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ABSTRACT

The equations of hyperelasticity have the special feature that their

natural entropy is not a globally convex function. Strict convexity of the

entropy function is essential in formulating a physically reasonable entropy

criterion for shock waves. In this paper we show that the natural entropy of

the equations of hyperelasticity is uniformly convex when restricted to the

shock curves. This fact enables us to prove the equivalence of the entropy

criterion and Lax's shock conditions for existence of weak shocks for

problems that are genuinely nonlinear. Furthermore, for problems that are

not necessarily genuinely nonlinear we study the (generalized) "E-cordition"

and show that it is indeed a generalization of the entropy condition. Finally,

we consider the viscosity criterion which requires that a motion of a hyper-

elastic body is the limit of smooth motions of a family of viscoelastic

materials. The relationship between the energy criterion, he E-condition,

and the viscosity criterion is then discussed.
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SIGNIFICANCE AND EXPLANATION

The equations of hyperelasticity have many features in common with the

equations of gas dynamics. A fundamental property of these equations is that

one expects that solutions to the initial value problem develop singularities

in derivatives in finite time, that is shock waves develop. Because of this

one broadens the definition of solutions and considers generalized solutions.

A mathematical problem then arises: Are such solutions unique? The purpose

of this paper is to formulate a so-called entropy criterion in order to

select a physically reasonable generalized solution. Several such criteria

have already been proposed in the theory of nonlinear hyperbolic conservation

laws. We study these criteria by combining the rich structure of the equa-

tions of elasticity with some known results from the general theory.
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ENERGY CRITERIA FOR FINITE HYPERELASTICITY

Reza Malek-Madani

1. Introduction. Recent studies in continuum mechanics have pointed out special and

physically relevant restrictions on the desirable properties of the equations of

hyperelasticity. On the other hand, viewed as a system of conservation laws, the

dynamic equations exhibit nonuniqueness of solutions of the initial value problem.

In order to seek out physically meaningful solutions of these conservations laws

additional restrictions, known as entropy criteria, are imposed. The purpose of this

work is to study the interrelationship between several proposed entropy criteria in

the context of the theory of continuum mechanics.

one of the distinguishing features of material response in more than one space

dimension is that the internal energy cannot be a globally convex function of the

deformation gradient, without violating the principle of material frame indifference

[1, §52]. Yet, as it will become apparent in Section 2, the internal energy is a

natural candidate in formulating an entropy criterion for the equations of hyper-

elasticity. A fundamental result of Lax [21 establishes the equivalence of this

entropy criterion and Lax's shock conditions in the context of general hyperbolic

systems of conservation laws with a strictly convex entropy. In section 3 this result

is proved by observing that the entropy is locally convex along shock curves.

Another feature of the equations of elasticity is that the assumption of

"genuine nonlinearity" is not generally satisfied. The entropy criterion is then

known to be insufficient to single out a unique solution. Oleinik [3], Leibovich [4),

and Liu [51 [61 introduced a strengthened version of Lax's shock conditions, the

E-condition, to deal with such problems. Dafermos (7], motivated by the physics of

the problem, proposed the entropy rate admissibility criterion, as a generalization

of the entropy criterion in order to study nonlinear problems which fail to be

genuinely nonlinear. In section 4 it is shown that for the equations of elasticity

Sponsored by the United States Army under Contract Nos. DAAG29-75-C-0024 and
DAAG29-80-C-0041. This material is based upon work supported by the National Science
Foundation under Grant No. MCS78-09525 A01.



the E-condition is indeed a generalization of the entropy criterion. Finally,

section 5 is concerned with the viscosit criterion which requires that a motion of

a hyperelastic body is the limit of smooth motions of a family of viscoelastic

materials. The relationship between the energy criterion, the E-condition, and the

viscosity criterion is then discussed.
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2. Preliminaries and notations. Consider a body with reference configuration

S c Rn, n = 1, 2, or 3. For simplicity assume that the reference configuration is

uniform, with uniform density p0 (X) E 1, and consider a motion x(t,X) of B in

nR In the absence of external body force the motion satisfies the field equations

x T i = , 2, or 3 (2.1)

where ,a denotes differentiation with respect to X , T is the Piola-Kirchhoff

stress tensor [1], and the usual summation convention is used. A material is called

elastic if T = T(F), where F is the deformation gradient

3x ax1

- ax im aX

Throughout this paper it is assumed that the material is hyperelastic; thus there

ex -+ a stored energy function o = o(F) such that

Da(F)
T(F) - (2.2)

The system of equations (2.1) is an example of a system of conservation laws in

several space dimensions. This can be seen by letting vi = i. and observing that

(2.1) is equivalent to

vi -T =0 i -1, 2, or 3

(2.3)

F. - v. = 0 a = , 2, or 3

where a dot denotes differentiation with respect to time; (2.4) is hyperbolic at F

if a satisfies the strong ellipticity condition:

2a2o(F)

N N a a > 0 (2.4)B, N N i  j 3F ia F ja

for arbitrary unit vectors N and v.

Local existence and well posedness of the equations of elastodynamics were

obtained by Hughes, Kato, and Marsden [8]. However, the hyperbolic character of (2.3),

1-3-



(2.4) prevents the existence of global smooth solutions for the Cauchy problem and shock

waves develop. From experience gained in studying general nonlinear conservation laws

(Conway and Smoller f9], Kruzkov [101, DiPerna [11, Glimm [121) a natural class of

solutions of (2.3) (2.4) is the class of functions of bounded variations in the sense

of Tonelli-Cesari (cf. Volpert [131). Typical functions in this class are piecewise

smooth and their discontinuities consist of a family of smooth surfaces with simple

jump discontinuities. Such functions serve as good models for the mathematical

representation of shock waves.

A piecewise smooth pair (v(X, t), F(X, t)) is a weak solution of (2.3), (2.4) if

it is a classical solution at points of smoothness and if the Rankine-Hugoniot condi-

tions

-slv] = N [Ti i 1 1, 2, or 3

(2.5)

-s IFi I N [vi] c = 1, 2, or 3

are satisfied across each shock x = X(X, t), where s = is the speed of the
+

propagation of the shock, [ul = u - u" denotes the jump across the shock X, and

N is a unit normal to the shock at (X, t) in the direction of propagation.

S(v, F N) denotes the set of states (y, FI ) which can be connected to

(v, F) by a shock with normal N. It is also assumed that the symmetric matrix E

2 aF
E ij(F ) = I. a " F ) F.- (2.6)

has a simple positive eigenvalue ),(F). This assumption is weaker than strong

ellipticity and is sufficient for further discussions in this paper. Dafermos 114]

proved the following proposition in connection with the local existence of the shock

curve S(v-, F-; N) under the additional hypothesis of genuine nonlinearity of C

at F-, that is,

3 a(F-)

NN 5 N 8-F a ' Fk7 ri rk 0 (2.7)

-4-
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where r r(P) is the eigenvector of E associated with X.

Proposition 2.1. Let A be a simple eigenvalue of E and assume that a is

genuinely nonlinear at F Then there exists two smooth maps s.i  (-C, C) - R
2 n+n2

and (vi, Vi) (-C, E) in which satisfy (2.5) with s2 (0) X and

(vi(0), Fi(0)) ((v), F(

We remark that a weaker hypothesis of

a a(F )N N ... r.l ri. ...r.

F2  •P N L 1 2 2  ' a 1 1 12 r

for some Z > 2 is sufficient for the proof of Proposition 2.1 (14].

Smooth solutions of (2.1) also satisfy the equations of conservation of mechanical

energy

Wt + div 0 0 (2.8)

where
1

W(v; F) - 1-v V. + 0(F) (2.9)

is the mechanical energy density and

a (v, F) a -vi Ti (F) (2.10)

is the flux associated with W. A weak solution of (2.1), however, does not neces-

sarily satisfy (2.8). The energy criterion requires that an admissible solution

satisfy

Wt + Div < 0 (2.11)

in the sense of distribution. (2.9), (2.11) are special cases of the entropy function

and the entropy criterion defined in Lax [15]. For piecewise smooth weak solutions of

(2.1), it is well known [14] that (2.11) is equivalent to

s[W(v, F)] - N [P (v, F)] > 0 (2.12)
n -

-5-
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with (v+ , F+ ) S(v, F- N). It should be noted that (2.11) is the classical

Clausius-Duhem inequality of thermodynamics [16], specialized to isothermal materials.

-6-
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3. The energy criterion and Lax's shock conditions. There are several results point-

ing to a relationship between the convexity of the entropy function and the entropy

criterion [2], [11]. However, due to the geometry of hyperelastic materials, the

energy function (2.9) cannot be globally convex. Nevertheless, due to the special

structure of the equations of hyperelasticity, we will show in this section that (2.9)

is locally convex along the shock curves S(v-, F ; N). This fact enables us to

prove the equivalence of the entropy criterion (2.12) with Lax's shock conditions

defined in (3.1).

Assume that conditions of Proposition 2.1 hold. Let (v(e), F(E)) E S(v-, F-; N).

For E near zero E(F(c)) has a simple eigenvalue ? () near X(O). A shock

(v
+
, F+; v-, F-; N) satisfies Lax's shock conditions [15] if

X(C) < s 2(C) < X(0) if s(E) > 0
(3.1)

A(c) > s 
2 (

) > AC0) if s(C) < 0

One of the interpretations of (3.1) is that the linearization of (2.1) on either side

of the shock is stable.

Proposition 3.1. Let (v
+

, F
+ ) c S(v, F-; N) and assume (2.12) holds. Then

-w aw -

s{[W(v, F)I - -LW- (V-, F-)(v I a- (v ) 1c 1 > stvi]Ivi] (3.2)
-- av. - - i 3 a- i

WW-avv > -S[Vi][vii (3.3)

Proof. We prove (3.2). The proof of (3.3) is similar. From (2.5) we have

Ivi] [vi. = [Ti [F. I . (3.4)

It follows from (2.5) and (3.4) that

s[WI - N [I ] = s [(I] V [ IV.] - sIF IT.
Ui rA2c iA

(3.5)
s (Ti + + -

ia T )

I -7-



On account of (2.12) and (3.5)

s[o(F) _ [F iJT + +T )
2 ia ia ia

this inequality combined with (3.4) yields

st [W) - L v- F) [v (v- F F > s{ I- [v. v I + [F.I (Ti + T.
* -. i - 2 ii 2 ii ia ic

- v. [v.] - Ti. [F. ]] :

= s [v. Iv I

This completes the proof of Proposition 3.1.

Corollary 3.1. The function W(y, F) defined by (2.9) is uniformly convex on

S(v F-; N) in a neighborhood of (v F).

Proof. The proof follows immediately from (3.2) and (3.3) by considering shocks with

positive and negative speeds.

Theorem 3.1. Assume the genuine nonlinearity condition (2.7) holds and that c is

near 0. Then the energy criterion (2.11) is equivalent to Lax's shock conditions

(3.1).

Proof. Let (V(), F(F)) e S(v-, F ; N) with (v(O), F(O)) = (V-, F-). We follow an

argument of Lax [21. Differentiating (2.7) with respect to c and evaluating

at c = 0 we have

2
s (O)v,(O) = E (- , -sF! (O) - N v!(O) , (3.6)

thus s2 (0) = F) v =o) - F-). Without loss of generality assume that s(O) is

positive. Differentiating (2.5) twice and using (3.6) we deduce

2 3 2Ti (F')

4s 2' V'? + s 3 
V' - -Na N N 1F0k aF-p V v' + SE ik(F-)v"

(3.7)

-2s' F! -sF" =N v"

I -8-
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Since E is symmetric v'(0) is also a left eigenvector for A. it follows from

(3.7) that
22 T

4s2 s' vi v! 
= 

-N N N a V. Vp v' (3.8)
ci BL Y aF k6aFY vpvy ! 38

Thus s'(0) is nonzero by the genuine nonlinearity assumption.

Differentiating

Eik(F(rk(c) = ()

and comparing the result with (3.8) yields

4ss' = A'

we normalize (3.8) so that s(0)s'(0) is positive, or equivalently s'(0) is positive.

In that case (3.1) is satisfied if and only if c is negative. Let

h(e) = s(E)[W(v, F)] - N [$ (v, F)]

then on account of (2.10) we have

h'(c) = s[W] + sv. v. + ST. F! + N T v! + N v. Ti A F
2. ia IQ Oi a .I a i j ]a

Since

aT.

-s'(v. - svj = NL - F!

-s'Fi - SF I = N Iv I

h'(F4) reduces to

h() s'{IW W() F - I
BF. ia aV. i

By corollary 3.1 the term in the brackets is negative for r near 0. Thus, the ener;.

criterion is satisfied if and only if c is negative. This completes the proof.

-9-



4. The E-condition and the energy criterion. Although the genuine nonlinearity

assumption (2.7) is reasonable for a local analysis, it turns out that for many

problems (2.7) does not hold globally (In Section 5 we will give an example of a

constitutive relation for which (2.7) fails). In the works of Oleinik [3], Wendroff

[171, Leibovich [4], and Liu [5] a generalization of Lax's shock conditions (3.1),

called the (generalized) E-condition, has been introduced in order to study the

solutions of such problems. In this section we outline Liu's abstraction of the E-

condition and show that it is a generalization of the energy criterion (2.11).

- + + _ _ _ _ _
A shock (s; v-, F-; v , F N) is said to satisfy the (generalized) E-condition

if for all (v, F) C S(v-, F-; N) between (v-, F-) and (v+, F+

+ F+;

s(y-, F-; v , F N) < s(v-, F-; v, F; N) (4.1)

As we will show below, a shock that satisfies the energy criterion (2.11) also

satisfies the E-condition "on the average." To be more precise, the line integral of

(4.1) along S(v-, F-; N) turns out to be (2.12).

Theorem 4.1. Let (v+ , F+ ) F S(v , ; N) be such that (4.1) holds. Then

s[W] -N [iD > 0

Proof. Let (s(T), v(r), F()) be a parametrization of S(v-, F ; N), E [T 1 , T 2I
such that

v(T1) = v (T2 ) +

(4.2)

F() =F F(T) F+

-1 - 2

Without loss of generality assume s(T ) > 0. On account of (2.5) we have

s 2(r)(F i(T) - Fie-)iis= Na N (Ti (F(T)) - Ti (F ))Fi

where a dot denotes differentiation with respect to T. Since by the definition of

parametrization the coefficient of s 2(T) is positive, we can use (4.1) to obtain

-10-
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T2

f N N8 Ti (F(t)) i dT - f N N Ti% F)is dT
T

(4.3)

T2
2

(_2. f (Fi 8 (r) - FB)i '

Since we perform a line integral along S(v-, F- N) we note that if different para-

metrications are needed for separate segments of S, we repeat the remainder of the

proof for each segment and sum the resulting line integrals. Cn account of (2.5)

Na N IF iaI I [IP

(4.4)
U N F F

Thus (4.3) reduces to

T 2  1 2

T. (PT))F. dT - T. (F') I > 2 (T2)[Pia Fial
T1

2 (T) F 1 (4.5)
2 io in 45

Since by (2.5)

s2(r2 ) (Fin] = N NI[T. (F)]

(4.5) becomes

T 2
+

Tin Fi 2i dT-i--+T + )[Fi > 0 (4.6)

Finally, we deduce from the definition of a hyperelastic material that the

integral term in (4.6) is [a(F)] and that (4.6) is equivalent to the energy criterion

(see (3.5)).

-11-l



5. The viscosity criterion. This criterion views an admissible solution of (2.1) as

the limit of smooth solutions of the equations of a family of viscoelastic materials

defined in (5.1) below. The perturbed equations generally arise by introducing an

artificial viscosity into the problem. In conjunction with (2.1) consider a one-

parameter family of linearly viscous materials [I with the constitutive relation

t (F, F) = t 1 (F) + #t2 (D) (5.1)

where t is the Cauchy stress and D is the stretching tensor, i.e., the symmetric

part of the velocity gradient

Lk.= axk/ ax, (5.2)

Further assume that T2  satisfies a positive definiteness condition

T2,ik Dik > 0 (5.3)

That solutions of (2.1) obtained via (5.1) satisfy the energy criterion is the subject

of the following theorem.

Theorem 5.1. Let inequality (5.3) hold. Let x be a solution of (2.1), (5.1) such

that (xE, x ) converges almost everywhere and boundedly to (x, x). Then (x, x)

satisfies (2.1), (5.1) with c - 0, and the energy criterion

Wt + Div 0 < 0

holds in the sense of distributions.

Proof. Let

T(F) det Ft(F)F-T (5.4)

be the Piola-Kirchoff stress associated with T1 (F). Then x satisfies

S (F), -(det F (5.5
i - a T 2,ikG a

where G= F- T . Multiplying (5.5) by x and using (2.9) and (2.10) we obtain

-12-
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dWG • FG x

-- = 
i 

E(detF- det FE t G E (5.6)
dt at,Q - 2,ik Gka Xi a - 2,ik k,. x.,

Since t2  is symimetric and L = F- I  it follows

t GExt2,ik kj L Xi'a t 2,ik D ik

Therefore, on account of (5.3), (5.6) implies that

dW < c(det F t GE C), (5.7)
dt- ,- - t2,ik ka i

Since (xE,  E) converges almost everywhere and boundedly to (x, x), the right hand

side of (5.7) approaches zero in the sense of distributions. This completes the proof

One does not expect that the converse of theorem 5.1 holds true. In the case

n = 1 the viscosity criterion was shown to be equivalent to the E-condition by

Wendroff [15]. Since for weak shocks the E-condition and the energy criterion are

equivalent one may conjecture that in this case the energy criterion is sufficient to

guarantee that the viscosity method will choose the proper shock. We carry this

program for a special and simple class of linearly viscous material, namely, we assume

(5.8)

The following theorem draws heavily on the qualitative theory of connecting orbits

developed by Conley and Smoller 118], [19].

Theorem 5.2. Let (v+ , F+) + S(v, F; N) be a weak shock, i.e., I(v+, F+) - (v-, F

is small. Assume det F±+ are positive and N A. are nonzero, where

Sdet F

A 3aF (5.9)

Assume the energy criterion holds. Then there exists a one-parameter family of travel-

ling wave solutions of (2.1), (5.1), (5.8) which converge to the weak shock

(v F ; v , F ; N) almost everywhere and boundedly.

Proof. (2.1), (5.1), (5.8) take the form

xi "T i,0  (D ik Akcz) '

-13-



which reduce to

i  T Ti, = ((vi,8 x ,k + Vk,8 XO,i)A kQ'a
(5.10)

Fia =v i

since Di 1 ( k). We consider solutions (v(&), F(Q)) of (5.10) with
A 2Cxk k~i

N X - st= n a which satisfy the boundary condition
C

J (v-, F-) as --
(y(O), F()) -- (5.11)

(V+, F) as

Let prime denote differentiation with respect to E. Then (5.10) is transformed into

-sv! -N Ti y-{N (N X i + NB x kkI a Q {N(8 Xs,k V1 aX,i k

(5.12)
-sFa . N v!

Equations (5.12) can be integrated once to yield

-s(vi -V!) N (T. - Ti.)-- IQ Na 1k. X , e

2 0, 0 k.XO,i v S

-s(Fvi - F) - N (Vi - i )-

where the constants of integration are chosen so that (v ,F )is an equilibrium

point of (5.13). The Rankine-Hugoniot conditions (2.5) then imply that (V , F+

also is an equilibrium point. Let

a, N A (5.14)

in~ ~ iU ci1

and observe that (5.13b). ntesrtion a chis constant when n F 2 and is a linear

flction in v when n 3. Similarly using the definition of A and F- ,

-14-



1
NB XS,k det F ak

which reduces (5.13) to
- 1 v

-s(V. - v. ) - N (T. - T. ) = {a a , v}
1 1 t Zi ia 2det F {k ak vi!v~ 5.5

Let P = tra a a + a a a, v)- -s(v - v.-) - N (Ti - T. "). Then (5.15) can be

written in the familiar form

Pv' - 2 det F(y) (5.16)

A simple calculation shows that P is symmetric and positive definite. Also (5.13)

implies that det F(v) is a polynomial of degree n - 1 in v, in particular, for

n -2

detF-det -- tr(F NS (v -)) (5.17)
s

Since det F(v) - det F and F+  is near F" it follows that det F is nonzero for
- +4 - +

v [V, v. ]. For the same reason v , v are the unique critical points of (5.16)

in a small neighborhood of v . In turn Theorem 3.1 guarantees the nondegeneracy of

these equilibrium points. Finally we note that ;U is a gradient function as the

material is hyperelastic. Thus all assumptions of the lemma on p. 297 in 1191 are

1
satisfied (in particular see the discussion on p. 299 of (19] where - P plays the

role of the viscosity matrix) which implies the existence of an orbit of (5.16) con-

necting the critical points (v, F ), (V, F). This completes the proof.

The above theorem depends heavily on the fact that (v + , F + ) is in a small

neighborhood of (v-, F-). To obtain global results, that is connecting orbits for

strong shocks, one needs additional hypotheses on the stress function to insure that

the unstable manifold of iv, F) reaches the region of attraction of the node

(v+ , F+ ) . The main tools in implementing the above is intrinsically the same as in

Theorem 5.2. We carry this out for a particular constitutive relation and for the

case n - 2.

Consider the isotropic compressible hyperelastic material whose stored energy

function is given by

~-15-



c(F) yI + g(III) (5.18)

with
III

g(III) Ps.) ds (5.19)

where p' < 0, and I and III are the principal invariants of the left Cauchy-Green

tensor B - F F T . Y is a material constant and is positive. (5.18) is a two-

dimensional compressible model for the classical Mooney-Riolin material for rubber [1].

The Piola-Kirchoff stress tensor has the form

T -p(III)A + YF (5.20)

where A is defined by (5.9). We note that this material is strongly elliptic while

it is not necessarily genuinely nonlinear since convexity of P is not assumed.

Theorem 5.3. Let (v+ , F+) E S(v, F; N) with the stress function given by (5.20).

Assume det Ft are positive and N A. - are nonzero. If the (strict) E-condition

holds, i.e.,
- v +

sty-, F y + + N) < s(v , F y, r; !) (5.21)

for all (v, F) S(v, F N) between (v, F ) and (v, F+ ), then there exists a

one-parameter family of solutions of (2.1), (5.1), (5.8), (5.20) which connects

(v, F) to (V+
, F+).

Proof. The following proof relies on the concept of the isolating block developed in

[19]. Associated with the system (5.16) we consider the vector field

v' - 2 det FM(v) (5.22)

First we construct a region D in (vl, v2 ) plane which contains the equilibrium

points (v, F ), (v F ), and such that the vector field (5.22) is tangent to the

boundary of D in exactly two points. A simple calculation shows that

2- , -2det F N A N A p'(IIZ)  (5.23)
I2 42,v 1  s O- 10 Bo 28B5.3f 2

-16-



which is never zero by the hypothesis. Therefore, the two curves iCy) = 0 and A

I 2(v)- 0 are one-to-one in the (v 1, v 2 ) plane for v i c [vi , vi 1. Since

det F(y) is not zero in that region we can construct D with the above specifications
+ + +

as a rectangle obtained from the intersection of the lines vi . vi" + . " i- are chosen

near zero and with the appropriate sign so that v- are in the interior of D. (5.23)

then implies that the vector field (5.22) is tangent to the boundary of D in exactly

two points. We also note that (5.22) is a gradient-like system, that is, for

F(v 1 , v2) - (v i - vi')(vi - vi) + so(F(V)) 4 N T (v. - v-

we have

2 det FO(y) • grad F < 0

Hypothesis (5.21), in turn, implies that (vI . v 2 ), (v1  v 2 ) are the only

equilibrium points of (5.22) in D. We can now apply Theorem 6.1 of (181 to insure

the existence of a connecting orbit for (5.22). To see that this orbit persists for

the system (5.16) we note that since P is positive definite and symmetric and the

matrix of linearization of (5.22) at the node is symmetric, the critical point

(v1 + v2 
+ ) remains an attractive node for (5.16) (cf. Theorem 6.2 18]). This com-

pletes the proof.
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