
AD-O ,g67 MARYLAND UNIV COLLEGECPARK DEPT OF C OMPUTER SCIENCE F/ A 9/2
THE DIRECT LISP APPRO ACH TO FUNCTION ENVIRONMENT MANIPULATION.Cu)
JUN 80 R J WOOD N0O014-76-C-0477

UNCLASSIFILED TR-907 NL

.E...EE

111 1 4. 1 28 12.5

U1111 I-' lm"El,1111J 30 2.0

MICROCOPY RESOLUIION TESI CHART
NAHTONAL BUREAU (SIANDARI(lq A

nn
4

V_

[~

I ..

O0A2KO MaIAD

806 300

LEVEL...

JHE SIRECT4 APPROAC

UNCTION ENVIRONMENT MANIPULAIN#~

Department of Computer Science
University of Maryland

College Park, Maryland 20742

/ DTIC

S IELECTE

kabsaat: This paper reviews some of the control structures that
come popular in new extensions to LISP-based programming

languages. A method for constructing these complex control
structures that employs LISP features without the ost of double
evaluation i developed, This technique, called the direct LISP
approach, uses the LISP functions FUNCTION and EVAL to maintain and
maripulato. function access environeo. Conto environmectmanpua~onis aomplished using oons nn.tion polnerseano fim aexpresions Ths approach factors function execution Into two
distinct steps. First the functon Is associated with an environment
and then it is invked. The normal LISP evaluati routines
m eve the assocla env onenta app y the function.. This
method allows the programmer flexibility to design complex control
structures without expensive overhead costs. Several examples that
employ the direct LISP approach are presented and discuase.

The research described nt funded by the Office of Naval
Research under rant I Ne 7 Their support and encouragement are
gratefully acknowedged bm n- m"-

oftsiication

THE DIRECT LISP APPROACH TO FUNCTION ENVIRONMENT MANIPULATION
WEubut on

Richard J& Wood 1 no t Codes

Y in other high level languages. These new control constructs provide superior
metaphors for the complex modes of processing required in many Ai comnitive

models and permit a user both to alter the normal control flow of a program's

execution and to access variable btndings in differing environments. The

impleientaatons of these new features are based on manipulating the control

and access envir-onments associated with a function, facilities previously
inaccessible to the user of a language. While these new constructs provide an

extended set of operations for the user, they are often costly to Implement

and expensive to execute.

This paper extmnes several LISP programming techniques that aid a user

to construct complex control structures with little overhead. anipulation of

a function's control and access environment is achieved using built-in LISP

i functions, requiring neither modification to the basic evaluator mechanismsnor implementation of a second-level language. The now cnrt approach

provides an efficient and powerful alternative to previous methods for

constructing new control parladims.

a uExtensions to LISP's basic control repertoire of recursion, selection
c(i.e condiinals), and iteration require modification of the strategies for

auspendable processes, may retain control inforation past the point that it

is normally accessible during function evaluation. This new retention policy,

combined with the need for user accessibility to this information, requires

that the normal stack-based implementation of the LISP evaluator be modified.

One approach Is to contruct a new mechanism to be used by the evaluator to, i i

maintain environments, and is exemplified by Interlisp's "spaghetti stack". A

second method Is to represent the oontrol and access environments as LISP data

structures and to Implement an evaluator for a new language containing the new

constructs. This approach has been adopted by several languages (e.g.

CONNIVER, Micro-PLANNER, SCHEME ESussman75]). The former approach requires

substantial modification of the LISP evaluator, while the latter suffers from

slow execution caused by a double evaluation, first at the language level and

then at the LISP-EVAL level.

The direct LISP approach is an efficient implementation of control

constructs that employs LISP functions without the use of a second level

interpreter, Modification of access environments is accomplished using

FUNCTION; a feature that associates the binding environment with a user

function, and EVAL; an explicit *all to the LISP evaluation mechanism.

Manipulation of the control environment is achieved by continuation passing; a

technique of Including a function's return point as an argument to the

function's invooation, and LISP's equivalent treatment of program and data,

permitting a function to be dynamically constructed and then executed.

This paper examines and compares the two approaches to control structure

extension exemplified by CONNIVER and Interlisp, The techniques for access

and control environment manipulation in LISP are presented and accompanied by

several examples, The discussion concludes by assessing the relative power

and efficiency of this new approach to construct new control structures.

2. ilankgzmand

Interest in language features that would support "hairy control"

structures originated with CONNIVER [MoDerott7'4, a language conceived as a

response to faults found in Micro-Planner [SussaanTI]. which itself was a

partial Imploentation of Hewitt's PLANNER language. While not the first

lanuage to contain features such as processes and generators, CONNIVER was

one of the first languages based on the philosophy that the user should have

ace" to and be able to modify the state of the computation. This design

philosophy was in part a reaction to PLANNER's hidden goal tree, which

contained essentially the same information as CONNIVER's control tree, but was

unavailable to the user.

CONNIVER packages a function's control environment (CLINK), access

2

environment (ALINK), internal variables used during evaluations including

registers and the PC (IVARS), and local variables introduced by the function

(BVARS) into a user accessible data structure called a Jau. This permits

functions to suspend their execution and then be restarted, execute and return

to another frame's caller, or use the access environment of another function

to look up the bindings of non-local variables. While CONNIVER contains other

new features (e.g. a context-layered data base), its greatest influence on

other languages has been the use of user-aocessible frames.

CONNIVER was implemented in LISP and suffers from a slow evaluation

process, first at the CONNIVER language level and then at the LISP interpreter

level. It was used sparingly in actual research (Fahlman's BUILD program

[Fahlman73] was the major exception to this)& Other languages extracted the

frame philosophy and integrated this feature directly into the language design

(e.g pTrigg[79] discusses a frame-based LISP interpreter).

Another approach to implementing language constructs that manipulate the

evaluation environments, is to reorganize the mechanisms of the evaluator, In

particular, the format of the stack. During normal function invocation and

execution, values and control information are pushed and popped from the

system stack. If user manipulation of environments is permitted, then

sections of the stack that normally would be re-used must be preserved. This

causes the stack to become tree-like in appearance (and in fact CONNIVER has a

control tree constructed of CONS nodes),, To implement the tree-like behavior

in a true stack, link Information describing the format of the tree must be

Included In the stack. This was the approach taken by [Bobrow73] in creating

the *spaghetti stack" of Interlisp.

Both of the approaches of CONNIVER and Interlispes spaghetti stack are

based on the same philosophy; that when the user calls a function he specifies

the environment(s) to use during the execution. The direct LISP approach

separates the invocation of a function into two distinct operations, namely

the association of an environment with a function and later the application of

the function in the associated environment. While this approach is

restrictive in comparison with CONNIVER, many complex CONIVER-i1ke control

structures can nevertheless be construoted, In the following sections several

examples demonstrating the power of the direct LISP approaoh are presented.

3

The LISP function FUNCTION explioitly assooiates an access environment

with an evaluated lambda expreasiont When the FUNCTION'ed lambda expression

Is applied, the acoess environment present when FUNCTION was executed is used

to locate free variable bindings during the execution of the lambda

expression. The use of the Jing.td (or definition) environment during

funotion execution contrasts with LISP's normal use of the QiULxYJIa (or

runtime) environments When the LISP interpreter encounters a FUNCTION'ed

lambda expression, the current access environment is temporarily saved and the

binding access environment installed before the lambda expression is executed.

Upon completion of the function execution, the previously stored activation

environment is reestablished and the result of the execution returned to the

caller*

User specification of which enviroment, binding or activation, is to be

accessed during function execution is a powerful feature not present in many

higher level languages. In LISP, the FUNCTION feature solves what has been

named the FUN AI problem,, in which the use of functional arguments that

contain references to free variables can cause unanticipated results (see

[Moses70] for a oomplete discussion)o To demonstrate the power of the

FUNCTION mechanism in a role other than solving the FUNARG problem, an

Implementaton of the LISP function CONS is presented. This version of CONS

delays the evaluation of Its arguments until the function CAR or CDR is

applied to the form return by CONS. The environment present during the

execution of CoNs ust be retained until the call to CAR (or CDR)% This type

of delayed evaluation Is due to EFriedman&WIse763 and their investigation of

the semantics of CONS and Bewttts ACTOR semantics [HewittT7]. Figure 1
contains an enoodin 2 of the function CONS and a sequence of function calls

1The lambd expressn I heed or coed
lambda expret on as con hat execute in their
activation anrvonment:

re exam s in ths par a e cud4 io Marlall LISP EAgre78]e Lambdaif expressions, ar reprosen~e us"n ;hzooigoa~z
(LAIM D (erg list> (bodies>) - Unevaluated lambda expression

CM ist (bdle~j] Evaluated lambda expression
e oJmex sion closed in

where: (erg list> Is the argument list of the LAMBDA expression,

that demonstrates the power of delayed evaluation using FUNCTION. The keyword

FZXPR types the CONS function as being a special form that does not evaluate

Its arguments when It Is called. CAR and CDR are regular forms that do

evaluate their arguments,

(e x p r(o n a2l' 3))v))

(eon ((eqaerror)) se 'o.t eval ai25(?~)

(defun oar (form) (for. 'oar)) (defunj (a)

(defun cdr (for) (for 'cdr) (print (car a)))

(defun i2 (b)

(print (cdr b)))

Figure 1: Definition of CONS and the Calling Sequence

The initial call is to the function FO. The execution of the calling

sequence proceeds in a straightforward manner until the call to CONS in

function F2. FUNCTION establishes a pointer to the current association list,

preventing it from being garbage collected, and returns a closed lambda

expression containing that pointer to CONS's caller F2 (and eventually to PO

where TDEP, an explicit representation of the internal register that
accumulates the result of' the call to FI. is bound to the closed lambda

expression). The function P3 Is then invoked and passed the result of the

call to F1 (ioe., TElP). F3 calls FN which contains a call to the function

CDR (during the evaluation of the argument to PRINT). Figure 2 shows the

state of the computation during the call to CDR@

When CDR Is invoked it places Its parameter FORM on the current

association list (denoted go in Figure 2). When the S-expression (FORM 'CDR)

is evaluated in the body of the CDR function, the old association list, Z0 8

becomes the current access environment (the one pointed to by Be is stored in

an internal register)* The function bound to FORK Is applied and its argument

SL Is CONSed on the front of the current association list (and pointed at by

<bodies> Is the list of S-expresions in the body of the LAI4BDA
oxpressilon.

The access environments are repr qnled usin an assoiation list of bndins
showM as CON nodes with tbb GAD Field pointing to the name of the variable
and the CDR field pointing to the varliable a value*

S

A RMlL) (CM ... '

4 F L(SM(AM ...

Figure 2: State of Computation during call to CDR

got). Execution of the FUNCTIONled lambda expression looks up ARG2 which 13

bound to B, evaluates B (executes the S-expression (EVAL ARG2) in the body of

the lambda expression) , and returns the value 4, which was the original second

argument to CONS. When the closed lambda expression completes execution, the

association list corresponding to Eo is recovered and the binding for SEL is
garbage oollected. The association list segment pointed at by E is still

retained since the binding for A (and B) in Eo (i.e. the FUNCTION'ed lambda

expression) contains a pointer to EO. During the evaluation of (PRINT (CAR

A)) a similar process oocurs,

The CONS example demonstrates the power of FUNCTION not only to associate

an execution access environment with a functiont but also to retain an access

environment past the point that it would normally be garbage colleoted.

Techniques, similar to those employed in the CONS example and based on the use

of FUNCTION to manipulate environments, have been used to construct complex

control paradigms. Small[80] has implemented a natural language parser

organized as a series of interacting coroutines,0 called "word experts", that

are suspended and resumed during the processing of a sentence* Each word

expert routine Is Implemented as a closed lambda expression, that when

activated restores the context of the word In the sentence before resuming

execution,

The CONS example demonstrates the flexibility available to a LISP

progrmer for designating which environment to use when acoessing variables*

In a similar vein, there are instances when the normal stack-like function

call and return sequence of the LISP interpreter is insufficient and needs to

be modified. Coroutines and generators require that the state of the

omuputation be retained between function calls. This Includes not only the

binding of variables and the access environment, but also the control path and

the continuation point for the calculation. FUNCTION provides a method for

manipulating access environments; control structure modifications can be

accomplished using a2it ..

A continuation pointer is an explicit reference to the function that will

be invoked when the currently executing function has completed. Normally the

continuation point of a function is implicitly the next expression of the

caller, and provides the standard call-return sequence that is implemented

using a stack. In continuation passing, control Is passed from one function

to another without any function ever necessarily returning control back to its

caller. The value of the executing function, which would normally be returned

to the caller, Is passed as an argument to the continuation point.

Continuation passing factors the calculation of the return address and its

placement on the stack into two distinct activities, unlike normal function

invocation. In continuation passing,, the calling function explicitly

specifies the return point for the called function, while the called function

determines when to pass control to the continuation point. The continuation

point (in the form of a lambda expression) is similar to CONNIVER's CLINK of a

function's frame.

Continuation passing provides an efficient implementation of a solution

to the Samefringe problem, a commonly cited example of interrupted evaluation.

The task Is to design a function that will determine whether the fringe (set

of terminal nodes) of two trees is the same, regardless of the internal

structure of the tree. One solution to this problem is to calculate the

complete fringe of both trees and then do an EQUAL test on the generated

fringes. This method is costly in the case that the two trees differ in the

first few nodes of the fringe. An alternate method calculates the first

member of each fringe, compares them, and continues calculating the successive

members of the fringes only while they are the same. This method has the

property that it will halt at the earliest point the fringes differ.

To realize this behavior, a standard recursive tree traversal routine Is

7/

modified to suspend (ise., momentarily halt and return a value) when It

generates a ember of a fringe and resume at the same point when reinvoked.

Figure 3 is an encoding of a set of functions for the Samefringe problem, In

which the function FRINGE has the property that it can be interrupted, The

FRINGE function takes two arguments, the tree (or subtree) to be traversed,

TREE, and the function to be Invoked when FRINGE has finished the traversal,

CP@ FRINGE i called via RESUME which aocepts a dotted pair whose CDR field

points to a closed lambda expression. RESUME, after verifying that it has a

function call, applies this expression to call FRINGE. STARTUP builds the

first pair for RESUME to get the whole thing rolling3e The lambda expression

that RESUME applies has been FUNCTION'ed causing the binding environment of

the lambda expression to be reestablished before execution.

(defun 3amefrie (treel tree2)
(prog (trl startup fringe treel))

(tr2(startup fringe tree2)))
loop (setq trl (resize tri)

:setq tr2 (resize tr2))
(ond ((or (eq get-val trl) 'done)

P eq (gt-val tr2) 'don)
(rrturn (eq (get-valtr1) tr -Tal tr2))B)
" (get-val trf) (get-val tr2)) (go loop)

t ?return nil))))

(defun fr ee (tree o)
cond aUm tree) cons tree op))

(f~tio (ambda((fringe (cdr tree) cp)))))))

(defun get-val (pair) (and (not (atom pair)) (oar pair)))

(d fun resuie (pair)
(and (iot (atom p.r)) (is-function-call (odr pair))

((adr pair))))

Figure 3: Samefringe code

A sample execution of the Samefringe functions demonstrates the power of

this technique. The trees in this example are the S-expressions ((A . B) * C)

and (A * (B * C)), The representation for the trees affects only the traversal

routine and this technique can be extended to other representations and

routines. Initially, SA EFRINGE calls FRINGE (from RESUME) with argument

TR21 Prior to each recursive call to FRINGE a FUNCTION'ed lambda expression

is formed that will invoke FRINGE on the CDR of the current value of TREE

3The actual value dbySTARUT1 Isof the to m " b

where (tree> is eithert or RE2dpnIng on the exac

' 8
i -

after FRINCE has completed the CAR of TREE. FRINGE recurses until the first

member of the fringe, A, is located (i.e., the ATOM check sucoeeds). The

PUNCTION'ed lambda expression, bound to CPO is CONS'ed with the newly found

member of the fringe and returned to SAMEFRINGE. The association list segment

constructed during the calls to FRINGE is not garbage collected because it is

referenced by the closed lambda expression, which, in turn, is bound to TR1

(or TR2).

In a similar manner, FRINGE is invoked with TREE2 and locates the first

member of its fringe, A. This situation Is depicted in Figure 4. Note that

the association list segment from the first call to FRINGE (with TREE1) has

been retained and a new association list segment corresponding to the second

call to FRINGE with TREE2 (denoted by Eat) has been added to the structure and

points to the common section that contains the bindings of TREE1, TREE2, TEl,

and TR2. Once again part of the current association list will be retained

when FRI4NGE returns because it is pointed at by the FUNCTION'ed lambda

expression that 1 bound to TR2 when FRINGE returns.

a 2 "- "-"(A.(a.C)

PKE ((A.Ia.R) a11 WMQ - -..A .V E,)

[oi~rwm czw muiO.Ej M IlmEl (A.2) E3t

E2

Figure 4: Calculation of the first fringe member of TREE2

The calculation continues with each member of the fringe of each tree

being generated and checked against the other before calculating subsequent

fringe members. When the final member of TREE's fringe, C, is returned and

bound to TR, the last remaining pointer to E1 is removed and that association

list segment is finally garbage collected. Figure 5 shows the computation

..... _ _ 9 i

during the calculation of TREE2's final fringe members Upon completion of that

calculation the association list segments pointed to by Eo,, E4, E3 , and go

will be reclaimed,

2 -- +(A. (B.0))

YR1 m.- -4(L. LB.W)

702 '~(D. [O(FRIzN (CDR TREE) C11

E.19 [0I W OFINE (CDR MK) O

(nc)4r-+-

Figure 5: Calculation of the fina fringe member of TREE2

Figure 6 points out an unnecessary inefficiency in this scheme for
manipulating the reta~ined environments. During the calculation of the final
member of TREE2's fringe, it is not necessary to retain the E3 and E4
association list segments. They are retained, in fact, because the next
association lit segment points at them (Ea4 points at E3 and Esa, points at
E4)* The association list is constructed in a stack-like manner because of
the dynamic sooping rules for non-local variable lokup. FRINGE references
only the variables in its parametbr list and does not invoke any functions
that require non-local lookup. Thus when FRINGE is executing, it needs only
the association list segment that its frame adds to the system's association
list. The same mechanism that modifies the normal LISP access environment,
FUNCTION, can solve this seeming inefficiency of the Samefringe problem, if
FRINGE (and SAHEFRINGEp GET-VAL, and RESUME, for the same reason) is closed in

its binding environment (i~e, its definition is FUNCTION'ed), This will'cause the association list structure to have a higher branching factor than in

10

Yw

*1

the example, but each association list segment will be retained only as long

as it is needed, In the example, the E4 segment would have been retained,

without the need to retain E3,

5. M=a=ra

Beyond the methods for designating which environment (binding or

activation) will be accessed during function execution, there are situations

that require a combination of both static and dynamic scoping In such

situations the programmer might need to specify which variables will access

the state of the computation at definition time, and which variables will be

sensitive to the current state of the computation.

One mechanism for meeting this need is the CLOSURE function (a term

introduced by the LISP machine [Greenblatt77]). CLOSURE takes a function and

a list of variables to be closed (variables in the binding environment), and

returns a function that when invoked will use the binding environment for

looking up closed variables and the activation environment for all other free

variables.

The implementation of the CLOSURE function proposed by Greenblatt[77]

uses a special type of cell called an invisible pointer that the evaluator

treats differently from a normal cell. This feature can be simulated by

allowing EVAL to take a second argument, an association list to be used for

variable look up during the EVALuation, and maintaining an explicit record of

the closed variables. Figure 6 contains an encoding for the function CLOSURE.

(defun closure (v-lt(eval (list 'lambda rgs)
(list 'eval list (list 'eval fh) '(stack arga))(list ('appe.nd .

(Mabda (a-lot). (t -let (lambda (x)(assoo x a-lst))))
(aiote (als

CLOSURE returns:
(r i (val ((eval <fn>)(stack ars))(append '(<al.v(al)>s..)(alist)))]
fa1Ta.> In a .pointer to the CONS node in the association list for the

binding of variable ai at the point of call to CLOSURE

Figure 6: Closure Function

The CLOSURE function taken the argument <v-lst>, the list of variables to be

closed, and constructs an association list segment of the form

<aisvalue-of(ai)> for each variable, ai, in <v-lst>o This segment captures

...... * -._ 22: ...' ,,,11,' t

the current binding of the ails during the execution of CLOSURE, The current

association list (returned as the value of the call to the function ALIST) is

appended to the end of the binding environment segment and used as a second

argument to EVAL during the call to the closed function. The expression

((EVAL <fn)) (STACK <arga>)) invokes the function <fn> and pushes <args> on

the stack before Jumping to APPLY. The values for the closed variables will

be those from the binding environment, not the activation environment, even if

there is another variable with the same name. (Recall that the association

list is searched for the first ocourence of the variable name.) CLOSURE

retains the actual binding (ise., a pointer to the CONS cell on the

association list at the time of closure) in the association list segment that

is constructed when it is executed, rather than a copy of the binding. This

permits functions that are still active after the CLOSURE call and able to

access the closed variables, to change the binding of the variable and have

all the closed lambda expressions see the modification* The LISP machine

CLOSURE works in a similar manner.

The direct LISP approach for manipulating access and control environments

Is an attractive alternative to other approaches for implementing new advanced

control structures. The overhead for employing the LISP features FUNCTION and

EVAL consists of storing the retained environment (which must be saved no

matter what approach is used) and executing an environment Switch when the

function is activated* In LISP systems that use a deep binding strategy, such

as Maryland LISP, environment switching involves exchanging the saved access

environment pointer with the system's association list pointer, a cost of

several assembly language instructions. Continuation passing is also

inexpensive to employ and has been used in compilers to produce efficient code

CSteele7s]. The LISP features used in the direct LISP approach can be found

in most LISP implementations and require no modifications to the host

evaluator. Thum the direct LISP approach provides an efficient technique for

extending the available control structures of LISP.

I would like to thank Hanan Samet, Chuck Rieger, Randy Trigg, ilt

Grinberg, and Steve Small for reading drafts of this paper and making helpful

12

comments a

[Agre78]
Afkl P., Maryland LISP Reference Manual, Univ. of Maryland, TR-678, Jul.

[Bobrow73]
Bobrow, D.G. & Webrelt, B., A Model and Stack Implementation of Multiple
Environments, omm.ations2X U1 ACM, Vol. 16,10, Oct. 1973,
591-603,

[Fahlman73]
Fahlmuan, S.E., A Plannin System for Robot Construction Tasks, MIT A.I.
Laboratory, A.I Memo 283, 1973.

(Friedman&Wise76]
Friedman , D. & Wise D. CONS Should Not Evaluate Its Arguments, In S,
Michaelson & R, Milner, Edo. Aut - ind z=XAMLAS
Edinburgh: Edinburgh University Press, 1970.

[Greenblatt77]
Greenblatt, Re, t al ISP Machine Progress Report, MIT A.I.
Laboratory, A.I. 111M" , Aug. 1977.

[Hewitt77]
Hewitt, C., Viewing Control Structures as Pattqrcs of Passing Messages,
A, Vol 8, 1977, pp 323-363.

(McDermott74]

McDermott, D.V. & Sussman, G J,, The CONNIVER Reference Manual, MIT AlI.
Laboratory, A.I. Memo 259aJan. 1974.

[Moses7O]
Moses J The Function of FUNCTION in LISP, MIT A.I. Laboratory, A.I.
Memo f99, June 1970,

[Sal180
Sull, S.L., Word Experts for Natur#l Language Understanding, Univ. of
Maryland, Ph.D. thesis (forthcoming).

[Steele78]
Steele, O.L. Rabbit: A Compiler for Scheme (A Study in Compiler
Optimization, MIT A.I% Laboratory, A.I. Memo 474, 1978.

[Susuman71]
anSusuan G J., Charniak, G., & Winograd, T., The Micro-Planner Reference

Manual , f A.I. Laboratori. MIT A. Is Memo xxx, 1971.

[Susaman75]
Sussman, G.J & Steele, G.L, SCHEME: An Interpreter for Extended Lambda
CaloulUS, MIt AI. Laboratory, A.I, Memo 349, Dec. 1975.

T ris R, A Frame Based LISP Intepreter, Univ. of Maryland, TR-777,

13

SECURITY CLASSIFICATION OF THIS PAGE (*%on boom nter__

REPORT DOCUMENTATION PAGE BEFORE COMPLETINGO
I. REPORT MUMmER i. GOVT ACCESSION NO, 3. RECIPIENT*S CATALOG NUMBER

A Aq 6W
4. TITLE (and SulIti e) S. TYPE Of REPORT a PERIOD COVEREO

The Direct LISP Approach to Function EnvJ onment Technical

Manipulation a. PERFORMING ORG. RE-PT NUMBER

TR-907
7. AUTNOR(@) 6. CONTRACT OR GRANT NUMBEIr()

Richard J. Wood N00014-76C-0477
9. PERFORMING ORGANIZATION NAME ANO ADORESS 10. PROGRAM ELEMENT, PROJECT, TASK

Departmnt of Computer Science AREA & WORK UNIT NUMBERS

University of MarylandCollege Park, MD 20742

Ii. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT GATE

Information Systems branch June 1980
Office of Naval Research 13. NUMBER OF PAGES

Washington, DC 20305 13
14. MONITORING AGENCY NAME & AOORESS(II dilffent from Controlling Office) IS. SECURITY CLASS. (of thie reo)

Unclassified
ISa. DECLASSI ICATION/DOWNGRADING

SCH EDOULE

IS. DISTRIBUTION STATEMENT (of this Repert)

17. DISTRIBUTION STATEMENT (of Ih. ahetrac eiteredin Stck 20, 11difforent rom Repart)

IS. SUPPLEMEMTARY MOTES

IS. it 9yORDS (Centloue an uover akfe of 0m006 -- ad i*eefpr by Week~ numib")

Progr rng Languages for Artificial Intelligence, LISP, Control Structures
FIARG

This paper reviiews som of the catral structures that
have become popular itr, new extensions to LISP-based programming
languages. A method fer constructing these complex contrcl
structures that employs LISP features without the cost of double
evaluation is developed. This tectmique, called the direct LISP
approach. Lses the LISP functions FUNCTION and EVAL to taintain and
manipulate function access environments. Control environment

DO 147 e&Tww Orwevo sss.e vu Unclassified
SECURITY CLASSIFICATION OP TWIS VASE (Whe " or**

0

20. Abstract (con't)

manipulation is accomplished using continuation pointers and lairbda
expressions. This approach factors function execution into two
distinct steps. First the function is associated with an environment
and then it is invoked. The normal LISP evaluation routines
retrieve the associated environments and apply the function. This
method allows the programmr flexibility to design complex control
structures without expensive overhead costs. Several examples that
employ the direct LISP approach are presented and discussed.

Ii

Ii

