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SECTION 1

INTRODUCTION

The acoustic response of simple metallic targets submerged in

water is studied under this contract. The aim is to develop an interpreta-

tion of the process which would permit its characterization by a simple

model. This work is a continuation of a previous contract which should

be referred to for the general background of this problem and for greater

detail of the space-time integral equation approach.

The classical solution for acoustic scattering from a penetrable

homogeneous sphere is studied first in Section 2. It is seen that hard or

soft target approximations are not valid for metallic targets (except at

very low frequencies), but that resonances are present which are character-

istic of the interior composition. Viewed in the time domain, the impulse

response of a target consists of a sequence of pulses following the specular

impulse. The arrival times of these pulses can be related directly to the

elastic constants of the target and medium. Moreover they can be inter-

preted simply as pulse traversal times at the several speeds along certain

paths. The description of this model (the #gl -waveO model) is the sub-

ject of Section 3, along with the first steps t ward a complete quantitative

theory. A semi-quantitative computer program w ch generates time and fre-

quency domain responses is given in an appendix

In Section 4, the space-time integral equation approach is des-

cribed. Whereas classical solutions can only be found for targets conforming

to sepable coordinate systems, the integral equation approach is applicable

to target of arbitrary shape. An exact solution is presented for a fluid

right circ lar cylinder. The space-time integral equation formulation is

presented fr elastic targets (which exhibit interior shear waves as well

as compression waves), although numerical difficulties have so far prevented

computational results. A procedure is described whereby the scattering



I
i " enter responses can be computed for use in the simple model of Section 3.

tIn Section 5, the results of previous sections are extended to

the hulled target. The classical solution is derived for the thick spherical

shell. Results f the shell are given as functions of elastic parameters

and shell thickness, including the very-thin shell limit. It is seen that
the thick shell resp se is much more co linet tan the already compli-

cated homogeneous sph re, but that in the limit of the thin shell the

response becomes a stpped sinusoid with exponential decay. Also given, in

subsection 4.3, is the space-time integral equation formulation for the thin

hulled target of general geometry.

/

iI
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SECTION 2

ANALYSIS OF HOMOGENEOUS SPHERE RESPONSE

The solution for scattering from a homogeneous penetrable sphere

was first given by Anderson in 1950 for the fluid sphere [2] and by Faran

in 1951 for the elastic sphere [3]. These were classical solutions; found

by expanding interior and exterior fields as sums of eigenfunctions and

equating these at the boundary. The applicability of the method is limited

to simple shapes which form constant surfaces in separable coordinate sys-

tems. However, the advantage is that the solution is straightforward. The

only numerical difficulty arises in the evaluation of the spherical Bessel

functions at large order and argument. In this section, the classical solu-

tion for the sphere, transformed to the time domain, will be used as a

starting point for understanding acoustic scattering.

2.1 CLASSICAL SOLUTION FOR HOMOGENEOUS SPHERE

The elastic sphere is completely characterized by its radius, a,

and three elastic constants: density P,, compression speed cI, and shear

speed c2 (see Appendix 8.1). It is embedded in a fluid with density p3

and speed of sound c3. Let a monochromatic plane wave p (rt) be incident

upon it from the positive z direction (Fig. 2-1). The incident plane wave

can be expanded, for r a:

n -iWt
pi(r't) P0  (2n+ l) (-i) n P(cos 0) j n(kr) e (2-1)

n-0

!iWt
The time dependence e i' will be suppressed in the equations to follow.

The scattered pressure is given by

p () Po Cn hn  (kr) Pn (cos (2-2)

n-0

I ..
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FIG. 2-1 Scattering geometry.
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Here,

P (cos @) are the Legendre polynomials;n

in (kr), n (kr), h ( 1 ) (kr) are the sphericai Bessel functions of
n n

the first, second and third kind;

P is an arbitrary constant, or could represent P (w), the
0 0

frequency content of the incident pulse;

k = 2/ = w/c3, the wave number; and

c is the coefficient which is to be found.
n

Note that p satisfies the radiation condition, since asymptotically
h(1) (kr) eiWt (-i) (1/kr) e i(kr-Wt) - 0 as r and is outward traveling.

n

Following Faran, it can be argued that the displacement u inside

the target can be written

u =-V + VXA , (2-3)

where 4, A are of the form

0

S= an i(kr) Pn(Cos ) (2-4)

n=0

A 4 A4  b n) ~ n (~k2 r) P(cos ) (2-5)

n=0

with unknowns a and b . The latter two equation are the results of sym-n n

metry arguments. These expressions are now evaluated at the boundary;

r = a, and related via the boundary conditions, such as to permit solution

for the unknown coefficients a , b n, and cn '

The boundary conditions are continuity of normal stress, normal



displacement and tangent shear stress. Or, in order, in spherical coordi-

nates at r = a:

au
- + ps) = X (V ° u) + 2 j au ; (2-6)

3  r + r / r(27

Dr r r DO
(2-8)

0=rsneau au Ur0-r sin 0 a +  
r-- I

(The last of these is trivially satisfied due to axial symmnetry.) See

Appendix 8.1 for the relationships between the Lame coefficients X, u and

other elastic constants and for the relationships between pressure and dis-

placement. The equation of motion in the solid is (see [l] for discussion)

Pl u = (X+22) V(V*u) - j VxVxu , (2-9)

+ + i s
so that (V °u) and (V xu) inside as well as p = p + p outside satisfy

their respective wave equations with Ielocities c1, c2, and c3.

The equations (2-6) through (2-8) must be satisfied for each mode

n. We thus obtain the following set of three equations (in the same order)

for each value of n, by direct substitution of (2-1) through (2-3) in the

boundary condition equations:

n +n +n n

M a + M nb + M nc =Vn
11 n 12 n 13 n 1nq

Mn a + n b + Mn c Vn (2-10)
21 n 22 n 23 n 2

Mn a+ Mn b 0

31 n 32 n

*x -6



where M = (a(n+n) x j (x) 2at x1  '(x1) (2-11)

= (2) ( '(x2) - n(x2))

M = D a2 h(1) W

13 o n

n
21 1 n 'Xl

n = (2+n) x J(x 2 )M22 x2

Mn D 2 (1)'
M2 D ahn (x)

23 0 nl

n ~ IM31 l3' (xl) - Jn(xl)

31 n 2l n

(2 + - x /2) Jx 2  - x2)

n
M 0

33

1  a in(x)V1  - D(2n+l) (-i) n2

V2 (2n+1) (-i)n a J'(X)

n
3 =0

and where

x = ka = wa/c3

x a k 1 a= a/c1

x2 = k2 =wa/c2

It was useful in the above to note that the Bessel functions 
j n n n and

h all satisfyn

I, -7-



x2 f" (x) = 2 +n-x 2  f (x) - 2x f (x) (2-12)
n n n

The following constants were defined in conformance with li]

2
3 c3

2plc1

2
2ct 2  (2-13)

o 2
P3c3

We can now solve for the coefficients a , b , c by inverting the matrix
n n n

M This must be done for all modes n.

By trial and error it is found that the number of modes n = NMAX

required to achieve convergence is about NMAX = 2 + 8vK-a for low values of

ka and about NMAX = ka +15 for ka greater than 5. The applications con-

sidered in the following pages required ka up to 40 and NMAX up to 55.

The evaluatic. of Bessel functions for such high order and argument is

non-trivial. In these calculations Univac subroutines were used, which

were based on the work by Goldstein and Thaler [4]. These utilize forward

recurrence for n and backward recurrence for j There are still diffi-

culties with these evaluations which occur when n is large but the argument

x is small. Overflows in the computation of n then limit the calcula-1 n

tions to lower values of n and x. This situation arises when cI/C 3 is

very large. For the materials considered here (brass and aluminum), it

was found that the calculations could be made for ka up to 60. Since the
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effect of parameter changes was also considered, the calculations of fre-

quency responses were generally limited to ka = 40. Further, the solution

was found at about 200 or 500 equally spaced points on the frequency scale.

The normalized far scattered field can be found from a simplifi-

cation of (2-2), namely

s+
r (r)

- = P H(w)
a 0

H(w,)= n P (cos ) (2-14)

Ew k n

n=0

(1)
This is obtained from the asymptotic form of h which is

n

n+l

h ( I ) (kr' -i eikr as kr - 0
n kr

ikr.

(Note that dropping the factor e in (2-14) is equivalent, in the time

domain, to referencing the far field time origin to the space origin or

sphere center. That is, a pulse scattered from the origin arrives in the

far field at time t = 0.)

The magnitude of the frequency response, JH(w) , in the back-

scatter direction (6 = 0) is plotted in Figures 2-2 through 2-6. Some of

these results were essentially previously obtained by Hickling [5]. (When

making comparisons, see the note on "Scaling" Section 3.8 in [i.) Responses

for sound-hard, aluminum, and brass spheres are given in Figure 2.2. In

Figures 2-3 through 2-6 the responses of aluminum are given and compared

with their modifications due to parameter changes. This will be discussed

further in the next section. It is seen that a dominant feature of the

elastic responses is the regular occurrence of deep nulls which is absent

in the hard target and fluid target approximations. The spacing of the
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nulls is affected by the veiocities c1 and c2, whereas the density affects

mainly the amplitude of the response. The fluid response differs from

the hard approximation mainly by amplitude at lower frequencies; although

at higher frequencies a complex structure develops.

These features are difficult to explain in the frequency domain.

After all, these pictures contain only half the available information,

the phase of H(M) is as important (or more so) as the magnitude.

It is to be noted, that the aluminum and brass sphere responses

have been well verified by measurement [1].

2.2 SMOOTHED IMPULSE RESPONSE FOR SPHERE

It is instructive to study the sphere response in the time

domain. To do this, a band and time limited pulse is chosen, the "smoothed

impulse":
2

a -(a t')n n
e(t') = - e (2-15)

This pulse has been normalized to give unit time integral with the normalized

time t' = c t3/a and has a frequency domain representation

-(ka/2a )2

E(ka) = e (2-16)

(Refer to [6] appendix for a discussion on normalization.) In equation
(2-14), P is replaced by E(ka): the product is then transformed to the

0
time domain, resulting in the far field, normalized, "smoothed impulse

Sresponse", r0 p (r,t')/a. The larger a , the sharper the smoothed impulse,
but the higher the range of w for which the response must be computed. A

practical value here (consistent with the considerations of Section 2.1)

is an 8, which requires the computation of H(ka) up to ka - 40.

-15



2.3 EFFECT OF TARGET PARAMETERS ON SPHERE RESPONSE

The time domain responses corresponding to the cases already

given in the frequency domain, are plotted in Figures 2-7 through 2-11.

The time axes are in units of c 3t/a.

Consider the hard sphere response of Figure 2-7a. The initial

part is the specular return, an impulse at time t = -2. This is immediately

followed by a negative step, a ramp, etc. decaying to zero. This is due

to radiation from the region immediately surrounding the specular point

(see Section 3.2). Then, centered at a time t = 7, is the creep response.

Note that the time of occurrence is just that of a pulse impinging on the

target at z = 0, traveling at the speed of the medium c3 around the back-

side of the sphere and reradiating tangentially at z = 0.

It is seen immediately that the hard target cannot be an ade-

quate model for scattering of wideband radiation from an elastic target:

there is a small change in the specular response amplitude and backswing.

But mainly, there have appeared large pulses at times 0 through 2. (One

can verify readily that interference between these pulses and the specular

impulse causes the resonant structure of the frequency response.) Signi-

ficantly, these pulses are also absent from the fluid model response (Fig.

2-11). The time of occurrence of these pulses is strongly affected by the

shear velocity c2 (Figure 2-9) but only slightly by the compression

velocity c1 (Figure 2-8): we thus identify these features as due mainly

to internal propagation of shear waves. Also present, and particularly

noticeable in the fluid model are smaller pulses with arrival times propor-

tional to compression velocity. These features can be associated with

inter 1 compression waves.

Aiding this discussion, Figure 2-12 illustrates the time

references for various reflection paths. Suppose the distances a1 , a2,

a3 are travelled by a plane wave at velocities cl, c2 , c3 respectively

-16-
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(as compared with the specular wave for which the distance is a -2).

Then the time of arrival is

1 2 a

In Figure 2-13 responses are plotted versus time scale

c 2 C1a1 + a2 + C 2 C3 a 3, for several values of c 2' If the path were

entirely at speed c 2 then the features would remain at the same value of

c 2t. This is nearly the case: while c 2 is changed by a factor of 4, the

time c 2t at which the "shear wave features" appear is nearly the same.

The slight variation of the arrival time in units of c 2t associated with

these features is then due to the fact that the paths of traversal are

in small part at c 1 and c 3. The vertical offset in Figures 2-13 and 2-14

is proportional to c 2 ' Figure 2-14 is the same as 2-13 but with a higher

value for c 1. only for large values of c 2 is there a significant difference

between the curves. These results are sufficient to allow estimating path

lengths through the target at the various velocities for the principal

features of the response. Physical considerations (Snell's law -- Section

3.1) then can give the likely path associated with these features. In

Section 3.3 they will be identified as the principal modes of a glory-wave

effect.

-23-
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SECTION 3

SCATTERING MODEL

It is apparent from both frequency and time domain points of

view that the scattering process, for even such a simple target as a sphere,

is inherently complicated. The aim of this section is to identify the

essential attributes of the responses in order to obtain a reasonable

approximation with a relatively simple model. Such a model is possible

based on the glory-wave effect. This theory, developed originally for the

scattering of light from water droplets, undergoes considerable complica-

tion (due to the existence of two sound speeds in the target) when applied

to the acoustic case. However, the qualitative aspects of the theory,

particularly when viewed in the time domain, Are helpful in providing

useful insight into the scattering process; it will be seen that the im-

pulse response consists of a string of impulses which arrive after trav-

eling through the target along the readily identifiable glory paths. on

the other hand, quantitatively (i.e., for the magnitude of the impulse

response) the theory is difficult to apply (see the extensive work of

Uberall et al. [7]. It is suggested that a useful approach is a hybrid

approximate method, using the quantitative considerations of the next two

subsections together with the simple glory-path model.

3.1 REFLECTION AND REFRACTION AT A PLANE ELASTIC BOUNDARY

The following is an exact treatment of the interaction of a

plane compressional wave with a plane fluid-elastic interface, and of the

reverse problem.

Let the displacement in a fluid medium be given by u 3, and in

the solid by u 1 and u 2 corresponding to compressional and shear waves

respectively. Primes are used to denote the part of the wave after reflec-

tion or refraction. Consider the plane interface of Figure 3-1. Then we

-26-
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have

jk3  r - jw0t

incident wave u3 = u30 e , (3-1)

4 ;. j •r- jwt
reflected wave u = u 0 e , (3-2)

jk' , r - jw0t

refracted wave u = U el0(3-3)

jk * r - jwt
u = e (3-4)

The zero subscript refers to the value at the origin. Assume that the

wave normals are in the x,z plane so that:

k3 
= (x sin e3 cos e3 )k3

-k ( sin e; + Z^cos 6;)k ,

1i =x sine01  z Cos el) k

2 ( sine 2 Co 2 l (3-5)

where

k. = W/ci

Snell's laws for reflection and refraction follow directly from these

definitions, independent of the nature of the boundary conditions (see

Jackson, p. 217 [8]): whatever boundary conditions prevail, the same con-

ditions are satisfied at the point (0,0) as at every other point on the

interface. Hence the variation in phase for (3-1) through (3-4) must be

-28-



the same for all under translation on the interface. That is:

ki sin 0, = k' sin 02 = k; sin 6; = k3 sin e3  (3-6)

(The same argument for phase variation with time can be used to establish

that the frequencies, w, are the same for all waves.) Hence Snell's Law:

sin e; = sin e3

c1I
sin e1 = c sin e (3-7)

1 c3  3

c 2
sin 2 = csin 0

2 c3  3

Note that for solids we generally have c1 > c2 > c , so that rays are

refracted away from the normal after entering the solid, as in Figure 3-1.

Also note that for some real incident angle, e3cl (the critical angle), we

will have sin ic = c I/c3 sin 03ci = 1. There is no transmission at speed

cI for e3  6 3c1. Similarly, at e3c2 such that sin e2c = c2/c 3 sine = 1,

there is no transmission at c2 (nor at c ); so that there is total reflec-
2 1

tion for 0 2 e At angles between these two critical angles, there
3 3c2*

is transmission only at c2, that is as a shear wave. The boundary condi-

tions can be 'satisfied through the existence of an evanescent wave which

travels along the surface.

We will now derive the relative magnitudes of these waves,

for which it is necessary to know the dynamics or boundary conditions.

These are

(1) continuity of normal stress,

(2) continuity of normal displacement,

(3) continuity of tangent shear stress.

-29-



In Cartesian coordinates these are written [I]:

+ (vU) = ( u) + 2 i

n h u +u1 n ,* (3-8)

where u u + u 2 and the elastic constants are

/P31 = c3

2
(X + 2p4/p c1  (3-9)

2

Substituting'equation (3-1) etc. into the boundary conditions, we obtain

respectively

X k3  (u 0 +u 0  kluj + 21. 0 k1 Cos 
2 01 +u cose~ sine6]

(3-10)

(u3  u;0  Cos e u 0 Cos 01 + u sin e2 (3-11)

2uj k, sin o 0 -uo k (Cos2 -sin 2. (3-12)
10 1 1c 1s2021 2 2 02)=

Solving simultaneously we obtain the transmitted amplitude (that is uo

an ntrso heicdnmltdeu I scnein

20O' an 30) itesofteicdn amlue 30. ti onein
to define the quantities

-30-



2I

A =(P 1 cl) (( / L -csin 2 01 + (%Q sin 6, o (3-13)
03 n0 3os2)

cos 01 (3-14)

COS e3 (cos 2 02 - 2 02)

2 c2 sin 01 cos 0l
2 1 21 (3-15)

c 1 (cos 2 - sin2 02

2 2
where a = 2 c 2/c . Then the transmission coefficients are found to bet '

R 30 A-B , (3-16)
33 u A+B

R31 10 2 (3-17)
31 U30  A +B

R u0 2Q (3-1)32 u30  A+B

The first subscript of R refers to the incident wave, the second to the

reflected or refracted wave.

The above derivation can be performed more generally, as indi-

cated in Figure 3-2, to also permit waves incident from inside the solid.

The results are as follows. For an incident compression wave in the

solid, U1 0 , the refractions and reflections are

U10 B-C+QD
11 u 10 A+B (3-19)

u-- R1 C - (3-20)

12 "u 10 A+B

i MM d- M&AM-



IMPULSE FIRST ORDER LOCAL THEORY
w IMPULSE RESPONSE

i c3tla

-2.0

PHYSICAL OPTICS
ESTIMATE TRUE APPROXIMATION
IMPULSE RESPONSE

FIG. 3-2 Impulse response of hard sphere ( leading edge).
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-I

30 2BC (3-21)13 1 A+B

Here we have also used the definitions

c= ! ci (Cos 2  s2 2 (3-22)
P3 C3 22

D =jf2 (2sin02 cos 02) 
(3-23)D 3 c 3 si 2 2o

For an incident shear wave, u 20, 
the refractions and reflections are

-uO 2D (3-24)

21 u20  A +B

U2 0  QD-B- C (3-25)

22 u20  A + B

u30 = 2BD (3-26)

H2 3  u20  A + B

Note that R1 3 , R2 3 represent energy 
transmitted from solid to fluid medium,

while R.2 and R21 represent mode 
conversions.

For normal incidence, 0 = 2 = = 0, these expressions sim-,

plify to

A-l i lCl - P3c3
R33 A+ PlcI + P3c3

2 2p3c3  (3-27)

31 A +1 plC + P3c3

R =0

32
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Also, it is interesting to investigate the case of critical incidence for

c that is e, = 900. We then have that R = 1, that's total reflection.

As the incident angle increases slightly and e1 becomes imaginary, there

is transmission of energy as a shear wave at c2 , while on the surface

there exists an evanescent compression wave at cI.

In closing, it is noted that the fluid, hard, and soft cases are

included in the analysis by appropriately letting the densities PI P3

go to zero or 0.

3.2 TIME DOMAIN SPECULAR RESPONSE - LOCAL STIE

In the physical optics limit, the impulse response of a target

is given by 1/27 times the second derivative of its projected area func-

tion. This was given by Kennaugh & Cosgriff in 1958 [91 for the electro-

magnetic case and is valid, as will be seen, in the limit, for the acous-

tic case as well. For example, the projected area of a unit sphere with

specular point at the origin (Figure 2-1) for an incident plane wave

traveling in the z-direction is

S T1r = Tr 2az-z 2). (3-28)

Taking the speed of sound c = 1, we have that z t/2. The area function

is then

S (t)= Tr(at - t ) u(t), (3-29)

and

d2S1, i = 1 6() 16(t) - u(t) (3-30)
2dt2 24

is the physical optics impulse response. This can be considered to be the
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first two terms of an expansion in singularity functions. An improvement

to this approximation can be obtained by including the effect of surface

interactions.

3.2.1 Sound Hard Convex Specular Point

For a sound hard target the far backscattered pressure is given

by

r 1 ap(r',t*)
0 pS(t) =ro nt, dS' , (3-31)

where t' = t + (i r') and r is the direction of observation. The pres-0 o

sure on the surface can be shown [12 to be

p(r',t') = 2 p (z',t') + n^ (n) + RIr' ,t) ds"

s 
(3-32)

where t" = t' - R, R r - r', and t is in units of sound-meters. It is

easier to consider the step response first. Let the incident plane wave

be a step traveling in the positive z-direction (i.e., r r' = -z')0

i t

p (z',t) = u(t'-z')

or

i
p (z',t) = u(t - 2z') (3-33)

As a first approximation we will consider the surface pressure, p(r", t"),

constant over the illuminated region (and zero outside). Then ap/Dt" = 0,

except at the boundary of the illuminated region where
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r= p(r" t" (t" z

or

" t) I p(r" ) S(t' -z - R)

We want to substitute this in the integral (3-32). To evaluate the inte-

gral we use the fact that for a circular patch AS of radius y

12 -( dR = (3-34)
RS 0

where K is the average curvature. This approximation applies to smooth

convex surfaces. This was derived in [1] p. 16, but due to a typographical

error, the value of E is given incorrectly in [1]. Here, AS is the ellip-

tical patch around r' at time t' which is illuminated at the retarded

times t" = t'- R. Some reflection reveals that the approximate radius

of AS is given

Y= t - 2z' (3-35)

For the second term in (3-32) involving ap/Dt" we need

__"R 6(t' -z" - R) = ! R 6(t' -z" - R) dR =

2rr J 2 J 2
As 0 (3-36)

This follows since Dp/Dt is nonzero at the boundary of the patch AS. The

result of the first order evaluation of (3-32) is thus

-I- i+p(r',t') = 2 p (z',t') + Y K p(r',t')

where y t - 2z'. Solving for p and expanding 1/(l-YK) this can be
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written

p(r',t') = 2 p (z',t') 1 + Y,- 'y K +

and making the substitution (3-33)

1 p6).11+ ~-2 )+ -22
-p(rt') u(t K(t -K2z') +-K(t-2z') + ... 1 3-37

(r' ,t) = (t - 2z) 1l + K(t -2z'1) +2 3t '

+ u(t - 2z') K i + 2K(t - 2z') + ... (3-38)

This expression for the surface pressure can now be used to evaluate the

far-scattered step response.

Using (t "n') dS' = 21 p a cos 0 de = 27T(a-z') dz', the inte-

gral (3-31) can be rewritten

r ° p (t) = (at-/ z (t-2z') i + K(t- 2z') + K2 (t-2z') + " i dz'

0

+ / (a -z') u(t -2z') +1 2K(t 2z') + 3K2 (t-2z) 2 + dz'

0
(3-39)

Direct evaluation and the substitution aK -1, yields for the step

response

5I
roP =J -- (t/a) + - (t/a) + ... u(t)

Differentiating and normalizing, the impulse response of the hard sphere

is then
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rps (t/a)

h (t/a) r p ( 6 (t/a) - u(t/a) + r (t/a) + (3-40)
a 2 4 4 p

The third term (ramp) of this expansion is inaccurate and could be improved

upon by the use of (3-37) and (3-38) in (3-32) as the next approximation;

and so on. The main result here is the correction of the step coefficient

as given by the simpler physical optics theory in equation (3-30). The

result of approximating the impulse response by the methods of Section 2,

using a = 12, is plotted in Figure 3-2, superposed on the present results.n

The agreement, including the r term is seen to be excellent.p

3.2.2 Fluid Sphere Convex Specular Point

Consider now the case where energy penetrates the target in the

form of compression waves. We then have two integral equations (see Sec-

tion 4) corresponding to pressure outside, p, and inside, PI:

1 i 1 "' ) dS"

p(r',t') = 2 p (z' ,t) + -( . ,) 1 + (r , t dS
27r J R2+-

As

= T R n r p1 (r") t")d
fAS1

- ( t 1R (r" t"2'? R n" P' 1 S

AS
1

R n " P ( r  t' '  " d S " ( 3 -4 1 )

where t" t- R, t'= t' - R/c The patch AS has radius = t -2z' as

before. The interior integral is over the larger patch AS with radius
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y = clt 2zj. The above equations are related by the boundary conditions

p = p1

an Plan ;(3-42)

cl' P1 are the sound speed and density inside relative to outside. The

integrations over the surface patch are similar to that of the previous

section and result in

p(r' ,t') = 2p + Y p - y anan

and

p(r' ,t') = - c 1 Y p + Yp aC 2

where the last equation is obtained from the last of (3-41) and the appli-

cation of the boundary conditions. Again, we use a step function as the

incident field. Solving, we obtain on the surface

p(r',t') = 21 ++ + + u(t

2E (r-,t') =2( +~ 1 ( + E + C + *.(1+dK)u(t -2z')an 1 Y~

(3-43)

where we have defined

The integral equation for far field scattering from an elastic or fluid
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target is

rp(t) - ap-rrt

J r)t' r 4 dS'

S(3-44)

Substituting (3-43) into this, results in terms similar to that for the

hard target step response except for constants. The result is that the

impulse response of a smooth curved specular point for a fluid target is

given by

h p l c ll  { (t/a)-[ + u] uta) + ..
hTt/a = P, 2 4 2l

h/a i( 'lCl){ ~ 6(t/a)- - u(t/a) + (3-45)

where

P C c1
PlCl +1

11

Note that as p1 I - (3-45) reduces to the sound-hard case. Also, the

factor (p 1cl - l0(P1c1 + 1), by which the impulse term differs from the

sound-hard (perfectly reflecting) case, is the same as the reflection

coefficient found in (3-27) for normal reflection from an elastic plane

surface.

3.2.3 Extensions of These Techniques

At the next level of complexity it is possible to determine by

these analytic methods the response of an elastic specular point. The

expressions become very complicated however when shear wave effects are

included; hence this approach was not pursued here. A direct approach is
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the numerical evaluation of the integrals of the preceding section using

a very short smoothed impulse incident pressure. The result is the leading

edge of the impulse response and requires the numerical integration over

only a small part of the target surrounding the specular point. Further-

more, the technique may be applied to a bistatic configuration and also

to refraction. This approach, known as the local influence theory, is

based on the observation that at a given time only a few identifiable

points are active as scatterers; see Figure 3-3. (The approach has been

used successfully for the electromagnetic case [10].) Attempts to imple-

ment this technique for elastic targets have been, to date, thwarted by

the numerical difficulties further described in Section 4. It is felt

that, once these difficulties are removed, these calculations of scattering

center responses, combined with the glory-wave model to be described, will

yield a fully quantitative but greatly simplified scattering model.

3.3 GLORY-WAVE EFFECTS

The glory phenomenon is the halo surrounding the viewer's own

shadow cast by the sun upon a mist (or a cloud, when observed by airplane).

It is caused by light entering water droplets and, after multiple internal

reflections, being returned to the observer [ll][12]. it is a monostatic

effect as distinguished from the rainbow effect which, although also

involving internal reflections, is bistatic, resulting from local maxima

in scattering intensity at certain bistatic angles. The phenomena involve

surface (creep) waves as well as Snell's law reflection and refraction.

The nomenclature is here applied to the acoustic case. (Since

the refractive index for most acoustical situations will be greater than

1 while for the optical case it is generally less than 1, there are some

qualitative differences between the two cases.) A semiquantitative under-

starding of the phenomenon can be obtained using ray-optics theory.

Consider the glory path as illustrated in Figure 3-4 for a
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FIG. 3-3 Local influence theory: reflection and refraction.
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FIG. 3-4 Glory paths for sphere.
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sphere. At each change in direction Snell's law is obeyed

sin e sin e sin (366Cl 2 c3 (3-46)

2 C 3

where cI, c2, c3 are the compression, shear, and external velocities

respectively. Each chord of the path is thus the base of an isosceles

triangle. The requirement is that after k traverses around the sphere

the rays return to the source. Let ml and m2 be the number of chords at

cI and c2 respectively. Then

2e3 + m I (7 - 2e1) + m 2 (7 - 202) = 27Fk (3-47)

With the constraints (3-46), this equation has at most one solution 03

for each set (mi, m 2 , k).

The extra time required to traverse this path compared to direct

reflection from the center of the sphere is

tmi 2k M cos 1 + M2 cos 2 - cos e (3-48)

where a is the sphere radius.

The cases m1 or m2 - are identified as creep waves along the

(inner) surface of the sphere, which are launched when 03 is at one of
3r

the critical angles. By this model, then, the impulse response of an

elastic sphere is a sequence of pulses occurring at the times t m t[ ,k

The magnitudes and shapes of these pulses depend upon the detailed 2

interaction of the local wavefront with the boundary at each of the re-

flection points.



3.4 GLORY MODEL EVALUATION

Consider first the fluid sphere response (that is, considering

only compression waves). Figure 3.5 illustrates two cases, comparing the

smoothed impulse response with the impulses predicted by the glory wave

model. It is seen that the agreement is virtually perfect. All possible

glory paths are observed with decreasing amplitude in proportion to the

number of reflections.

In Figures 3.6 and 3.7 the model is compared with the elastic

target response. First, note that the pure compression modes as observed

for the fluid target are still observed (for the sake of clarity not all

of them are indicated), though these effects are overwhelmed by the shear

effects. The agreement between the glory modes and the main features of

the response is only approximate. It is significant that the change in

times of occurrence with changing c2 and c1 agree.

It is seen from the figures that the dominant modes are those

with m2 = 1, m2 =2, or m2 = - (creep). There is little time difference

between (m , m2 ) = (2,1) and (-,l) or between (1,2) and (-,2), where
1 2

mI 00 means that the path at speed cI is an internal creep path. A more

quantitative theory is required to determine the relative contributions

from those modes. These principal modes are illustrated in Figure 3-8.

3.5 SIMPLE MODEL

It is apparent that pure compressional modes can be neglected

in a simple scattering model for elastic solids. We will base our model

on the paths a, b, c, d of Figure 3-8. For path (a), the specular

response, the return occurs at time

t = - 2a (3-49)
a

c3
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FIG. 3-5 Glory wave model - fluid sphere response.
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FIG. 3-6 Glory wave model - aluminum and variations.
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FIG. 3-7 Glory wave model - brass and variations.
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For paths (b) and (c) we are at the critical angle for c That is

o1 = 900 and e 3cI  sin -  (c3 /c I ) and 02 = sin
- I (c2/CI). The creep path

length travelled at cI is just sufficient to satisfy the requirement that

the ray return to the source. (Actually, the creep wave at c1 is continually

radiating so that all orientations of the path at c2 occur. Also, at other

observation angles, the same model can be expected to apply with a different

arc length at c The arc at c1 spans in case (b): l = 2 + ( /2 -3cl

and in case .c): a, = 2e - 03ci"

The return times are thus

tb 2a + c (3-50)
[2 c3

t = 2a + 2 .3c (3-51)
c c2  c3

-i

Path (d) has the critical angle associated with c 2 , 03c = sin (c /c ,

and half arc length y ( - 3c). Hence the return time is

t 2a[-c 2 (3-52)
d Ic 2  c 3  1

A computer program was written to implement this model. The

response for each mode is assumed to be of the form illustrated in

Figure 3-9, namely impulse, step, ramp, and backswing (P, S, R, and E)

such that the total area (DC response) is zero.

r(t) 1: k 'k 6 (t -t k) + Sk u(t -tk) + R.k(t t k)[u(t -tk) - u(t -t k+ft1
k J

+ Ekutt + At) (3-53)
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tat

FIG. 3-9 Simplified impulse response.



At this stage P, S, and E are inputs to the program; with At = -2P/(E4 S),

R = (E-S)/At. It is expected that development of the methods in Sections

3-1 and 3-2 will yield theoretical values. The times of occurrence of

these pulses are computed from the relations (3-49) to (3-52). It is seen

in Figure 3-10 for aluminum that a simple representation for the impulse

response can be found in this way. In the frequency domain (Figure 3-11),

the model and actual response (as computed by Section 2 methods) agree

in the main features. Brass is illustrated in Figures 3-12 and 3-13.
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FIG. 3-10 Aluminum response model - time domain.
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FIG. 3-12 Brass response model - time domain.
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SECTION 4

SPACE-TIME INTEGRAL EQUATION APPROACH (SOLID TARGETS)

A major advantage of an integral equation formulation of the

scattering problem is that it yields exact responses for targets of arbi-

trary three dimensional shape. The integral equation technique (STIE)

used at the Sperry Research Center operates in the time domain, solving

the problem by stepping in time rather than by matrix inversion. Using

the excitation described in Section 2.2, the result is a smoothed impulse

response. Such a time domain response is highly suggestive of target

shape. If desired, the response can be deconvolved with the incident

pulse and transformed to the frequency domain to obtain a frequency

response. The latter is valid for values of ka from zero to an upper

limit determined by the frequency content of the excitation pulse. The

latter is limited primarily by computation time. To date most experience

with this type of solution has been with electromagnetic scattering and

with acoustic scattering from sound hard and sound soft targets [6, 13, 14].

It has been found that practical values on the upper frequency limit are

ka = 6 to 12.

To date the STIE approach has been applied with complete success

to impenetrable targets such as conducting solids and thin surfaces in the

electromagnetic case and to sound hard and sound soft targets in the

acoustic case. Results have been published [6, 13, 14] for three dimen-

sional targets of varying complexity.

In the present effort, this technique is extended to penetrable

targets. The approach is reported in detail in reference 1, and will here

be outlined in a somewhat more convenient form. At time of writing, tar-

gets penetrated only by compression waves are treated successfully, whereas

numerical difficulties plague the solution when shear waves are added.

We will first concentrate on the fluid target solution and present
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computational results.

4.1 FLUID TARGET FORMULATION

In an ideal fluid the excess pressure satisfies the wave equa-

tion

• * 2 V2

p= C 3  p , (4-1)

where c is the speed of sound. The pressure is related to particle dis-
3 4

placement u by

Vp = -P3 u (4-2)

where p3 is the density (see [l1, Section 2.1).

4.1.1 Derivation of Integral Equation

Consider a closed surface S in the medium with pressure sources,
i

p , originating outside of S. Using the Green's function

G-(r I r't) = 1 (6 - R/c3 - t
R 3

where R = r - r', a solution to the wave equation can be developed, known

as the Kirchhoff integral representation:

P(rt) = p (r't) - (n )L P('an''T)dS' (4-3)

where the integral is over the surface

n' is the unit normal out of the surface

R is the magnitude of R r -r
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R is the unit direction of R

1 +1
2 Rc3 3T

T t - R/c3

The above is valid for r outside of S.

Let the inside of S be source-free and filled with a fluid with

properties cI, P1; then (maintaining the same direction for n)

pl(r,t) n r' - ('T' 1 p(', 1l dS'

(4-4)

for r inside S, where

L 1 i
1 R2 l a1

T1 = t - R/c1

and pi' ap1/an are the values just on the inside of the surface.

That is, the pressure can be calculated everywhere if the values

of p and ap/Dn are known on S. In particular, in the far field as

R -+ r -I o, the scattered part of the field is given by

r p t -- + c (r
c3T 3 (4-5)

To evaluate this expression, it is first required to solve (4-3) and (4-4)

on S. A limiting procedure must be applied to make these valid on the

surface since the term (n^ -R) Lp in the integral becomes singular as r' - r.

This singularity is removed in the following way: consider the singular

term separately and define the integral written as dS' to have itsJJ



singular term removed. (Usually this is written as f dS'.) Now require

that (4-3), the "outside equation" results in p(r) E 0 for r inside S.

This requirement remains to be justified. Comparing the results of eval-

uating (4-3) for r just inside and just outside of S, we see that the non-

singular parts of the equation INS give the same value at these two points,

but that the singular portion changes sign (due to r • ). That is, we

have

r outside: p = p + INS - s

(4-6)

r inside: 0 = p =p + NS + IS

combining these, we obtain p = 2p + 2 1NS' The singular point has been

removed and we have introduced a factor of 2. We thus obtain for r on the

(outside layer of the) surface S:

p(r,t) = 2p (r,t) - (r',T)1.1 - (T') L p(r,T) ds'2Pl~~ ~ (-'t) 2an'

(4-7)

This equation contains two unknowns p and ap/an so that another relation

is needed to solve. In the case of an impenetrable target the requirement

p = 0 inside is exactly physically true so that p and 3p/an in (4-7) repre-

sent actual physical quantities. The additional boundary condition

ap/an = 0 for sound-hard or p = 0 for sound-soft then permits solution of

(4-7).

In the case of the fluid target we apply an analogous argument,

requiring inside equation (4-5) to yield p(r) = 0 for r outside, resulting

in
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We now have two integral equations in 4 unknowns. S is a surface of dis-

continuity with two sides. The two sides of S are related by the boundary

conditions. Imposition of the boundary conditions justifies the above

p - 0 requirement and also permits the system (4-7), (4-8) to be solved.

These conditions arc

p1 (rt) p(r,t)

r on S (4-9)

1 (r,t) (r,t)
plln p 3 n

corresponding to continuity of pressure and normal displacement.

4.1.2 Numerical Implementation

To solve these equations numerically, the surface is divided

into patches AS and p, ;p/;t, ;p/Dn are assumed to be constant in value
k

over a patch. Time is also quantized. That is, for (4-7) at r.:
1

2pi(r.,t.) -- n (kTijk) - (nk Rik)ik P(rk'Tijk k

k~i

i r' I tj + 1, p(r,,t) (4-10)

where T = t. - R /c . In the above, the integral over the "self-patch"
ij ik 3

which contains r. (i.e., for k = i), has been performed analytically.
1

f -TJ - i (4-11)

As.

AS. (4-12)
n R) m-

............... T---r-.2
fa,. '



where K. is the average curvature of the patch at r.. The derivation of

(4-11) is straightforward, by approximating the patch by a circle with

radius For (4-12) it is necessary to expand R and n in curvilinear

coordinates (see Appendix in reference 13). A similar numerical expres-

sion is written for (4-8). Writing I and I for these sums (the "non-self
1

integrals") and applying the boundary conditions, we obtain the system

(1- i) P(ritj) + i ritj = 2p(ri,t) -

1i + E) P(ri,t) - -p Dn (rittj)') (4-13)

3

This can solved simultaneously for p, ap/an for time t. at each r. on S.
:3 1

Note that the non-self integrals can be evaluated at time t. since the:3
arguments T are earlier than t.. Hence (4-13) can be solved for all time

3
by stepping in time.

The stepping in time procedure is valid so long as the distance

AR to the nearest patch is greater than clAt (or c At, whichever is greater)
1 3

for At = time step. It may be desirable to use smaller patches in regions -

of rapid change, for which AR is smaller than the above limit. For these

cases a local iterative procedure is used involving only these nearby

patches: first the contributions from all the non-near (properly retarded)

patches are calculated to each patch. These values are then used to deter-

mine the near-patch contributions by simple linear interpolation between

the new values and those at the previous time point. Then, one more

iteration of this process is sufficient to assure convergence. This pro-

cedure, involving only the nearby patches is quick and does not add much

time to the overall solution.

Typical values for a target dimension is a = 1 (representing,

for instance, cylinder radius) and for the pulse length parameter a = 1n

(see equation 2-15). Then, for time expressed in sound-meters (c3 = 1),
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a time step of At = .2 (or even .3) is adequate to obtain good results in

the case of sound-hard or soft targets. Since the pulsewidth measured

between 2% points is about W = 4/a = 4, this represents about 20 timen

steps per pulsewidth. The typical patch separation then is somewhat

larger than 0.2. For the fluid case, the time step must be reduced by

about the ratio c 3/c . It was found that At = .075 was sufficiently fine.

In the integral (4-10) it is necessary to interpolate in the

table of previously computed values of p to obtain p and ap/at at time T.

One way to do this is by fitting a fourth-order polynomial to the five

values surrounding T. This worked very successfully and accurately for

the sound-hard case. However, numerical inaccuracies tend to develop

toward the end of the response in time which may be amplified by high

order polynomial fitting, resulting in a rapidly growing instability.

This effect was particularly noticeable for the sound-soft case. This

problem can be eliminated by linearly smoothing the five points and then

fitting a simple quadratic to the inner three points. This method causes

a small loss in accuracy and hence requires the use of a somewhat smaller

At (say .1 for sound soft, or .05 for fluid with c1 /C3 = 4).

4.1.3 Responses of Right Circular Cylinders

Responses were computed by these methods for a fluid right cir-

cular cylinder with the properties of aluminum and brass but neglecting

the shear velocity:

P cI

3
"Fluid Al" 2.70 g/cm 6200 m/s

"Fluid Brass" 8.39 4400

Medium (Water) 1.00 1480

the incident pulse was a = 1. Results are plotted in Figures 4-1 throughn

4-3. The cylinder has length/radius ratio L/a = 6/1. Time is in units of

43-
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FIG. 4-1 STI E response for fluid aluminum right circular cylinder.
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c 3t/a. Consider the 00 aspect) the initial part of the response is from

the flat end of the cylinder and looks somewhat like the derivative of

the incident pulse, centered on t = -6. The small peak at about t = -4

can be interpreted as interation with the edge. This part of the response

is similar in shape to the response of a hard cylinder (see [13] or [1])

except for a reduction in amplitude. The small peak at t = -4 is also

somewhat earlier, indicating that edge effects occur at both c1 and c3.

The next major part of the return is the creep return at t = 6 to 8. This

has been changed in shape and moved slightly earlier ir comparison with

the hard cylinder response. In between these two extreme times, the hard

cylinder has a near-zero response, whereas the fluid target exhibits

ringing. The latter must be interpreted as the result of internal reflec-

tions (end to end) of compression waves at cI. As the aspect angle changes

the two parts of the response move closer together.

A similar set of responses is given for brass in Figure 4-2.

Also given, in Figure 4-3, is a comparison for each of these targets at

the 00 and 40 aspects. The difference is extremely small.

4.2 ELASTIC TARGET FORMULATION

A complete elastic target formulation must also include the

effect of internal shear waves. As seen in Section 2, these can be the

dominant effects. This formulation is treated in detail in [1] and will

only be cursorily treated here. Instead of pressure it is easier to deal

with the divergence of displacement. The two quantities are proportional:

2
= -c p(" u) (4-14)

The equation of motion inside the solid is

-~ 2 -~ 2U c I V(V u) - c2 V x V x u , (4-15)
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r

from which it may be found (by taking the V x and V ° of the above) that

both (V •u) and (V x u) separately satisfy wave equations:

(V x ~ 2~ 2 (Vx U) (4-16)

In addition to equations (4-7) and (4-8), with p1 replaced by (V u), we

have a vector Kirchhoff integral:

V x u (r,t) - V - (' R) L2 (VxuI) ds' (4-17)2 R 3--' 2Vu) •U)d'(-7

s

for r on S. Here, the equation has already been specialized to the boun-

dary S.

V x u' means V x u (IPT

T2 = t - R/c2

Another form for this equation, which may be useful in practice is

u 2 (ixVxVxu,) +L 2 ((n, Vxu,)R+ (n^xVxu,) x dS'

(4-18)

This form is obtained from (4-17) by vector manipulations and the use of

the divergence theorem. (See Jackson [8], pp. 283.) It may be useful to

observe that another equation can be written, namely for the (VxVxU).

The quantities (V x u), and (V x V x u) now play somewhat similar roles to

E and H of electromagnetics, so that techniques found useful there are

possibly applicable here.

The boundary conditions are the two stated in Section 4.1, con-

tinuity of normal stress and normal displacement, although the first looks
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somewhat more complicated for elastic solids (see [1]). An additional

boundary condition on the shear states that the tangential shear stress

is continuous across S. Since this quantity is zero in the fluid, it is

zero at the solid side of S. The boundary conditions may be written (see

[] for derivation; here the form in which these relations are written is

more precise):

2 u
-p = P1 (C 1 (V" u) + 2 pl c2 n (4-19)

Dp 2~ D _ 2= (V U) c (Vxvxu) = u (4-20)p 3 n 1 n2n n

a0 = (V x U) -2 - (nxU) (4-21)
tan an

where i is the outward normal direction. The set of 2 scalar and one vec-

tor STIE's plus the two scalar and one vector boundary equations can be

solved for the unknowns p, V -u, V xu and their normal derivatives. How-

ever it requires the formation, numerically, of certain space-derivatives

on the surface of S, and the numerical solution of the equation of motion

(4-15) []. The need for differentiation on a curved surface results in

numerical instabilities in the solution, which have to date not been solved.

Only the initial portion of the response from the region around the specu-

lar point can be computed successfully.

Figure 4-4 illustrates the status of the space-time integral

equation calculation. Plotted is the surface pressure as a function of

time p(c 3t/a) for the smooth impulse incidence at several points on the

surface. The pressure as predicted by the classical solution of Section 2

is plotted in part (a); the current status of the integral equation solu-

tion in part (b). The shape of p more or less follows that of the incident

pulse with significant deviations. In particular, at the backside

c( = 1800) there is a bump a little before t = 0 which represents
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FIG. 4-4 Surface pressure for elastic sphere - classical and STIE.
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transmission through the target at the shear velocity, c 2. It is seen that

the initial part of the STIE calculation is correct; in particular the

bump at 6 = 180 0 is computed correctly. The latter is the respect in which

elastic targets are distinguished from hard or fluid targets. Unfortunately,

inaccuracies which rapidly develop into an instability start near e = 450

These inaccuracies have been identified as numerical differentiation prob-

lems; particularly since the quantity differentiated, u, becomes large as

time goes on, although the derivatives to be found remain relatively small.

This problem has not yet been circumvented. The solution must lie in a

formulation which avoids space-differentiation of the displacement u. The

far field computed from these surface values is shown in Figure 4-5, with

the classical result shown dashed.

4.3 THIN SHELL SPACE-TIME INTEGRAL EQUATION FORMULATION

A direct approach to solving the problem of scattering from an

elastic shell with fluid interior and exterior is to formulate integral

equations over both boundaries and applying boundary conditions on each.

This two-boundary approach is taken in the classical solution of the next

section. A computationally simpler approach is to attempt to find the

limiting boundary condition between inside and outside media, and avoiding

the need for solving any equations in the shell itself.

Consider the sphere of Figure 4-6 with outer and inner radii

a and b. The boundary conditions can be written as

-P = Q~(c~ -2) (,.-)a 2 c (a

(4-22)
b

=P Pl~ 1 2c~ 2 V + 2 p 1 c2 (ar)

and
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-- a~( u) 2 c (VXVXU)aUr p r C 1 r (V'U) 2 u r

(4-23)

--b aP4 2 a @b 2
u = 4 r - r (V u) -c2 (V xVxu)br

where the superscripts a and b refer to the outer and inner surfaces. If

we write (V xV xu) and the boundary condition (4-21) in spherical coor-
n

dinates, we obtain

(VxVxu) = 2 r (V'U) 2 r u (4-24)

We use this to rewrite (4-23):

-"a = 2 2 \ r  a 22 a
3 r 2 2c 2 ) a (Vu) + 2 ar 2 r

U4 2 u + 2 (ri

.bu -T4 c 1  2c (V u) + 2 c2  (r rr P4 r 1 2 3r23 2 u

(4-25)

a p4
The aim is to find relations between p, p 4 by applying a limitingar' P4' r b pligalmtn

process so that the problem reduces to essentially the fluid-in-fluid

problem of Section 4.1, but with different boundary conditions.

First, suppose the shell thickness, h, sufficiently thin so that

we can use a first order Taylor expansion; for example

(V.-u) = (V-u) + h ( V ) (4-26)

We will then rewrite the boundary conditions
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(C r
2u

2 c 2 r
p44- p =ph (h 2u) + 2 plh r (4-27)

P4 ar P3ar 1 2Dr 2  2h 2  -2 Lr23r J

If both h and p are reduced to zero the problem reduces to the fluid-in-

fluid problem with no shell. As a next level of approximation, let
b a

h 0 and let u = u . Then
r r

P 4 - p = P 1h(C - 2c2) 2 (V'u) (4-29)

ur  4 P - r = - 2c2  (Vu) (4-30)

or P4 -p 3 ; l 1 2 (4-9r

or

P4ppp 1h u r(4-29-)

This represents the equation of motion of a membrane with no internal

restoring forces. We can add restoring forces due to an ambient pressure

difference, p, between inside and outside which results in a tension

T = Ep (a/2). Then we have

p 4 - = u r (4-29")

This is the equation of motion of a membrane under tension and can be
solved in conjunction with the fluid-in-fluid integral equations.

We have simplified more than desired, however, since we wish the

elastic properties of the shell to be included. Returning to equations

(4-23), we note that we can also write by virtue of the boundary conditions
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V2
(VxVxu) = - 2 V u , (4-31)r s r

but it must be realized that the meaning of V2 is dependent on the coor-
s

dinate system. In spherical coordinates (with axial symmetry):

2 - 2ur ae Cos 0 @
u _

2=+ o - u (4-32)
s r r 2  2% ' r2 sin e

the above is actually a definition of 2 , obtained from writing out
- s

(V xv xu) and applying the boundary condition in spherical coordinates.

We then write (4-23) as

2 2 2
u =c l ar (V u) + 2 c 2 V u (4-33)r lr2s r

and use this to eliminate /Dr (V ° u) in equation (4-29). The result is

c 2 2
- = -h- u (4-34)

4 1 2 r 2- s r

= - 4 -(4-25')
rr P3ar p4 r

These equations can be used as the boundary conditions with the system of

two space-time integral equations as written for the fluid case of Section

4.1. It requires the time-integration of u (which is no problem) and ther
numerical differentiation in the surface of u r Unfortunately, as was ther

case for the elastic target, the numerical differentiation causes insta-

bilities.

In Figure 4.7 is plotted the result of the numerical implementa-

tion of the space-time integral equation solution using the membrane
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boundary condition between similar fluids. As will be seen in the next

section, this result is not a good model for a thin shell. While the

general nature of the response is similar, its dominant 
frequency differs

by a factor of 2. It is therefore necessary to solve the problem remaining

with implementing boundary condition (4-34).

4
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SECTION 5

SPHERICAL HULLED TARGETS

5.1 CLASSICAL SOLUTION FOR THICK SHELL

The fluid-filled spherical thick shell problem can be solved by

expansion in terms of eigenfunctions in a way completely analogous to the

elastic solid of Section 2.1 [15]. Let the outer and inner radii be a,b;

and let the core have constants c4 ' P4 In addition to the incident and

scattered pressure expansions, we have a compressional wave in the sphere

core (p 4, c 4). The eigenfunctions must be bounded at the origin and are

therefore j (kr) P (cos 0). In the shell, on the other hand, there no

longer is the requirement that the eigenfunction be bounded at the origin.

Or, alternatively we can say that the shell exhibits both inward and out-

ward traveling waves. The shell solution thus contains both jn and nn
(1) (2)n n(or, both h and h whichever is more convenient).
n n

-iwt
Suppressing the time dependence e , we thus have

i 00
1(r) = PC (2n+l) ( n (kr) P (cos e) (5-1)

n=O r 2! a

00

p(r) = P cn h( 1 ) (kr) Pn(cos e) (5-2)

n=O r a

4(p = P o fn in(k4r ) Pn(cos e) (5-3)

n=O r b

= (an Jn(klr) + dn nn(k1 r)) Pn(Cos ) (5-4)

n=O b
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IdP

A Cr) n lb (k 2r) + enn~ ) 6(5-5)
n=0 b r a

Again we have that in the elastic shell

u r) = - VI + VxA b r 5 a (5-6)

1 u Cr) (X + 21) V(" -u) - Ij VxVxu b : r a (5-7)

and that the total pressure in the external medium is

Si s
p = p + p r ! a (5-8)

The unknowns are a , b , c , d , e , f for each mode n. The boundaryTh ukowsar n, n n n n n

conditions (2-6), (2-7) and (2-8) are applied both at r = a and at r = b.

The result is a system of 6 equations in 6 unknowns analogous to the

system (2-10).

n n n
Mnz = V (5-9)

where Zn is written for the vector of unknowns (a , b ... , f ). The
n n n

nl nmatrix entries M. and the entries Vn for i,j _ 3 are exactly those of
1J n i

(2-11). To obtain the other M. ., we can avoid a lot of writing by observing
13

the following: each row is augmented by the coefficients of d and e ,
n n

which are the same as the corresponding coefficients of a and b exceptn n
for the use of n instead of j . That is:

n n

nnreplace j by n in Mn to obtain Mn (i = 1, ... , 6);n n il A4

replace j by n in M2 to obtain M ni = 1, ..., 6).
n n i2 15

Also, equations 4, 5, and 6 are the same as 1, 2, 3, except that they are
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evaluated at r = b instead of r a; and also all occurrences of p3 ' c3

are replaced by P4 ' c 4 . That is: replace Bessel function arguments

x, x1 , x2 by y, YI' Y2' where

y = k 4b = wb/c 4

= k b = Wb/C (5-10)

Y2 = k 2 =Wb/c

in

m to obtain M Q

n M n

M n to obtain Mj

Mjttan KMn  (all for j 1 , 2, 4, 5).

Further, n 0 for i = 2, 3; M n= 0 for i 4, 5, 6;

i6 i3

M n D b 2 j (y)
46 4 o n

- D b2  ,
56 

0 o

n
M166 ,

= 0 , i -4, 5, 6,

where

2p4 C4

4  8-P Cl



For example,

A number of degenerate cases can be obtained from these equations by let-

ting the appropriate p or c go to or 0, and thereby eliminating one or

more unknowns and equations.

Degene rate
Condition Shell Core Equations (i) Unknowns (1)

Elastic Fluid 1,2,3,4,5,6 1,2,3,4,5,6

P4  0 Elastic I Hard 1,2,3,5,6 1,2,3,4,5

P4 = 0 Elastic Soft 1,2,3,4,6 1,2,3,4,5

b =0 Elastic No 1,2,3 1,2,3

c= 0 Fluid Fluid 1,2,4,5 1,3,4,6

c2=0' P4 _ 00 Fluid Hard 1,2,5 1,3,4

c 2=0, P 4=0 Fluid Soft 1,2,4 1,3,4
2 4

C2=0, b=0 Fluid No 1,2 1,3

P 1 4 Hard No 2 3

P 0 Soft No 1 3

It is simplest to solve this set of equations by Gauss elimina-

tion and back substitution. Care must be taken, however, since the
n 20 -20(complex) entries in M vary in magnitude from 10 to 10 Successful

solution is achieved by normalizing M both by rows and by columns before

applying the elimination procedure. The same considerations hold here as

discussed in Section 2.1 with regard to the order of the Bessel functions.
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Here the problem is somewhat more severe because of the larger range of

Bessel function arguments. In the examples to follow, responses will be

computed to ka = 20 and smoothed impulse responses will be computed for

pulsewidth parameter a n= 4.

5.2 THIN SHELL LIMIT

The solution for the thin shell can be obtained nicely from the

above without further modification. As the thickness h a a-b becomes

small, greater accuracy can be obtained by noting that

n nn
M i= Mn~ + h Tr N (j = 1, 2, 4, 5)

Row 4 can then be substracted from row 1. The same can be done with rows

nI
and 3. As h -* 0, some elements of M can be replaced by zero. However,

this is not a great simplification since no unknowns are eliminated. In

the calculations that follow, the unmodified thick shell computer program

was used for the thin shell as well.

5.3 SHELL RESPONSES AS FUNCTIONS Or ELASTIC PARAMETERS

The sequence of plots in Figure 5-1 through 5-3 gives the mag-

nitude of the frequency response of the spherical aluminum shell with

parameter thickness. The thickness, h/a decreases from 1 to .001 through

the sequence. The sequence 5-4 through 5-6 gives the same results in the

time domain for smoothed impulse incidence with a n=4. It is seen that

the thick shell has a more complex response than the solid. However, as

the shell becomes thin, the response becomes simpler again, reducing in

the limit to a sequence of spikes in the frequency domain. The magnitude

of the response is proportional to h in the thin shell limit.

Whereas the response of a solid is perhaps best understood in

the time domain as a sequence of pulses corresponding to various paths,
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the very thin shell response is best understood in the frequency domain

as a resonance with its overtones. The resonant frequency is dependent

on both cI and c2 as illustrated in Figure 5-7, where one of the elastic

parameters of an aluminum shell with h = .001 is changed at a time. If

both P1 and h are changed in such a way that the surface density (p h)

remains constant, then the response remains about constant (for the very

thin shell). This is illustrated in Figure 5-8.

In all of the above examples, the core was water filled. It

is interesting to see the effect of a different core. In Figure 5-9 the

response of a soft sphere is compared to that of a soft core (that is, a

gas-filled) spherical shell. The difference between the two responses is

the same sequence of resonances already found for the water filled shell.

In addition, a large very low frequency resonance is observed. The time

domain response is given in Figure 5-10. A similar result is found if the

core is a heavier fluid. Figure 5-11 illustrates the response of a glycerin

core, which has a density about 1.25 times water. This resembles closely

the response of a fluid sphere, but with the spikes characteristic of the

shell superposed. The very low frequency spike is absent.

It is significant that a thin shell, surrounding a sound-soft

or fluid target has a large effect on the response in the form of sharp

resonances.

-|
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SECTION 7

APPENDICES

7.1 ELASTIC CONSTAN4TS

Collected here are some useful relationships 
and equations to do

with elastic properties.

X,W Lamg Coefficients

Y, B, j Young's, Bulk, Shear Moduli

a Poisson Ratio

c11c 2  Longitudinal, Transverse Speeds

p Density

Y = 3B(l - 0) 211(1 + 0)

X= B - 2 P1/3

C2 X+2p1
01 P

2 1
02 p

C 2 /c 2 = 2(l - G)/(l - 20)

1 2

a(2~ - 2c2 )/2 (2~ c2)

in afluid: P10, a c2 0O

u displacement

Equation of motion:

u C V(V-U) - C V x x u
1 2

in fluid: p excess pressure,

2
pm c 1 P(v U) ,Vp -P u
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00
MWa

PM S. aA a u
-~~4 0- w u .4

0 a po %A 2 W4

40 "*.. , Is 4W

St49 400
'4 it ita aeS me

.4.a

.3 woo Z. 04 -

40 aO 3a a
at wo z a s.- .4.

'S .e .. & j". Mo b
0Ue '.~w .1U 0 W U

ob %0 44a S im a & " ' i w 0 rn u u db

a on Io a, 11 dl Iadt Z u:1 0 -

I %* IoS'lW Ula. 1 1
lo,: OLS-ips~ 0 %P L 0u-. 46W7:-t



IL z

IL z

WwwW
on P

w 5g

A~~ aa. I

4 O ' I
6- a.

A - 0a. "A ft wa

BBft 4w d:.

10 =6 a a) 3

066 0! 04 on. . aI b ao .I 4 . a : aa'

P* w .l 41 -08 OW - U

low 4 A6 V4 " .0 d

35ag I 6L 1.1V 3U6

do 00* so00 00 4 nw @ a 11itJ

wU W, aS 0 I. 04 Xt I 60*6 9-18 10 Is U)U aS U6 ~

w63 w U4 w 6 4 UU w 0 34 4 w I 60.wE.t f %

466 0** *3 go) 4* 0 00 0 01~6 *2 S lin 11* 3

0400~~~~lo 0000 W.J so w00 I0 0 0040 46 0 6. 0~ ... 0



~~~.~~ S w OFVV

I a3d

a A

0.60 a

a...

II

ww
a"uwM S a a "s

L 0 61 1; a on0SI* f
Z- a . P. ft a S - A

"'0an w0 1 ;

I~m Z SO A;

MAP4 46 Ad S65m

0~ 0 0 0 ad I 5We

040 10 04 j oQU 1 CI ml S.
%A-46 10. * 46 at1,VA " eoo 0 Wfoot

Kmb op v! 'o W. W.9 U.W .9i.Ip I .
vql 

Pv5 

S. W 
.V 

i0

OS~~~~V 

4-el40 

m

_ g
1  a~~: 1 - : a~e&~~wS0 f



I C;1;t

-4 %,49

34 10 1 VM 4; 1 0

W .1
%# . W ;;C

at 439 .0 a
qK 'I I. .

0 I- I J .. 9

* 400000

46 0 '.'- -.@0
ft "W a 1 *= 00 1 19.

uS 0 0 B. a o 4

2 U04 U, *** L 460
1% P. 10a 0-i a,.4 det#

10 In O scr
00 

::24U*4P 00

*~~~0 0 .U .0-6

IIn
'a on % 4 ld 4%0 % 4 49 *I SP w

fee a l 0 3E~* I g

aW a &Z &,"NoI
V* W59l' I ~ um44 go W. 333i tiPwS

ot ft 28~ f 4 414 2 ft r" ft 94 S 444 I .dP1S 4 S 4* I

ue* *94 5- a4 4 go ab GO4 45 ~ ~

* &*~.**~.*.94~Mw*P
Am AOL Ak 5 00 @453 5% 9 k



_ _. .I . .. w .. , . . i + ' -- 
+ , -.

1:- 
-L . . - . .+ _ -'- =

1 ga I II I

I &

I "

I- I
I I

Aeat 31 9

~w

WI 
C I

M l- 0 V

I tI

I1 .w 0 46 T-,:

II~

00% 
a 

I'

1. Pa. to ft 0go

IO .* I3 Wl gO

48li 0Mi 
. 1 ,111 -

*p 
o. law

*m dl' 3143M 0 .I vl ,-,S, l

4 1 .16 46 4P5 w 4. 4 bI 6f t*t P O o fi

Iv tol lop* OPP3 oa 40i fein

83po in+Immv l lo" *l .'aI Im l" '

k. sw ~~ ~ ~ s 0 . % ml
to. .. i -. o S--l 

J

L lB- a



- ~ ~ V 4 r--- - ~ -- - - -. -- 4 - - -- - - --- - - - -

.1 a..: . - . w. .:--oo--
c,, 4.4 a 9

arari

" = , ., aa g ,

* U *• ,1 *,4 4 *a 0 w .-. C I - ,, bi- s -A

a - f.A K .

.* * s .2,.- p,. 1 2 mla ... v* 14 ,*.-

-. O -.o q I a ..- aI.I... 0-.-aq u *

C 2J02
L 0 'm w al -s 0

I J4L 4 , X S. ., 0 , w a.

-,. ' .,ZO * z l0 0 0C a.*.2 ,-- .at€

-w - 'a , , - * * ,--a'1a •..- •

.... .0 ' * ,4 01 4 00

w VI a c 1 19 O w bc !w a o am w* %D W -a w IA l
22 '0n 4 - j a9 .j * wr. 1 J ~ 'a

.41 .4 z s' CM %"d 4 .JA4 49 *4 49 a4 5

I~~J a

Ion .. I -a.- I .
4L IL 0. . v. vb w

v M LV. . ... . -a % a x-,- .-- .a * Z Eft. W413 0 4a5 a aJa maw 3.o '4123 P.4 .

IC . z- w .W .u -a A' ; z4 a aa~a
a -*a ' - w a - . v* wla wa K

0 At ww i Q 14 An -, At X.at a %D - -a
O& We-a a-a s.- a aa .~. -1-9- o1 %1

x Is I44 a4 P 0 W 2030A 54 .6 m M 0 a' aA

2 ;*:10 *4 Wf~a w I& W .0 43.4 -C V m

~~ 'A ..

oE3J I Cw9 w - Co v. v3 34 .a
oa a. *W a 2. .0; a1 wow4 w4M5 o*- W
49 C 31..a'& 0 in I .- -t . .0 -1 - 4 a a

to 41 r11 #A' WU WW Pmw L~~ S -.. w 4- 4 .

-~~a wa 40 aaa il -1 042 .0w P-6.4 a f

Ml & g ala- S g mQ aab4 .8 3 .4 JVI
f- 11 P. CaZ 4 0 - .- #lff . ' Wa~ P - 0 al ia

z m . It s 4& : o. do4. 40 a 40' a

~~-W -4 w4 .. w*~ 9 o f4 ~ a-~ w ~ a-8.'

3 80 w g a a - . .a ~ - a a a &v . w 1 .- a:864 1 . aaaa '

a b4'a z 0W A 4U 4 1 49# fmIa I&. .0 -s. .0W wNA 0o X ab C. .-

11 V. goa

- a'-

P102



-vU ta .'0(.0 r n' %4 -1 4 4i a 1N 0W- 1

bmW ) Q O NF4Ja I Sa a ,0,F. P. P- N~ r*1 . P doa

41 4

----- - --- --- -- - --- --- - - -- -- -- -- 'U'N N NN V N l C N

eaa~ m m me ga~ m aae ~ g am ese ug ek k~ & km ee ~ euslbm

9. ry-al % h rC
at TA

1 01I t 9W

a .9. 9. 44

0. 4 '

44. as P.4 %fa%. 1 0 l. - l

ot W 4 04 "'

:f 4" u :So 00 moo a1 twism d l L4
f" It =1 Al L.

Of*l g ga Nor Jqaf '0 f P 0
M'akd If- N ff* Okfk0% 4k, 60 *:4 0a'0,0 Al .L b W



ww W w w - ----

3 .- Q m It l @OZpp 4VIO P- Q .un4LIN~ lo 02 ru -W in -OP I' 01 0 4 N On 'M 0P 01 0~ ft M 4 VI .0 P. V (F 0 .W 4V
-y NNNN N Nff Nu Nt ~ F4 "' on Vt Ws. ', 1b Vt on on w 4 4 It 4s &ft b I b I WN 1^ A W% W I0 4 0 £ 4 0P.P-P.P .P

'm N- Nu~ "Ar MA MN r f- N u~ Nimf 04 NNN N UN NNNN NN NN N~r t Nt NfN N N N N" N Nt N N N Nt N Nt N M Nu N4 Nt M N M Nu f4 N 4

IL 004
bga

IL; IL%401
1414 2 00 -

aa-

0

*w I Uf. .0 w% %-

PIP al .o

.04 a- a S

db 4%k Cb AM AIL444 V 4 a



'. F r o w w *0 do or go 40' ______

I I

isi

1 .1

mo o

ON Pa . - A P- to '~ i.N 0

a C I 4L z W0 4L 0 6

do P. I9 w IVPI

of 14, 1i -9ai 0 1U0 1

Ad ~ ~ ~ ~ ~ c 4dNNfidNNNNA~ Jr Ad0A4N; a N AdN'

Z-- U. V4 'r L. -L Pi .- U .U . . . 0 . U- . -U

* I-0 .0 V.4 IV

OD L 4 0 c o C


