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Convenient stability criteria are obtained for difference

approximatios to initial-boundary value problems associated

with the hyperbolic system Ht = Au + Bu +f in the quarter

plane x> 0, t > 0. The approximations consist of arbitrary

basic schemes and a wide class of boundary conditions. The

new criteria are given in terms of the outflow part of the

boundary conditions and are independent of the basic scheme.

The results easily imply that a number of well known boundary

treatments, when used in combination with arbitrary stable

basic schemes, always maintain stability. Consequently, many

special cases studied in recent literature are generalized.
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0.1

In this paper we extend the results of [2] to obtain easily

checkable stability criteria for difference approximations of

initial-boundary value problems associated with the linear hyper-

bolic differential system ut = Aux + Bu + f in the quarter plane .

x > 0, t > 0. The difference approximaticns, introduced in

Section 1, consist of arbitrary basic schemes -- explicit or

implicit, dissipative or unitary, two-level or multi-level --

and boundary conditions of a rather general type.

The first step in our stability analysis is made in Section

2 where we prove that the approximation is stable if and only if

the scalar outflow components of its principal part are stable.

This reduces the global stability question to that of a scalar,

homogeneous, outflow problem which thereafter becomes the main

object of the paper.

Investigating the stability of the reduced problem our main

results are restricted to the case where the boundary conditions

are translatory, i.e., determined at all boundary points by the

same coefficients. Such boundary conditions are comonly used

in practice; and in particular, when the numerical boundary

Consists of a single point the boundary conditions are tranala-

tory by definition.

The maIn stability criteria for the translatory case, stated

without proof in Section 3, are given essentially in terms of

the boundary conditions. Such scheme-independent criteria

elliminate the need to analyze the intricate and often
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complicated interaction between the basic scheme and the boundary

conditions; hence providing convenient alternatives to the well

known stability criterion of Gustafsaon, Kreiss and SundstrAm [3],

which is the basis for our work.

As in [3], we assume that the basic scheme is stable for the

pure Cauchy problem and that the approximation is solvable. Under

these basic assumptions -- which are obviously necessary for

stability -- we obtain, for example, in Theroems 3.3 and 3.4, that

the reduced problem is stable if the (translatory) boundary condi-

tis are solvable and sAtisfy the von Neumann condition as well

as an additional simple inequality. If the basic scheme is unitary

it is also required that the boundary conditions be dissipative.

Having the new stability criteria, we continue in Section 3

to study several examples. First, we reestablish the known fact

that if the basic scheme is two-level and dissipative, then out-

flow boundary conditions determined by horizontal extrapolation

always maintain stability. Surprisingly, we show that this result

is false if the basic scheme is of more than two levels. Next,

for arbitrary multi-level dissipative basic schemes we find that

if the outlfow boundary conditions are generated, for example, by

oblique extrapolation, by the Box-Scheme, or by the right-sided

Euler scheme, then overall stability is assured. Finally,

for basic schemes (dissipative or unitary) we show that overall

stability holds if the outflow boundary conditions are determined

by the right-sided explicit or implicit Euler schemes. These

examples incorporate many special cases discussed in recent

literature [l,2,3,I4i,5,6,9,1O].
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In Sections 4 and 5 we prove the results stated in Section 3-

It should be pointed out that there is no difficulty in ex-

tending our stability criteria to cases with two boundaries. In

fact, if the corresponding left and right quarter-plane problems

are stable, then by Theorem 5.4 of [3], the original two-b.oundary

problem is stable as well.

Thanks are due to Bjorn Engquist and Stanley Osher for most

helpful discussions.
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Comasider the first order hyperbolic system of partial differential

equationa

(1.ia) xgt)/ct = A6(x~t)/6x + Bux,t) + fAx,t), x > 0, t > 0,

thiere U(X~t) -(u (xt)S*..,u (xt))', is the vector o f unknowns

(prime denoting the transpose).. Z (x,t) = (f(l)(Xt)#...,f(n)(Z~t)), is

a given vector,, and A and B are fixed a x n matrices so that A is

Hermitian and nonuingular. Without restriction we my assume that A is

daOnal of -the form

(1.2) A= (AI A,,-c0, A 13 > 0,

where A and AU are of orders JxI and (n - .) x(n-.8), respec-.

tivel.y

The solution-of (1.1) is uniquely determined if we prescribe initial

values

(1.1b) M(X,o) 9 (x)" x > 0,

and boundary conditions

(3.1c) (o,t)-= SUU(o't) + At, t > 0,

where S is a fixed A x (n - 2) mtrix, g(t) is a given A-vector, and

(13) U - (u. 96009U. 9 (U, g..U)

Is aL partition Of into inflow and outflow unknowns, respectively,

corresponding to the partition of A.
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In order to solve the Initial-boundary value problem (1.1) by

difference approximations we introduce a mesh size h N Ax > 0, k 6 At >0,

such that X a h/k = constant. Using the notation v(t) - Z(vh,t) we

approxinate (l.la) by a consistent, two-sided, general multi-step basic

scheme of the formi3

Q = A E v =v

3 8 '

where the n X n matrices A are polynomials in A and kB, and the

n-vectors b v(t) depend smoothly on f(x,t) and its derivatives.

To solve (i.4a) uniquely, we provide initial values

(l.vb) Z,(ok) = voC(ak), a = o,...,s, V = 0,1,...,

j where in addition we must specify, at each time step t = ak > sk, boundary

values v (t + k), p = 0,...,r -1. The required boundary values will be

determined by two sets of boundary conditions, the first of which is ob-

tained by taking the last n - . comonents of general boundary conditions
of the form q

TO v T ~P "v (t-ak) + kd (t)
Ofto

- ' ' T( )  CWla X j  ll" O,.,-, -1... sq

a JJ -1

nonsingular, and the n-vectors d (t) are functions of f(x,t), O(t)

md their derivatives. If we put

*I
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c~rz  ~ z  vn  d

In accordance with the partitions of A and U In (1.2), (1.3), this

set of conditions takes the form

(l.4c) T-I(')V,,(t+k) + T3_ (P) V3 (t+k)

Ti ( - a + T311(p)2(t -k)I + Ie(t)

=A'P C:c~)J , a =II, g--O,*...,r- i.

a 3=O Jo

For the second set of boundary conditions we use the analytic condition

(1.Id) 1(t + k) = 1(t + k) + (t+ k)

together with r -1 additional conditions of the form

(31.14.) v (t+k) = E[D,'''L)v-(t.k) + 1EPvUtk1kpIt,
3. =1 J - .33 e

11(p) 3r(p)where the matrices DF (W) and D, -- of orders I x £ and3 v

A x (n -), respectively -- are polyncomials in the blocks (A) -1

and kBO, a, = 1,1., of the matching partitions

I((j1 11 

B 3A71- 11=1 , kB -k (
0 (A - B1 I B

so that DI I (P) are homogeneous in BT 3 and B 1 I, and the A-vectors

(t)are again functions of E(xt), g(t) and their derivatives.

4l e i _ _ _ _ _ _ _ _ _ _ _ _
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We remark that (1.4c,d,e) can be solved uniquely for the required

boundary values v (t + k), = 0,...,r-1, in terms of neighboring

values of _, at least for sufficiently small k. Indeed, since B

introduces an O(k) perturbation of the matrix coefficients in (1.4c,e),

it suffices to prove this statement for B = 0. But then, using the

properties of a D and, it is not hard to see thatproerie0o and tath C((I)

DI I( = 0 and that the J(-) are nonsingular; hence (1.4c)

uniquely determines the vectors v I (t + k), r-1,...,0 (in that

order) and substituting in (1.4d,e) we explicitly obtainr(t k),

- 0,...,r-l1.

We also remark that while it is a standard matter to construct

boundary conditions of the form (1.4c) to any degree of accuracy, the

construction of (1.4e) is less obvious; For example, using (1.1) we

find by induction on j > 1 that

1.5) u(xt). (Lt) j U(xt) - Xj(x,t)

and

(1.6) u(x t) +z

vhere the operators LtLx and the vectors v,(x,t), zj(x,t) are given

by

"-11 -J-i-I

L A- + B, z (xt) - (L.) a f(x,t).
I ~x ~ 3' i=O I

Now, if conditions of the form (1.4e) are required to p order of

accuracy, we take a Taylor expansion of uI(t) and use (1.5) and (1.1c)

to obtain
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(1.7) (t +¢k) u )3(O,t+k) + o(hp+ )

-f (Lt) 3U(O, t +k) -xaj(0, t +k)] + hp'
J=O

-0 (4 [ S (u3' (0 , t +k) +(t+k'

+o(o,t+k) / I

where [.jI denotes the first £ components of the enclosed vectors. We

see that 2(t+ k) depends on time derivatives of u¢O,t+ k) hich, using

(1.6), may be replaced by space derivatives of J (O,t+ k) and u

Approximating these space derivatives by p -order accurate linear ccmbina-

tionis of u,(t+k) .. u 1 (tk an 'L(t+k) t+k), respectively,

we finally obtain (1.4e) if u is replaced by v and terms of order

O(hp + I ) are dropped.

A concrete example of a second order accurate boundary condition of

form (1.4e) for the special case B = = 0, is given in [2].
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2. Me Reduced PobLem

The difference approximation is completely defined now by (1.4) and

we wish to apply to it the stability theory of Gustafsson, Kreiss and

Sundstrin [31. Trying to fit our approximation into the form discussed

In [3] we realize, however, that while in the present paper the vector b

of the basic scheme (l.4a) is a general combination of f and its de-

rivatives, in [3] we have b =f. Indeed, the general b admitted by us

here is necessary if arbitrary high order approximations to (1.la) are

desired. Yet, it is not hard to see that this generalization does not

affect the results of [3). We conclude, therefore, that making the same

assumptions about our difference approximation as were made in [3], the

theory of Gustafsson et al. holds for our case and we raise the question

of stability in the sense of Definition 3.3 of [3].

In Theorem 2.1 below we shall reduce the above stability question to

that of a scalar outflow approximation with homogeneous boundary conditions.

To obtain this theorem we begin by recalling Lemma 10.3 of [3] which pro-

vides a necessary and sufficient determinental stability criterion given

entirely in terms of the principal part of the approximation, i.e., the

part obtained by neglecting B and eliminating all inhomogeneity vectors.

The mere existence of such a criterion implies that for stability purposes

we may study (1.4) with kv(t) = d(t) _-e (t) = g(t) -- &I - J -)=0;
Jo-

hence, instead of (1.4) we may consider a basic scheme of the form

.For example, the Lax-Wendroff scheme [7] for (1.la) is

-v(t+k) = Alk(t)+Av) (+Alv+,(t) + kbv(t), A =I+ kB +kB -X A

A+ JA+I A + k22-Xk(AB+BA) , k(x t)= I + -k(B + A -L + f)](x, t) .

•~~~~~~~~~ ax_- _ ___ _--.- ........
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Qv (t + k) = QC t-q k) , v = ,,+,

(2. a)

I--- J ,V v V = -

J=-r a V

with initial values

(2.2b) y(k) = 0 (ok) , =o,.,s , = =,1,...,

and boundary conditions
7U .:(lp) X3t +k=q 3() , (t -qk)

0=00
(2.1c)

(2.1d) -t + k) = On (t + k)

(2.1e) v1(t + k) =F, D' 31( A ) v ] ( t + k )  I ,*.rl

J=l

where (2.la) is now consistent with

(2.2) u/t - A 6u/6x,

and the A and C 3'(4) are polynclials in A and in A3' 3,
Ja ja

respectively.

We thus obtain,

LMA 2.1. Approximation (1.4e) is stable if and only if its

principal part (2.1) is stable.

setting

Aj (A AI I) j -r,...,p, a' -40069,20 1
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according to the partition of A in (1.2), our next step is to split the

basic scheme (2.1a) and the initial values (2.1b) into

Q- I (t + k)= Q v(t-ak) ,V r,r+
(2.3s) KI VaO Y *-V

QI = j
a =-r Jor

(2.3b) 4(ok) = C(), a = o,...,s, , O,1,...,

and

QUllV"(t+k)= X Q; v"(t -k), = r,r

(2.4a)

q]= Z, Ar EJ=-r J

(2.4b) U(ak) F Z(ak), a*= 0,..%a; V = 0,1,...;

thus viewing epproximation (2.1) as consisting of inflow and outflow parts

given by (2.3) (2.1d,e) and (2.4) (2.1c), respectively. Obviously, (2.1)

is stable if and only if both parts are.

We observe that the outflow part (2.4). (2.1c) is self-contained and

provides, via (2.ld, e), the boundary values vI (t+k), =r -1

We may therefore consider (2.ld, e) as arbitrary inhcmogeneous boundary

values for the inflow part. So by the argument involving Lemna 10.3 of

(3] preceding Lemma 2.1, we may replace (2.1d,e) -- without affecting

stability -- by homogeneous boundary values

(2.5) v(t + k) 0, 0 = O,...,r-l.

This gives us a new self-contained inflow part, (2.3) (2.5), whose



2.1t

stability together with that of (2.4) (2.1c) is equivalent to the overall

stability of (2.1).

Since the Aj and Co are diagonal, we write

Aj~r= digaC3' (P) = da~g(co )),

and split (2.3) (2.5) and (2.4) (2.1c) into n scalar components, each

of the form

Q1 v(t + k) - Q .v,(t - Ak), v = rr+ 1,...,
o=O

(2.6a)

Q=a EjJ

(2.6b) vV(ok) = V (crk), o O,...,s, v = 0,1,...,

G') q

(2.6c) T("v (t- + k) =Z T(P)v (t -a-), , ,..,r -1,

where (2.6a) is consistent with a corresponding component of (2.2).,

(2.7) )/Ut =a C)u/ax, a 9 0;

and the boundary conditions (2.6c) are either haogeneous, i.e.,

(2.8) T(4)= 1, T(g) = 0, p = 0,..., r-, a = o,...,,,

or are given by
(2.9) T(") = E ( E0 it ,r-1, a -1,...,qP

a' O(-) J 0 O, 0 (=0,...1 =

• d n on whether a < 0 or a > 0, respectively.

Since (2.1) is stable if and only if (2.3) (2.5) and (2.4)(2.1c) a"

stable, and since the latter are stable if and only if their scalar

connents are, we obtain imediately,
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LEM 2.2. Approximation (2.1) is stable if and only if the scalar

cnPonents of (2.3) (2.5) and (2.4) (2.1c), given by (2.6) (2.8) and

(2.6) (2.9),are stable.

In Section 4 we shall prove:

IEMMA 2.3. The inflow aproximation (2.6) (2.8) is unconditionally

stable.

This lem -- due to Kreiss [1] in the special case when the basic

scheme is dissipative, explicit and two-level -- combined with the pre-

vious two, finally yields the main result of this section:

ORNEM 2.1. Approximation (1.4) is stable if and only if the scalar

outflow components of its principal part are stable.

The above discussion implies that from now on we may reduce our

stability study to scalar approximations of form (2.6) with either (2.8)

or (2.9). We thus conclude this section by stating the basic assumptions

of [3] relating to these apprwcimations which will hereafter hold through-

out the paper.

ASSUMPTICE 2.1 (Assumption 3.1, [3]). Approximation (2.6) is solvable,

I.e., there exists a conatant K> 0 such that for each w e 12 (x) there

is a unique solution y e "2(x) to

yv = V,, V = r,+ 1,...,

ith
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Here, 12 (x) is the space of a u grid fuctions w [wV )o with
1HW- hi I1 2 <.

ASSUMMTC 2.2 (Assumption 5.1 [3]). The basic scheme (2.6a) is

stable for the pure Cauchy problem, - < v <w* That is, putting
5!

(2.10) aa(z) u0 a - 1 , J =-r,... p,

we have:

(i) The von Neumann condition; i.e., the solutions z() of the

equation

p(2.11) 'B aj(z)e i j 9 = 0,
J=-r

satisfy I Z(01 :51 for all I~ <ir.

(ii) Thcse z(Q) vhich lie on the unit circle, are simple roots of

(2.1).

ASSUMMCU 2.3 (Assumption 5.4 [3]). The basic scheme (2.6a) is

either dissipative, i.e., the roots of (2.11) satisfy

(2. 2) I-()l < 1, 0 < It 1< 7;

or it is unita-, namely

(2.13) 7=r =z -l<

Finally, for convenience only we make,

ASSUKPTIOR 2.4 (Assumption 5.5 [33).

(2.24) a.,(z), a (z) 0 for IzI> 1
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LI Sttaent of MiReuts an a~ es.

The purpose of this section is to provide easily checkable stability

criteria for outflow approximations of form (2.6) (2.9). In view of

Theorem 2.1 this is the key to the overall stability question of approxi-

mation (1.4).

Our results -- stated below and proved in Section 5 -- are essentially

Independent of the basic scheme (2.6a) and are given solely in terms of

the boundary conditions. These results, however, do not apply to general

boundary conditions of form (2.6c) (2.9); instead we are concerned in

this section with the transltory case where (2.6c) (2.9) are of the form

q -(3ol)T T'i(t + k) Eo0 T v ,(t-ak),

(3.1) a-0

T - % zC , co_.0 Os, .. =o r- .
=0

As mentioned in the introduction, such boundary conditions are

widely used in practice since the coefficients c 7  are independent

of A and all boundary values are conveniently determined by the

same procedure. Especially, when the numerical boundary consists

of a single grid point (r = 1), the computation at the boundary

is translatory by definition.

We associate now with the boundary conditions (3.1) the boundary

characteristic functiond
a

(3.2) R(a,K) Z 0 (Z)c
3=0

here

(3.3) c (z) a 3(-) a q -'-l 3 -

This allows us to state

II
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M0ITM 3.1. Let the basic scheme (2,6&) be two-level and,

4isol: Atve. Then the outflow a!vpozination (2. 6a,b) (3.1) is stable if

(31)R(sze) 9 V IZI >:1, 0 < l1I < 1.

XUPIZ 3.1 (Xreiss [4~, Theorem 6); see also [1] and (2, Example 0.5)1.)

Jet the basic scheme (2.6a) be two-level and dissipative, and let the bound-

ary conditions be determined by horizontal extrapolation of order W - 1, i.e.,

Y,(tak)
Mte boundary characteristic function -which for one-level boundary con-

ditians in alvea s-Independent -- satisfies

(35b) R(K) = 1 - I (~)(-3)i+l ICj - (1 - c" 0, 0 < lIM <1

Bence, (3.1,) holds and by Theorem 3.1, (2.6a,b) (3.5) is stable.

It should be pointed out that Theorem 3.1 is generally false if the

basic scheme is of more than two levels. Surprisingly, even the wel

known result in Example 3.1 my fail to hold; namely, outflow dissipative

nulti-level basic schemes (a >3) with boundary values determined by

extraPolation Of typ (3. 5a), are not always stable.* For example, con-

older the 3-level, 5-point basic scheme

(3.6) vv(t +k) = [I ( -1 : - ) 2Jv (t -k)

+ ILa( E-)v V (t) , 0 < E <1, X&a<2 Ie v =203..

with boundary values v 4(t k)9 si - 091, determined by (3.5a). As

shown In Section 9 of [(6] the basic scheme is dissipative, and it is not

hard to verify that the rest of our basic assumptions are fulfilled as vell.
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Yet, although condition (3.I&) of Theorem 3.1 is satisfied as exhibited

bY (3.5b), vwe prove in Example 4.l1 below that approximation (3.6) (3.5a)

Sm stable.

Despite the above observation we can strengthen Theorem 3.1 for

muti-level dissipative basic shcemes as follows.

K( 3.2. Let the basic scheme (2.6a) be dissip~ative. Then the

outflowr approximtion (2.6a,b) (3.1) is stable if (3.li) holds and if

(3.7) It(z' I - ), 0 Iz is z91

Evidently, Example (3.6) (3-5a) imp~lies that the additional condi-

tim (3.7) is essential for Theorem 3.2.

Naving stated Theorem 3.14 3.2, we see that then the boundary con-

ditions (3.1) are not single-Jlevel (as in Examples 3.1), condition (3.Ii)

M7 become a cumbersone inequalit'y in two variables, z and K. Seeking

a convenient alternative to these theorems, we extend the range of in

(3.1) to obtain the boundary scheme,,

q

T. = ia q =

and In analogy to the definitions in Assumptions 2.1, 2.2, we introduce:

DEV2NITC1 3.1. The boundary scheme (3.8) is said to be solvable

If there exists a constant K > 0 so that for each y e 2 x teei

a unique solution v e ~)t

(3.9) Y yOpm01,2,...,



with

]WUTI(=Cf 3.2. The boundary scheme is said to fulfill the von Neumann

caiton if the roots z(f) of

(3.0) R(z,K. e ) X c(z)eii- 0
J-O

satisfy I-(W1)5 I f al If al _lr.

We can now state,

MOMD( 3.3 (1st Main heorem). Let the basic scheme (2.6a) be

dfisivative. If (3.7) holds, and if the boundary scheme (3.8) is solvable

and satisfies the van Neumann condition, then the outflow approximation

(2.6ab) (3.1) is stable.

Ths result is an extended analogue of the main theorem (Theorem 2.2)

of [21.

Useful sufficient conditions for (3.7) as well as for the solvability

of the boundary scheme (3.8), are given in the next two leiuas.

IMA 3.1. Condition (3.7) holds if any of the following is. satisfied:

(L) The boundary conditions (3.1) are two-level (i.e., q - 0) and

accurate of order zero at least.

(Ui) The boundary conditions are three-level, accurate of order

zero at least, and in addition R(z,. -1, K = 1) 7 0.

LIM 3.2. (1) The boundary scheme (3.8) is solvable if

q
7 *J t c 03(1) M 7' 00 0 < IKIt l
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(ii) In varticular, explicit boundary schemes are always solvable.

ZUMEPI 3.2. (Compare the special cases (3J,6.I3) and [2, Example 1].)

Let the basic scheme (2.6a) be dissipative and determine the boundary con-

ditions by oblique extrapolation of order wa -1:

Thie boundary characteristic function associated with (3.ljl) is given by

(3-12b) R(a,K) -1 - ()j+l 2 3 k 3 KZ1 .
J-1

30, obviousl.y (3.7) holds. Further, the roots of (3.llb) satisfy

- ir - e1i'=1

thus, the associated boundary scheme -- which by Lemma 3.2(11) is solvable -

fulfills the von Neumann condition, and by Theorem 3.3, (2.6ab) (3-11a)

Is stable.

UMI3 3.3. (Ccmnpae the special cases [3,(6.3c)1J9 ,(3I&)] And

[Ii, Exmple 41.) Let the basic scheme (2.6a) be dissipative and let the

boundary conditions be generated by the second order accurate Box-Scheme,

Y (t +k) + vp41 (t +k) - )Xa[v+1 (t +k) - v,,(t +k)]

(3.12)

r Iina 3.1(i), (3.7) is fulfilled; and since

29[T 1 ( i)] - 1 + Re(iK) + )ka[l - 115(r)] 0, '5,

then by Low 3.2(1) the boundary scheme is solvable. The boundary character-

Istie function is
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R(z,'i) - 1+ f - a(i - 1)- z"1[i + K + &(K - 1)],

so its root satisfies

I I + +a(ei ) i;

hence, the von Neumann cond tion holds as well, and Theorem 3.3 implies

stability.

EXAMPIE 3.. (Copare the special case [10, (6.26)].) Let the basic

scheme (2.6a) be dissipative and define the boundary conditions by the

rI ht-sided weighted Euler scheme

(3-13) v(t + k) v (It- k) + ka [2v+l(t) - vIt +k ) -v (t - k)]1,

0 <Xa < 1, I.=0,...,r-1.

2ae characteristic function for (3.13) is

E( K) 1 - z - Xa(2Kz-l -z 2)

and by equating to zero we find its roots,

s(r.= ee1 ) = eit aib(O b(t) (Xa) 2 + e-2 i C( ) 2 ] ;

han e e

Z(, K e)- 0 < l < , i
and (3-7) holds. In addition, since 0 < X& < 1 then lb(t)l <5 1,

I,1O eit)l < X&+ Ib(t)1I < ,

and the boundary scheme satisfies the von Neumann condition. Finally,

slnce the boundary scheme is explcit, Ifms 3.2(11) implies solvability,

: :..nd by Theorem 3.3 stability follows.



I

3.7

We remark that solvability of the boundary scheme is necessary for

Theorem 3.3. To see this, ccsider any dissipative basic scheme with

zero-order accurate boundary conditions of the form

(3.14a) v (t + k) -ev (t + k) = v (t) - Ov (t) , 1,,- = ,..,r-1.

By Leina 3.1(i), (3-7) is fulfilled. Also the boundary characteristic

function is

(3.lb) R(z,K) = (1- z-)(1- Gk)

hence its single root, z = 1, satisfies the von Neumann condition. As

shown in Example 4.2, however, the approximation is unstable, which is

explained by the failure of the associated boundary scheme to be solvable.

Indeed, taking y = 0 in (3.9) we find that the grid function

V = fe"P wo__O with arbitrary wo, belongs to /2(x) and satisfies

(3.9); thus we have neither the uniqueness nor the boundedness of w

required by Definition 3.1.

Condition (3.7) is also necessary for Theorem 3-3 as can be shown

by taking (3.6) with 0 < ?a <j and consistent boundary conditions of

the form

(3.15) v (t + k) v (t- k) + 2Xa[v (t-k)-v (t - k), 0,1

As mentioned before, the basic scheme is dissipative, and by Lemma 3.2(11)

the boundary scheme is solvable. The boundary characteristic function

15

(3.15b) R(z,k) - 1- z'2( + 2?x(K -3.)],
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so it is not hard to verify that the boundary scheme satisfies the

yon Neumann condition (and in fact, even dissipative.) Yet, as demon-

strated by Example 4.3 below, (3.6) (3.15a) is unstable. The reason

Theorem 3-3 does not apply in this case is that R(z = -1 , K = 1) = 0,

i.e., (3.7) is violated.

So far we have treated in this section the case where the basic

scheme is dissipative. For the general case where the basic scheme might

also be unitary we need,

DEFINITIaN 3.3. The boundary scheme (3.8) is said to be dissipative

if the roots of equation (3.10) satisfy Iz() < 1 for 0 < 9,5 _r.

This enables us to state,

EREM 3.4 (2nd Main Theorem). Let the basic scheme (2.6a) be dissi-

pative or unitary, let (3.7) hold, and let the boundary scheme (3.8) be

solvable and dissipative. Then the outflow approximation (2.6a,b) (3.1)

is stable.

EXAMPLE 3.5. (Compare the special cases [3, (6.3a)], [8, (3.2)]

and [2, Example 2].) Let the basic sehemc (2.6a) be dissipative or unitary

and let the boundary conditions be generated by the right-sided explicit

Euler Ocheme,

(3-16) v (t+k) - v (t) +a[vg+l(t) -v,(t)], 0 < Xa < 1, g=O,...,r-1.

The boundary characteristic function is now

R(z,SK) 1 - z [11 + a(K -l)],

and since 0 < Xa < 1, its root satisfies

IL12011&k.
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Iz(. = ei )12 = (Xa) + (1-_7a) 2 + 2Xa(l-Na)cos

< Aa) 2 + (1- a)2 + 2Xa(l-? a) = 1, 0<ItI<r ;

hence the corresponding boundary scheme is dissipative. Moreover, since

(3.16) is two-level, first order accurate and explicit, Lemmas 3.1(i)

and 3.2(ii) imply that (3.7) holds and that the boundary scheme is

solvable. The hypotheses or Theorem 3.4 are fulfilled therefore, and

approximation (2.6a,b) (3.16) is stable.

EXAMPLE 3.6. (Compare the special cases [8, (3-3)] and [2, Example 3].)

Let the basic scheme (2.6a) be dissipative or unitary, and define the

boundary conditions by the right-sided, first order accurate, implicit

Euler scheme:

(3.17) v(t + k)-Xa[v +l(t + k)-v (t + k)]= v(t), =O,...,r-l.

The characteristic function associated with (3.17) is given by

(z,K) = l-Za(K -l)-z 1  ;

so its root satisfies

Iz(K = 1)12= [(a)2 + ¢l+a)
2 -2 a(l+Na)cos t]-l

[(Xa)2 + (l+?a)2 -2X&(l + a)] 1=, O<Itl<Tr

and the boundary scheme is dissipative. Also, Lemma 3.1(i) implies (3-7);

and since

Re[T1(K)] = 1 + Na[l-Re(i)] j 0 , I <I 1

then by Lemma 3.2(i) the boundary scheme is solvable. Thus, Theorem 3.4

applies and stability is assured.
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In concluding this section we claim that condition (3.7) is

necessary for Theorem 3.4 (as well as for Theorem 3.3.) For example,

consider the nondisuipative, 3-level Leap-Frog scheme

(v18 v(t + k) Y (t 0 k)<~ +va[vl2 -vv...

where for the bouzndary condition take (3.15a) with .±=0. As mentioned

earlier, the corresponding boundary scheme is solvable and dissipative

whereas (3.7) is violated. In Example 4.4 we show that approximation

(3.18) (3-15a) is unstable, thus proving our claim.

We conjecture that the solvability and dissipativity of the

boundary scheme are essential for Theorem 3.4.
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4.A Zriliminary Stability Criterion.

In this section we use the theory of Gustafsson et al. [31 to obtain,

in Theorem 4.2 below, a preliminary stability criterion for approximation

(2.6). This criterion will be a major tool in proving Lena 2.3 and

Theorems 3.1- 3.4.

Following [3] we associate with approximation (2.6) the resolvent

equation

(4.1a) - z 0 Y rr +1

with boundary conditions

(4e.2b) (TV - 0~ =,.,-

where z / 0 is a fixed arbitrary complex number. This can be written

as

(4.2) G(z)w = 0 ,

where G(z) is a linear bounded operator on A2(x) defined by the left

band sides of (4.1). We say that z is an eigenvalue of approximation

(2.6) if (4.2) has a nontrivial solution w - w(z) e £2(x). If z is

not an eigenvalue but there exists a sequence fw(z) () 1= 1 C A2 (x) with

P1w(z)(JJ J  1 such that

• ~~~~(,) w(,)( ------

we call z a generalized eigenvalue of approximation (2.6).

Having these definitions, we restate the main result of (3] in the

language of (5]:
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TEOED( 4.1 (Gustafsson et al. [3].) Approximation (2.6) ia

stable if and only if it has no eigenvalues nor generalized eigen-

values z with I zI > 1.

Seeking a practical version of Theorem 4.1, we first need the

following characterization of solvability.

4MA 4.1 (essentially Osher, [81.) Approximation (2.6) is

solvable if and only if

(i) The difference equations

Q-w=0, v= r,r + 1,...

(4.2)
() =0o , = o..

-l') 0p0.-
11

have no nontrivial solution w e 2(x).

(ii) The equation

(43a) Q.()= j_)J=0

J=-r

has precisely r0  solutions K, with 0 < IKZI < 1 where

(.3b) r = Max[-j : aj(. 1 ) ' 0) .

(iii) Q.1 (K) does not vanish on the unit circle, i.e.,

q.( ) j o0, I0I - 1

Proof. Conditions (i) and (iii) coincide with Osher's condi-

tions (d) and (g) in [8]. Regarding (ii), we note that r0 > 0

(or else the basic scheme is unnaturally shifted to the right.)

Hence,

A



4.3

S-r 0  J+r0
J=-r 0

has a single pole of order r0  at the origin. Since by (iii), Q1 l()

does not vanish on the unit circle, we use the Argument Principle to
find that there is no change in arg[ (K = e")] as g varies from

-7r to 7- if and only if (ii) holds. Thus, conditions (i) - (iii) are -

equivalent to (d) (e) (g) in (8], and Theorem I of [81 completes the

proof.

Recalling the functions a,(z) in (2.10), we introduce now the

characteristic equation of the basic scheme (2.6a),

(4.4) P(z,ic) m a Cs)ec W 0
J =-r

whose r + p roots Kj(z) play a central role in determining the

eigenvalues of approximation (2.6).

LEMA 4.2 (compare Lemmas 5.1 and 5.2, [3].) For IzI > 1,

the characteristic equation (4.4) has precisely r roots with

0 < jr(z)J < 1, p roots with It,(z)t > 1, and no roots with

fr3 (z)j = 1.

Proof. By Assumption 2.4, the leading coefficients of P(z,K)

do not vanish for Izi > 1; hence (4.4) has r + p roots, all

satisfying IKj(z)I > 0. Since these roots are the solutions of the

the polynomial equation

(1.5 *r) KrrP(zK) = 0

we may study (4-.5) rather than (4.4).



By Assumption 2.2 (I),

P (z, -- eig) 1 0 , 1I> , It <Ir ,

i.e., for IzI > 1, P (Z,K) does not vanish on the unit circle IKI 1.r
Since the roots of Pr(Z,K) are continuous functions of z, it follows

that for Izj > 1 the number of roots satisfying 0 < 1nj(z)I < 1is------

independent of z. In particular, consider the limit case

z a KJ+r

J=-r

By Lemm 4.1 (1ii),

P r(z K =eit) 1'O I

so by continuity again, the number of roots of P (z,K) satisfying

0 < IK (z)I < 1 may be determining by counting the roots

K <~ <1, of P r(Z -1 -,K). we have

r-r 0  P J+r 0=(K. 
aK (-)"

where r0  is defined in (4.3b). Moreover, by Lemma 4.1(ii),UP+ro J -
hence J=.r 0 a(K 1 )K have precisely r0  roots

with IK <1. Thus, with Its additional r-r 0  zeroes, Pr(Z-f-,K)

has r roots with I[I < 1 and the lemma follows.

According to the above lemma the roots of the characteristic

equation (4.4) split for 1zs > 1 into two groups: r inner roots

satisfying 0 < IK (z)I < 1 and p outer roots with k (z)1 > 1.

By continuity, therefore, these groups of inner and outer roots

remain well defined for (zl >1 as well, where milder inequalities,

____________

-": .. , .. . . i "" ' *''." ' "i :" ' ' .' ' • - ,
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I (z)1< 1 and I1 (z)l> 1, hold, respectively. Since by Assumption

2.4, K = 0 is never a root of P(z,) for Izi > 1, we finally

obtain:

L M4A 4.3. For IzI> 1, the r + p roots W(z) of the charac-

teristic equation (4.4) split into r inner roots with 0<Itt(z)L < 1

and p outer roots with IK (z)I > 1.

Now, let z be given. It is well known (e.g. [5]) that z is

an eigenvalue or a generlized eigenvalue of approximation (2.6) if and

only if equations (4.1) have a nontrivial solution of the form

N Mi-I
(4.6) wV = E F T a1(v)c z , v = 0,1,,...,

where K a(z), 1 < a < N, are the distinct inner roots of the character-

istic equation (4.4) each with multiplicity Ma = Ma(z). Here, f (v)

are arbitrary polynomials in v with deg[§,(v)] , and -, are

coefficients whose number, by Lemma 4.3, is precisely

NZ M -r•

To find the r we substitute (4.6) in (4.1b) and obtain a linear

homogeneous system of r equations with r unknowns,

(4.7) J(z), 0

where J(z) is an r x r coefficient matrix and T = ( a) is the

unknown vector. Obviously, w = w(z) in (4.6) does not vanish if

and only if (4.7) has a nontrivial solution. ; hence, z is an

eigenvalue or a generalized eigenvalue of approximation (a.6) if and

only if det J(z) j 0.
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This observation combined with Theorem 3.1 gives the following

eqivalent of Tea 10.3 of [3]:

Law 1 , 4.4i (Gustafsson et a. 13]. Approximation (2.6) isL

stable if and only if

det J(z) j 0 IzI 2: 1

Now for z, IZI > 1, with corresponding distinct inner roots

KC - Ra(z), 1 < al <M, each with multiplicity Ma , we makea

specific choice for the polynomials %4~v) in (4.6):

Thus, (4.6) becomes

N Ma- V l-

and substituting in (4.1b) -- with T(II) given by either (2.8) or

(2.9) -- we obtain explicit expressions for the system J(z) ' =., namely

N Mcr 1~ L
(4.8) ,Plt09 .

or

N Ma-1 m (+Jiz)LJ =0,

according to the inflow and outflow cases (a < 0 or a > 0),

respectively. To further simplify these expressions we use the

boundary coefficients to introduce r boundary functions

KP a<O0

-~ z c >) 0~~, a O

J-9A *O,...,r-l



4- 7

Since

B1R 9( z,,C)a<

P) J
1 0 C l) C-O k0)

systems (4.8) and (4.9) both take the unified compact form
N Mc'l a P R(Z,K)

_~T . =0 sr ,=,.,-
-i P- - K K (z)

so the coefficient matrix J(z) can be conveniently written as

(4.11a) J(z) = [H(z,1,MQ),..,H(Z,N,MN)] ,

where H(Z, MI), 1 < < N, are the r x M blocks

(4.1.b) H(z,,K,)

R(ZK ) R*( z,. ) Ma-i (ZK)

Rr(z,K) Rr_(z,. ) Rril(Z) wi c(z)

This expression for J(z) gives us a concrete analogue of

I..... 4.4:

I MA 4.5. Approximation (2.6) in stable if and only if for

ev , IZI >i

(4.12) det J(z) a det[H(Z,KiJl),..., H(zKN,,)J j0

where K r. (S), 1 < a e N, are the distinct inner roots of (4.4),

each with multiplicity % - 1(s).



A milder version of this theorem is given in Theorem'3.2, [2].

We return now to the case where the inflow boundary conditions

are, as before, homogeneous and given by (2.6c) (2.8), whereas the

outflow conditions (2.6c) (2.9) are translatory as described in

(3.1). In this case -- where both the inflow and outflow conditions

are of translatory type -- the boundary functions in (4.10) become

a<O

E~zFc (c3 1  E z1 cj K a>O0

(-1.3)

Hence, denoting

R(Z,) U RO(ZK)

(note: for a > 0 this definition coincides with the one in (3.2)),

we find that

R,(zA) -I.(Z.) . -..... r-1

so the blocks of J(z) in (4.llb) become

I . ) H(z,, .'Ma)

R(zt) R(zi) R(-, r)

,R(-,K) KR(Z,-) M-1 KR(z,K)

,r-2(,., -(.r- ,.

This &.Uors us to simlt lem 4.5 as follows...... ...
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7MICREK 4.2 (compare Theorem 4.1, [2].) Approximation (2.6) with

translatory boumdary conditions given by either (3.1) for a > 0 or

(2.8) for a < 0, is stable if and only if for every z, IzI _
with corresponding inner roots c (z), 1 < a < N, we have

(4.15) R(Z,) 1 0 , a =,...,N

Proof . Suppose R(z,K ) = 0 for some z, Iz > 1, with a

corresponding inner root K . Then clearly, the first column of

H(zeCaM ) in (4.l1) vanishes; thus det J(z) = 0, and by Lemma 4.5

we have instability.

Conversely, let (4.15) hold and take an arbitrary z, IzI > 1,

with distinct inner roots K,(z), 1 < a < N. To prove stability it

suffices, by Lema 4.5, to verify that the rows of

(4-.16) J(z) = [H(z,Kl,,Ml),..,H(zKN,I4)l

are linearly independent, where the H(z,K aK,) are given by (4.1).

For that purpose, let

(4.17) F = I- 0g">

be a vanishing linear combination of the rows of (4.16), and let us

rewrite (4.17) as r scalar equations

(4.18) =jRzx0 1 < a < N 0< %M-1

lt a

Since by hypotbesis
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R(z,K)It " O0 -1<a <

we expend the partial derivatives in (4.18) by Leibnitz' rule and

use induction on j >_ 0 to find that the sum in (4.18) must have

vanishing derivatives, i.e.,

d3 [0 1 
o

t PMO K J=Ki

Consequently, the polynomial

r-i

which is of degree r-1 at most, has r roots ( 1 I<a< N,

each with multiplicity Ma) so P(i) E 0 and the coefficients

,y must vanish. By (4.17), therefore, the rows of (4.16) are

linearly independent and stability follows.

The proof of Lemma 2.3 and the counterexamples of Section 3

are almost at hand now.

Proof of Lemma 2.3. By (4.10), the boundary function

associated with the homgeneous boundary conditions (2.6c) (2.8) is

R(zr) M %0(",i) 1 1

Thus, (4.15) holds trivially, and by the last theorem approximation

(2.6) (2.8) is stable.

EXAMPLE 4.1. Consider the dissipative basic scheme (3.6)

with the boundary conditions in (3.5a). The boundary function in

. given by (3.5b) and for 1 -1 it can be shown (as in Lema 6.2,



[3]) that the characteristic equation has exactly one inner root

satisfying K(z=-)m 1. Hence, R(z = -1, K = 1) 0, and by

Theorem 4.2 we have instability.

EXAMPLE 4.2. Take the zero-order accurate boundary cnditions

(3.14a) in combination with any basic scheme (dissipative or even

unitary.) By (3.14b), R(z = 1,K) = 0 for all r.; so at z = 1

the characteristic boundary function vanishes for all inner roots,

and Theorem 4.2 implies instability.

EXAMPLE 4.3. Take the same basic scheme as in Example 4.1

with the boundary conditions in (3.15a). As in Example 4.1 we have

an inner root K(z = -1) = 1 for which, by (3.15b), R(z,K) = 0.

Hence, (4.15) Is violated and approximation (3.6) (3.15) is

unstable.

EXAMPLE 4.4. Consider the Leap-Frog scheme (3.18) with a

boundary condition as in Example 4.3. In Lemma 6.2 [3] it is

shown that the characteristic equation of (3.18) has a single inner

root K(z = -1) = 1. So as in the previous example, R(z=-1,, K=)=0,

and by Theorem 4.2 instability follows.
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. Proof of Main Results.

We turn now to prove the results stated in Section 3, beginning

with the following lemma.

LEMAA 5.1. For z = 1, the characteristic equation (4.4) has

exactly one root s4tisfying K(z = 1) = 1. In the outflow case

(a > 0) this is always an outer root.

Proof. Since the basic scheme (2.6a) is consistent with

bu/Bt -abu/bx a j 0,

the coefficients a,, must satisfy the ordinary consistency conditions

- ( 0=O J=-r

and

jaja a - a (a +1) a,
q=O jm-r aCO J=-r

which can be written as

(5.1a) J~ a,(z) z l =0,

jn-r ljz=l d~(

J=-r z) l J=-r zl

or equivalently as

(5. 2a) P(z,.)I =0
I[- =1

(2 P(ZI XII b P?5 -

p j agei ~ ~z,) 1 5.87

Lz=K.
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Here, aj(z) and P(z,K) are defined in (2.1) and (4.), respectively.

By (5.1a), z = 1 is a solution of

aW(z) = 0
J-r

and by Assumption 2.2(11) this solution is simple. Hence,

j=-r Iz=l

so by (5.2b)

(5.-3) P(z,tc)._- - a a P(Z,K) a-a ( .) 0
Iz=lzbtz dz I

Having (5.2a) and (5.3), we employ the implicit function theorem to

find that in the neighborhood of z 1 1 the characteristic equation

(4.4) can be uniquely solved for K as a differentiable function of

z such that

(5.1) K(Z

This is the first part of the lemma.

To complete the proof consider the outflow case a > 0. Then

(5. 2b) yields

(5.5) IZ up- 1aPdz =:1 " I z==l - ?a> 0 ;

so by (5.4) (5.5), for z = 1 +e with sufficiently small E > 0,

x (z) ,, + (?Aa) "  + o( 2)> 1

That is, for z in the right real neighborhood of z = 1,

IK(=)l1 I
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and by Lemma 4.2 this inequality is valid for all z, IjI > 1. By

definition, therefore, ii(z) of (5.4) is an outer root of (4.4) and the

lemma follows.

Proof of Theorem 3.1. Take an arbitrary z, Izi Z 1, and let

K = K Q(z) be a corresponding inner root. In order to prove

stability it suffices, by Theorem 4.2, to show that

(5.-4) R(ZKa) ,J 0

By Lemma 4.3, we have 0 < I (Z) 1 < 1, where for o<IK (K )l <1,

(5.4) is implied by (3.4). Hence, we may restrict attention to inner

roots on the unit circle, i.e., K a (z) - e i , j j< 7. Since the basic

scheme is dissipative then by (2.12), the solutions z = Z(K) of (4.4)

satisfy

(5.5) fz(K = eit)l < 1 , 0 < W. _< i

Thus, for Jzj Z 1, (4.4) has no roots K = eit, < W j < 7r, and

our discussion is further reduced to IzI 1 i, K (z) = 1. Next, by

continuity, (5.5) yields

I =(K = 1)1 < 1;

so K = 1 is ruled out as an inner root for jzI > 1 and it remains

to consider I1Z = 1, Ka(z) = 1. Finally, by Lemma 5.1, K = 1 is

is excluded as an inner root for z = 1 and we are left with

(5.6) II- 1 , z 1, Z() 1.,

Since the basic scheme is consistent then by (5.2a),

(5.7) P(z .1, . 1) 0 0
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Moreover, since the basic scheme is two-level, P(z,K) is a poly-

nomal of first degree in z where, by (5.7), its only root is
~-1

Z = 1. Thus,

P(, 1) , Iz1 = 1Z , Z 1

and the proof is complete.

For Theorem 3.2 we repeat the previous proof to the point where

the remaining values of z and K (z) to be studied are given in

(5.6). At this point, (3.7) implies (5.4) and stability is assured.

To prove Theorems 3.3 and 3. we need yet another result.

LEMMA 5.2. Let the boundary scheme (3.8) be solvable and

satisfy the von Neumann condition. Then,

(5.8) R(Z,K) 0 o , I <I <S1 , IZI > 1
and5".9) R(Z,) 0 o, IK I < 1, 3,I 1 .IZ

Proof. Apply Lemma 4.1 to the solvable boundary scheme, rather

than to the basic scheme, with equation (4.3a) replaced by its

boundary counterpart

M c (. j = 0

Since the boundary scheme is one sided where by (3.1) c3(l) 9 0,

then parts (ii)- (iiir of the lemma imply that

' -¢: 0 o ,o < IK I< 1
We also have,

T_1 (0) - (.1) 9 0 ;

so all told

(5.10) T 1 (I) 9 0 , In I <"
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Since the boundary scheme satisfies vm Neumann condition then

by (3.10), for IzI > 1, R(z,K) does not vanish on the unit circle

R1 =1. Hence -- as in the proof of Lemma 4.2 -- the number of

roots of R(z,K) satisfying IK (Z) I : 1 is independent Of Z, I zI> 1,

and, by continuity, equals that of the roots K, iK I :S 1, of

R(Z -*s, K) TI() = 0

By (5.10), therefore, R(z,K) has no roots I(z)l _ 1 for IzI Z I

and (5.8) holds.

To obtain (5.9), we merely note that by (5.8), the roots K(z)

of R(z,.) satisfy IK(Z)1 > 1 if IzI > 1. Thus, for IzI 2_ 1,

those continuous roots satisfy IK(z)l > 1 and the lemma follows.

Proof of Theorem 3.3. Since the boundary scheme is solvable and

satisfies the von Neumann condition, Lemma 5.1 implies (3.4), and by

Theorem 3.2, approximation (2.6a,b) (3.1) is stable.

Proof of Theorem 3.4.. As in the proof of Theorem 3.1, let z

satisfy Iz1 > 1, let KC-(z), IJKC(t) < 1 , be a corresponding

inner root, and let us prove that

(5.11) R(Z.,Ka) J 0

By Theorem 4.2, this will implies stability.

Comparing Definitions 3.2 and 3-3, we immediately see that since

the boundary scheme is dissipative, it satisfies the von Neumann

condition; so Lema 5.2 applies, and it remains to verify (5.11) for

z and K a(z) with

I ZI - 1, Ila(s)1 1
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Indeed, for

IZ: I , I ()t = 1 , c(z) K I ,

(5.11) follows from the dissipativity of the boundary scheme as

described in Definition 3.3; for

IZI = 1, z 1, 1 a(Z) =

(5.13) is implied by (3.7); and finally, by Lemma 5.1, K = 1 is

never an inner root for z = 1. Thus, (5.31) is verified and the

theorem is proven.

We conclude the paper by proving Lemmas 3.1 and 3.2.

Proof of Lemma 3.1. (i) let the boundary scheme (3.1) be

two-level and accurate of order zero at least. By zero-order

accuracy, the boundary coefficients satisfy

Z-- c ( ) " --o

hence

(5.-2) R(zK )jzs=- = 0

Since the boundary scheme is two-level, R(z,K - 1) is a first

degree polynomial in z"1 whose single root, by (5.12), is

-1
2 = 1. Consequently,

R(,,. -- 1) 1 0 , I,1 = 1, I,1 1,

and (3.7) holds.

(ii) In the three-level case, R(z,K - 1) is a 2nd degree

polynomial in z with real coefficients. By (5.12) again,

-1
- ' 1 is one of the roots, so the other is real as well,

namely .a~eI
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(5.13) R(,, - 1) j 0 , I 1 = , z j + 1

Combining (5.13) with our hypothesis

R(z = -1, r 1) j 0

(3.7) follows and the proof is complete.

Proof of Lemma 3.2. As in the proof of Lemma 5.2, apply

Lemma 4.1 to the boundary scheme (3.8). Since the boundary scheme

is right sided with Co(.,) # 0 , we find that it is solvable if

(a) the difference equations

(5.3-4) T w - ' : 0 V = 0,1,2,...,J--o J('l) wv+j

have no nontrivial solution w e 12(x), and

(b) the hypothesis of the present lemma is fulfilled, i.e.,

m 0j
(5.15) T.(,) - L cj( 1 ) #0, 0< < .

J=0 (I

Now, it is well known that the most general solution of (5.14) in

A2(x) is a combination of powers of the roots of T 1 (K) which lie

inside the unit disc. Thus, if (5.15) holds then the only solution of

(5.-1) is the trivial one, namely (b) implies (a) and the lemma

follows.

_____....... .. .. ,.--.... .. .- tr 4
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