AD=A089 671

JUN 80 R J WOOD
UNCLASSIFIED ‘I’R- 907

MARYLAND UNIV COLLEGE PARK DEPT OF COMPUTER SCIENCE F/6 9/2
THE DIRECT LISP APPROACH TO FUNCTION ENVIRONMENT ﬁANIPULATlON.(U)

NOOOD IU-YG-C-IWTT

END
L owre
freds

00

1.0 ke i
I8 £ 5
= e =
e <

)

s e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS 1964 A

S ——

AD A089671

~T6C-04T7

. O B
,ﬁnl JHE DIRECT LISP APPROKCH) @/7

CTION ENVIRONMENT MANIPULATION

e

Department of Computer Science

University of Maryland
College Park, Maryland 20742

AR DTIC

ELECTE ;
seP3010 I |

E

;. gmng%s: This paper reviews some of the control structures that
: ave come popular in new extensions to LISP-based programmi
anguages, A method for constructing these complex contr
structures that employs LISP features without the cost of double
evaluation is develoted. This techn%ﬁue called the direct LISP
approach, uses :;xe ISP function:r F C‘l'fOlI anchV:L to maintain ang
n ula ction onm on env
n:ﬁgu}a&onm?s aeco-;ﬁ:ﬁgd l‘i’a‘!ng cogegﬁauon poig%ers ln&r %83.
expressions, This approach factors function execution into two
:l:l‘gtntngt st; .1 Fi{s thz run%t'on is a:laootaggd wiillx a:taienvirottnent
en s voke e norm evalua routines
retrieve the amc:lag environments and apgfy the tunctggn. . %gia
method allows the programmer flexibility to design complex control
structures without expensive overhead costs, Several examples that
eaploy the direct LISP approach are presented and discussed,

i 7

e

9 The research described is funded by the Office of Naval
- Research under 14-T0L-FNTT Their support and encouragement are

gratefully nclmowfaggc)-
Yo P22 (@

NMS GRAkS
D¢ 3
Ahesmounced
Justification

THE DIRECT LISP APPROACH TO FUNCTION ENVIRONMENT MANIPULATION

3 -y
rj Richard J. Wood m&m‘lon/
: char 0
3 ’ L RYa11adr22ty Codes
f Asniland/or
1, Introduction n
Recent enhancements to LISP-based programming languages used primarily in -

Artificial Intelligence (Al) research reveal a trend toward Cfeatures that
support suspendable processes, coroutines, retention of environments between
function activations, generator functions, and styles of computing not present
: in other high level languages. These new control constructs provide superior
i metaphors for the complex modes of processing required in many Al cognitive
models and permit a user both to alter the normal control flow of a program's
{ execution and to access variable bindings in differing environments. The
implementations of these new features are based on manipulating the control
and access environments associated with a function, facilities previously
inaccessible to the user of a language. While these new constructs provide an
extended set of operations for the user, they are often costly to implement
and expensive to execute,

O Lot T 2L e T e s

2o A RS

This paper examines several LISP programming techniques that aid a user
to construct complex control structures with little overhead. Manipulation of
a function's control and access environment is achieved using built-in LISP
functions, requiring neither modification to the basic evaluator mechanisas
nor implementation of a second-level language. The direct LISP approach
provides an efficient and powerful alternative to previous wmethods for
constructing new control paradigms.

2 Extensions to LISP's basic control repertoire of recursion, selection
x éff (1.8 conditionals), and iteration require modification of the strategies for
E retaining control and access environments., New constructs, such as
E suspendable processes, may retain control information past the point that it
‘ f; is normally acoessible during function evaluation. This new retention policy,
2 combined with the need for ussr accessibility to this information, requires
B that the normal stack-based implementation of the LISP evaluator be modified.
‘ %_ One approach is to ocontruct a new mechanism to be used by the evaluator to

ISENA

maintain environments, and is exemplified by Interlisp's "spaghetti stack"., A
second method is to represent the control and access environments as LISP data
structures and to implement an evaluator for a new language containing the new
constructs. This approach has been adopted by several languages (e.g.
CONNIVER, Micro-PLANNER, SCHEME [Sussman75]). The former approach requires
substantial modification of the LISP evaluator, while the latter suffers from
slow execution caused by a double evaluation, first at the language level and
then at the LISP-EVAL level,

The direct LISP approach is an efficient implementation of control
conatructs that employs LISP functions without the use of a second level
interpreter. Modification of access environments is accoamplished using
FUNCTION; a Cfeature that associates the binding environment with a user
function, and EVAL; an explicit c¢all to the LISP evaluation mechanisam,
Manipulation of the control environment is achieved by continuation passing; a
technique of 1including a function's return point as an argument to the
function's invocation, and LISP's equivalent treatment of program and data,
permitting a function to be dynamically constructed and then executed,

This paper examines and compares the two approaches to control structure
extension exemplified by CONNIVER and Interlisp. The techniques for access
and control environment manipulation in LISP are presented and accompanied by
several examples, The discussion concludes by assessing the relative power
and efficiency of this new approach.to construct new control structures.

2+ Rackground

Interest in language Cfeatures that would support "hairy control"
structures originated with CONNIVER [McDermott74], a language conceived as a
response to faults found in Micro-Planner {SussmanT1], which itself was a
partial implementation of Hewitt's PLANNER language. While not the first
language to contain features such as processes and generators, CONNIVER was
one of the first languages based on the philosophy that the user should have
access to and be able to modify the state of the coamputation. This design
philosophy was in part a reaction to PLANNER's hidden goal tree, which
contained essentially the same information as CONNIVER's control tree, but was
unavailable to the user,

CONNIVER packages a function's control environment (CLINK), access

P T —

environment (ALINK), internal variables used during evaluation, including ,
registers and the PC (IVARS), and local variables introduced by the function P
(BVARS) into a user accessible data structure called a frame. This permits]
‘ functions to suspend their execution and then be restarted, execute and return
2 : to another frame's caller, or use the access environment of another function
i to look up the dbindings of non-local variables, While CONNIVER contains other
new features (e.g.,, a ocontext-layered data base) , its greatest influence on
other languages has been the use of user-accessible frames, ,.

CONNIVER was implemented in LISP and suffers from a slow evaluation
process , first at the CONNIVER language level and then at the LISP interpreter
level, It was used sparingly in actual research (Fahlman's BUILD program
(Fahlman73] was the major exception to this), Other languages extracted the
frame philosophy and integrated this feature directly into the language design
(e.g., Triggl(79] discusses a frame-based LISP interpreter),

-k

Another approach to implementing language constructs that manipulate the
evaluation environments, is to reorganize the mechanisms of the evaluator, in
particular , the format of the stack, During normal function invocation and .
execution, values and control information are pushed and popped from the 1
system stack, If user manipulation of environments is permitted, then]
sections of the stack that normally would be re-used must be preserved. This
causes the stack to become tree-like in appearance (and in fact CONNIVER has a ‘
control tree constructed of CONS nodes), To implement the tree-like behavior
in a true stack, link information describing the format of the tree must be
included in the stack. This was the approach taken by [Bobrow73] in creating
the "spaghetti stack" of Interlisp.

Both of the approaches of CONNIVER and Interlisp's spaghetti stack are
based on the same philosophy; that when the user calls a function he specifies
the environment(s) to use during the execution., The direct LISP approach
separates the invocation of a function into two distinot operations, namely
the association of an environment with a function and later the application of
25 the function in the associated enviromment, While this approach is
\ " restrictive in comparison with CONNIVER, many ocomplex COMNIVER-1ike ocontrol

' 1 structures can nevertheless be constructed. In the following sections several
examples demonstrating the power of the direot LISP approsch are presented.

s

Ry S A

3¢

Baaica: Ihe Funclion FUNCTION

The LISP function FUNCTION explicitly associates an access environment
with an evaluated lambda expreasion!, When the FUNCTION'ed lambda expression
is applied, the accesa environment present when FUNCTION was executed is used
to locate free variable bindings during the execution of the lambda
expression. The use of the hinding (or definition) environment during
function execution contrasts with LISP's normal use of the agtivaiion (or
runtime) environment. When the LISP interpreter encounters a FUNCTION'ed
lambda expression, the current access enviromment is temporarily saved and the
binding access environment installed before the lambda expression is executed,
Upon completion of the function execution, the previously stored activation
environment is reestablished and the result of the execution returned to the
caller,

User specification of which enviromment, binding or activation, is to be
acgessed during function execution is a powerful feature not present in many
higher level languages., In LISP, the FUNCTION feature solves what has been
named the FUNARG problem, in which the use of functional arguments that
contain references to free variables can ocause unanticipated results (see
(Moses70] for a ocomplete discussion), To demonstrate the power of the
FUNCTION mechaniss in a role other than solving the FUNARG problem, an
implementaton of the LISP function CONS is presented, This version of CONS
delays the evaluation of its arguments until the function CAR or CDR is
applied to the fors return by CONS, The environment present during the
execution of CONS must be retained until the call to CAR (or CDR). This type
of delayed evaluation is due to [FriedmaniWise76] and their investigation of
the semantics of CONS and Hewitt's ACTOR semantics [Hewitt77]s Figure 1
contains an encoding? of the function CONS and a sequence of function calls

1The 1am ton FUNCTION'ed
lambdda oxpngd o%'ﬁ'%&%ni&i'ﬂtﬁ' :;r a ggp:"gss ons that ox:outgrinc 8:3‘;.
activation enviromment,

exor TS TR 5, L R PR T R IR AT [hererol Lanoes
(LAMBDA <arg list> <bodiu>j = Unevaluated lambda expression

C [<a§!'%§:t> <2==§.:> - Evaluntcd lan:ga expression
@rg T hotlaw 1l - LRSS eppion oloed 1

wvhere: <arg list> is the argument list of the LAMBDA expression,

N TR TN 5 U AR T e i

L A

%
¥
£
H
¢
5

e o AR o535 b U SRR e s e e

that demonstrates the power of delayed evalumtion using FUNCTION., The keyword
FEXPR types the CONS funotion as being a special form that does not evaluate
its arguments when it is callede CAR and CDR are regular foras that do
evaluate their arguments,

@t Dy
R s TR g
?:ond z eq sol 'oari eval arg 1”

° e::or)g” eval arg2 (dzgg‘ti l(:ﬂ
(defun car (form) (form 'car)) (defun £3 (a)
(defun cdr (form) (form 'cdr) pl'i!.lt (car a)))
Y
(priat ' SaF b))

Figure 1: Definition of CONS and the Calling sgquence

The initial call is to the function FO, The execution of the calling
sequence proceeds in a straightforward manner until the call to CONS in
function F2, FUNCTION establishes a pointer to the current association 1list,
preventing it from being garbage collected, and returns a closed lambda
expression containing that pointer to CONS's caller F2 (and eventually to FO
where TEMP, an explicit representation of the internal register that
accumulates the result of the call to Fi, is bdbound to the closed lambda
expression), The funotion F3 is then invoked and passed the result of the
call to F1 (i.e., TEMP), PF3 calls F4 which contains a call to the function
CDR (during the evaluation of the argument to PRINT), Figure 2 shows the
state of the computation during the call to CDR.

When CDR 1is invoked it places its parameter FORM on the ocurrent
association 1list (denoted Es in Pigure 2), When the S-expression (FORM 'CDR)
is evaluated in the body of the CDR funotion, the old association list, Eg,
becomes the current access environment (the one pointed to by Eg is stored in
an internal register). The function bound to FORM is applied and its argument
SEL is CONSed on the front of the current association list (and pointed at by

<bodies> is the list of S-expressions in the body of the LAMBDA
expression.

The access environments are re n an association list of bindings
shown as 'cous nodes with m"&ﬂ g‘d nintm to the name of the nrhiﬁo
and the CDR field pointing to the nrnblo s value,

T T——

e | Jo oo ... 04]

Figure 2: State of Computation during call to CDR

A‘_W— ——-02 A e el KSEL)(MD ves)aEa
B¢ >3 B e ..——oEﬁL)(&D...):Ea
B —p— ——i“ FORM (e pu— Y (ﬂ)(m vee)JQ

E m‘ > A E. ~>

4 N2 —t— — B

o K/E/-T/ﬂgas_?—q—,'m'

Eer), Execution of the FUNCTION'ed lambda expression looks up ARG2 which is
bound to B, evaluates B (executes the S-expression (EVAL ARG2) in the body of

% the lambda expression) , and returns the value 4, which was the original second
argument to CONS, When the closed lambda expression completes execution, the

association list corresponding to Es is recovered and the binding for SEL 1is
garbage collected. The association 1list segment pointed at by Eg is still

retained since the binding for A (and B) in Es (1i.,e. the FUNCTION'ed lambda

expression) contains a pointer to Eg, During the evaluation of (PRINT (CAR
A)) a similar process occurss

The CONS example demonstrates the power of FUNCTION not only to associate
an execution access environment with a function, but also to retain an access
environment past the point that it would normally be garbage collected,
Techniques, similar to those employed in the CONS example and based on the use D
of FUNCTION to manipulate enviromments , have been used to construct complex
control paradigms. Small(80] has implemented a natural language parser 2
organized as a series of interacting coroutines, called "word experts", that 3}?
are suspended and resumed during the processing of a sentence, Each word
expert routine i{s implemented as a closed lambda expression, that when

? sctivated restores the context of the word in the sentence before resuming
t 3 execution,

it s e

4, th&nnlnﬁxns.inn.nnnﬁnnl.ﬁnginnnnnnhz.anﬁinnn;inniznznhann

The CONS example demonstrates the flexibility avallable to a LISP
programmer for designating which enviromment to use when acoessing variables,

A e gz

In a similar vein, there are instances when the normal stack-like function
call and return sequence of the LISP interpreter is insufficient and needs to
be modified, Coroutines and generators require that the state of the
computation be retained between function calls. This includes not only the
binding of variables and the access environment , but also the control path and
the continuation point for the calculation., FUNCTION provides a method for
manipulating access environments; control structure modifications can be

accomplished using gontinuation pointera.

A continuation pointer is an explicit reference to the function that will
be invoked when the currently executing function has completed, Normally the
continuation point of a function 1s implicitly the next expression of the
caller, and provides the standard call-return sequence that is implemented
using a stack, In continuation passing, control is passed from one function
to another without any function ever necessarily returning control back to its
caller, The value of the executing function, which would normally be returned
to the caller, is passed as an argument to the continuation point,
Continuation passing factors the calculation of the return address and its
placement on the stack into two distinct activities, unlike normal function
invocation, In continuation passing, the calling function explicitly
specifies the return point for the called function, while the called function
determines when to pass control to the continuation point. The continuation
point (in the form of a lambda expression) is similar to CONNIVER's CLINK of a
function's frame,

Continuation passing provides an efficient implementation of a solution
to the Samefringe problem, a commonly cited example of interrupted evaluation,
The task 1is to design a function that will determine whether the fringe (set
of terminal nodes) of two trees is the same, regardless of the internal
structure of the tree, One solution to this problem is to calculate the
complete fringe of both trees and then do an EQAL test on the generated
fringes, This method is costly in the case that the two trees differ in the
first few nodes of the fringe, An alternate method calculates the first
member of each fringe, compares them, and continues calculating the successive
members of the fringes only while they are the same, This method has the
property that it will halt at the earliest point the fringes differ,

To realize this behavior, a standard recursive tree traversal routine is

GRS e s

SRS T R

modified to suspend (i.,e,, momentarily halt and return a value) when it
generates a meamber of a fringe and resume at the same point when reinvoked,
Figure 3 is an encoding of a set of functions for the Samefringe problem, in
which the function FRINGE has the property that it can be interrupted, The
FRINGE function takes two arguments, the tree (or subtree) to be traversed,
TREE, and the function to be invoked when FRINGE has finished the traversal,
CP., FRINGE is called via RESUME which accepts a dotted pair whose CDR fleld
points to a closed lambda expression. RESUME, after verifying that it has a
function call, applies this expression to call FRINGE, STARTUP builds the
first pair for RESUME to get the whole thing rolling3, The lambda expression
that RESUME applies has been FUNCTION'ed causing the binding environment of
the lambda expression to be reestablished before execution.

3 (defun samefringe (treel tree2)
! (prog (2tr1 startup fringe tree1;;
2 (startup fringe ree2)))
loop g trI {resune trl
3 tr2

resume tr2
(or (eq get-val tr1) ‘done

5(,“z*:::‘f;f%g%z:%-s:i’téﬁs e)

(d?gg: fg%nion(gggg c?eona tree cp))
fringe (car tree

(Lgabdacs’ (cdr tree) ep)))))))
(defun get-val (pair) (and (not (atom pair)) (car pair)))
(d?run resum (pai

i?gdr ;a)gg%r)) (is-function-call (ecdr pair))

Figure 3: Samefringe code

RSl e G

A sample execution of the Samefringe functions demonstrates the power of
this technique. The trees in this example are the S-expressions ((A . B) . C)
and (A , (B o, C))s The representation for the trees affects only the traversal
routine and this technique can be extended to other representations and
routines, Initially, SAMEFRINGE calls FRINGE (from RESUME) with argument

TREE1, Prior to each recursive call to FRINGE a FUNCTION'ed lambda expression
is formed that will 4invoke FRINGE on the CDR of the current value of TREE

- - s

: 3The actual vrlgi txzz? by ETAR;U;I ?ge ’)l)

g vhere <tree> is either depending on the ex call,

after FRINGE has completed the CAR of TREE. FRINGE recurses until the first
member of the fringe, A, is located (i.,e., the ATOM check succeeds), The
FUNCTION'ed lambda expression, bound to CP, is CONS'ed with the newly found
member of the fringe and returned to SAMEFRINGE, The association list segment
constructed during the calls to FRINGE is not garbage collected because it is
referenced by the closed lambda expression, which, in turn, is bound to TR1
(or TR2).

In a similar manner, FRINGE is invoked with TREE2 and locates the first
member of 1its fringe, A, This situation is depicted in Figure 4, Note that
the association list segment from the first call to FRINGE (with TREE1) has
been retained and a new association list segment corresponding to the second
call to FRINGE with TREE2 (denoted by Eyg:) has been added to the structure and
points to the common section that contains the bindings of TREE1, TREE2, TR1,
and TR2. Once agaln part of the current association list will be retained
when FRINGE returns because it 1is pointed at by the FUNCTION'ed 1lambda
expression that is bound to TR2 when FRINGE returns.

ReE] ¢ » ((A.2).C)
TREEZ —t— (A.(@.C))
Rl — @ [()(FR!NE (crR TREE) o),EZ])
™ st [0 e Tee2 (LveonO'oove). £

E PAI;(—-E_ _-q—’(mL.[()(mramsZ (wm()’ms)fo])

TREE &1~ —>((a.8).0) TREE &—1— :(Au(‘-C))
{1 [0'roe] o » [0 oove]
g = gy e A P T 1 .
— | =} [O{rriNGE (DR TREE) &P),E — Yrrine (ar TReE) @) E:
6 P [0 erinee (an @.§)] L ?

Figure 4: Calculation of the first fringe member of TREE2

The calculation continues with each member of the fringe of each tree
being generated and checked against the other before calculating subsequent
fringes members, When the final member of TREE1's fringe, C, is returned and
bound to TR1, the last remaining pointer to E; is removed and that association
list segment 1is finally garbage collected, Figure 5 shows the computation

S e

during the caloculation of TREE2's final fringe member, Upon completion of that
caloulation the association list segments pointed to by Ear ,Ey, Ej, and Ee
will be reclaimed.

m;—- -—q(“oB)aC)
me2 —— | ——0.6.0)
me—— | F—.[0'me)

[, 2 — 6. [0tmine @r mee))6

TREE ¢ ’_"——’(An (B.C»
—1—)’ pove,
e =N =

REE 61— —t+—(8,0)

&'-_EE:-H-— = (0]

| — —3C
b — e L b

Figure 5: Calculation of the final fringe member of TREE2

Figure 6 points out an unnecessary 1inefficiency in this scheme for
manipulating the retained environments, During the calculation of the final
member of TREE2's fringe, it is not necessary to retain the E3 and Ey
association list segments, They are retained, in fact, because the next
association 1ist segment points at them (E4 points at E3 and E#+ points at
Ey). The association 1list is constructed in a stack-like manner because of
the dynamic scoping rules for non-local variable 1lookup. FRINGE references
only the variables in 1its parameter l1ist and does not invoke any functions
that require non-local lookup. Thus when FRINGE is executing, it needs only
the association 1list segment that its frame adds to the system's association
list, The same mechanism that modifies the normal LISP access environment,
FUNCTION, can solve this seeming inefficiency of the Samefringe problem, if
FRINGE (and SAMEFRINGE , GET-VAL, and RESUME, for the same reason) is closed in
its binding environment (i.e,, its definition 4is FUNCTION'ed)., This will
cause the association list structure to have a higher branching factor than in

10

the example, but each assoclation list segment will be retained only as long
as it is needed, In the example, the Ej segment would have been retained,

without the need to retain E3,

5. Cloaurex

Beyond the methods for designating which environment (binding or
activation) will be accessed during function execution, there are situations
that require a combination of both static and dynamic scoping. In such
situations the programmer night need to specify which variables will access
the state of the computation at definition time, and which variables will be
sensitive to the current state of the computation.

One mechanism for meeting this need 4is the CLOSURE function (a term
introduced by the LISP machine [Greenblatt77])., CLOSURE takes a function and
a list of variables to be closed (variables in the binding environment), and
returns a function that when invoked will use the binding environment for
looking up closed variables and the activation environment for all other free
variables,

The implementation of the CLOSURE function proposed by Greenblatt(77]
uses a speclal ¢type of cell called an invisible pointer that the evaluator
treats differently from a normal cell, This feature can be simulated by
allowing EVAL to take a second argument , an association 1ist to be used for

"variable look up during the EVALuation, and maintaining an explicit record of

the closed variables, Figure 6 contains an encoding for the function CLOSURE.

(defun ¢ osure (v-1st fn)
(eval (14st 'lambda (args)
(14ist 'eval (list (list 'eVal fm) '(stack args))
list agpen
uote
bda (a-1st)

in ?)x-lst (lambda (x)(assoc x a=1sat))))
'(nlistS’%*?g
CLOSURE returns:
(ri)(eval ((eval <rn>g(staok args))(apgend '(<a1.v a1)>¢es)(alist)))]
(ai.v?a ’> is a pointer to he association list for the
binding of variabl ai at the point of call tc CLOSURE

Figure 6: Closure Function

The CLOSURE function takes the argument <v-1st>, the list of variables to be
closed, and oconstructs an association 1ist segment of the form

<ay,value-of(ay)> for each variable, ag, in <v-lst>, This segment captures

"

the current binding of the ay's during the execution of CLOSURE, The current
association 1ist (returned as the value of the call to the function ALIST) 1is

appended to the end of the binding environment segment and used as a second
argument to EVAL during the call to the closed function, The expression
((EVAL <fn>) (STACK <args>)) invokes the function <fn> and pushes <args> on
the stack before jumping to APPLY., The values for the closed variables will
be those from the binding environment, not the activation environment, even if
there is another variable with the same name, (Recall that the association
list is searched for the first occurence of the variable name,) CLOSURE
retains the actual binding (i.es, a pointer to the CONS cell on the
association list at the time of closure) in the association list segment that
is constructed when it is executed , rather than a copy of the binding. This
permits functions that are still active after the CLOSURE call and able to
access the closed variables, to change the binding of the variable and have
all the closed lambda expressions see the modifications The LISP wmachine
CLOSURE works in a similar manner,’

6. Conclusion

a

The direct LISP approach for manipulating access and control environments
i3 an attractive ilternative to other approaches for implementing new advanced
control structures. The overhead for employing the LISP features FUNCTION and
EVAL consists of storing the retained environment (which must be saved no
matter what approach 1is used) and executing an environment switch when the
function is activated, In LISP systems that use a deep binding strategy, such
as Maryland LISP, environment switching involves exchanging the saved access
environaent pointer with the system's association list pointer, a cost of
several assemably language instructions: Continuation passing 1is also
inexpensive to employ and has been used in compilers to produce efficient code
(Steele78], The LISP features used in the direct LISP approach can be found
in most LISP implementations and require no modifications to the host
evaluator, Thus the direct LISP approach provides an efficient technique for
extending the available control atructures of LISP.

7. Acknowladgments

I would like to thank .Hnnan Samet , Chuck Rieger, Randy Trigg, Milt
Grindberg, and Steve Small for reading drafts of this paper and making helpful

o

iy, o Bl

T

k1
5
5

T T e A ————

comments.

8. Rafarsncea

(Agre78]
A ra, P, , Maryland LISP Reference Manual , Univ, of Maryland , TR-678, Jul,

(Bobrow?3]
Bobrow, D.G. & Wegbreit ,B,, A Model and Stack Implenentation of Hultiple
Environments, Communications of the ACM, Vol. 16,10, Oct.

591-603.
[Fahlnan73]
Fa » SsEa, A Planni S¥stem for Robot Construction Tasks, MIT A.I,
Laborntory, AyIs Memo 2
(PFriedmaniWise76]
g;igdnfn D.&& giae 1?., CON%dShould Not Evaluate Its Arguments, In S,
chaelson ner Aut.g*s*g_, Languages, and Programming
Edinburgh: Edinburgh University ﬂress, s !
(Greenblatt77]

Greenblatt R et al ISP Machine Progress Report MIT Al
Laboratory) MIT "A.I. Memd uh‘u Auga 1977, 08 por®s)

(Hewitt77]
Hewitt , C, , Viewing Control Structures as Patterns of Passi Messages
Artifidial ‘Inteliigence , Vo1 8, 1977, pp 323-363 ng '

[HcDernohc7R€
McDermott , DV, & Sussman, G.J,, The CONNIVER Reference Manual , MIT A.I,
Laboratory, AsI. Memo 2594, Jan.) 1974,
[Moses70] .
Moses, J., The Fungction of FUNCTION in LISP, MIT A,.I., Laboratory, A.I,
Memo 799, 'Jun, 1970,

ISna1182}
1, SuLs, Word Ex r?s for Natur?l Language Understanding, Univ, of
Haryland PH.D, thesls forthcoming

[Steele78]
» GeLs, Rabbit: A Compiler for Schene (A Study in Compiler
Optinization MIT A.I, Laboratory, A.I. Memo 474, 1978,

(Sussman?1]
Susanan Js ,_Charniak, G, , & Hinoirad » Ts , The Micro-Planner Reference
'nrl‘ AJI, Laboraforf’ MIT A.I. Mémo xXxx, 1971,

(Sussman?5]

SuaSlan GuJy & Steele, G,L, SCHEME: An Interpreter for Extended Lambda
Cal eulus Mit % o Laboraiory, A.I. Memo 349, Dec. 1975.

[Trig§7
19-7 8, Re , A Frame Based LISP Intepreter, Univ, of Maryland, TR=777,
L]

13

SECURITY CLASSIFICATION OF TRIS PAGE (When Dets Entered)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVY ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

\4p-A089 &1(

7. AUTHOR(®) ?. CONTRACT OR GRANT NUMBER(®)
Richard J. Wood . | NO0014-76C-0477
9. PERFORMING ORGANIZATION NAME AND ADDRESS “10. PROGRAM ELEMENT, PROJECT, TASK]
AREA & WORK UNIT NUMBDERS
Department of Computer Science
| University of Maryland pd
College Park, MD 20742
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Information Systems Branch June 1980 -~
Office of Naval Research 3. NUMBER OF PAGES
| Washingtor, DC 20305 13
. MONITORING AGENCY NAME & ADORESS(/f different from Controlling Oltice) 18, SECURITY CLASS. (of this report)
Unclassified

S. TYPE OF REPORT & PERIOD COVERED

The Direct LISP Approach to Function Envjronment Technical

Manipulation €. PERFORMING ORG. REPOAT NUMBER
TR-907 Z

4. TITLE (and Subiitle)

T6s. DECLASSIFICATION/ COWNGRADING
SCHEDULE

[P re———————————
16. DISTRIBUTION STATEMENT (of this Report)

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, il ditterent from Report)

————— .
16. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on re e odde i ary and identily by bleck number)
Progremeing Languages for Artificial Intelligence, LISP, Control Structures
FUIARE

P ————————————
30. ABSTRACT (Continus on roverse oido If nocscoary ond identily by biock mumber)

This paper reviews some of the catrel structures that

have becore popular ir. new extensions to LISP-based programming
languages. A method fcr constructing these complex contrel
structures that employs LISP features without the cost of double
evaluation is developed. This technique, called the direct LISP
approach, Lses the LISP functions FUNCTION and EVAL tc maintain and
manipulate function access environments. Contrcl environment

DD 5’y 1473 coimow oF 1+ wov 6813 cesoLaTE Unclassified
SECUMITY CLASSIFICATION OF THIS PAGE (When Deta EOM

(7 5 OV S R s G e e

—

Cn e dad o R

20. Abstract (con't)

manipulation is accomplished using continuation pointers and larbda
expressions. This approach factors function execution into two
distinct steps. First the function is associated with an environment
and ther it is invoked. The normal LISP evaluation routines

retrieve the associated environments and apply the functicn. This
methcd allows the programmer flexibility to design complex control
structures without expensive overhead costs. Several examples that
employ the direct LISP apprecach are presented and discussed.

