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ABSTRACT

A general model for the nonlinear motion of a one dimensional, finite,

homogeneous, viscoelastic body is developed and analysed by an energy

method. It is shown that under physically reasonable conditions the nonlinear

boundary, initial value problem has a unique, smooth solution (global in
time), provided the given data are sufficiently "small" and smooth; moreover,
the solution and its derivatives of first and secend order decay to zero as
t + ®, Various modifications and generalizations, including two and three

dimensional problems, are also discussed.
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SIGNIFICANCE AND EXPLANATION

In nonlinear systems of "hyperbolic" type, characteristic speeds are not
constant so that weak waves are amplified and smooth solutions may blow up in
finite time due to the formation of shock waves. It is interesting to
consider situations where this destabilizing mechanism coexists (and thus
competes) with dissipation.

In certain cases (e.g., viscosity of the rate type) dissipation is so
powerful that waves cannot break and solutions remain globally smooth. A more
interesting situation arises when the amplification and decay mechanisms have
comparable power so that the outcome of their confrontation cannot be
predicted at the outset. Elementary dimensional considerations indicate that
breaking of waves develops on a time scale inversely proportional to wave
amplitude while dissipation proceeds at a roughly constant time scale. It
should thus be expected that dissipation prevails and waves do not break when
the initial data are "small". Results of this type were obtained by T. Nishida
for the quasilinear wave equation with first-order frictional damping for
sufficiently smooth and small initial displacements and initial velocities.

In this paper we develop and study a general nonlinear model for the
motion of a one dimensional, finite, homogeneous body. Here the dissipation
mechanism which is induced by memory effects of the viscoelastic materials
({stress-strain relaxation function ~ the stress is a nonlinear functional
rather than a function of the strain) is different and more subtle. Using
elementary energy methods, which are combined with frequency domain techniques
for nonlinear Volterra equations, we show that under physically reasonable
conditions on the stress-strain relaxation function, the known history of the
displacement, the nonlinearities of the model, and on the assigned external
body force, the boundary-history value problem (1.9), (1.18) in the text which
describes the model has a unique, smooth solution {(global in time), provided
the given data (history and external body force) are sufficiently smooth and
"small". Moreover, we also show that the solution and its spacial and time
derivatives of first and second order decay to zero as t * ®. Various
modifications and generalizations of the model, including two and three
dimensional problems, are also considered.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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A NONLINEAR HYPERBOLIC VOLTERRA EQUATION IN VISCOELASTICITY

* L 2 )
C. M. Dafermos and J. A. Nohel

1. Introduction. In nonlinear systems of "hyperbolic" type, characteristic speeds

are not constant so that weak waves are amplified and smooth solutions may blow up
in finite time due to the formation of shock waves. It would be interesting to
consider situations where this destabilizing mechanism coexists (and thus competes)
with dissipation.

In certain cases (e.g., viscosity of the rate type) dissipation is so powerful

that waves cannot break and solutions remain globally smooth. A more interesting

situation arises when the amplification and decay mechanisms have comparable power
so that the outcome of their confrontation cannot be predicted at the outset.

Elementary dimensional considerations indicate that breaking of waves develops on a

time scale inversely proportional to wave amplitude while dissipation proceeds at a
roughly constant time scale. It should thus be expected that dissipation prevails
and waves do not break when the initial data are "small". Results of this type for
quasilinear wave equations with frictional damping were first obtained by Nishida
[1] and, subsequently, by Matsumura [2], who uses methodology that goes back to
Schauder [3]. The more delicate situation of thermal damping (one dimensional
thermoelasticity) is discussed in Slemrod [4].

A different, subtler type of dissipation mechanism is induced by memory effects
and arises in nonlinear viscoelasticity. A simple, one dimensional, model
corresponds to the constitutive relation

t

(1.1) olt,x) = plelt,x)) + [ a'(t - T)p(elt,x))dT ,

-l
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where o0 1is the stress, e the strain, a the relaxation function with ' = 4/d4t,

and v, y assigned constitutive functions. We normalize the relaxation function so

that a(w) = 0. When the reference configuration is a natural state,

¥(0) = Y(0) = 0. Experience indicates that y¢(e), Y(e), as well as the
equilibrium stress

(1.2) xte) %% vie) - a(orp(e)

are increasing functions of e, at least near equilibrium (e small). Moreover, the

effect of viscosity is dissipative. To express mathematically the above physical

requirements, we impose upon a(t), v(e), Y(e) and x(e) the following assumptions:

(1.3) a(t) € w2'1(o,~), a(t) is strongly positive definite on [0,®) ; ?
(1.4) sle) e Co(=wo,®), ¢(0) =0, ¢'(0)>0 ;

(1.5) ve) e (==, @),  $(0) =0, Y'(0) >0 ;

(1.6) X' (0) = ¢*(0) = a(0)y'(0) > 0 .

Assumption (1.3), which requires that a(t) - a exp(-t) be a positive definite
kernel on [0,®) for some a > 0, expresses the dissipative character of

viscosity. Smooth, integrable, nonincreasing, convex relaxation functions, e.g., .

(1.7) a(t) = Z v exp(=-u t), v, > 0, u >0,
k k
k=1
which are commonly employed in the applications of the theory of viscoelasticity,
satisfy (1.3).
It is often convenient to express o, given by (1.1), in terms of equilibrium

stress, namely (integrate (1.1) by parts and use (1.2)),

t N

(1.8) o(t,x) = yxlel(t,x)) + [ alt - Tbte(t,x)) dr .

-0

We now consider a homogeneous, one dimensional body (string or bar) with .
reference configuration [0,1] of density p = 1 (for simplicity) and constitutive

relation (1.1) which is moving under the action of an assigned body force g(t,x),




T

-® < t<®, 0< x< 1, We let u(t,x) denote the displacement of particle x at

in which case the strain is e(t,x) = ux(t,x). Thus the equation of motion

time t
putt =0, * P9 here takes the form
t
10 = ! - -+ [ 4
(1.9) u . sa(ux)x + {a a'(t T)w(ux)xdr g, =® <t <®, 0< x 1,

or, if one uses representation {(1.8) for the stress,

t
= + - + 00 L < < .
pe = XU {u alt - D(u)_dar + g, Ct<®, 0<x¢€1

(1.10) u

The history of the motion of the body up to time t = 0 is assumed known, i.e.,

(1.11) u(t,x) = v(t,x), -~ < t <0, 0 < x< 1,

where v(t,x) is a given function which satisfies equation (1.9) together with

appropriate boundary conditions, for ¢ < 0. Our task is to determine a gmooth
which satisfies (1.9) together

extension u(t,x) of v(t,x) on (=-«,®) x [0,1]

with assigned boundary conditions, for = < t < =,

Upon setting

0
h=/ a'(t - DYlv) at+ g, £ >0,

-0

(1.12) 0<x< 1,

(1.13) uo(x) = v(0,x), uq(x) = vt(o,x), 0 < x< 1,

the history=-value problem {(1.9), (1.11) reduces to the initial-value problem

t
=ylu) + [ a'(t - T¥(u) dt +h, 0<Ctcm, 0<x<1,

(1.14) u
tt 0

(1.15) u(0,x) = uo(x)' ut(olx) = u1(x)l 0< x< 1.

Conversely, (1.14), (1.15) can be reduced to (1.9), (1.11) by constructing a func-

tion w(t,x) on (==,0} x [0,1] which satisfies

rp—,

v(0,x) = uy(x), vt(O,x) = uy(x),




%
bl

vtt(o.x)-w(uOX)x+h(0,x) . 0< x< 1,

(1.16) -
vttt}O.x) ¢ (uox)u

' ' +! <
0xxu‘x+¢ (uox)u +a (O)w(uOX)x ht(o,x), 0< x¢< 1,

1xx

together with appropriate boundary conditions, for t € 0, and then defining

g(t,x) on (-»,») x {0,1] by

t
- - ' - < < <
Vee T PV {aa(tt)wvx)xdt, t<0, 0<x< 1,
(1.17)  glt,x) = 0
h -/ a'(t-1)y(v)_ar, t>0, 0< x< 1.
o X X

The purpose of (1.16) is to ensure that g(t,x), as defined by (1.17), has the
smoothness properties, across t = 0, which will be required below in the existence
theorem.

For the special case y{e) = ¢(e) variants of existence theorems for (1.14),
(1.15) were established by MacCamy [5], Dafermos and Nohel [6] and Staffans [7].
The assumption ¢ = ¢ allows one to invert the linear Volterra integral operator on
the right-hand side of (1.14) and thus express «p(ux)x in terms of u,, ~ h
through an inverse Volterra integral operator using the resolvent kernel associated

with a'. One may then transfer time derivatives from u to the resolvent kernel

tt
via integration by parts. This procedure reveals the instantaneous character of
dissipation and, at the same time, renders the memory term linear and milder, thus
simplifying the analysis considerably. On the other hand, the above approach is
somewhat artificial: By inverting the right-hand side of (1.14), one loses sight of
the original equation and of the physical interpretation of the derived a priori

estimates. More importantly, the physical appropriateness of the restriction

V= ¢ 4is by no means clear.

Remark: The present normalization of the kernel a with a(®) = 0 is different

from that in the existing literature (see [5}, [6], [7]). The reader should note

a', not a, enters the constitutive relation (1.1) as well as the equation of
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motion (1.9). The present normalization is more convenient for technical reasons;

for, the equivalent form (1.8) of the constitutive equation in which a (rather

“t g e e S Y
e e e

than a') enters, and the corresponding equation of motion (1.10), are extremely
convenient for obtaining the crucial a priori estimates in our analysis, when a
satisfies assumption (1.3). In the earlier literature in which only the special
case Y = ¢ was studied, the normalization
a(t) = a + A(t) 0t o,

a(0) =1, a_ >0, Ae w2'1(0,~), A strongly positive was used.

In another noteworthy special case, when a(t) = exp(-ut), (1.9) is equivalent
to the third order partial differential equation

Beer ¥ MU T (U tMXID), Y g + g

studied by Greenberg [8].

In this paper we show how one may deal with Equation (1.9) directly and

establish existence of solutions without the assumption ¢ = Y. We will consider in

detail the case where the boundary of the body is free of traction which leads to

boundary conditions
(1.18) o(t,0) = g(t,1) =0, - <t <™,
Other types of boundary conditions will be discussed in Section 4. The change of

variable (superposition of a rigid motion)

a! (1.19) ult,x) = ult,x) + my, + mt ¢+ J f f g(s,y)dydsdt
600

shows that without loss of generality we may assume

T —yr

i : 1
: (1.20) [ glt,x)ax = 0, - Ctcw,
0

; 1
' . (1.21) [/ ule,x)ax =~ o, -~ ¢t C®,
0
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Of the body force g we require

2 2
g(t,*) g (t,*)sg (tre) in C((=o,); L2(0,1)) N L2((=,»); L%(0,1))
(1.22) t *

g(t,x)=g1(t,x)+g2(t,x) with g1tt(t,') (t,*) in Lz((-“.°);L2(0,1)).

*I2ex

As noted above, despite the presence of viscous dissipation, it is not to be
expected that a global smooth solution to (1.9), (1.11), (1.18) will exist unless
the amplitude of waves remains small. Consequently, one may only hope to obtain
global existence results under the restriction that g(t,x) be appropriately
"small”". We "measure" g(t,x) by

1 o 1
def 2 2 2 2.2 2 2 2
(1.23) G % sup [ (g +gt+qx}(t,x)dx +[ [ Aqg +qt+gx+g1tt+gétx}dxdt .

(—m'co) 0 -0 ()

Our main result is

Theorem 1.1. Under assumptions (1.3), (1.4), (1.5), (1.6), there exists a constant

u >0 with the following property: For every g(t,x) on (-*,#) x [0,1] which

satisfies (1.20) and (1.22) with

(1.24) G < 2,

and for any vi(t,x) on (-=,0] x [0,1], with v(t,*), vt(t,°), v (), vtt(t,-),

v (tr‘), v (t,'), v (tl.)l v (tl.)' v
Xx t

tx tt ttx
C((=-»,0]; L2(0.1)) N Lz((-“,O}: L2(0,1)), which satisfies Equation (1.9) together

txxt BT 7 Vyy(te®) dn

with the boundary conditions (1.18) for t < 0, there exists a unique wu(t,x) on

(=»,%) x [0,1], with u(t,*), ut(t,'), ux(t,°), u,  (t,*), utx(t,'), uxx(t,‘),

tt

u (t'.), u (tl.)l u

ttt ttx (t,2), uxxx(t'.) in

£xx
c((-=,%); 12(0,1)) N L2((=,=); 12(0,1)), which satisfies (1.9), (1.11), (1.18),

as well as (1.21). Furthermore,

x(t")'uxx(t'.) 2212;» 0, t + =,

(1.25) u(tl.)lut(tl.)lux(tl.)lutt(tl.)lu [0’1]

t

The proof of the above theorem employs the general strategy developed in

[2,6,7). We first establish, in Section 2, the existence of a local solution,
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defined on a maximal interval (-w,TO), with the property that when To < © a

certain norm blows up as t ¢ To. Then, in Section 3, we show that, due to viscous
dissipation, the afforementioned norm remains uniformly bounded on the maximal
interval, provided that (1.24) holds with p sufficiently small. In particular,
TO = ® and the smooth soclution exists globally.

In the final Section 4, we have collected information on various extensions of
the above results. We show how one can handle boundary conditions other than
{1.18). We indicate how alternative sets of assumptions on v{t,x) and g(t,x)
lead to variants of Theorem 1.1 rendering information on the smoothness of

solutions. Finally, we explain how the present techniques may be. used to establish

existence theorems for the equations of multidimensional viscoelasticity as well as

abstract integrodifferential equation in Hilbert space.

2. Local Solutions. In this section we establish a local existence theorem on a

maximal interval. It is more convenient to work with Equation (1.14) to which, as
we have seen, (1.9) may be reduced. Also we shall impose here boundary conditions
(2.1) u (t,0) = u(t,1) =0, t>0,

which, though apparently stronger than (1.18), are actually equivalent to (1.18), as
will be shown in Section 3. Finally, we temporarily strengthen assumption (1.4)
into

(2.2) v(e) e c3(-°°,°°), 0(0) = 0, ¢'(e) > x>0, - ¢ @ < ® ,

On the other hand, assumptions Y*'(0) > 0, x'(0) > 0 and the positivity of the
kernel a(t) will not play any role in this section.

Theorem 2.1. Let u,(x), uox(x), “Oxx(x)' uoxxx(x), u1(x), uq,(x),

2
u1xx(x) be in L“(0,1) and assume

(2.3) uox(O) = qu(1) =0, u1x(0) = uq, (1) =0 .

Moreover, let h(t,x) be defined on (0,®») x {0,1] with h{(t,*), ht(t,°), hx(t.')

.ii c({0,=); L2(0,1)) ir_lg_ hit,x) = h1(tlx) + hz(t,X)' h1tt' hztx 1-2
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L2([0,°); L2(0,1)). Then there is Tgr 0 < To € ®, and a unique function

ult,x) € Cz([O,To) x [0,1)), with u (t,*), u

tet (t,*), u

x (tl.)l ux (tl‘) _lﬂ

ttx txx XX

c(fo,T; r2(0,1)), for every 0 < T < T such that u satisfies (1.14) on

ol

[O,To) x [0,1] together with initial conditions (1.15) and boundary conditions

(2.1) on [O,To). Furthermore, if TO < o,

1
2 2 2 2 2 2 2
201 g {u (e 0 +ug (e, x)+u, () +u (£,0)+ug (E,x)+u) (t,x)+ul  (t,X)

2 2
+ xx(t,x)+uxxx(t,x)}dx +®, as t 4+ T

2
+
t (t,x) u

ut 00
We note that h(t,x) and uo(x), uy(x), defined by (1.12), (1.13) with
v(t,x) and g(t,x) as in Theorem 1.1, do satisfy the assumptions of Theorem 2.1.

The proof of Theorem 2.1 which is a variant of the local result in [6]) will be
based upon the Banach fixed point theorem. We begin with some preparation. For
M, T > 0, we let X(M,T) denote the set of functions w(t,x) on (0,T] x [0,1],
with Mhﬂ,%ﬂnhwémﬂ,aghd,%¢hﬂ,%#hﬂ,%uuﬂhwu#hﬂ,

L 2
wtxx(t' ), wxxx(t’ ) in L ([0,T); L°(0,1)) which assume initial data

w(0,x) = uo(x), wt(O,x) = u,(x) and boundary conditions wx(t,O) = wx(t,1) =0,

t € {0,T], and satisfy

L

2 2 2 2
(2.5) ess-sup f {wttt(t'x’ + wttx(t,x) + wtxx(t,x) + wxxx(t,x)}dx < M.,
[o, 71 o0
For w(t,x) € X(M,T), (2.5) and the Poincare inequality yield
(2.6) wz(t x) + wz (t,x) + w2 (t,x) < M2 0<t<T 0<x< 1,
x 14 tx ’ XX ’ ’ r

We now consider the map S : X(M,T) =+ C2([0,T] x [0,1]) which carries

w(t,x) € X(M,T) into the solution u(t,x) of the linear equation

t

(2.7) u, metv e = g a'(t - T)y(w ) 4t + h

satisfying initial conditions (1.15) and boundary conditions (2.1). We note




that w'(wx(t,x)) is ¢! smooth and ¢‘(wx)tt, v'(w),, are in

L“([O,T]; L2(0,1)). Furthermore, if £(t,x) denotes the right-hand side of (2.7),
then f(t,*), f£.(t,*), £ (t,7) are in C([0,7]; L2(0,1)) and f£(t,x) = £4(t,x) +
£,(t,x) with f1tt' fztx in Lz([O,T]; L2(0,1)). It then follows by standard

theory that u (t,*), u, (t,*), u xx(t,-) and u (t,*) are in c¢c([0,T);

ttt tx t XXX

12(0,1)). our strategy is to show that, under proper conditions, S has a unique
fixed point in X(M,T) which will obviously be the solution to (1.14), (1.15),
(2.1) with the degired properties.

Lemma 2.1, When M is sufficiently large and T is sufficiently small, S maps

X(M,T) into itself.
Proof. We fix n > 0 and apply to (2.7) the forward difference operator A,

(dw)(t) 98F w(t + n) = w(t), thus obtaining

-t = [ '
A“tt 9 (wx)Auxx Ay (wx)uxx + Ay (wx)Auxx

(2.8)
t
' -
+ 4 g a'(t = T)y(w ) 4t + bh .

We multiply (2.8) by Autxx and integrate over {[0,s) x [0,1], 0 < g € T, After
appropriate integrations by parts, we divide through by nz and we let n + 0., We

give the details of the computation of one term:

s 1 s 1
f f AuttAutxxdxdt =- | f AuttxAutxdxdt
00 00
(2.9) .
1 ! 2 1 ! 2
=-3 ] e ) sxax + 5 [ (bu )70, x)ax ,
0 0
whence
1 fsf' 1 f‘ 2 1 f1 2
(2.10) lim — Au _Au, dxdt = - — u {s,x)dx + = u (0,x)dx
n40 n2 00 tt txx 2 0 ttx 2 0 ttx

where

i
!
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(2.11)

Up ey {0, X) = v(ug (x)) + h (0,x) .

We apply the same procedure to the remaining terms of (2.8) thus obtaining

L 2

1 2 1 \ 2 1
(2.12) 2 g U, (S/X)ax + g o' v (s,x))ul  (s,x)dx = 3 £ U, (0rX)ax
1 \ 2 1 w 2
* 3 f (uOX(x))u1xx(x)dx +3 [ [ e"tw )wt MexxXat
0 00
s 1 s 1
* g g ¥ (wx)wtx xxuxx ttx dxdt + g g tp.("I:tc)wtxx"‘xx“t:t:xdxdt
1
* g g ¢ (wx) tx XXX ttdedt - g a (s)‘p(qu(X))xut:xx(s'x)dx
1 1
+ g a'(0)lu, (x)) u, . (x)dx + g g a™(e)y(uy ) u  dxde
1 s s 1
-J u o (Se%) g a'(s - t)ylw (t,x)) deax + g g at(0)¥(w ) v
t s 1
+ g g U g a™(t - T)ylw ) drdxdt + g g NI

1

0 1tt txx

We now differentiate (2.7) with respect to t and x to obtain

t
- n? - " - "
(2.13) uttt v (wx)utxx e (qu)UOxxu1x g G (wx)wtxuxx}TdT

t
= ] ' -
a'(e)yluy )+ [ ae TYlw ) dt +h o,

-10-

+ .
/ h1t(s,x)utxx(s,x)dx f h1t(0,x)u1xx(x)dx + g g h u dxdt

dxdt




l (0,=) 0

0

0

2
- ’ - " - "
(2.14) uttx v (wx)uxxx v (qu)UOxx g lo (wx)wxxuxx}rd'r
t
= ? -
g a'(t - TIy(w) 4t +h
from which we easily get the estimates
1 1
2 . 2 2
(2.15) g uttt(s.x)dx 6 £ v (wx(s.x)) utxx(s,x)dx
1 2.2 2
<6 (J; ¢ (uOX(x)) u0xx(x)u1x(x)dx
1 s 2 1 5 5
" [}
+ 6 ({ {({ fo"(w Yw u 1 at}ax + 6 ({ a' (£) y(ug (x))ax
1 s 2 1s 2
+6 [ {f a'(s~ t)p(w ), dt}ax + 6 J ] niexa ,
¢ 0 00
1 22 2
: -
(2.16) g ¢ 'l (s,x)) U (s,x)dx - 5 g by SrX) A%
! 2 4 v s 2
i »
<5 g g"luy (x))%ug dx + 5 [ {g fo"tw v, u 1 at}ax
1 8 2 18 2
' -
+5 g {g a'(s - t)(w ) dt}ax + 5 g g h’dxdt .
, Let us set
' 2 N2 2 2 2 2
No= g {“o * qu qux + quxx * u1x u1xx}dx
’ (2.17)
L 2 2 *V 2
+ sup [ {hT(E,0+hT (£, x)+h7 (t,%) Jax + I O FU T S L




2 1
vi= sup [ {u
fo,T1 ©

2
tt

xlt,x) + uixx(t,x)}dx .

2
+
tx(t,x) u

2
t(t,x) +u ex

t
Then, by virtue of (2.5), (2.6), the Poincare inequality and Schwarz's inequality,
every term on the right-hand side of (2.12), (2.15), and (2.16) can be majorized by
one of p(N), Tq(M)V2, p(N)V, Tq(M)V, T2q(M)V2, T 2p(n)V, T2q(M), Tp(N), where
p{*) and ql(+) are locally bounded functions on (0,®). Thus, combining (2.12),
(2.15) and (2.16) and using (2.2), we arrive at an estimate of the form

(2.19) v2 < c{p(N) + Tq(MIVZ + p(NIV + Tq(M)V + T2q(M)Vv?

+ T 1/2p(N)V + T2q(M) + Tp(N)) .

Applying the Cauchy-Schwarz inequality,

(2.20) {1 ~ cTq(M) - 2eT2q(M) - cTp(N) = Y4 Jv?

< cl2p(N) + cp?(N) + q(M) + T2q(M) + Tp(N)} .
Thus, if one fixes M2 > 8c{2p(N) + cpz(N) + q(M)} and then selects T so small
that, at the same time, cTq(M) + 2cT2q(M) + cTp(N) <1, and
cTzq(M) + cTp(N) < M2/8, (2.20) yields V2 < M2 and u(t,x) € X(M,T). The proof
of the lemma is complete.
We now equip X(M,T) with the metric
- ! - 2 - 2 - .2 !

(2.21) p(u,u) = max {f [lu zu )7+ (u -u )"+ CT ](t,x)dx}/2 '
[o,71 o©
where u, u € X(M,T). On account of the lower semicontinuity property of norms in
Banach space, X(M,T) is complete under op.

Lemma 2.2. For M sufficiently large and T sufficiently small, the map

S : X(M,T) » X(M,T) is a strict contraction with respect to the metric o.

w - w,

Proof. Let w(t,x), w(t,x) ¢ X(M,T). We set u = Sw, u = Sw, W

U=u-u. Then U(t,x) is the solution of the problem:

-12=




t
u - ¢'(w U A 4
e ( x) xx (t.x)uxx / WAt

(2.22) tt o
t -
+ (j’ a'(t = DV (wow o+ B(T,x)w W 1dT ,
(2.23) u(o,x) = 0, Ut(O,x) =0, 0<x< 1,
(2'24) Ux(tlo) = Ux(tl1) = 0( 6 <t< T,
where
0w (£,x)) - sp'(v-lx(t,x)) .
- v wx(t,x) # wx(t,x)
Wx(t,x) - Wx(t.x)
(2.25) A(t,x) =
E‘ «p"(wx(t,x)). wx(t,x) = wx(t.x) '
P lw (E,x)) = V(W () _
— R wx(t,x) # wx(t,x)
) wx(tIX) - Wx(tJX)
; (2.26) B(t,x) =
P (E,%)) w (£,x) = Gx(t,x) .
Furthermore,
- ] = " " " vy
(2.27) Uttt ¥ (wx)utxx A(t'xmtxxwx tv (wx)wtxuxx e (wx)uxxwtx

- C(t,x)wtxwx + a'(o)w'(wx)wxx + a'(O)B(t.x)wxxWx

t t
" - ' " - o
+£ a"(t = TIV'(w W At + (f) a"(t = TIB(T,x)w W dt

where




e (w (t,%x)) = ¢"(w (t,x))
x X

B w (t,x) # w (t,x, ,
- X X
wx(t,x) - wx(t,x)

(2.28) Cc(t,x) =

e (w (t,%x)) , w {t,x) = w (t,x) .
X X X

Multiplying Equation (2.27) by Upe and integrating over [0,1] x [0,s],

0 < s < T, we obtain, after certain integrations by parts,

(2.29) by (Sex)ax + = f o' lw (s,x))u (5%) ax

N|=
O

s 1 s 1

u 2 - "
£ g (w Jw, UL dxdt é g p"(w Jw U U axdt

s 1 s 1

+[ ] m_ WU dxdt + [ ] e"ww U U dxdt
00 txx 00 tx tt xx

s 1

+ f e"(wu W U dxat - [ [ ow WU dxdt
54 xx tx tt 0 ExxEt

s 1 s 1
a'(0) [ [ y'ww U axdt + a'(0) [ ] Bw_wuy  axat
00 oo

+

s 1 t

+ g g U, g a"(t - Ty (w JW__drdxdt

s 1 t

+ g g U, g a"(t - T)Bw W dtdxdt .

Moreover, from (2.22) we get

1 1 1 s
[ e'(w (s,x))%0% (s,x)ax < 3 [ U2 _(s,x)dx+3 [ 252 (f w at)’ax
0 X XX 0 tt 0 XX 0 X

(2.30)

s
(] - - 2
+3 [ {f a'(s £ (w )W+ Bu W ldt} ax .

Combining (2.29) with (2.30) and using (2.2), (2.5}, (2.6), the Poincaré irequality

-14-




e

and the Cauchy-Schwarz inequality, we arrive, after a long computation, at an

estimate of the form

1

2 2 2
(2.31) g U (sax) + UL (s,x) + U, (s,x)}ax

2 1
< (T +7T°) max [ {w
fo,T1 0

2

2 2
ep(trx) + wtx(t,x) + Wxx(t,x)}dx

s 1
2 2 2
+m g g UL, (e,x) + UL (&,x) + Ul (e,x)}baxdt ,

where m depends solely upon al{t}), M, and bounds of ¢, V) and their derivatives
on the interval [-M,M]. 1In order to assist the reader to See how (2.31) is derived
from (2,29), (2.30), we give the details of the estimation of one of the most

complicated terms on the right~hand side of (2.29):

s 1 t
(2.32) g g Uy g a"(t = 1)y’ (w )W drdxdt
2 s 1 2 ‘ s 1 t ,
< s g g Uttdxdt + 2¢ g g {g a"(t - T)w.(wx)wxxdr} dxdt
s 1
2 2
< = f f vo dxat
€0 tt
s t t 1 2 5
+2c [ {f la"(t - vlatH] Jamt - | | b (w222 dclaxae
0 0 0 0
s 1
2 2
< = f f U7 dxdt
€o0
+ 2es{] la"(v)lat} { max ' (e)*}{ sup [ W (tx)dx} .
0 [~M,M] 0,7y 0 ¥

From (2.31) and Gronwall's inequality we deduce

pie e




1
2
max | {Uzt(t,x) +U

2
(t,x) + U (t,x)}dx
t tx XX
[o,T} ©

(2.33)

1
<1+ 1™ max [ (W (t,x) * Wo_(t,x) + Wo_(t,x)}dx .
tt tx XX
0,71 0

Thus, when T 1is so small that (T + T2)exp(mT) < % , (2.33) yields
- 1 - -
(2.34) p(Sw,Sw) < 3 p{w,w), for w,we X(M,T)

and the proof of the lemma is complete.

Proof of Theorem 2.1. From Lemma 2.2 and the Banach fixed point theorem we deduce

the existence of a unique fixed point of S in X(M,T), for conveniently large
M and appropriately small T, which will be the unique solution of (1.14), (1.15},

(2.1) on ({0,T) x [0,1]. Let TO < @ be the maximal interval of existence of a

solution u(t,x) to (1.14), (1.15), (2.1) with ut(t,'), ux(t,‘), utt(t,'),

L] t 1
utx(tl )l uxx(tl.)l uttt(t'.)’ uttx( r.)' utxx(t,‘), uxxx(t,') in

Lm(IO,T]; L2(0,1)) for every 0 < T < TO. If TO < @ and (2.4) is not satisfied,
2
we can extend u(t,x) up to t = Ty SO that u(t,x) (o ([O,TO] x [0,1]).
Moreover, by weak convergence in L2(0,1), u(To,x), ux(TO,x), uxx(To,x), uxxx(TO,x\,

ut(To,x), utx(To,x), u (To,x) are all in L2(0,1). But then, using u(TO,x),

txx

ut(TO'X) as new initial data, we may extend u(t,x) to some interval

[TO,TO + €], Dbeyond TO’ and this is a contradiction since [O,TO) is assumeX

maximal. The function wu(t,x) will be a solution of (2.7), with w{(t,x) = u(t,x),
and thus, as noted above, uttt(t’.)’ uttx(t,-), utxx(t'.)' uxxx(t,-) are all in

c(ro,r); L2(0,1)), for every T in (0,T;). The proof is complete.

3. Global Solutions. Our objective in this section is to show that when the body

force is "small” the maximal interval of existence of solution to (1.9), (1.11),

(1.18) is (-»,») and solutions decay as t » =, For that purpose, the dissipative

character of viscosity, embodied in assumptions (1.3) on the relaxation function a,

~16~
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plays the crucial role. Assumption (1.3) will be exploited here through its

consequences recorded in the following

Lemma 3.1. There exist positive constants 8, Y such that

s t 2 s t

(3.1) [ 1f att - nwtniarl“ae < 8 [ w(t) [ a(t - T)w(t)drae ,
-00 -0 -0l -00
s t 2 s t

(3.2) [ 1] a'(t -Tnwltydrl®at < v [ w(t) [ alt - T)w(T)drae ,
-00 -l 00 -

for any s € (=~,®) and every w(t) € L2(-°,s).

The proof can be read off, for example, from Lemma 4.2 of [7], recalling that
1
a(t), a*(t), a"(t) are in L (0,»), and that (by assumption (1.3))
a(t) - a exp(~-t) is a positive definite kernel on [0,®) for some a > 0. As a

matter of fact, we may use

<« (-
(3.3) B =2 1(f laeriael? + 2 {f jatmrlae}?
¢ 0 ® o
1,0 2 4, 2
(3.4) Y=o { late)lat}” « 2 {f la"(e)lae}” .
0 0

Another important implication of a combination of (1.3), (1.5) and (1.6) is the
property:

Lemma 3.2. Let k(t) be the resolvent kernel of the operator

t
(3.5) e'(0)wit) + [ a'(t - DIP' (0wlt)ar ;
-l

that is, k is the unique solution of the linear Volterra equation

t
(3.6) @' (0)k(t) + [ a'(t = T)P'(0)k(T)AT = =y'(0)a'(t) .
0

Then k(t) € L’(O,m).




The proof of Lemma 3.2 follows by a standard argqument: Since
a'(t) ¢ L1(0,”), the Paley-Wiener theorem states that k(t) ¢ L’(O,w) if =2nd only
if
def 1] 1 “l L 1] N
(3.7) P(z) = ¢*'(0) + ¢'(0)a'(z) = x"(0) + ¢'(0)za(z)

-~

does not vanish on the half plane Rez > 0. (In (3.7) =z = E+if and denotes
the Laplace transform).

A simple calculation yields ]
(3.8) ReP(z) = x'(0) + w'(O)ERe;(z) - w'(O)CIm;(z) P
(3.9) InP(z) = ¢*(0)CRealz) + ¥'(0)EImalz) .

On account of (1.3), (1.5) and (1.6),

(3.10) ReP(E + i0) = x'(0) + y'(0)Ea(E) > o0, 0 <E K>,

As regards ImP(z), since by the strong positivity of a{t), Rea(if) > 0, we have

ImP(0 + iZ) = Y'(0)ZRea(iZ) is positive for [ > 0 and negative for 7 < 0. On
the other hand, ImP({ + i0) = 0, 0 € £ < », Furthermore, since a'(t) € L1(0,~),

we deduce by the Riemann-Lebesque lemma that lim ImP(z)
- fz |+
= $'(0) 1lim Ima'(z) = 0, uniformly on Rez » 0, PRut ImP(z) is harmonic on
lz|»e
Rez » 0 so that, by the maximum principle, we conclude that ImP(z) > 0 on

{z=£+ iglE » 0, £ >0} and ImP(z) <0 on {z=¢£ + iglE >0, § < 0}. 1In
conjunction with (3.10) this yields P(z) # 0 on Rez 2 0 and the proof of the
lemma is complete.

Before proceeding to the proof of Theorem 1.1, let us show that the boundary
conditions (1.18) are equivalent to
(3.11) ux(t,O) = ux(t,1) =0, - <t <>,

We multiply (1.8) by W(e(t,x))t, integrate over (=®,s), =» < g8 < ®, and use the

o positivity of a(t) to get

S
(3.12) [ xtete,x)ilelt,x)) gt €0, = <5<, x=0,1,

-0
3
i‘ ‘ or

9| -18-




Y(e(s,x)) < 0, - < g <o, x=0,1,

e
a
vie) %2F [ yemvt(nyan .
0

On account of (1.5), (1.6), ¥(e) > 0 on (-6,6)\{0}, § positive small. Thus
(3.13) yields e{(s,x) =0, = < s <®, x=0,1, and (3.11) has been established. i

Proof of Theorem 1.1. By virtue of (1.4), (1.5), (1.6), there are positive § and

K such that
(3.15) ¢'(e) > x, Y'(e) > x, x'(e) > k, le|] < &8 .
We modify ¢{e) outside the interval (-§,8] so that (2.2) be satisfied and we

let u(t,x) be the solution to (1.9), (1.11), (3.11) on a maximal time interval

For T ¢ (-“,TO), we set

LI 2 2 2 2
u(T) = sup [ {u (t,x)+u (£, x)+u (€, x)+u, (£, x)+ul (t,x)

(3.16) (==,7] 0

2 2 2
(t,x)+u tx(t,x)+utxx(t,x)+uxxx(t,x)}dx

2 2
+
uxx(t,x)+u t

ttt

T 1
2,2 2 2 2 2.2 .2 .2 2 :

+ +uf+rueu® +u’ 40’ 4+ + + + . ]

{m g U e T Pt S 350 .

Our strategy is to show that there are positive constants v, X, v €< §, such that,
1 if
2

2 2 2
(3.17) |ux(t,x)| + lutx(t.X)l + luxx(t.x)l €v, -m¢ct<T, 0< x<1,

then
(3.18) U(T) < KG
A‘ : ’ where G is defined by (1.23). Once this claim has been established, we may

complete the proof of the theorem by the following line of argument similar to that

previously used in [6]): First we note that, by virtue of our assumptions on

vit,x), (3.17) is automatically satisfied, as a strict inequality, when ¢t is

=19~
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sufficiently small. Next we observe that, in view of the Poincare inequality

2 2 2
qu(t.x)l + |u x(t,x)l + luxx(t,x)l

t
(3.19)

1
2 2 2
<
g (o, (6,017 + o (6,917 + fu_ (t,y) "}y ,

and when G < 1 with p? < v3/K, (3.18) implies (3.17) (as a strict inequality).
Thus, for G < u2 < vz/K, (3.17) and (3.18) will hold for every T on the maximal
interval of existence in which case Theorem 2.1 (in particular (2.4)) implies

T = ®, From (3.16), (3.18) we have u(t,*), ut(t,°), ux(t,'), u (t,*),

0 tt
. . . . . . i 2 o).
utx(t' ), uxx(tl ), uttt(tl ), “ttx(t' )0 utxx(t' )l uxxx(t: ) in LY ((=%,®);
o 2
L2(001)) NL ((=,®); L (0,1)). Now u(t,e), ut(t'.)' ux(t,‘), “tt(t'.)' utx(t,'),

. . ° L] 2 ™). 2 i
u (tl )l uttt(tl )' uttx(tr )' u xx(t, ) in L (('“, )' L (0,1)) implles

XX t

2
L7(0,1
(t,*),u x(t'.)'uxx(t'.) __L_L_l» 0,t + =,

(3.20)  ult,*),u (t,*),u (t,*),u_ N

which, in conjunction with ux(t,°), u (£,*), u___(t,*),

(t,*), uxx(tt')l ut txx

tx

u (t,) in L7((=,®); £2(0,1)), yields (1.25).

tx

It thus remains to verify (3.18) under the assumption (3.17). We fix s in
(=»,T), The first estimate is obtained by multiplying (1.10) by w(ux)tx,
integrating over (-«,s] x [(0,1] and integrating by parts. The reader should be
cautioned that in these and the many integrations by parts which follow, there are
several possible ways to carry out such integrations. The ones selected in this
section are chosen for the purpose of using the same estimates when considering the
boundary conditions (4.1), (4.2) below (see Theorem 4.1). The result of this

calculation is

-20=
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1 1
1 2 1
(3.21) 2 g V' lu (s,x) ) (s,x)ax + 3 [ X'(Ux(slx))W'(ux(s,x))uix(s,x)dx

2%

s 1 t
+ {w g v(u ) x {m a(t - T)w(“x)rxdTGth

L1 vl -3 S
= = Y"(u Ju, dxdt - = {x* (0 )P"(u )
2 o 0 X tx 2 {“ g X x v ux

1
axat -({ gls.,x)y(u (s,x)) dx

- x"(u )y (ux)}utxux

s 1
+ {. g g ¥(u ) dxdt .

To motivate our next estimate, we differentiate (1.10) with respect to t and

then integrate formally by parts to get

(3.22) uttt = x(“x)i:x * {: alt - T)w(“x)TtxdT * gt *
We would like to multiply (3.22) by 'l»'(ux)ttx and then integrate over

(=-~,8) x [0,1] in order to arrive at an estimate analogous to (3.21).
Unfortunately, this operation is not legitimate since w(ux)ttx does not
necessarily exist as a function. Consequently, same as with the derivation of
(2.12) in Section 2, we shall have to work first with a discrete analog of (3.22)
and then pass to the limit. To this end we apply to (1.10) the forward difference

operator A, of step n > 0, thus arriving at
t
. = + - + .
(3.23) Bu,, = Ax(u ) {w a(t = T)AY(u ) At + Ag

We now multiply (3.23) by Aw(ux)tx, we integrate over (-»,s] x [0,1], we perform
bel
a number of integrations by parts, we divide through by n”, and we pass to the

l1imit as n * 0. The outcome of this tedious but straightforward calculation is
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1 1
LA 2 1 ' 2
(3.24) 2 g v (ux(s,x))uttx(s.x)dx + 3 | x (ux(s.x))w'(ux(s,x))utxx(S,x)dx ;

0

s 1 t
1
+ lim— [ [ Aytu), [ a(t - T)Ay(u )__drdxdt
N0 n2 0 x tx 7 X TX

s 1 1
=2 " - " 2
2 £w g v (ux)utxuttxdth g v (ux(s,x))utx(s.x)uttx(s,x)dx
s 1 3 3s1 |
+ {m g wu-(ux)utxuttxdxdt +3 {m g {x"(ux)w'(ux) .
: 2
] - X'(ux)w"(ux)}utxu XAt

‘ t
k | |
1 s 1 {

f " 0)e - v "
£ + . g {x (u ' (w ) - x (ux)w (ux)}uxxuttxutxxdxdt
4 3
F
A s 1 )
+ [ {x"'(ux)w'(ux)-x"(ux)w"(ux)—x'(ux)w"'(ux)}utxuxxutxxaxat
- ()
S 1 2 s 1 3 )
- " " - L] "y
{m { x"(u )y (ux)utxuxxutthth {Q g x"(u ) (ux)utxuxdedt

- g X (ux(s,X))w (ux(s,x))utx(s,x)uxx(s,x)utxx(s,x)dx

s 1
ax + a
B g1t(S'X)Mux(s'x))tx x {a g g1tt‘p(ux)txdx t
s f1
+ [ g,  Vlu ) daxdt .
- 2tx x'tt
E 1 The reader should note that because ty(ux)ttx does not exist as a function, one

cannot, after dividing (3.23) by n, pass to the limit as n + 0 under the

; ' : © integral on the right hand side of (3.23). However, the limit of every other term

in (3.23) exists as n * 0, and therefore,




t
lim [ a(t = 1)Ay(u )_ (1,x)dt
n*0) - X TX

exists for t ¢ [0,T}], 0 € x € 1. The same comment (arrived at by the same
reasoning) applies to the limit as n * 0 of the multiple (quadratic form) integral
on the left hand side of (3.24). It is important for the subsequent estimates (in
particular (3.27), (3.28)) to know that this limit exists and is finite (in fact
positive). This is important for the concluding part of the proof of Theorem 1.1
(see argument preceding (3.37) below).

To get our next estimate we multiply by u the identity

txx

t t
. = - ' - + -
(3.25) a(0)aj(u ) {w a'(t = )Ay(u ) at {n alt = T)AY(u ) dt
and we integrate over (-®,s] x {0,1]. We majorize the right~hand side of the
resulting equation by first applying Schwarz's inequality and then using (3.1) and
(3.2). The result is

s 1 |
(3.26) 20 ) g u Byl ) dxdt |

< {£w g Uy dxdt} 2 {y Iﬂ g Myta ) {m a(t-1)8y(u ) drdxdt}
s 1 2 t@ s 1 t 2
+ {£“ g ug, dxdt} "2 {g {w g Bytu ) {» a(t-T)Ap(u ) draxat} 2.

Dividing through by n (the step of the forward difference operator A4), letting

n+ 0, and using (3.15) and the Cauchy-Schwarz inequality, we end up with the

estimate




1 s t
1 S 2
(3.27) 2 xat0) {m g utxxdxat ~ xa(0) {w g w(ux)tx {m a(t-T)w(ux)Txdexdt

Y

1 t

S

8 N

- lim— [ [ Ap(u)),_ [ a(t-t)Ay(u_)__drdxdt
xa(0) N0 n2 %0 X'tx 7 x'TX

s 1
< - a(0) f f P"(u Ju_u u  dxdt .
- 0 X" Ttx xx txx

Next we integrate over (-®,s] x [0,1] the square of (3.23), we use (3.1),

2

then we divide through by n and we let n + 0 to get

s 1 2 s 1 2 2
- ]
(3.28) {” Io Upgydxat = 4 {n £ X' (0,070 3%t

s 1 t
1
- 48 lim — AYp(u ) a(t-1)Ay(u )__drdxdt
n+0 n2 {a { X tx {w X X

s 1 22 2 s 1 P
<af [ x"(u)%’ v axat + 4 [ [ g<axat .
- 0 X tx xx ~ 0 t

To the above estimate we append

1

s 1 s
2
(3.29) [ ] ul _axat - [ [ u _ u __axdt + [ u_ (s,x)u__ (s,x)dx = 0
tw p  tEX oo Pt txx o tt txx
which can be derived from
fs f1 2 fs f1 f1
(3.30) Au, dxdt = Au,  Au  dxdt - Au (s,x)Au_ (s,x)dx
o 0 tx - 0 tt xx 0 t XX

by passing to the limit. In turn, (3.30) can be easily verified via integrations by

parts.
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We now differentiate (1.9) with respect to ¢,

t
= ' -
(3.31) U = PLU)+ {m a'(t - Dy(u) dr+ g ,

and we easily get the estimate

1 1
2 , 2
(3.32) (f) Uiy (S/X)ax = 5 (f) ¢ lu (s,x))uy_ (s,x)dx
L 1
- 5{f la’ (¢)}at}? sup | w'(ux)zuixxdx
0 (-=,s] 0

1
" 2 2
<5 f ¢ (ux(s,x))utx(s.x)uxx(s,x)dx

0
* 2 ! 22 2 '
+ 5{f la'(t))at}* sup [ Vhlu )Tu ul dx 4 [ g, (s.x)dx .
0 (==,8] 0 0

The final set of estimates is derived by the following procedure: We
differentiate Equation (1.9) with respect to x and then add and subtract

appropriate terms to arrive at

t
] [] - ] = - ”o - !
¢ (0)u + {” a'(t = TI'(0)u ar=u. - [¢'(u) = ¢t (0)]u

(3.33) tt x

s e e e

t
" 2 - - - [ ]
- ¢mu {u a'(t = Ty (u) - (0)]u  dt

t
" 2 - def
- £, a'(t = )Y"(u Ju At ~ g X(t,x) .

Thus, if k(t) is the resolvent kernel of the operator (3.5),

‘[ ' t
. (3.34) £1(0)u  (t,x) = X(t,x) + [ k(e = DX(1,x)d7 .

-in

1
By Lemma 3.2, k{(t) ¢ 1. (0,®) so that we have estimates
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1 1 2
{s,x)dx < 2 f X (s,x)ax
0 X 0

© 1
+20f Ixo)tat}? sup [ x%(t,00ax
0 (-»,s8] 0

]

2 S 2 2, (S ' .2
(3.36)  ¢'(0)" [ [ w axdt < 2{1 + ([ Ik(£)lat)?} [ [ x"(t,x)axar .
-® 0 0 - 0

We are now ready to prove (3.18) under assumption (3.17). First we note that,
on account of (3.15), U(T) can be majorized, with the help of the Poincare
inequality, by the supremum over (-»,T] of an appropriate linear combination of
the left-hand sides of the estimates (3.21), (3.24), (3.27), (3.28), (3.29), (3.32),
(3.35) and (3.36). On the other hand, each term on the right-hand sides of these
estimates can be majorized, by means of the Cauchy-Schwarz inequality and (3.17), by
either ¢G, or O(v)U(T), or ¢eU(T) + c(e€)6 for any € > 0. We thus arrive at an
estimate of the form
(3.37) u(T) < {0(v) + Oo(e)}u(T) + cle)G
from which one can get (3.18) by fixing v and ¢ sufficiently small. The proof

of Theorem 1.1 is complete.

4. Remarks and Extensions. Wher the endpoints of the body are pinned, in the place

Chl AL

of (1.18) we have boundary conditions
(4.1) u(t,0) = u(t,1) =0, -t ™,
Similarly, when one endpoint (say x = 0) is pinned and the other is free,
(4.2) u(t,0) = 0, olt,?) =0, -0 <t <>,
In these cases no rigid motions are possible so we don’t have to assume (1.20) nor
should we expect that (1.21) will generally hold.
vhen the body force satisfies (1.22) with qz(t,x) 2 0, all estimates derived

in Section 3 for the case (3.11) are alsn valid under (4.1) or (4.2). We thus have
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Theorem 4.1. There is u > 0 with the property that for every g{t,x) on

(=»,2) x [0,1), which satisfies (1.22) with gz(t,x) = 0 and (1.24), and any

vit,x}) on (-=,0] x [0,1], with v(t,*), vt(t,-), vx(t,'), v, . (t,*), v. (t,*),

tt tx

v t,*), v t,* . . v . i
XX( ’ ’ ttt( .°), vttx(t' ), Vtxx(to Y, xxx(t, ) ain

cl(-=,0); 1%(0,1)) N L2((==,01; 12(0,1)), which satisfies (1.9) together with

(4.1) (or (4.2)) for t < 0, there exists a unigque u{t,x) on (~»,») x [0,1],

with u(t,s), ut(t.'), ux(t,'), utt(t,°), utx(t,'), uxx(t,~), uttt(t'.)' uttx(t,-),

U (B u (t,0) in C((~=,®); £2(0,1)) 0 L2((—=,=); 1.2(0,1), which satisfies

(1.9), (1.11) and (4.1) (or (4.2)). Moreover, (1.25) holds.

As history and body force get smoother, solutions become smoother. Regularity
results can be ohtained by establishing a priori estimates for derivatives of u of
order 4, 5, etc. Such estimates fall into three categories: those derived by
differentiating (1.10) a number of times with respect to t and/or x and then
multiplying by the appropriate multiplier (recall the derivation of (3.24)); those
derived by expressing certain derivatives in terms of other derivatives through the
equation itself (compare with (3.32) or (3.35)); those obtained through
interpolation (such as (3.29)). The program is feasible because, since the problem
is autonomous (kernel of convolution type), differentiations with respect to x
or t essentially preserve the form of the equation (compare, for example, (3.22)
with (1.10)). Time derivatives of u satisfy the same homogeneous boundary
conditions as u, at x = 0,1, so that differentiating the equation with respect
to t 1is generally a better prospect than differentiating with respect to x. 1In
any event there are so many possible comhinations of differentiations, integrations
by parts, etc., that one may establish several variants of regqularity theorems.
Here is a typical one:

Theorem 4.2. Suppose the assumptions of Theorem 1.1 hold and, in addition, ¢ and

y are c? smooth,

vtttt(t'.)' vtttx(t'.)' vttxx(t'.)' vtxxx(t'.) vxxxx(t") are

in c((-=,01; £2(0,1)) 7 12((==,01; 12(0,1)) and




(4.3)

XXXX

(4.4)

by G.

ro (4.5)
é
|
(4.6)
(4.7)
‘ _ where ¢
(strain),

(1.9), (1.11), (1.18) possesses

We close with remarks on the multidimensional situation. The configuration of
the body is now a bounded set £ C R" with smooth boundary 08 and the
displacement is an n~dimensional vector field u. A typical problem is to determine

u(t,x), =* < t ¢®», x €92, such that

. * . . 2 M
qtt(t. )lth(tl )ngx(tl ) in C((’“I;):L (0,1))2
L ((==,»); L (0,1))

glt,x) = q1(t,x) + qz(t;x) with q1ttt(t") (t,*)

"It ex
in L3((==,=); L2(0,1)) .

Then, when (1.24) is satisfied with ¥ sufficiently small, the solution u(t,x) of

Uere (8000 r Uppp (Bet)e w8 (et

w o (t,e) in c((==,=); £2(0,1)) N L2((=,=); L%(0,1)) and

unif.
uttt(tl )luttx(tl.)(utxx(t'.)'uxxx(t' ) _[3_’-1—]"’ o, t >,

It is noteworthy that the extra derivatives (4.3) of g that are required in
order to guarantee smoothness of the solution need not be "small". This is due to
the fact that all energy integrals are quadratic forms in the higher order
derivatives of u, with coefficients that are solely controlled by v of (3.17).

As we have seen in Section 3, Vv is controlled by U which, in turn, is controlled

%u n aJ¢ t oY
21 = 2 {s;ii + f a'(t - 1) g;ii dt} +a. i=1..0,n,
it J=1 3 - 3
“*<t<®, x€Q,
sle,x) = vit,x), ~<ct<o, xeq, % i
ult,x) = Q, -0 ( ¢t < -, X € N, i

and Y are known, smooth, matrix valued functions of the matrix e = Vy

g{t,x) is an assigned body force and y(t,x) is the given history.




We assume $(0) = ¥(0) =0, set

301.(3) 3?1.(3)
(4.8) C...o(8) = —=1=, b, (e) = .
ijke Bek2 ijkl aekz

and impose the symmetry restrictions

(4.10) Cijkt = Cxeis’ Pijkt T Pxeiy °

Assumptions (1.4), (1.5), (1.6) will here turn into coercivity conditions for the

partial differential operators associated with Cijkl(g)' Diiyg (@) and Eijkl(g)'

ijk

Under boundary conditions (4.7), coercivity is equivalent to strong ellipticity

(4.11) I 0 (0EEL L >0, 1€} = 1g1 =1,
1,5k, HASTLTKCSCR

(4.12) Y b (0)E.EC.5, >0, IEl = 1gl =1,
Ly, LIRESTERCSTR

(4.13) , j{k , By gua Q816858 > 00 gr =gl =1.

Assumptions (4.10), (4.11), (4.12) and (4.13) can be motivated by Mechanics.
However, in order to carry through the analysis, we require an additional condition
whose physical interpretation is less clear. We define

(4.14) ()E, (&)

ijlpqr(s) = E Dijkﬁ ipgr ~

and assume that F is symmetric,
«15

(4 ) ijlpqr = qurjkl ’

and that its value at e = 0 corresponds to a coercive operator. We note that in

the special case Q = X the resulting F automatically satifies the above

conditions.

Under the above assumptions it is possible to estahlish the existence of

globally defined smooth solutions to (4.5), (4.6), (4.7) by the procedure followed

here in the one-dimensional case. The strateay is to establish a rriori eneray
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estimates for the Lz(Q) norms of derivatives of u of sufficiently high order
{depending upon n) that would guarantee, via Sobolev's lemma, pointwise bounds
analogous to (3.17). The calculations, however, are very long.

It is easy to discern the essential ingredients in the proofs and it thus seems
feasible to develop an existence theory for the history-value problem in a class of
abstract nonlinear integrodifferential eauations

dzu t
(4.16) = = Alu(t)) + [ a'(t - 1)B(u(1))dT + g(t)

dt =0
on a Hilbert space H, where A and B are nonlinear operators defined on a scale
of Hilbert spaces (abstracting the scale of Sobolev spaces [wk'z(ﬂ)]n) and
satisfying appropriate symmetry and coercivity conditions. We remark also that the
general and physically interesting case in which the stress-strain relaxation
function is a n x n matrix a (in (4.5) a = aI) is considerably more

complicated than the situation considered here.
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