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SIGNIFICANCE AND EXPLANATION

Serial systems arise naturally in practice in engineering

and physics. Therefore it is of substantial significance to be

able to efficiently utilize data obtained on individual com-

ponents for the purpose of obtaining an overall assessment of

the reliability of the system. The methods of this paper may

be employed for this purpose.
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BOUNDS FOR OPTIMAL CONFIDENCE

LIMITS FOR SERIES SYSTEMS

Bernard Harris and Andrew P. Soms

1. Introduction and Summary

A problem of fundamental interest to practitioners in

reliability is the statistical estimation of the reliability of a

system using experimental data collected on subsystems. In this

paper, the subsystem data available consists of a sequence of

Bernoulli trials in which a "one" is recorded if the subsystem

functions and a zero is recorded if the subsystem fails. Thus

for each of the k subsystems composing the system, the data pro-

vided consists of the pair (ni,Y±), i-l,2,...k, where Y is

binomially distributed (nipi). We assume that Y1,Y2,"'Yk are

mutually independent random variables.

The magnitude of interest in this problem is easily evidenced

by the extensive literature devoted to it. In this regard, see

the survey paper by Harris (1977) and Section 10.4 of the book by

Mann, Schafer, and Singpurwalla (1974). In addition, the Defense

Advanced Research Projects Agency has recently issued a Handbook

for the Calculation of Lower Statistical Confidence Bounds on

System Reliability (1980).

Historically, the first significant work on this problem was

produced by Buehler (1957). However, Buehler's method as des-

cribed in that paper is difficult to implement computationally

when k>2.
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We proceed by describing Buehler's method in Section 2. In

Section 3 we specialize to series systemss that is, a system which

fails whenever at least one subsystem fails. Sudakov's (1974)

results are extended in Section 4 and employed to exhibit some

optimality properties of the Lindstrom-Madden method (see Lloyd

and Lipow (1962)) for constructing lower confidence bounds for

the reliability of series systems of stochastically independent

subsystems. Some numerical examples are given in Section 5 and

the results needed for this generalization of Sudakov's Theorem

are provided in the Appendix to this paper.

2. Buehler's Method for Lower Confidence Bounds

A system composed of k independent subsystems is said to be

a coherent system (with respect to the specified decomposition

into subsystems), if the system fails when all subsystems fail

and the system functions when all subsystems function; and replac-

ing a defective subsystem by a functioning subsystem can not

cause a functioning system to fail. Coherent systems are des-

cribed in Birnbaum, Esary and Saunders (1961) and Barlow and

Proschan (1975).

To any system one can associate a function, h(p)

h(plp 2,...,p), O<Pi l, i-l,2,...,k, where h(p) is the reliabil-

ity of the system when p is the probability that the i-h

subsystem functions. It is well-known that if the system is

coherent,

0 < h(j) < I ,

h(O,...,O) 0 , h(l,...,I) = I ,
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and h(plI...pk is non-decreasing in each variable.

For coherent systems, Buehler's mettod may be described as

follows: The otserved outcome (y,,...,yk can assume any of
k

N ( i+1) values, since Y. O,1...,n1  For convenience,
i-l

we denote n i-y by x i, iwl,2,...,k.

A partition (A1 ,A2 ,...,As), s>l, of the N possible outcomes

is said to be a monotonic partition, that is, A I<A2 <...<A if12 s

(0,0,...,O) C A1 , (nln 2V....nk) c A and if ; I (X.l1'.''X k09
x00 0 -n~2  i.,nk). k thn A s

x2 a (x21,...,x 2 k) with xli < x21, 1 then ; 1 Ai

implies x 2 C Ai, J > i.

Let

k -iIn-x x k n-y (2.1)

and for 1 < n < s-1, let

a. = inf h(p)I x f(x;p) - (2.2)

and a -0.

Each such partition may be identified with a function defined on

the set of sampl outcomes by defining the ordering function

g(i), where

g(;) - n if x C A , l<n<s ; (2.3)

obviously g(3) inherits the monotonicity properties of the

partition.

Subsequently it will be convenient to use ordering functions

g(;) such that the range of g(;) will be a finite set of real

numbers, r<r2 <...<r . With no loss of generality, we can identify

the sets Ai by defining A, - Ilg(;) ri, i-1,2,...,s. We can

j now establish the following theorems.

iLa -3-



Theorem 2.1. Let j be distributed by (2.1). Then ag() is a

(I-a) lover confidence bound for h(j). If bg() is also a (1-a)

lower confidence bound for h(j), then bia l<i<s.

Proof: Fix and let n(F) be the smallest integer such that

P-{X C U A} > a * (2.4)

and

P{ x U A} > 1-a . (2.5)

in(p)

Let

n
D X C U A (2.6)

Then D is a 1-a confidence set for p, since

P i{p C D g(j)} Pi {g(i) > n(M)I > 1-a . (2.7)

This establishes the first part of the conclusion. Further, since

h(p) is continuous and O<pi<l, the infimum in (2.2) is attained.

Now assume that i is the smallest index such that bi >ai
1 1

l<i 1 <s-l. Then, for some p0 0 Pit

bii > inf{h(W) I f (;) = } - h(.)
X i Ai, l<i

and

f(ial ) > a, h(j ) < b .
x cAiti<i 1

Therefore

l{(, < bg( >~ I f (;al > C1,
Pb(i) i CAi,i<i 1

a contradiction.

A-4-



Remark. Let d. sup 1-h(P)j f( i;P) " a }.Then dn is a
IxicAii<n

(1-a) upper confidence bound for 1-h( ), the unreliability.

Let A icE k 0 9i<xi<a,, i-l,2,...,k and let g(R) be contin-

uous on A (the closure of A) and strictly increasing in each

variable for CA. g(x) is to be regarded as an ordering function

as described immediately preceding Theorem 2.1. We require the

following additional property of g(x).

Fix xo A. Let g(io) < g(a,O,.,.,0) = g1 " Then

g(yl,O,...,O) = g(;o) has a unique solution in yl. Proceeding

recursively, let il < y, and define y, - Y2 (i1 ) as the solution

of g(X0 ) = g(ily 2 ,0,...,0). For each lj<k and ii J I < YJ-

le-y2 '. il M let yj 2..,..., 1 be the-2 f - 2 -1 "l -

solution of

g(i0) - g(ill, 2,...,i J lj ,O,... . (2.8)

We require that the equations indicated in (2.8) have

unique solutions for each yj.

Then define

[Y1] [Y2] Yk
- I I ... I f(?;) , (2.9)
ifOi 2=0 1k.0

where, for J>l, yj - y (ili 2,..,,i 1 ). Let

f (io0 ;a) sup F( o;i) , O<a<l. (2.10)

Then we have

Theorem 2.2. If io satisfies inf f * (x ;a) 0, sup f (X0 ;a)SO<a<l 0<a<l

and f (x0 ;a) is a strictly increasing function of a, and if

° c An where g( ) determines (AIA 2 ,...,As), and if

. -5-



b -inf h(P)lx~ f( 1,) }* 2.1

then we have

f ( ;b) a

Proof: Since the infimum in (2.11) is attained, there is a po

such that b = h( 0) and F(xo;po) cc. Then f (xob) > 0L. if

f (xob) > ci, there exists p a with a =hlj a), a'b and

f (x ;a) = a contradicting (2.11).

Obviously, the above discussion can easily be modified to

obtain upper confidence bounds on the unreliability 1-h(p) by

replacing inf by sup in (2.11) and requiring that f (x ;a) be a
0

strictly decreasing function of a, O<a<l.

3. Applications to Series Systems

k
For a series system h(p) - 1 pi Further, throughout this

section we assume that g(x) satisfies the conditions necessary to

* insure that the solutions for yl,..., yk indicated in (2.8) are

unique. Then we have the following theorem.

k ,
Theorem 3.1. If h(p) 11 pit then inf f (R ;a) - 0,

* il 0<a<l
sup f (ioa) 1 1 and f*( o;a) is strictly increasing in a,

O<a<l
whenever Xo (x ol X ) satisfies xoj < n J-1,2,...,k.

Proof. Since h(p) - 1 if and only if pi 1 1, i-1,2,...,k, it

follows from (2.1) that

lrm sup F( o;P) 1
a4l h(f) a

I _-6-
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Similarly, h( ) -0 if and only if at least one pi 0,

1-1,2....,k. Since F(R ;f) < pX<n) 1Px n) lq,

we have

lim sup F(i ;P) =0

To show that f 0~ ;a) is strictly increasing in a, consider

0<a<b<l and let a -(Pal"..',Pa ) satisfy f (x ;a)- F(R O;pa).

Similarly, let pb satisfy f (x ;b) -F(i 0;p Let

{ ilpi 2 ... 9 ir} be any non-empty set of indices such that

P b ) hr <1adltIC be the remaining indices. Then
ai a

S b 1/r

jC ai i a ideI ai~

From the monotone likelihood ratio property of the binomial

distribution,

F(x O;p ) < F(; O;p )

where the components of p are given by (3.1). Then

F6Oi)< u (oF(x- o; r) b f*(0;b)

h(p)-b

4. Sudakov's Methoc

I (r~s) t r-ls T1t, 1 1dt
Then if y is an integer, y<n, we have

-i
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For O<y<n, real, define u(n,ya) by ot - In (n-y,y4l).

Thus, for integer values of y, u(n,y,a) i a 100(1-a) percent

lower confidence limit for p. Sudakov (1973) showed that for
k

n and g(R) = -x
- i-i

u(nlyl,) < b < u(nl,[yl],o)

k
where yl nlqo, qo 1 - H ((ni-x o)/n i)

u(n,,Y,,Ct) is called the Lindstrom-Madden method for determining

lower confidence limits for the reliability of series systems

(see Lloyd and Lipow (1962)).

Lipow and Riley (1959) used a different ordering function;

nevertheless they noted that for "small" ni, their tabulated

values provided good agreement with the results using the

Lindstrom-Madden method. For large values of ni, the tabulated

values that they provided are based on the Lindstrom-Madden

method. Here we provide a further justification for the

Lindstrom-Madden method by establishing that it provides conserva-

tive lower confidence limits (i.e. is a lower bound to b defined

in (2.9)) using the ordering function g(i) employed by Sudakov

and we also obtain an upper bound for b, thus determining the

possible error of the Lindstrom-Madden method.

Sudakov's proof is unnecessarily complicated and contains

some incorrect assertions, which nevertheless do not affect the

validity of the conclusion. In the Appendix we provide a simpler

proof of some auxiliary results needed for the generalization of

Sudakov's theorem given below.

~-8-
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Theorem 4.1. Let g(x) satisfy the hypothesis of Theorem 3.1.

Then,

b < min u(n1,[y*),ct) V (4.1)
l<i<k

where b is given by (2.11) and Yi , Yi(J 1 ij2 3 .. ji-I) is evaluated

at j~ Note that y = y If we also have

ji-1 > l Jfl,2,...,k-1 , (4.2)
n J-i - n .~nj-j - j+1

then

u(nsyl,a) < b . (4.3)

Proof: (4.1) is immediate from (2.11) upon setting p.jf=1 , jii and

solving F( 0 ;1,...,, . . Recall that uI < n 2 <... nk

and

[ylJ

F(io ;j) w iI b(nl1 ;Pl,nl)

[yI 0k - b(nk-l-l kl )Ipk (nk- yk ] [y k ]+ )  .(4.4)

Now, apply Lemmas Al, A2, and A3 to the innermost sum in (4.4), to get

{o [Yk-11

1 0b(nk-l"ikl;pl,nkl)I pk(n k-[Y k ],[Yk]+) f

k- 10

[Yk-1]
b(nk-l-ik-l;pk-l an k _ )I p (nk-yk'yk +1) <

I Pk k(n k-l-Yk-l'Yk-l +l)"
9kI

t -9-



Repeated applications of the above establish that

F(o I k (nllYl+1) (4.5)

Tp1i-i

(4.3) follows immediately from (4.5), completing the proof.

Remarks. If (4.3) holds and y is an integer, then b = f(nl,Y,c).

It has often been suggested (Lloyd and Lipow (1962).

Winterbottom (1974), Bolshev and Loginirov(1966), Mirniy and

Solov'yev (1964)) that the confidence level should depend only on

n I , the smallest sample size. We now provide a numerical illus-

tration to show that the bound in (4.1) may be improved by taking

all the n.'s into consideration.1

Let k=3, a-.1, n (10,12,30), x = (0,3,0). Then for3 o

g( ) t (ni-xi), f(nl,1yl],a) = .541, f(n 2,[y 2 ],a) = .525,
i=l

f(nT[y 3 ],a) = .639. The use of (4.3) establishes .500 < b < .525.

Note that if x 0 ni, for some i, l<i<k, then g(i) = 0 and

b=O. It seems reasonable to use b=O as the lower confidence

limit whenever xoi ni for any monotone ordering function satisfy-

II ing the conditions of Section 2. k

We now show that if g(n) II (ni-xi), then (4.2) is satis-
i-l

fled and Theorem 4.1 applies. This result will extend a result

due to Winterbottom (1974), who established this fact for

particular special cases. In addition, wn will also show that

(4.2) holds for a number of other orderinr, functions used in the

literature.

1-It -



_ k
Theorem 4.2. Let g( ) = I (ni-xi+ai), where ai>O and

h i+1na i el+In i , i-1,2,...,k-l. Then (4.2) is satisfied.

Proof. If

k
(ni-Y +ai) =I (n +a c

J-i+l

and

k
(ntki+a i ) (ni+l-Yi+l+a i+l )  n (nj+Xj) = c

j=i+2

then we have

(n i-Yi+a i) (n i+l+a i+l) (ni- k i+a i ) (n i+l-Yi+l +0(i+l),

establishing

Y- ki Yi+l ni+l (ni+Ct k)
n i- k ji ni+l (ni+l+,i+)(ni-k i

Thus (4.2) holds if

ni+ 1 (n i+a (- ki) >S(n i+l +ai+l)(ni-k) >

this last inequality will be true whenever hi+i _ ai+ln i • In

particular, this is valid when ai-O, i = 1,...,k which is

Sudakov's ordering function.

k
Theorem 4.3. If gdx) - 1 - xi/n i t then (4.2) is satisfied.

ili

Proof. If 1 yi/ni c - kthen
ni ni+ t

Yt-k i Yi+
ni ni+1

or

i-k i > i+1

-11-
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This type of ordering function has been employed by Pavlov

(1973), for example.

k 2
Theorem 4.4. Let g(;) I . a xi+z (a i) where z satisfies

l-0(z ) - and O(x) is the standard normal distribution function,
a k

a >a 2 >. * ak, and a, a (n. i/ni) -' Then g(R) satisfies
: i-i

(4.2) if and only if

2 2

(a -a ) a(-a )za+a k -a k (z a+2c-a ( y + k )  (4.6)
Jl ai-i'i 2

Proof: If g(xo) 0 c + a iki, then defining a iki Cil il

a y + z (cl+ajyj) 2 c (4.7)

and
ak + + ya(c +a k +a 2c . (4.8)
a + aj+lyj+ 1 + za  1 j J+ j+ )

Equating the left hand sides of (4.7) and (4.8), we obtain (4.6).

If k-2, (4.6) holds for all cases of interest.

If (4.6) holds, then setting

1-a (r(x))-l f(xl-a) l-t

a straightforward limiting argument shows that

max aif([yi]+ll-a) < b < a1 f(yl+l,l-a) . (4.9)

i

This ordering fuaction has been used by Johns (1976) and b in

(4.7) in the value tabulated by Johns for k-2. The validity of

the lower bound does not depend on (4.6). In Table 1 below, the

lower and upper bounds given in (4.9) are tabulated along with

the values given by Johns for a=n.l. These refer to upper confi-

dence limits for the Poisson parameter combinations aX +a 2X2



II
Note in particular that three of the values tabulated by

Johns (indicated by asterisks) violate (4.9). Specifically consider

5.24, in which case [yl] - 5, since g* (2,5) - 4.78, g* (5,0) - 4.72

and g *(6,0) - 5.48. Using the Poisson approximation we obtain the

value 9.275 for the upper confidence limit to X for a-.1 and thus

a A +a22 - 5.56. Consequently the sup must exceed 5.56. An

alternative approach to the one suggested by Johns for k > 3 is to

simply use a1 f(yl+1,l-) for b.

Table 1

Comparison of Upper and Lower Bounds
With Values Tabulated by Johns for a-.l

Lower Upper Johns'1 1  2  Bound Bound Tabled Value

.9 7 2 4.79 5.50 5.17

.9 3 0 2.07 2.27 2.16

.75 6 3 6.00 6.65 6.23

.75 12 3 7.90 8.29 7.91

.67 3 3 5.36 5.61 5.33*

.67 15 2 8.71 9.24 8.81

.60 5 2 5.56 5.62 5.24*

.60 7 6 9.24 9.53 9.18*

5. Numerical Examples and Concluding Remarks

Examples 1 and 2 illustrate the method we have described in

this paper.

k
Example 1: Let H(i) n H (n i-xi), e .05, k - 5, -

i-i
(20,30,40,25,60), x - (2,6,10,8,15). Then the 95% upper confi-

dence limit for the failure probability is contained in (.86,.88).

-13-



Example 2: Let H(x) - 11(n -x), e - .05, k 2, ii (10,10),

R - (3,2). Then the 95% upper confidencc limit for the failure

probability is contained in (.70, .73). The value given in Lipow

and Riley (1959) is .70.

Remarks. In this paper we have showed that the Lindstrom-Madden

technique is conservative for ordering functions satisfying (4.2).

Further, if Yl is an integer, then the Lindstrom-Madden method is

exact. We have also relaxed the conditions needed in Winterbottom

(1974) and provided an alternative to the method of Johns (1976).

I.
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Appendix

The auxiliary results employed in the proof of Theorem 4.1

are provided here.

Lemma Al: I (n-xx+l), O<y<l, is a decreasing function of n and

an increasing function of x. I (np,nq+l), p+q a 1, O<p<l, is an
Y

increasing function of q.

Proof: The proof is immediate from the observation that the

beta distribution with parameters a and S has monotone likelihood

ratio in a and -0 and that if a probability distribution has

monotone likelihood ratio in 0, F(x) is a 6-creasing function

of 0 (Lehmann (1959), p. 68 and p. 74).

Yi-k Yi+lLemma A2: if ni k i > ni l and n i  _< n+ I,  then

I y(n i-yiyi-ki+l) > Iy(ni+l-Y 1 +lYi+l) " (A.1)

Proof: Rewriting the left and right hand sides of (A.1) as

iy [(n,-k,)(1 nck 2 (ni-k)( -)+l >

--
Yi+I) Yi+I),Ifni+i(1 n ( nl( )+ (A.2)
n+± +1  i+ n i+ij

Lemma Al applies and the conclusion follows.

Lemma A3: Let y1y2  y, 0<y<l, i-,2. Then

y 2 (n-xx+l)-• k= b(n-k;yl1 nl)I (n-x,x-k+l ) . (A.3)
5k-O 2



Proof:

1I fln-k (1y)k r(n-k+l) P'2 t n-- 1tx-k d

-r(n+l) 1I] (l-y 1 ) k YIn-k y y -x y 1 ti x-kdt

r(n-x) .O k ~r(,-k+l) J l

y 1X (1Y )k tn-x-. ( )X-k
-r(n+l) "'l 2 [x 1)t ( 1  dt
r(n-x) f kO k~r(x-k+l)

0=

Thus (A.3) will hold whenever

0

k n-x-l -k
r(n+l) rYlY [I] (l-y1 ) t (y1 -t),

r~nx) O k! r(x-k+1) dt

or

r (XI kr(x+i) ( y k y1 -t x-k )dt > 0 .(A.4)

~~tjgky 1 1-Y ) and noting thtOtYY<st<yl and

(1t>*, we osreta (A4 hod an telmaisproved.

-16-
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