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Abstract.
For estimating an underlying survival distriﬁution, we consider
two estimaters based on a randomly right-censored sample: The tradi-
tional Product Limit Estimator (PLE), introduced by Kaplan and Mefer

(1958), and a competitor, the Piecewise Exponential Estimator (PEXE),
introduced by Kitchin, Langberg and Proschan (1980a). Under a propor-

tional hazards model we present formulas for the mean and variance of
the PLE and find upper and lower bounds for mean and variance of the
PEXE. These new expressions for finite sample sizes are compared with

known asymptotic results.
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1. INTRODUCTION

Let xl. xz. «es be independent identically distributed (i.i.d.) random
variables (r.v.'s) denoting lifelengths with a common continuous distribu-
tion function (d.f.) F, and let Yl. Yz. «ee be 1.i.d. right-censoring r.v.'s
with a common continuous d.f. H. lle assume that (xl, Yl), (xz. Yz), eee
is an i.i.d. sequence of random pairs with independent nonnegative components
defined on a common probability space.

Let I(A) denote the indicator function of the set A, let = min{X;, Y;}
and 6, = I(X; < Yi)' i=1, eeo, N. Ue consider the problem of estimating
F =1 - F, the underlying survival function, from the sample (Zl, 61). coes (Zn, cn).

Kitchin, Langberg, and Proschan (KLP)(1980a) introduce a new estimator
of Fi the Piecewise Exponential Estimator (PEXE), a competitor to the tradi-
tional Product Limit Estimator (PLE), introduced by Kaplan and Mefer (1958).

KLP show that the PEXE is a strongly consistent estimator of F and that the
standarized PEXE process converges weakly to a Gaussian process. This Gaussian
process has the same covariance structure as that of the standarized PLE
process. [For details see KLP (1980a) and (1980b).] Thus the PEXE has

the same asymptotic behavior as the PLE. [For the strong consistency of
the PLE see Peterson (1977), Langberg, Proschan, and Quinzi (1980) or KLP
(1980a). For the weak convergence of the standarized PLE see Breslow and
Crowley (1974) or KLP (1980b).] In contrast to the PLE, which is a step
function with jumps at the observeq failures, the PEXE is a continuous and
strictly decreasing function up to the last failure. In many life testing
situations the survival function is anticipated to be strictly decreasing
smoothly over time. Thus, in many situations the PEXE will be the more

appropriate than the PLE. Further, the value of the PEXE in an interval




between any two successive failures depends on the actual withdrawal
times up to the failure time that determines the right-hand side of the
interval, and on that failure time. In contrast the value of the PLE
between two successive failures depends on the number of withdrawals up
to the failure that detemines the left-hand side of the interval, and
does not depend on the right-hand side failure. [For further details
see KLP (1980a).]

In this paper we consider the small sample properties of the two esti-
mators. Our calculations are performed under the assumption that the life-
length X and the time to censorship Y have proportional hazards. (See Defini-
tion 2.3.) .

In Section 2 we define the PEXE, the PLE and the proportional hazards
models. Then we present a useful characterization of these models that is
used in the Tast two sections.

In Section 3 we present formulas for the mean and variance of the
PLE, and upper and lower bounds for the mean and variance of the PEXE.

A1l computations in Section 3 are conducted under the proportional
hazards assumption. In Section 4 we compute the mean and variance of
the PLE, and corresponding upper and lower bounds of the PEXE. He
compare our exact result for the bias of the PLE with Efron's (1967)
upper bound. It is seen that Efron's bound, in the proportional hazards
model, is quite loose. Ue also compare the exact variance of the PLE
with an approximate variance given by Kaplan and Meier (1958). The
latter approximation is found to be quite good.
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It is also seen in Section 4 that our upper bound for the mean of the
PEXE is reasonably close to the true value F(t) but the lower bound is not
gocd. Furthermore, the upper bound for the variance of the PEXE is compared
to the approximaiion given by Kaplan and Meier (1958) for the variance of
the PLE. (Recall that the PEXE and the PLE have the same asymptotic vari-
ance, and thus the Kaplan-lieier approximation can also be viewed as an

approximation to the (small-sample) variance of the PEXE.) The upper

bound is seen to be too conservative, and tighter bounds are needed.




L R — P ey —

2. PRELIMINARIES
In this section we define the PEXE, the PLE, and the proportional hazards
models. Then vwe present a characterization of these models.
First we introduce some notation. Let Kn(t) = ):?.11(2'I > t), tef0, =),
 { be the number of observations in the sample at time t, and Jet t(n) = z?-lci
l % be the total number of failures. Further, let Hi1) < V() ++= < W(q(n)) demote
the consecutive observed failures with u(o) =0, and for t(n) > 1, let

W
ry = LJ (1) n?"(u)du]'1 be the number of failures per unit time in the interval
"(i-1)
(u(i-l’, N(i)]’ i = 1’ ooy T(n)o
We are ready to present the definitions of the PEXE and the PLE.

gt

Definition 2.1. For t(n) > 1 Tet A = (um - "(i-l)’r‘l’ i=s1, «.., 7(n).
Then the Piecewise Exponential Estimator, (PEXE), denoted by '§n(t), is equal

to 1 on the set {t(n) = 0 or te(-=, 0]}, is equal to exp{-z;:iai -(t - “(i-l)"(i)}’ .

'} on the set {t(n) > 1, te(u“_”, w“)]}, i=1, oo, 1(n), and is equal

to exp{-z;,(,'l')Ai}, on the set {t(n) > 1, t‘("(r(n))' -)}.

Definition 2.2. Let R (t-) = n"'s]_ 1(z, > t), te[0,=). Then the

Product Limit Estimator, (PLE), denoted by Fn(t), is equal to 1 on the set

é(

1-1
, -1
{r(n) = 0, or te(-=,0)}, is equal to jgl['in(u(j))]['in(ll(j ) )77, on the
set {v(n) > 1, tc["(i-l)' um)}, 1=1, «e., t(n), and is equal to
t(n) - -1
jl-‘l ﬁ"(tl(j))][K"(li(j )')] s ON the set ‘(‘l’(ﬂ) _)_ l, tc[w(t(n)), .)}0

He note that originally Kaplan and Meier (1958) left the PLE undetermined

B L e S SR MO T

on the set {t(n) > 1, t¢[lr2¢1n<( Z1 y=)}. (See also Peterson (1977).)
n

Next we define a proportional hazards model. Let (Ul’ Uz) be a pair of
independent nonnegative r.v.'s with continuous d.f.'s Gy» G, respectively.
Further, let th 21 -6 alGy) = suplt: Go(t) < 1}, and Tet Rq(t) - -zntq(t).
te(--, c(Gq)). be the hazard function corresponding to the d.f. Gq. q=1, 2.

e




Definition 2.3. We say that the pair (Ul, Uz) follows a proportional
hazards model if there is a positive real number g8 such that:

T,(t) = [El(t)]" for te[0,=). (2.1)

Note that from (2.1) a(Gl) = a(Gz). and that the hazard functions corresponding
to Gl, G2 are proportional :

Rl(t) = BRZ(t). tef0, a(Gl)).

Next we characterize the proportional hazards models.

Theorem 2.4. The pair (Ul’ Uz), 0 < P{U; < Uy} < 1, follows a propor-
tional hazards model if and only if

The r.v.'s U = miz:{Ul. Uz}, and € = I(U1 < Uz) are independent. (2.2)

Proof. Let G be a continuous d.f., let G =1 - G, and assume that

G(0) = 0. Then for 6¢[-1,»), and ze[0,a(G)):

- i’[-1 + 017 108(2)1°%*, 0 > 1
JIG(u)1%6(u) = ( ' (2.3)
z -2nG(z) , 0= -1,

First we prove that (2.1) implies (2.2). To verify (2.2) it suffices
to show that for z¢[0,=)
P{U> z, € =1} = P(U > z}P{E = 1}. (2.4)

By (2.1) and (2.3)

L] ® B
PlU> 2z, E=1} = {L‘a(u)dsl(u) ']z[GI(")] d6, (u) (2.5)

= (1+ 8% (2)%*) = (14 8) 10> 2.
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In particular P{z =1} = P{U> 0, £ = 1} = (1 + 8)"Y, Thus, (2.4) holds.
Consequently (2.1) implies (2.2).
Now we show that (2.2) implies (2.1). Let vy = P{U1 < Uzl. By (2.2):

B (2)8,(2) = [, (u)d6 (u), ze[0,m). (2.6)
Z
Upon integration by parts

1[Ey (0 (u) = (1 - ¥ Y y(u)iGy(u), 2eL0,e). (2.7)

How (2.7) implies for 240, min{a(Gl), "(Gz)} ), that:

4
Y({Cﬁz(u)]'ldGz(u) = (1-Y xf)[ﬁl(uu'ldsl(u). (2.8)

By (2.3) and (2.8), for te[0,min{a(6, ),a(G,)}),
-1
(AR ALY L (2.9)

Consequently (2.2) implies (2.1). i
Since the random pairs (xi, Yi)’ i=1, 2, oo are i.i.d. with inde-
pendent components it follows that:

The r.v.'s ‘i' i=1, 2, ... are 1.1.d. Bernoulli with the (2.10)
' 2.1
parameter y = P{X; < LILE

Further, under the assumption that (xl. Yl) follows a proportional hazards
mode) ve conclude from Theorem 2.4 that:
The sequences of r.v.'s 81» 62. eeey and Zl' Ly, <o

(2.11)
are independent.

Thus, the proportional hazards assumption yields a nice structﬁre on the
random pafrs (Xl. Vl). (xz. Yz). eee o This structure plays an important
role in our computations, presented in Sectfons 3 and 4. Utithout this
assumption finite sample computations are extremely difficult. (Thus

our assumption 1s also pragmatic.)

nic
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3. HOMENT CALCULATIONS A!ND BOUNDS UNDER PROPORTIOMAL HAZARDS.

In this section we present formulas for the mean and variance of the
PLE. Then we give upper and lower bounds for the mean of the PEXE and an
upper bound for the variance of the PEXE. These are derived under the
assumption that (xl. Yl) follows a proportional hazards model. . Throughout
vie define a sum and a product over an empty set of indices as 0 and 1
respectively.

First we present formulas for the mean and variance of the PLE. Let
Ko(t) = 1 - Ro(t), K(t) = F(t)A(t), and K(t) = 1 - R(t), te[0,=). thte
tiiat by the continuity of F the formula for the PLE, given in Definition

2.2, reduces to:
Kp(t) 8,
Falt) = B Lln - 1)n -5+ )73 Y, te(mpm). (3.1)

tet te[0,=). Then Kn(t) is a binomial r.v. with parameters n and K(t),

61, ces Gn are i.i.d. Bernoulli r.v.'s with parameter v, and by (2.11) K (t)

is independent of 61, eees 8. Thus, by (3.1), for t, a€(0,»):

Kq(t)
E{F“(t)}" = E 1nl [y(n=1)*n-1+1)%+1-y]

= 2 (MEKEIEREN™O T tx(n - 1% - 14 17 + 1 - 1.
q=0'q =1
Consequently for te(0,=):

EF,(t) = Eg(KE IR T (1 vl - 4+ 1), G22)
and
Var (F, ()} = £0_q()(K(t)IUR(t )]""'ixglu -v(zn - 21 +1)(n - 1 + 1))
(3.3)

q
" (" q n-q - - 1,2
€2 cug{ g IK(t)TCR(E)] igl(l v(n -1 +1)7 )%




Equations (3.2) and (3.3) are conveniently used for numerical comparisons
in Section 4.

ow we obtain upper and lower bounds for the mean of the PEXE and an upper
bound for the variance of the PEXE.' llote that

' -1
e < x(1+x) ¢ e ke(0,0), (3.4)
and that on the set {t(n) > 1}
[R50 < 8y IR (U 78, 4 = 1, oe, w(n). (3.5)

For te(0,=), Tet a(n, t) =max{q: q=10, ..., 7(n), U )_<_ t} be the index

(a

of the largest U ) preceding t, and on the set {a(n, t) < t(n)} let

(q
b(n, t) = min{q: q = If.n(t) +1, cee, N, G(q) = 1} be the index of the smallest
observation that failed following t. By the formula for the PEXE, given

in Definition (2.1), and by (3.4), (3.5):

S (t) < exp{-z?,(,'l"t )Ai}

< exp{-x?i’l'*" )["Yn("(i-l ))Tl}

a(n,t) -13-
S 131 {[T('“(N(i_l))]f?n(““_”) +n J

K (t)

8
= 1lll ((n=-=1+1)n-1+ 2)'1} i for te(0,=),
and
5,(t) 2 [1a(n, t) = x(n)) + I(a(n, t) < x(n)expl-ty(, ¢ Hlexpl-rdiT>ta

2 [1(a(n, t) = t(n)) + I(a(n, t) < t(n))exp{-ab(n.t)}]exp{-x:g’t )[n'i“(l-l“))]'l)
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9
> [1(a(n, t) = <(n)) + 31(a(n, t) < t(n), b(n, t) < n - 1]

K. (t é
I(Kn(t) <n) ?ﬁl){(n -1i-1)n - 1)'1} L
i=

K (t S8.
2_%4(Kn(t) < n) "ﬁ ){(n ~1-1)n - i)'li T for tef0, =).
i=1

Thus, for t, a€(0,=)
Kn(t)
EG(tN"CE B [v(n-1+1)%n-1+2)%+1-+4]

i=]

(3.6)
- £ o (CIKCENITREE)I™O B [yn - § + 1f%(n - 4 2)% + 1 - 7],
i=1
and

Kq(t)
E{'S'“(t)}“ > ™% inl (y(n-1-1)%n-19)%+1-1y]
. 2"’::;(1)(:)[K(t)]q[?(t)]"'q Elv(n -4 - 1)%n - 17+ 1 - .
i=1
Consequently
ES,(t) < zgso[l((t)]q[?(t)]"'q.?ll(l -vin-i+2)}) (3.7)
1=
E5,(t) 2 z“zg;},tx(t)Jq[i(tn""',ﬁlu - v(n - i) (3.8)
]=
and
q
Var (5, (t)} < £0_q()IK(£)IAR(£)I™C x

(1 = y(2n - 2§ + 3)
i=1

(3.9)

(n-1+2)2 )-{z'ltgié(g)tk(t)]"tk‘(t)]"'qigll(l - ¥(n - )12,

CUGIAT ™ 2 I N TS NN e
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4. COHPARISON OF EXACT VALUES WITH BOUNDS AND APPROXIMATE VALUES
In this section we take the lifelength d.f. F to be exponential with
scale parameter 1 and the right-censorship d.f. H to be exponential with
scale parameter g(pg > 0).
Table 1 displays results obtained by using (3.2) and (3.3) to obtain
nunerical values for the mean and variance of the PLE. Then we campare
the bias of the PLE to the general bound for the bias given by Efron (1967),

namely:
0 < EF (t) - F(t) < F(t)expl-nR(t)}, te[0,=). (a.1)

\le also compare the exact variance of the PLE to the approximate variance

given by Kaplan and Heier (1958):

t
var{F, (t)} = njltr(t)Jztj)mu)r(u)rldﬂu), te0,=). (4.2)

t ;
e note that fF(t)]zg[?(u)F(u)]'ldF(u) is the variance of G(t), the Gaussian 1

process obtained as the weak 1imit as n + » of nllz{Fn(t) - F(t). G(t) is
also the weak Vimit of nl/2(5 (t) - F(t)}. [See KLP (1980b).] Thus the
right-hand side of (4.2) can also be considered as an approximation to
Var{'S'n(t)l.

e also use (3.7), (3.8), and (3.9) to obtain lower and upper bounds for
the mean of the PEXE, and upper bounds for the variance of the PEXE. See
Table 2.

A1l our calculations are performed under a particular proportional
hazards model, when X and Y are exponential r.v.'s. However these calcula-
tions apply to general proportional hazards models, provided the appropriate
adjustments are made. More specifically assume

i it e e wias



T = [T for some 8 > O, (4.3)

and let R'l(t) = inf{z: z€[0,a(F)), -2nF(z) > t}, te[0,=). Since F is con-
tinuous R(R'l(t)) = t for te(0,=). Thus:

The r.v.'s R(X) and R(Y) are exponentially distributed with

scale parameters 1 and 8 respectively.
Let Zi,R = min{R(Xi), R(Y1 )} and 51’,R = I(R(xi) < R(Yi)), i=21, eeey, n. Then:

The random vectors < (Z(l),R’ 6(1),R)’ coes (Z(n),R’ c(n).R) >
and < (R(Z(l)), 6(1)), cees (R(Z(n)), G(n)) > are stochastically equal.

How let rn,R and §n,R be the PLE and PEXE computed from (Z(;) o, 8(1) p)s «eos
(Z(n)’R, s(n),R)' respectively, Then for n =1, 2, ...:

The two PLE's processes {'F'n p(R(t)), te(0,=)} and
»
{Fn(t), t€0,=)} are stochastically equal.

In this section we compare the exact bias and exact variance of the
PLE, for proportional hazards models, with Efron's (1967) upper bound
for the bias and with Kaplan and lMeier's (1958) approximate variance. Thus,
ve may without loss of generality replace the model, given by (4.3), with
the particular exponential model described in the first paragraph of this
section.
He note that the PEXE processes Gn.R(R(t))' te{0,«)} and G“(t), tef0,«)}
are not stochastically equal. However, since the upper and lower bounds

of 5., given in Section 3, depend only on Kn(t) and t(n), our comparisons

for the PEXE conducted for an exponential model apply to a general proportional
hazards model provided t §s replaced by R(t).
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ilext we summarize our results for the PLE in the following table.

1. Exact and Approximate Values of the Mean and Variance of the PLE

g = 0053 t = 0.5, r(t) = ,6065

sample size n 10 15 20 25 30
mean of the PLE .60C5 .6665 .6065 .6065 .6065
bias of the PLE .0000 .0000 .0000 .0000 .0000
Efron's bound for the biax .C025 .0003 .0000 .0000 .0000
variance of the PLE .0284 .0185 .0138 .0110 .0092
approximate variance .0274 .0183 ,0137 .0110 .0091

g=1,t=0.5, F{t) = .6065

sample size n 10 15 20 25 30
mean of the PLE £066 6065 6065 .6065 .6065
bias of the PLE 032! .0C00 .0000 .0000 0000
Efron's bound for tlie bias .0099 L0216 .0003 .0000 .0000
veriance of the PLE .0333 .G218 .0162 .0129 .0107
aporoximate variance .J316 0211 .0158 .0126 0105

g=2,t=0C.5 F(t) = ,6065

sample size n 10 15 20 25 30
mean of the PLE .6087 .60€9 6066 .6055 .6065
bias of the PLE 0022 .0004 .0001 .0000 .0000
Efron's bound for the bias G123 0138 .0045 .0015 .0005
variance of the PLE L0478 G313 .0229 .0181 .0149
approximate variance .0427 .028% 0213 0171 .0142




g=05t=1,

13

F(t) = .3679

sample size n 10 15 20 25 30
mean of the PLE .3688 »3680 .3679 .3679 .3679
bias of the PLE .0009 .0002 .0000 .0000 0000
Efron's bound for the bias .0395 .0129 .0042 0014 0005
variance of the PLE 0334 .0219 .0129 .0107 .0107
approximate variance .0314 .0209 .0157 .0126 0105

g=1,t=1, F(t) = .3679

sample size n 10 15 20 25 30
mean of the PLE 3752 3701 .3686 3682 .3680
bias of the PLE 0073 .0022 .0008 .0003 .0001
Efron's bound for the bias .1633 .0830 0422 .0214 .0109
variance of the PLE 0474 ,0318 .0236 0173 0144
approximate variance .0423 .0288 0216 0186 0154

=2, t=1, F(t) = .3679

sample size n 10 15 20 25 30
mean of the PLE 4164 «3946 .3836 3799 3744
bias of the PLE .0485 0268 .0160 0100 0065
Efron's bound for the bias 3842 .2995 .2335 .1821 .1419
variance of the PLE 0779 .0580 .0462 .0382 .0324
approximate variance 0861 _ .0574 0430 0344 0287




Y

g =05, t=2 F(t)=,1353

sample size n 10 15 20 25 30
mean of the PLE .1546 .1449 .140§ .1384 .1373
bias of the PLE .0193 .0095 .0053 .0031 .0019
Efron’'s bound for the bias 5256 .4097 .3194 .2491 .1942
variance of the PLE 0254 .0169 0127 .0101 .0084
approximate variance .0233 0155 0117 .0093 .0078

g=1,t=2 F(t) = .1353

sample size n 10 15 20 25 30
mean of the PLE 2076 .1825 .1688 .1602 1544
bias of the PLE .0723 0472 0335 0249 0192
Efron's bound for the bias «7200 .6969 .5995 5470 .4991
variance of the PLE 0470 .0327 .0252 0205 0174
approximate variance 20491 .0327 0245 .0196 .0164

g=2,t=2 F(t)=,1353

sample size n 10 15 20 25 30
mean of the PLE .3432 3027 2772 +2591 2455
bias of the PLE .2079 .1674 .1479 .1238 1101
Efron's bound for the bias +8435 .8331 .8228 8127 .8027
variance of the PLE .0861 0672 .0560 0485 0431
approximate variance +2457 1638 .1228 +0983 .0819
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tle see that Efron‘'s (1967) bound for the bias is much larger than the exact
bias, computed for proportional hazards models. However the approximate
variance given by Xaplan and Meier (1958) is close to the exact variance,
even for the smallest sample size considered (n = 10).

The bounds for the PEXE in Table 2 are based on formulas (3.7), (3.8)
and (3.9). The upper bound for the mean of the PEXE is reasonmably close
to the true value of F(t) but the lower bound for the mean is not close.
Sharper bounds need to be developed.

For completeness, we include the upper bound for the variance of the
PEXE but until an exact expression is obtained for the (small-sample) vari-
ance of the PEXE, the potential value and use of this "pper bound is diminished.
However, we can compare the upper bound to the approximate variance given
by the right-hand side of (4.2). Such a comparison indicates that the upper
bound is not that good.

2. PEXE Bounds: Upper and Lower Bounds for the
Hean and Upper Bound for the Variance

g = 0.5, t = 0.5, F(t) = .6065

sample size n 10 15 20 25 30
upper bound for the mean of the PEXE .6476 .6348 .6280 .6239 .G211
lower bound for the mean of the PEXE .2768 .2866 .2911 .2937 .2954

upper bound for the variance of the PEXE .3649 .3366 .3220 .3131 .3070
approximate variance .0274 .0183 .0137 .0110 .0091

—
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g=1,t=0,5 F(t)=.6065

sample size n 10 15 20 25 30
upper bound for the mean of the PEXE .6539 .6391 .6313 .6266 .6233
lower bound for the mean of the PEXE 2706 .2831 .,2888 .2919 .2940

upper bound for the variance of the PEXE .3792 .3463 .3292 .3188 .3119
approximate variance .0316 .0211 .0158 .0126 .0105

g=2,t=0.5, F(t) = .6065

sample size n 10 15 20 25 30
upper bound for the mean of the PEXE .6700 .6505 .6400 .6336 .6292
lower bound for the mean of the PEXE 2510 .2712 .2810 .2864 .2898
upper bound for the variance of the PEXE .4162 .3723 .3488 .3334 .3247
approximate variance .0427 .0285 .0213 .0171 .0142

g=05,t=1, F(t) = .3679

sample size n 10 15 20 25 30
upper bound for the mean of the PEXE 4453 .4212 .4085 .4007 .3954
lower bound for the mean of the PEXE 1352 .1510 .1597 .1650 .1685

upper bound for the variance of the PEXE .2044 ,.1723 .1552 .1447 .1376
approximate variance .0314 .0209 .0157 .0126 .0105

g=1,t=1, F(t) = .3679

sample size n 10 15 20 25 30
upper bound for the mean of the PEXE 4722 .4407 .4237 .4130 .40S8
lower bound for the mean of the PEXE 1192 .1365 .1477 .1553 .1606

upper bound for the variance of the PEXE .2386 .1980 .1755 .1613 .1516
approximate variance 0432 .0288 .0216 .0186 .0154




g L
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g=2,t=1, F(t) = .3679

sample size n 10 15 20 25 30
upper bound for the mean of the PEXE 5396 .4966 .4707 .4532 .4407
louer bound for the mean of the PEXE .0783 .0981 .1097 .1205 .1292
upper bound for the variance of the PEXE .3247 .2694 .2364 .2142 ,1282
approximate variance .0861 .0574 .0430 .0344 .0287

g =05, t=2 F(t) = ,1353

sample size n 10 15 20 25 30
upper bound for the mean of the PEXE .2782 .2375 .2148 .2003 .1902
lower bound for the mean of the PEXE .0251 .0298 .0339 .0374 .0404
upper bound for the variance of the PEXE .0938 .0676 .0544 .0465 .0412
approximate variance .0223 .0155 .0117 .0093 .0078

p=1,t=2, F(t) = ,1353

sample size n 10 15 20 25 30
upper bound for the mean of the PEXE .3566 .3049 .2737 .2525 .2370
lovier bound for the mean of the PEXE 0170 .0205 .0234 .0260 .0283
upper bound for the variance of the PEXE .1538 .1123 .0901 .0762 .0667
approximate variance 0491 .0327 .0245 .0196 .0164

g=2,t=2, F(t) = .1353

sample size n 10 15 20 . 30
upper bound for the mean of the PEXE 4955 .4398 .4033 .3769 .3565
lower bound for the mean of the PEXE 0043 .0056 .0067 .0078 .0087
upper bound for the variance of the PEXE .2869 .2272 .1915 .1674 .1499
approximate variance 12457 .1638 1228 .0983 .0819
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