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ABSTRACT

We exhibit here two linear m-accretive operators Al and A2

whose sum is m-accretive but for which the associated product formulas

A A n n
S l(E')S 2(E) and (1 + t A) l(I + & a.) ! do not converge.
n n n 1 n 2
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. SIGNIFICANCE AND EXPLANATION

A wide variety of partial differential equations as well as other
equations can be written as ordinary differential equations of the form
u'(t) + Au(t) = 0, where u takes values in a linear space X and A
L : is an operator on X. The solution is given by u(t) = S(t)u(0) where
S(t) 1is a semigroup of operators on X. 1In many cases the operator A
can be written as the sum A_+ A2 of (possibly simpler) operators where

1

Al and A2 correspond to semigroups Sl(t) and Sz(t). Under

n
. s . t
appropriate conditions, the Trotter product formula S(t)f = llm[gl(zész(fﬁ] £
ne

relates S(t) to Sl(t) and Sz(t) and provides one approach to the

study of S(t).,

While various sufficient conditions for the validity of this limit are i

known, no satisfactory necessary conditions are known even when Al and

A2 are linear.

As part of the effort to understand the limitations on the validity

of the product formula, we give an example in which Al' A2 and Al + A2

i

i

{

|

are all m-accretive but the corresponding semigroups do not {sfy the. ) i
YoLLoan ior

product formula. ! NIiS (.l ]
1 DD'v Ta3 3

| Un.evauised
cJuttisieation

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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- M A COUNTEREXAMPLE FOR THE TROTTER PRODUCT FORMULA

Thomas G. Kurtz1 and Michel Pierrel’2

I In [10], Trotter proved the following result: given -A,, -A, the infinitesimal
] / ' generators of two strongly continuous semigroups sl(t), Sz(t) of linear contractions

on a Banach space X, if -(Al + Az) (the closure of -(A1 + Az)) is also the
generator of such a semigroup, say 53(t)' then, for any f € X:
3 [T b
3 (1) vt e [0,®), 1lim [S (S)S,(H)| £ = s_(e)f .
1'n""2'n 3
N0
Many attempts arose in the literature to extend this result to the case of nonlinear
semigroups of contractions. In this context a natural guestion is: given Al' A2
two m-accretive operators on X such that A3 = Al + A2 is also m-accretive, is
(1) true for the semigroups of contractions "generated" (in the sense of Crandall-Liggett
{5]) by -Al, -A2 and -A3 and for any f e D(AB) (assuming the product makes sense)?
A positive answer to this question has been provided with extra assumptions on

Al, A2 or (and) on the space X, for instance the following:

* Al and A, are continuous on X.

* -Al is the generator of a linear contraction semigroup and A2 is continuous
on X.

* X is a Hilbert space and A,, A,, A. + A, are single-valued maximal monotone

1" 2" "1 2

operators (see Brézis-Pazy [2] or Brezis [1}).

A, are the subdifferentials of lower semi-

* X is a Hilbert space and Al' 2

continuous convex functions from X into )-»,»] (see Masuda-Kato [7]).

Other results are also mentioned in Kato [6]. It is interesting to notice that

all the results above are (more or less easy) consequences of the nonlinear versicn

1Sponsored by the United States Army under Contract Nos. DAAG29-75-C=0024 and
DAAG29-80-C-0041.

2
This material is based upon work supported by the National Science Foundation under
Grant No. MCS78-09525 AOl.
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of Chernoff's lemma (see [3]) given by Brézis-Pazy in [2) which says: given
(U(t))t>o, a family of contractions from a closed convex subset C of X into itself, if

there exists A3 m-accretive such that D(A3) = C and

A -1 -1
vEec, VA>o0, lim [T+0 (I-uen] £= 1+ F,
0"

then

n
¥EecC, vte [0,°f, lim [u(%)] £=s,(0f .

n-oo
The purpose of this paper is to give a counterexample showing that the question
above has a negative answer in that general setting. Moreover we exhibit here two

A, whose sum A, = A + A is also m-accretive and

linear m-accretive operators Al' 2 3 1 2

for which (1) fails for some f € D(A3) as well as

B et

£ -1 =lan
vt e [0,@), 1im {(1 +oa) (e =a,) ] £=5;(0)f

n->o

To understand this counterexample with respect to Trotter's result, it is
necessary to remember that an operator A on a Banach space X is said to be
m~accretive if, for any A > 0, (I + AA)‘l is a nonexpansive mapping defined on the
whole space X (see e.g. [2] for more details). Consequently, by the well=-known
Hille-Yosida theorem, if A is a linear m-accretive operator, =-A 1is the (infinitesimal)
generator of a strongly continuous semigroup of contractions if and only if its domain
D(A) 1is dense. Obviously this property fails in our examples below. Therefore, if
these operators generate sSemigroups in the “"nonlinear sense” (see Crandall-Liggett {51),
that is
(2) VEe D(A), Vte [0,@), S(tVf = lim (I + EA)-nf .

n->o

they are not strong generators of these semigroups.




P

Let cb(m) (resp. C(K)} denote the Banach space of the bounded continuous
functions on R (resp. on the compact set K of W) with the norm

Vue c (R), flul| = sup |utx)]
x¢ R

(resp. Wue C(X), |lull =sup Jut)]) .
*€ X

Let p € Cm(:IR) be a periodic function with period 2 whose graph on [0,2] is:

v

on cb(]R) . we define the following operators (the derivative is taken in the
sense of distributions).
. - . 3,
(1) by {ue C (R pxTu' e C (R}
Alu = px3u' .

. 3.

(ii) play = {u e Cu(); (1 -pxu'e cb(m)}
Azu = (1 - p)x3u' .
. _ N 3
(iii) D(A3) = {ue Ch(]R). xu' e Cb(JR)}

Au=x3u' .

3
For any compact set K of R, symmetric with respect to 0, we define on C(K):
vi =~ 1,2,3, DAY = {ue c(x) axu’ € X))
K - 1]
Aiu = Gix L

o
where al = Dl ) ay = (1 - p)l ) Oy = 11(' Here the derivative is taken in 0J'(K) and
K K

3 (]
"uix u' € C(K)" means that uix3u' is continuous on K and can be continucusly

extended to K.
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PROPOSITION 1.

(i) For i =1,2,3, -AiK is the generator of a strongly continuous contraction

. K K K K
semigroup Si on C(K) and Al + A2 = A3.
(ii) For 1 =1,2,3, Ay is m-accretive on Cb(]R) and Al + A2 = A3.
(iii) For i =1,2,3,
-1 K -1
yf € Cb(]R), ¥A > 0, [(I+)‘Ai) f]l = (I+)‘Ai) (fl ) .

K
(iv) If Si(t) : D(Ai) > D(Ai) is defined by

-n
— . t
vee D(A), VE2>0, S (O)f = lim [t+za] €,

n--o

then:

—_ _ K
vf € D(Ai), vt > 0O, [Si(t)f]lx = Si(t) (flK) .

Remark 1. If wu € D(A3),x3u' is bounded. Hence 1lim u(x) and 1lim u(x) exist.
P e i X-+=—c0
Therefore D(A3) is not dense in Cb(R) .

Note also that, if xn,yn € [2n+ n, 2n + 1 - n] and if u € D(Al), then:

1.3 1,1
Jax ) - uy)] <5 lex’utll [_2_ . _2] '
xn yn

This also proves that D(Al) is not dense in Cb(R).

PROPOSITION 2.
(i) Sl(t) and sz(t) leave D—(A—B) invariant and for all f € _D—(E\? and all
te [0,w, [Sl(f)s2 (&)]nf converges to 53(t)f uniformly on compact subsets of RR.
(ii) For all fe C (R} andall t >0, [[1 + % Al) -1(1 + §A2]-l]nf
converges to S3(t)f uniformly on compact subsets of IR.
But:
(iii) For any f € cb(]R) with compact support and f ¥ 0, there exists

n
t € (0,») such that rsl(-;:)sz(g)] f does not converge in Cb(]R).

n
For all t € )0,»), there exists f e C_(R) such that s (E)s (ﬁﬂ £ dees
b 1'n "2 n_[

not converge in Cb(]R\ .




(iv) For any f ¢ Cb(IR) with compact support and £ # 0, there exists t such that
(I+£A]-1(I+£A)-1 " a ot : ¢ _(R)
N oA, oes not converge in C .

Proof of Proposition 1.

s K K K
+
The equalities Al + Az = A3, Al A2 = Aa

For each i =1,2,3, the proposition is a consequence of the following lemma.

follow directly from the definition.

Lemma. Let a be a nonnegative function of Cn(R) a} Cb(]R). Let A (resp. Ax)

be defined on Cb(IIR) (resp. C(K)) by

D(A) = {u e Cb(lR); axdu’ e Cb(lR)}, Au = axu'

3u' € Cc(r)}, AKu = ux3u') .

(resp. D(AK) = {ue€e CK; ax ‘

L? ' Then: !
(i) A% is the generator of the strongly continuous semigroup of contractions

Sx(t) on C(K) defined by

(3) veEe cv), sSOEm = £x(e,x)) ,

where X(:,x) is the solution of

(4) f; X(t,%) = -a(X(t,x%°(t, %), X(O,%) =x .

Moreover, for all X > 0
K, -1 1
(5) Vie ClK), Wxe K, (143D £ =+ [ e 7 £xit,xae .
0

(ii) A is m—accretive on Cb(IR) and

> |
>t

VEe C(R), ¥xe R, (I+ ) e = [ e " fm(e,x)ae ,
0

vEfe pla), Wxe R, S(t)f(x) = £(X(t,x)) ,

where S(t) is defined by (2).

Proof of the Lemma.

LR s ’

! 2 The proof of (i) is similar to the proof of Theorem (1.1) in [B].

Since K is symmetric and since (X -a (x)x31 is Lipschitz continuous on K

and has the same sign as -X, (4) has a unique solution which stays in K for x € K

B CiM O e




and satisfies
ve > 0 |x(e,x)] < x| 3

(t,x) € [0,»] x K » X(t,x) 1is continuous .

<
. K

It follows that (3) defines a strongly continuous semigroup of contractions S (t) ;

4

y on C(K) whose generator I 1is given by i

- Lu(x) = 1lim u(X(t,x)l - u(x) ,

+
t-+0

when the limit exists uniformly in x € K. Proceeding as in [8], we prove that L %

is the closure of its restriction L Lo cl(K). Indeed let [ denote the Lipschitz 4

0

continuous functions on K. Then, if ue€ D(L) N L
3 L]
Lu(x) = -a(x)x"u'(x) ,

and [u,Lu] is the limit in C(K) x C(K) of some [un,L

ul with u € Cl(K). This
O'n n

= proves that Eb contains the restriction of L to D(L) N L. But one can show that

L is the closure of this restriction by using the fact that S(t) leaves D(L) N1

invariant.

Now let us show =L = AK. If (un,ux3ué] € ~[

o converges to [u,vl] in

0

C(K) x C(K), then ax ué converges to axau' in the sense of distributions; hence

;i ax3u’ = v € C(K) which proves -Eb c ak.

% For the converse, as I = Zb is onto on CI{K), it is sufficient to remark that
I+ AK is one-one, that is:
(6) (ue C(K), u+ ax3u' =0 in D'(&)) => (u=0 on K) .

This achieves the proof of (i), the property (5) being well-known.

To prove that A is m—-accretive, let us consider for f € cb(nn and X > O:

PREEAS

© -

) w0 =3[ e fxxae .
A 0

>t

For any K as above, we have

vee K, u o = 1+ e v .
1 A 'K

!




eglen e

As K 1is arbitrary, this proves that u)‘ and ux3u;\ are continuous on R and

verify

N + )\ax3u; =f in D'(R) .

Since Hu)\ll < |{l£}] by definition, u, and ux3uie C,{R). Hence u, € D(A) and

u

uA + AA“X = f.

This proves that A is an extension of an m-accretive operator. Since I + A
is one-one (see (6)), A 1is m-accretive.
The relations (5) and (7) give

Ve C (R), [(I+ m'lf], = (I + AAK)’l(fI ) .
K

) &
Hence, by the definition (2):

—_— =-n
vee DA, s(tf) = lim [+ 529 (€|

K
) = S (t) (fl ) .
K n-se K K
(The last equality is well-known for the linear generators.) Finally
¥f € D(A) S(t)f(x) = £(X(t,x)) .

Remark 2. If a =1 (i.e. A = A3), we obtain that
X(t,x) = —=HBX |

1
2t+—2
X

Then, é(t)f(x) = £(X(t,x)) defines a semigroup of contractions on Cb(]R), but one

can directly verify that t » é(t)f is continuous at O if and only if

fe CcC(R=1ge C,(R); lim g(x) and 1lim g(x) exist}. Since S(t) leaves C(R)
X->o0 _ R>=00

invariant and since D(A3) C C(R) by the remark 1, Ss(t) is exactly the restriction

of S(t) to C(R) and C(R) = D(a,).

Proof of Proposition 2.

Observe that, by the definition of p, for i =1,2:

¥x > 0, x—l-nixi(t,x)ix

(8)

¥x <0, x <X (t,x) sx+1+nm.

| P
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= 1,2, 18 the solution of (3) with -1 =y, = - Trre T Lo .

(which is the set {g € ¢ (Ry; 1lim g(x) and 1im qix) exiot: Ly ros - )
i R K=
n

)‘ £ is defined frr all Ve

-~

. , 3 N

invariant under S, (t) and 35_(t). Henco 2 =S, (=
2 [F1%72 %

1

Then, using (i), (iii) and (iv) in proposition 1, parts (i) and (il ar- .onso. oo,

of Trotter and Chernoff's results (sec [10], [3}).

Now by (8), if f € Cb(]R) has compact support in [=R,R], Sl (t)f and = 'v

also have compact support in [-R -1 - n, R+ 1 + n] for any t > 0 and so do

1

(1 + tAl)_ £ and (I + cAz)”lf by (ii) in the lemma.

51
.
So let fe C (R) have compact support and assume that ‘:sl(t‘\ 3

£, 37! t 7" :
or [I + - A ) {1+=na ) f converge uniformly on R. The limit is necessaril.
n 2 n 2

n'"2'n -

53(t)f which is given by:

¥t > 0, ¥x # 0, SB(t)f(x) = f[

Then we have

1 {-1]
0 =S (t)f(+m) = £,——1, 0= Sy (R)E(==) = f)-—-‘
V2t { )

If £3%* 0, this is false for some t € (0,»),.

For the last statement of (iii), given t > 0, let f € cb(zR) have comr

ra 11
support and f = 1 on '- -, v—*j Then
YT

SB(t)f S

n
Clearly [Sl(;t\-)sz(ﬁ)] f, which has compact support, cannot converge uniformlyv to 1.

E Remark 3. If C(R) denotes the continuous functions on JR which vanish at ~~,
k

let Ai = Ai "N C(R) x C(R). Then we can show that -IA\l,-A2 are the (stronpa)
generators of continuous semigroups of contractions él(t) ,éq(ti . The sarme romarks

N . n -
as above prove that [Sl (—t»n:2 (E)J f do not always converge in C{(R. (Tpvicas]ly
n n

-g-

o .
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-A3 does not generate any semigroup even in the nonlinear sense.) Trotter also noted

in [10] that the convergence of this product may fail for the sum of two generators.

Let us finally recall the example given by Pitt [9] showing that, if —Al. -Ez

are two generators, the above product may converge even if D(Al) N D(A,) = {0}. See

also Chernoff [4] for more pathological cases.

Acknowledgements. The authors thank Mike Crandall for several helpful discussions.
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