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ABSTRACT

Convenient stability criteria are obtained for difference
approximations to initial-boundary value problems associated
with the hyperbolic system b = Agx + Bu + £ in the quarter
Plane x> 0, t > 0. The approximations consist of arbitrary
basic schemes and a wide class of boundary conditions. The
new criteria are- given in terms of the outflow part of the
bomndary conditions and are independent of the basic scheme.
The results easily imply that a number of well known boundary
treatments, when used in combination with arbitrary staeble

basic schemes, always maintain stability. Consequently, many

special cases studied in recent literature are generalized.
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0. Introduction.

In this paper we extend the results of (2] to obtain easily
checkable stability criteria for difference approximations of
initial-boundary value problems associated with the linear hyper-
bolic differential system u. = ABx + Bu + £ in the quarter plsne e
x>0, t> 0. The difference approximaticmns, introduced in
Section 1, consist of arbitrary basic schemes -- explicit or
implicit, dissipative or unitary, two-level or multi-level --
and boundary conditions of a rather general type.

The first step in our stability analysis is made in Section

2 where we prove that the approximation is stable if and only if
the scalar outflow components of its principal part are stable.
This reduces the global stability question to that of a scalar,
homogeneous, outflow problem which thereafter becomes the main
object of the paper.

Investigating the stablility of the reduced problem our main
results are restricted to the case where the boundary conditioﬁs
are translatory, i.e., determined at all boundary points by the
same coefficients. Such boundary conditions are commonly used
in practice; and in particular, when the numerical boundary
consists of ‘a single point the boundsry conditions are transla-
tory by d‘ef:ln.:lt,'ion,

The main stability criteria for the translatory case, stated
without proof in Section 3, are slven- essentially in terms of
the boundary conditions. Such scheme-independent criteria

elliminate the need to analyze the intricate and often
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complicated interaction between the basic scheme and the boundary
conditions; hence providing convenient alternatives to the well
known stability criterion of Gustafsson, Kreiss and Sundstrém [3],
which is the basis for our work.

As in [3], we assume that the basic scheme is stable for the

pure Cauchy problem and that the approximation is solvable. Under

these basic assumptions -- which are obviously necessary for

stability -~ we obtain, for example, in Theroems 3.3 and 3.4, that

the reduced problem is stable if the (translatory) boundary condi-

tions are solvable and satisfy the von Neumann condition as well

as an additional simple inequality. If the basic scheme is unitary

it is also required that the boundary conditions be disslipative.
Having the new stability criteria, we continue in Section 3

to study several examples. First, we reestablish the known fact

that if the basic scheme is two-level anmd dissipative, then out-
flow boundary conditions determined by horizontal extrapolation
always maintain stability. Surprisingly, we show that this result

is false if the basic scheme is of more than two levels. Next, 1

for arbitrary multi-lgvel dissipative basic schemes we find that
if the outlfow boundary conditions are generated, for example, by
oblique extrapolation, by the Box-Scheme, or by the right-sided
Euler scheme, then overall stability is assured. Finally,

for basic schemes (dissipative or unitary) we show that overall
stability holds if the outflow boundary conditions are determined
by the right-sided explicit or implicit Euler schemes. These
examples incorporate many special cases discussed in recent

literature [1,2,3,4,5,6,9,10].
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In Sections 4 and 5 we prove the results stated in Section 3.

It should be pointed out that there is no difficulty in ex-
tending our stability criteria to cases with two boundaries. In
fact, if the corresponding left and right quarter-plane problems
are stable, then by Theorem 5.4 of [3], the original two-boundary
problem is stable as well.

Thanks are due to Bjorn Engquist and Stanley Osher for most
helpful discussions.
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1. Zne Rifference Amproximation

Consider the first order hyperbolic system of partial differential

equations
(1.1a) du(x,t)/d3t = Adu(x,t)/ox + Bu(x,t) + £(x,t), x>0, t>0,

where u(x,t) = (u(l)(x,t) ,...,u(n)(x,t)) ' 1s the vector of unknowns
(prime denoting the transpose), £ (x,t) = (f(l)(x,t),...,f(n)(x,t))' is
a glven vector, and A and B are fixed b X n matrices so that A 1is
Hermitian and nonsingular. Without restriction we may assume that A 1is

diagonal of the form

Je £ SN _
(1.2) A= ( nn)’ Allcg, aTTZ,,,
0 A

I iy

where A I and A are of orders fx¢{ and (n-£)x(n-2), respec-

tively
The solution of (l.l) is unijuely determined if we prescribe initial

values

(2.1v) x,0) = &x), x>0,

and boundary conditions

(1.1¢) 10,t)=5u(0,t) + gt), t >0,

where S is a fixed /x(n-Z) matrix, g(t) is a given f-vector, and

u:II - (u(l *+1)

~

u(n)) '

(1.3) 21 = (u(l)s"uu(z))' ’

,.'Q’

is a partition of U into inflow and mfflow unknowns, respectively,

corresponding to the partition of A.




1.2

In order to solve the initial-boundaxy‘value problem (1.1) by
difference approximations we introduce a mesh size h =Ax > 0, k = At >0,
such that A = h/k = constant. Using the notation X, (t) = v(vh,t) we
approximate (1.1a) by a consistent, two-sided, general multi-step basic

scheme of the form

. .
Q_,y,(t+k) = quoxv(t-ck) + & (t), ve=r,r+l,...,
o=
(1.4e)
o= LA moen, et

J=-r

vhere the nXxXn matrices A;jcr are polynomials in A and kB, and the
n-vectors gv(t) depend smoothly on f£(x,t) and its derivatives.

To solve (1l.4a) uniquely, we provide initial values
(lohb) xv(a'k) = §v(0'k), g = 0,..-,8, vV = 0,1,...,

vhere in addition we must specify; at each time step t = ok > sk, boundary
values x“(t+k), H=0y...,7-1. The required boundary values will be
determined by two sets of boundary conditions, the first of which is ob-

tained by taking the last n -/ components of general boundary conditions
of the form

q
rfg) T, (t+k) = Eo r‘(r“);ru(t - oK) + kg (t),

m
rﬁ“)‘aﬁcgﬁ)nﬂ M= 0yueisr-l, O=-l.q,

where the matrixes c§§) are polynamials in A and kB, the cg‘(‘)_ 1) are

nonsingular, and the n-vectors g“(t) are functions of £(x,t), g(t)

and their derivatives. If we put




i i AN a3 A

II(p) II(u)
€30 Co _ "
c(p’) = s x = s g = \
..‘lu oI I(n) c]I m(e) M !n M oI
Jo Jo M ~u

in accordance with the partitions of A apnd U in (1.2), (1.3), this
set of conditions takes the form

(1.4¢) TﬁI(“)gﬁ(t+ k) + T':‘_Iln(“) ;{f (t+k)

) 02}0 [Tfl(“)xﬁ(t“’k) . Tfn(“);ﬁ(t-ck)] +ig (),

.lim(u) = ;E;o C?U“(“)EJ, a=I,0I, p=0yee.,r-1.

For the second set of boundary conditions we use the analytic condition

(1.4d) .!(]):(t + k) = ng (t + k) + g(t + k)

together with r -1 additional conditions of the form

o)  T(t+x) = Dot EW (s ax) + 0F T4 iy ) g X,
H =19 J J J L

g = l,o.o’r"l,

I
where the matrices D:f_]I(“) and D;) () e« of orders £ X £ and

lx(n-l), respectively -- are polynomials in the blocks (AW)'J'
and kBoa, a,p = I,lI, of the matching partitions

IT.-1
«") 0 gl I
‘. 0 I T -1 \giI uI

. so that D§I () are hamogeneous in BII and BnI and the S-vectors

gﬁ(t) are again functions of £(x,t), g(t) and their derivatives.
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1.4

We remark that (l.kc,d,e) can be solved uniquely for the required
boundary values 3u(t +k),p=0,...,r=1, in terms of neighboring
values of ¥, at least for sufficiently small k. Indeed, since B

introduces an O(k) " perturbation of the matrix coefficients in (1l.ke,e),

it suffices to prove this statement for B = 0. But then, using the

properties of C*) and D, TI(B) it is not hard to see that cnl("')

Jjo
Dj I(n) =0 and that the CJI(I]_S“) are nonsingular; hence (1.hc)

uniquely determines the vectors gu (t+X),p=r-1,...,0 (in that
order) and substituting in (1.hd,e) we explicitly obtain ,yi‘(t +X),
h =05...,r=1,

We also remark that while it is a sta.né.ard matter to construct
boundary conditions of the form (1l.hec) to any degree of accuracy, the
construction of (1l.he) is less obvious: For example, using (1.1) we

find by induction on j > 1 that

(L.5) 2 50 = (1)) 300 - (00
and

Y 3
(1‘6) ;1' B(x:t) (I‘x) u(xot) +2 (x’t)’

wvhere the operators Lt’I‘x and the vectors y J(x,t), 2z J(x,t) are given
by -

i 3-1 4 Ad-1-1

1, = At (5% - B), ¥,(x,t) = Z (x)ta™ -a-m~(x,t)
a | J-l "1‘1

Irx = A = + B, gd(x,t) = Z (LX) - J i1 f(x,t).

Fow, if conditions of the form (l.ke) are required to p order of

accuracy, we take a Taylor expansion of g&(t) and use (1.5) and (1.1c)
to obtain
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1.5

wn  sleen - £ e ¥ oro L 0wy
" w0 ¥ 3

P (!913
] = 2 3t [(Lt)JB(O,t+k) -xJ(o,t+k)]I + o(h"ﬂ)
: =0 =

P J Sﬁ,]I (0,t+Xk) + g(t+k
=z ﬁg_?).. (Lt)J( d )8 )-xj(o,t+k)

3=0 uT (0,6+Kk)

+ o(x”*}),

where [-]I denotes the first £/ components of the enclosed vectors. We

see that ,gi(t+k) depends on time derivatives of gu(o,t-l-k) which, using

(1.6), may be replaced by space derivatives of gI (0,t+k) and BI(O,t+k).
Approximating these space derivatives by p -order accurate linear cambina-
tions of 3g(t+k),...,3§(t+k) and 3%(t+k),...,g]§(t+k), respectively,
we finally obtain (1l.4e) if u 1is replaced by v and terms of order

0(h°+1) are dropped.

A concrete example of a second order accurate boundary condition of

form (1.4e) for the special case B=2F = 0, is given in [2].
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2. The Reduced Problem
The difference approximation is completely defined now by (1.4) and

we wish to apply to it the stability theory of Gustafsson, Kreiss and
Sundstram [3]. Trying to fit our approximation into the form discussed
in [3] we realize, however, that while in the present paper the vector b
of the basic scheme (1l.4a) is a general combination of £ and its de-
rivatives, in [3] we bave b =f. 1Indeed, the general b admitted by us
here is necessary if arbitrary high order approximations to (1l.la) are
desired.* Yet, it is not hard to see that this generalization does not

affect the results of [3]. We conclude, therefore, that making the same

assumptions about our difference approximation as were made in [3], the

theory of Gustafsson et al. holds for our cagse and we raise the question

of stability in the sense of Definition 3.3 of [3].
In Theorem 2.1 below we shall reduce the above stability question to
that of a scalar outflow approximation with homogeneous boundary conditions.

To obtain this theorem we begin by recalling Lemma 10.3 of [3] which pro-

vides a necessary and sufficient determinental stability criterion given
entirely in terms of the principal part of the approximation, i.e., the
part obtained by neglecting B and eliminating all inhomogeneity vectors.
The mere existence of such a criterion implies tbat for stability rurposes
_ _ _ e 5 (Y R & (1) YN
we may stuty (14) with B,(t) = ,(+) = g () = g(t) = c. T = g MW,

bence, instead of (1.4) we may consider a basic scheme of the form

*
For example, the Lax-Wendroff scheme [7] for (1.la) is

X, (k) = Ay o (8) + A0y, (4) +Ay, . (£) +1) (£), Ay =T +kB+3x"8° <222,

1 =P +)%% - w(ABrEA) , B(x,t) = [T +3K(B+A 2 2 + D)glx,t)




8
Q-lgv(t + k) = 2z Qo,!v(t-dk) P Vv =r,ytl,...,
=0 .
(2.1a)
% = .‘)ér AJGEJ s BV, =31 » V = el,...,8,
with initial values
(2.1v) xv(qk) =§v(ak) , 0=0,...,8, V=0,1y000,
and boundary conditions
q
TLIE) By + k) = 2 ol T T (4o gx)
- ~ o0 (]
(2-1¢) .
T'III(H)= b c]I]I(p.)EJ s p=0,0..,r=1,
] 3=0 Jo
(2.19) Yo(t + ¥) = 8% (4 + K),
p
(2.1e) xﬁ(t +x) = = PTG (p 4y, Be1yee.,r-1,

1 J

where (2.1a) is now consistent with

(2.2) Ju/at = A d¥ /3x,

I:o

and the A, and ¢XT(M) ,re polynamials in A end in AT T,

J Jo
respectively.

We thus obtain,

-

LEMMA 2.1. Approximation (1.4) is stable if and only if its

principal part (2.1) is stable.

Setting :
II
AJO‘ 0
A = J"'r eeeypP o= -1 eeey8y
Jon ] ’ 2’y ’
o aRE

- Ja-




s Y W e =

£
i
s
)

2.3

according to the partition of A in (1.2),~ our next step i1s to split the
basic scheme (2.1a) and the initial values (2.1b) into

11 S WIIT
(2.30) Qg .313(1: + k)= GEOQU v, (t-ok) , Ve=r,r+le..,
P
I _ II.J
Q:t[:r - er A;jc E%,
(2.3v) fv(ck) = ?v(ok), O = 0yaeeyS, veO0y,l,ee0,
and i
8
Qﬁnxf(tﬂ*k) = ch anzf (t -ok), V=r,r+l...,
(2.4a) o
I TI_J
QO' = j-"z-)r AJU E s
(2.4b) gf(ak) = W (ok), 0=0,0u0,83 V= 0,003

thus viewing spproximation (2.1) as consisting of inflow and outflow parts
given by (2.3) (2.1d,e) and (2.4) (2.1c), respectively. Obviously, (2.1)
is stable if and only if both parts are. o

We observe that the outflow part (2.4). (2.1c) is self-contained and
provides, via (2.1d4,e), the boundary values !ﬁ(t-rk), H=0j400e,r=1,
We may therefore consider (2.ld,e) as arbitrary inhomogeneous boundary
values for the inflow part. So by the argument involving Lemma 10.3 of
(3] preceding Lemma 2.1, we may replace (2.1d,e) -- without affecting

stability -- by hamogenecus boundary values

(2.5) ,g‘f(t +X) =0, Hoe 0peeesr -1

This gives us a new self-contained inflow part, (2.3) (2.5), whose

Cook R




2.4

stability together with that of (2.4) (2.1c) is equivalent to the overall
stability of (2.1).

Since the A o and ?UI(") are diagonal, we write
Ay = atog(a ), CRT0) - atag(elt)),

and split (2.3) (2.5) and (2.4) (2.1c) into n scalar camponents, each

of the form '
‘i
lev(t-i-k) Z v, (t - ok), Ver,r+lye.., :
- 0=0 j
(2.62) f
Z e @
Q = a !
T gy Jo 7 ? ‘
(2.6b) vy(o‘k) = WOTV(O'k), g = 0,...,8, V= 0,1,..-,
(W) L)
(2060) T.l vu(t + k) = °§o TG' V‘u(t - Gk), U= 0,... ,1‘ - 1’

where (2.6a) is consistent with a corresponding component of (2.2),
(2.7) du/dt = a Ju/ox, a ¥ 0;
and the boundary conditions (2.6c) are either hamogeneous, i.e.,

(2.8) TS;) = 1, Tg_u) = 0, K= 0,.-.,1'-1, [« 0,.0.,8,
or are given by

(2.9) g“) 3-0 g‘*) B, cf)“)l) FO,u=0,...,r-1;, 0 = =l,...,0

. depending on vhether a <0 or a >0, respectively.
Since (2.1) is stable if and only if (2.3) (2.5) and (2.4) (2.1c) are
stable, and since the latter are stable if and only if their scalar
components are, we obtain impediately,




2.5

LEMMA 2,2, Approximation (2.1) is stable if and only if the scalar

camponents of (2.3) (2.5) and (2.4) (2.1c), given by (2.6) (2.8) and
(2.6) (2.9),are stable.

In Section 4 we shall prove:

IEMMA 2.3. The inflow approximation (2.6) (2.8) is unconditionally

stable.

This lemma -- due to Kreiss [4]) in the special case when the basic
scheme is dissipative, explicit and two-level -- combined with the pre-

vious two,finally ylelds the main result of this section:

THEOREM 2.1. Approximation (1.4) is stable if and only if the scalar

outflow camponents of its principal part are stable.

The above discussion implies that from now on we may reduce our
stability study to scalar approximations of form (2.6) with either (2.8)

or (2.9). We thus conclude this section by stating the basic assumptions

of [3] relating to these approximations which will hereafter hold through-

out the paper.

ASSUMPTION 2.1 (Assumption 3.1, [3]). Approximation (2.6) is solvable,
i.e., there exists a congtant K> 0 such that for each w ¢ za(x) there

" 48 a unique solution y ¢ za(x) to

Q¥, = V5 VEP,r+lyeee,

Tf:)y“‘ '“’ H= 0,...,!‘-1,




lIvll < xiwll.

Here, 32(::) is the space of all grid functions w = {wv} with

Il BEZ v |2 <

ASSUMPTION 2.2 (Assumption 5.1 [3]). The basic scheme (2.68) is

stable for the pure Cauchy problem, -« <y <w, That is, putting

(2.10) a,(z) = 8.1) " z 2701 8500 J =-Tyeee,D,

we have:

(1) The von Neumann condition; i.e., the solutions z(t) of the

equation

s

P
(2.11) z a,:,(z)ei‘.lg =0
J=-r

satisfy |2(t)] <1 for ama |e] <.

(11) Those =z(t) which lie on the unit circle, are simple roots of i’
(2.12). '

ASSUMPTION 2.3 (Assumption 5.4 [3]). The basic scheme (2.6a) is
either dissipative, i.e., the roots of (2.11) satisfy

(2.12) l2(e)| <1, 0<|e] <m;

or it is unitary, namely ’
(2.13) lz(e)l =1, el <

Finally, for convenience only we make,

ASSUMPTION 2.4 (Assumption 5.5 [3}).

(2.24) a(), a(z) 40 for (221 . %




3.1

3. Statement of Main Results and es.

The purpose of this section 1is to proﬁde easily checkable stability
criteria for outflow approximations of form (2.6) (2.9). 1In view of
Theorem 2.1 this is the key to the overall stability question of approxi-
mation (1.4).

Our results -- stated below and proved in Section 5 -- are essentially
independent of the basic scheme (2.6a) and are given solely in terms of
the boundary conditions. These results, however, do not apply to general
boundary conditions of form (2.6¢) (2.9); instead we are concerned in
this section with the translatory case where (2.6c) (2.9) are of the form

q ;
(5.2 T_lvu(t +k)= ;240 chu(t-- ok),

m
= J
Ta-dacjoE ,co(_l)fo-,p.=0,..-,r-l.

As mentioned in the introduction, such boundary conditions are

widely used In practice since the coefficients ¢ are independent

Jo
of # and all boundary values are conveniently determined by the
same procedure. Especially, when the numerical boundary consists ’
of a single grid point (r = 1), the computation at the boundary
is translatory by definition.

We assdcia.te novw with the boundary conditions (3.1) the boundary

characteristic function"
m

| (3.2) R(zsk) = = cd(z)'_t" R
_ 320
where
( - zq_ﬂl =g=1
(3.3) ey z) °J(-1) - =z z €yq0 J = 0,000 n.

This allows us to state

PV T Y S TR T Y AR e
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3.2

THEOREM 3.1. Let the basic scheme (2.6a) be two-level and

dissipative. Then the outflow approximation (2.6a,b) (3.1) is stable if

(3.4) R(z,x) #0 V|z[ >1, 0< x| <1.

EXAMPIE 3.1 (Kreiss [4, Thecrem 6); see also [1] and [2, Example (4.5)].)
Let the basic scheme (2.6a) be two-level and dissipative, and let the bound-

ary conditions be determined by horizontal extrapolation of order w-1, i.e.,
® J+1

(3.58) vu(t-fk) - 321 (‘3’)(-1) v“+3(t+k), p=Oyeasyr=1,
-

e The boundary characteristic function -~ which for ome-level boundary con-
ditions is always z-independent -- satisfies

(3.5v) R(x) = 1 - 351 ('5’)(-1)3"1 = (J.--:)m 0, o< |x|l<1.
d‘..\.

Hence, (3.4) holds and by Theorem 3.1, {(2.6a,b) (3.5) is stable.
It should be pointed out that Theorem 3.1 is generally false if the

codadinanika

basic scheme is of more than two levels. Surprisingly, even the well

known result in Example 3.1 may fail to hold; namely, outflow dissipative

mlti-level basic schemes (s > 3) with boundary values determined py

extrapolation of type (3.5a), are not always stable. For example, con- ;

sider the 3-level, 5-polint basic scheme
£ 2 =12
(3.6) v(t+k) = [I - 5T (E-1)°(1-E7) v, (t-K)
+2a(E-EYv (1), 0<e<l, Mgl -6, v =23,

with boundary values vu(t-&k), # = 0,1, determined by (3.5a). As
shown in Section 9 of [ 6] the basic scheme is dissipative, and it is not

hard to verify that the rest of our basic assumptions are fulfilled as well.




— o~y

Yet, although condition (3.4) of Theorem 3.1 is satisfied as exhibited

by (3.5b), we prove in Example 4.1 below that approximation (3.6) (3.5a)
is unstable.

Despite the above observation we can strengthen Theorem 3.1 for

smlti-level dissipative basic shcemes as follows.

3.2. let the basic scheme (2.6a) be dissipative. Then the
outflow approximation (2.6a,b) (3.1) is stable if (3.4) holds and if

(3.7) R(z,x=1) #0 V |z| =1, z#1.

Evidently, Example (3.6) (3.5a) implies that the additional condi-
tion (3.7) 1s essential for Thecrem 3.2.

Having stated Theorems 3.1, 3.2, we see that when the boundary con-
ditions (3.1) are not single-level (as in Examples 3.1), condition (3.4)
may become a cumbersame inequality in two variables, 2z and «. Seeki.:;g

a canvenlient alternative to these theorems, we extend the range of u in
(3.1) to obtain the boundary scheme,

q . .
T v, (t+k) = Eo T, (t - oK), R=0,1,2,...,
(3.8) '
m
TUSJEO cjo, Ed, [ 3 = -l’.oo’r’

and in analogy to the definitions in Assumptions 2.1, 2.2, we introduce:

DEFINITION 3.1. The boundary scheme (3.8) is said to be solvable
if there exists a constant K> 0 so that for each y ¢ Le(x) there 1s
a unique solution w e ta(x) to

(3'9) T.].'u = y"', H = 0’1’2’000’

P




‘ . with
, ~
| Ihvll < xliyll.

— DEFINITION 3.2, The boundary scheme is said to fulfill the von Neumann
1 condition if the roots z(¢) of

(3.10) BR(z,x = e:lg) = }5 e (z)eik -0
g=0 3

satisty |z(t)| <1 foram1 |¢| <. :
We can now state,

THEOREM 3.3 (1st Main Theorem). lLet the basic scheme (2.6a) be

dissipstive. If (3.7) holds, and if the boundary scheme (3.8) is solvable

and satisfies the von Neumann condition, then the outflow approximation
(2.6a,b) (3.1) is_stable.

This result is an extended analogue of the main theorem (Theorem 2.2)
Useful sufficient conditions for (3.7) as well as for the solvability

of the boundary scheme (3.8), are given in the next two lemmas.

IBMA 3.1. Condition (3.7) holds if any of the following 4s. satisfied:
(1) e boundary conditions (3.1) are two-level ' (i.e., q = 0) and

accurate of order zero at least.

(11) The boundary conditions are three-level, accurate of order

zero at least, and in addition R(z = -1, k = 1) ¢ 0.

IBMA 3.2. (1) The boundary scheme (3.8) is solvable if

q
T.l(ﬂ) E Eo cd("l) RJ f 0, 0 < |KI Sl-

)
L“M_J
AR i, BT 3 ntl i i T e il
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weir «ew%‘w -

(11) In perticular, explicit boundary schemes are always solvable.

(i s

EXAMPIE 3.2. (Compare the special cases [3/6.11)] and [2, Example 1].)
f‘ Let the basic scheme (2.6a) be dissipative and determine the boundary con-
| ditions by oblique extrapolation of order w-1l:

()
(3.11a) v (t43) = fl (;’)(-1)J+lvu+d[t-(,j-l)k], b= Oyeeeyrale.

The boundary characteristic function associated with (3.11a) is given by
@
(3.111) R(z,x) =1 - 2 (3‘)(-3.)"l+l 2 3d = (1-2710)Y,
=1
80 obviously (3.7) holds. Further, the roots of (3.11b) satisfy
. l2(x = eig)l = |e1§| =13

thus, the associated boundary scheme -- which by Lemma 3.2(1i) is solvable --
fulfills the von Neumann condition, and by Theorem 3.3, (2.6a,b) (3.11a)

is stable.

EXAMPIE 3.3. (Campare the special cases [3,(6.3¢)],[9,(3.%)] and

JSC T ——

[+, Example 4].) Let the basic scheme (2.6a) be dissipative and let the

boundary conditions be generated by the second order accurate Box-Scheme,

vu(t-l-k) + v'“_l(t-i-k) - ).a[v“+l(t+k) - vu(t+k)]
(3.12)

= vu(t)+vu+l(t) + al +1(1-.) -vu(t)], H= Oyeaeyr-1,

vﬂ-
By Lemma 3.1(1), (3.7) is fulfilled; and since

Re[T_,(x)] = 1 + Re(x) + Aa[1 - Re(x)] # 0, el <1,

then by Leamma 3.2(1) the boundary scheme is solvable. The boundary character-
istic function is




T

3.6

B(z,k) = 1+ & - Aa(k = 1) = 2 1[1 + & + ra(x - 1)],

80 1ts root satisfies

1g)|= 1+ et +ra(ett - 1) -

|2(x = e
1+ et na(ett - 1)

1, '§| T3

hence, the von Neumann condition holds as well, and Theorem 3.3 implies
stability.

EXAMPIE 3.4. (Compare the special case [10, (6.26)].) Let the basic
scheme (2.6a) be dissipative and define the boundary conditions by the
right-sided weighted Euler scheme

(3.13) vu(t+k) = vu(t-k)-l' M[2vu+1(t) -v“(t-rk) -vu(t -x)1,
0<)a<l, p=0,.ee,r-1.
The characteristic function for (3.13) is

R(z,x) = 1 - 22 . aa(2xzl - 1 - z'a)

and by eguating to zero we find its roots,

2(r=elt) o 1t 2B ey o\ Jow)Z e e PR - ()P

A

and (3.7) holds. In addition, since 0 <Aa <1 then |b(t)| <1,

|;| <Tw; 80

‘z(n = e“)' SL'*.'_*J.B(QJ. <1

e+ 1 S 4 Igl g

| apd the boundary scheme satisfies the von Neumann condition. Finally,

since the boundary scheme is explicit, Lemma 3.2(41) implies solvability,
apnd by Theorem 3.3 stability follows.

ndatiiads s o e+
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We remark that solvability of the boundary scheme is necessary for

Theorem 3.3. To see this, consider any dissipative basic scheme with

zero-order accurate boundary conditions of the form

(3.148) vp(t + k) -Gvu_'_l(t +k) = vu(t) - 6vu+1(t) s 6>1,p=0 ,..t,r-l.

By Lemma 3.1(i), (3.7) is fulfilled. Also the boundary characteristic
function is

(3.24) R(zyx) = (L-2")(1-6x) 3

hence its single root, 2z = 1, satisfies the von Neumann condition. As
shown in Example 4.2, however, the approximation is unstable, which is
explained by the failure of the associated boundary scheme to be solvable.
Indeed, taking y = 0 in (3.9) we find that the grid function
v={o* wo}: —o V¥ith arbitrary w,, belongs to £,(x) and satisfies
(3.9); thus we have neither the uniqueness mor the boundedness of W
required by Definition 3.1.

Condition (3.7) is also necessary for Theorem 3.3 as can be-shbwn
by taking (3.6) with 0 <MNa <4 and cmsistent boundary conditions of
the form

(3.15a) vu(t +k) = vu(t-k) + 27\a[vu+1(t-k) -vu(t-k)], p=0,1.

As mentioned before, the basic scheme is dissipative, and by Lemma 3.2(ii)
the boundary scheme is solvable. The boundary characteristic function
is

(3.15b) R(z,k) = 1-2z (1 + 2aalx -1)] ,

PPOR. ]




80 it is not hard to verify that the boundary scheme satisﬁ.es the

von Neumann condition (and in fact, even dissipative.) Yet, as demon-
strated by Example 4.3 below, (3.6) (3.15a) is unstable. The reason
Theorem 3.3 does not apply in this case is that R(z = -1,k =1) =0,
i.e., (3.7) is violated.

So far we have treated in this section the case where the basic
scheme is dissipative. For the general case where the basic scheme might

also be unitary we need,

DEFINITION 3.3. The boundary scheme (3.8) is said to be dissipative

if the roots of equation (3.10) satisfy |z(¢)| <1 for o0 < |¢]| <m
This enebles us to state,

THEOREM 3.4 (2nd Main Theorem). Let the basic scheme (2.6a) be dissi-

pative or unitary, let (3.7) hold, and let the boundary scheme (3.8) be

solvable and dissipative. Then the outflow approximation (2.6a,b) (3.1)

is stable.

EXAMPLE 3.5. (Compare the special cases [3, (6.3a)], [8, (3.2)]

and [2, Example 2].) Let the basic sehemc (2.6a) be dissipative or unitary

and let the boundary conditions be generated by the right-sided explicit

Euler HBcheme,

(3.16) vu(t+k) = vu(t)+ks[v“+l(t) -vp(t)], 0 <Aa <1, u=0,s00,r -1,

The boundary characteristic function is now

R(z,k) = 1 - 2" + re(x -1)1,

and since 0 < A\a <1, 4its root satisfies
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|z(x = eig)la = (2e)? + (1-2a)® + 2Na(1-2Aa)cos ¢
< (7\9,)2 + (1-7\3)2 +2\a(l-Na) =1, 0<|t]<T;

hence the corresponding boundary scheme is dissipative. Moreover, since
(3.16) is two-level, first order accurate and explicit, Lemmas 3.1(i)
and 3.2(ii) imply that (3.7) holds and that the boundary scheme is
solvable. The hypotheses or Theorem 3.4 are fulfilled therefore, and
approximation (2.6a,b) (3.16) is stable.

EXAMPIE 3.6. (Compare the special cases [8, (3.3)) and [2, Example 3].)
Let the basic scheme (2.6a) be dissipative or unitary, and define the
boundary conditions by the right-sided, first order accurate, implicit
Euler scheme:

(3.17) v“(t + k) -Aalv (¢ + X) -v, (6 + B)]=v (t), p=0,...,r-1.
The characteristic function associated with (3.17) is given by
-1
R(zye) = 1=-2a(k -1) -2 3

80 1ts root satisfies

|z(x = ei§)|2 = [()\a.-)2 + (l+)\a)2-27\a(1+7\a)cos g]-l

ST(e)? + (1+2a)2-2a(1+28))1 711, 0<|t]| <7

and the boundary scheme is dissipative. Also, Lemma 3.1(1i) implies (3.7);

and since
Re[T_l(n)]= 1+ Na[1-Re(x)] £0 , x| <21,

then by Lemma 3.2(i) the boundary scheme is solvable. Thus, Theorem 3.k
applies and stability is assured.

e




In concluding this section we claim that condition (3.7) is
necessary for Theorem 3.k (as well as for Theorem 3.3.) For example s

consider the nondissipative, 3-level Leap-Frog scheme

(3.18) v (t+k) = v, (t-K)+halv, (t) -v,_1(£)], 0 <da <4, valn2,... ,

where for the boundary condition teke (3.15a) with u = 0. As mentioned
earlier, the corresponding boundary scheme is solvable and dissipative
whereas (3.7) is violated. In Example 4.4 we show that approximation
(3.18) (3.15a) is unstable, thus proving our claim.

We conjecture that the solvability and dissipativity of the

boundary scheme are essential for Theorem 3.k.

.q;
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4.1

4. A priliminary Stability Criterion.

‘In this section we use the theory of Gustafsson et al.[3] to obtain,
in Theorem 4.2 below, a preliminary stability criterion for approximation
(2.6). This criterion will be a major tool in proving Lemma 2.3 and
Theorems 3.1- 3.4,

Following [3] we associate with approximation (2.6) the resolvent

equation
s

(4.1a) (Q_l - Z_‘O 291 Qa)wv =0 , Varr+l...,
g=

with baundary conditions

(h.lb) (TSL]&.) - é z'c-l Téu))'wu =0 s | u-zo,.'-,r-l 9
g=

where z £ 0 is a fixed arbitrary complex number. This can be written

(4.2) ' . G(z)w =0 ,

where G(z) is a linear bounded operator on lz(x) defined by the left
hand sides of (4.1). We say that z is an eigenvalue of appro:d.ma.:hion
(2.6) if (4.2) has a nontrivial solution w = w(z) e lz(x). If z 1is
not an eigenvalue but there exists a sequence {w(z)(")}:;:l c za(x) with
“w(z)(j)ll = 1 such that

&z) w(z)) 750>

we call z a generalized eigenvalue of approximation (2.6).
Having these definitions, we restate the main result of [3] in the

language of [5]:

SR BP0 B
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THEOREM 4.1 (Gustafsson et al. [3].) Approximation (2.6) is

stable if and only if it has no eigenvalues nor generalized eigen-
values z with |[z| > 1.

- Seeking a practical version or; Theorem 4.1, we first need the

following characterization of solvability.

ILEMMA 4.1 (essentially Osher, {8].) Approximstion (2.6) is_
solvable if and only if

(i) The difference equations

Q"lwv=0 b V=1‘,r+1,-..
(%.2)
Tf‘i)wu =0 , pw=0,.c.,r=1 ,

have no nontrivial solution W ¢ ta(x).

(i11) The equation

= | J =
(u '33) Q-l(n ) Jér ad(-l)ﬂ 0
hes precisely r, solutions k, with 0 < [k JI < 1 where

(%.30) r, = max{-} fag0 1) £0) .
(111) Q_l(n) does not vanish on the unit circle, i.e.,

Q-l(n) fo ’ |N| =1 .

Proof. Conditions (1) and (iii) coincide with Osher's condi-
tions (d) and (g) in [8). Regarding (ii), we note that Xy 20

(or else the basic scheme is unnaturally shifted to the right.)

Hence,

ekt e A e
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- J+r
Q-l(K) =R ro % 0

a L3
3(-1)
J=.r0

has & single pole of order r, at the origin. Since by (111), Q_l(n)
does not vanish on the unit circle, we use the Argument Principle to

£ind that there is no change in arg[q_l(n = eig)] as ¢t varies from

-r to 7 if and only if (ii) holds. Thus, conditions (i) - (1ii) are -

equivalent to (d) (e) (g) in [8], and Theorem I of [8] completes the

proof.

Recalling the functions a.J(z) in (2.10), we introduce now the

characteristic equation of the basic scheme (2.6&),

(h.4) . P(zx) = 5 aJ(z)nJ =0 ,

J=-r
whose r + p roots k J(z) play a central role in determining the

eigenvalues of approximation (2.6).

LEMMA 4.2 (compere Lemmas 5.1 and 5.2, [3).) For |z| > 1,
the characteristic equation (4.4) has precisely r roots with

0< |uj(z)| <1, p roots with |nJ(z)| > 1, and no roots with

'KJ(Z)l = 1.

Proof. By Assumption 2.4, the leading coefficients of P(z,r)
do not vanish for |z| > 1; bence (4.4) has r + p roots, all
satisfying |n 3(2“ > 0. Since these roots are the solutions of the
the polynomial equation

(.5) Pr(z”‘) = "rp(z"‘) =-0 ’

. we may study (4.5) rather than (4.4).

FRPS
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By Assumption 2.2 (1),
B =ef) 40, [sf>1, felsT,

i.e., for |z| > 1, Pr(z,n) does not vanish on the unit circle |x| = 1.

Since the roots of Pr(z,n) are continuous functions of 2z, it follows

that for .|z| > 1 the number of roots satisfying 0 < InJ(z)I <1l is ... .

independent of 2z. In particular, consider the limit case

+r

Pr(z S oK) = 5 ad(-l)nd .

J=-r
By Lemma 4.1 (iii),

Plzow,x=ef)fo, jt|<m ,

so by continuity again, the number of roots of Pr(z,u) satisfying
0 < |x J(z)l < 1 may be determining by counting the roots
kg IKJ] <1, of P (z =), We have

r-r P ;)+r0
Pr(z 2 o,r) =.K 1=, aj(_;)n

where r, is defined in (4.3b). Moreover, by Lemma 4.1(ii),
J+r

J P
Dg:-roa:j(-l)" hence Z,j:-ro 84(-1)" have precisely r, roots
with x| < 1. Thus, with its additional r-r, zeroes, Pr(z—peo,n)

has r roots with |¢| <1 and the lemma follows.

According to the above lemma the roots of the characteristic
equation (4.%4) split for |z| > 1 into tvo'groups: r inner roots
satisfying 0 < I"J(z)l <1 and p outer roots with InJ(z)l > 1.
By continuity, therefore, these groups of inner and outer roots

remain vwell defined for |z|>1 as well, where milder inequalities,

— e — N

1o
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|uJ(z)| <1l and Inj(z)lz 1, hold, respectively. Since by Assumption
2.4, k =0 is never a root of P(z,x) for |z| > 1, we finally
obtain:

IEMA 4.3. For |z] > 1, the r + p roots u'_j(z) of the charac-

teristic equation (L4.4) split into r inner roots with 0<|nd(z)| <1

and p outer roots with Inj(z)l > 1.

Now, let z be given. It is well known (e.g. [5]) that z is
an eigenvalue or a generlized eigenvalue of apmroximation (2.6) if and
only if equations (4.1) have a nontrivial solution of the form

N -l

(4.6) a}itl B§0 T as(v)n (2)', v=0,1,2,...,

where & a(z) s L<a <N, are the distinct inner roots of the character-
istic equation (4.4) each with multiplicity M, = Ma(z). Here, Qas( v)
are arbitrary polynomials in v with deg[§aa(v)] =B, and T, are
coefficients whose number, by lemma 4.3, is precisely

2 M, .

G=1
To £find the T __ we substitute (4.6) in (4.1b) and obtain a linear

ap
homogeneous system of r equations with r unknowns,

(.7) Jz)r' =0 ,

vhere J(z) is an r x r coefficient matrix and T = (1(':5) is the
unknown vector. Obviously, w = w(z) in (4.6) does not vanish if
and only if (4.7) has a nontrivial solution. T; hence, z is an

eigenvalue or a generalized eigenvalue of approximation (2.6) if and . ... . .

only if det J(z) # 0.




T,
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This observation combined with Theorem 3.1 gives the following
equivalent of Lemma 10.3 of [3]:

IBMMA 4.4 (Gustafsson et al. [3].) Approximation (2.6) is_

stable if and only if

det J(z) 40 , lz| >1 .

Now for z, |z| > 1, with correspanding distinct inner roots
Ky = na(z), l<a< N, each with multiplicity M,, ve make a

specific choice for the polynomials QaB(v) in (4.6):

QaB(v) = na(z)'B B!(;) .

Thus, (4.6) becomes
N -l

v, = 1 B=0 ‘l&ﬂﬁ ( ) v ’ v = 0,1,2,...,
Q=

and substituting in (4.1b) -~ with T‘(,"') given by either (2.8) or

(2.9) -- we obtain explicit expressions for the system J(z)T' =0, namely

N Ma-l - .

(4.8) QE]_ 3§Q 5!(;) Rg TC!B s p=0,.0.,r-1 , }

or ?
X W o(u) 8 -a-1 _(u)\;, [u+d ptd-p

I N N

according to the inflow and outflow cases (a <0 or a> 0),
respectively. To further simplify these expressions we use the

boundary coefficients to introduce r boundary functions .- g}
»
3

(20) o<
R(zx) = q

9 ( =1

- d-o( J%Zl) - T g:)> o, ese,

(4.20)

“ .o’oon’r-l L]

S e s . . B o Y,




h.7

Sirce
B 1B
PR (zx) B’(a)." ' a<0,
B "\nm q
o () - 201 (B))g futd) u+i-B
JEO(J( D L% {FWIP, aso,

systems (4.8) and (4.9) both take the unified compact form

N M 1T aPR (z)
z '5.‘ ""LB__ *T5=0 5 W=0,..,r-1;
a=1 B=0 n e (z)

80 the coefficient matrix J( z) can be conveniently written as
(4.11a) J(z) = [H(z,nl,Ml),...,H(z,nN,MN)] ,

where H(z,na,Ma), lgagN, are the rxM, blocks

(k.11b) H(z,na,Ma)

Tog(z) ] [Rplown) iy (20) ]|
Rl(z,n) \ Rl(z,n) aMa-l Rl(z,n)
i . > o . ’.”’anma-l :
LRr-l Z,K )- L e l(z,n) LRr-l(z’n)_- Kslta(z)

Thig expression for J(z) gives us a concrete analogue of

Lemma 4.4:

-

LEMMA L.5. Approximation (2.6) gtable if or

gyvery z, |z| 21,

(k.12) det J(z) = det[H(z,nl, 1), ,H(z,nn,un)] 0

where « =« (z), Lga N, are the distinct inner roots of (4.4),
each with multiplicity M, = Ma(z).




A milder version of this theorem is éiven in Theoreiﬁ‘3.2, [(2].

We return now to the case where the inflow boundary conditions
are, as before, homogeneous and given by (2.6c) (2.8), whereas the
outflow conditions (2.6¢c) (2.9) are translatory as described in
(3.1). In this case -- where both the inflow and outflow conditions

are of translatory type -- the boundary functions in (4.10) become

M s a<0
R (zx) =
K m q
z (c -3 29t )u“ﬂ , a>0,
J=0 J('l) o=0 Jo

(4.13)
uso,...,l‘-l .

Hence, denoting
R(zx) = Ry(z,x)

(note: for a >0 this definition coincides with the one in (3.2)),
we find that

Ru(z,n) =n“R(;z,u) sy M=0,...,r=1;

so the blocks of J(z) in (4.11b) became

(4.14) H(z,x M)

T R(zx) | [ R(z,x) ] [ R(z, x) 1

kR(z,x) kR(z,k) M -1 xR(z,x)
= . l . -é—a— . - _
: > 3¢ : seres SR :
o

kT=IR(z,x) x T-lp(zm) ® T-Ip(z,x)

bL o . .4‘ " alta .

This allows us to simplify Lemma 4.5 as follows.
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THEOREM 4.2 (compare Theorem 4.1, [2].) Approximation (2.6) with
translatory boundary conditions given by either (3.1) for a> 0 or

(2.8) for a <0, 4is stable if and only if for every 1z, |z] > 1,

with corresponding inner roots « (z), 1< a g N, we have

(4.15) R(z,na) #0, a=1,...,§ .

Proof. Suppose R(z,na) =0 for some z, [z| >1, witha
corresponding inner root a Then clearly, the first column of
H(z,na,Ma) in (4.14) vanishes; thus det J(z) = 0, and by Lemma 4.5
we have instability.

Conversely, let (4.15) hold and take an arbitrary z, |z| > 1,
with distinct inner roots & o‘(z), l<a< N. To prove stability it

suffices, by lemma 4.5, to verify that the rows of

(4.16) J(z) = [H(z"‘lsul):'-°’H(zs“NsMN)]

are linearly independent, where the H(z,x a’Ma) are given by (4.14).
For that purpose, let

r-1 n“R(z K 1)

(4.17) 2 Yy "n’[ =0

NR(Z”‘ ]/BKN

be a vanishing linear combination of the rows of (L4.16), and let us

rewrite (4.17) as r scalar equations

a9 -1
(4.18) | R(zx) | T v k¥ =0, l<ca<N,0<j<cM-1..
2 = * Jf . == ==«
=x :

8ince by hypothesis
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Rzx) . #0 , lgagh ,
a

we expend the partial derivatives in (4.18) by Leibnitz' rule and
use induction on j> 0 to find that the sum in (4.18) must have

vanishing derivatives, i.e.,

d;j r-l
] T oy kb =0, l<a<N, 0<J<M
a? [u=0 ¥ Je=x
a
Consequently, the polynomial
r-1

Y(K)E b 'ynp
u=0 *

which is of degree r-1 at most, has r roots ‘(na, l<ac<h,
each with multiplicity Ma) s0 Y¥(x) = 0 and the coefficients
Y, must vanish. By (4.17), therefore, the rows of (4.16) are

linearly independent and stability follows.

The proof of lLemma 2.3 and the counterexamples of Section 3

are almost at hand now.

Proof of lemma 2.3. By (4.10), the boundary function

associated with the homogeneous boundary conditions (2.6¢) (2.8) is

Thus, (4.15) holds trivially, and by the last theorem approximation
(2.6) (2.8) is stable. |

EXAMPIE 4.1. Consider the dissipative basic scheme (3.6)
with the boundary conditions in (3.5a). The boundary function is
given by (3.5b) and for 2 = -1 it can be shown (as in Lemma 6.2,

U Pl g A e (PSR
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[3]) that the characteristic equation has exactly one inner root

satisfying ®(z = -1) = 1. Hence, R(z = -1, ® = 1) = 0, and by

Rt
O

Theorem 4.2 we have instability.

EXAMPIE 4.2. Take the zero-order accurate boundary canditions
(3.14a) in combination with any basic scheme (dissipative or even
unitary.) By (3.1%b), R(z =1,k) =0 forall k; soat z=1
the characteristic boundary function vanishes for all inner roots,

and Theorem 4.2 implies instability.

EXAMPLE 4.3. Take the same basic scheme as in Example L.l
with the boundary conditions in (3.15a). As in Example L.l we have
an immer root k(z = -1) = 1 for which, by (3.15b), R(z,x) = 0.
Hence, (4.15) 1s violated and approximation (3.6) (3.15) is

unstable.

~—..

EXAMPLE 4.4. Consider the leap-Frog scheme (3.18) with a

boundary condition as in Example 4.3. In Lemma 6.2 [3] it is
shown that the characteristic equation of (3.18) has a single inner
root k(z = -1) = 1. So as in the previous example, R(z=-1,k =1) =0,

and by Theorem 4.2 instability follows.

i
{
§
'




2. Proof of Main Results.

We turn now to prove the results stated in Section 3, beginning
with the following lemma.

IEMMA 5.1. For z =1, the characteristic equation (&.%) has

exactly one root satisfying x(z = 1) = 1. In the outflow case

(a > 0) this is always an outer root.

Proof. Since the basic scheme (2.6a) is consistent with

dufot =adufax , a8 f0,

the coefficients a o must satisfy the ordinary consistency conditions

éa( =2£

-1) g=0 J=-r ;

Jér Jay(-1) = Eo Jér J8 g ~he E (0 + 1) J§r %50

]

which can be written as

(5-1a) > az)] =0, ;
J=-r z=l I
. i
(5.1v) ﬁ J&J(z)l = =A@ 5 J(z)' *,
J=-r z=1 Ja-r z=1 :
or equivalently as
(5.2a) P(z,x) =0 ,
2= =1
(5.2) g Rew)] = -he R R(zx) -
=t =] it =]
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5.2

Here, ad(z) and P(z,x) are defined in (2.1) and (4.4), respectively.

£ &J(Z) =0

10 o

and by Assumption 2.2(ii) this solution is simple. Hence,

d
az Jgir aj(z} z=1 o
so by (5.2b)
(5.3) 2 P(z,k) = a2 P(z,x) = a3 5 a.(z) £0 .
o z= =1 8z z=t=1 dz J=-r J z2=1

Having (5.2a) and (5.3), we employ the implicit function theorem to
find that in the neighborhood of 2z =1 the characteristic equation
(4.4) can be uniquely solved for « as a differentiable function of
z such that

(5.4) k(z =1) =1 .

This is the first part of the lemma.

To complete the proof consider the outflow case a > 0. Then

(5.2b) yields
(5.5)  &lzdy ) _2F fap oo,
dz z=1 z/ ok " Aa

so by (5.4) (5.5), for z = 1 +¢ with sufficiently small e > 0,

k(z) = 1+ ()\a)'l €+ 0(82) >1.

That is, for 2z in the right real neighborhood of z = 1,

I“(z)l >1,

J e s e Stk I R A L e ST I e e D
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and by Lemma 4.2 this inequality is valid for all z, |z| > 1. By
definition, therefore, x(z) of (5.4) is an outer root of (4.4) and the
lemma follows.

Proof of Theorem 3.1. Take an arbitrary z, |z > 1, and let
K o™ K a(z) be a corresponding inner root. In order to prove
stability it suffices, by Theorem 4.2, to show that

(5.4) R(zk ) 0 .

By lemma 4.3, we have 0 < |na(z)| < 1, where for 0<|na(z)| <1,

(5.4) is implied by (3.4). Hence, we may restrict attention to inner

roots on the unit circle, i.e., na(z) = eig, J]¢] < 7. Since the basic
scheme is dissipative then by (2.12), the solutions z = z{k) of (4.4)
satisty

(5.5) la(e = e8] <1, 0< |t} <.

Thus, for |z| > 1, (4.4) has no roots « et 0 < le] <, ana

our discussion is further reduced to |z} > 1, k(z) = 1. Next, by
continuity, (5.5) yields o

lz2(k =1)] <1

80 k =1 1s ruled out as an inner root for |z| > 1l and it remains
to consider |z| =1, ko{2) = 1. Finally, by Lemma 5.1, k =1 is

is excluded as an inner root for z =1 and we are left with
(5.6) lz] =1, z4#1, r{2) =1

8ince the basic scheme is consistent then by (5.2a),

(5.7) P(z=1, k =1)=0 .
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Moreover, since the basic scheme is two-level, P(z,x) is a poly-
nomial. of first degree in z']‘ where, by (5.7), its only root is
z-l = 1. Thus,

Pz =1) 40, |zl =1, z41 ,

and the proof is complete.

For Theorem 3.2 we repeat the previous proof to the point where

the remaining values of z and « O‘(z) to be studied are given in

1

(5.6). At this point, (3.7) implies (5.4) and stability is assured.

To prove Theorems 3.3 and 3.4 we need yet another result.

IEMMA 5.2. Let the boundary scheme (3.8) be solvable and

satisfy the von Neumann condition. Then,

(5.8) R(zyx) £0, |kl <1, [2]/>1 ,
and
15-9) R(zk) 40, fe] <1, jz|22 .

Proof. Apply Lemma 4.1 to the solvable boundary scheme, rather
than to the basic scheme, with equation (4.3a) replaced by its

boundary counterpart

Ty (€)= 2 > C3(-1)" -0

Since the boundary scheme is one sided where by (3.1) ¢ 3(-1) £o,
then parts (ii) - (iii) of the lemma imply that !

T ()0 , 0<]e] g1

We also have,

so all told

(5.10)




Since the boundary scheme satisfies van Neumann condition then
by (3.10), for |z| > 1, R(z,x) does not vanish on the unit circle
|[¢] = 1. Hence -- as in the proof of Lemma 4.2 -~ the number of

roots of R(z,x) satisfying |«(z)] < 1 is independent of z, |z|>1,

"and, by continuity, equals that of the roots k, |k| < 1, of

R(z »w, k) = T_l(K) =0

By (5.10), therefore, R(z,x) has no roots |k(z)] <1 for |z| > 1,
and (5.8) holds.

To obtain (5.9), we merely note that by (5.8), the roots x(z)
of R(z,x) satisfy |«(z)] > 1 if |z| > 1. Thus, for |z| > 1,

those continuous roots satisfy [«(z)| > 1 and the lemma follows.

Proof of Theorem 3.3. Since the boundary scheme is solvable and’

satisfies the von Neumann condition, Iemma 5.1 implies (3.%4), and by

Theorem 3.2, approximation (2.6a,b) (3.1) is stable.

Proof of Theorem 3.4. As in the proof of Theorem 3.1, let =z

satisfy |z| > 1, let na(z), |na(t)| <1, be a corresponding

inner root, and let us prove that
(5'11) R(z,na) # 0 -

By Theorem 4.2, this will implies stability.
Comparing Definitions 3.2 and 3.3, we immediately see that since
the boundary scheme is dissipative, it satisfies the von Neumann

condition; so Lemma 5.2 applies, and it remains to verify (5.11) for
z and na(z) with

Izl =1, ka(’” =1 .
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Indeed, for

|z| =1, |“a(z)' =1, Ka(z) f 1,

(5.11) follows from the dissipativity of the boundary scheme as

described in Definition 3.3; for
'zl =1, 241, "a(z)=1,

(5.11) is implied by (3.7); and finally, by Lemma 5.1, k =1 is
never an inner root for z = 1. Thus, (5.11) is verified and the

theorem is proven.
We conclude the paper by proving Lemmas 3.1 and 3.2.

Proof of Lemma 3.1. (i) Let the boundary scheme (3.1) be

two-level and accurate of order zero at least. By zero-order

accuracy, the boundary coefficlients satisfy

n }5 n
JEO cJ(‘l) = °=0 J?—-O c:]o 3
hence :
(5.12) R(z,n)lz___“g:L =0 .

Since the boundary scheme is two-level, R(z,x = 1) is a first

degree polynamial in z':L whose single root, by (5.12), is

et - 1. Consequently,

R(ze =1) 0, |zl =2, |g| #1 ,

and (3.7) holds.

(1) Im the three-level case, R(z,x = 1) is a 2nd degree

1

polynomial in z = with real coefficients. Ry (5:12) again,

2 =1 is one of the roots, so the other is real as well,

namely

N S O I G ATE . L )T e e e AR e e -
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(5.13) Rzxk =1) 40, |zl =1, z4£+1 .
Combining (5.13) with our hypothesis | *

Rz =-1,xk=1)£0 ,

(3.7) follows and the proof is complete.

, Proof of lemma 3.2. As in the proof of lemma 5.2, apply
: Lemma 4.1 to the boundary scheme (3.8). Since the boundary scheme

is right sided with Co(-1) # 0 , we find that it is solvable if
(a) the difference equations

m
= E = = cee ]
(5.14) T, ¥, o c:j(-l) wv+:j o, v =0,1,2,..., 5

have no nontrivial solution w ¢ le(x), and

(b) the hypothesis of the present lemma is fulfilled, i.e.,

m
(5.5) T .(k)=7T ¢ kd £0 0<ikl <1 .
-1 420 J(-l) 7‘ ’ l | S

Now, it is well known that the most general solution of (5.14) in
tz(x) is a cambination of powers of the roots of T_l(x) which lie
inside the wnit disc. Thus, if (5.15) holds then the only solution of

(5.14) is the trivial one, namely (b) implies (a) and the lemma

follows.
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