates a compressive as well as tensile stress field, whereas in Figure
13 the buckling load creates a totally compressive stress field. The
buckling pressure for the second case is lower than that in the first case.

K = Modulus of Foundation
(specific weight of water)

Lj7= Characteristic length of ice sheet

Boundary Conditions

.- frictionless

3602M.~

Tension in Regions

',' 101 > 901

Figure 12. Plots of buckling pressure P/(2RKL ) with respect to 2R/L
when wedge-angle a is greater than i and when P creates a

compressive as well as tensile stress field.

,i*1lm * ...... .. ..
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m I * I I I I o l li ltf II ii

3W (specific weight oftterm)

0\ ,~.-., LVL = Characte.istc IVnteo et

2M-\ &Iundau Conditions

27.1 -Hed
\ -- frctontesis

be stee in Regon c'--
~>w

Figure 13. Plots of buckling pressure P(2RKL 2 with respect to 2R/L
when wedge-angle a is greater than~ pw and when P creates only

a tensile stress field.

POST-BUCKLING ANALYSIS OF FLOATING ICE SHEET

An analysis of the post-buckling behavior of floating ice sheets may
be conducted to investigate the behavior of the critical load in the neighbor-
hood of the buckling load obtained from the linear analysis already discussed.
Kerr (1979) conducted a post-buckling analysis of a semi-infinite floating
ice sheet that is loaded by a uniformly distributed in-plane load along the

edge of an ice sheet. Using the perturbation method, he established that
the in-plane load required to maintain equilibrium in the post-buckling

state would be less than that obtained from the linear analysis. The
evaluation of this lower load requires a solution of the non-linear differential
equation. This solution has not been obtained as yet.

CONCLUSION

This is a review only of theoretical analyses of the buckling of
floating ice sheets in the form of beams and plates resting on elastic
foundations. The buckling analysis of uniform cross section and tapered
beams on elastic foundations is presented; the results are presented in
graphical form. The buckling analysis of plates on elastic foundations is
mainly restricted to semi-infinite ice sheets and wedge-shaped ice sheets;
the results of these analyses are also presented in graphical form.

The buckling pressure of wedge-shaped ice sheets is very high when the
aspect ratio (structure width to the characteristic length of the ice

aset (tucuelnt
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sheet) is low, and hence the ice sheet fails in the crushing mode. For
high aspect ratios, the buckling pressure is low, approaching the values of
buckling pressure associated with infinite beams having the same boundary
conditions as wedge-shaped ice sheets. The buckling pressure is strongly
dependent upon the charactistic length of the ice, which in turn depends
upon the modulus of elasticity of ice.

There have not been systematic experiments conducted to verify these
theoretical results. The experiments in which the ice sheet failed in the
buckling mode were really conducted to fail the ice sheet in the crushing
mode, and the modulus of elasticity of the ice sheet was not determined.

Using an estimated value of the modulus of elasticity, the theoretical
values of buckling pressure are generally higher than the experimental
values. This may be attributed to the material non-uniformity and material
imperfections caused by cracking in the ice sheet prior to failure.

Although the results of various studies cited in this review agree
with each other, experimental verification of these results is very desirable.

I

I
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APPENDIX

In the following, a procedure is presented for determining the buckling
load of a beam on elastic foundations for a given set of boundary conditions.

The general solution of eq 2 may be assumed as w - Aem . After sub-
stituting this solution into eq 2, we get

m4 + 2Xm2 + 1 0. (Al)

The roots of the above equation are

X<1; m 1,2,3,4  + (ci)

A-1; m, 2 3 4 = +i8, +1 (A2)

X>1; m 1,2,3,4  i(ctz+)

where a - V(1-X)/2 for A<1

= /(X-1)/2 for X>1 (A3)

and B = (+12

The solution of eq 2 may be written in the following form:

Case I (X<1):

w = (CIcosha + C2 sinhad) cosBC + (C3coshat + C4 sinhad) sinOC (A4)

Case II (X= 1):

w - (C1 + C2 )CosOE + (C3 + C4 )sinOE (A5)

Case III (A>1):

w = (C1cosac + C2 sinat)cosag + (C3cosag + C4 sinat)sin8t (A6)

The general procedure for the determination of the buckling load of a

beam is to seek a nontrivial solution which satisfies a given set of boundary
conditions. As an example, the buckling load of a simply-supported beam of
length L is derived to illustrate the procedure.

Using eq A6, the boundary conditions at the ends of a simply-supported
beam are expressed by the following set of equations:
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w(o) 1 0 0 0 C1 1 0

w"(o) -A 0 0 6 C2  0

w(L/Lb) C aC8  SaC B  CaS Saso C3  0 (A)

wit (L/Lb) -'XacsC t(-AS aCI) \(XACOaSB/ aS C 4  0

L j +6S SV I \ 6CaSjI C 6C6sCl L j L .

where a prime refes to differentiahion with respect to C, Cc - cos(aL/L )
Sa = sin(aL/L ), C = cos(aL/Lb), S = sin(OL/L ) and 6 = A2 -1. For tke
nontrivial soution of eq A7, the determinant of the matrix is equal to
zero, yielding the following characteristic equation:

cos(aL/Lb) = + cos(OL/Lb)

or

(a-O)L/Lb = ni (A8)

where n = 1,3,5; .... for symmetrical modes

and n = 2,4,6, .... for antisymmetrical modes.

The nondimensional buckling pressure can be derived from eq A8, and we get

P/(BKL) = 2X = (nnL/Lb) 2 + I/(nnL/L) (A9)

In a similar manner, the characteristic equations for different sets
of boundary conditions can be derived and these are given below for all
possible cases:

(a) hinged-hinged

2X [(n rL/Lb)2 + 1/(nitL/Lb)I (AlO)

(b) fixed-fixed

sin(aL/Lb) 
sin(OL/Lb)

- + for (A>I) (All)

V.
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(c) hinged-fixed

sin(2aL/Lb) sin(2BL/Lb)+ for (X>l) (A12)

(d) frictionless-frictionless (i.e. free-free)

sin(BL/Lb) 0 1-2
- + 0 12A ' (for X<1) (A13)

stinh(mL/Lb) a 1+2X

(e) hinged-frictionless
sin(20L/Lb) + -214

sinh(2caL/Lb) - a 1+2X , (for A<I) (A14)

(f) fixed-frictionless

2X+ sin 2  / b ) + - sin2 (L/Lb) =1 (for X>1)
2-,+ sin(OL/L b ) + 2X-2si

(Al5)

2X+1l 2(LLb- 2)-2X-1 sinh2 (aL/Lb) 1 1 (for X<1)

1x2sin (/b) 2X-2

For a particular value of L/Lb, the above equations can be solved by trial
and error to obtain values of A. As we are interested in the lowest buckling
load for a liven set of boundary conditions, the lower envelope plots of
2A= (P/BKL ) with respect to L/Lb given in Figure 2 were arrived at by
solving eq Ak2-A15.
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