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Lindstrom-Madden type approximations to the lower
confidence limit on the reliability of a series system are
J theoretically justified by extending and simplifying the
results of Sudakov (1973). Applications are made to Johns

(1976) and Winterbottom (1974). Numerical examples are
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SIGNIFICANCE AND EXPLANATION

2
3

Serial systems arise naturally in practice in engineering
and physics. Therefore it is of substantial significance to be
able to efficiently utilize data obtained on individual com-
ponents for the purpose of obtaining an overall assessment of
the reliability of the system. The methods of this paper may

be employed for this purpose.

Accession fop [

. —tend
NT1S c;.:,¢1‘-~-~74
DDC 343 I

Unawm gwiggy b=
Justizia ., r - i
i
|

———

By

———

Jdste oo

I *‘2‘_‘:‘* el P

l L T TP

[otst |
i
!

d »4

Jeas U™

5 3

e e

EPRI

T Az gy
P

The responsibility for the wording and views expressed in this
descriptive summary lies with MRC, and not with the authors of

this report.




BOUNDS FOR OPTIMAL CONFIDENCE
LIMITS FOR SERIES SYSTEMS : ;

*
Bernard Harris and Andrew P. Soms

.1, Introduction and Summary

A problem of fundamental interest to practitioners in

reliability is the statistical estimation of the reliability of a
system using experimental data collected on subsystems. In this

paper, the subsystem data available consists of a sequence of

Bernoulli trials in which a "one" is recorded if the subsysten

functions and a zero is recorded if the subsystem fails. Thus
for each of the k subsystems composing the system, the data pro-
vided consists of the pair (ni’Yi)’ i=1,2,...k, where Yi is
binomially distributed (ni,pi). We assume that Yl,Yz,...,Yk are
mutually independent random variables.

The magnitude of interest in this problem 1is easily evidenced
by the extensiﬁe literature devoted to it. 1In this regard, see
the survey papér by Harris (1977) and Section 10.4 of the book by
Mann, Schafer, and Singpurwalla (1974). 1In addition, the Defense
Advanced Research Projects Agency has recently issued a Handbook
for the Calculation of Lower Statistical Confidence Bounds on
System Reliability (1980).

Historically, the first significant work on this problem was

' produced by Buehler (1957). However, Buehler's method as des~
}‘, cribed in that paper 1is difficult to implement computationally

" when k>2.

*
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We proceed by describing Buehler's method in Section 2. 1In !
Section 3 we speclalize to series systems, that is, a system which
fails whenever at least one subsystem fails. Sudakov's (1974) §
results are extended in Section 4 and employed to exhibit some

optimality properties of the Lindstrom-Madden method (see Lloyd

and Lipow (1962)) for constructing lower confidence bounds for

the reliability of series systcems of stochastically independent
subsystems. Some numerical examples are given in Section 5 and
the results needed for this generalization of Sudakov's Theorem

are provided in the Appendix to this paper.

2. Buehler's Method for Lower Confidence Bounds

A system composed of k independent subsystems is said to be
a coherent system (with respect to the specified decomposition
into subsystems), if the system fails when all subsystems fail
and the system functions when all subsystems function; and replac-
ing a defective subsystem by a functioning subsystem can not
cause a functioning system to fail. Coherent systems are des-
cribed in Birnbaum, Esary and Saunders (1961) and Barlow and
Proschan (1975).

To any system one can associate a function, h(p) =
h(pl,pz,...,pk), Ofpifl, i=1,2,...,k, where h(p) is the reliabil-~
ity of the system when Py is the probability that the :ls-E
subsystem functions. It is well-known that if the system is

coherent,

0 < h(p) S 1,

h(0,...,0) = 0, h(1,...,1) =1,
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and h(pl,...,pk) is non-decreasing in each variable.
For coherent systems, Buehler's mettod may be described as

follows: The otserved outcome (yl,...,yk) can assume any of

k

N= I (n,+1) values, since y, = 0,1,...,n,. For convenience,
i=1 i i i

we denote n oYy by X i=1,2,...,k.

A partition'(Al,Az,...,As), s>1, qf the N possible outcomes
is said to be a monotonic partition, that is, A1<A2<...<As if

(0,0,.-.,0) € Al’ (nl.nz,-..,nk) [ As and if ;1 - (xll,...,xlk),

x, = (x21,...,x2k) with X4 < Xpys i=1,2,...,k, then X, € Ai
implies 22 € Aj, i > 1.
Let
k (n n,-x, x k (n y, n,~y
~ -~ ~ e~ i
f(x;9) = p~(X=x) = I 1 pii jiii = I Piiqii 1 (2.1)
P 1=1x 1=1y,
and for 1 < n < s-1, let
s = inf{h(p) ) £(%,38) = u} (2.2)
xieAi,ifn

and as = Q,

Each such partition may be jidentified with a function defined on
the set of sampl.: outcomes by defining the ordering function

g(x), where

-~

g(xX) = n if X €A , 1Snss; (2.3)

obviously g(x) inherits the monotonicity.ptoperties of the
partition.

Subsequently it will be convenient to use ordering functions
g(x) such that the range of g(x) will be a finite set of real
numbers, r1<t2<...<rs. With no loss of generality, we can identity
the sets A, by defining Ay = {§|g(§) - ti}’ i=1,2,...,8. We can

now establish the following theorems.

-3~
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Theorem 2.1. Let X be distributed by (2.1). Then as(i) is a
(1-a) lower confidence bound for h(p). If bs(f) is also a (1-a)

lower confidence bound for h(p), then bifa 1<i<s.,

i’

Proof: Fix P and let n(pP) be the smallest integer such that

{~ n(p) )
P~{X € U A } >a, (2.4
1 P g=1 1

x and

1 . s

P-{x E U _ Ai} > 1-a . (2.5)
1, P ign(p)

?‘ Let

1 . n

; D = P~4X € UA,} >a} . 2.6
F' n {Pl P{x =1 i} = } ( )
1

Then Dg(i) is a 1-a confidence set for p, since
P~{p € ~v} = P~dg(X) > n(p)} > l-a . .
P{p Dg(x)} Pp{g(x) > n(p)} > 1l-a 2.7

This establishes the first part of the conclusion. Further, since

h(;) is continuous and Ofpifl, the infimum in (2.2) 1s attained.

i R

Now assume that 11 is the smallest index such that bi >a

151153—1. Then, for some 50, 51,

1 4

s P e

i b, > wmefa| I tGd - o) = w6,
1 xieAi,ifil

and

| I EGE) > e, BB <b .
‘ x1€Ai’iSil 1

‘ Therefore

a contradiction.
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Remark. Let dn - sup{l-h(ﬁ)

Z f(ii;ﬁ) = u}. Then dn is a
x,€A ,1<n
(1-a) upper confidence bound for 1-h(p), the unreliability.

Let A = {ienk, 05x1<a1. 1-1.2,...,k} and let g(x) be contin-
uous on A (the closure of A) and strictly increasing in each
variable for x€A. g(x) is to be regarded as an ordering function
as described immediately preceding Theorem 2.1. We require the
following additional property of g(x) .

Fix §°€A. Let g(§°) < g(al,O,...,O) = 8;- Then
g(yy50,...,0) = g(Eo) has a unique golution in y,. Proceeding
recursively, let il < Y and define Y, = yz(il) as the solution
of g(io) = g(il,yz,o,...,O). For each 1<j<k and ij-l < yj—l’
19 S ¥y_greees 1) Sy, let yy = ygUysdgsenesiy y) be the

solution of
8(xo) = 8(11’12’-..’ij"l’yj’o’...’O) . (208)
We require that the equations indicated in (2.8) have

unique solutions for each yj.

Then define

o [yll (y,] [y,] .
F(X_;p) = I I ... I £, (2.9)
1,20 1,=0 1,=0 '

where, for j>1, yj - yj(il,iz,...,ij_l). Let
£ (%X ;a) = sup F(x_;P) , 0<a<l. (2.10)
h(p)=a

Then we have

~ ®
Theorem 2.2. If X satisfies inf £ (xo;a) = 0, sup f*(x ja) = 1
O<a<l 0<a<1l °

*
and £ (xo;a) is a strictly increasing function of a, and if

io € A where g(X) determines (Al,Az,...,As), and if
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b = 1nf{h(5) ) £(%,,3) = a} . (2.11)

xeAi Y isn

then we have

* .
f (xo;b) = q .

Proof: Since the infimum in (2.11) is attained, there is a Bo

such that b = h(§ ) and F(%_3F ) = a. Then f*(io,b) > o, 1f
f*(io,b) > a, there exists ﬁa, with a = h(ﬁa), a<b and
f*(io;a) = o contradicting (2.11).

Obviously, the above discussion can easily be modified to
obtain upper confidence bounds on the unreliability 1-h(p) by

2
replacing inf by sup in (2.11) and requiring that f (xo;a) be a

strictly decreasing function of a, 0<a<l.

3. Applications to Series Systems

k
For a series system h(p) = I p;- Further, throughout this
i=1
section we assume that g(X) satisfies the conditions necessary to

insure that the solutions for S AERERES 2% indicated in (2.8) are

unique. Then we have the following theorem.

k
Theorem 3.1. If h(§) = N p , then 4nf £ (% ja) = 0,
i=1 O<a<l ° .

* . <
sup f (%_,a) = 1 and f*(xo;a) is strictly increasing in a,
O<ac<l

whenever x_ = (xol"°"xok) satisfies x

<n
o

0j j° j=1,2,...,k.

Proof. Since h(p) = 1 if and only if p, = 1, i=1,2,...,k, it
—— b1

follows from (2.1) that

1im sup F(X ;p) = 1 .
a+l h(p)=a °
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Similarly, h(f) = 0 if and only if at least one Py = 0,

n
- % °*°n . i
i 1,2,.-.,1(- Since F(xo,p) S Pﬁ{xi<ni} - I—Ps{xiuni} = l-qi . i§

we have ;

lim sup P(io;ﬁ) =0 .
a+0 h(p)=a

*~
To show that f (xo;a) is strictly increasing in a, consider

- L . ~ o~
0<a<b<l and let P, = (pal""’pak) satisfy £ (xo;a) = F(xo;pa).

-~ *~ -~ -~
Similarly, let Py, satisfy £ (xo;b) - F(xo;pb). Let

1= {11,12,...,1r} be any non-empty set of indices such that

Py (f)l/r <1 and let I° be the remaining indices. Then
j
b 1/rx
(Tp_ . () YN p =b . (3.1)
jer 21,2 jere  8iy

From the monotone likelihood ratio property of the binomial

distribution,

-~ -~ ~ ~*
F(x 3P,) < F(x 5P ) »

3 *
3 vhere the components of p are given by (3.1). Then
3
“s -~ ~R -~ -~ -~ - *
¥ F(x 3P ) & sup F(x_ 1p) = F(x 5r,.) = £ (x,3b) .
4 - .
: h(p)=b
i
Cod 4, Sudakov's Methoc
: g Let
b I (r,8) = =— F e¥ 1 1-e) % ae
vy p "’ B(r,s) :
£ 0
P
‘ g Then if y is an integer, y<n, we have
2 | (:) pn-iqi - ip(n-yzy+1) .

i=0




For 0<y<n, real, define u(m,y,a) by a = Iu(n,y,a)(n-y'y+1)'

Thus, for integer values of y, u(n,y,a) is a 100(1-a) percent ;

lower confidence limit for p. Sudakov (1973) showed that for !

k
nlfnzf...fnk and g(x) = 121 (ni—xi),
u(nl’ylﬁa) _<_ b .<_ u(nl’[yll$a) ? :
k
where Yy % m9, 9, = 1l - iEl((.ni—xoi)/ni) .
u(nl,yl,a) is called the Lindstrom-Madden method for determining

lover confidence limits for the reliability of series systems i
(see Lloyd and Lipow (1962)).
Lipow and Riley (1959) used a different ordering function;

nevertheless they noted that for "small" n their tabulated

i’

values provided good agreement with the results using the ’ §

Lindstrom-Madden method. For large values of n the tabulated

i’

values that they provided are based on the Lindstrom-Madden

g method. Here we provide a further justification for the
| Lindstrom~Madden method by establishing that it provides conserva-
& tive lower confidence limits (i.e. is a lower bound to b defined
in (2.9)) using the ordering function g(X) employed by Sudakov
and we also obtain an upper bound for b, thus determining the
possible error of the Lindstrom~Madden method.

Sudakov's proof is unnecessarily complicated and contains
» some incorrect assertions, which nevertheless dovnot affect the
f \ validity of the conclusion.. In the Appendix we provide a simpler

:‘ proof of some auxiliary results needed for the generalization of

Sudakov's theorem given below.
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Theorem 4.1. Let g(x) satisfy the hypothesis of Theorem 3.1.

Then,

*
b < min “(nia[yi]’a> ’ (4.1)
1<i<k

where b is given by (2.11) and y: = yi(jl'jZ"“’ji-l) is evaluated

at j2=0, £=1,2,...,1i<1, Note that ¥, = y;. If we also have

y,-i y
e e T LS U JOURUS S I (4.2)

377 T M+
t hen

u(n;,y,,2) < b . (4.3)

Proof: (4.1) is immediate from (2.11) upon setting pj=1, j#i and

solving F(io;l,...,l,pi,l,...,l) = 6. Recall that ny < n, < .0 < n
and
o [y,]
F(X;F) = I b(nyj=i;5p ,n))
i,=0
1
[yeq)
0. iz go b(nk—l—ikvl;pk-l’nk-l)lpk(nk-[yk]’[yk]+1) °(4'4)
k-1

Now, apply Lemmas Al, A2, and A3 to the innermost sum in (4.4), to get

[y, ;)

b(nk-luik-lgpk-l’nk—l)rp (nk‘lyk],[Yk]+1) f
ik_l"o k

{yg_q]

LACIRRC IR UL S RL I C e A5 AR DI
ik_1=0 k

(¥eoy]

b(“k-l'iu—l‘Pk-l’“k-l’ka(“k-l'yk-1’Yk-l‘ik-1+1) <

k-1

(0 17k Yg1*D) -

1
Pr-1Pyx

]
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Repeated applications of the above establish that

F(X3B) € I (ny=y,,y,+1) . (4.5)

I p
j=y 3

(4.3) follows immediately from (4.5), completing the proof.

Remarks. If (4.3) holds and vy
It has often been suggested (Lloyd and Lipow (1962),
Winterbottom (1974), Bolshev and Loginov(1966), Mirniy and
Solov'yev (1964)) that the confidence level should depend only on
n, the smallest sample size. We now provide a numerical illus-
tration to show that the bound in (4.1) may be improved by taking

all the ni's into consideration.

Let k=3, o=.1, n = (10,12,30), §o = (0,3,0). Then for
3

g(i) = igl(ni-xi), f(nlﬁlyllsa) = '51‘1: f(nzs[yzlsa) = ,525,

f(n3[y3],u) = .639. The use of (4.3) establishes .500 < b < .525.

Note that if Xog = By for some i, 1<i<k, then g(X) = 0 and

i
b=0. It seems reasonable to use b=0 as the lower confidence
limit whenever X,3=0y for any monotone ordering function satisfy-

ing the conditions of Section 2.

k
We now show that if g(x) = I (ni-x
i=1
fied and Theorem 4.1 applies. This result will extend a result

i)' then (4.2) is satis-

due to Winterbottom (1974), who established this fact for
particular special cases. In addition, wr will also show that

(4.2) holds for a number of other ordering functions used in the

l{iterature.

-10-~

, is an integer, then b = f(n,y,0).
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Proof. If

k
Theorem 4.2. Let g(x) = I (ni-xi+a ), where a,>0 and
1=1 i i-
n1%y > ui+1ni, f=1,2,...,k~1. Then (4.2) is satisfied.

et

k
(n,-y,+a,) I (n.,+a.) = ¢
170 T

and

k
(“1'k1+“1)(“1+1‘y1+1*“1+1>3=2+2(“j+“3) o

then we have
(ng=ygta) (ngq%ay ) = (agmk+a ) (g 1Y 41 %4)
establishing ;

ViR Yaen  Pgan (myteyky)
ng-ky o omgyq (ngggteg ) (ng-kg)

Thus (4.2) holds if

Pyar(Pytoyky) > 1
- - ]
(ng41%%541) (nyg=ky)

this last inequality will be true whenever ni+1ai > ai+1ni. In
particular, this is valid when ai-O, i=1,...,k which is

Sudakov's ordering function.

k .
Theorem 4.3. If g(x) = 1 - Z xi/ni, then (4.2) is satisfied. lﬁ

i=1 !
k y
Proof. I1f 1 - y.,/n, = c =1 - B —lil, then
- 171 By Biel

YKy Yy4q

By R4l
or
Yi~ky 5 Yie1
nky -y
—11_

~
R o
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This type of ordering function has been employed by Pavlov

(1973), for example.

Theorem 4.4. Let g(x) = X agx,+z (a x )i where z, satisfies

1-1
l-o(za) = o and ¢(x) is the standard normal distribution function,
-1 ~
a, 2 8, >...> 8, and a, = (n n, 12 lln ) . Then g(X) satisfies
(4.2) if and only if
2
(aj--aj+1)yj > (aj-aj+1)za+ajkj ajkj(zuaj+2c-aj(yj+kj)) . (4.6)
_ i=1 LS R
Proof: 1If g(xo) = ¢ + Z aiki’ ;hen defining Z aiki = ¢y
i=1 i=1
a,y, + z_(c +a )& (4.7)
3’3 a1y
and
a,k, + a y + z (c +a k +a2 y )é = ¢ . (4.8)
33 j+17 5+l J3 Tiv1l7i+l

Equating the left hand sides of (4.7) and (4.8), we obtain (4.6).
If k=2, (4.6) holds for all cases of interest.

If (4.6) holds, then setting

x-1 -t

1 f(x,1-a)
J t e dt ,

l1-a = (I'(x))"
0

a straightforward limiting argument shows that
max aif([yi]+l,1—a) < b < alf(y1+1,1-a) . (4.9)
3 - -

This ordering fuaction has been used by Johns (1976) and b in
(4.7) i~ the value tabulated by Johns for k=2. The validity of
the lower bound does not depend on (4.6). In Table 1 below, the
lower and upper bounds given in (4.9) are tabulated along with
the values given by Johns for a=.1. These refer to upper confi-

dence limits for the Poisson parameter combinations alll+a A

272°

-12-
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Note in particular that three of the values tabulated by
Johns (indicated by asterisks) violate (4.9). Specifically consider
*
5.24, in which case [y,] = 5, since g (2,5) = 4.78, g (5,0) = 4.72

*
and g (6,0) = 5.48. Using the Poisson approximation we obtain the

value 9.275 for the upper confidence limit to A for a=.1 and thus i
81A1+82A2 = 5.56. Consequently the sup must exceed 5.56. An
alternative approach to the one suggested by Johns for k > 3 is to

simply use alf(y1+1,1—a) for b.

Table 1

Comparison of Upper and Lower Bounds
With Values Tabulated by Johns for a=.1

a N x Lower Upper Johns'
1 1 2 Bound Bound Tabled Value ;
.9 7 2 4.79 5.50 5.17
.9 3 0 2.07 2.27 2.16
.75 6 3 6.00 6.65 6.23
.75 12 3 7.90 8.29 7.91
.67 3 3 5.36 5.61 5.33%
.67 15 2 8.71 9.24 8.81
3 .60 5 2 5.56 5.62 5.24%
g .60 7 6 9.24 9.53 9.18%

- [

5. Numerical Examples and Concluding Remarks

Examples 1 and 2 i{llustrate the method we have described in
this paper.

-~

k
I Example 1: Let H(X) = 121(n1-xi)’ a= .05, k=5, 1=
(20,30,40,25,60), x = (2,6,10,8,15). Then the 95% upper confi-

P
AR R o

dence limit for the failure probability is contained in (.86, .88).

~-13-




Example 2: Let H(X) = H(ni—xi). a = ,05, k=2, n= (10,10),

-~

X = (3,2). Then the 95% upper confidencc limit for the failure

probability is contained in (.70, .73). The value given in Lipow

and Riley (1959) is .70.

Remarks. In this paper we have showed that the Lindstrom-Madden
technique is conservative for ordering functions satisfying (4.2).

Further, 1f Yy is an integer, then the Lindstrom-Madden method is

exact. We have also relaxed the conditions needed in Winterbottom

(1974) and provided an alternative to the method of Johns (1976).

NENE——
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Appendix

The auxiliary results employed in the proof of Theorem 4.1

are provided here.

emma Al: Iy(n-x,x+l), O0<y<l, is a decreasing function of n and
an increasing function of x. Iy(np,nq+1), p+q = 1, 0<p<1l, is an

increasing function of q.

Proof: The proof is immediate from the observation that the

beta distribution with parameters o and 8 has monotone likelihood
ratio in @ and -f and that if a probability distribution has
monotone likelihood ratio in 9, Fe(x) is a decreasing function

of © (Lehmann (1959), p. 68 and p. 74).

Yi~ky s Ti41

Lemma A2: If T <% >n
ii i+l

and n < then

1 2 Pyap

Ty(ag=yysyy=kgtl) 2 L@y YigpoYintl) - (4.1)

Proof: Revwriting the left and right hand sides of (A.l) as

yy-ky vy~ky
1 (ni-ki)(l - ;I:EI), (ni~k1)("———-)+1

y ng~ky
) y y
i+l 141
I |n, . (1 - )y n, . (—=2)+1] , (A.2)
y -i+1 041 i+l LFPeY

Lemma Al applies and the conclusion follows.

Lemma A3: Let Y1¥2 = V> OSyigl, i=1,2, Then

[x)
1 (n-x,x+1) > § b(n~k;y,,n,)I_ (n-x,x-k+l) . (A.3)
Y192 k=0 1y,
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Proof:

[x] X T (n-k+1)

n n-k
kzo <k)y1 (l-yl) F'(n-x)T (x-k+1)

k. n-k
_ Ieaey 31 0y vy I’lyz (5_
F'(n-x) k=0 kil (x-k+1) Yy
0

k. n-x-1 x-k
_ I(n+l) IYIyz I§] (1-y,) ¢t (y,-t)
T'(n-x) k=0 k!T(x-k+1)

Thus (A.3) will hold whenever

I'(n+l) Y192 _n-x-1 x

k _n-x-1 x=-k
T (n+1) Jy1y2 31 Q7yy) ¢ (y,-8)
I'(n-x) k=0 k! T(x-k+l)

0

at

(1-t)*-

T(n+l) J’1V2 (a-x-1
IF'(r-x)T(x+1)
0

e

1-t

(i-lfl T (x+1) (l'yl)k(yl't)x—k}d: >0 . (A.4)

k!T(x-k+1) '1-t

k=0

y,.-t l-y
1-t 1-t

(1-t)>1—y1, we observe that (A.4) holds and the lemma is proved.

Writing ) and noting that OEtfylyzfl, c<y1 and
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