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It is commonly su posed that L - W applies to "almost any"

queueing system, with the mean customer entrance rate, L the

asymptotic expectation of the number of customers in the system,

and W the asymptotic sojourn time expectation. We study the

formula for irreducible positive recurrent Markov queueing systems

whose state vector Z consists of entries representing queue lengths

at the respective service stations; such a model permits blocking,

finite capacities, jockeying, state-dependent or random routing,

bulk and/or Erlang service, and variable arrival and service rates.

To define waiting times under various queueing disciplines, Z is

augmented by a customer location process to yield the new Markov

process Y = (Z,U). It is shown that the standard regenerative

process proof of Little's equality fails in the absence of further

1opotheses; however, additional assumptions assure the validity of

L => W for a broad variety of queueing disciplines. Generalizations

of the formula are obtained for (a) state dependent customer

arrival rates, (b) periodicity of the number of customers per busy

period, and (c) multiple classes of customers. Non-Markovian

queueing systems are briefly discussed.

Key Words: Little's formula, queueing networks, sojourn times,

transit times, Markov jump processes, regenerative

processes



'I 0. INTRODUCTION

According to a recent survey, the "... average waiting and

response times can be obtained easily from Little's formula L - XW

... " for customers in Markovian queueing systems of general type

[14]. This would seem to be supported by the classical queueing

literature [12][18], in which the reference is to queueing systems

rather than one server. Although these assessments may be correct

in principle, a closer examination of the applicability of the

formula discloses some subtleties, which do not occur in a G/G/l

queue, but may well be encountered in a complex queueing network.

These considerations affect not only the form, but even the

validity of the relation L = XW. Among the deviations from

G/G/l behavior that preclude a straightforward argument are

variable entry rates, batch inputs, periodicity in the number of

customers in a busy cycle, and some (likely pathological) non-

existent expectations.

Little's formula is amenable to diverse interpretations

(e.g., as a relation for time averages [18]), but we shall confine

ourselves to asymptotic expectations. If L(t), the total number

in the system at time t, converges in distribution to L, we call

L a E(L.). Analogously, when Wn, the system sojourn time of the

n'th customer, converges in distribution to We, we let W = E(Wa).

Finally, X is the average rate of customer entry into the system.

In common with many other studies on queueing networks [1]

[2](3][11](13][16]', we shall represent the state of the network

by a Markov jump process Z for positive time. Roughly speaking,

Z(t) is a complete descriptor of the location and type of customer
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within the network at time t. As the references just listed

indicate, the Markov representation is adequate to model a variety

of computer-communication systmes, including different queueing

disciplines, random routings, blocking, state-dependent entry

and service rates (e.g., finite buffers and multiple servers,

respectively), non-exponential service time distributions,

different classes of customers, and the like. The reader is

referred to the above references for applications and examples.

That the relation L = AW may fail even for a simple Markov

system is indicated by

Example 0.1: The system consists of two exponential tandem-

connected servers, with a Poisson input of intensity X to the

first server. The state is then described by a tuple z - (zlz 2).

Now suppose blocking and finite capacity permit only certain

direct transitions, viz. (0,0).(1,0)(2,0)(,) (0,2)0,) (0,0).

Since the Wn have distinct expectations according as n is odd or

even, the sequence Wn cannot converge in distribution, nor is there

even any meaning to a limit of E(Wn). Further, the arrival rate

to the system may well be constant at x, but this does not reflect

the actual entry rate, which is some variable quantity. Conse-

quently L - XW makes no sense, nor is it obvious that there is

a "fixed up" version of this formula.

This example illustrates the folly of an automatic assumption

that L - XW must hold for a stable Markov system, Apparently,

variable entry rates and busy cycle periodicity play some role

in the validity of the formula. We shall also see that there are

other hypotheses which we cannot omit.
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We shall begin by summarizing standard arguments leading to

Little's formula. Next, we examine Markov queueing networks to

determine their conformance to the hypotheses underlying a proof

of Little's formula. Some of these hypotheses are automatically

met by any queueing system represented by a well-behaved Markov

process, whereas others require separate assumptions, or lead to

a modification of L - XW. Among the extensions are variable input

rates and multiple customer classes. Finally, we point out that

certain of the results are applicable to non-Markov networks.

I. BACKGROUND

A Markov queueing network will be represented by a vector

Markov jump process defined on a state space whose elements

z - (zlz 2,...,zr) have non-negative integer-valued components

zi that may be thought of as the respective number of customers

located at the r service stations; this is consistent with many

literature descriptions of computer-communication system models

[1](3][9][14]. Accordingly, we shall begin with a regular right-

continuous Markov jump process Z - (Zl2zI...,Zr) having this

state space, and defined for times t > 0. The state 9 a (0,0,...,0),

corresponding to an empty system, is supposed positive recurrent.

Since only asymptotic properties are of interest, we shall take

Z(0) - 8 without loss of generality. Central to the upcoming

derivations are the stopping (hitting) times (Cn}; CO - 0, and

Cn is the time of the n'th entrance of the system into the state

9. At this juncture, we only note that (Cn} constitutes a

renewal process with finite inter-renewal periods satisfying

,A I
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E(Cn+I-Cn) - > 0 (cf. [5], Section 8.S and Prop. 10.1.12),

in which r. denotes the invariant probability measure

S rlin P(Z(t)-O] - 7.
t

For the present, let us understand the sojourn times {WnWn
and number of customers in the system {L(t)} in intuitive terms;

in any case, {Wn} cannot be defined entirely in terms of Z,

since individual sojourn times are also heavily dependent on the

queueing discipline (not reflected in Z). For now, we review

a derivation of Little's formula for a later analysis of its

application to a queueing network specified by the Markov process

Z. Of the modern proofs of Little's equality, perhaps the best

known and most general are those of Jewell [12] and Stidham [18]

[19]. Stidham points out that the relation, in terms of time

averages, is actually non-stochastic; under further assumptions,

L - AW can be retrieved for a random system. Jewell's approach

(see also [6], Section 1.6ii) is more direct, attaining its

results through use of regenerative process theory and Wald's

lemma. Unfortunately, Jewell ignores the implications of period-

icity and non-uniform arrival rates. It is easy to state the

propositions underlying Jewell's argument, and we do so for

future reference without proof.

Theorem 1.1 (cf. [18], Theorem I; [12], Lemma 1): For a busy

cycle over the interval [0,C]., and entailing N customers

*: JL(t)dt = W , (1.1)

0na1

where Wn is the total system sojourn time for the n'th customer

- ; . ............ . . . a l
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to enter the system, and L(t) - II Z(t)j (i.e., the t1 norm of Z(t)).

Theorem 1.2 ((6], Theorem 5.1): Let Z be a regenerative process

([6], Definition 2.1) with respect to the renewal sequence {Cn1,

where the renewal intervals are non-arithmetic with finite expecta-

tion. If the expectation on the right of (1.2) exists, L(t)

converges in distribution to a random variable L , and

E(L.) {E(C).' EoL(t)dt} (1.2)

Remarks: Without loss of generality, we have taken CO = 0, and

used C for C1 in (1.2). Although it does not affect the statement

of the Theorem, we prefer to let the Cn correspond to times the

system becomes empty, rather than--as convention would have it--

those instants the empty system receives a first customer. Our

definition assures that Z is in the specific state Z(Cn) = 6, so

that we may use the strong Markov property.

Theorem 1.3 ([6], Theorem 3.2): Let {Wn} be a regenerative process

with respect to the renewal sequence {Nk1, were Nk is the total

number of customers entering the system over the interval (O,Ck].

If the number of customers in a busy period has finite expectation

and is aperiodic, the Wn converge in distribution to a random

variable W=, and

N

E(I) - {E(N)}Ef-Wn}  (1.3)

na1

Remark: As in Theorem 1.1, we take C0  0 and write N for N1 .

FW
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Theorem 1.4 (Wald's Lemma): Assume {An} is a sequence of i.i.d.
random variables of finite mean. Let N be a random variable such

that the event {N < n} is stochastically independent of Ak for

all k > n+l. Then if C is defined as

N

C -LAn (1.4)

n l

we have

E(C) - E(A)E(N) . (1.5)

Remark: If the busy cycle is conventionally defined to begin

with the arrival of a customer into the empty system, the Ak are

interarrival times, and N is as in Theorem 1.3, then (1.4) correctly

describes the busy cycle (cf. (6], p.1); hence (1.5) holds for

i.i.d. interarrival periods at the constant rate x = [E(A)] "I .

However, (1.4) is not appropriate for our busy cycles (Cn Cn+l],

which are assumed to begin when the system first becomes empty.

If the conditions of the preceding theorems are satisfied,

we may combine equations (1.1), (1.2), (1.3) and (1.5) to yield

Little's formula with L - E(L,) and W - E(W.). As is well known,

the formula is applicable to the stable G/G/l queue--provided

we ignore periodicities. For instance, the special case of the

D/G/1 queue (e.g., An - 1) implies a periodic L(t) that does not

converge in distribution. We also find that an adjustment must

be made for fixed bulk arrivals, and that Theorem 1.4 fails

altogether if the G/G/1 queue is modified by introducing state

dependence in the arrival process. Although arrival periodicity

is inconsistent with the Markov property as it appears in a

1.
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Markov queueing network, we cannot exclude stochastic dependence

of the state, the service process, and the arrival process. These

complex behavior modes suggest that Little's relation may not be

generally applicable, as Example 0.1 has already indicated. We

are therefore led to a careful construction and examination of

a Markov network queueing model, for which we ascertain the extent

to which the hypotheses of the above theorems are satisfied. When

these theorems are not directly applicable, we inquire whether

the Markov model must meet additional restrictions, or whether

the original model can lead to modified forms of Theorem 1.1 to

1.4.

2. APPLICABLE PROPERTIES OF MARKOV QUEUEING NETWORKS

Because the queueing network state Z is a Markov process,

the hypotheses of Theorems 1.1 to 1.4 are met in varying degrees.

A portion of this section is devoted to reviewing these assumptions

in light of the Markov character of Z, and determining whether

additonal suppositions are needed for a proof of Little's formula.

We see, however, that Z lacks altogether the customer identifica-

tion essential to tracing a customer's progress through the

system (for any queueing discipline), and relating his emergence

from the system to his entry; hence, it is impossible to define

the sojourn times Wn without further structure. Augmentation of

Z to a new Markov jump process will prove useful in this regard,

eventually leading to forms of Little's equation that are robust

respective to queueing disciplines.

We recall that Z is a regular right-continuous Markov jump

... , - . .



-8-

process for which e is a positive recurrent state; to avoid

trivialities, we require that e not be absorbing. We can now

characterize the Markov process Z completely in terms of the times

of jump Tn , and the values of Z on its intervals of constancy.

If {Znl is defined by

Zn = Z(Tn) , (2.1)

{Zn} and the tuple {(ZnTn ) are both Markov processes, as is

evidenced by (see [5], Chapter 8, Section 3)

P[zn+l- Tn >tlZn~x,A] = qxzeXp[-a(x)t] . (2.2)

Here A is any event in the sigma algebra generated by {Z 0 n... n

T0 ,...,Tn} , and 0 < a(x) < w. The qxz are transition matrix

elements for the discrete Markov process {Zn}. Further, (2.2)

is related to the infinitesmal operator matrix for Z in the

sense that the matrix entries (sometimes interpreted as flow

intensities) are a = a(x)qxz unless x = z, in which case

a = -a(x).

Because we demand that Z be a queueing process, we restrict

possible positive qxz to those consistent with queueing models.

Thus, the transition probability qxz = 0 except (perhaps) in the

following three situations:

k customers enter the system at service station i, which means

z - x+ke i  ; (2.3)

(ei is the unit vector whose i'th component is unity); k customers

depart from station i and exit the system, i.e.,

z = x-kei  ; (2.4)

- 7.
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or k customers transfer from service station i to arrive immediately

at j, viz.

z = x-kei+ke. (2.5)

While the qzk and {Z n } specify queue lengths and their variation,

they fail to reveal the location, routing and departure of

individual customers. To speak of sojourn times, therefore, we

must introduce an auxiliary process, the queueing discipline

process (U For the empty system (i.e., Zn = 9), U - 8.

Within each busy cycle, Un includes for each customer a triple

(m,qmJm), in which m is the customer's order of arrival in

chronological order, qm (with 0 < qm < r) the queueing station

nto which he is assigned, and jm (with 0 < Jm< z ) his position

at station qm" The entries qm= m = 0 are reserved for customers

m who have already left the system. Of course, Un is required

to be consistent with Zn. Thus, a transition (2.3) introduces

new triplets to Un, while a departure (2.4) reduces k appropriate

pairs qM and jm to zero. Along with any type of transition,

there may also be a permutation of customer positions.

It is essential that the queueing discipline process be of

the functional form

unl = *(Un Zn zn+l, n~l) (2.6)

where the n are i.i.d. variates. A great variety of queueing

disciplines can be represented in this fashion. These include

FCFS, LCFS, random service order, and even state-dependent

disciplines. However, we cannot admit discipline dependencies

that reach across different busy cycles, or disciplines that

depend on states prior to those indicated by (2.6).

Li
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By virtue of (2.6), {(Zn ,Un)} is a Markov chain, which in

turn generates to continuous parameter Markov process Y, where

Y(t) (Zn,un ) for Tn _t<Tni (2.7)

see again (5], Section 8.3 for details. We note for future

reference that if Ck is the hitting time at which Z(Ck) becomes

null for the k'th time Ck assumes the same role for Y. The new

process Y is used to define sojourn times. First, let Ik,m (t) - 1

if Ck < t < Ck+1 and if Y includes the m'th customer through the

triple (m,qm ,m) with nonzero qm and jm; otherwise, Ik,m(t) - 0.

With the aid of this indicator function we can define unambiguously

the customer sojourn times by

/k+l

Wm+N I k,m(t)dt (2.8)+k
k

Here Nk is the total number of customers in the first k busy

cycles. More precisely, the number of arrivals in (0,t] is

M(t) -[lZ(z i )  I-Iz(zi-)II] (2.9)

Ti<t

and Nk - M(Ck). This definition of Nk is consistent in the sense

that (Nk - Nk.) arrivals are indicated by U over (Ckl,Ck]

Let us now turn to the contents of Theorem 1.1. We state

and prove

Theorem 2.1: If {Un)i s consistent with {Zn), the assertion (1.1)

of Theorem 1.1 is valid for the queueing system Y.

Proof: At t - 0, we have L(0) - 0 as well as I0,m(0) - 0 for all n,

For each jump in L(t) - II Z(t)II , there is a corresponding jump
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in the sum of the 10,m(t) , that is

L(t) - E IO,m(t )  (2.10)

m-i

On the right side of (2.10), the terms are identically zero for

m > N1 , so that the sum is adjusted accordingly. If we now

integrate both sides of (2.10) on (0,C1] , we obtain the desired

result from (2.8).

Remark: We again note that (1.1) is "discipline robust" with

respect to any queueing discipline obeying the consistency

condition.

We have seen in Section I that regenerative processes are

central to Jewell's proof of Little's formula. We now connect

Markov queueing networks, as described by Y, with regenerative

process theory. Most useful for this purpose is the strong

Markov property, whose relevant parts we present below; a proof

can be found in [4], Section II.9, Theorem 5. We must again

begin with certain definitions that make precise the "past" and

"future" with respect to the Cn . To begin with, let s -n t
a{Y(s),s<t}, that is, et is the a-algebra generated by Y up tot
time t. Next, the pre-T a-algebra. T is specified in standard

fashion for a stopping time T as follows: Ac.l if An{T<t}cat for

each t. We also define a post-T ("future") a-algebra T. Let

ST be the translation operator (STX)(t) - X(t+T); then T 

o{(STY)(t),t>O}. With this notation, we state

Lemma 2.2: Let 0 a C0 < C1 < C2 <... be a sequence of stopping

times such that P[Y(Ck) = e] - 1 for k = 0,1,2,... If ASE and
Ck
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red, then

P(Anr) - P(A)P(r) . (2.11)

Moreover, probabilities are invariant under translations Sk'

P[(SC Ck((tl),Y(t2),..,Y(tm)))EB] - P[(Y(tl),Y(t2), ..,Y(tm))CB]. (2.12)

Remark: Lemma 2.2 would fail to hold if we had taken the Ck as

arrival times of the first customer into the empty system, unless

qez > 0 for exactly one z, implying that the first arrival number

and location must be fixed. To avoid such a restriction we have

defined the Ck as already indicated, contrary to the usual con-

vention of the initiation of the busy cycle. With the aid of

Lemma 2.2, it is easy to prove

Theorem 2.3: Theorem 1.2 holds for the queueing system Y.

Proof: It was noted near the beginning of Section I that {Cn)

is a non-arithmetic renewal process whose intervals have finite

expectation. From (2.11) we are able to conclude that the sigma

algebras o{L(t),t<Ck} and a{L(t),t>Ck} are independent for each
k. Lastly, every S CkL has the same probability distribution.

In other words, L is properly regenerative with respect to {Cn}.

Remark: More generally, of course, Y is regenerative with respect

to {Cn ).

The result pertinent to Theorem 1.3 is, unfortunately less

complete:

Theorem 2.4: {Wn } is regenerative with respect to the renewal

sequence {Nk}.

Proof: Since Nk ' N(Ck) (see (2.9)), Nk isCk measurable, and

Nk+m - Nk is5 9k measurable; hence, the intervals (Nk l - Nk)
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are mutually independent according to (2.11). That they are

also identically distributed is a consequence of (2.12). More-

over, N1 has an honest distribution, or equivalently, P[N 1 < ] 1.

To prove this, return to the discrete parameter process (Zn),

letting ck be the k'th hitting epoch for state 8. Since 8 is

positive recurrent for Z, 8 is likwise positive recurrent for {Zn}.

Then cI is almost surely finite. If we now rewrite (2.9) in the

form

c1

N1  - ' [11 znII "ll zn-lll] (2.13)

n-l

and note that each summand must be finite, we have P(N1 < ] 1.

It remains to show that W1 ,W2,.. have the same multivariate

distribution as W W for every k. Since S I I
1+N k 2+Nl** k O,n k,n

it follows from (2.12) that the joint distribution of the IO,n

coincides with that of the I . The definition (2.8) of W
k~n' n+Nk

then leads to the desired result.

Corollary 2.5: Almost surely

N1

E Wn <- (2.14)

n-l

Proof: For each n - 1,2,..,Nl, we have Wn < C Since

P[C1 < ]  1 from E(C1 ) < w, the proof is complete.

Although both sides of (1.1) are seen to be finite from the

corollary just stated, more is needed. None of our assumptions

preclude any of

N C
E(N) - , E[L Wn] , E[ L(t)dt] - - , (2.15)

n-i 0
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in which we have again written N for N1 and C for C1. The first

expression in (2.15) is contrary to a hypothesis in Theorem 1.3,

* .in which finiteness is needed to make sense of (1.3) and (1.5).

The second and third expectations in (2.15) are finite or infinite

together, as may be seen from Theorem 2.1. To illustrate (2.15),

we offer an example involving a single Markov server.

Example 2.6: From (2.2), the single Markov server is described

by {qij} and (a(i)}. We take q k 1 and with 0 < 2I <

let "k 0 P' 0 = i-p. Thenknkn+ 1  kn

E(C) - p-1 E [a(kn)]- Ipn (2.16)

n-i

so that Z is recurrent for any p < 1 provided that lim[n/a- ] > 1;
nn

this is an easy consequence of the theory of power series ([10],

Section 5.4). We further find that
/

E(N) - (1-p)p "I  k p n (2.17)
n-n

It is apparent that the free choice of the rate of growth of {k n }

allows on the one hand the possibility that E(N) < - for any

p < 1, or on the other (by taking m-[n/F] - ) that E(N) -
n n

for every p > 0. Finally, we calculate

-1C  k [ak Ipn

E[ L(t)dt] - p-I k[aCk)] n (2.18)

0 n-i

Both finite and infinite expectations in (2.17) and (2.18) are

compatible with E(C) < in any combination, as we shall show.
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(a) Let (kn} satisfy 1 < lim [nVl.] < r [nA- ] - ln n 0

and take a(kn) - kn . Then E(C) < and

E[ L (t) dt < ®(2.19)

for any p < 1, while E(N) =, for p > p0 and E(N) < -

for p < po.

(b) If a(k n ) a 1 for all n, E(C) < w for any p < 1. Here

(2.10) is true iff E(N) < c.

(c) We choose {kn } and {a(kn ) such that E(C) < w, E(N) < m,

but

E[ L(t)dt] = (2.20)

Take lim [n -3n] = a2 , and Ii'm (V'An] = 2; the radii
Sn n

of covergence of the power series (2.16), (2.17) and

2 11(2.18) are then respectively , , and 1 leading to

different possibilities that depend on the selection of
p. Specifically, for 1 < p < 1 we obtain the asserted

expectations.

One might infer from the example that some of the anomalies in

infinite expectation are connected with the possibility of customer

entry in arbitrarily large batches. Accordingly, we study the

behavior of these expectations under constraints on the number

of customers that can enter at any one time.

Theorem 2.7: Suppose qz 0 whenever z - xeke1 for k > ko ,

where ko is a fixed integer. Then E(N) <
-0
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Proof: From (2.13), N1 < koc1 and, since the positive recurrence

of Z implies that of {Zn }, E(c ) < =.

Remark: There is no point in analyzing systems with E(C) - -,

since then L and W are both infinite.

It is tempting to conclude from Theorem 2.7 that bounded

inputs yield also the finiteness of E[f L(t)dt]. Unfortunately,

such an assertion is false in the absence of additional hypotheses,

so that the finiteness of L and W cannot be taken for granted.

In the following illustration, we see that (2.20) can apply even

for the single server Markov queue with individual arrivals and

services.

Example 2.8: The discrete parameter embedded Markov chain is a

simple random walk (birth-and-death process) with q01 -1, ql0  1
1 1in+l 1 -q1 2 " and for n > 2, q - l( ) and qnn If

we take a(n) = 1 for all n, it follows that the relevant expecta-

tions can be written in terms of the discrete parameter process

{Zn}, that is, E(C) - E(c) and

E[ L(t)dt] = E[ Zn] (2.21)

0 n-l

Following [4], Section 1.12 and 1.14, one calculates (ignoring

periodicity) that E(c) < -, and that for n > 2 the stationary

~1
probabilities satisfy vn - 2[(n+l)(n-l)]'Vo0 " Moreover,

E[ Z n , a V-i n n

E(Zn 0 ~lfvn 0 (2.22)

n-l n-l

The above result remains qualitatively unchanged for other {o(n)}

provided only that 0 < inf [a(n)] and sup [a(n)] < -. Thus, there
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appear to be reasonable Markov queueing models for which E(L )

and E(W=) are both infinite.

In view of Theorems 2.4 and 2.7, Theorem 1.3 is valid under

the additonal assumption that N is aperiodic. Nevertheless,

unless L and W are finite, we cannot arrive at Little's formula.

We must therefore seek conditions under which

E[ L(t)dt] < . (2.23)

We now--and hereafter--suppose that only one customer can enter

at a time (i.e., ko = 0). We also assume (and shall shortly discuss

in detail) that the interarrival times Ak mentioned in Theorem 1.4

are indeed i.i.d. random variables. Then we shall have

Theorem 2.9: Let E(N 2) < c. Then (2.23) holds.

Proof: We will majorize the integral f L(t)dt as follows.
0

Let V. = inf{t:M(t)-j}, so that A - Vj-Vj. 1 . Since C < VN+ 1

and L(t) < j on (V,Vj+ 1 ] we obtain

fcN N+1

L(t)dt < EjAj+ < jaj - jAjI{j<N+l ) , (2.24)

0 j-1 j-1 j-1

in which I is a self-evident indicator function. On the right

of (2.24), the event {Nj-2} must be independent of A. (an

interarrival time belonging to the next busy cycle). Consequently,

the expectation of the right side of (2.24) simplifies; with

E(A.) • ', we have

E[ L(t)dt] < X 1[E(N 2)+E(N)] (2.25)
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Remark: It may be inconvenient to verify whether E(N2) is finite.

However, N < c, and the recurrence time c is completely described

in terms of the transition matrix Q for Uznj; see [4], Section 1.11

for specific properties of E(c 2). We also note that there is no

need to assume that the A. have finite expectation. In fact, A1

(and hence every A.) is exponentially distributed with parameter

So far, we have studied the applicability of Theorems 1.1

through 1.3 for Markov queueing systems. Now we turn to the

substance of Theorem 1.4. As we have noted above, AI has an

exponential distribution with parameter a(C), so that {Ak} is

a Poisson process if the variates are i.i.d. in accordance with

the hypotheses of Theorem 1.4. It is essential to realize that

the interarrival intervals Ak are wholly expressed within the

structure of Z; the arrival process M is incremented whenever

the state z jumps to z+ei for some i = 1,2,..,r. However, even

for a Poisson process K induced by a Markov Z, intervals such as

those described in Theorem 1.4 need not be i.i.d. when the indices

are stopping times for r instead of the smaller sigma algebra
t

. " -a{M(u),u<tl. A simple example illustrates this phenomenon.t
Let (Dk} be the interdeparture intervals associated with the

departure process K of a M/M/l queue in equilibrium, and take C

as the time when the system first becomes empty. It is known that

K is Poisson; nevertheless, DKCC) = inf {t:K(t)-K(C)-l} - C is

* neither exponentially distributed, nor independent of DK(C)+.l

* Thus, we must assure that the Ak are i.i.d. by an assumption that

goes beyond the independence of [M(t)-M(s)] frome s to permit

- , Il l II . . .. .. . . . . m . . .
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the application of (j} stopping times. Specifically, the evolu-

tion of the arrival process must be independent of the current

state of the queueing system, as is actually true whenever the

customer stream is not influenced by internal system conditions.

We formalize the above discussion through

Hypothesis 2.10: lim h'lp(M(s+h)-M(s)=l=Z(s)] - X (2.26)

for all s > 0.

Evidently, Hypothesis 2.10 states that the rate of accession

of customers into the system depends neither on the time nor

on the state of the system. The Hypothesis provides some of the

prerequisites for Theorem 1.4, as is indicated by

Theorem 2.11: Hypothesis 2.10 is equivalent to

P[M(t)-M(s)-nI s ] . [(t-S)ln. e'X(t's) (2.27)

for every n and t > s > 0. If one of these conditions is satisfied,

M is a Poisson process, and the Ak are i.i.d. random variables.
1

Proof: In the presence of (2.26), the forward Kolmogorov equation

for the Markov process Z becomes

d
a-t{P[M(t)-M(s)-nlZ(s)=z]} - X(P[M(t)-M(s)-n-ljZ(s)-z] (2.28)

- P[M(t)-M(s)-nIZ(s)-z]}

where {M(t)-M(s)--l} has zero probability, and an initial

1If the conditioning in (2.26) is on 4F , M is already a Poisson
5h

process respective to {Jr}, without reference to the Markov nature

of Z. One notes that the compensator of the submartingale M is

given by [15], VII.T28 and VII.T29, which is almost surely equal

to Xt by comparison with (2.26). The desired result then follows

from Watanabe's theorem ([S], p. 76).
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condition is furnished by P[M(s)-M(s)=0] - 1. If we now solve

the system (2.28) recursively, we obtain (2.27), except that the

conditioning is on Z(s). However Z is Markov, so that the

conditioning on Z(s) may be replaced by the sigma algebra "

To show that M is Poisson, take the conditional expectation

of (2.27) with respect toe/#- a a{M(u),u<sl. Since t/ff Ce
s 5'

(2.27) remains true if the conditioning is ontW rather than
s

with respect to Js. Next, we consider the A As before,

we define Vk - inf{t:M(t)-k}. Then a{Ai. , j i k )C 1Wk , and we show

that Ak+ 1 is exponentially distributed and independent of VVk

In fact,
P(Ak+ljaI r i P[M(Vk a)-M(Vk)=0I Vk (2.29)

kI k kVk

by the strong Markov property, and because of (2.28), the right

side of (2.29) is simply e"Aa . This demonstrates both the

independence and exponential distribution of the Ak.

Lastly, (2.27) is readily derived from (2.28), so the

proof of the Theorem is complete.

Corollary 2.12: X - a(e) (2.30)

Proof: In (2.27), let n - 0 and s 0. Since {M(t)]01 - {Tl>t},

we can compare (2.27) with P(Ti>t) as obtained from (2.2).

We could now show the applicability of Theorem 1.4 when

Hypothesis 2.10 holds. Although the length of the first busy

cycle, as defined herein, does not satisfy (1.4), one can show that

N+l

E(C) - E[ Ak] - E(Al) , (2.31)

1

from which (1.5) eventually follows. However, Hypothesis 2.10
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permits us to proceed more directly via a simpler proof, which

moreover requires no recourse to Wald's Lemma.

Theorem 2.13: Under Hypothesis 2.10, we have

E(C) - A 1E(N) . (2.32)

Proof: The process

Kt) - Mt) - xt (2.33)

is a local martingale of zero mean under the family of sigma

algebras ({}; this is seen by computing E[M(t)-M(s)I s] from

(2.27). According to the optional sampling theorem ([15], Theorem

VI.T13), the martingale relation remains valid if ordinary times

are replaced by stopping times respective to Jr. C is such at

stopping time, and M(C) = N. Hence, the evaluation of E[K(C)] = 0

yields (2.32) directly.

The results obtained thus far can be summarized to enunciate

sufficient conditions under which Little's formula is valid for

a Markov queueing system.

Theorem 2.14: Let Z be an irreducible positive recurrent Markov

.queueing process. Assume that customers enter the system singly,

and that the entry process satisfies Hypothesis 2.10. Suppose

further that the number N of customers in a (any) busy cycle is

aperiodic, with E(N2) < . Then L(t) converges in distribution

to a random variable whose expectation L is finite, where L(t) is

the number of customers in the system at time t. Similarly, the

sojourn times Wn of customers (ordered by their chronology of

entry) converges in distribution to a variable of finite expecta-

tion W. These expectations are related through Little's formula,

L - , (2.34)



-22-

in which X is the expected rate of entry of customers.

III. TWO EXTENSIONS OF LITTLE'S FORMULA

In this Section we examine the effects of some relaxations

of the hypotheses required for Theorem 2.14. The appropriate

questions are: does Little's formula still hold, perhaps in

modified form? If so, how must (2.34) be changed? The most

likely candidates for less restrictive assumptions are those

on the periodicity of N, and the state invariance (see Hypothesis

2.10) of the customer entry rate. Each of these is analyzed in

turn.

We have already seen from Example 0.1 that N may be periodic;

in fact, the periodicity of N is trivial if we permit only batch

service of a single specified size. However, N can also be

periodic in simple inifinite capacity systems with unit arrivals

and service, as is indicated by

Example 3.1: The periodicity of N depends only on the set of

n
possible transitions of the discrete process {Z }, so that we

must specify which of the qxz (see (2.2)) are zero. The other

qxz and the a(z) are arbitrary, subject to qxz 1 and the

positive recurrence of Z. With this in mind, we concentrate on

specifying allowable one-step transitions of {Zn). Specifically,

we construct these transitions to give N a periodicity of two,

although the same technique can be used to yield other periodi-

cities for N.

The state space X of Z is partitioned into subsets

Xk - (z:I zI-k}. Let J(O) - e, and each Xk, k > 1, is the union of
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disjoint nonempty subsets 1(k) and J(k). The following one-step

transitions are the only ones allowed: J(O)-oI(1), and for each

k > 1, I(k)-i'J(k+l), J(k).I(k+l), and J(k)-*J(k-1). If Mn is the

number of customer arrivals in the first n epochs, Mn is even

if znCJ(k) and odd if ZneI(k) (any k); this is readily shown by

induction. Therefore, Mn is even whenever Zn _ 0, and this reflects

the periodicity of N.

For instance, we may take a system consisting of two dis-

connected exponential servers with state-dependent assignment

of incoming customers, and service by only one server at each

state. In terms of the I(k) and J(k), we let J(2m) = (m,m),

J(2m~l) = (m,m+l), I(2m) = (m-l,m+l), and I(2m+l) = (m+l,m).

As was noted earlier, service and customer accession rates may

be chosen arbitrarily.

The effect of periodic M on Little's formula is minor, as

is indicated by

Theorem 3.2: Let the number of customers in a busy cycle have

periodicity d. Then the conclusions of Theorem 2.14 remain

unchanged, except that the sojourn times Wn may fail to converge

in distribution. Instead, as n *

d

dL Wnd+j - W (3.1)

j-1

the convergence again being in distribution.

Proof: Theorem 3.2 in [6] is modified by insertion of the dis-

crete renewal theory result ([5], p. 313) for periodic renewal

processes. In other words, the basic formula L X )W remains
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unchanged, with the meaning of W. generalized by (3.1) to arbitrary

d > 1.

We next turn to the consideration of arbitrary customer entry

rates, which are assumed to depend on the state of the system, but

not directly on time. We shall suppose (as before) that customers

arrive singly, but that (cf. (2.26))

lir h'P[M(s+h)-M(s)-lIZ(s)=z] X A (3.2)
hXO z

need not be a constant. Call

A

X -sup ,z (3.3)
zeX

and assume that A is finite. We can then modify the system as

follows: whenever Z(t) = z, there is a additional Poisson customer

input stream M of intensity (A-Az, which is conditionally independ-z
ent of M, given Z(t). Any arrival under M passes through the system

instantaneously, so that Z is unchanged, and the corresponding

Wn - 0. The total arrival stream (M+M) then satisfies Hypothesis

2.10. To investigate the other hypotheses underlying Theorem 2.14,

we first note that a rigorous construction of the modified process

Y including the "passed through" customers is easily achievable.

One augments Y by M, and adjusts U to properly index the arriving

customers to include those attributable to M. We shall omit the

details, which are tedious and routine. Let us denote the para-

meters of the modified process consistently by carats. Relations

between the old and new processes include

f L(t)dt (Lt)dt (3.4)

0 0 o
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and

N N

-" LW n (3.5)
n- I n-i

2If E(N) < , Theorem 2.9 assures that all the expectations of the

terms in (3.4) and (3.5) are finite. Moreover, N is aperiodic

if X • < for at least one z. Theorem 2.14 then asserts that

A^

L = . (3.6)

Since L(t) = L(t) for each t, L can be replaced by L in (3.6).

A formula involving L and W can then be derived if W is related to

W~.

Indeed, (1.3) is valid for both W and W, so that

W a [E(N) ] {E(N)}-W (3.7)

in view of (3.5). To evaluate the ratio E(N)/E( ), take Nz as the

number of customers entering the original system during the busy

cycle while Z(t) - z. Now

E[Nz-NzIZ(t)-z for duration T - (X-X z )T z  (3.8)

and (see [5], p. 263)

ECT - azE(C) (3.9)

in which wz is the equilibrium probability rz - lim P[Z(t)-z].

The resulting E(N -Ni) = E(C)((-Az )W I can be summed to obtain

E(N-N). Moreover, Theorem 2.13 applies to the modified system,

so that E(e) x 1 E(N), with E(e) a E(C) because C * c. It

follows that

i e(N) E(C)(EX z 7 z 1 (3.10)
~zCX
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which is itself a useful formula, and

E(N){E(N)( A (3.11)
z

By virtue of (3.11), we can claim

Theorem 3.2: Let Z be an irreducible positive recurrent Markov

queueing process with single customer entry at rates X specified
2

by (3.2). If E(N ) < -, L(t) converges in distribution to a random

variable whose expectation L is finite, and the Wn converge in the

sense of Theorem 3.1 to a random variable of expectation W. L

and W are related through Little's formula, which takes the form

L a .W (3.12)

Here I is defined as I (FXwz).
z

Evidently, I can be identified with the mean customer entrance

rate, since r is also the average proportion of time the system

spends in state z. Indeed, I has the further interpretation as

the almost sure limit of t-1M(t), so that I appears when Little's

formula is taken in the time average sense (cf.(18]).

VI. PRIORITY INTERRUPTS AND CLASSES OF CUSTOMERS

To broaden the applicability of Little's relation further,

we extend our model to admit network behaviors discussed in recent

(computer oriented) papers [1][](13]. We shall begin with a

* consideration of priority interrupt queueing disciplines, in which

a customer currently in service is pushed aside in favor of a new

arrival; once the new customer completes service at the station,

the order of resuming incompleted services is prescribed by the

queueing discipline.

. 'V. .. . . .
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Because of the "forgetting" property of the exponential

distribution, an interrupt at an exponential server is equivalent

to a mere reordering of the customers at the station. This is

easily provided by the specification of {Un }. For a service

distribution whose Laplace transform is rational, the approach

is more complex. Ordinarily, the single station is represented

as m substations, where m is the degree of the denominator of the

rational transform [7][17]. Appropriate blocking (no service

provided at more than one substation at a time) then leads to the

correct model. This structure can be extended to priority interrupts

by paralleling all but the first substation by "dummy substations"

incapable of providing service. Upon arrival of a new customer,

the customer (if any) at substation k is "laid aside" to the

corresponding dummy station. When the new customer has passed

through all m substations, one of the customers who has been

laid aside is selected by the discipline to continue service by

returning immediately to the real substation from whence he came.

Since all subst-ations function as exponential servers, the above

technique becomes valid by virtue of the "forgetting" property

at each substation.

The construction of the preceding paragraph leaves untouched

the consistency of (Un) and (Zn 1, so that Theorem 2.1 holds as

before. Thus (cf. Theorem 2.14), Little's formula holds for

priority interrupt systems under the same hypotheses as for any

* of the other disciplines mentioned. Naturally, the extensions of

Section III will apply to priority interrupt queues also.

We now turn to systems with multiple customer types. Several

versions of !4arkov queueing systems with different classes of
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customers have been proposed [1][13], but not all of these are

consistent with Little's result for the individual classes. In

particular, transmutation of customers from one class to another

can invalidate Little's formula. A simple example is adduced by

considering tandem exponential servers, with entrance of class

one customers only to the first server. As each customer passes

on to the second server, he becomes a class two customer, and

eventually departs as such. A direct calculation shows that

Little's equality holds for neither customer class. To avoid such

difficulties, our model maintains the integrity of the class of

each customer as he passes through the network: However, we do

not restrict priority assignments, or service rates and routings

depending on the number and types of customers at each service

station.

A prefix is used to denote each of the c customer classes.

Specifically, the line length process at station j takes on the

vector form Z. = (1Zj,2Z.,..cZ). Similarly, iX is the rate

of arrival for customers of class i, iM is the corresponding

arrival process, iWn the waiting time for the n'th customer of

class i, and so forth. It is necessary to expand {Un} so that

Un has entries (m,im,amqmj m ). In this quintuple, m is the

customer's order of arrival in chronological order, im is his

class, am is the customer's order of arrival among customers of

class im , qm the queueing station to which customer m is assigned,

and J. his position in the queue at qm. As before, qm = Jm 0 for

a customer who has already exited the system.

We would anticipate that Little's formula appears as
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i L - (iA)iW (4.1)

such is indeed the case. In the first place, Theorem 2.1 now

takes the form

N

W iL(t)dt (4.2)

Next, as in Theorem 2.4, each {iWn} is regenerative with respect

to the renewal sequence {iNk}. If iN is aperiodic and if E(N2),

we can claim

.N-1

a (4.3)
- {E(iN)}'ME i%' (

n=l

and (cf. Theorem 2.9)

i - {E(C)}IE{ i L(t)dt} (4.4)

To complete the derivation of (4.1), we must relate E(iN) to

E(C). For this purpose, let us suppose that Hypothesis 2.10

holds separately for each iM. The martingale decomposition of

Theorem 2.13, applied to iM at the stopping time C, yields

E(iN) - (iX)E(C) (4.S)

Finally, (4.1) results from combining (4.2) through (4.S). As

in the case of one type of customer, (4.1) can be generalized

to include periodic iN and state-dependent customer entry rates.



-30-

V. NON-MARKOVIAN SYSTEMS

The Markov nature of the queueing process Z is by no means

essential to the derivation of Little's formula; for instance,

the formula applies to the stable GIG/s queue [17], which is

certainly not Markov. However, any assertions on Little's relation

pertaining to queueing networks with arbitrary service and entry

characteristics is necessarily limited to generalities. We can

say that if Z satisfies the regenerative properties (2.11) and

(2.12), meets the finiteness conditions E(N) < - and (2.23), and

has a Poisson process exogenous input, the standard arguments yield

SL= XW.

When there is only one mode of entrance to the system, these

regeneration points can be taken as the starting instants of the

busy period; this suggests a new freedom in the choice of arrival

process. In fact, the length of the (first) busy cycle is now

provided by (1.4). That Z is regenerative respective to [Ck

carries the implication that the interarrival process {Ak} is

regenerative with respect to numbers of customers {Nk } in the

respective busy cycles. If, further, N is aperiodic and E(N) < =,

the An converge in distribution to a random variable A whose

expectation is

N

E(A) - {E(N)}IE{LAn} (5.1)

n-1

We see that (5.1) implies (1.S), but without any requirements

that the An be i.i.d. random variables. Finally, if we take

= [E(A)] I , we recover Little's formula L X kW.
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An attempt to impose a more specific probability structure

on Z seems to be less successful. For instance, we find that a

semi-Markov process Z is also regenerative respective to {Ck}

(cf. [5], Section 10.6), but are unable to turn this observation

to advantage in generating a broader class of queueing network

models. We are also aware of the feasibility of approximating

general service time distributions by Erlang service in the con-

text of Markov systems (see [17] for a rigorous treatment); although

this approach works for some aspects of the G/G/s queue [17], there

seems little chance that the analysis can be extended to the approxi-

mation of L(t) and {Wn I in queueing networks. Consequently, we

have limited detailed consideration to Markov queueing systems,

which are adequate to describe a rich variety of queueing system

behaviors.
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