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SECTION 1
INTRODUCTION

The acoustic response of simple metallic targets submerged in
water is studied under this contract. The aim is to develop an interpreta-
tion of the process which would permit its characterization by a simple
model. This work is a continuation of a previous contract [14] which should
be referred to for the general background of this problem and for greater

detail of the space-time integral equation approach.

The classical solution for acoustic scattering from a penetrable
homogeneous sphere is studied first in Section 2. It is seen that hard or
soft target approximations are not valid for metallic targets (except at
very low frequencies), but that resonances are present which are character-
istic of the interior composition. Viewed in the time domain, the impulse
response of a target consists of a sequence of pulses following the specular
impulse. The arrival times of these pulses can be related directly to the

elastic constants of the target and medium. Moreover they can be inter-

preted simply as pulse traversal times at the\several speeds along certain
paths. The description of this model (the *gl -wave® model) is the sub-
ject of Section 3, along with the first steps tgward a complete gquantitative
theory. A semi-quantitative computer program which generates time and fre-

quency domain responses is given in an appendix

(i£> In Section 4, the space-time integral equation approach is des-

cribed. Whereas classical solutions can only be found for targets conforming

le coordinate systems, the integral equation approach is applicable
to targets of arbitrary shape. An exact solution is presented for a fluid
right circyhlar cylinder. The space-time integral equation formulation is
presented r elastic targets (which exhibit interior shear waves as well

as compressﬂgn waves), although numerical difficulties have so far prevented

computationa% results. A procedure is described whereby the scattering
\
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\benter responses can be computed for use in the simple model of Section 3.

~
N
/;> In Section 5, the results of previous sections are extended to

the hulled target. The classical solution is derived for the thick spherical

the shell are given as functions of elastic parameters
It is seen that

shell. Results £
and shell thickness,\ including the very-thin shell limit.

the thick shell response is much more complicated-than.the already compli-

cated homogeneous sphére, but that in the limit of the thin shell the

——TTT— S
response becomes a stepped sinusoid with exponential decay. Also given, in

subsection 4.3, is the%space-time integral equation formulation for the thin

hulled target of gener%l geometry.
H

/
/
/
/

/

il ,.“u

ks  a




I i e ey

SECTION 2
ANALYSIS OF HOMOGENEOUS SPHERE RESPONSE

The solution for scattering from a homogeneous penetrable sphere
was first given by Anderson in 1950 for the fluid sphere [2] and by Faran
in 1951 for the elastic sphere [3]. These were classical solutions; found
by expanding interior and exterior fields as sums of eigenfunctions and
equating these at the boundary. The applicability of the method is limited
to simple shapes which form constant surfaces in separable coordinate sys-
tems. However, the advantage is that the solution is straightforward. The
only numerical difficulty arises in the evaluation of the spherical Bessel
functions at large order and argument. In this section, the classical solu-
tion for the sphere, transformed to the time domain, will be used as a

starting point for understanding acoustic scattering.

2.1 CLASSICAL SOLUTION FOR HOMOGENEOUS SPHERE

The elastic sphere is completely characterized by its radius, a,
and three elastic constants: density pl, compression speed cyv and shear
speed <, (see Appendix 8.1). It is embedded in a fluid with density p3

i >
and speed of sound c3. Let a monochromatic plane wave pl(r.t) be incident

upon it from the positive z direction (Fig. 2~1). The incident plane wave
can be expanded, for r 2 a:
] o« K3 t
.-} -
p(r,t) =P E (2n+1) (-1)" P_(cos B) 3 (k) e W (2-n

n=0

The time dependence e-lwt will be suppressed in the equations to follow.

The scattered pressure is given by

PR - (1) -
P (r) = P Z ¢ h ) (kr) P _(cos ) . (2-2)

n=0

-3-
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FiG. 2-1  Scattering geometry.




Here,

g e s v WIS

A
- Pn(cos 6) are the Legendre polynomials; ﬂ

. (1)
3 Jn(kr) ’ nn(kr) ’ hn

the first, second and third kind;

(kr) are the spherica. Bessel functions of

Po is an arbitrary constant, or could represent Po(w), the

frequency content of the incident pulse;

k =2n1/) = w/ca, the wave number; and

3 c_ is the coefficient which is to be found.

Note that p satisfies the radiation condition, since asymptotically

hél)(kr) e-lwt -+ (—i)n+1 (1/kr) ei(kr"wt) + 0 as r * © and is outward traveling.

->
Following Faran, it can be argued that the displacement u inside

the target can be written

U= -+ Vxa , (2-3)
. ->
; where Y, A are of the form
. <0
Y = 2 an'jn(klr) Pn(cos 0) (2-4)
=0
} - © a
A= ¢ A¢ = ¢ 2 bn jn(kzr) "d—e Pn(COS 0 . (2-5)
n=0

with unknowns a and bn' The latter two equation are the results of sym-
metry arguments. These expressions are now evaluated at the boundary;

r = a, and related via the boundary conditions, such as to permit solution

for the unknown coefficients an, bn’ and cn’

The boundary conditions are continuity of normal stress, normal

-5
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displacement and tangent shear stress. Or, in order, in spherical coordi-

nates at r = a:

i s > du
-(P +p)=MV°u) +2u—3—£ ;

(The last of these is trivially satisfied due to axial symmetry.) See
Appendix 8.1 for the relationships between the Lame coefficients A, u and
other elastic constants and for the relationships between pressure and dis-

placement. The equation of motion in the solid is (see [1] for discussion)

> > >
py u= (A+2y) VW(Vew) - uVxVxu , (2-9)

> > i
so that (V+u) and (Vxu) inside as well as p = p1 + ps outside satisfy

, €., and c_.

their respective wave equations with Yelocities ¢ 5 3

The equations (2-6) through (2-8) must be satisfied for each mode
n. We thus obtain the following set of three equations (in the same order)
for each value of n, by direct substitution of (2-1) through (2-3) in the

boundary condition equations:

n n
M11 an + M12 n
n n
My %t My

n

M31 an +
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where M?l = Q;(n2-+n) - xi) jn(xl) - 20 X, j;(xl) (2-11)
My, = (o +5) a(xz 3%,) - 3 xz))
. M23 =B D° a2 hil)(x)
My, = % %y 3a (%)
Mgz B (n +n) X3 (xz)
M23 --p a° hél)‘(x)
Mgl =% 3 (xl) ] (xl) ;
Mgz = (“ *n-1- x2/2) Jn(xz) ) Jﬁ(xz) E
M:3 =0 |
v? =-B Do(2n+1)(-i)n a2 jn(x) %
vh =D, (2n+D) ()" a® 5
' vg c o |
and where 5
|

x = ka = wa/c3 ’

1 = kja = waley

»
[}
»
o
"

x. =k_,a= wa/c2

It was useful in the above to note that the Bessel functions jn' n . and

* hn all satisfy




Sttt i ST ~ p

M“

x2 £ ) = (nPen-x%) £ 0 - 2% £ (0 (2-12)
n n n

i ] The following constants were defined in conformance with [1]

a 2
§ g - P4¢3
E - 2
f P15
2c§
o=~ (2-13)
€1
p
p =~ —2
° [of
P3C3

We can now solve for the coefficients an, bn, cn by inverting the matrix

n
M . This must be done for all modes n.

By trial and error it is found that the number of modes n = NMAX Q

required to achieve convergence is about NMAX = 2+ 8/ka for low values of

ka and about NMAX = ka+ 15 for ka greater than 5. The applications con-
sidered in the following pages required ka up to 40 and NMAX up to 55.
The evaluatic-. of Bessel functions for such high order and argument is

non~-trivial. 1In these calculations Univac subroutines were used, which

were based on the work by Goldstein and Thaler [4]. These utilize forward
recurrence for nn and backward recurrence for jn' There are still diffi-

culties with these evaluations which occur when n is large but the argument

e Pt

xy is small. Overflows in the computation of nn then limit the calcula-~-

tions to lower values of n and x. This situation arises when cl/c3 is

very large. For the materials considered here (brass and aluminum), it

was found that the calculations could be made for ka up to 60. Since the

i
'
i




effect of parameter changes was also considered, the calculations of fre-
- quency responses were generally limited to ka = 40. Further, the solution

; was found at about 200 or 500 equally spaced points on the frequency scale.

The normalized far scattered field can be found from a simplifi-

cation of (2-2), namely

r ;o (r)
o =P H(w ,
a (e}
oo .. n+l
H(w,8) = Z 1) P_(cos 8) . (2-14)
k
n=0
(1)

This is obtained from the asymptotic form of hn which is

L n+l
h(l)(kr) hd 1:31——~ elkr as kKr =+ ®
n kx

. ikr | . . . :
3 (Note that dropping the factor e in (2-14) is equivalent, in the time
“ domain, to referencing the far field time origin to the space origin or
sphere center. That is, a pulse scattered from the origin arrives in the

far field at time t = 0.)

The magnitude of the frequency response, IH(w)I, in the back-
; scatter direction (6 = 0) is plotted in Figures 2-2 through 2-6. Some of
i these results were essentially previously obtained by Hickling [5]. (When
making comparisons, see the note on "Scaling” Section 3.8 in [1].) Responses
E : for sound-hard, aluminum, and brass spheres are given in Figure 2.2. 1In
Figures 2-3 through 2-6 the responses of aluminum are given and compared
with their modifications due to parameter changes. This will be discussed

further in the next section. It is seen that a dominant feature of the

Y
-

2 elastic responses is the regular occurrence of deep nulls which is absent

in the hard target and fluid target approximations. The spacing of the

A
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Frequency response of sphere: (a) hard, (b) aluminum, and (c) brass.
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FIG.2-5 Frequency response of aluminum sphere with (a) p = 2.7 and (b) p = 1.5.
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1 and c2, whereas the density affects

mainly the amplitude of the response. The fluid response differs from

nulls is affected by the veiocities c

the hard approximation mainly by amplitude at lower frequencies; although

at higher frequencies a complex structure develops.

These features are difficult to explain in the frequency domain.
After all, these pictures contain only half the available information,

the phase of H(w) is as important (or more so) as the magnitude.

It is to be noted, that the aluminum and brass sphere responses

have been well verified by measurement [1].

2.2 SMOOTHED IMPULSE RESPONSE FOR SPHERE

It is instructive to study the sphere response in the time
domain. To do this, a band and time limited pulse is chosen, the "smoothed
impulse":

a -(at"?

e(t') = e . (2-15)

3 ls

This pulse has been normalized to give unit time integral with the normalized

time t' = ¢ t3/a and has a frequency domain representation

-(ka/2an)2
E(ka) = e (2-16)

(Refer to [6] appendix for a discussion on normalization.) 1In equation
(2-14), Po is replaced by E(ka): the product is then transformed to the

time domain, resulting in the far field, normalized, "smoothed impulse

>
- response", zk)ps (r,t')/a. The larger a . the sharper the smoothed impulse,

but the higher the range of w for which the resp;nse must be computed. A

practical value here (consistent with the considerations of Section 2.1)

is a = 8, which requires the computation of H(ka) up to ka = 40.




2.3 EFFECT OF TARGET PARAMETERS ON SPHERE RESPONSE

The time domain responses corresponding to the cases already
given in the frequency domain, are plotted in Figures 2-7 through 2-11.

The time axes are in units of c3t/a.

Consider the hard sphere response of Figure 2~7a. The initial

part is the specular return, an impulse at time t = -2. This is immediately

followed by a negative step, a ramp, etc. decaying to zero. This is due
to radiation from the region immediately surrounding the specular point
(see Section 3.2). Then, centered at a time t = T, is the creep response.
Note that the time of occurrence is just that of a pulse impinging on the
target at z = 0, traveling at the speed of the medium c¢_ around the back-

3
side of the sphere ana reradiating tangentially at z = O.

It is seen immediately that the hard target cannot be an ade-
quate model for scattering of wideband radiation from an elastic target:
there is a small change in the specular response amplitude and backswing.
But mainly, there have appeared large pulses at times O through 2. (One
can verify readily that interference between these pulses and the specular
impulse causes the resonant structure of the fregquency response.) Signi-
ficantly, these pulses are also absent from the fluid model response (Fig.
2-11). The time of occurrence of these pulses is strongly affected by the
shear velocity c2 (Figure 2-9) but only slightly by the compression
velocity < (Figure 2-8): we thus identify these features as due mainly
to internal propagation of shear waves. Also present, and particularly
noticeable in the fluid model are smaller pulses with arrival times propor-
tional to compression velocity. These features can be associated with

inter 1 compression waves.

Aiding this discussion, Figure 2-12 illustrates the time
references for various reflection paths. Suppose the distances a. a2.

a, are travelled by a plane wave at velocities Cyr Cyr G4 respectively

-16-
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FIG. 2-7
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Smoothed impulse response of aluminum sphere: (a} hard, (b) aluminum,

and (c) brass.
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(b} ALUMINUM
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FIG.2-8 Smoothed impulse response of aluminum sphere with (a) cq = 9300,
{b) ¢4 = 6200, and (c) cq = 4130.
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FIG.2-9 Smoothed impulse response of aluminum sphere with (a) cp = 4650, .

(b) c2 = 3100, and (c) c2 = 2065.

-19-




15

Pt (c3t/a)
a
(b} p =15

FIG. 2-10 Smoothed impulse response of aluminum with (a) p = 2.7 and (b) p = 1.5.
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FIG. 2-11 Smoothed impulse response of aluminum sphere, fluid approximation,
for (a) cq = 9300, (b) cq = 6200, and (c) cq = 4130.
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FIG. 2-12 Time reference for scattering from unit sphere.
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(as compared with the specular wave for which the distance is a, = -2).

Then the time of arrival is

a a a
t=—}-+32-+—§ ) (2-17)
‘1 %2 3
In Figure 2-13 responses are plotted versus time scale
= . h
th c2/c1 a; + a, + c2/c3 a3, for several values of c2 If the path were
entirely at speed ¢, then the features would remain at the same value of

2

c2t. This is nearly the case: while <, is changed by a factor of 4, the

time czt at which the "shear wave features" appear is nearly the same.

The slight variation of the arrival time in units of c2t associated with

these features is then due to the fact that the paths of traversal are
in small part at cy and c3. The vertical offset in Figures 2-13 and 2-14

is proportional to c Figure 2-14 is the same as 2-13 but with a higher

value for cl. Only ior large values of c, is there a significant difference
between the curves. These results are sufficient to allow estimating path
lengths through the target at the various velocities for the principal
features of the response. Physical considerations (Snell's law -~ Section
3.1) then can give the likely path associated with these features. 1In
Section 3.3 they will be identified as the principal modes of a glory-wave

effect.

~23-
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SECTION 3
SCATTERING MODEL

It is apparent from both frequency and time domain points of
view that the scattering process, for even such a simple target as a sphere,
is inherently complicated. The aim of this section is to identify the
essential attributes of the responses in order to obtain a reasonable
approximation with a relatively simple model. Such a model is possible
based on the glory-wave effect. This theory, developed originally for the
scattering of light from water droplets, undergoes considerable complica-
tion (due to the existence of two sound speeds in the target) when applied
to the acoustic case. However, the qualitative aspects of the theory,
particularly when viewed in the time domain, are helpful in providing
useful insight into the scattering process; it will be seen that the im-
pulse response consists of a string of impulses which arrive after trav-
eling through the target along the readily identifiable glory paths. On
the other hand, quantitatively (i.e., for the magnitude of the impulse
response) the theory is difficult to apply (see the extensive work of
Rﬁerall etal. [7]. It is suggested that a useful approach is a hybrid
approximate method, using the quantitative considerations of the next two

subsections together with the simple glory-path model.

3.1 REFLECTION AND REFRACTION AT A PLANE ELASTIC BOUNDARY

The following is an exact treatment of the interaction of a
plane compressional wave with a plane fluid-elastic interface, and of the

reverse problem.

-
Let the displacement in a fluid medium be given by Uy and in
->
the solid by uy and 32 corresponding to compressional and shear waves
respectively. Primes are used to denote the part of the wave after reflec-

tion or refraction. Consider the plane interface of Fiqure 3-1. Then we
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FIG. 3-1  Plane wave refraction at plane boundary. :
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have
.-’ + .
o > - 3k3° r - jwt
incident wave u3 = u30 e ’ (3-1)
.-’. > :
> - Jk3 *r - jwt
reflected wave u! = uéo e ' (3~2)
.-’| *> .
> > jkl *r-jwt
refracted wave ui = uio e R {3-3)
-—> —’ 0
> >, ]ké‘ Y - jwt
ué = u20 e . (3-4)

The zero subscript refers to the value at the origin. Assume that the

wave normals are in the x,z plane so that:

X % sin O_ ~ 2 o) x
k3 = (x sin 8, - 2 cos 3) 3
ﬁ' = (i sin 8' + 2 cos 6') k!
3 3 3 3 !
[P R - 5 ]
kl (x sin 91 Z cos 61) kl ,
'RA. -l\ ' -
k2 (x sin 62 Z cos 82) k2 (3-5)

where

ki = w/ci .

Snell's laws for reflection and refraction follow directly from these
definitions, independent of the nature of the boundary conditions (see
Jackson, p. 217 [8]): whatever boundary conditions prevail, the same con-
ditions are satisfied at the point (0,0) as at every other point on the
interface. Hence the variation in phase for (3-1) through (3-4) must be

-28-
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the same for all under translation on the interface. That is:

k! sin 6. = k! sin 6_ = k! sin 68! =k
1 2 3

1 2 3 sin 63 (3-6)

3

(The same argument for phase variation with time can be used to establish

that the frequencies, w, are the same for all waves.) Hence Snell's Law:

. Vs el
sin 63 sin 63

!
sin 8, = — sin © (3-7)
1 c 3
3
c
sin 62 = E; sin 63

Note that for solids we generally have c1 > c2 > c3, so that rays are

refracted away from the normal after entering the solid, as in Figure 3-1.

Alsc note that for some real incident angle, © (the critical angle) , we

3cl

will have sin elc = c./c, sin 6 1. There is no transmission at speed

173 3c1
for 93 > 6 Similarly, at 63c2 such that sin ezc = c2/c sin ©

1 3cl” 3 3¢2 ©

there is no transmission at c2 (nor at cl); so that there is total reflec-

tion for 83 2 93c2. At angles between these two critical angles, there

is transmission only at c

c 1,

57 that is as a shear wave. The boundary condi-
tions can be 'satisfied through the existence of an evanescent wave which

travels along the surface.

We will now derive the relative magnitudes of these waves,
for which it is necessary to know the dynamics or boundary conditions.

These are

(1) continuity of normal stress,
(2) continuity of normal displacement,

(3) continuity of tangent shear stress.
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In Cartesian coordinates these are written [11:

x3[(v “3,)+ (v 33)]

~ > > " >
n-°* [u + u'] =ne°u , (3-8)

Bun 3ux]
I

ou
AVe0) + 2u =2 ,
on

- >
where u = ul + 32 and the elastic constants are
2
X3/93 =c,
2
(A + 2w /p = €1 (3-9)
2
Wwp =c, -

Substituting'equation (3-1) etc. into the boundary conditions, we obtain

respectively

' = L] ] 2 ' :
)\3k3 (u30 + u30) )\klulo + 2u[uloklcos 61 + u20k2 cos 62 sin 62 .
(3-10)

- = 1! ] : -
(u30 u30) cos 93 ujg €oS 61 + u), sin 62 ' (3-11)

2 2
] 3 - [} - 1 = -
2 Yo kl sin 61 cos 61 u20 k2 (cos 62 sin 62) 0. (3-12)

Solving simultaneously we obtain the transmitted amplitude (that is uio,

o) in terms of the incident amplitude Usp° It is convenient

L} L
U0 and u,
to define the quantities




L P11 2
& A =( )((1 - o sin 61) + 0Q sin 61 cos 62) P (3-13)

P3¢
cos 61
] B = (3-14)
cos © c052 6. - sin2 0
’ 3 2 2
2 c. sin 6, cos 6
2 1 1 (3-15)

Q= 2 2
cl(cos 62 - sin 62)

Then the transmission coefficients are found to be

ul
30  A-B (3-16)

The first subscript of R refers to the incident wave, the second to the

reflected or refracted wave.

The above derivation can be performed more generally, as indi-
cated in Figure 3-2, to also permit waves incident from inside the solid.
The results are as follows. For an incident compression wave in the

solid, ulo, the refractions and reflections are

1]
. -0 _B-c+op
11 U, A+B (3-19)

u'
- 20 _ _ 20Cc -
Ry2 ag A+B (3-20)
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u
B!
30 . 2BC (3-21)

Here we have also used the definitions

p.c

Cc = lcl (cos2 92 - s:'m2 62) ’ (3-22)
P3C,
P1%2 .

D= 2 sin ©6_ cos © . (3-23)
p3c3 2 2

For an incident shear wave, u20' the refractions and reflections are

u! 2

10 D
R, = — = \ (3-24)
21 u20 A+B

ul

20 _Q-B-C
R.,.=—= (3-25)
22 u20 A+B

u! 2

_ Y30 _ _ 28D _

R23 N u20 A+B (3-26)

Note that Rl3' R23 represent energy trans

while R12 and R21 represent mode conversions.
For normal incidence, 61 = Q_ = 93 = 0, these expressions sim-
plify to
a-1_ %1 " P

33 = A+l = p]_cl + p?,c3

mitted from solid to fiuid medium,

3
1
i
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Also, it is interesting to investigate the case of critical incidence for

1’ that is 61 = 90°. we then have that R33 = 1, that's total reflection.
As the incident angle increases slightly and 61 becomes imaginary, there

C

is transmission of energy as a shear wave at Cyr while on the surface

there exists an evanescent compression wave at Cy-

In closing, it is noted that the fluid, hard, and soft cases are

included in the analysis by appropriately letting the densities pl' 03

m——n ko

go to zero or «.

3.2 TIME DOMAIN SPECULAR RESPONSE - LOCAL STIE

In the physical optics limit, the impulse response of a target j 1
is given by 1/27 times the second derivative of its projected area func- i 1
tion. This was given by Kennaugh & Cosgriff in 1958 [9] for the electro-
magnetic case and is valid, as will be seen, in the limit, for the acous- P
tic case as well. For example, the projected area of a unit sphere with 3
specular point at the origin (Figure 2-1) for an incident plane wave

traveling in the z-direction is ]

s =mp’ = ‘n(2az-zz). (3-28) <
p

Taking the speed of sound ¢ = 1, we have that z = t/2. The area function

is then %
t2 1
sp(t) = ﬂ(at -~ 1;) ul(t), (3-29) é
and
- 2
as
1 _p_1 -1 -
21 2 =3 8(t) 2 u(t) (3-30)

is the physical optics impulse response. This can be considered to be the
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first two terms of an expansion in singularity functions. An improvement

to this approximation can be obtained by including the effect of surface

interactions.

3.2.1 Sound Hard Convex Specular Point ;

For a sound hard target the far backscattered pressure is given

by
1 3p(r',t')
S(t) = L  .an BRELED L _
r,po(t) = oo j (2, « 8Y) Bogpast (3-31)
s
~ ~> ”~ . . . ,
where t' = t + (ro *r') and r, is the direction of observation. The pres-

sure on the surface can be shown (1] to be

p(;l'tl) = 2 pl(zg'tl) + _l'_ f (ﬁ.ﬁ")(_% + %_a_%) p(;”,t") dS" .

2m
s (3~32)

- -> >
where t" =¢t' - R, R=r - r', and t is in units of sound-meters. It is

easier to consider the step response first. Let the incident plane wave

~ >
be a step traveling in the positive z-direction (i.e., r cr' = =-2'")

Pz ") = u(t' -z') ,
or
pt(z',t) = u(t ~ 2z2') . (3-33)

-
As a first approximation we will consider the surface pressure, p(r",t"),
constant over the illuminated region (and zero outside). Then 9dp/3t'" = O,

except at the boundary of the illuminated region where




hidhs

.EP_ (-;u' t") = p(;'nl tll) 6(t" - zn) , ]

at"
i
or

) -> - b
5—5—, (xr", t") =p(x",t") S(t'~2z" - R) . ! 3

i
IS
We want to substitute this in the integral (3-32). To evaluate the inte~ -

gral we use the fact that for a circular patch AS of radius Y

~ — Y -
_ 1 w (Refi™) _ K X -
e-zﬂf ds R2 —2‘/‘dR-2 ' (3-34)
AS 0

where K is the average curvature. This approximation applies to smooth
convex surfaces. This was derived in [1] p. 16, but due to a typographical

error, the value of € is given incorrectly in [1]. Here, AS is the ellip-

>
tical patch around r' at time t' which is illuminated at the retarded

times t"” = t'-R. Some reflection reveals that the approximate radius

of AS is given

Y=t - 22'. (3-35)

For the second term in (3-32) involving 9p/dt' we need

. —
-EfRG(t'-z"-R)dR=12—
3_

O
-+
1
N
1
o)
<
i

2n R 2

bs ° (3-36)

This follows since 9p/dt is nonzero at the boundary of the patch AS. The

result of the first order evaluation of (3~32) is thus
-+ i —_ -
p(r',t') = 2 p (2',t') + ¥ K p(r',t") ,

where Y = t - 22'. Solving for p and expanding 1/(1 - yK) this can be

-36-




written

p(;',t‘) =2 pi(z',t') %l + YK + YCEZ T

and making the substitution (3-33)

% p(;',t') = u(t ~22') ‘l + E(t-22') + Ez(t-—2z')2 + ..-: ; (3-37)
%-%% (;',t‘) = §(t - 22" }l + K(t - 22') + ...:
) (3~38)

-

+ u(t - 2z'") E‘l + 2K{t - 22') + ...‘

This expression for the surface pressure can now be used to evaluate the

far-scattered step response.

2T p a cos 6 468 = 27(a~2"') dz', the inte-

Using (fo *n') d4s'

U

gral (3~31) can be rewritten

t/2 { 2 2

r_p(t) = f (a-z') 8(t-22") l1 s R(e-22) + Fe-222 + ol an
o i
£ { — 2 2 | |

+ (a~-z') u(t-22") ?}1 + 2K(t-22') + 3K (t-22")Y" + ...‘ dz’ i
0

(3~39) {
!
Direct evaluation and the substitution aK = ~1, yields for the step 4
response ’
4
r ps=a‘l-2(t/a) + 2 (t/a)? + ' ult) . ?
(o) '2 4 8 ‘ j
Kl

Differentiating and normalizing, the impulse response of the hard sphere

is then




=ttt .k Gk S lhing

r ps(t/a)
h(t/a) = ———— =

§(t/a) - > u(t/a) + > r (t/a) + ... (3-40)
a 4 4 p

N[

The third term (ramp) of this expansion is inaccurate and could be improved
upon by the use of (3-37) and (3-38) in (3-32) as the next approximation;

The main result here is the correction of the step coefficient
The

and so on.
as given by the simpler physical optics theory in equation (3-30).
result of approximating the impulse response by the methods of Section 2,
using a = 12, is plotted in Figure 3-2, superposed on the present results.
The agreement, including the rp term is seen to be excellent.

3.2.2 Fluid Sphere Convex Specular Point

Consider now the case where energy penetrates the target in the
form of compression waves. We then have two integral eguations (see Sec-

tion 4) corresponding to pressure outside, p, and inside, p;:

pX',t) =2p (2',0) + 5= / (R+A") (iz + ié’%) p(z", t") ds"
As R
) >
- ._2.1_1; %.5;_; p(r'.'t") dsl‘
bs
A A -
pEen -k [ Gean (G dogk) @ e
AS R 1
1
1 l a +" [}] 1"
* 35 R 3av p,(r ,tl) ds (3-41)
bs,

where t" = t'-R, tf = t'-R/cl. The patch As has radius Y = t -22' as

before. The interior integral is over the larger patch AS1 with radius
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Yl = clt - 2zi. The above equations are related by the boundary conditions

P =Py
p
k.1 (3-42) =
S A |
Cye pl are the sound speed and density inside relative to outside. The
integrations over the surface patch are similar to that of the previous 4

section and result in

p(F',t") = 2p' + yRp - y B
on
and ¢
(*' t') = - c. YK p + c 3p
Plri,th) == ¢ YeP+YP ¢ 3

where the last equation is obtained from the last of (3-41) and the appli-
cation of the boundary conditions. Again, we use a step function as the

incident field. Solving, we obtain on the surface

4 p.c

+ 171 2
plx',t") =2(——————~) l+€+€ + ...)] ult-22") ,
1 + plcl ( )
1+c,Ky
) DY S S 2 (____1_) 2y
2 (x,en 2(1 " °1°1) (1 + e+ e 4 ...) > u(t -2z") ,

(3’43) 1

where we have defined

py -1

e=(——-—)?c Y.
1+ plc1 1l

The integral equation for far field scattering from an elastic or fluid

ST W

-39-

B agrace

D T L N A ol

L SRR Y, ~ - ] ey




target is

-»> >
s _ 1 a oan Op(x',t') ., _ 1 ap(r',t') ..,
r, P o(e) = oo f (ro n) 5er - 9 T f Snt oS
s s (3-44)

Substituting (3-43) into this, results in terms similar to that for the

hard target step response except for constants. The result is that the

impulse response of a smooth curved specular point for a fluid target is

given by

11

1 \)1 _[B+c _
-(1 " pl°1>{2 S(t/a) [ > ] u(t/a) + } » (3-45)

p.c
h(t/a) = (1—:l—pl'g-> {:2' S(t/a) - [-} + -g] ul(t/a) + }

where

g-11 "%
+

plc1 1

Note that as Py + © (3-45) reduces to the sound-hard case. Also, the :

factor (plcl-1V(olcl-+l), by which the impulse term differs from the

sound-hard (perfectly reflecting) case, is the same as the reflection

{ coefficient found in (3-27) for normal reflection from an elastic plane

T

1 surface.
i

3.2.3 Extensions of These Techniques

Ve TR W

At the next level of complexity it is possible to determine by
The

these analytic methods the response of an elastic specular point.

expressions become very complicated however when shear wave effects are
A direct approach is

included; hence this approach was not pursued here.




the numerical evaluation of the integrals of the preceding section usjing

a very short smoothed impulse incident pressure. The result is the 1eading
edge of the impulse response and requires the numerical integration over
only a small part of the target surrounding the specular point. Further-
more, the technique may be applied to a bistatic configuration and also

to refraction. This approach, known as the local influence theory, is
based on the observation that at a given time only a few identifiable
points are active as scatterers; see Figure 3-3. (The approach has been
used successfully for the electromagnetic case [10].) Attempts to imple-
ment this technique for elastic targets have been, to date, thwarted by

the numerical difficulties further described in Section 4. It is felt
that, once these difficulties are removed, these calculations of scattering
center responses, combined with the glory-wave model to be described, will

yield a fully quantitative but greatly simplified scattering model.

3.3 GLORY-WAVE EFFECTS

The glory phenomenon is the halo surrounding the viewer's own
shadow cast by the sun upon a mist (or a cloud, when observed by airplane).
It is caused by light entering water droplets and, after multiple internal
reflections, being returned to the observer [11][12]. It is a monostatic
effect as distinguished from the rainbow effect which, although also
involving internal reflections, is bistatic, resulting from local maxima
in scattering intensity at certain bistatic angles. The phenomena involve

surface (creep) waves as well as Snell's law reflection and refraction.

The nomenclature is here applied to the acoustic case. (Since
the refractive index for most acoustical situations will be greater than
1 while for the optical case it is generally less than 1, there are some
qualitative differences between the two cases.) A semiquantitative under-

standing of the phenomenon can be obtained using ray-optics theory.

Consider the glory path as illustrated in Figure 3-4 for a
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FIG.3-4  Glory paths for sphere.
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£ r A "

sphere. At each change in direction Snell's law is obeyed

sin 6 sin © sin ©
c - - c 2 - c : (3-46)
1 2 3

where cl, cz. c3 are the compression, shear, and external velocities
respectively. Each chord of the path is thus the base of an isosceles
triangle. The requirement is that after k traverses around the sphere
the rays return to the source. Let m;, and m, be the number of chords at

<y and <, respectively. Then

263 + ml(ﬂ - 261) + mz(n - 262) = 27Tk (3-47)

With the constraints (3-46), this equation has at most one solution 63

for each set (ml, mz. k).

The extra time required to traverse this path compared to direct

reflection from the center of the sphere is

™ ™
tm nk = 2al — cos 91 + —= cos 62 - cos 63 ' (3-48)
1™2 €1 )

where a is the sphere radius.

The cases m, or m, + © are identified as creep waves along the

(inner) surface of the sphere, which are launched when 63 is at one of
the critical angles. By this model, then, the impulse response of an

elastic sphere is a sequence of pulses occurring at the times tm m k"
’ ’

The magnitudes and shapes of these pulses depend upon the detailéd 2

interaction of the local wavefront with the boundary at each of the re-

flection points.

e




3.4 GLORY MODEL EVALUATION

Consider first the fluid sphere response (that is, considering

only compression waves). Fiqure 3.5 illustrates two cases, comparing the

smoothed impulse response with the impulses predicted by the glory wave
All possible

model. It is seen that the agreement is virtually perfect.

glory paths are observed with decreasing amplitude in proportion to the

number of reflections.

In Figures 3.6 and 3.7 the model is compared with the elastic

target response. First, note that the pure compression modes as observed

for the fluid target are still observed (for the sake of clarity not all
of them are indicated), though these effects are overwhelmed by the shear
The agreement between the glory modes and the main features of
It is significant that the change in

effects.

the response is only approximate.

times of occurrence with changing c, and €1 agree.

It is seen from the figures that the dominant modes are those

=2, or m, = (creep). There is little time difference

2

withm,6 =1, m2
(2,1) and («,l1) or between (1,2) and (~,2), where

2
between (ml. m2)
m, = © means that the path at speed 1

1
quantitative theory is required to determine the relative contributions

is an internal creep path. A more

from those modes. These principal modes are illustrated in Figure 3-8.

3.5 SIMPLE MODEL

It is apparent that pure compressional modes can be neglected

in a simple scattering model for elastic solids. We will base our model

on the paths a, b, ¢, 4 of Figure 3-8. For path (a), the specular

response, the return occurs at time

RV
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FIG.3-5 Glory wave model — fluid sphere response.
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FIG.3-6  Glory wave model — aluminum and variations.
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Principal scattering modes involving shear waves.
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For paths (b) and (c) we are at the critical angle for cy- That is

_ o I § _o.o-1
61 = 907 and 63c1 = sin (c3/c1) and 62 = sin (c2/c1). The creep path

length travelled at c, 1s just sufficient to satisfy the requirement that

1

the ray return to the source. (Actually, the creep wave at c, is continually

1

radiating so that all orientations of the path at c, occur. Also, at other

observation angles, the same model can be expected to apply with a different

spans in case (b): o, = 62 + (/2 - 63c )

arc length at cl.) The arc at c 1 1

1
and in case .c): Bl = 262 - 83c1'

The return times are thus

PQ cos 9 cos ©
£, = 2a E’l’ + 2 3}, (3-50)
L 1 €2 C3
—B 2 cos 8 cos 9
£ = 2a E'l“ + — 2 ~ el | (3-51)
1 2 3
L
~1
Path (d) has the critical angle associated with cy 63C2 = sin (c3/c2).
and half arc length Y2 = (7 - 93C2). Hence the return time is
cos O
t, = 2a Cl-—-——?‘—??- ) (3-52)
2 3

A computer program was written to implement this model. The
response for each mode is assumed to be of the form illustrated in
Figure 3-9, namely impulse, step, ramp, and backswing (P, S, R, and E)

such that the total area (DC response) is zero.
r(t) =E P, d(t-tk) *+ s, u(t—tk) + Rk(t-tk)[u(t—tk) - u(t-tk+At)]
k

(3-53)

+E u(t:-t:k + At)
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At this stage P, S, and E are inputs to the program; with At = -2P/(E+ S),

R = (E-8)/0t. It is expected that development of the methods in Sections
3-1 and 3-2 will yield theoretical values. The times of occurrence of
these pulses are computed from the relations (3-49) to (3-52). It is seen
in Figure 3-10 for aluminum that a simple representation for the impulse
response can be found in this way. In the frequency domain (Figure 3-11),
the model and actual response (as computed by Section 2 methods) agree

in the main features. Brass is illustrated in Figures 3-12 and 3-13.
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SECTION 4
SPACE-TIME INTEGRAL EQUATION APPROACH (SOLID TARGETS)

A major advantage of an integral equation formulation of the
scattering problem is that it yields exact responses for targets of arbi-
trary three dimensional shape. The integral equation technique (STIE)
used at the Sperry Research Center operates in the time domain, solving
the problem by stepping in time rather than by matrix inversion. Using

1 the excitation described in Section 2.2, the result is a smoothed impulse
{ response. Such a time domain response is highly suggestive of target §

shape. If desired, the response can be deconvolved with the incident

pulse and transformed to the frequency domain to obtain a frequency

response. The latter is valid for values of ka from zero to an upper
limit determined by the frequency content of the excitation pulse. The
latter is limited primarily by computation time. To date most experience .
with this type of solution has been with electromagnetic scattering and

with acoustic scattering from sound hard and sound soft targets [6, 13, 14].

It has been found that practical values on the upper frequency limit are

ka = 6 to 12.

ti To date the STIE approach has been applied with complete success
5 to impenetrable targets such as conducting solids and thin surfaces in the
electromagnetic case and to sound hard and sound soft targets in the
acoustic case. Results have been published [6, 13, 14] for three dimen-

sional targets of varying complexity. ;

In the present effort, this technique is extended to penetrable
targets. The approach is reported in detail in reference 1, and will here
be cutlined in a somewhat more convenient form. At time of writing, tar-
gets penetrated only by compression waves are treated successfully, whereas
numerical difficulties plague the solution when shear waves are added.

We will first concentrate on the fluid target solution and present

B S VT
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computational results.

4.1 FLUID TARGET FORMULATION

In an ideal fluid the excess pressure satisfies the wave equa-

tion
. 2 2
=c. Vip , (4-1)
3
where c3 is the speed of sound. The pressure is related to particle dis-
-
placement u by
U = -p, u (4-2)

where p3 is the density (see [1], Section 2.1).

4.1.1 Derivation of Integral Equation
Consider a closed surface S in the medium with pressure sources,

pl, originating outside of S. Using the Green's function
> > 1
Glr|r',tj0) = 3 6(r - R/, - t)

-+ -> -+
where R = r -~ r', a solution to the wave equation can be developed, known

as the Kirchhoff integral representation:

N _*' ~
plz,t) = pr(r.t) -21; L3 (ar 20 @R L pG-,T)'as- (4-3)
s R o {

where the integral is over the surface

A' is the unit normal out of the surface

. + > -+
R is the magnitude of R =r - r'
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s ahinate R WP

->
is the unit direction of R
i

0>

L
2

1l 3
+——-_
R Rc3 o1

~
"

t - R/c3

-
The above is wvalid for r outside of S. 3
4

Let the inside of S be source-free and filled with a fluid with

properties cl, 01; then (maintaining the same direction for n)

i

op
> l 1 1 +| - Ay . Lo ")' '
pl(r,t) = — f {R Py (r 'Tl) (n R) L1 pl(r .Tl)} as

4n
s
(4~4) 3
N 1
for r inside S, where %
L '—‘.—.l_.'.—l_i
1
R2 Rc1 Brl
T, =t R/c1
and p, . Bpl/an are the values just on the inside of the surface.
That is, the pressure can be calculated everywhere if the values i
of p and Jdp/dn are known on S. In particular, in the far field as 4
R > r > ©, the scattered part of the field is given by
r pS(r,t) = = -§P-(;'T)+(ﬁ'-9)—ag—(?'1) ds'
pint =% an ! c33T !
(4-5)

To evaluate this expression, it is first required to solve (4-3) and (4-4)

on S. A limiting procedure must be applied to make these valid on the

~ ~ . . .
surface since the term (n+*R) Lpin the integral becomes singular as r' - r.

This singularity is removed in the following way: consider the sinqular

term separately and define the integral written as‘f ds' to have its
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singular term removed. (Usually this is written as 'f ds'.) Now require
that (4-3), the "outside equation" results in p(;) = 0 for ; inside S.

This requirement remains to be justified. Comparing the results of eval-
uvating (4-3) for ; just inside and just outside of S, we see that the non-
singular parts of the equation INS give the same value at these two points,

but that the singular portion changes sign (due to £ *f). That is, we

have

s

outside: p=p + 1 -I

(4-6)
inside: O=p=p +1I + I

34

Combining these, we obtain p = 2pl + 21 The singular point has been

NS©
-
removed and we have introduced a factor of 2. We thus obtain for r on the

(outside layer of the) surface S:

-»> _ l > —1— l—aE‘ --)' _ Ay ~ -»> .
p(r,t) = 2p (r,t) - o7 L {R an" (r',T1) (n R) L p(r,T)} das

(4-7)

This equation contains two unknowns p and 9p/dn so that another relation

is needed to solve. 1In the case of an impenetrable target the requirement
p = 0 inside is exactly physically true so that p and 9p/dn in (4-7) repre-
sent actual physical quantities. The additional boundary condition

3p/9n = 0 for sound-hard or p = 0 for sound-soft then permits solution of

(4-7).

In the case of the fluid target we apply an analogous argument,
-> -
requiring inside equation (4-5) to yield p(r) = 0 for r outside, resulting

in

op
2+ 1 !‘.—l "U - A.A
pl(t,t) = on f {R I (r 'Tl) (n'* R) L1 pl(;',rl)}ds'
s (4-8)
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We now have two integral equations in 4 unknowns. S is a surface of dis-
continuity with two sides. The two sides of S are related by the boundary
conditions. Imposition of the boundary conditions justifies the above

p = O requirement and alsoc permits the system (4-7}), (4-~8) to be solved.

These conditions are

- -~
pl(r,t) = p(r,t)
; on S (4-9)
op
1 Ty =22 3
plan (r,t) = 0331‘1 (r,t)

corresponding to continuity of pressure and normal displacement.

4.1.2 Numerical Implementation

To solve these equations numerically, the surface is divided
into patches Ask and p, 9p/ot, Op/on are assumed to be constant in value

>
over a patch. Time is also quantized. That is, for (4-7) at r;:

> = 2047 -1 L 2p (7 - (A -8R z
p(ri'tj =% (ri'tj) 27 Z {R.k an (rk’Tijk) (B * Rige ) Zix p(rk'Tijk)}ASk
kei ¢t
-y B3 -1
Y, o (ri.tj) e p(ri.tj) (4-10)
= - 3 " - "
where Tijk tj Rik/c3' In the above, the integral over the "“self-patch

which contains x, (i.e., for k = i), has been performed analytically.

1 as' _ i .
2% R i P (4-11)
As,
1
=y (A* * R) —}--4»-}—-i p(;' T) dS'=-Y—i—K pZ €e.p
27 2 Rc 9T ' 2 =¥ %y
As R

i (4-12)

P




e e s

-
where Ei is the average curvature of the patch at ri. The derivation of

(4-11) 1is straightforward, by approximating the patch by a circle with

-+ A . 1
radius Yi. For (4-12) it is necessary to expand R and n in curvilinear

coordinates (see Appendix in reference 13).

Writing I and I1 for these sums (the "non~self

integrals") and applying the boundary conditions, we obtain the system

A similar numerical expres-~

sion is written for (4-8).

Thd

(1 - ei) p(;i,tj) +y, —g& (;i'tj) = 2pl( ri,tj) - I(;i,tj)

2+ ;) p(;i'tj) R %%ﬁ (;i'tj) = Il<;i'tj) (4-13)

>
This can solved simultaneously for p, 9dp/dn for time tj at each r, on S.
Note that the non-self integrals can be evaluated at time tj since the

arguments T are earlier than tj. Hence (4~13) can be solved for all time

by stepping in time.

The stepping in time procedure is valid so long as the distance

AR to the nearest patch is greater than clAt (ox c3At, whichever is greater)

for At = time step. It may be desirable to use smaller patches in regions

of rapid change, for which AR is smaller than the above limit. For these
cases a local iterative procedure is used involving only these nearby

patches: first the contributions from all the non-near (properly retarded)

patches are calculated to each patch.
mine the near-patch contributions by simple linear interpolation between

These values are then used to deter-

the new values and those at the previous time point. Then, one more
iteration of this process is sufficient to assure convergence. This pro-

cedure, involving only the nearby patches is quick and does not add much

time to the overall solution.

Typical values for a target dimension is a = 1 (representing,
for instance, cylinder radius) and for the pulse length parameter a = 1

{see equation 2-15). Then, for time expressed in sound-meters (c3 = 1),
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a time step of At = .2 (or even .3) is adequate to obtain good results in
the case of sound-hard or soft targets. Since the pulsewidth measured
between 2% points is about W = 4/an = 4, this represents about 20 time
steps per pulsewidth. The typical patch separation then is somewhat
larger than 0.2. For the fluid case, the time step must be reduced by
about the ratio c3/cl. It was found that At = .075 was sufficiently fine.

In the integral (4~10) it is necessary to interpolate in the
table of previously computed values of p to obtain p and dp/dt at time T.
One way to do this is by fitting a fourth-order polynomial to the five
values surrounding T. This worked very successfully and accurately for
the sound~hard case. However, numerical inaccuracies tend to develop
toward the end of the response in time which may be amplified by high
order polynomial fitting, resulting in a rapidly growing instability.
This effect was particularly noticeable for the sound-soft case. This
problem can be eliminated by linearly smoothing the five points and then
fitting a simple guadratic to the inner three points. This method causes
a small loss in accuracy and hence requires the use of a somewhat smaller

At (say .1 for sound soft, or .05 for fluid with cl/c3 = 4).

4.1.3 Responses of Right Circular Cylinders

Responses were computed by these methods for a fluid right cir-
cular cylinder with the properties of aluminum and brass but neglecting

the shear velocity:

1 )
"Fluid a1" 2.70 g/cm3 6200 m/s
"Fluid Brass" 8.39 4400
Medium (Water) 1.00 1480

the incident pulse was an = 1. Results are plotted in Figures 4-~1 through

4-3, The cylinder has length/radius ratio L/a = 6/1. Time is in units of
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FIG.4-2  STIE response for fluid brass right circutar cylinder.
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c3t/a. Consider the 0° aspect; the initial part of the response is from
the flat end of the cylinder and looks somewhat like the derivative of
the incident pulse, centered on t = -6. The small peak at about t = -4
can be interpreted as interation with the edge. This part of the response
is similar in shape to the response of a hard cylinder (see [13] or [1])
except for a reduction in amplitude. The small peak at t = -4 is also
somewhat earlier, indicating that edge effects occur at both ¢y and c3.
The next major part of the return is the creep return at t = 6 to 8. This
has been changed in shape and moved slightly earlier ir comparison with
the hard cylinder response. In between these two extreme times, the hard
cylinder has a near-zero response, whereas the fluid target exhibits
ringing. The latter must be interpreted as the result of internal reflec~

tions (end to end) of compression waves at c,. As the aspect angle changes

1
the two parts of the response move closer together.

A similar set of responses is given for brass in Figure 4-2.
Also given, in Figure 4-3, is a comparison for each of these targets at

the 0° and 4° aspects. The difference is extremely small.

4.2 ELASTIC TARGET FORMULATION

A complete elastic target formulation must also include the
effect of internal shear waves. As seen in Section 2, these can be the
dominant effects. This formulation is treated in detail in [1] and will
only be cursorily treated here. Instead of pressure it is easier to deal

with the divergence of displacement. The two quantities are proportional:
20 (Veu 4-14
Pl - cl pl u) (4- )

The equation of motion inside the solid is

o0
>
u

=ciV(V'-\;)-c§VxVx-\;, (4-15)
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from which it may be found (by taking the Vx and V+ of the above) that

-> >
both (V+u) and (Vxu) separately satisfy wave equations:

(Vxt)= 2 Pxd (4-16)

->
In addition to equations (4-7) and (4-8), with Py replaced by (V-*u), we

have a vector Kirchhoff integral:

u(r L E QUG A' - R Vxu')p as' (4-17
qu(r,t)—ﬁf = o7 (Vxu) - ('R L, (Vxu')} ds' (4-17)
S

-
for r on S. Here, the equation has already been specialized to the boun-

dary S.

Another form for this equation, which may be useful in practice is

2T

Uxu = - = f {% (ﬁ'xVxVx-I:') +L2 ((ﬁ' 'Vx;')f( + (ﬁ'xVx-\;‘) xﬁ)} das’

s
(4-18)

This form is obtained from (4-17) by vector manipulations and the use of
the divergence theorem. (See Jackson [8], pp. 283.) It may be useful to
observe that another equation can be written, namely for the (VxVxI;) .
The quantities (V x G), and (V x V x 3) now play somewhat similar roles to

> >
E and H of electromagnetics, so that techniques found useful there are

possibly applicable here.

The boundary conditions are the two stated in Section 4.1, con-

tinuity of normal stress and normal displacement, although the first looks
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somewhat more complicated for elastic solids (see [1]). An additional
boundary condition on the shear states that the tangential shear stress
is continuous across S. Since this quantity is zero in the fluid, it is
zero at the solid side of S. The boundary conditions may be written (see
(1] for derivation; here the form in which these relations are written is

more precise):

Jdu
_ 2 _ 2 g 2 _n _

-p = pl(cl 2c2) (Veu) + 2 P15 TBn (4-19)

) L R Sl L S (4-20)
p38n 1 4dn 2 n n

- 9 ~ >
0= (Vxu - 2 — (nxu) (4-21)
tan on

where n is the outward normal direction. The set of 2 scalar and one vec-
tor STIE's plus the two scalar and one vector boundary egquations can be
solved for the unknowns p, V ';, V:cﬁ and their normal derivatives. How-
ever it requires the formation, numerically, of certain space-derivatives
on the surface of S, and the numerical solution of the equation of motion
{4-15) [1]. The need for differentiation on a curved surface results in
numerical instabilities in the solution, which have to date not been solved.
Only the initial portion of the response from the region around the specu-

lar point can be computed successfully.

Figure 4-4 illustrates the status of the space-time integral
equation calculation. Plotted is the surface pressure as a function of
time p(c3t/a) for the smooth impulse incidence at several points on the
surface. The pressure as predicted by the classical solution of Section 2
is plotted in part (a); the current status of the integral equation solu-
tion in part (b). The shape of p more or less follows that of the incident

pulse with significant deviations. 1In particular, at the backside

(6 = 180°) there is a bump a little before t = 0 which represents

prr g f—-i
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transmission through the target at the shear velocity, Cye It is seen that
the initial part of the STIE calculation is correct; in particular the

bump at 6 = 180° is computed correctly. The latter is the respect in which
elastic targets are distinguished from hard or fluid targets. Unfortunately,
inaccuracies which rapidly develop into an instability start near 6 = as°,
These inaccuracies have been identified as numerical differentiation prob-
lems; particularly since the quantity differentiated, 3, becomes large as
time goes on, although the derivatives to be found remain relatively small.
This problem has not yet been circumvented. The solution must lie in a
formulation which avoids space-differentiation of the displacement G. The

far field computed from these surface values is shown in Figure 4-5, with

the classical result shown dashed.

4.3 THIN SHELL SPACE-TIME INTEGRAL EQUATION FORMULATION

A direct approach to solving the problem of scattering from an
elastic shell with fluid interior and exterior is to formulate integral
equations over both boundaries and applying boundary conditions on each.
This two-boundary approach is taken in the classical solution of the next
section. A computationally simpler approach is to attempt to find the
limiting boundary condition between inside and outside media, and avoiding

the need for solving any equations in the shell itself.

Consider the sphere of Figure 4-6 with outer and inner radii

a and b. The boundary conditions can be written as

Ju 2
o 2,2 L*a 2(__:_)
p = pl(c1 2c1) (Veu) + 2 p1 c2 e
(4-22)
b

du
_ 2 _, 2 . b 2 r
Py T °1(°1 2"'2) (Vew™+ 20, < (Br )

and

ey
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**a _ % _ 23 Jra 2 > a
u o= p33r = ¢ 37 (V*u) c, (Vxqu)r .
(4-23)
op
**b _ 4 23 o.*b _ 2 +b
Yy T p48r =% 3r (Vou) €, (Vxqu)r !

where the superscripts a and b refer to the outer and inner surfaces. If
->
we write (Vxqu)n and the boundary condition (4-21) in spherical coor-

dinates, we obtain

>a_,08 g.nma_, 83013 2] _
@xTx =222 (VD) 23r[r2 2 (rur)] (4-24)

We use this to rewrite (4-23):

*ea _ % _(2_,2\3 . >a 23 [ar s (2 °
U T par_(cl 2c2)3r (V+ ) +2c2 dr Lzar (ru)

3 r

op - b
“b _ 4 (2 _ 2\ . b 29 [1 3 (2
Yy ’-p43r_(cl 2c2) or (V) 20 ar er dr (r ur)] -

(4-25)

op
The aim is to find relations between p, 5%, p4, Tri by applying a limiting

process so that the problem reduces to essentially the fluid-in-fluid

problem of Section 4.1, but with different boundary conditions.

First, suppose the shell thickness, h, sufficiently thin so that

we can use a first order Taylor expansion; for example
> > >
(V'u)a=(V’u)b+h3—ar'(V'u) . (4-26)

We will then rewrite the boundary conditions
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- 2 _ L, 2 (v.d 2 _«x -
P plh(cl 2c2) 3t (Vou) + 2 plh <, ar2 (4-27)

p 2 2
—4 % (2.2 Nt 2 9 [ (2 )
03 _por h(cl 2°2) 7 (V*w + 2hc 5 5 (r ur) . (4-28)
4r 3 or or r

If both h and p are reduced to zero the problem reduces to the fluid-in-

fluid problem with no shell. As a next level of approximation, let

h =+ 0 and let u: = u:. Then

- 2 2\ 2 g.2 -
p4 -p= plh(cl - 2C2) . (Veu) (4~29)
op
v _ 4 _ _ 3p _ 2 - 2 Ji e _
YT oo T por (cl 2C2) or (Ve . (4-30)
4 3
or
Py =P =0, h u_ - (4-29*)

This represents the equation of motion of a membrane with no internal
restoring forces. We can add restoring forces due to an ambient pressure
difference, Ap, between inside and outside which results in a tension

T = &; (a/2). Then we have

2 "
py-P=p hu -TV u . (4-29")

This is the equation of motion of a membrane under tension and can be

solved in conjunction with the fluid-in-fluid integral equations.

We have simplified more than desired, however, since we wish the
elastic properties of the shell to be included. Returning to equations

(4-23) , we note that we can also write by virtue of the boundary conditions

(1]
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(VxVxu) =-2Vu , (4-31)
r S b e

. . . 2
but it must be realized that the meaning of Vs is dependent on the coor-

dinate system. In spherical coordinates (with axial symmetry) :

9"u du Ju
2y = . r2 - — 6 . 2cos 8 ( aer _ ue) (4-32)
S T r%e° 38 r° sin 6

the above is actually a definition of Vz, obtained from writing out
->
(VxVxu) and applying the boundary condition in spherical coordinates.

We then write (4-23) as

.o 2 9 - 2 2
u =c¢; 37 (Veu) + 2 c, Vs ur (4-33)

-
and use this to eliminate 3/dr (V*u) in equation (4-29). The result is

C2 C2
- 2Ny - 222 2 -
Py - P =(pn) |2 -2 5 ) 2 = v,ou, (4-34)
1 1
op
) BP 4
u_ = - = - (4-25")
r p33r p43r

These equations can be used as the boundary conditions with the system of
two space-time integral equations as written for the fluid case of Section
4.1. It requires the time-integration of U; (which is no problem) and the
numerical differentiation in the surface of u . Unfortunately, as was the
case for the elastic target, the numerical differentiation causes insta-

bilities.

In Fiqure 4.7 is plotted the result of the numerical implementa-

tion of the space-time integral equation solution using the membrane
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FIG.4-7  STIE solution — scattering from spherical membrane.
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As will be seen in the next

while the

boundary condition between similar fluids.

section, this result is not a good model for a thin shell.
general nature of the response is similar, its dominant frequency differs i

by a factor of 2. It is therefore necessary to solve the problem remaining

with implementing boundary condition (4-34). 4

A S S s st o it 2 il
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SECTION 5
SPHERICAL HULLED TARGETS

5.1 CLASSICAL SOLUTION FOR THICK SHELL

The fluid-filled spherical thick shell problem can be solved by
expansion in terms of eigenfunctions in a way completely analogous to the
elastic solid of Section 2.1 [15]. Let the outer and inner radii be a,b;

and let the core have constants c¢ In addition to the incident and

a' Py
scattered pressure expansions, we have a compressional wave in the sphere
core (p4, c4). The eigenfunctions must be bounded at the origin and are
therefore jn(kr) Pn(cos 8) . In the shell, on the other hand, there no
longer is the requirement that the eigenfunction be bounded at the origin.
Or, alternatively we can say that the shell exhibits both inward and out-
ward traveling waves. The shell solution thus contains both jn and n

(or, both h;l) and héz), whichever is more convenient).

. -iwt
Suppressing the time dependence e , we thus have

i~ = N e_

P (r) =P 2 (2n+1) (~i) " j _(kr) P_(cos 6) (5-1)
n=0 rza

S = i c W'Y ikr) P (cos O (5-2)

p o n n n
n=0 r 2 a

4 > = .

p (r) =P_ z £ jn(k4r) P_(cos ) (5-3)
n=0 r <b

Ed d .
V(r) = 2 (an Jn(klr) +a nn(klr)) P_(cos 6) (5~4)

n=0 b<rc<a




. © ap
Aylr) = :E: (bn jn(kzr) + e nn(kzr)) 7%? (5-5)

n=0 b<src<a

Again we have that in the elastic shell

> > > '
u(r) = - W + Vxa b<r<a (5-6)

> > > >
pl u (x) = (A +20) VW(Veu) -~y VxVxu b<r<a (5-7)

and that the total pressure in the external medium is

v

p=p +p° rza (5-8)

The unknowns are an, bn, cn, dn, en' fn for each mode n. The boundary
conditions (2-~6), (2-7) and (2-8) are applied both at r = a and at r = b.
The result is a system of 6 eguations in 6 unknowns analogous to the

system (2-10):

M2 =V , (5~9)

where Zn is written for the vector of unknowns (an, bn' cent fn). The
matrix entries Mz. and the entries Vz for i,j < 3 are exactly those of

{ {2-11). To obtain the other ng, we can avoid a lot of writing by observing
the following: each row is augmented by the coefficients of dn and e
which are the same as the corresponding coefficients of a, and bn except

for the use of n instead of jn' That is:

SR Saa i

. . n . n .
; replace i, by nn in Mil to obtain Mi4 (i =1, ..., 6);
, Y 1 j by n_ in M_ to obtain M- (1i=1 6)
replace 3, by ng 12 i 15 i=1, ..., .

Also, equations 4, 5, and 6 are the same as 1, 2, 3, except that they are
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evaluated at r = b instead of ¥ = a; and also all occurrences of 03, C,q

are replaced by pA, C4r That is:

Xo %y» x2 by v, Yy y2, where
y = k4b = wb/c4
Y, = klb = wb/c1 (5~10)
= b =
y2 k2 wb/02
in
n . n
Mlj to obtain M4j ' }
n n 3
.t btain M_. :
sz o obtain 55 , i
n . n .
M. . to obtain M . (all for 3 = 1, 2, 4, 5.
33 6]
n , n . 2
Furthexr, M, =0 for i =1, 2, 3; M., = O for 1 = 4, 5, 6; 1
i6 13 ;.
n 2 ;
M46 84 DO Jn(y) '
no_ _ 2 .,
M56 = DO b Jn(y) ’
n
M66 =0 ,
n ,
Vi =0, 1i=4, 5, 6, (5-11)
where
2
c
B = ALY i
4 P c2 * ]
171 4

replace Bessel function arguments

B e

(i e e e -
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For example,

M:S = (nz.,n) a(y2 n' (yz) - n (yz)) .

A number of degenerate cases can be obtained from these equations by let-
ting the appropriate p or ¢ go to ® or 0, and thereby eliminating one or

more unknowns and equations.

{ i

Degenerate .
Condition ' Shell ! __core ! Equations (i) i_Unknowns_(d)
= Elastic Fluid ' 1:2131415:6 11213l4r516
| !
R ! Elastic | Hard . 1,2,3,5,6 ' 1,2,3,4,5
Py = o] Elastic . Soft 1,2,3,4,6 - 1,2,3,4,5
b=20 { Elastic No 1,2,3 1,2,3
c, =0  Fluid ~ Fluid 1,2,4,5 1,3,4,6
|
c,=0, p, > Fluid  Hard 1,2,5 1,3,4
c2=0, D4=O Fluid i Soft 1,2,4 1,3,4
c,=0, b=0 | Fluid No 1,2 1,3
f
Py ' Hard No 2 3
p, > 0 . Soft . No 1 3

-
L.

It is simplest to solve this set of equations by Gauss elimina-
tion and back substitution. Care must be taken, however, since the

20 to 10-20. Successful

(complex) entries in M" vary in magnitude from 10
solution is achieved by normalizing M both by rows and by columns before
applying the elimination procedure. The same considerations hold here as

discussed in Section 2.1 with regard to the order of the Bessel functions.
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Here the problem is somewhat more severe because of the larger range of
Bessel function arguments. In the examples to follow, responses will be
computed to ka = 20 and smoothed impulse responses will be computed for

pulsewidth parameter a = 4.

5.2 THIN SHELL LIMIT

The solution for the thin shell can be obtained nicely from the
above without further modification. As the thickness h = a-b becomes

small, greater accuracy can be obtained by noting that

n n 9 _.n
L= .+ h — . i =1, 2, 4, 5) .
Ml] M4] 3r M4j (3 ' ’ . 5)
Row 4 can then be substracted from row 1. The same can be done with rows
2 and 3. As h + 0, some elements of M can be replaced by zero. However,
this is not a great simplification since no unknowns are eliminated. 1In

the calculations that follow, the unmodified thick shell computer program

was used for the thin shell as well.

5.3 SHELL RESPONSES AS FUNCTIONS OF ELASTIC PARAMETERS

The sequence of plots in Figure 5-1 through 5-3 gives the mag-
nitude of the frequency response of the spherical aluminum shell with
parameter thickness. The thickness, h/a decreases from 1 to .00l through
the sequence. The sequence 5-4 through 5-6 gives the same results in the
time domain for smoothed impulse incidence with a = 4. 1t is seen that
the thick shell has a more complex response than the solid. However, as
the shell becomes thin, the response becomes simpler again, reducing in
the limit to a sequence of spikes in the frequency domain. The magnitude

of the response is proportional to h in the thin shell limit.

Whereas the response of a solid is perhaps best understood in

the time domain as a sequence of pulses corresponding to various paths,
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Shell responses as a function of thickness — frequency domain,
thick shell.
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FIG.5-2 Shell responses as a function of thickness — frequency domain,

thin sheil.
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FIG. 53  Shell responses as a function of thickness — frequency domain,
very thin shell.
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FIG. 5-4  Shell responses as a function of thickness — time domain,
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Shell responses as a function of thickness — time domain,
ap = 4, thin shell.
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FIG.5-6 Shell responses as a function of thickness — time domain,

ap = 4, very thin shell.
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the very thin shell response is best understood in the frequency domain
as a resonance with its overtones. The resonant frequency is dependent
on both 1 and c, as illustrated in Figure 5-7, where one of the elastic
parameters of an aluminum shell with h = .00l is changed at a time. If
both pl and h are changed in such a way that the surface density (plh)

remains constant, then the response remains about constant (for the very

thin shell). This is illustrated in Figure 5-8. {

o et

In all of the above examples, the core was water filled. It
is interesting to see the effect of a different core. In Figure 5-9 the '
response of a soft sphere is compared to that of a soft core (that is, a
gas-filled) spherical shell., The difference between the two responses is

the same sequence of resonances already found for the water filled shell. ;

In addition, a large very low frequency resonance is observed. The time
domain response is given in Figure 5-10. A similar result is found if the
core is a heavier fluid. Figure 5-11 illustrates the response of a glycerin
core, which has a density about 1.25 times water. This resembles closely
the response of a fluid sphere, but with the spikes characteristic of the

shell superposed. The very low frequency spike is absent.

It is significant that a thin shell, surrounding a sound-soft
or fluid target has a large effect on the response in the form of sharp

|
i
resonances. !
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FIG.5-7  Responses of very thin shell with variations in elastic parameters, ]
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FIG.5-8 Responses of very thin shell with variations in p and h, keeping
p1h constant.
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FIG.5-9 Comparison of responses of soft sphere and soft core (gas-filled)
spherical shell — frequency domain.
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FIG. 5-10 Comparison of responses of soft sphere and soft core (gas-filled)
spherical shell — time domain.
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7.1 ELASTIC CONSTANTS

SECTION 7
APPENDICES

Collected here are some useful relationships and equations to do

with elastic properties.

Ak

i
n

>
n

/¢

N

NN
[}

Q
[

Lamé Coefficients
Young's, Bulk, Shear Moduli
Poisson Ratio

Longitudinal, Transverse Speeds
Density

3B(l - 0) = 2u(1 + O)

B -2 W3

2 A+ 2y
1l e

]
oix

2(1 - 0)/(1 - 20)

2 2 2 2
= (cl - 2c2)/2(c1 ~ cz)

in a fluid: w =0, 0=}, c, = 0

-
u displacement

Equation of motion:

2

-
u =20
1

TV - cg

VxVx ; .

In fluid: p excess pressure,

p--Cio(V-'ﬁ) ,Vp=-pu .
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7.2 SCATTERING MODEL - COMPUTER PROGRAM
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