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ABSTRACT

barge amplitude solutions are obtained for systems of semilinear reaction-

diffusion equations arising in mathematical ecology which describe the evolu-

tion of two competing species. Their behavior is locally consistent with the

principle of competitive exclusion. Such solutions are first obtained for a

special class of steady state equations in which the two species are assumed

to be exactly equal competitors; large amplitude patterns for generic classes

of equations are then obtained by introducing various perturbations in the

relative competitive strengths of the two species. In particular, we obtain

(1), travelling wave solutions through constant perturbations, and (2), stable

stationary solutions through spatially inhomogeneous perturbations.
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SIGNIFICANCE AND EXPLANATION

Reaction-diffusion systems are systems of nonlinear partial differential

equations which arise in various aspects of science and engineering, including

mathematical ecology. Such equations can be used to describe the evolution of

interacting and diffusing species. An important problem is to determine the

even tual behavior of their solutions. It is therefore of interest to study

the existence and stability properties of certain distinguished solutions, or

patterns, such as equilibria and travelling waves. Such results are still

quite fragmentary, especially with regard to large amplitude phenomena. The

purpose of this paper is to study such questions for a specific system arising

in mathematical ecology which describes the evolution of two competing species,

in the hope that in so doing we shall develop techniques that will prove

useful in studying more general classes of equations.

The responsibility for the wording and vic4s expressed in ~Itis descr.ptive.
summary lies with M1RC, and not with the author of this report.



LARGE AMPLITUDE PATTERNS FOR

TWO COMPETING SPECIES

Robert A. Gardner

0. Introduction

The topic discussed here is the existence of large amplitude solutions of

reaction-diffusion systems arising in mathematical ecology which describe the

evolution of two competing species. We seek solutions which are locally con-

sistent with the principle of competitive exclusion. In particular, we obtain

under certain conditions, stationary solutions which partition space into

regions in which one species' density, u , is near its carrying capacity while

the density, v , of its competitor is small. At the boundary of adjacent

regions, there is a sharp "transition layer" connecting these two states. In

order to obtain such solutions, we must impose a nongeneric hypothesis which

implies that the two species are exactly equal competitors. Such solutions,

are therefore structurally unstable. However, by introducing various perturba-

tions into the equations we are able to obtain several patterns which are most

likely stable.

We first introduce a constant perturbation in the relative competitive

strengths of the two species, so that one species u , is now a slightly stronger

competitor than the other, v In this case, we obtain a travelling wave con-

necting the rest state (u,v) = R at x = -E, in which u excludes v , to the

rest state (u,v) = P at x = +, in which v excludes u . In particular,

(u,v) is a function of the variable = x + et , and the wave moves from left

to right with increasing t . We do not discuss the stability properties of such

solutions here; this will be the subject of a forthcoming paper.

We next introduce spatially inhomogeneous perturbations. If, for example, it

is assumed that u (resp. v) is the stronger competitor for x - 0 , (resp. x

we obtain a large amplitude stationary solution connecting the state R at

Sponsored by the United States Army under Contract Nos. DAAG29-75-C-ok24 and
DAAG29-80-C-0041. This material is based upon work supported bv the National
Science Foundation under Grant No. MCS78-09525 and the Science csearchc Council
of Great Britain.



x = -= to the state P at x = += . In this case, we are able to show that

such a solution, (or cline), is both structurally and exponentially asymptot-

ically stable.

A number of different techniques are employed to obtain the results described

above. First, we use the theory of isolating neighborhoods and the generalized

Morse index to obtain certain bounded, nontrivial solutions of a broad class of

equations. However, such topological arguments yield only crude information

about qualitative behavior. In order to obtain finer information, we must re-

strict the discussion to a particular (Hamiltonian) class of equations. To study

such systems, we combine the above techniques with the theory of bifurcation

from simple eigenvalues. Finally, travelling wave solutions and clines are

obtained by linearizing the appropriate equations about a large amplitude sta-

tionary solution, and by applying the implicit function theorem.

Acknoweldgement.

These results were obtained while the author was at the Mathematics Research

Center of the University of Wisconsin - Madison and the Mathematics Department

of Heriot-Watt University.

1. Formulation of the problem.

The equations to be considered are of the form

(10 = u + f(u,v)

0 = vxx + g(u,v)

and

Su t = x+ f(u,v)
(2)v

Vt  v xx +g(u,v) ,

for x IRI . We shall assume that f and g have the form f(u,v) = u M(u,v)

and g(u,v) = v N(u,v). The functions M and N are the local growth rates of

u and v respectively. The interaction is characterized by the following
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hypotheses;

(i) M(u,v) < 0 (resp. N(u,v) < 0) if u (resp. v) is sufficiently large;

(ii) M (u,v) < 0 and N (u,v) < 0 , for all u,v > 0
V U

Condition (i) is a resource limitation condition, whereas condition (ii) charac-

terizes the competitive nature of the interaction. Competition equations have

been studied by a number of authors; see for example, Hirsch and Smale, [8],

Conway and Smoller, [5], Gardner [6], McGehee and Armstrong, [11], Getz, [7],

and May, [13]. The above hypotheses include a rather broad class of equations.

For definiteness, we shall consider only those fields (uM,vN) with phase

diagrams as in Figures l(a) and l(b). We shall refer to these as case (a) and

/ v

+

N= 0

NN--

u uM= 0 A

+- M= 0
(a) (b)

Figure 1

case (b), respectively. Both cases satisfy i) and (ii); case (a) has been

studied by Conway and Smoller, [5], and Gardner, [6]; case (b) has been studied

by Getz, [7]. Explicit examples of such systems can be found by letting

(3a) M = -v2 + 61 (u-c) (d-u), N = -u2 + 62(v-e) (f-v)

(3b) My 2 + y - uv3 -u , N 2 + p - u3 v-v,

I- 3
'A ... -3- IIIl II



in cases (a) and (b), respectively. Here 61 ,62 ,d, and f are positive

constants, and c, e, y, p are constants such that c < d and e < f

It will be convenient to denote (u,v) by U and (f(U), g(U)) by F(U).

Solutions of (1) will also satisfy a first order system of the form

A = (a,b)
(4)

A -F(U)

or* = (X), where X = (U,A), and 'P is the right hand side of (4). If

P, Q, and R are the rest points of F indicated in Figure 1, denote (P,O,0),

(Q,0,0), and (R,0,0) by P, and R , respectively. We shall ultimately obtain

solutions of (4) which satisfy the auxilliary conditions

(5) lim X(x) = R

or

(6) lim X(x) = R , lim X(x) = P.
X - X - +00

Such solutions are called homoclinic and heteroclinic orbits, respectively.

We shall also obtain travelling wave solutions of (2); that is, solutions for

which U depends on the single variable £ = x + et. The system (2) then

reduces to a system of o.d.e.'s of the form

(7) U" + F(U) -eU 1 0

(here "prime" is d/d). We shall seek solutions of (7) which satisfy the

condition

(6), lim (U,U') = R , lim (U,U') = P

2. Existence of bounded, large amplitude stationary solutions.

In this section, we shall obtain bounded, nontrivial solutions of (4) which

have one of the rest points P or P in their ul-limit sets. The technique

is to find an appropriate isolating neighborhood n for the flow of (4) so that

the index of the maximal invariant set in n is well defined. This index is

easily computed, and it can be used to obtain the existence of the solutions

-4-
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described above. A familiarity with the theory of isolated invariant sets will

be assumed. A concise, nontechnical description can be found in Conley and

Smoller, [4). A thorough development can be found in Conley, [3]. With the

exception of the first two lemmas, the material in subsequent sections is inde-

pendent of the results of this section.

LEMMA 2.1. Suppose that (U,A) is a solution of (4) such that JU(X)J

(u2 (x) + v 2 (x)) < K for all x E IR1. Then there exists L > 0 which depends

only on K and sup JF(U)I such that JA(x)J < L for all x E IR.
tIuj<K

Proof. This can be obtained from the Agmon-Douglis-Nirenberg estimates by

viewing U as the solution of (1) on a unit interval I = (x0,x0+l) with in-

homogeneous Dirichlet conditions. In this manner, we obtain an H 2(I) bound

for U independently of x0 , which in turn yields a uniform bound for A on

I by the Sobolev lemma.

Now let no' c L where a = a or b ( L  {A E 3R2 :JAI < Lr

and Za , a = a,b, are the regions in the U-plane indicated in Figures 2(a)
c

and (2(b), respectively.

v v
c k

c

, T1

Tu

T 4

(a) (b)

Figure 2
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b
LEMMA 2.2. Suppose that L and K =v"2 c are as in Lemma 2.1. Then ncL

cLLis an isolating neighborhood for (4) in case (b); n cLi nisltn

neighborhood for (4) in case (a) provided that the rest point S of F (see

Figure 2(a)) is sufficiently near the origin if it lies in the first quadrant,

and that in this case, the tangent at S to M = 0 (resp. N = 0) is close

enough to a vertical (resp. horizontal) line.

Proof. We have that 3n, = x G I J x R)L  a = a,b. Let (U,A) be
cIL c L c 0L =ab.Lt U,) e

the solution of (4) with data (U0 ,A0 ) E .TjL If JA01 = L , then by
c , L 

I
Lemma 2.1, U(x) must exit from Za at some value of x . Now suppose that

c,L

U0 E *a It is easily verified that the vector field -F(U) points strictly
c

out of Z along DEc. This is obvious in case (b). If in case (a) S liesc c

in the first quadrant, the additional assumptions in the statement of the lemma

guarantee that this will be the case. The proof is completed by expanding U(x)

in a Taylor series about x = 0 . Since U"(0) = -F(U0 ) points strictly out of

zc , it follows that U(x) is either transverse to K or externally tangentc c

to Ka at x = 0 El

The relationship between case (a) and case (b) is developed in the following

lemma.
a

LEMMA 2.3. The flow of (4), case (a) in n a is related by continuation to

b
the flow of (4), case (b) in Lc,L"

Proof. We must embed the two flows in a family of equations X = ,

0 < < 1, where (D = (case (a)), 1) = (case (b)), and such that there

exists an isolating neighborhood r,, for the kth equation which is also an

isol.TZing neighborhood for the ;th equation for ii sufficiently near ,

a adb
Finally, we require that no cL and that = cL

66-6-
:1 . *



V V

N O

NO0

(a) M0M

N=O0
• N 0T

(C)

Pigure 3

We begin by deforming the zero sets in Figure (2(a) to those in Figure 3 (a)

aby pushing T2 (resp. T3) along the diagonal edge of E until it meets T

(resp. T). Since u = 0 (resp. v = 0) is part of the zero set of f (resp. g),

the phase diagram in Figure 3(a) is topologically equivalent to that of

Figure 2(b), so that we can deform Figure 3(a) to Figure 3(c) as indicated. It

is easily seen that these deformations can be performed in a manner such that

Ta is an isolating neighborhood for the flow defined by each set of equations
c,L

in the above deformation.

It -7-



Since the zero sets of Figure 3(c) no longer include the coordinate axes,

a b
it is easily seen that n can be deformed to n through a family of

cL c,L

isolating neighborhoods E x a . Finally, since the zero sets of Figure 3(d)

coincide exactly with those of Figure 2(b) in E , we can deform the vector

field in Figure 3(d) to the field in Figure 2(b) , in a manner which leaves the

zero sets fixed throughout the deformation.
a

If S (resp. S b ) is the maximal invariant set contained in nL (resn.a bc,L
b
rc ), Lemma 2.3 shows that the index of S denoted by h(S ), is the samec ,L a a

as the index of S . This index is easily computed as follows.
b

LEMMA 2.4. The index of Sb is the pointed 2-sphere (denoted by Z2 ).

Proof. It is easily seen that Sb can be continued to the single hyperbolic

rest point P by pulling the curves M = 0 and N = 0, (case (b)), apart in

ba manner such that the new vector field equals F near P and DE and
c

badmits the unique rest point P in Eb It is obvious that {P} is the only
c

bcomplete solution of the new equations in nc,L . Hence the index of Sb equals

the index of {P}, considered as an isolated invariant set.

The rest point P of F is a node, so that the eigenvalues A and

of dF at P are both negative. A simple computation shows that the eigenvalue-

of dD at P are ±v. , i = 1,2. It follows that the index of {P} is

since the linearized equations are nondegenerate and have two positive eigenvalucs.

We now apply this result to obtain some information about the sets S and
a

S b . Let

M (X0) = {X E :0 < Ix- x 0 1 < 61.

THEOREM 2.5. For every E > 0 , we have that either S r. M(P) M or that

S f) M (R) = M, where S = S,Sb

-8-



Proof. If this was not the case, S1 = S \ {P,R} would be an isolated in-

variant set; by an easy computation, (see Conley, [3]), we have that

(8) h(S) a! h(P) v h(R) v h(S])

where "v', is the topological sum of pointed spaces and - denotes a homotopy

equivalence of such spaces. We obtain a contradiction by computing the second

homotopy groups of the left and right hand sides of (8). Since homotopy equiv-

alence induce isomorphisms on the homotopy groups, by Lemma 2.4 and Maunder, [12,

Theorem 7.4.6], we have that

Z a T2 ( 2 ) 2!2(h(P) v h(R) v h(S)).

However, for two pointed spaces X and Y we have that by Maunder, [12, Theorem

7.2.20],

"2 (X V y) _5 7 2 (X) *2 (Y) $ 7r3 (X x y, X V y),

where r3 (Z ,Z 2) is the third relative homotopy group of the pair (Z ,Z ) Hence

we have that
Z a r2 (h(P) v h(R)) * T2 (h(S )) * G

2 2 1

where G is 13 of the pair

(h(P) v h(R) x h(S1 ), h(P) v h(R) v h(S1 )).

However, by the proof of Lemna 2.4 we have that E2 - h(P) - h(R), and therefore,ip that
?2 (h(P) V h(1)) -2(7 v 72) -2 *z

by Maunder, [12, p. 297]. Thus X =Z - *2Z * T 2 (h(S 1 )) * G, yielding a contra-

diction.

COROLLARY 2.6. There exists a nontrivial solution of (4) in S , c = a,b,

whose w-limit set consists of one of the rest points P or R

Proof. This is an immediate consequence of Theorem 2.5 and the Hartman lineari-

zation theorem. For brevity's sake, we omit the details.



3. Hamiltonian systems.

We shall now assume that there exists a function H(U) such that VH = F

so that if E(U,A) = JAI- + 2h(U), then E is constant on solutions of (4).

This will be the case if M and N are chosen as in (3a) or (3b). (More

generally, if the zero sets of M and N are v = k(u) and u = Z(v),

respectively, let F = (u(-v 2 + k(u) ), v(-u + £(v) )). Then F is a gradi-

ent field whose components have the same zero sets as those of F). The solu-

tions, now constrained to lie in a three dimensional manifold, have less room

to move around, and substantially more can be proved about their behavior. We

shall assume that F is as in case (b), though the following results also

hold for certain systems of type (a); this is discussed at the end of this

section.

Hamiltonian systems in this context do not occur generically, and their use

in mathematical ecology, where the equations are only crudely known, is rather

artificial. However, the assumption of such additional structure is reasonable,

since the intention here is to prove complexity, rather than simplicity of

behavior. More precisely, the sign of the quantity H(P) - H(R) determines

which of the two species is the stronger competitor; we will show later that

certain qualitative properties of solutions when this quantity is zero persist

<1 under various perturbations of the nonlinear term. Furthermore, in a forthcoming

paper, we shall obtain travelling wave solutions of quite general classes of

equations by constructing a homotopy back to a Hamiltonian system for which

H(P) = H(R).

The strategy is to obtain small amplitude periodic solutions (from bifurca-

~b
tion theory) which have values in * These branches lie in globally de-c,L

fined continua of solutions which also have values in 9c,L This fact, com-

bined with the Hamiltonian structure, can be used to obtain a precise description

-10-



of large amplitude periodic solutions, which in turn can be used to obtain

heteroclinic orhomoclinic orbits depending on H(P) - H(R).

To obtain small amplitude periodic solutions, we consider the equations

(9) - 2U + F(U) = 0 , U (-) = U (l) = 0 ,xxxX

where X is a large positive parameter. If U(x) is a solution of (9), then

U(±A- x) are solutions of(l) on the interval -X < x < X , with homogeneous

Neumann conditions at the boundary. By translating and "piecing together" such

solutions in an obvious manner, we obtain a 2X-periodic solution of (1), (or

of (4)), on IR . (This procedure yields a genuine solution of (4), as can

be seen by applying the uniqueness theorem for o.d.e.'s at points where two

solutions are pasted together).

Nontrivial solutions of (9) near Q , (the saddle in Figure 1 (b)), are

obtained as follows. The Jacobean of F at Q has one positive and one nega-

tive eigenvalue, p and n respectively. The bifurcation points of (9) will

occur at values of A = A for which -n2w2/4X2 + p = 0 . If e i is a unitn

is a unit vector in IR2  in the direction of the unstable manifold at Q ,

(for the equations U = F(U)), we obtain solutions of (9) with A -A + 0( 2 )
n

of the form

(10) U (x,y) Q + yel sin(n~rx/2) + O(y 2 ),n

where y is a small parameter. Let V (x,y) be the 2X(y)-periodic solution
n

of (1) obtained from U (x,y) as above.n

Now let X be the space of pairs of bounded continuous functions on (-1,1),

and let = X x 'R . Then by Rabinowitz's theorem, (18, Theorem 1.31,

(U n(X,Y), A(y)) lies in a globally defined continuum of solutions Un c &, in

the sense that Un  either "loops back" to the trivial branch Q x IR + at some

value of X= A where m n ,or U meets = in &. We also obtain from
Sn !

-11-



U in the manner described above a continuum V of periodic solutions onn n

mi containing (V (x,y),A(y)). It is easily seen that if (V,X) E V , thenn n
b

(V(x),V'(x)) E TcL for all x . From the expansion (10), this clearly holds

for (V,A) near (Q,X ). If the assertion fails for some (V,X) E V , we cann n

connect (V,X) to (Q,An ) with a continuous curve in V . We can then use

the continuity of the V-component along this curve, our choice of c and L

and Lemmas 2.1 and 2.2, to obtain a contradiction.

Rabinowitz also characterizes the nodal properties of solutions of nonlinear

Sturm-Liouville problems which lie on continua which bifurcate from the trivial

solution. However, his argument doesn't have an obvious generalization to

systems. We shall prove an analog of this result for systems in the special

case under consideration. To do so, we shall need the following lemma.

v
b

A (xO)
/ xN (X )

U 0)
% A(x

i 2)

u (b)
(a)

Figure 4
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LEMMA 3.1. Suppose that (U,A) is a non-constant solution of (4), that for

some x = x0, U(xO) does not lie in the shaded region in Figure 4(a), and that

A(x 0) lies in either the first or the third quadrants of the A-jplane, (including

a = 0 and b - 0). Then (U,A) is not a bounded solution of (4) with values

in nbbnc,L "

Proof. Suppose that U(x0) is as above at x = x0. Without loss of generality,

we can assume that U(x 0) lies above the shaded region; (it is easily seen that

if U(x0) lies in the extreme upper left - or lower right - hand corners of _b
c

the lemma is true regardless of A(x0)). We can also assume that A(X0) points

into the first quadrant; (replace U(x) with U(-x)). A moment's reflection

shows that we can actually assume that A(x0) points strictly into the first

quadrant.

It clearly suffices to show that U(x) cannot cross the vertical or hori-

zontal lines through U(x0 ) for any x >x 0  Suppose, for example, that U(x,)

lies on the horizontal line for some x1 > x0 * By the mean value theorem, there

must exist x2  between x0 and xI such that A(x2) points strictly into

the second quadrant of the A-plane. However, the mean value theorem applied to

A(x0 ) and A(x2) yields a value x3 between x0 and x2 such that -F(U(xi))

points strictly into the half plane {b < 0} . However, for U above the

shaded region, -F(U) points into the first quadrant, yielding a contradiction.

LEMMA 3.2. Let L be the straight line in the U-plane passing through Q

and through the origin. Then any non-constant element of LI

crosses L exactly once for x E [-1,11.

Proof. From the expansion (10), the assertion is clearly true for solutions

which are close to (Q,X1). Suppose that the lemma is false for some (U,') i.

We connect (U,A) to (Q,AI) with a continuous curve in U1. By standard

-13-



regularity theorems, we see that U' varies continuously (in the X-topology)

along this curve. Hence there must exist an element (U,7) along this branch

which intersects L tangentially at least once. If V is the 2A-periodic

solution corresponding to U , then a similar statement holds for V at some

value of x = . However, (V(i),V'(x)) satisfies the hypotheses of Lemma 3.1,

so that (V,') cannot be a bounded solution of (4) with values in ,b
c,L

yielding a contradiction.

LEMMA 3.3. The continuum U1 cannot loop back to the trivial branch at any

finite bifurcation point (Q, m), Xm # X1 , so that U, must meet - in &

Moreover, the projection of U1 on IR + contains an interval of the form

[A1 .) .

Proof. The first assertion follows from Lemma 3.2 and the explicit expression

(10) for solutions near (Q,Am), m > 1 . The second assertion follows from

Rabinowitz's theorem. The last assertion follows from the fact that we have

a bound on the projection of U1 on X , namely, 1U(x) < r c for

(U,X) ! U1  . E

LEMMA 3.4. Suppose that (U,X) E U1 and that U is not a constant. Then

(i) U(±I) lies in the interior of the shaded region in Figure 4(a), and

(ii) the components of U are strictly monotone on (-1,1).

Proof. The first assertion follows from the fact that Ux(-l) = U (1 ) = 0

and from Lemma 3.1.

We now prove (ii). For definiteness, suppose that U(1) lies in the upper

shaded region of Figure 4(a), so that by Lemma 3.2, U(-l) must lie in the

lower shaded region. If U = (u,v), let x0 be the value of x closest to

but different from -1 such that u'(x) = 0 or v'(x) = 0. Suppose that

u'(x 0) = 0 and that U(x0) lies on or below L . (If U(x0) lies above L,

then let x be the value of x closest to butdifferent from +1 such that

1_



u or v has a critical point; then U(xj) lies above L , and the following

argument can be applied to U at x ).

Since U(-l) lies in the lower shaded region of Figure 4(a), we have that

u (-1) < 0 and that v (-1) > 0 , so that u has a local maximum and v

has a local minimum at x = -1. Since u has no critical points between -1

and x0 , x must either be a point of inflection or a local minimum of u

that is, u ( -f(U(x > 0. However, the region on or below L in which

-f(U) > 0 consists of points that lie above the lower shaded region in Figure

4(a). Moreover, U'(x 0) = (0,v'(x 0)) is either vertical or trivial. If V is

the periodic solution on IR1 corresponding to U , we have for some x =

that (V(5),V'(Z)) satisfies the hypotheses of Lemma 3.1. However, (V,V') can-
b

not exit from TcL ; we have therefore obtained a contradiction. C

THEOREM 3.5. Suppose that E(P) = E(R). Then there exists a heteroclinic orbit

of (4) which satisfies (6).

Proof. Select a sequence (U n, n ) E U such that lim kn n Let Xn E (-1,1)
nn-n

be the unique value of x for which U (x) e L . By passing to a subsequencen
if necessary, we can assume that lim x = x E [-1,1], that x < 0 for

n 0 n

n = 0,1,2,... , and that U (1) lies above L for all n . If either of the

last two statements is reversed, the proof is similar.

We first show that U (1) cannot have a subsequence which approaches Qn

Assume that this is not the case and let the subsequence again be denoted by

U (1). Let V (x) be the 2Z -periodic solution corresponding to U . Then
n n n n
(l1) E(V n(n ),0) = E(V n(-Zn ),0)

for all n . It is easily seen that for any W j Q in the shaded region of

Figure 4(a), H(W) > H(Q). Thus V n(-k n ) must also approach Q , since if any

subsequence approached a point W as above, (11) would be violated for suffi-

ciently large n . Since the components of Un  are monotone on (-1,1), the

components of V are monotone on (-Zn, 2 n). Thus V converges uniformly to
n n n n

~.._on
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We obtain a contradiction as follows. Translate V x) to Z (x)n n
V (x + Z x ) so that Z (0) E L , and if p Z U - x ) >2. , then Z (x)n n n n n n -nd letd

lies above L for all x , 0 < x <p .n Let Z Z Q andlet d

dist (Z (p ),Q). By the monotonicity of the components of Z on [0,Q n ] wenfn n n
have that Z (x) lies within a distance of d from L , for x in this inter-n n
val. Now if M = dF at U = Q , we have that for 0 < x < p

'I

(12) E + MZ = 0(E 2 ) = 0(d 2 ).
n n n n

Now let e I be the unit vector in IR2 tangent to the unstable manifold of F

at Q ; we have that el points strictly into the second quadrant and that

t tejM pe , where p is the positive eigenvalue of M . Now let E(x) =
t

e1 sin(Vpx); multiply (12) by E and integrate from x = 0 to x 7/Vp to

obtain

(13) -et * (Zn(n/p) - Z (0)) = 0(d 2 )
1 n n n

+ N=O

M -0 L

Figure 5i

Note that since Xn < 0, we have that 1/VP < pn for large n . Let TnbeI

the set of points lying above L and at a distance of not more than d from

n
L, where (0, ) is a constant to be chosen as follows. Since the tangents

G n I



at Q to M = 0 and N = 0 both have negative slope, the line connecting

a point Z to G can be made to have negative slope by choosing u suffi-n n

ciently small, (in a manner depending only on the slopes of the above two tan-

gents), where Z is any point in the upper shaded region in Figure 4(a) ata

a distance of dn from L , and Gn is any point in the upper shaded region

lying in r . Thus if e is the angle between Z - G and e, thenn n n n '

cose is bounded away from zero independently of n
n

Suppose that a subsequence of Z (ir/Vr) lies outside r . Let the subse-n n

quence again be denoted by Z n(7/6p). By the monotonicity assertion of Lemma

3.4 the vector Z (7r/p) - Zn (0) points into the second quadrant whereas e,n ne

points strictly into the second quadrant. Thus if 6 is the angle betweenn

these two vectors, cosen is bounded away from zero for all n . Hence the

left hand side of (13) is O(d n), yielding a contradiction.

We must therefore have that Zn ( /Vp) lies in r for all n , and by

monotonicity, a similar statement holds for Z (x) for all x E [O,rT/vPl]. Ifn

Z (x) lies inside the upper shaded region, connect Zn (x) to Zn = Zn (n)

with a straight line, and let G be the point of intersection of this line
n

with the left hand boundary of rn . If Z (x) doesn't lie in the upper shadedn n

region, connect Z (x) to a point A on the closer of the two curves M = 0n n

or N = 0 with a line parallel to L , (and hence, in r ). Now connect A
n n

toZn = Zn (P n) with a straight line and let Gn be as above. Since Hu = f

and Hv = g are both negative (resp. positive) above (resp. below) the upper

shaded region, and since Hu < 0 and H > 0 inside this region, we see from

our choice of a, that in both of the above two cases, H(Z nx)) < H(G ) forn n

all x E (0,1T/Vp]. Thus
2

IZ'(x)1 - 2H( n) - 2H(Z n x))

> 2H(Z n ) - H(G n)

- 2V*(U*) * (Z - Gn) '

n n n

-17-



where U* is a point on the line connecting G to Z ° Since Q is a
n n n

nondegenerate rest point of dF , we have that there exists a constant K > 0

such that

IVH(U) I = IF(U) I KJU - QI

for U near Q Moreover, F(U*) points into the second quadrant, and by
n

our choice of a , Z - G points strictly into the second quadrant in a manner
n n

such that if e is the angle between F(U*) and Z - G then cose is bounded
n n n n n

away from zero for all n . Hence there exists a constant c > 0 such that for

0 < x < 7/p- we have that

IZ@(x)1 2 > cd2

since JU* - QI > ad and IZn - GnI > (I - a)d . Moreover, by the monotonicity

assertion of Lemma 3.4, we have that Z(x) points into the second quadrant, son

that if e is the angle between Z(x) and el , we have that cos6 is
n n n

bounded away from zero for all n and x E [0,7/6]. Hence, the left hand side

of (13) is once again 0(dn), yielding a contradiction. We must therefore have

that IVn(Z) - Q > e for all n and for some e > 0

We now obtain the existence of a heteroclinic orbit of (4) connecting

and R . By passing to a subsequence if necessary, we can assume that Z (0)

converges to a limit V , and that Z'(0) converges to a limit A . Let
n

(V(x),A(x)) be the solution of (4) with data (V,A), and let j = [0,x], where

; > 0 is arbitrary. Since x < 0 we have that the components of Z (x) must
n- n

be monotone on J for large n , and since Zn uniformly approximates V(x)

on J , the components of V(x) must be monotone for all x > 0 . Hence

lim V(x) = V exists and is finite. Thus the solution (V (x),A (x)) through

any point in the w-limit set of (V(x),A(x)) must have constant V-component;

thus A (x) z 0 and F(V ) E 0. Hence lim A(x) = 0 and V is a rest point
X-00,

of F . It follows from the preceding result that V 3e Q. The only other

possibility is that V = P.

I -18-
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We finish the proof by showing that lim (V(x),A(x)) = R . Let a = (-l-x
n n

and suppose that some subsequence of Z (a )converges to a limit R 1 R
n n

From Lemma 3.4, we see that R must lie in the lower shaded region of Figure

4(a). Since H(R1 ) < H(R) and E (Z n (),0) = E(Zn (n),0) - E(P) = E(R), we

obtain a contradiction for sufficiently large n . Thus we have that

lim Z (a) = R. Now suppose that lim a > - and select a subsequence (again
n n n - n

denoted by an ) such that lim an = a0 > --. Since (Z (x), Z'(x)) convergesn n
n

uniformly to (V(X),A(x)) on [a0 10], we must have that V(o 0 ) = R and that

A(o 0 ) = 0 , so that (V(x),A(x)) H R , contradiction. Thus lima an = - , and

the argument of the preceding paragraph can now be applied to obtain

lim (V(x),A(x)) = R . C

THEOREM 3.6. Suppose that E(P) > E(R) . Then there exists a homoclinic orbit

of (4) satisfying (5)

Since the details of the proof are similar to those of Theorem 3.5, they will

be omitted.

The above arguments can be applied verbatim to systems of type (a) provided

that the zero sets of M and N are monotone decreasing with increasing u

This will be the case if the smallest roots of the two parabolas are sufficiently

negative, see Figure 6. In a forthcoming paper, we shall obtain travelling wave

solutions of systems for which (uM,vN) has such qualitative properties and for

which (uM,vN) is not necessarily a gradient.
v

Su
= 0

Figure 6
-19-
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We finally remark that the method of proof of Theorem 3.5 shows that ever7

branch on the continuum V "approaches" a homoclinic or heteroclinic orbit,

in the sense described above. Thus the steady state equations (1) admit the

familiar "teardrop" of bounded solutions which arises in the case of a scalar

equation.

4. Existence of slow travelling waves.

We shall now obtain slow travelling wave solutions of (2) which are in some

sense near the stationary heteroclinic orbit connecting P and R . The

technique is to introduce a parameter y into the equations which is propor-

tional to E(P) - E(R). In particular, suppose that H(P) = H(R), where

VH(U) = F(U,O), and

F(U,y) = (uM(U) + uy , vN(U))

where F is as in case (b). We then linearize the travelling wave equations

about the above orbit when y = 0 and apply the implicit function theorem.

Travelling wave solutions are obtained as follows. Let W = H 2 (I1) 2 and

Y = L 2 (IRI) 2. Note that the rest points of F(U,Y) vary with - . Let P

and R be the rest points "P" and "R" for F(U,Y); P and R depend

smoothly on y . Let A(E) = e'(l + e , and define

B(4,y) = (i- X(C))(R -R ) + A(O)(PY

Now let (U,A) be the solution of (4), (6) when y 0, and let
2

F : ]R x P) x y be defined by

F(y,O,W) = (W + U + B(-,y))" + F(W + U + B(,y),y) - e(W + U + B(,-))'

Note that from the manner in which B was chosen,we have that F(W + B(,%)+ (U,'

e Y for all W e W. Thus F is a (smooth) mapping of the indicated

spaces. Moreover, by construction and the Riemann-Lebesgue lemma, (y, ,U)

will be a solution of (6), (7) if and only if U = W + B(,y) + U where

F(y,e,w) = 0

.... .



Now let L mR x W y be the Fr~chet derivative of F with respect to

(6,W) evaluated at (y,6,W) - 0 , i.e.,

(14) L(6,W) = W" + d uF(U,0)W - 6A

where A = U'. We shall also need to consider the densely defined operator L.

on Y with domain W defined by

L W W" + duF(U,0)W

For an operator T , let Z(T) denote the spectrum of T

LEMMA 4.1. Z(L0 ) n {a > 0) consists of isolated eigenvalues of finite

multiplicity.

Proof. We modify an argument given by Bardos, Matano, and Smoller, [1), for a

scalar equation. Let M(Q) be the matrix valued function dU F(U(E),O). Then

M(V) is a symmetric matrix for all E , and all the eigenvalues of M(±-) are

strictly negative. Let

M0() = X() M(-) + (1 - X()) M(--);

it is easily verified that M0 ( ) is symmetric and has eigenvalues which are

strictly less than some negative constant m 0 for all E E iR1 . Thus if

i R0 = d2/d&2I + M 0(C), and if for U, W 0 C(in) 2 we let

aX(WU) = (RoW,U)Y + X(WU)y

then a defines a continuous bilinear form on Hl (IR1 )2, and from the above

properties of M0 , we have that

a (WW) < (X + max(-l,m))IIWII 
2

0 H1
T~hus aA icorien HI(R) for all X < 0 , so that by the Lax-Milgram

theorem, R0 + XI is an isomorphism of H1(i 1)2 onto H- (3RI)2. Moreover,

0
if (R 0 + X)U = f E Y then U e W . Thus R 0 + A maps W onto Y so that

-A Z(R0). For such A we have that (L0 + X)(R 0 + X) = I + KN where
f -1

K (M0 - M) (R0 + X) is an operator on Y . From our choice of M0  we have

that K Xis compact for A <0 ;clearly -1 c e if and only if -

-21-



The result follows from the Riess-Schauder theory for compact operators; see

[1] for details. E

LEMMA 4.2. The kernel of L is one-dimensional and is spanned by the vectorL0

A(). The range of L is the orthogonal complement of A in Y
0

Proof. Clearly, A c ker L0 so that if 0 is the largest element of Z(L0),

we have that X0 > 0. Thus by Lemma 4.1, A0 is an element of the point spec-

trum, so that if Q(W,w) = (L0WW)y, then

X0 = sup{Q(WW) : llWy = , w E W}

and this supremum is attained at a vector W 0 e W. Suppose that X0 > 0 . Then

we must have that (W0 ,A)Y = 0. However, if W 0 has components a and T

then

(15) X0 = f (-; 2 
-2 + f u 2 

+ 2fVat + g

where the partials f u fv' and gv are evaluated at U('). Now fv (u,v) < 0

for all u,v > 0 . If a and T ever had the same sign and were nonzero for some E

we would get a strictly larger value in the integral in (15) by replacing a

with al and T with --ITI. Thus a and r must always have different signs.

Moreover, neither a nor T ever change sign, since if this was the case at

=0 1 (Ia,-HIT) would again be an eigenvector of L 0. However, by the above,

z( ) = -[U( ) = 0 ; in addition, a'(t 0 ) = T'( ) = 0 , since lal and -I-T

must both be locally H2 functions. Since L 0(al,-ITI) = 0 is a homogeneous

second order system of o.d.e.'s, these conditions imply that a and T vanish

identically. Thus a and T must be of constant and different sign. However,

* by Lemma 3.4, a similar remark holds for the components of A . Thus (AW 0)Y

must be nonzero, so that A0 = 0. A similar argument shows that zero is a simple

eigenvalue of L 0.

j -22-
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The last assertion of the lemma follows from the fact that range (L0) =

range (L k0) is closed in Y , and the usual relation, A = (ker L*) =
20 0

cl(range(L 0 )).

Now let W , = A and define a mapping f:IR 3 x W Y by

f(y,Tr,e,W) = F(y,6,7A + W).

THEOREM 4.3. There exists a smooth function h:IR2 - IR x WI where h(0) = 0,

and

h(y,n) (e(y, T) ,WI(Y,n))

such that the set of solutions of f(y,7,e,W) = 0 near the origin consists

precisely of vectors of the form (y,7,6(y, T),WI(Y,Tr)).

Remark. The additional parameter 7 is present due to the inherent degeneracy

in the problem arising from the fact that translations of solutions are solu-

tions. We can therefore "normalize" the space by setting ff = 0 , and by the

uniqueness assertion of Theorem 4.4 we are assured of obtaining all solutions

near the origin modulo translations.

Proof. We have that the derivative of f with respect to (6,WI) is precisely

the restriction L of L (defined in (14)) to IR x W1  The theorem will

follow from the implicit function theorem if it can be shown that L, : IP x Wj Y

is an isomorphism. If L1 (6,Wj) = 0, we find by multiplyin this

equation by A and integrating that -6(A,A)y = 0 , so that 9 = 0 , and that

W, - ker L 0  -, W, = {0}. Hence L1 is 1:1. Now let G E Y , and put 8 =

-(G,A) y/(A,A) . Then L1 (&,W ) = G has a solution if and only if

(16) L0 W = G + 6A

has a solution in Wi . Fromt our choice of e and Lemma 4.2, this is obviously

the case; thus L1 is onto .

COROLLARY 4.4. Y (0,0) < 0
-

-23-
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Proof. Differentiate F(y,e(y,0),W (y,0)) = 0 with respect to Y to obtain

r" + MF + F (U,0) - 6 (0,0)A = 0Y Y

where F = Wly(0,0) + B y(.,0). Note that F (U,0) = (u,0), where u is the

first component of U . Multiply the above equation by A and integrate to

obtain

fW A. (uO)d - 6 (0,0) f A12 d = 0
MY

Thus, we have that

u(00) = u 2 (_) - u2 (- )

211 All 2

We remark that all of the above results apply also to the mapping F2 =

F + y2G(W) where G: W - Y is a smooth mapping. Hence travelling wave

solutions persist under small, smooth perturbations of the nonlinear term. In

particular, we see that such behavior is not peculiar to Hamiltonian systems.

5. Existence of stable clines.

In this section, we introduce a spatially inhomogeneous perturbation into

the equations. It is no longer true that translations of solutions are solu-

tions; indeed, for a reasonable class of perturbations, the spectrum of the

linearized perturbed equations moves into the stable half plane. Thus even a

slight inhomogeneity in the relative competitive strengths of the two species

can cause the densities to evolve to a stable large amplitude pattern. This

fact has been observed by Peletier, [16], and by Peletier and Fife, [17], for a

scalar equation arising in population genetics. Mimura and Nishiura, [14],

have obtained small amplitude spatial patterns for a system arising in develop-

mental biology by introducing spatial inhomogenities via perturbed bifurcation

theory.

l "-24-
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We will assume that H(P) = H(R), where VH(U) = F(U,0) and that F

(case b), has the form

(17) F(U,x,e) = (uM(U) + (cPI + C2 1)uvN(U) + 2 + )v)

here pi,4i c L2 (3R'), i = 1,2. We shall apply an argument based on the

Liapunov-Schmidt procedure to obtain solutions of (1) which also satisfy (5).

We shall need the following theorem.

THEOREM 5.1. Suppose that G is a smooth mapping of a neighborhood of the

origin in R x W into Y , where W and Y are Banach spaces. Suppose also

that G(0,0) = 0 , and for (,W) E IR x W that

(i) GW(0,O)HO = -G (0,0) for some H0 E W

(ii) ker G (0,0) = span {A), for some A # 0 in W

(iii) the range of G (0,0) is closed in Y and has codimension one,
W

(iv) there exists a one parameter family W (s) c W for small s with

W(O) = W1S (0) = 0 such that G(0,sA + WI(s)) - 0

(v) G (0,0)A + Gw(0,0)(H0,A) range (G (0,0)).

Then the set of solutions of G(e,W) = 0 near the origin in IRx W consists

precisely of two transversally intersecting curves. The nontrivial branch has

the tangent (1,H), where H = H0 + yA for some y e R1 so that it can beI0
parameterized by e . We therefore obtain a curve W(c) E W such that W(0) = C,

W (0) = -H, and G(U,W(e)) = 0.
C

The proof of a similar theorem can be found in Nirenberg, 15, Theorem 3.2.2];

we shall therefore only sketch the details. Conditions (i) - (iii) and the

Liapunov-Schmidt procedure can be used to show that solving G(C,W) = 0 near

the origin in IR x W is equivalent to solving G(a,b) - 0 near the origin

in iR2 , where G(a,b) - y*G(a,aH0 + bA), and y* is a bounded linear func-

tional on Y which annihilates the range of G(0,0). Since VG(0,0) (0,0),

the Morse lemma can be used to obtain the desired result provided that

-25-
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dZG(0,0) = f is nondegenerate and indefinite, i.e., that g2g3 - 2 < c.
9 2 93913 2

Hypothesis (v) implies that g2 1 0 whereas (iv) implies that

(18) g3 = Gbb(00) = Y*(G ww(0,0)(A,A))

d2
(y*G(0,sA + W (s)) s=0

ds
2

=0.

Finally, the tangent of the trivial branch is (0,A); in addition, the tangent

of the nontrivial branch at the origin is transverse to that of the trivial

branch and lies in the plane spanned by (1,H 0) and (0,A); (see Nirenberg).

Hence the nontrivial branch can be parameterized by £ in the manner described

above.

Now define a (smooth) mapping G:IR x W - Y by

G(e,w) = (U + W)" + F(U + W, x, E)

where F is as in (17).

THEOREM 5.2. Suppose that P, and p2 are chosen such that

(19) fm (a(x)u(x)pl(x) + b(x)v(x)p2 (x))dx = 0.
-0O

Then for an open set of (p ,p2) 2 Y ling in the hyperplane defined by (19)

there exists a solution W(e) of G(e,W) =0 , for sufficiently small .

Proof. We show that the hypotheses of Theorem 5.1 are satisfied. From Lemma

4.2, we see that (19) implies that G (0,0) = (up 1,vP2 ) is in the range of£2

G 0 (0,0), i.e., A±; (ii) and (iii) follow from the same lemma. Condition (iv)

is verified by noting that
x+s

U(X+s) - U(x) = s A(x) + S2[S - 2 f fC- F(U(0))d dc];
x x

the expression in brackets tends to -F(U(X)) uniformly on compact sets as

s - 0 . Moreover, the derivatives of U(x) are uniformly bounded, and tend

to zero exponentially as Ixi =. It easily follows that the expression in

brackets is uniformly bounded in W as s 0 .
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We finally show that (v) holds for most (p ,p ) that satisfy (19).1 2
-1

Note that if L0  GW(0,0), then L0  is a bounded self-adjoint linear operator

on A Iso that H, =L depends linearly and continuously on (p ,P2).

Condition (v) is equivalent to

(20) 0 y f'(a2p + b2P)dx + 2
-00 -Cc

Let V d2F(U(x),0)(A,A); from (18), we see that V e A hence, using the fact
C i

that L 0  is a self-adjoint operator on A1, we have that

(V,H0)Y = L 0 V, v P2Y.

Moreover, we have that if U(x,s) = U(x+s), then

d 2

ds2 [Uxx + F(U,0)I j = 0

so that if G = U (x,0) = -F(U(x)), we have that

+ d 2F(U,0)(A,A) = 0L0G

that is, G = -L IV. Thus L0 IV = F(U), and (20) is equivalent to
0 0

(21) 0 7 fo [(a2 +uf(U))p I + (b
2 + vg(U))p 2]dx

-00

This fails to hold for all (p1 ,p2) which satisfy (19) if and only if

(a2 + uf, b 2 + vg) = s(ua,vb)

for some s 6 IR. However, in this case at least one of a2 - sua, b 2 
- svb

must be of constant sign, whereas -uf(U) and -vg(U) both change sign. 0

Remark. Since the second order perturbations 4I and are free parameters,

we see that Theorem 5.2 actually holds for a generic class of L2 perturbations.

COROLLARY 5.3. Let X(e) be the largest eigenvalue of the problem

(22) Z" + du F(U + W(C) ,X, )E = XE,

and let E = E(e) be a corresponding eigenvector. Then for all (p1 ,P2)

satisfying (19) and (21), we have that A (0) 1 0

-27-



Proof. We have that W (0) = H0+ yA for some y E IR. Let Z Z (0)

and A F XA (0). Differentiate (22) with respect to E , set E= 0 , Multiply

by A ,and integrate to obtain

11 =iAll - fl(a2p1 + b2 P )dx + JWA d F(U, 0)(W (0) ,A) dxl

we have used the fact that X(0) = 0 and that Z(0) =A .From (18) and the

fact that W :(0) = H 0 + yA , it can be seen that the expression in brackets

equals the right hand side of (21). E)

Thus for E: of the appropriate sign, the spectrum of the linearization of

the perturbed equations will lie in the stable half plane. Since the linearized

operator is clearly sectorial, standard abstract results can be invoked to

obtain the full nonlinear stability of the solutions of the perturbed equations

with respect to appropriate perturbations in the initial data of (2); see for

example, Henry, (8]. Indeed, such solutions must be asymptotically exponentially

stable. We also note that such stable behavior persists under small c 1per-

turbations in the nonlinear term; this is an immediate consequence of the implicit

function theorem. Even though such perturbations may have to be extremely small,

we nevertheless obtain the structural stability of stationary solutions connecting

P and R .This fact was not clear from our discussion of autonomous systems

in section 3.

6. Conclue~ing Remarks.

our results indicate that diffusion coupled with a nonlinear competitive

interaction can lead to the formation of large amplitude patterns which are

locally consistent with the principle of competitive exclusion and yet on a

global scale allow both species to persist. (Although such results were proved

under the hypothesis of gradient or near-gradient structure, the theorems of

section 2, (proved in the absence of such hypotheses), suggest that such behavior

is exhibited by solutions of quite robust classes of equations). Furthermore,

stability of stationary patterns was achieved through the introduction of spatial

-28-



inhomogeneity in the relative competitive strengths of the two species. It is

likely that this is also a necessary condition for stability of such patterns.

In particular, the technique of Bardos and Smoller, [2], can probably be

applied to obtain the instability of the homoclinic orbits and the solutions

of the Neumann problem obtained for autonomous systems in section 3. It would

be interesting to see whether stable solutions of the singularly perturbed

Neumann problem, (9), can be obtained through the introduction of a second,

spatially inhomogeneous perturbation.

Another interesting question is the introduction of time-dependent perturba-

tions. Forced oscillations in competition equations without diffusion were

studied numerically by Koch, [101. It therefore seems natural to introduce

time-dependent periodic perturbations into systems that admit stable large ampli-

tude stationary solutions. Slowly varying perturbations are likely to give rise

to stable large amplitude periodic solutions, whereas rapidly varying perturba-

tions may give rise to more complicated recurrent behavior.
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