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I. INTRODUCTION

In Reference 1 we presented a derivation of both the

electric field integro-differential equation (EFIDE) and the
magnetic field integral equation (MFIE) for the determination

of the current density induced on the surface of metallic
(perfectly conducting) structures situated in a vacuum half-
space above a lossy half-space. We showed, by comparison to

experiments performed at the University of Michigan, the quality
of the predictions that could be obtained by using the patch

zoning method to solve the MFIE for two limiting cases of the

lossy half-space: free-space and perfectly conducting. The
code developed for this purpose is capable of obtaining surface

current predictions for an aircraft model consisting of inter-

secting elliptical cylinders (Figure 1), optionally in the

presence of a perfectly conducting ground plane. Reference 1
presents comparisons of predictions versus experiments for the
full aircraft model situated in free-space as well as a cylinder

above a perfectly conducting half-space.

In this report we present the result of our efforts to enhance
our computer code (NEC-2A) by including the capability to treat
the same aircraft model in the presence of a lossy half-space.
Before embarking on the extensive programming effort required

to solve the MFIE for the two-layered problem, we checked the
validity of our equations by rederiving them in an alternate

manner. We present this derivation here, as well as its general-

ization to multilayered horizontally or radially stratified

media. We show that the electric dipole-excited electric or
magnetic fields are the fundamental quantities required to

determine the EFIDE and the MFIE respectively. We utilize
these dipole-excited quantities to construct Green's dyadics,
and the procedure for doing this is presented in detail. The

determination of these dipole-excited fields is basically as

7



Figure I. Aircraft Model
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9i.

tractable for the multilayered problem as it is for the two-

layered problem. Following a procedure presented in the book
by Felsen and Marcuvitz (Reference 2), one can determine all
the necessary dipole-excited fields from scalar potentials.

Utilizing these potentials and satisfying boundary conditions

leads to a system of linear algebraic equations for a finite
number of unknown constants and this number depends linearly

on the number of layers used to describe the medium. If we
intend to develop a computer code for the use of the dipole

solutions, e.g., the MFIE, then the code can be written to
solve the finite system of equations as part of its execution.
To make the existence of the dipole-excited solutions have

more than just a potential role for future work, we present

the explicit use of these dipole solutions (Reference 3) for
the horizontally stratified two-layered medium to obtain exactly

the same EFIDE and MFIE derived in Reference 1 and thus complete

the desired alternate derivation. Further use of our general.

formulation can be made by using both the analysis and computer

code described in Reference 4 for the horizontally stratified
three-layered medium. Additional material on dipole-excited

fields in a multilayered medium can be found in Reference 5.

We exercised certain switches in the computer code developed

for the two-layered problem to compare our code's capabilities
to two other sets of data for the response of a perfectly con-

ducting, finite length cylinder in the proximity of planar
lossy material. One set of data is the current density measured

on the cylinder when it was placed in front of lossy material
within the anechoic chamber at the University of Michigan

(Reference 6). The other set of data furnished to us by G. J.

Burke was calculated as a special case of a Lawrence Livermore
Laboratory code's capability which corresponds to a special

case of our code's capability. A more detailed description of

that code can be found in Reference 7. This data was the plane

9



wave induced bulk current on a finite cylinder above and

parallel to a lossy half-space. The results of both the
Michigan and Livermore comparisons as well as other inter-

mediate tests are presented in this report.

10



;" II. SURFACE INTEGRAL REPRESENTATIONS FOR SCATTERING
BY AN OBJECT EMBEDDED IN A STRATIFIED MEDIUM

The presentation of this analysis is facilitated by refer-

ring to Figure 2. In that figure we divide all of space into

N distinct volumes and label the volume containing the object
with the index N s . Each volume is characterized by different

electrical parameters so that Maxwell's equations appropriate

for a particular volume V £ are written as

7 x E (r) =fli2.H (r) (1)

V x Hla(r) - -ic Ek (r) + Ja (r) (2)

where 1=1,2,...,N and for the case that will be developed in

most detail

E. = £2.R + ic 1I (3)

The rigid source terms satisfy the condition

t(r) r 0 only if reV uCV (4)

and in this section a=a will correspond to mathematically

introduced delta function sources and c=b will correspond to

the physical distribution of sources. The analysis that will

be presented has applicability for more general situations
than the stratified model of all space depicted in Figure 2;

however, that situation includes all cases of current interest.

When the sources are delta function sources located at a

point r, then we introduce the common notation

4i
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(5a)

H(r) SE
(5b)

Whenever the sources are delta functions, we will consider the

scattering body to be absent. We now use the vector identity

V-(AxB) B"(VxA) - _.(VxB)

to obtain

xH !,L~x.-E VxHV*-Ekax-!b-zD-L a) .b La-ka -kb

- (HVxE-E VxHa) (6)

The quantities E a and Hla satisfy Equations 1 and 2 for a=a,

and similarly Ekb and Hlb satisfy Equations 1 and 2 for a=b.

substituting these versions of Equations 1 and 2 into the

right-hand side of Equation 6 and then cancelling terms, we

obtain

V-Dk = _b . Ja-Ea- JLb (7)

Da E a_ b - b a  
(8)

Integrating both sides of Equation 7 over V and employing

the divergence theorem, we obtain

I Isk,£I + 1s 9,+1 + 8,N sIs IVba- IVab (9)

where

II sX,k - nf R. D itdS (10)

L,k

13



I f nE'J dS

I -Vk E - B dV (12)
V,

where S£, k is the surface interface between volumes Vt and Vk;
nZ,k is the normal to S£, k directed outward from V. into Vk;

S is the surface of the perfectly conducting object which is

embedded in VN ; fl is the inward normal to S, and 6£,Ns is

the Kronecker delta function. In Appendix A it is argued

that despite the absence of physical surfaces for I and

IsN,N+l both integrals have zero value.

We now focus attention on Equation 9 for the situation

where k = s; the only Ita source is in VN  and has the form
s

= s 6 (r- (13)

For this case, Equation 9 becomes

FN ab + is -N b (-a) (14)
5 5

where FN ab IsNs Ns-l + sNs,Ns +1 VN ab (15)

In Appendix A, it will be shown that FNsab is independent of

the presence (or absence) of the embedded perfect conductor

for a general distribution of Ztb's, and this proof will

utilize Equation 9 for Z not being restricted to Ns . Using

the fact that Fsa does not depend on the scattering object,

we will give this quantity explicit meaning. We return to

Equations 13 and 14 and consider that we sequentially intro-

duce the following three sources all located at r

14
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a 1(r--a) i=1,2,3 (16)

with (0AVa2 ,a3) forming an orthonormal set, and for each i

we obtain, in the same manner that Equation 14 followed from

Equation 13, the relation

i i AFN'ab +i =is i " Nah (17a)

where

E ab - s(r) (17b)

EN8 b ~s -a

Utilizing the independence of the unit vectors, we rewrite

this set of equations as a single vector equation.

ENsab + I = 1*aE~sab

-ss
+ a2 a

3 a(- 3 ' ENsb) (18)

where

F F + F2  + aF 3  (19)

Nab 1 Nsab 2FNsab 3 Nsab

and

s + 1 3 (20)

15
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The right-hand side of Equation 18 can be interpreted by
noting that the identity dyadic I is expressible in terms

of the set a, a as

a + a2&2 + a3a3  (21)

so that

al(li1ENIab) + AaVNb)+ a3(aVEN~ab) (22)

- .4 N ab -- N ab
S S

and Equation 18 becomes

F ab + IS =E sab (23)

Using the fact that FNsab is independent of S, we consider

the special case of Equation 23 where S vanishes and in turn

IS vanishes, so that

EN sab - ENsb(r a ) = ETN s ab (24)

with ETNsab being the total electric field at ra excited by

a general distribution of sources !4b- ETNs includes all

multiple scattering effects due to the stratified medium but
does not include any scatterng due to the embedded perfect

conductor. We now write Equation 23 as

EN b(ra) " 8 b(ra) + Is (25)

16



We now focus our attention on I and express Equation 20 in

more detail w b

The.Du1aar (26)

f " i. i

with
1 1=n EN x _J E (27)
sS s

Forming *Dn and using standard triple scalar product mani-

pulations, we obtain

n n nJ _ •d (28)) N S nPx1 sb) +N1a-PN Sb) Nsa

The boundary conditions require that the tangential electric

field excited by the J bson the embedded conductor vanishes

so the second term in Equation 28 vanishes. We note in passing,
that we cannot apply the same argument to eliminate the first

term since the scattering body is absent in the "a" system.

Equation 28 is now written as

, i i ... . i -- I il|. .. II I I II

--2j -Na) (29)

In order to obtain this equation, we used the fact that the
surface current on S excited by the i 1b 's is given by

J(r) 0 x EN (30)

Ao

with n^ -ft and n~ is the outward normal to S. Combiningp 0 0
Equations 25, 26, and 29, we obtain

EN b(E) ET flb(ra) + h(r) IN 5 (r,ra)dS (31)

17



where

3
2N (r,ra )  Ei (r,ra (32)

s i=l s -

Equation 31 has many of the properties we were seeking in that

it is a representation of the fields excited by general

sources in a stratified medium having an embedded conductor;

the presence of the conductor is accounted for by the sur-

face integral. Furthermore, this surface integral contains a

Green's dyadic that can be explicitly formed in the described

manner, i.e. using the three electric field representations

generated by three orthonormal dipole sources. Despite these

features of Equation 31, it is not the final form desired

because the Green's dyadic appears to be the right of J(r),

and this form does not readily allow us to take the curl of

both sides of the equation. The significance is that this is

the procedure used to obtain a surface integral representa-

tion for H.(r).

Returning to Equation 31, we use the following property
valid for any dyadic R and vector V

V-D = D.V (33)

where D is the transpose of D. The surface integral in

Equation 31 is now written as

j(r)., (rEa)dS = (r,ra).J(r)dS (34)

In Appendix B we will prove that

9(rra)  k (r ar) cVj aVk (35)

Combining Equations 31, 34, and 35, we obtain

18



ENs a = (aN ( r a s s(rar)J(r)dS (36)

which is our desired representation for the electric field.

Next we introduce a notation change in order to make this

equation conform to standard notation for integration and

observation variables; i.e., r is typically used for the

observation variable and r' for the integration. The distinc-

tion between r and r' is more than just notation in that r

must be interpretable as ranging over a three-dimensional

volume while r' is restricted to range over the two-

dimensional surface of the scattering object. Denoting the

volume variable in Equation 36 as r and the surface variable

as r' and dropping the explicit "b" notational dependence,

we rewrite that equation as

ENs(r) - ETN (r) + f 2Ns(rr')'J(r')dS' (37)

Before we elaborate on the meaning of this representation, we

claim that the representation is valid for general values of

1; and for general Z, we have

= (r) + (r,r') -J(r)dS' (38)

The essential details of how Equation 38 is derived for Z#Ns
is presented in Appendix C. The reason that we focus on the

case k=Ns is that it is this case that leads to the explicit

equation that we numerically solve to determine J(r).

A discussion of the meaning of Equation 38 requires that

we return to the definition of 2. given by Equation 32. With-

out restricting k, we use the arguments leading to that

equation to express G2k(r,r') as

19



3

G (r,r')= X Ei(r,r')a i  (39)

with E (r,r') satisfying the boundary conditions described

in Appendix A as well as the equations

V x E( = iwuH£(rr') (40)

V i x (r,r') =-iel E1 (r,r') + &. 6(r-r') (41)£ -- -- 1 --

In these equations r is the variable ranging over a three-

dimensional space, V,, and the curl appearing in these equa-

tions operates with respect to this variable. The r' pertains

to the location of the dipole source, and it is chosen to lie

in the same volume as the embedded scatterer. It is oriented

in the a. direction with the choice of these orientations1

being such that (ai, 2,3 ) form an orthonormal set. To com-

plete the description of Equation 38, we simply state that

ET(r) is the total electric field at r, which includes 
all

multiple scattering due to the stratification of the medium,

but considers the embedded conductor to be removed.

Next we obtain a representation for the magnetic field in

terms of the surface integral by taking the curl with respect

to the r variables of both sides of Equation 38 to obtain

V x E£(r) = V x Ek(r) + f V x G£(rr').J(r')dS (42)
i S =

Using Equation 1 for the special case a = b and considering the

scattering object to be present, we would be able to conclude that

V x E,(r) - iw4!, (r) (43)

20
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or considering the object to be absent, we would be able to

conclude that

Now defining

iWLI (r~r') 7 x G r~'ki =tx (45)

we can rewrite Equation 42 as

H(r) Hr + f (,(r,r') .J(r')dS' (46)
s

We obtain our final expression for by combining Equations

39, 40, and 44 which results in

3- i

r a. (47)
i=3-

Equations 38 and 46 are the desired surface integral repre-

sentations and Equations 39, 40, 41, and 47 are the equations

that give these representations utility. In the next section

we will given Equations 39 and 40 explicit meaning for a two-

layered medium, and in the following section we will obtain

the EFIDE and the MFIE by discussing the limit of Equations

38 and 46 as r approaches the surface.

21



III. EXPLICIT GREEN'S DYADIC REPRESENTATIONS FOR
THE TWO-LAYERED CONFIGURATION OF INTEREST

In this section we will obtain explicit representations
for G (r,r') and 2 (r,r') using the prescription summarized

by Equations 39, 40, 41, and 47 with the boundary conditions
described in Appendix A also being satisfied. These repre-

sentations will be found for the case where we have a two-
layered horizontally stratified medium with one layer being

a lossy half-space, Z=l, and the other layer being a vacuum

half-space, X=2. Our scattering object is in V2, and we will

focus our attention on obtaining the explicit representations

for 2 (r,r') and K2 (r,r'). We will present these represen-
tations in a form where it is clear that they are identical

to representations of the same dyadics that were obtained by

a different formalism (Reference 1). We obtain our explicit
representations by utilizing representations contained in the

book by Banos (Reference 3) for the electric fields and the
magnetic fields excited in the vacuum half-space above a

lossy half-space by horizontal and vertical electric dipoles
located in the vacuum region.

In order to use Banos's explicit results, it is necessary

to employ a systematic bookkeeping procedure to compensate

for the choice of coordinate system chosen by Banos, which was

convenient for his purposes but not ours. Specifically, Banos

gives explicit solutions, that we will denote EB(rrD, ) and
HB2(iD'D) which satisfy the equations

VD x 2 (ED') = iwU2 HB (r') (48)

i A
VD E~2~~o (r rw2 B(OD + pa 6 (rD. (49)

22
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and it is necessary to augment the solutions to these equations

for two reasons in order to obtain the E2(r,r') and H2(r,r)

required by Equations 39 and 47. One reason is that Banos chooses

a coordinate system in which D is allowed to vary only over

one linear dimension rather than the necessary three, and the

other is that he presents explicit solutions for only two

orthonormal vectors &1 = ax and a3 = a Despite these

limitations, the necessary solutions can readily be obtained
_1,3 .1,3

from B and H1B 3
Bi2 -B2

We now elaborate on the coordinate system used by Banos.

The origin of that coordinate system lies on the interface,

and the positive z-axis points into V2. The subscript D is

not used by Banos but is introduced by us in order to dis-

tinguish between the variables used in the previous section

from his variables. We use his result by obtaining
B2 (ID'D) and HB2(, 4) and then utilizing the following

relationship

i( 1 i [D(r,r') (r,r')] (50)2( , ' p EB2 [ D -- - D -- -

Hi(r,r') H H ir[ (r,]r (51)
-2 -- p -B2 =D

In order to use Equations 50 and 51, it is necessary to

determine the functional relationships

ED ED (r,r') (52)

and

r(53)

23



The description of how the coordinate functional relation-

ships are obtained is facilitated by referring to Figure 3.

y

YDD

0 X

Figure 3. Coordinate Systems

This figure is the view of the z = 0 plane (the interface)

*for all coordinate descriptions of interest. Because of

this choice of coordinates, it follows that

z D = z (54)

ZD ' = z (55)

24



and we note that Banos uses the notation zD = h. The signifi-

cance of choosing the coordinate system having the origin "0"

in addition to the Banos coordinate system having the origin "D"

is that the location of the dipole source is fixed in the "D"
coordinate system at the origin but is free to vary in the "0"

coordinate system. Also, its position is denoted p' in accord
with the meaning of the primed coordinates described in the

previous section. Still in accord with the meaning ascribed

to the variables discussed in that section, p identifies the
location of the observation point in the "0" coordinate system.

From the construction of the two coordinate systems, we have

the relationship

PD -(56)

and the fact that ED is the difference between the two coordi-

nates of interest is the reason for designating Banos coordi-
nates with the subscript "D". It should be noted that Banos

denotes pD = LaDI as r in his book, and this should not be

confused with II where we mean r = P + z&z . We now have
determined the required coordinate functional relationships

which can be summarized as

ED= p-' + z&z (57)

= z' â  (58)

2 2We will now determine E 2 (ro,r') and R 2 (r 'r') in terms
E k ---o 2 -0 -0 1 )of the explicit expressions that Banos gives for - -(r,)

and H12 (r_,r'). The derivation simplifies by noting that the
spatial dependence of the latter quantities can be expressed

in terms of the three scalars pD' z+z', and *D" Let us con-

sider the situation described by the argument (pD,Z+Z,D+n/2)

25



and the fields excited by an electric dipole located at the
origin of the "D" coordinate system that is directed along

ay = a" The fields generated by the dipole are

2 2
!B20D"z+ z , , D + / 2 ) = EPD2 (PD ' z + z ' D+ w/ 2 ) a p D ( D + w/ 2 )

+ E B2 (PD' Z+z' , D+/2) aD (D+/2)

+ E ZB2 (PD 'Z+Z' ,D+7/2)& z (59)

The geometry of the physical situation is such that

E2 = 1 ) 6a
EPB 2 (PDZ+z ,D+IT/2) = EpB2 (PDZ+ZD) (60a)

E B2 (PDz+z /2) = E1(PDZ+Z' (60b)

E 2  E1~"O~r B

EzB2 (PD,z+ZD+r/ 2 ) = EzB2(PDZ+z',D) (60c)

and it is worth noting that despite these relationships
2

EB2 (PD,Z+Z ,OD+r/2) 1I2(PDZ+Z",D )

because Ap (0D+ir/2) # A(D), and a (0D+n/2) ( ( The
geometry arguments also apply for the magnetic field as well

leading to the statement

H21
H2(P +/2) HB2(pD,zz',D) a-p,,z (61)

We now collect the appropriate results presented by Banos,

change to the "D" notation, and use Equations 60 and 61 to
obtain
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= -Q COO + 2 (63)
*B2 D\ 2 B

EzB2 Q COSOD azaQ D(22 + c) (64)

H1  S sio (65)
pB2 D (3R D a

/ 2 \
H -s2 cOD~ z o (66)

$2 D\W dPD 2

B2 2 il -(7

D BD

E 1 3 +k (68)

EOB 2 mQ Co D( TDD 2)(9

E2sn a G +C(70)
Qsin D .- ( 2 2 C
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2 9ScSD(B 1 W22
H 2 = -cos j D P (71)
pB2 D az pD 3P p

2  2W22

H S sin D  2 (72)

H2  = S os D  IB4B2 DI

H2  S (73)
zB2 CSD ap D

E3 Q ~ G c) (74)
~pB2 aap D (22

= 3 H 3= 3 0 (75)
EB2 pB2 zB2

3 I 2  ~ .2 '
EZB2 = Q 2 + ) G2 2 -C) (76)

H 3  =-S - G C (77)

where

Q= iWpu 2  (78)

41rk 2

sm ~ (79)4,f

k W l 1(80)
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22 21 V 2 2 2  (81)

B =22 G21+ U2 2  (82)

C =G -k2V (321 1 22 (83)

G2 2 ' R-le 2  (84)

-1 ik 2R +
G21= R e (85)

R = 2 + (z-z')2 (86)

R + -- 2 + (z+z')2) (87)

2e -Y 2 (z+z ')
u f 2-2zz J(Xp ))XdX (88)U2 2 = Ye1 +y 2  a D

J -y 2 Cz+')

S2 (89)V22 k2 y 1 +k 1 72  o0 ) d

~~-Y2 (z+z ')
2(y 1 -y 2 )e 2(

W22 0 k2 y+k2 y 10 (Xp D )dX, (90)
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Y xk2 1/2 (91)

The variety of branch cuts that have been used to define Yz

are discussed by Banos. We are now in a position to utilize

Equations 50 and 51 to obtain Ki(r,r) and H!2(r,r') and then

in turn to use Equations 39 and 47 to obtain the desired

quantities C7 (r,r') and K 2 (r,r'). Following this procedure,

we obtain

G (r iWV 2~(r,r') + G (r~r') (92)

K~~ K(r,r') (r 4- K (r,r)(3

where

4ik 8(r' 2 + G a a + G a a

+ G S && ZAP + G a&& a 8 z o,s (94)

xazo aZ D a D s pa aP

+ Ka 0 a. ) a D + KV~~& a &z -',(5

a2G

G 2+k222 (96)
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1 G2 + k2G22 (97)

a 222
22 (98)

GOPZ aPD az G p

G a2G 22 + 2 (99)

22

ozz az 2 2

G - G ky +k 2 U(100)

s2 2 /2 +2 21022

a G 2 +2
s p -D G21 +k2  + 0

G a G +2 2 -Kos (102)p ap Daz (- 2 1+ 1 2 2 ) 12

2 2 +2 (-G 1+k2v10)
z + 21122, (103)

3G 
(105)

K -(G 2 1 -U22 ) 1 a 22 (106)
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K G (~+U 2 ) w 2  (107)so p = -G21+U22)- apD2

sz PD -G2 1+U22 ) (108)

K (G a - (109)
soz = ' 1D V22

After making the described substitutions, it was necessary to

use the coordinate relationships

=acoSD + asinO (110)

and

D -a sinnD + aycos¢D  (111)

in order to obtain Equation 92 through Equation 109. Even

though the explicit representations for aPD and ID given by

Equations 110 and 111 were used to obtain the expressions

for r2(r,r') and 2 (r,r'), it may be more convenient to use

the final expressions with alternate representations for

the unit vector as expressed in the "0" coordinate system.

From Equation 56 it follows that

a = - 112)

and from the properties of the orthonormal set (& ,& ,&),
PD D Z

it follows that
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P-p.
& =a x - (113)

We now note that the K s(r,r') and s(r,r') derived in this

section are identical to the corresponding quantities pre-

sented in Reference 1 which were derived by a different

method. To complete the comparison with the material presented
in that reference, we note that by simply performing the deriva-

tives indicated in the representations presented in that ref-

erence

47rr,7 (rr') (I+k- 2 1VV G (114)

and

4orK (r,r') = VG2 2 x 1 (115)
=0 2

it follows that these expressions are identical with G and

=00K=0 presented in this section. Finally, we note that the

significance of the representations presented in Equations

114 and 115 will be seen in a subsequent section when we are

concerned with the limit as r approaches the surface.
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IV. EXPLICIT REPRESENTATIONS FOR ET(-) AND H (r)
FOR THE TWO-LAYERED PROBLEM OF'INTEREST -

In this section we will present the same results that

were presented in Reference 1; however, we will rewrite those.

expressions in a form where it is possible to readily make a

very important observation. We will restrict our attention

to the case where the incident field is a plane wave given by

ik kn o- rEi= Ee (116)

with e being a unit vector along the polarization direction

and no being a unit vector in the propagation direction.
0

Rewriting the expressions for ET and !_T given in Reference 1,

we have

-l = A + &.r[

(A. 2 (o-h 41 (117)Eo T(r) = h + .) + 2 e )(ft a1

=P- Mo a (A zh (118)

where 2 2 (119)Z2 C2

Ak2+o.r ik2AoR-r (120)i "e + R e

ik2AO - r ik2fAoR.E (121)
,e +Rve
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ft -21z(&z o (122)

A ioxa z(123)

Ivoxaz I

v h x no 0(124)

i2_ 2 1/2

-k2 (az.o) kl-k [- (a. no)2] 2

aH 2 z" 2 2 Z / (125))+l-k2 [ + i -(Az Zo n 0

-kl (az"f )-k 2 _ lk 2 [1- (az" ft )211 1 / 2

RV 1 0 ~2  2 [0J /2 (126)

We can now discuss two important limiting cases of ET and HT -
One is the limit as the conductivity of medium 1 becomes
infinite (kl-), and the other is the limit as the incident
angle becomes grazing (I .fo -o). In the infinite conductivity
limit, we have

lim R = -1 (127)
kl-w

limRV-1 (128)

and in the grazing angle limit, we have
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F
lim R = -1 (129)

(Az. i ).0

Arn Rv= -1 (130)

z 0

The difference in sign in the two limits expressed by Equations

128 and 130 leads to considerably different behavior for the
total fields in these two limits. An important case to con-

sider is the situation where the observation point above the
ground is considerably less than the free-space wavelength
so that k2z<<l. For this case, we choose a convenient coor-
dinate system so that p = 0 We can approximate both
ik ft r ik R *r
2 0 - and e 2 oR - by 1, so that under this restriction

on observation height we have

limp = 0 (131)kl 1

lim = 2 (132)

lim ' =0 (133)

(,f 0 ).

lim c = 0 (134)
(&z-o 0

Using Equations 131 through 134, we have under the restriction
k2z<<l the following
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lir E o_(0+) = 2(9.0) [0 + (fo" a (a xh)] (135)
kl- z z

lim Z E H T(0+) = 2(e-v)h (136)

which after algebraic manipulation can be written as

lir Eo1 E T(0+) = 2(az.*)a z  (137)

lim Z E IHT(0+) = 2[(fiox)-hlh (138)

k1)-02 0 -

Equations 137 and 138 are readily interpreted as representing

the expected results for a perfect conductor, i.e., a doubling

of both the normal incident electric field and the incident

tangential magnetic field with all other components vanishing.

The grazing angle limits are given by

lim E-IE--T (0+ )  = 0(19lim (139)

(ft0 . a~~~0

lim Z E- 0

n aO2 0 HZ) "  (140)

The implications of the extremely different limits of the

perfectly conducting limits and the grazing angle limits are

important to note. For the purposes of the numerical calcu-

lations performed in this report, we note that the induced
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current density on an object above a lossy half-space or above

a perfectly conducting ground will be significantly different

for grazing incidence excitation. More important, questions

having significant implications arise as a result of the

difference between these limits. An immediate question is

to what extent will a multilayered model of the earth and its

atmosphere reduce the ground coverage of an EMP. Another

question is how is this effect accounted for in one of the

dominant EMP coupling mechanisms, i.e., the near grazing

excitation of long lines above the earth. Finally, how do

we interpret past ground-based system level tests where the

intended exposure was grazing incidence?
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V. PRESENTATION OF THE MAGNETIC FIELD INTEGRAL EQUATION
(MFIE) AND THE ELECTRIC FIELD INTEGRO-DIFFERENTIAL
EQUATION (EFIDE) FOR THE STRATIFIED MEDIUM SCATTERING
PROBLEM

The essential details in arriving at the MFIE and the
EFIDE for the stratified medium scattering problem are
related to the examination of the limit as the observation
point variable r approaches the surface of the embedded
scatterer. Specifically, we are interested in the

limit n (r) x E (r ) and limit fi (r) x H (r v ) where ther -0r 0o- -N -v rv-r o - -N-vs-v- s
meaning of n^ (r),r, and r will be explained. The expressions-- - -v
for E and (r are

s s

E )(rr) +EsvcN(r,).J(r')dS' (141)
-N -v -TN5 -v+ f CN5 -

and

v) = -Ts (v) + fKNs( r -').J(r')dS' (142)

Equation 141 is Equation 37 with the r variable relabelled
-rE and Equation 142 is Equation 46 for the case Z = Ns, again
with the r variable relabelled rv. The reason for relabelling
the observation variable is to emphasize that Ev is allowed
to vary over a three-dimensional volume as opposed to a two-
dimensional surface. We reserve the variable r to represent
a variable related to r but which is restricted to the sur--V
face of the scatterer. In general, this relationship is

expressed as

Ev E + S(143)
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and we are interested in the behavior of Equations 141 and
142 as ISL = q approaches zero. For many situations of interest
we can argue that the angle at which rv approaches r does not
change the resulting equations and conveniently we choose

Sqi0 (r) (144)

where io (r) is the outward normal to the scattering surface

at point r. For cases unere Equation 144 is not applicable
(e.g., r corresponds to a tip or edge), it is still true that
the stratified medium problem needs to be treated in exactly

the same manner as the standard free-space MFIE and EFIDE
limits. Whether or not we can employ Equation 144, we will
assume that a unique relationship can be specified between any
point r on the surface and a point rv in the proximity of
the surface which is described by Equation 143 so that

lim r = r
I s -0 v

We can now express the limits of interest as

lim A(r) x E (v) = lim fio(r) x ETN (V)
q 0- q0 NS q0 --

+ im Arn 0(r) x f Ns(r vr~l.J(r')dS' (145)
S s

lim 11(r) x H (r) - lim io(r) x H (r)
0 N q0 ---

+ 1im rft0 (r) x fN V,r')-J(r')dS' (146)
q-o.O S
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Using the continuity of the fields in the region exterior to

the scatterer, the boundary condition

0 (r) x ENs(r) =0 (147)

the previously cited definition,

fo(r) x H (r) (148)

0 -N

and -the new definition

n (r) x H (r) = (r) (149)
o _TNS -- _

we can write Equations 145 and 146 as

0 (r) x ETNs(r) IEL (150)

J(r) J T(r) + IHL (151)

where

IEL = lim fi (r) x f N (rvL,r').J(r')dS' (152)

and

-IHL ~ ~ Km ft0() N(r , r')3J(E')dS' (153)q-0 - S s-

The limits in Equations 152 and 153 will be examined by
deopoigs _.( ')adI (rv,r') into parts that contain
deopsi-(vr' and r ,r'

a singularity and the remaining nonsingular parts.
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The singular parts will be expressed in such a manner that

the limits appearing in Equations 152 and 153 will be seen

as being previously evaluated for the derivation of the EFIDE

and the MFIE in a vacuum environment. To accomplish the
desired decomposition, we write the solutions to Equations 40

and 41 for the case k = N as

l(r,r,) = Ei(r ,r') + 1(r r') (154)-N-- ---- ERr''154
s

and

ii
(r 'r') = r') + (rr155)

i iv

The quantities E (r ,r') and H (r ,r') not only satisfy Equa-

tions 40 and 41 for rveVNs, but they also satisfy these Equa-

tions considering that VN constituted all of space. They con-

sequently also satisfy the radiation condition at infinity.

The subscript notion U is introduced to indicate that all of

space uniformly consists of material having parameters

and eN With this understanding of the meaning ofUNs Ns

and it is possible to present explicit expressions for

these quantities. Instead we present explicit expressions for

3

GU(r ,r') E (Er')ai  (156)
i-1

and
3K.( i~l (157)
i42
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which because of the described meaning of E and H can be
-U =U

rewritten as

2u(v~) 7r N G N(N,) (158)

EU(v. ') (47-1V G N( k N PRV) x 1 (159)

where

G N(kN R) R -1 e ikv (160a)

RV= I -r (160b)

Combining Equations 39, 47, and 154 through 157, we have

~N~ r' =~ (r Pr') + G r ' (161)

!N s(V,r') -. Er v ' + KR (rv r') (162)

with

=R-v (E r rl)&.(13
2(r,') - V -v 1(13

3
K (rv .rf) - Hi (r ,rl)&. (164)

Ri -v-= R -v - I

where sufficient background has been presented to allow the
ii

meaning of KEvr,r) and H (r ,r') and in turn G and K t
MR Rt

ii



receive further elaboration. ER and H are solutions to

Equations 40 and 41 for £ = Ns with the 6 function source

eliminated. The fields EU and HR satisfy the inhomogeneous

equations, and the purpose of EI and HR is to cause the
R -

fields and HN  given by Equations 154 and 155 to satisfyE;Ns s

the boundary conditions described in Appendix A. From this
understanding of the nature of the GR and KR, we can conclude

that there are no singularities to be considered in the limit

as q approaches zero in terms containing these dyadics. This

is expressed explicitly by combining Equations 152, 153,

161, and 162 to obtain

IEL IEU IER (165)

and

I-HL =-HU -HR (166)

where

IE = lir io(r) x /Gu(rvr')-J(r'l)dS' (167
-EU = u0 f (167)

U = lim() xfu(rvr').J(r')dS' (168)
q -0o S

IER f0o(r) XfGR(r,r')-J(r')dS' (169)
S

R 0 fo(r) xfER(Er).J(r)dS (170)
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The essential behavior of the limits in Equations 167 and 168

is independent of whether 2 is real or complex. For the

2 s
case where k; is real, these limits have been given consid-

s
erable attention for the derivation of the free-field EFIDE

and MFIE. Using the standard results for these limits, we

have

I = i(r)x + k 2v' v  , G Rv J(r')dS
-EU o )N4~ (kS _IT)JSdN

(171a)

or

2 s.

EU = 0o(r)x + kN2VV SNs (kNs, R) (r)dS (171b)

and

-1HU = 0o(r) xj (41r)-'[vG Ns (kNsRv x__r)

r =r

+ - J(r) -v -
(172a)

or

I fo(r) x (4)-[VGNs(kNS R) x.J(r)]dS'

x J(r) (172b)
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where Q is the solid angle subtended by the surface at r.

The usual expressions for the limits are given in Equations

171b and 172b; however, the real meaning is better understood

by referring to expressions 171a and 172a. It should be noted

that none of the integrals in Equations 171 and 172 are

principal-value integrals. Finally, we refer to Reference 8

for alternate expressions for Equation 171.

Combining Equations 150, 161, 165, 169, and 171, we have

for the EFIDE

n- c[/1 -;2 U\G,(k R)(r)d1-n°o(r) x KTN () = n () x ) VV 4 N -s r ) S

+ Ift0 (r) x f N (r') - U(rr')] J(r')dS'

(173)

Combining Equations 151, 162, 166, 170, and 172, we have for

the MFIE

(i - T= (r) + fo(r) x f (4i)-[VGNs(kNs'R)]x J(r')dS'

+ fi (r) x f{IN (r,r') - IU(rt'] *J(r ) dS'

(174)

There are two important points to note about the representations

given bythese equations. The first is that this decomposition

is not just formal as can be seen by observing Equations 92,

93, 114, and 115 for the two-layered medium. The second is

that the numerical treatment of these equations can be facil-

itated by using these representations. For the MFIE numerical
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solution of the two-layered scattering problem, we use this

decomposition and pay particular attention to the treatment

of the integrable singularity that exists in the first integral
appearing in Equation 174.
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VI. EXPLICIT SYMMETRY ARGUMENTS FOR THE TWO LAYERED MFIE

The actual surface that was numerically treated had a

plane of symmetry perpendicular to the ground plane, and this
allowed us to reduce the computer time to solve the problem
numerically. For the purposes of illustration, we will choose
our coordinate system so that the symmetry plane of the body
corresponds to the plane x = 0; however, the final results will

appear in a form that is invariant to this coordinate choice.
First we write Equation 174 as specialized to the two-layered
problem discussed in Section III as

f()J(r) = T(r) + f P(r,r').J(r')dS' (175)
S

where

f(a) = 1 - (176)

and

Q(rr') = fto(r) x K2(rr') (177)
0 xK

and alternate explicit representations of K2(r,r') are obtained

by combining Equations 93, 95, 106 through 109 and either 104
and 105 or 115 depending on our choice of representation for the
Ko(r,r') portion of K (E,r'). For the choice of Equation 115
to represent Ko(r,r'), all necessary symmetry arguments have

been presented in Reference 1, and we could make use of those
arguments. Instead, it provides little more effort to con-
sider Equations 104 and 105 for the representation and thus
presents a self-contained derivation.
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We now write Equation 175 as

f(SM) J(r) !I J(r) + f ;(r ,r').J(r')dS'
S + -+-+

+ D(r ,r').J(rl)dS' (178)

and

f Q J( T r)+ fR(r ,rl).J(r')dS'(19

+S

coriaeTn he integration over S is over the surfacehaigpstv

having negative x-coordinates. The explicit relationship

between symmetric points is

r R .r (180a)
- x +

r' =R . r' (180b)
- x +

where

x 1 2S& (181)
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We now rewrite Equations 178 and 179 after operating on both-

sides of Equation 179 with =Rx to obtain

f(Q)J (r) = (r+) + f D(r+,r').J+(r')dS'
+ T f+ Q.++-+----S+

+ S1. + E+-)J (r )dS' (182)

S+

f(OYJ-(r) = J (r+) + f D +(r +,r).J+(r+)dS'

-T -- -

+ f D__ (r,r).j (r )dS' (183)
s+

where

J (r+) = J(r) (184a)

S(r') = J(r') (184b)

IT(r = J (r) (185)

J(r R) = J )  (186a)

!I-(r1= x . (BX .r I  (186b)
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-(r )=R 7 (R *r )(17

+ =x --T=x - 4-17

= ~ (188)

D+ (r+#+ PrL rl=)-R (189)
+- ~ ~ - + 4 =x,, *'*

~ (r(,r-r rQ(R (190)

0-(r ~ ,r) =r R *D(R (191)

and in order to obtain Equations 182 and 183 we substituted

the unit dyadic, 1, expressed as

I = R *R (192)
=X =xx

to obtain the relationships

~(r~r') J~r'(r (193)

and

2(r ,r).J(rl) =~ rl- -~l (194)

which in turn are utilized in those equations. If the following

relationships are true,
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(r ,r ) -- D._(r ,r+) - (r+,r ) (195)

and

D+(r+,r ) = D+(r+,r) = B(rr)(196)

then by first adding and then subtracting Equations 182 and

183, we obtain

f(Q) !S(r = T (r+) + f QS(r.,,(. + .J ()dS' (197)
S+

and

f(1) !(_A(r+ ) = (r+) + f (r4 ,r ).JA(r )dS' (198)
S+ -! Wd 18

where

(r,) = + (r.) + .'(r (199a)

JS(r~ 1 [ +-) + J-( (199b)

,JS (r') -f (r + J(r)' (200)

= (Or ) - J (201)

IA(r) = 21- J(r) (202)
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( r). + .J.r. (203)

(r Er) A(r+,Ei) + B(r (204)

=A= A€r+,r) - -¢ , ) (205)

and the advantage of Equations 197 and 198 over 175 will be

explained. Following that explanation, a proof that Equations

195 and 196 are true will conclude this section.

The essential property that the set of Equations 197 and

198 have is that only half of the symmetric surface requires

numerical treatment. The resulting matrix that gets generated

for each of the Equations 197 and 198 is half as large as the

matrix that would get generated by the straightforward numerical

treatment of Equation 175. Because matrix inversion time is

proportional to the cube of the matrix size, there is a factor

of four savings in inverting two matrices that are half the

size of a larger matrix since

Regarding the matrix generation time, there is a forced savings

caused by seeking the relationships expressed by Equations 195

and 196. The reason there is a forced savings is that the

straightforward treatment would effectively require that each

matrix element be viewed as receiving a contribution from
and 2_+, while Equations 195 and 196 show that there

are only two independent contributors. Returning to Equations

197 and 198, we numerically solve for -S and -A which in turn
yield the desired physical quantities J(r ) and J(r_) by

employing the relationships
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J(r+) = JS (r +) + JA (r +) (206)

J(r ) = -!. + A(r+) (207)

Returning to the proof of the validity of Equations 195

and 196, we identify the explicit meaning of these quantities

as

D++(r+,r+) = o(r + ) x K(r+,r) (208)

2__(r,174) = n •io (r_) x K (-r+,_I r •x '(209)

+ [fo0 (r+) x K(r+,') (210)

D- (r r') ix - ( o ) x K(-,4)j (211)

and the definition of K(r,r') is given by combining Equations

93, 95, and 104 through 109. For the purposes of this section,

we write the essential form

K (r,r') = Kp (r,r') p(r,r ) &D (r,r')

D

+ K PO (r,r')& D(r,r') aPD (r,r')

+4 (rAr')&&(r,r')

+K (r_OD (r,r') z (212)
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with the. essential property extracted from those equations

that

K (r,) K (r r') (213)

and

Ka (r ,r') K (r ,r-) (214)

with a and B taking on the notation p,*, and z to generate the
four terms appearing in Equation 212. Equations 213 and 214
follow by noting that according to Equations 105 through 109

K (r,r') - Ko (Ir-r'I) + Ks (I._-,I ,z+z') (215)

The more difficult aspect of proving Equations 195 and 196 is

related to the dyadic character of these equations. To complete

this aspect of the proof, we will introduce the following dyadic

identities which will later be proved.

R xB~n-BAx~a (216)

R ~~~-~AxB~ (217)

= Ax(.~~)(218)

Using these equations as well as Equations 212, 213, and 214,
we can write Equations 208 through 211 as
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+ K (r,'& r,'& r,'

+ K (r ,r')& CA (r ,r')
Zo z0 - 1

+ r A(r ,rl)g (219)

D r r' =-R ft(r )x K (r Wr R a (r r__ ( l)a

+ K,( 1 r[R& (r r')] [a (r ,rl)-R1
* [ExPD. PD'~X

+ K (r (r) & r

4 K~ (r+,Et'x* D (r-,r')1(ciz- X

(220)

~ r,)=ft (r )x ~K(r sr') a (r+E1 a r.'
R- 0+ IP 4- D- I OD - - XJ

+ K ( 4 f a [ (r , ')* B ]
+ K oz(r4 ,r')aoD (r 4 ,rl)(i &.)~ (221)
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-r+, -+ x ( K (r+,l (rr

+ z (rK ,i')_ x-; [a (D r _,

+ K~ (r.,r)( a )&(r, ,r +)

Z 

-
I

+ K (r+,r')[R 'a (r ,rj ) a (222)

The equations, which when substituted into Equations 219

through 222 lead to the desired results, will be presented.
First we present the following representations for a where

x and x' are positive

(x-x')a +(y-y')A
, (r+, r') = P _ (223)
PD+

-r ,r') = - x+-y (224)

p (r,r') (225)

-(x+x')& x+(y-y')& V
& (rr)= (226)

p= [(x-x') 2+(y-Y) (227)

P (X+X) +(Y.Y) (228)
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By simply applying the indicated operations on the preceding

equations, it follows that

R .& (r ,r') = A (r ,r')~ a r,' (229)
=X -cDP

a (r ,r)-R I (r ,r') (230)

R a& ( , (r r r)(231)

Next using the definition

SD (r,r') Za x D (r,r)

as well as Equation 216 and the fact that

R x & z z -L = &Z (232)

we find that

R* OD (r --' = D-,l-x -80 (r ,Er') (233)

a (r~ Er).R = -aA (rr) (234)

IxaD (r,r') - -a((35)'++ #D(25
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The final relationship needed follows from the basic symmetry
of the body, and it is

Rx.fio(r_) = fo(r+) (236)

Substituting Equations 229, 230, 231, as well as 232 through

236 into Equations 219 through 222 yields the desired results,

i.e., Equations 195 and 196.

This section is concluded by presenting the derivation of

Equations 216, 217, and 218 as promised prior to the use of

these equations. First, we decompose general vectors, A and B,

as follows

= AT + Axax  (237)

and

= IT + Bx&x (238)

where the subscript T indicates a direction orthogonal to

& We now form the cross product
x

A xB = AT x + A x BT + k x Bxax  (239)

and note that the first term on the right-hand side of Equation

239 is directed strictly along the &x direction while the second

and third terms have no ax directed components. Using this

observation, it follows that

= -:Tx§T + Ax xT+ATxBxa (240)
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Operating on the expressions given in Equations 237 and 238

and then forming the cross product, it follows that

(RX*A) x (§X.) = AxB-Ax &xxB T-AXEx x  (241)

Multiplying this equation by minus one and substituting the

result into Equation 240 yields the desired result, i.e.,

Equation 216. Next we express a general dyadic C as

3

C= (242)
i--1

so that we can write

3

A x = (AxEi)F (243)
i--1

Operating on this equation to the left with R yields

3

i=l

any by utilizing Equation 216, we obtain

(x( -) = i -(R-A) x (RiEi)_q

3

= -(R A) x " (245)
i=l
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which becomes Equation 217 after resubstituting Equation 242.

Writing

(A-j'!lx x R--

23i=1
= x F _Ki (Fi ' =s x )

= x ( (246)

completes the derivation of Equations 216, 217, and 218.
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VII. CODE TESTING

1. INTRODUCTION

The incorporation of a lossy half space into our MFIE code

(NEC-2A), described in Reference 1, was complicated by the absence

of data related to the model depicted in Figure 4 that could be

used to quantify the accuracy of the added capability. Special

tests had to be devised to detect the presence of coding errors.

In this section we describe the steps taken to establish

confidence in the added code. We first summarize these steps

and then, for the interested reader, discuss the detailed con-

siderations. At the end of this section we discuss some of the

accuracy considerations for the numerical procedures.

9 As can be seen from Equations 62 through 73, the

computer code would require the derivatives of

U22 , V22 and W22 . Although we were unable to

obtain tables of necessary quantities, we did find

tables for U2 2 and V2 2 (Equations 89 and 90). We

therefore developed computer codes for calculating

these integrals and validated these codes over the

range of the tables. We then developed the subroutines

that would be used to calculate the U2 2, V22 and W22

derivative terms. The U2 2 and V2 2 derivatives were

verified by direct comparison to the numerical deri-

vatives of the terms previously calculated. The W22

derivatives were validated indirectly through relation-

ships between U22 , V22 and W22 .

e New coding was required to incorporate the new terms

into the matrix of influence coefficients. By

examining the limit of a perfectly conducting half-

space, we were able to verify that the new code

properly communicated with the other modules of the

computer code.
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Figure 4. Description of the incident plane electromagnetic
wave. Axis x" is the intersection of the z,k plane
and a plane perpendicular to k at the origin.
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e In the limit of the half-space having the dielectric

properties of free-space, the code should produce its

free-space answers. In this manner we were able to

validate the relative sign of the additional terms.

e The Lawrence Livermore Laboratory Nuclear Electromag-

netics Code (NEC-(l,2)AJ) can calculate the bulk current

for a special case of the situation considered in this

report. By integrating the longitudinal current densi-

ties of our own predictions, we showed that our results

agreed to within five percent of those produced by the

NEC-(l,2)A code for our test case.

* Our final test was a comparison to experimental data

obtained at the University of Michigan for a situation

that could presumably be modelled by our code. We

made comparisons for a cylinder in free space, a

cylinder above a perfectly conducting ground plane,

and a cylinder above a planar lossy surface. Quali-

tatively, there is agreement for all three situations;

quantitatively, there are explainable discrepancies

at resonances for the perfectly conducting cases, but

the discrepancies for the cases involving a planar

lossy surface are larger than expected. It is

possible that the quantitative discrepancies for

the lossy planar surface are due to differences

between the numerical model and the physical

situation in which the lossy half-space was an

inadequate representation of the lossy material.

We will now amplify the above summary for those readers

who are interested.
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2. VERIFICATION OF BASIC QUANTITIES

As explained in the beginning of this section, we wereaU 22 aU 22 aV 22
unable to obtain tables for the quantities 2 22 -

aW22  aW 22

and Instead, we developed subroutines to compute
3D

U22 and V22 and verified their accuracy through comparison to

published tables (Reference 9). Having verified the accuracy

of these subroutines we proceeded to calculate the partial deri-

vatives of U22 and V22 by applying finite difference techniques

to the results provided by the above-mentioned subroutines.

These finite difference estimates of the partial derivatives

were in turn used as our reference for validating the sub-

routines used in the larger computer code.

It was our judgment that the above partial derivatives

could be more economically and more stably calculated if they

were analytically included inside the integrals defining the

required terms. We therefore coded these quantities as follows:

BU22(
= -2 fdXe7 2 (z+ z ' ) j (XP 1+y2  (247)9PD Yo+

3122 2 dXe7Y2 (z-.W)22 -2 J2(XPD Y 2  (248)

0
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-= -2 f Aey zz i(P 2 22  (249)
Cp D d0 e 2 (1Z JXD) k2 2k Y

-w2 2 Id)e72 (Z+z') J, (XP (Y2-Y1 ) X 2  (250)
1J 2 2

CT- f0 k Y +k0 Y1

a 2 w22 _Y (z+z' ) XD (2Y 3 (
2 2 JdXeY2 JO JlAPX(21

aQD 2 DXpX D k 2  k2
D 0 2 0 y1

where p D' z, and z' are defined as in Equations 54, 55 and 56

k, = Wave number of the incident wave in free space.

k = Complex wave number of the wave transmitted through

the lossy half-space; k has a positive imaginary

part.
f U22  'U2 2  'V22

The accuracy of -J. and were checked byap D a D
comparison to the previously established finite difference

reuts w22 22d could not be checked by these means.
apD aPD

We indirectly validated the quantities by showing that they

satisfied

3 2 W22  1 2 2G 21  I k2 'V2 2  +aU22 (2 )

30 D 3PD 3 z az- az
D
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3. USAGE OF THE LOSSY HALF-SPACE TERMS

The matrix is computed as the sum of three matrices:

a free-space matrix, a matrix due to the presence of a per-

fectly conducting ground plane, and a correction matrix to

account for the discrepancy between a perfectly conducting

half-space and a lossy half-space. This decomposition is

described in Reference 1.

The form of the free-space operator, consistent with the

actual programming, is

h(r) e iklr-'I
4- xJ (r-r') x I - (ik r-r',-l)dA (253)

and the additional operator for a perfectly conducting ground

plane which is in a form consistent with the actual programming

is

4%x E&-V) x I e -i
r_ x(r x3 (ik!r-r I-1)dA' (254)

f ~IRir-r'I

where by I ia is meant the reflection of a about the ground

plane. As can be seen, the two operators have the same form

with respect to the variable of integration, r', thus permit-

ting the use of the same subroutines for computing both integrals.

The lossy half-space correction term, however, cannot be

cast in this form; hence, separate subroutines are needed. The

lossy half-space operator is

(r) x K D z + Kzaza,

+ + K sp aP a D dA (255)
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where Ks z , Ksz , K sp and KsO p are given by Equations 106-109,

& is the unit vector perpendicular to the ground plane,z
a is the direction of the projection onto the ground planefPD

of the vector from r"t6" r (if* the pr6je&tion has a zero.
length, any given unit vector perpendicular to & z will do),

and = a x a

Fortunately, the perfectly conducting operator (and

therefore the free-space operator) can be cast in the same

form as the lossy half-space. For the perfectly conducting

operator,

K K - - (256)
szO soz 4 irL__,13

and

K =-K = A 1) (- z (257)

By defining the scalar quantities so as to match the perfectly

conducting operator, we were able to test the subroutines that

were written to incorporate the lossy half-space terms. These

subroutines produce the same results as the subroutines that

calculate the perfectly conducting operator.

4. FREE-SPACE LIMIT

As discussed in the preceding subsection, the total

operator is written as the sum of three operators. For the

68



special case of the half-space having dielectric properties

similar to those of free-space, the total operator should be

similar to that of the free-space operator; i.e., the second

and third--operators should have similaz mqmgnitudes but opposite

signs. Having verified that the code had this property, we

exhausted the available checks on the incorporation of the

new terms.

5. COMPARISON TO ANOTHER CODE

G. J. Burke of Lawrence Livermore Laboratory provided

us with predictions by the NEC-(I,2)A code of the bulk

current induced on a cylinder in the vicinity of a lossy

half-space. The parameters of the case are shown in Table

1. The results of the two codes are shown in Table 2. Our

results were obtained by a four-point averaging of the longi-

tudinal current densities at a given distance from the center

of the cylinder. The discrepancy between the two predictions,

less than 5 percent, can be attributed to the large zone

sizes used by both codes, although certain differences in

the modelling assumptions could also contribute to this small

error.

6. COMPARISON TO EXPERIMENTAL DATA

Here we present comparisons of our code's surface current

predictions to experimental data obtained at the University

of Michigan. The first three figures (Figures 5-7) are repro-

duced from Reference 1; they are included as indications that

the experimental equipment is measuring the quantity being
predicted by our code. The remaining three figures (Figures

8-10) show how the experimental data for a cylinder above a

lossy planar surface compares to our predictions of surface

current for a cylinder above a half-space having the same
dielectric properties as the planar surface. Table 3 de-

scribes these dielectric properties. For each graph, the

solid curves are subjectively smoothed traces, i.e., spikes
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I

TABLE 1. CONFIGURATION PARAMETERS
FOR COMPARISON TO THE
LAWRENCE LIVERMORE
LABORATORY'S NUCLEAR
EL CTROMAGNETICS CODE
(L NEC

Wavelength = 1 m

Cylinder radius = 0.025 m

Cylinder length = 0.5 m

Cylinder height above
half-space = 0.1 m

Relative dielectric
constant = 8 + iS

TABLE 2. PREDICTED BULK CURRENTS

Distance from
midpoint of Percent
cylinder (m) MFIE L3NEC difference

0.0 0.00395 0.00413 4.6

C.0714 0.00370 0.00380 2.7

0.1429 0.00289 0.00287 0.7
0.2143 0.00151 0.00144 4.6
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TABLE 3. COMPLEX DIELECTRIC CONSTANT USED IN
THE MFIE COMPUTER CODE CALCULATIONS
APPLICABLE FOR THE UNIVERSITY OF
MICHIGAN EXPERIMENTAL DATA

Actual frequency
of experiment kh used in

(GHz) the code £2R/C

0.61 0.7 11.7 15.6
0.78 0.9 10.4 13.2
0.87 1.0. 9.6 12.5
0.95 1.1 9.0 12.0
1.00 1.15 8.7 11.6
1.04 1.2 8.6 11.2
1.09 1.25 8.5 11.0
1.13 1.3 8.1 10.6
1.17 1.35 7.9 10.4
1.22 1.4 7.8 10.2
1.30 1.5 7.3 10.0
1.48 1.7 6.8 9.3
1.74 2.0 6.3 8.2
2.08 2.4 5.7 7.9
2.43 2.8 4.6 7.3
2.78 3.2 4.3 6.5
3.13 3.6 4.2 6.0
3.47 4.0 4.0 5.4
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eliminated, of experimental data while the dots are the values

predicted by our code; see Reference 1 for the original experi-

mental curves.

We observe that except at resonance the agreement between

prediction and experiment is excellent for the free-space case

and the case of a cylinder above a perfectly conducting ground

plane. The fact that the agreement suffered most at resonance
is not surprising since this region is most sensitive to de-

tailed modelling accuracy.

The same cylinder, source and probe were used to measure
the cylinder's response to the incident wave in the free-

space, perfectly conducting half-space, and lossy half-space

configurations. Therefore, we will use the level of agreement

obtained for the two former configurations as a basis for com-
paring the predictions to the experimental data for the lossy

material. According to this criterion, although there is gen-
eral qualitative agreement, the quantitative agreement suffers

by comparison to the earlier efforts.

This disagreement does not necessarily invalidate either
the experiment or the computer code. An alternative is the

possibility that the differences between the experimental

configuration and the configuration being modelled by the code
are significant. Take, for example, the lossy ground plane

used in the experiment. It consisted of 12 slabs assembled

into three layers 4 ft x 4 ft x 2h in. supported by a metallic

ground plane. How this compares to a half-space is in question.

(Of course, if we believe both the experimental and predictive
results, the question is answered.)

7. ACCURACY CONSIDERATIONS

The MFIE is a direct consequence of Maxwell's equations

for the problem being solved: electromagnetic scattering from
a perfect conductor embedded inside a layer of a stratified
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medium. However, the numerical approximation used for solving

this equation, patch zoning, cannot be performed with complete

precision in a finite time. Besides the approximation inherent

in the technique (piecewise constant solutions), the matrix

elements must be approximated since the kernels of the asso-

ciated inteqrals cannot be integrated in closed form; in fact,

for the lossy half-space terms, the kernels are themselves

integrals which cannot be integrated in closed form.

The parameters affecting solution accuracy are:

1. Zoning density

2. Quadrature order for spatial integration

3. Accuracy of the terms due to the lossy half-space

The first item has been programmed as input variables;

the user of the program decides their values. Our choice for

the second and third parameters was dictated by the joint

criteria of minimizing computation time and restricting the

induced error in the solution to less than ten percent.

The scheme used for the spatial integration was:

1. For the free-space term, and therefore the perfectly

conducting term, reduce the two-dimensional integral

to a one-dimensional integral of a finite sum of

terms. This step removes the difficulty of per-

forming numerical integration on a singular inte-

gral without introducing an error which is large

compared to machine roundoff,

2. The remaining integration was performed using two-

point Uaussian quadrature.

3. The lossy half-space terms were integrated by a

product rule of Gaussian quadrature, i.e., a three-

point rule for one direction of integration and a

two-point rule for the other direction.
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The final consideration was the generation of the lossy

half-space terms. Their generation.by numerical integration

proved to be prohibitively expensive thus forcing us to develop

an interpolation scheme for these terms. We found that even

in severe tests of our scheme, a 30 by 30 interpolation table

proved sufficient to obtain the same final answer, to within

one percent, as the same case using direct calculation of these

terms.
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APPENDIX A. PROOF THAT FNsab IS INDEPENDENT

OF THE SCATTERING OBJECT

For convenience we begin our proof by defining the

quantity

A9 = Is£,-i + I +i Z=2,...,N-1 (A-1)

where Is£,k is defined in Equation 10. The definitions for

Z = 1 and £ = N require further explanation. For Z = N,

IsN,N+l equals the limit of the integral over a hemispherical

surface having a radius approaching infinity. Because of the

radiation condition (or exponential damping if E N is lossy)

imposed on the fields, this limit is zero. The case Z = 1 is

treated differently for the horizontally stratified medium and

the radially stratified medium. For the horizontally strati-

fied medium, Isl,0 equals the limit of the integral over a

hemispherical surface having a radius approaching infinity; it

is zero for the same reason as IsNN+l* For the spherically

stratified case, an I never really exists. Using thissl,0
information, we complete the presentations for the Al Is for

both the horizontally stratified and the radially stratified

medium situations as follows:

A1  1 sl,2 (A-2)

AN = IsN,N-l (A-3)

In arriving at the expressions contained in Equations A-2 and

A-3, it was necessary to use the boundary conditions at infinity

satisfied by the fields. In order to obtain the following

relationship which plays an important role in this proof
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FRI

I,k = -Isk,j k=j±l (A-4)

it will be necessary to employ the boundary conditions satis-

fied by the fields at each interface. Combining Equations 8

and 10, we have

Isj,k f f mjkdS (A-5)
Sj,k

where

mjk = jk-IEja xH jb-EjbXHjal (A-6)

Using the fact that for general vectors A and B,

f f.[xtAB -= t It t (A-7)

where

A t A ~nn] (A-B)

we can rewrite Equation A-6 as

jk = jk Ea:tbKtb!j]

Now the boundary conditions at the S. interface are such that

Ej = Etka =a,b (A-10)

and
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Htj = Htka a-a,b (A-li)

Using the fact = - k,j together with Equations A-9, A-10,

and A-lI, it follows that

mjk = -mkj (A-12)

This, combined with the fact that Sj,k and Sk,j denote the
same interfacing proves Equation A-4. Using Equations A-i

through A-4 and forming the sum

N
A£ (A-13)

9.=i

we can conclude that S=O, or equivalently that

N

-- -N A9 (A-14)
S Z=_Y, Ns

Since a - 0 for L # Ns , the definition of A£ in conjunction
with Equation 9 implies

A£ - -I Vab £#Ns  (A-15)

Rewriting Equation 15, which appeared in Section 2, as

FNsab s + IVNsab (A-16)
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and substituting Equations A-14 and A-15 into this equation,

we obtain

N

FNab = I (A-17)
N ab i-i Vlabs Z=i

In order to draw our desited conclusion, it is only necessary

to show that Ivab is independent of the scattering object.

To do this, we write the definition of this quantity given by

Equation 12 in expanded form as follows:

Ivab = E (a ) ' b (r)dV (A-18)
VZb

The quantity E(r, a) is the electric field, observed at a
point rEV., produced by the current distribution;

JNsa = aS(r-r a), with the scattering object considered to be
absent; and !4b is a rigid source unaffected by the scattering

object' Thus, it follows that Ivab is independent of the

scatterer, and from Equation A-17 it follows that FNab is

independent of the scatterer.
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APPENDIX B. PROOF THATG.rr rr

The proof is started by taking the curl of Equations 39
and 47 and then substituting Equations 40 and 41 into the
results to obtain

V x gjr,r') = iwjitK3,(r,r') (B-1)

3

V x g.(r,r') =-iWEtg,(r,r') + S(r-r') aia
i= 1

=-iw~ExG9,(r~r') + 6(r-r'),I (B-2)

We now consider the special cases in which the source point
*r' is restricted to lie in the volumes V.i or V 'and we intro-

duce the notation

a-

-t -bck (B-4)

Next we take the dot product from the right with the vector a

ot - a k=j (B-5)

ot = b t=k (B-6)

with both sides of Equations B-i and B-2 to obtain Equations
1 and 2 after making the identifications
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G (r, -= E (r,r ) (B-7)

, (r,r ) (B-8)

Je(r) = a6(r-r) (B-9)

It now follows that Equations 9 through 12 are valid for the

quantities just defined. Noting that the scattering surface

plays no role in the analysis presented in this appendix, we

write Equation 9 as

A V I vba I V2ab (B-10)

where we have incorporated the definition for A. given

in Appendix A. Because of our choice of sources, it follows

that

A Ivjba (B-11)

Ak  (B-12)

A = 0 L#j,k (B-13)

As argued in Appendix A, the boundary conditions guarantee that

At- 0 (B-14)

t=i
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Combining Equations B-9 through B-12, it follows

Vjba = Vkab (B-15)

Using Equations 5 and 12 as well as Equations B-5 through B-9

to represent Equation B-15 in more detail, and evaluating the
volume integrals using the properties of the 6 function, we

obtain

a'G (r ,r ).b = bk(rbra)-a (B-16)
- j-a -b k _-

Using general properties of the vector dyadic product, we can

write

a'Gj(rarb).b = a-k(rb,ra) - b (B-17)

Using the fact that a and b were arbitrarily chosen vectors
°  and changing notation so that ra = r and rb = r', we obtain

the desired result

Gj(r,r') _(r',r) rV (B-18)
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APPENDIX C. OUTLINE OF ESSENTIAL
DETAILS TO DERIVE EQUATION 38

An essential difference in obtaining Equation 38 as opposed

to Equation 37, which was derived in detail in Section 2, is the

choice of the source J£a" In order to derive Equation 38, we

choose

S a i 6(r-r i=1,2,3 (C-i)
-ka . - -a

with ra Vk,k#N s , as opposed to the choice expressed by Equa-

tion 16. The rigid sources, J b' are the same physical sources

for the excitation as before. We now write Equation 9 as

Ak = IVkba - IVkab (C-2)

" Ns =-IVNsab - I s  (C-3)

At = -Vab
Z=1,2,---,N Y.k,N S (C-4)

with the meaning of the Aj's defined in Appendix A. As seen

in that appendix

N

0Aj (C-5)

J-1

independent of our choice of sources Jta and JLb" Combining

Equations C-2, C-3, C-4, and C-5 we obtain
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N
vkba IVjab 0 (C-6)

j=l

To further interpret this equation, we note that

IVkba = a'.Ekb (ra) (C-7)

and as in Section 2, A can be sequentially chosen as 1iA2,

and a3 ! We can now rewrite Equation C-6 as

Fkab + is = 'Ekb(ra) (C-8)

N

Fkab = 2 'Vjab (C-9)
j=1

and Equation C-8 can be related to Equation 14. In fact, using

the evaluation of F N ab found in Appendix A and comparing that
5

expression to the expression given for Fkab given by Equation

C-9, one might conclude that the left-hand side of Equation

C-8 is identical to the left-hand side of Equation 14. This

is not quite the case because the implicit dependence on r-a
causes the essential difference. In Equation 14, raeVNs ,

while in Equation C-8, racVk . Despite this difference, the
same arguments that were used in Section 2 to arrive at Equa-

tion 31 from Equation 14 can be used to arrive at

(r -a (r ) + fJi(r) -9 (r, r ) dS
Eb ;--a Tkb~ -a - -- aS s

£ aEVk (C-10)
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when they are applied to Equation C-8. Using Equation B-15,

we can write Equation C-10 as

(r)= (r) + f (r ,r) J(r)dS (C-li)

-kb -a - T-klb -Ea) + k-a-

Recognizing that k is a dummy index, which for completeness

we now call £, and making the same notation change that was
used in Section 2 to arrive at Equation 37 from Equation 36,

we can now write Equation C-11 as

Ez(r) = ET (r) + fG,(r'r')'J(r')dS' (C-12)

which is Equation 38, and thus completes this appendix.
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