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Small Sample Properties of Two Survival Function
Estimators Based on Incomplete Data

by
Yuan-Van Chen, Miyles Hlollander and Naftali A. Langberg

Abstract.

For estimating an underlying survival distribution, we consider

two estimaters based on a randomly right-censored sample: The tradi-

tional Product Limit Estimator (PLE), introduced by Kaplan and M~eier

(1958), and a competitor, the Piecewise Exponential Estimator (PEXE),

introduced by Kitchin, Langberg and Proschan (1980a). Under a propor-

tional hazards model we present formulas for the mean and variance of

the PLE and find upper and lower bounds for mean and variance of the

PEXE. These new expressions for finite sample sizes are compared with

known as)yptotic results.
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1. INTRODUCTION

Let X1V X2, ... be independent identically distributed (.l.d.) random

variables (r.v.'s) denoting lifelengths with a common continuous distribu-

tion function (d.f.) F, and let Y1V Y26 ... be i.l.d. right-censoring r.v.'s

with a common continuous d.f. H. tie assume that (X1, Y1), (X2, Yz), ...

is an 1.1.d. sequence of random pairs with independent nonnegative components

defined on a common probability space.

Let I(A) denote the indicator function of the set A, let Z, - mln(X 1, Yt)

and 6t  I(Xi < Y.) i a 1, ... , n. tie consider the problem of estimating

- 1 - F, the underlying survival function, from the sample (Z,, 61), ... , (Zn 6 ).

Kitchin, Langberg, and Proschan (KLP)(1980a) introduce a new estimator

of lg the Piecewise Exponential Estimator (PEXE), a competitor to the tradi-

tional Product Limit Estimator (PLE), introduced by Kaplan and Meier (1958).

KLP show that the PEXE is a strongly consistent estimator of F and that the

standarized PEXE process converges weakly to a Gaussian process. This Gaussian

process has the same covariance structure as that of the standarized PLE

process. [For details see KLP (1980a) and (1980b).] Thus the PEXE has

the same asymptotic behavior as the PLE. [For the strong consistency of

the PLE see Peterson (1977), Langberg, Proschan, and Quinzi (1980) or KLP

(1980a). For the weak convergence of the standarized PLE see Breslow and

Crowley (1974) or KLP (1980b).] In contrast to the PLE, which is a step

function with Jumps at the observed failures, the PEXE is a continuous and

strictly decreasing function up to the last failure. In many life testing

situations the survival function is anticipated to be strictly decreasing

smoothly over time. Thus, in many situations the PEXE will be the more

appropriate than the PLE. Further, the value of the PEXE in an interval
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between any two successive failures depends on the actual withdrawal

times up to the failure time that determines the right-hand side of the

interval, and on that failure time. In contrast the value of the PLE

between two successive fail ures depends on the number of withdrawals up

to the failure that determines the left-hand side of the interval, and

does not depend on the right-hand side failure. [For further details

see KLP (1980a).]

In this paper we consider the small sample properties of the two esti-

mators. Our calculations are performed under the assuuption that the life-

length X and tie time to censorship Y have proportional hazards. (See Defini-

tion 2.3.)

In Section 2 we define the PEXE, the PLE and the proportional hazards

models. Then we present a useful characterization of these models that is

used in the last two sections.

In Section 3 we present formulas for the mean and variance of the

PLE, and upper and lower bounds for the mean and variance of the PEXE.

All computations in Section 3 are conducted under the proportional

hazards assumption. In Section 4 we compute the mean and variance of

the PLE, and corresponding upper and lower bounds of the PEXE. Wie

compare our exact result for the bias of the PLE with Efron's (1967)

upper bound. It is seen that Efron's bound, in the proportional hazards

model, is quite loose. le also compare time exact variance of the PLE

with an approximate variance given by Kaplan and Meer (1958). The

latter approximation is found to be quite good.

1 _ _ _ __ _ _ _ _
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It is also seen In Section 4 that our upper bound for the mean of the

PEXE is reasonably close to the true value T(t) but the lower bound is not

goed. Furthermore, the upper bound for the variance of the PEXE is compared

to the approximation given by Kaplan and Heier (1958) for the variance of

the PLE. (Recall that the PEXE and the PLE have the same asymptotic vari-

ance, and thus the Kaplan-Ileier approximation can also be viewed as an

approximation to the (small-sample) variance of the PEXE.) The upper

bound is seen to be too conservative, and tighter bounds are needed.

I.
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2. PRELIMINARIES

In this section we define the PEXE, the PLE, and the proportional hazards

models. Then we present a characterization of these models.

First we introduce some notation. Let %.l(t) a zL 11(Zi > t), te[o, -),

be the number of observations in the sample at time t, and let T(n) n

be the total number of failures. Further, let Cl)  ... W(C(n)) denote

the consecutive observed failures with W(O) 0 0, and for T(n) > 1, let

w
r "f () nn(u)dul1 be the number of failures per unit time in the Interval

~(i-I.), "o)] P. ;, It. 009(n).

We are ready to present the definitions of the PEXE and the PLE.

Definition 2.1. For T(n) > 1 let A (11(i) - l(1 ))r, i - 19 . r(n).

Then the Piecewise Exponential Estimator, (PEXE), denoted by I n(t), is equal

to 1 on the set ((n) - 0 or ta(--, 0]), is equal to exp(-E1i- (t - 1'(t.1))r(i ,

0on the set {r(n)> 1, tT(t1 ), W(j)], I - 1, ... , (n), and is equal

to exp{-ETn)A), on the set ({(n) > 1, te(W(1(fl)),-).

Definition 2.2. Let 7n(t-) - > t), te(0,.). Then the

Product Limit Estimator, (PLE), denoted by F (t), is equal to I on the set

1-1 - -1
(r(n) - 0, or te(--,O)), is equal to al ['n(1i(j ))]Kn(tl(J )-)],1 on the

set ({(n) 2_ 1, tact(1),  fti))}, I = 1, ... , T(n), and is equal to
i '(n)_. R C- ,())][Kn (j)-)]" , on the set (i(n) 1. tcD'(T(n)). -)).

Jul

* We note that originally Kaplan and ieier (1958) left the PLE undetermined

on the set (r(n) > 1, t< max Zp,.)). (See also Peterson (1977).)

Next we define a proportional hazards model. Let (U1, U,) be a pair of

independent nonnegative r.v.'s with continuous d.f.'s G1, G2 respectively.
Further, let-1 1 - G1, a(G - sup(t: Gq(t) < 1), and let R t) - -n1 (t),

q q q q G, qt

t4(--, a(Gq)), be the hazard function corresponding to the d.f. Gq, q - 1, 2.
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Definition 2.3. We say that the pair (UJ1 , U2 ) follows a proportional

hazards model if there is a positive real number B such that:

1(t)= C 1 (t)]O for tnO-). (2.1)

Note that from (2.1) *(G1 ) - e(G2), and that the hazard functions corresponding

to G1 , G2 are proportional:

R(t) - aR2(t), tf[O, *(G 1 )).

Next we characterize the proportional hazards models.

Theorem 2.4. The pair (U1 , U2 ), 0 <P{U1  U2 } < 1, follows a propor-

tional hazards model if and only If

The r.v.'s U = mii-(U 1 , U2), and C - I(U1  _ U2 ) are independent. (2.2)

Proof. Let G be a continuous d.f., let 1 - G, and assume that

G(O) 0 0. Then for eel-I,-), and zeCO,*(G)):

![1 + 0o]'l[ zl I e > -1

jE-(u)]OdG(u) = E- z 0 (2.3)
z n9(z) , e- -1.

First we prove that (2.1) implies (2.2). To verify (2.2) it suffices

to show that for ze[O,.)

P(U > z, C - 1) - P(U > z)P( - 1). (2.4)

By (2.1) and (2.3)

P(U > Z, C a1). I*fudG (u) 1 (u)]dG1 (u)
z z (2.5)

- (I + s)'1 Im(z)]" 1 - (I + o)'P(u > z).
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In particular P{C - 1) PIU > 0, 9 - 1) (1 + 0)-1. Thus, (2.4) holds.

Consequently (2.1) implies (2.2).

Now we show that (2.2) implies (2.1). Let y - P{U1 < U2). By (2.2):

y6f(z) 2lz). -f (u)dGj(u), z[O,.). (2.6)
z

Upon integration by parts

yJ'6(u)dG2(u)- (1 - y )f (u)dG,(u). z[O.-). (2.7)
z z f 1()dG u)

How (2.7) Implies for ze[O, minfa(G1 ), a(G2 )}), that:

Z z

YfEC6 2(u)]-'dG2(u) =(1 - yY -ju]dj() (2.8)
0 0

By (2.3) and (2.8), for te[O,minl*(Gl),,(G2))),

'a21t) - [l(t)] x 'I ( I Y ) .  (2.9)

Consequently (2.2) implies (2.1). II

Since the random pairs (X1, Yi), I - 1, 2, ... are i.i.d. with ide-

pendent components it follows that:

The r.v.'s 61, - 1, 2, ... are t.l.d. Bernoulli with the (2.10)

parameter Y - PIX 1 I Y1 .

Further, under the assumption that (X1, Yj) follows a proportional hazards

model ie conclude from Theorem 2.4 that:

The sequences of r.v.'s 61, 26 ... , and Z1, Z2, (2.11)

are independent.

Thus, the proportional hazards assumption yields a nice structure on the

random pairs (X1, YO), (X2 , Y2 ), ... . This structure plays an Important

role in our computations, presented in Sections 3 and 4. 11ithout this

assumption finite sample computations are extremely difficult. (Thus

our assumption is also pragmatic.)
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3. ti-Ot4EfT CALCULATIONS AID BOUNDS UNDER PROPORTIOAL HAZARDS.

In this section we present formulas for the mean and variance of the

PLE. Then we give upper and lower bounds for the mean of the PEXE and an

upper bound for the variance of the PEXE. These are derived under the

assumption that (X,, Yj) follows a proportional hazards model. %,Throughout

we define a sum and a product over an empty set of indices as 0 and 1

respectively.

First we present formulas for the mean and variance of the PLE. Let

Kn(t) - 1 - %(t), 1(t) - F(t)1(t). and K(t) = 1 - 7(t), t[O,-). flote

tat by the continuity of F the formula for the PLE, given in Definition

2.2, reduces to:
Kn(t)

F n(t) = I [(n - i)(n - i + 1)1 ti-,-). (3.1)
J-

Let te[O,-). Then Kn(t) is a binomial r.v. with parameters n and K(t),

6 "'" 6n are ..d. Bernoulli r.v.'s with parameter y, and by (2.11) Kn(t)

is independent of 6P ... , 6no Thus, by (3.1), for t, ac(O,.):

K(t)
E{T (t))* - E i1 [y(n - i)O(n - i + 1)-a + 1 - y]

'Jul

n n - -q

EqO(q)[K f {y(n - t)a(n - i + 1)-" + 1 -).

Consequently for te[O,.):

E'Fqn ~t]q*t)n'l (1 - y(n - i + 1),l), (3.2)
n qs q iul

and~q

VarTn(t t)]q(t)] (1 -Y(2n - 21 + 1)(n - i + 1 )

t-1
(3.3)

-(Zq O(n)[K(t )]q[y(t)] n -q j(I - Y(n - i + )1A2
q Jul
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Equations (3.2) and (3.3) are conveniently used for numterical comparisons

in Section 4.

Now wie obtain upper and lower bounds for the mean of the PEXE and an upper

bound for the variance of the PEXE. flote tIhat

e-- ( x(1 + x)- 1 ( e-(x+1)- xe(O.u), (3.4)

and that on the set {i(n) > 1)

Afln( U(1))3 -1 < i ff r~n(tlo )WI 0 i = is 0009 1(n). (3.5)

For teCO,w), let a(n, t) - max(q: q = 0, .... 1(n), V (q) S. t) be the index

of the largest W (q) preceding t, and on the set {a(n, t) f. '(n)) let

b(n, t) - mln(q: q - r~n(t) + 1, ... , n, 6 ()= 1) be the index of the smallest

observation that failed following t. By the formula for the PEXE, given

in Definition (2.1), and by (3.4), (3.5):

(t expf(n~t )Ef,~ ii~

la(n,t) n(-)

a(" (t) -

* I((n - i+ 1)(n -i 2)')" for te(O,-),
Ju1

and

In (t) > [I(a(n, t) m r(n)) + I(a(n, t) < T~)ep-b(t)3x(Z. i

C I(a(n, t) - i(n)) + !(a(n, t) < C )ep-bnJl )r(-~



(I(a(n. t) -r~) + I(a(n, t) < (n), b(n, t) < n -1

IKK t)< ) )n

> 7 I(Kn(t) < n) n O(n - I )n - ,)-I for te0,n.

Thus, for t, ct(O,.)

K Mt
E{3 (t)Ia < E 11 EY(n - 1 + I~',- i + 2)+ 1 T

(3.6)

= K~tIR (y'n - i + 1)O(n - i + 2)1-- +J1

and
Kn (t)

E{3n (t)j" > Ea*E 11 (y(n - i- 1)3(n - i )- + 1 - y]i

q= ~ q)K t H ty(n -i - Ira(n - i)VG + 1 y-

Consequently

-n (t ) j . n OK(t )]q[((t)J -q H (1 - y(n - i + 2)-) (3.7)

and

Var(~() )[K~ ~ t (1 - 'r2n -21 + 3)
Jul q (3.9)

(n- I + 2)2)(' - [~ ][Kt]- 1(1 -y(n - 1 12
q4~ Jul
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4. COiPARISON OF EXACT VALUES WITH BOUNDS AND APPROXIMATE VALUES

In this section we take the llfelength d.f. F to be exponential with

scale parameter 1 and the right-censorship d.f. IH to be exponential with

scale parameter o(s > 0).

Table 1 displays results obtained by using (3.2) and (3.3) to obtain

numerical values for the mean and variance of the PLE. Then we compare

thre bias of the PLE to the general bound for the bias given by Efron (1967),

namely:

0 _( Ern(t ) - lr(t) _ F(t)exp{-nK(t)), te[O,-). (4.1)

tie also compare the exact variance of the PLE to the approximate variance

given by Kaplan and fieler (1958):

Var(Tn(t)) - n'1 rF(t)3J[f(u)F(u)]'IdF(u), tc[O,.). (4.2)
0

Ile note that [l(t)]2)L(u)T'(u)]'IdF(u) is the variance of G(t), the Gaussian
0

process obtained as the weak limit as n + - of n1/2 T'n(t) - F(t)). G(t) is

also the weak limit of nl/ 2 (Sn(t) - F(t)). [See KLP (1980b).] Thus the

right-hand side of (4.2) can also be considered as an approximation to

Var( n(t)).

le also use (3.7), (3.8), and (3.9) to obtain lower and upper bounds for

the mean of the PEXE, and upper bounds for the variance of the PEXE. See

Table 2.

All our calculations are performed under a particular proportional

hazards model, when X and Y are exponential r.v.'s. However these calcula-

tions apply to general proportional hazards models, provided the appropriate

adjustments are made. tiore specifically assume



RT a(FJ] for some s > 0, (4.3)

and let R =(t inf~z: zIeO,a(F)), -inF(z) > t0, tc(0,mw). Since F is con-

tinuous R(R I(t)) = t for tce[,-). Thus:

The r.v.'s R(X) and R(Y) are exponentially distributed with

scale parameters 1 and s respectively.

Let Zi,R - min(R(X1), R(Yi)l and 6 i,R a l(R(Xi).j R(Y1)), i - 1, .... n. Then:

The random vectors < (Z(1R "I),~ * (Zn)R * 8 .) >
(1),RR (n),RR

and ( (R(Z(1 ) 6(1))... (R(Z (n))' 6(n)) > are stochastically equal.

Hlow let "F, and §n, be the PIE and PEXE computed from (Z(1),R. 6 (1),R~'

(Z (n).R. 6(n),R ), respectively. Then for n -1, 2, 406:

The two PLE's processes (Fn. (R(t)), te[0,m)) and

{(t), tu(O,.)) are stochastically equal.

In this section we compare the exact bias and exact variance of the

PIE, for proportional hazards models, with Efron's (1967) upper bound

for the bias and with Kaplan and Mieer's (1958) approximate variance. Thus,

vie may without loss of generality replace the model, given by (4.3), with

tme particular exponential model described in the first paragraph of this

section.

Hie note that the PEXE processes (n,R (R(t)). teEO,-)) and (S?,(t), tEO,-))

are not stochastically equal. However, since the upper and lower bounds

o f !~*given In Section 3, depend only on Kn(t) and r(n), our comparisons

for the PEXE conducted for an exponential model apply to a general proportional

hazards model provided t is replaced by R(t).

IEmi
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Next we summarize our results for the PLE in the following table.

1. Exact and Approximate Values of the Mean and Variance of the PLE

0 = 0.5. t * 0.5. R(t) = .6065

sample size n 10 15 20 25 30

mean of the PLE .60C5 .6065 .6065 .6065 .6065

bias of the PLE .0000 .0000 .0000 .0000 .0000

Efron's bound for the bia:. GOZ,5 .0003 .0000 .0000 .0000

variance of the PLE .0284 .0185 .0138 .0110 .0092

approximate variance .0274 .0183 .0137 .0110 .0091

0 = 1. t = 0.5, 'Ft) = .6065

sample size n 10 15 20 25 30

mean of the PLE 66066 .6065 .6065 .6065 .6065

bias of the PLE .C301 ,OCOO .0000 .0000 .0000

Efron's bound for- tOe bias .0099 .0316 .0003 .0000 .0000

variance of the PLE .0333 .0218 .0162 .0129 .0107

approximate variance .3316 .0211 .0158 .0126 .0105

=2. t - C.5 L) =.6065

sample size n 10 15 20 25 30

mean of the PLE .6087 .60F9 .6066 .6055 .6065

bias of the PLE .0022 .0004 .0001 .0000 .0000

Efron's bound for the bias ,G'Z3 .01:i8 .0045 .0015 .0005

variance of the PLE .0478 .0313 .0229 .0181 .0149

approximate variance .0427 -0285 .0213 .0171 .0142
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0.5. t 1. r(t) .3679

sample size n 10 15 20 25 30

mean of the PLE .3688 .3680 .3679 .3679 .3679
bias of the PLE .0009 .0002 .0000 .0000 .0000
Efror's bound for the bias .0395 .0129 .0042 .0014 .0005

variance of the PLE .0334 .0219 .0129 .0107 .0107

approximate variance .0314 .026? .0157 .0126 .0105

0 = 1. t = I. t't) = .3679

sample size n 10 15 20 25 30

mean of the PLE .3752 .3701 .3686 .3682 .3680

bias of the PLE .0073 .0022 .0008 .0003 .0001

Efron's bound for the bias .1633 .0830 .0422 .0214 .0109

variance of the PLE .0474 ,0318 .0236 .0173 .0144

approximate variance .0423 .0288 .0216 .0186 .0154

0 = 2. t = 1. (t) = .3679

sample size n 10 15 20 25 30

mean of the PLE .4164 .3946 .3836 .3799 .3744

bias of the PLE .0485 .0268 .0160 .0100 .0065

Efron's bound for the bias .3842 .2995 .2335 .1821 .1419

variance of the PLE .0779 .0580 .0462 .0382 .0324

approximate variance .0861 .0574 .0430 .0344 .0287
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0 0.5. t a2. Ttt) a.1353

sample size n 10 15 20 25 30

mean of the PIE .1546 .1449 .1406 .1384 .1373

bias of the PIE .0193 .0095 .0053 .0031 .0019

Efron's bound for the bias .5256 .4097 .3194 .2491 .1942

variance of the PIE .0254 .0169 .0127 .0101 .0084

approximate variance .0233 .0155 .0117 .0093 .0078

0 1. t =2. Fit) a .1353

sample size n 10 15 20 25 30

mean of the PIE .2076 .1825 .1688 .1602 .1544

bias of the PLE .0723 .0472 .0335 .0249 .0192

Efron's bound for the bias .7200 .6569 .5995 .5470 .4991

variance of the PLE .0470 .0327 .0252 .0205 .0174

apprximate variance .0491 .0327 .0245 .0196 .0164

0 *2. t - 2. T~t) - .1353

sample size n 10 15 20 25 30

mean of the PLE .3432 .3027 .2772 .2591 .2455

bias of the PLE .2079 .1674 .1479 .1238 .1101

Efron's bound for the bias .8435 .8331 .8228 .8127 .8027

variance of the PLE .0861 .0672 .0560 .0485 .03

aprximate variance .2457 .1638 .1228 .0983 .0819

.- s.. ......
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lie see that Efron's (1967) bound for the bias is much larger than the exact

bias, computed for proportional hazards models. However the approximate

variance given by Kaplan and Meier (1958) is close to the exact variance,

even for time smallest sample size considered (n - 10).

The bounds for the PEXE in Table 2 are based on fomulas (3.7), (3.8)

and (3.9). The upper bound for the mean of the PEXE is reasonably close

to the true value of r(t) but the lower bound for the mean is not close.

Sharper bounds need to be developed.

For completeness, we include the upper bound for the variance of the

PEXE but until an exact expression is obtained for the (small-sample) vari-

ance of the PEXE, the potential value and use of this ')per bound is diminished.

However, ve can compare the upper bound to the approximate variance given

by the right-hand side of (4.2). Such a comparison indicates that the upper

bound is not that good.

2. PEXE Bounds: Upper and Lower Bounds for the
Mean and Upper Bound for the Variance

0 - 0.5. t - 0.5. T(t) - .6065

sample size n 10 15 20 25 30

upper bound for the mean of the PEXE .6476 .6348 .6280 .6239 .6211

lower bound for the mean of the PEXE .2768 .2866 .2911 .2937 .2954

upper bound for the variance of the PEXE .3649 .3366 .3220 .3131 .3070

aproximate variance .0274 .0183 .0137 .0110 .0091
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0 - 1. t - 0.5. F(t) = .6065

sample size n 10 15 20 25 30

upper bound for the mean of the PEXE .6539 .6391 .6313 .6266 .6233

lower bound for the mean of the PEXE .2706 .2831 .2888 .2919 .2940

upper bound for the variance of the PEXE .3792 .3463 .3292 .3188 .3119

approximate variance .0316 .0211 .0158 .0126 .0105

= t .,5, F(t) = .6065

sample size n 10 15 20 25 30

upper bound for the mean of the PEXE .6700 .6505 .6400 .6336 .6292

lower bound for the mean of the PEXE .2510 .2712 .2810 .2864 .2898

upper bound for the variance of the PEXE .416? .3723 .3488 .3334 .3247

approximate variance .0427 .0285 .0213 .0171 .0142

B = 0.5. t - 1. T(t) = .3679

sample size n 10 15 20 25 30

upper bound for the mean of the PEXE .4453 .4212 .4085 .4007 .3954

lower bound for the mean of the PMXE .1352 .1510 .1597 .1650 .1685

upper bound for the variance of the PEXE .2044 .1723 .1552 .1447 .1376

approx mate variance .0314 .02" .0157 .0126 .0105

- 1. t - 1. F(t) a .3679

sample size n 10 15 20 25 30

upper bound for the mean of the PEXE .4722 .4407 .4237 .4130 .4058

* :lower bound for the mean of the PEXE .1192 .1365 .1477 .1553 .1606

upper bound for the variance of the PEXE .2386 .1980 .1755 .1613 .1516

awroximate variance .0432 .0288 .0216 .0186 .OS4
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B 2. t - 1. F(t) - .3679

sample size n 10 15 20 25 30

upper bound for the mean of the PEXE .5396 .4966 .4707 .4532 .4407

loter bound for the mean of the PEXE .0783 .0981 .1097 .1205 .1292

upper bound for the variance of the PEXE .3247 .2694 .2364 .2142 .1282

approximate variance .0861 .0574 .0430 .0344 .0287

0 = 0.5. t = 2, F(t) - .1353

sample size n 10 15 20 25 30

upper bound for the mean of the PEXE .2782 .2375 .2148 .2003 .1902

lower bound for the mewn of the PEXE .0251 .0298 .0339 .0374 .0404

upper bound for the variance of the PEXE .0938 .0676 .0544 .0465 .0412

approximate variance .0223 .0155 .0117 .0093 .0078

B = 1. t - 2. Rt) .1353

sample size n 10 15 20 25 30

upper bound for the mean of the PEXE .3566 .3049 .2737 .2525 .2370

lower bound for the mean of the PEXE .0170 .0205 .0234 .0260 .0283

upper bound for the variance of the PEXE .1538 .1123 .0901 .0762 .0667

approximate variance .0491 .0327 .0245 .0196 .0164

0 - 2. t --2. frit) - .1353

sample size n 10 15 20 25 30

upper bound for the mean of the PEXE .4955 .4398 .4033 .3769 .3565

lower bound for the mean of the PEXE .0043 .0056 .0067 .0078 .0087

upper bound for the variance of the PEXE .2869 .2272 .1915 .1674 .1499

approximate variance .2457 .1638 .1228 .0983 .0819
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