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We present a general approximation scheme for autonomous FDE's

with Lipschitzean right-hand side. Our approach is based on approximation
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1, Introduction.

In recent years one can see considerable interest in approximation of
delay systems by ordinary differential equations. Results of this type
proved to be very useful for the numerical solution of optimal control
problems and identification problems (see {2],[5], [6]). A very successful
approach uses abstract approximation results in semigroup theory and applies

these to the semigroups associated with autonomous delay systems. This

approach goes back to [4] (see also [5]) where control problems involving

linear autonomous functional-differential equations and approximation oflkhe
state by step functions are considered. A considerable improvement over the
scheme developed in [5] was obtained in [7) where for the same class of delay
systems a scheme is developed which allows approximation of the state by spline
functions. In this paper we give an abstract formulation of the scheme
developed in {7] which can be applied to autonomous delay systems with

globally Lipschitzean right-hand side. We also indicate the application of

the linear version of the scheme to autonomous neutral deiay systems., Since

by lack of space we cannot give a detailed discussion of the relevant literature,
we include a rather complete list of papers in the references ({(1,3,5,7,13,14,15,
16,17,18,19,20,22,23,24]) and refer to the discussions given there (see es-

pecially Section 5 of [5]).

2. An Approximation Scheme for Semigroups of Nonlinear Transformationms.

Throughout this section X will be a Hilbert space with inner product
(*»*) and norm |-|. A family T(t), t > 0, of globally Lipschitzean

operators X + X 1s called a semigroup of type w, w €R, 1if the following

properties are satisfled:
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T(0) = I.

T(t+s) = T(t)T(s) for all t,s > 0.

For any x € X the map defined by t -+ T(t)x is
continuous on [0,=).

|TCt)x - T(t)y| < e®|x-y| for all x,y € X and
If for a not necessarily single-valued operator A on X, the operator
.say that T(.) 1is generated by A 1if for any x € X

T(t)x = 1lim (I- % N "k, t>0,
n®
uniformly with reépect ‘to t in bounded intervals. Of fundamental importance
is the generation theorem by Crandall-Liggett ([12]):
let A be adenselydefined operator on X. If A - wl 1is dissipative
for some ®w €IR and if range (I-AA) = X for sufficiently small A,

then A generates a semigroup of type w on X,

If A 1is single-valued then A - wI 1is dissipative if and only if
(Ax-Ay,x-y) < 'w|x—y|2 for all x,y € dom A. But note, that the Crandall-
Liggett Theorem is valid in general Banach spaces. Fundamental for our approach

is the following approximation theorem for semigroups of type w:

Theorem 1 ([10]). Let A, N=1,2,..., and A be single-valued Operatbrs

on X such that dom AN Ddom A for all N and dom A = X. Assume that the




following condicions'aré satisfied:
(1) There exists a AO > 0 such that

range (I-AA) = range (I-AAN) = X

for N=1,2,... andall A€ (0,A).

(i1) There exist real constants Wys N = 1,2,..., and ® such
that the éequence {wk} 1s bounded above and A, - wI
and A - wWI are dissipative.

-~ .-(i11) There exists a subset G. §f dom A such that T(I-XA)G = X
for A sufficiently small and
ANx +>Ax as N+

for all x € G,
Then AN and' A generate semigroups TN(-) and T(-) of type Wy
and w, respectively, and for all x € X

1im TN(t)x = T(t)x

uniformly on bounded t-intervals.
This theorem follows immediately from Theorems 4.1 and 3.1 in [10] and

is also true in general Bénach spaces.

Definition 1. Assume that A 41s an operator on X. A sequence {XN,PN,AN},

N=1,2,..., is called an approximation scheme related to A 1if
(1) XN are finite dimensional linear subspaces of dom A, N = 1,2,... .

(i1) Pyt X XN' is the orthogonal projection onto Xp N=1,2,..0 .

(1141) A, = PyAP., N = 1,2,... .




Condition (1) in this definition is the most restrictive one. It could

mean that 6n1y the trivial approximation scheme (0,0,0) for all N is
related to A. If A generates a semigroup of some type w it is of interest

to know when the operators AN generate semigroups TN(') converging to T(.).

Theorem 2. Let A be a densely defined single-valued operator on X such
that A - @wl 1is dissipative for some » € R and range (I-)A) = X for A
‘sufficiéntly small. Furthermore, let {X.N,PN,AN} be an approximation scheme -
related to A. Assume that the following conditions are satisfied:

1) linPNx-x for all x € X.
Noo

(11) There exists a set G c dom A such that (I-AA)G =X
for ) sufficiently small and

liuAP“x-Ax for all x € G.
‘N..u

(i11) For each N there exists a AN > 0 such that
ranze (I-AA“) = X
for all ) € (O.X“).

Then the following is true:
a) AN .is continuous on X and generates a semigroup of type w
on X, N=1,2,.., .
b) 'rN(t:)xH cxN for t >0, N=1,2,... .
c) ;_’1: Tu(t)PNx = T(t)x for all x € X uniformly on bounded

t-intervals, where T(:) 1s the semigroup generated by A.
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Proof. Condition (ii) of Theorem 1 is satisfied with wy = w. This follows

from

(Ax-Ayy,x-y) = (P, [AP x-AP y],x-y) =

ot e g —y i

] _ (AP x-AP Y P x-Py) < mll"Nx-PNyI2 < mlx-yl2 ‘

' x
for all x,y in X. Here we have used PN =.PN. For x € G we have

_ 1agxeax] < |PpARx-PyAx] + [ BypAx-Ax]
< |APNx-Ax| + |PAx-Ax| .

By conditions (ii) and (i) both terms on the right-hand side vanish as N + o,
Thus, also condition (iii) of Theorem 1 is satisfied. It only remains to

prove that range (I-AAN) =X for N=1,2,... and all X € (0,)\0), ).0 a ?

positive number not dependent on N, and that AN is continuous on X.

| - _ A -

2 We have range (I-A(AN-wI)) range (1 TS A“) X 'for all A with
0 < A(lﬂm)’l < AN. Since AN -wl is dissipative, we immediately get

') (cf. [8; p.73] or [9; p.23]) range (I-A(AN-wI)) =X for all A > 0, {i.e., |

v

range (I-AAN) =X for A€ (0,%)'. This proves condition (i) of Theorem 1

with >‘0 = -;— . Since AN -wl 1is 'm-dissipative and defined on all of X, it

is also demicontinuous, i.e., continuous from X with the norm topology into

X with the weak topology. But ANx c x“ and dom xN < » imply that AN

is continuous. Finally, conclusion b) follows from ANXN c xN

Corollary 1. If A is linear, then the conclusion of Theorem 2 holds without

assuming condition (iii) explicitly. Moreover, Tn(t) is given by

TN(t) = exp Ant.
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Proof. The conditions on A imply'(also in the nonlinear case) that A is
closed (cf. [8; p.75]). Then also APN is closed and defined on all of X.
Therefore, bj the Closed-CGraph Theorem KPN is a bounded linear operator,

The rest of the proof is clear,

In the linear case we also can replace the condition “range (I-AA) = X

for A sufficiently small" by "A is the infinitesimal generator of a~C§-semi—

‘group”. This is a consequence of the Lumer-Phillips Theorem (see for instanceé -

[21; p.16]).

The following corollary covers a situation taylored for delay systems:

Corollary 2. lLet Ao be a closed linear operator with dom AO = X and A1

be an opgrator with dom A1 S dom AD such that

|ax-ay] < Lllx-yll
for all x,y € dom Ao, where L > 0 and ||-" is a norm on dom Ao. Then
condition (f1i) of Theorem 2 holds for any approximation scheme {xN,PN,AN}
related to A_- Ao + Al.

Proof. The conditions on" Ay 1imply that Ay o = PLAGP. 18 a bounded linear
»

N

operator, ay = |A; o|. We have to prove that (I-AAy)y = x has a solution
. ]

y for any x € X provided A 1is sufficiently small. This equation is

equivalent to

y=- A(I—AAN'O)-IP“AIPNY + (I-AAN’O)-IR =: h(y)

if L€ (o,a;"). Then for all y,,y, € X

et e
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In(y)-h(y) | < A0t A Ry, -A Py, |

<AL By By,ll < opaLa-a Yy, -y, .

Here we have used the fact that two norms on a finite dimensional space are

equivalent. Note, that PNyl

that h is a contraction for A sufficiently small.

and l’uy2 are in XN The estimate shows

Using, for instance, Theorem II of [12] and the fact that the Peano-

Existence Theorem is valid in finite dimensional spaces, we see that

u(t) = TN(t)PNx for any x € X is the solution of

u(t) = Au(t), t>0,
u(0) = PNx ,

which is an initial value problem for an ordinary differential equation on
XN. For calculations one has to choose a basis for XN and to represent AN
and PNx with respect to this basis (see [7] and [15] for more details).

3. Applications to Functional Differential Equations.
2

a) Nonlinear Equations in R® x L

We consider autonomous equations
x(t) = £(x), t 20,
with initial data

x(0) = n €l{“, x(s) = ¢(s) a.e.




r >0, where ¢ € Lz(-r,OﬂRn). For a function x: [-f,u) +]R9, o >0, x,

is defined by xt(s) = x(t+s), s € [-r,0]. A solution of (3.1), (3;2) is a

function x on an interval [-r,a), a > 0, such that (3.2) holds and =x(t) =
t
n+ J f(xs)ds for t € [0,0). We assume that f is a map..&f'z(—r,o;mp)-ﬂll'l

0
(&fz is the linear space of square integrable functions) satisfying

(hl) For any function. x in Lz(-r,aﬂRn), o > 0, which is continuous on

- [0,0) ¢t +;f(x£); uniquely defines a map in Ll(O,aﬂRn).

(h2) There exist constants L > 0 and rj, j=0,...,my, 0= ry < T, <..<rp =7,

such that for any ¢,y in.ﬁfa(-r,OﬂRn)

nm .
l£#) = £ | < LC T [oC-r)-¥(-x )| + [o-v] ,).
j20 3 3 L

Under conditions (hl), (h2) problem (3.1), (3.2) has a unique solution
x(t;n,9) on [-r,») for any (n,¢) € X =R® x L2(-r,OﬂR#). The family of
operators T(:) defined by T(t)(n,$) = (x(t;n,¢),xt(n,¢)), t >0, (n,$) €X,
is a strongly continuous semigroup of_globally Lipschitzean operators on X
(cf. [17])). X 4is a Hilbert space with norm I(n,¢)|8 = (Inl2 + Io |¢(s)|2g(s)ds)1/2
-r

and corresponding inner product, where |’| denotes the Euclidean norm in R"

and the weighting function g is defined by
g(s) = m-j+1 for s € (-rj,-rj_l), jJ=1,...,m.
Define the operator A by

dom A = {(6(0),0)]¢ € W2 (r, 0D},
AG(0),0) = (£(9),8), ¢ € W2 (-r,0R™).
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Theorem 3. Let {XN,PN,AN} be an approximation scheme related to A such
that

(1) 1lim PNx = x for all x € X.
N->oo
(i1) There exists an integer k > 1 such that for ¢ € Ck(-r,O;IRn)
6,(0) + 6(0) and § + ¢ .in L2(-r,0®")
as N + », Here ¢N € wl’z(-r,OﬂRp) is defined by

e s s  B(0(0)39) = (8(0),4,) € dom A. S

Then, for each N, AN generates a semigroup TN(-) on X such that for all
x € X

1im T _(t)P.x = T(t)x
No<o N N

uniformly on bounded t-intervals.

Indication of proof -(a complete representation of the results

concerning equation (3.1) will appear elsewhere [15]).

Step 1: We have dom A = X. For the set G in condition (ii) of Theorem 2
we take G = {($(0),9)|¢ € Ck(-r,O;'Rn)}. Using (h2) one shows that there exists
an W €R such that A - wI 1is dissipative in X. The idea to introduce a
weighting function is due to G.F. Webb [25]) and is essential here. In order
to verify the range condition on A one observes that (I-AA)(¢(0),¢) =

s/A 1 [° (s-1)/
(n,¥) € X is equivalent to ¢(s) = e '"¢(0) - 3 I e }‘W(T)d‘l'. s € [-r,0],

-r .
and $(0) = h(6(0)), where h(a) = n + Af(e /?a -1 I eC O ()dr)  for
-r

A a €ER". Using (h2) one shows that h is a c_oni:raction on R" for 2

sufficiently small.




10.

Step 2: By definition of A we see that APNx + Ax in D 1s equivalent to
£() > £(4) and 6 > ¢ in LP(-r, 0. But £(4) > £(4) follows from

(i1) and (h2). Therefore, condition (ii) of Theorem 2 is satisfied.

Steg 3: In order to apply Corollary 2 we write A = A0 + A1, where
85(6(0),8) = (0,§) and A (4(0),8) = (£(9),0) for ¢ € WP(-r,0&"). Then

A0 is a densely defined and closed linear operator (see [17]). (h2) implies

that™ Af satisfies the tondition in Corollary 2 with [| 40, $)]| = sup |¢(s)]. -
-r<s<0
Thus, condition (iii) of Theorem 2 is satisfied. T

Step 4: The semigroup generated by A 1is indeed T(:) (cf. [17]).
The conclusion of Theorem 3 in the case of spline approximation was also
obtained by H.T. Banks in [3] by a different method under the additional

assumption that f 1is differentiable.

b) Equations of Neutral Type in R"™ x Lz(-t,OﬂRn)

Let D and L be bounded linear functionals C(-r,OﬂRn) +R"

defined by
0

m
D) = 4O - ] Bé(r,) - ] B(s)¢(s)ds,
j=1 -r

m 0
L) = ) A ¢(-rj) + f A(s)¢(s)ds,
i=0

i -r

where 0 = I < r, < .00 < r, =t 'Aj,Bj are n X n matrices and A(°),B(°)

are in Lz(-r,Oﬂknxn).-

F f"._;_\f‘:t ﬁ‘ ?‘,’ﬁ .' %‘zwéﬁv“f? : ‘,,.,_: : . 4
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11.

As before we take X -JR“ x Lz(—r,OﬂRn). Following an idea given in

[11] we define the operator A by

dom A = {(D($),$) |6 € W*2(-r, 0™},

A ) = (L(),8)» & € Wo2(-r,0m™).

X will be supplied with the norm I(n,¢)|g, vhere the weighting function g

_pow_gs_ﬁlso depgpdent on D:

g(s) = m-j+1+aj(s+rj_1) for s € (—rj,-rj_l), j=1l,...,m,

a. < - m(m+2) lB

IZ
j - rj-rj"l j

s J=1,...,m.

Theorem 4.
a) A generates a Co-semigroup T(+) of bounded linear operators on X.
b) Let {XN,PN,AN} be an approximation scheme related to A satisfying:

(1) 1lim PNx = x for all x € X.
N-»oo

(11) . There exists an integer k > 1 such that for
b € CX(-r,0") 4,(0) + 6(0) and §y+ ¢ 1o LP(-r,0m")
as N+ o, where ¢V € wr2(-r,08") is defined by

Then, for each N, AN is a bounded linear operator which generates the Co-semi-

group TN(t) = exp ANt, t >0, and for all x € X

lim T (t)P,x = T(t)x
g N N*

uniformly on bounded t-intervals.

EETXTI R s o R N
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The proof of this theorem proceeds in similar steps as that for Theorem
3 and can be found in (14]. If z = (D($),$) with ¢ € C(-r,0R™) then
T(t)z = (D(xt),gt),t > 0, where x(t) 1is the solution of the neutral equation

d
3 D(xt) = L(xt), t>0,

with x(s) = ¢(s), s € [-r,0]. Theorem 4 provides an approximation of
t > (D(xt) ,xt),—i:d_>._ b, “i;lml'(:"lf we could prove that TN(t)PNz + T(t)z also
with respect to the sup-norm, then we would get an approximation of x(t)

itself (see [14], Section 6 for details and preliminary results).

c) Equations of Neutral Type in wl’z(-r ,O;IRn)

Let the operators D and L be asunder b) and put D(¢) = ¢$(0) - D(¢).

The Cauchy problem

. m 0 . ..
x(t) = L(xt) + Z B i(c-rj) + I B(s)x(t+s)ds = L(xt) + D(xt), t>0,
-r

=13

x(s) = ¢(s), s € [-r,0],

has for any ¢ € Wl’z(-r,O;Rn) a unique solution x(t;¢) on [-r,»). We take

X= w1'2(4r,0;1R“) and define the family T(*) of operators by
1,2 R .}
T(t)p = xt(¢)’ t z_ 0, ¢€W (-x,0;R™).

T(:) 1is a Co-semigroup of bounded linear operators on X with infinitesimal

generator A given by

IR PR DN WG 1) R gy




13,
dom A = {0]6 € WHr2(-r, 0" and $(0) = D(§) + L(P)],
Ap = ¢, ¢ € dom A.

Note, that dom A depends on D and L. We supply X with the norm

2, (% 02 1/2
.|¢|g = (|¢(0)|° + I |¢(8)|“g(s)ds)"'“, where g is as under b) with

2m 2
o, < - —— |B.|°, j=1,...,m
j - rj-rj-l Ij

Then there exists an w € R such that A - ¢I is dissipative in X (cf.

[161).

Theorem 5. Let {XN,PN,AN} be an approximation scheme related to A such
that:

(1) 1lim PN¢ =¢ for all ¢ € X.
Neroo

(11) There exists an integer k > 2 such that for ¢ € Ck(-r,OﬂRP)
$N<0)->4'~(0) and ¢, + ¢ in LZ(-r,O;mn) as N+ o,

vhere ¢ € w2*2(<r,08") is defined by P = by

Then each AN is a bounded linear operator which generates the Co-semigroup

TN(t) = exp ANt on X and for all ¢ € X
1im T, (t)P ¢ = T(t)$
Bow N N

uniformly on bounded t-intervals.

For a proof of this theorem see [16]. Theorem 5 provides, for initial

ST P,
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1,2

data in W (-r,OﬂRn), an approximation of x, with respeét to the sup-norm

t

and of it with respect to the Lz-norm. On the other hand, the subspaces

XN and projection PN depend on the right-hand side of the equation even

if D(¢) = ¢(0).

4., Spline Approximation

In this section we indicate that subspaces of spline functions can be
3.

In the situation of Section 3, a) and b) we can take any sequence of
subdivisions of [-r,0] with mesh points t?, j= 1,...,kN, such that

maxltN-tN I/minltN-tN | < B <®, 1In case of Section 3, a) we define Xy to
be the subspace of all elements ($(0),¢) such that ¢ is a first order,

cubic or cubic Hermite spline with knots at the tg, respectively. We have
dim XN = (kN+1)n, (kN+3)n. or 2(kN+1)n, respectively. Similarly in the case
of Section 3, b) XN is the space of all elements (D(¢),¢) with ¢ as
above.

In the situation of Section 3, ¢) we have to satisfy the boundary
condition 6(0) = 5(6) + L(¢) and to guarantee more smoothness. One has to
take subdivisions of [-r,0] such that the points -rj, j=0,...,m, are
meshpoints and restrict D and L. In the case of cubic splines we have to

assume 'Bl = ,, A6 = Bm-l = 0, B(s) = A(s) = 0. Then XN is the subspace of

N
3

. m
¢(0) = Z A3¢(-rj) + Bm$(-r). In the case of cubic Hermite splines we assume
i=0

all cubic splines with knots at the meshpoints t, satisfying

i

x
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15.
B(s) = A(s) = 0 and take XN to be the subspace of all cubic Hermite
.. m m .
splines with knots at the N such that ¢(0) = Z A¢(-r,) + Z B.¢(-r,).
j jso J j j-l j j

tions of AN and numerical examples, see [7], [14]) and [16].
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For details, explicit calculation of bases for XN’ matrix representa-
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