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SYMMETRY IN ELECTROMAGNETIC SCATTERING
FROM A CLUSTER OF SPHERES

L INTRODUCTION.

This paper is a sequel to one we published in Applied Optics.! Henceforth, the
previous article will be referred to as Part I. We shall briefly describe the subject as it was in
Part I and then extend it here.

As stated in Part 1, we are investigating the problem of electromagnetic scattering by
particles of arbitrary shape. We have built a model scatterer, assuming for computational simplicity,
to know the complex refractive indices and radii of the cluster of homogeneous nonmagnetic
spheres of which it consists. The geometry of the cluster is rigid and we assume that the incident
wave is a circularly polarized plane wave of wave-vector k and frequency w. Such an arrange-
ment, where in the cluster the spheres are homogeneous and nonmagnetic, allowed us to transform
the vector problem (the scattering problem has an intrinsic vector nature) into a pair of scalar
ones using the Debye potentials to describe the electromagnetic field. In this way, we have simpli-
fied the problem and have been able to compute the absorption, scattering, and total cross sections.

The computations of the cross sections of the cluster and, therefore, the convergence
of the scattered fields require solution of rather big systems whose order is given by N®,. * 1)2,
N being the number of the spheres in the cluster, and R nax the highest value of £ that is included
in the expansions of Debye potentials. If, however, the cluster has a symmetry group, the above
systems can be factorized through group-theory techniques similar to those used in quantum-
mechanical problems. It is shown that the application of group theory to scattering produces a
nonhomogeneous system of equations rather than secular determinants. These nonhomogeneous
equations more closely represent real-world scattering by particles than is generally obtained.

1. THE SCA G 1 ON OF ENCE.

In Part 1, it was assumed that the incident wave propagated along the positiv- z-axis,
the direction of incidence being then changed by rotating the cluster as a whole. For our present
purposes, we shall refer the cluster to a fixed system of axes and choose the direction of incidence
through the direction cosines of k, the ptomtion vector of the wave. A straightforward calcula-
tion along the lines sketched by Jacluon shows that for a circularly polarized plane wave of
wave-vector k:

, EXND = (s tig)) exp (kK- D =
4,2%#@. t igy) - X3 @ [x.,,,(m.(kr) t {;Ax x.,,.(m,(kr)] (1a)

B = HEND (1b)
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where ¢, and g, are unit vectors orthogonal to k and to each other and X, @ and Xom &) are
vector spherical harmonics defined as:

-kxVv

-itx 9
an® = Yo ® .+ Xen® = @
Aa® = ey @ - He Vie 1)Y'm
The Debye potentials for the fields (1) are then (Newton?)

o= Z ttay Qg Digtenry,, @)
’ ¢: (D=4 w: ® - (3b)
with

dg=ar [t e 0] GG - @ ) M@

When the above expnuions for ¢ and w are introduced into the formalism developed in Part I,
the final systems of equations wluch determine the coefficients A,vmv, B,v + become

;&‘Sdsmwm' [s:,]. + Gh: ¢m '} A!'m' - _zek.aGQ;m&). 2
22{‘ o’ [T:'] * G::: R'm} B 28k Wy

s ta'

where S’ 'l'° md Gﬁ: fm’ 8¢ still deﬁned as before.

. SYMMETRIZATION OF DEBYE POTENTIALS.

The symmetrization of the systems (4) requires us to symmetrize only ¢y and ¥,
the Debye potentials in the intersphere region. The expansion coefficients of ¢; and ¥, the
potentials within the spheres, cancel out of both sides of the resulting equations. It is convenient
to partition the cluster in subsets of spheres which are related to each other by the symmetry
operations and to indicate the vector position of the a-th sphere in the o-th subset by RJ, while
1% =1~ RS The expansion of ¢y in terms of symmetry-adapted combinations of Helmholtz
solid harmonics is:

-’ Q) = ¢ %‘- “ZPJZ!: itd, [&43'#"'&) *2 2 Q, & #Y, J“"m] )
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where we use the definitions

R - Gettoe (), () o

for the combinations of solid harmonics centered at the various sites of the o-th subset and
P = up i .
= 10)) Z: bt 2 KOY, @ ®)

for the combinations of functions centered at the origin.

In the preceding equations, the superscripts ¢, p refer to the p-th row of the u-th itreducible repre-
sentation. Note that Hi}P = HU3P, 03P = 3P 5o that a given irreducible representation may
appear more than once for a given £. The symmetrization coefficients, 8P°% and bi}, , are
easily obtained by standard techniques®: 5 through the use of the well-known transformation for-
mulas for spherical harmonics.® A quite analogous expansion can be written for Vq, the coef-
fients being indicated by B"J". A comparison of the symmetrized expansions with their unsym-

metrized counterparts yields the equations
ao .E 4BPO JBpoa. pac po _upoa
Alm upm ot .:!m ’.:m ;Bﬁ! dntm . ®

which allow us to calculate the cross sections whose expressions involve the A::‘ s and the B;: ’s.

IV. FACTORIZ (0) - SY. FO COEFFICIENTS.

The equation for the coefficients A‘; ? and B4} are obtained by imposing on ¢ and
¥ the well-known boundary conditions (Newton®) on the surface of each sphere. To do this, we
first put ¢y and Yy in a form involving only Helmholtz solid harmonics centered at a single site,

say _l}:, through the same addition formulas’’ 8 we have already used for the unsymmetrized case.
The result for ‘ll is:

W) % TF fata@)] 5[5 )
T o ) Aenle) |
2 Zn:&, Fre ":;;e-m~(°lﬁ)":§'m'in(k'2)f (10)

where we put ]

o . Hp
Por %3,.,“..(&)%..’“.
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When we impose the required boundary conditions on ¢ at the surface of the o-th sphere in the
o-th subset we get for each u, p an equation of the form:

1) ao,fr [ pptf upr _
ZZZ" saﬂ 522 [SQJ * G!m. Q'm} nt'm’ An'e
7 o tw
pHP o0 Bp
-2 ZE ¢ Ctm; ¢m’ One'm’ (12)
i ofm' .
We notice that S; should be written as g but, since it is actually independent of the site within

each subset, the superscript 8 has accordingly been dropped. Now, if equation 12 is multiplied by

(a“”“ * and summed over « and m and fixing the superscripts u, p, and dropping them from the
equation, we get

ZZ’ or Oeg’ [s;']-l + G g f 22 g U3

't r

Equation 13 is obtained by applying the following techniques:

2n.2'n' ZZ (n!m) :::,ifm ‘;en'm'

Cons ZZ (n!m) om; ¥m’ OB¥'m’

and where we have taken into account that, if the irreducible representations are chosen properly
(Altmann and Bradley® and Diamond® ), the symmetrization coefficients satisfy

upoa\*® upoa
Z(‘n!m') ™ snn' (14)

b 25 b () [8]" o = S [
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Equations quite analogous to equation 13 hold true for the le’s.

We recall that (although never explicitly indicated) the coefficients A:’Q’ % and B:f ¢
depend on both the polarization and on the direction cosines of k, Furthermore, once the 4’s and
B’s have been computed, the (s and D’s, the expansion coefficients of the symmetrized Debye
potentials within the spheres, are calculated through equation 16 of Part 1 which are still valid on
account of equations 14 and 9. '

V.  THECROSS SECTIONS.

The right-hand side of equation 13 involves the quantities a on: O which are easily
identified as the symmetrized matrix elements, in the site and angular momentum representation,
of the free-space propagator for plane waves. 10 Doing this not only simplifies the expression of
the incident wave in symmetrized form but also allows the calculation of the cross section without
any approximation other than the truncation of the l-expansion of Debye potentials. Indeed the
scattered potentials are given by'

v, D ey (f:’l)h?) (kr:) (153)

ac m

ao M/, .0
¢, @ ZZ: % Ao Yy (if.’)h’z (kra) (15b)
ac fm

and, as the potentials of the incident wave involve only Helmholtz harmonics centered at the
origin, it is convenient to use again the addition formulas of Nozawa’ to transform equation 15
into the form:

b0 & ZET e (€)1 000 0o

a0 fm m'

W=t xn ZZZ dp A 2" hm,z' ( ) (A)hm(kr) (16b)

- ac fm €m’

We notice, incidentally, that when kR << 1, equation 16 reduces to equation 17 of Part I for
on account of the small-argument behavnot of the spherical Bessel functions

ao
“:’ o i 'm' 622’ 8rnm'

By defining

Ko 'Za::.,n'm' tm' * Bem ™ Z & st B an
!'m m
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we get for the cross sections:

Oy = 27'22‘ ZZZ[K:: Ry * By '—’:n] 18)

fm a0 Pr
= ﬁ . —~ao*® =P *
“w T 2 ZZZ:[Z% Vm <A!lm * Qam) (Aﬂm ¥ Q!m) )
fm a0 fr

(86 + Qun) (B2 + )] a9)

and:
4x? —a0 =0
atot = k_z ZE Re[le (Alm + Bllm )] (20)
tm ao

VL. DISCUSSION.

The procedure described in the preceding sections does not differ from that customarily
used to factorize secular determinants, except that the inhomogeneity of our equations forces us to
solve all the systems arising from equation 4. Indeed, the quantities S, 'l‘g., on the left-hand
x‘de éf equation 4 are the matrix elements, in the site and angular momentum rgpresentation, of the
t+ G, the 't\-operator accounting for the scattering power of a single sp| erell/and 6 being the free
space propagator for outgoing spherical _waw.es.12 As the operator t + G is invariant under the
symmetry group of the cluster, its symmetrized matrix elements, i.c., the quantities within braces
in equation 13, are actually independent of the row index, p. On the other hand, the potentials
of the incident wave on the right-hand side of equation 4 are not invariant under the symmetry
group. According to general theorems, they have been decomposed into parts belonging to the
rows of the irreducible representations, but these symmetrized parts do actually depend on the
row index. However, because of the above-discussed independence of p on the left-hand side of
equation 13, very little extra computational work is required to solve all systems belonging to a
multidimensional representation. From a computational point of view, most of the computing
time is, in fact, spent to invert the matrix on+ and, as the required time grows more quickly
than the order of the matrix, the factorization procedure is always very useful.

As an example, let us consider a tetrahedral cluster with CH, structure (symmetry
group Td). By including terms up to llm“ = 2, we get two unsymmetrized systems of order 45.
However, by using symmetrized expansions, each one of the above systems splits into one A,
system of order 3, one A, of order 1, two E of order 4, three F, of order 6, and three F, of
order 5. The usefulness of the factorization through group theory needs no further comment.

VI SUMMARY.

The work reported here and in our previous papers has led to a unique approach to
calculating the optical properties of clusters of molecules. It now appears possible to compute

12
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extinction of a particle knowing only its chemical composition. This is a radical departure from

the Mie theory, yet the solution converges to Mie results for a single sphere. The theory developed
here will now be tested using the X a — w, scattered wave computer program developed by Johnson,
et al. at IBM and modified by the authors for this study. The initial material to be investigated

will be sulfuric acid, a material which is optically well characterized. This validation effort will

be the subject of a subsequent technical report.

;
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