BEFELT AD-E430490

AD

TIC

SEP 2 9 1980

B

12

031

an for the second of

AD A 089646

MEMORANDUM REPORT ARBRL-MR-03027 (Supersedes IMR 632)

YAWSONDE DATA FOR M687-TYPE PROJECTILES WITH APPLICATION TO RAPID SPIN DECAY AND STEWARTSON-TYPE SPIN-UP INSTABILITIES

> W. P. D'Amico W. H. Clay A. Mark

June 1980

FILE COPY

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND BALLISTIC RESEARCH LABORATORY ABERDEEN PROVING GROUND, MARYLAND

03

9

Approved for public release; distribution unlimited.

Destroy this report when it is no longer needed. Do not return it to the originator.

¥ ³

.

Secondary distribution of this report by originating or sponsoring activity is prohibited. Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22151.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indersement of any commercial product.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER 2. GOVT ACCESSION NO	الانتفاع المستجر ابناد بروي ويسترج المتخذين الترجيب وتصرف والمحادث والمراجع
MEMORANDUM REPORT ARBRL-MR-03027 + AD-A089 6	46
N TILE (and Subttle)	5. TYPE OF REPORT & PERIOD COVERE
YAWSONDE DATA FOR M687-TYPE PROJECTILES WITH	Final
APPLICATION TO RAPID SPIN DECAY AND STEWARTSON-	6. PERFORMING ORG. REPORT NUMBER
TYPE SPIN-UP INSTABILITIES	
ALTHOR(+)	8. CONTRACT OR GRANT NUMBER(#)
W. P. D'Amico	
W. H. Clay	
A. Mark PERFORMING ORGANIZATION NAME AND ADDRESS	12. PROGRAM ELEMENT, PROJECT, TASH
US Army Ballistic Research Laboratory	AREA & WORK UNIT NUMBERS
ATTN: DRDAR-BLL	
Aberdeen Proving Ground, MD 21005	RDT&E No. 1L162618AH80
1. CONTROLLING OFFICE NAME AND ADDRESS US Army Armament Research & Development Command	12. REPORT DATE
US Army Ballistic Research Laboratory	June 1980
ATTN. DRDAR-BL	13. NUMBER OF PAGES 84
Aberdeen Proving Ground MD 21005 13. NONITORING AGENCY NAME & ADDRESS(I dillorent from Controlling Office)	15. SECURITY CLASS. (of this report)
	UNCLASSIFIED
6. GISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimit	15. DECLASSIFICATION/DOWNGRADING SCHEDULE
	IS. DECLASSIFICATION/DOWNGRADING
Approved for public release; distribution unlimit	IS. DECLASSIFICATION/DOWNGRADING
Approved for public release; distribution unlimit	IS. DECLASSIFICATION/DOWNGRADING
Approved for public release; distribution unlimit	IS. DECLASSIFICATION/DOWNGRADING
Approved for public release; distribution unlimit 7. DISTRIBUTION STATEMENT (of the obstract entered in Elock 20, if different is 8. SUPPLEMENTARY NOTES	IS. DECLASSIFICATION/DOWNGRADING
Approved for public release; distribution unlimit 7. DISTRIBUTION STATEMENT (of the obstract entered in Elock 20, if different is 8. SUPPLEMENTARY NOTES	IS. DECLASSIFICATION/DOWNGRADING
Approved for public release; distribution unlimit 17. DISTRIBUTION STATEMENT (of the obstract entered in Elock 20, if different is 18. SUPPLEMENTARY NOTES This report supersedes IMR 632, dated March 1979.	IS. DECLASSIFICATION/DOWNGRADING SCHEDULE ed.
Approved for public release; distribution unlimit 17. DISTRIBUTION STATEMENT (of the obstract entered in Elock 20, if different is 18. SUPPLEMENTARY NOTES This report supersedes IMR 632, dated March 1979.	IS. DECLASSIFICATION/DOWNGRADING SCHEDULE ed.
Approved for public release; distribution unlimit 7. DISTRIBUTION STATEMENT (of the abstract entered in Elock 20, if different i 19. SUPPLEMENTARY NOTES This report supersedes IMR 632, dated March 1979. 18. KEY WORDS (Continue on reverse elde 11 necessary and identify by block number	IS. DECLASSIFICATION/DOWNGRADING SCHEDULE ed.
Approved for public release; distribution unlimit 7. DISTRIBUTION STATEMENT (of the abstract entered in Elock 20, 11 different f 9. SUPPLEMENTARY NOTES This report supersedes IMR 632, dated March 1979. 9. KEY WORDS (Continue on reverse elds if necessary and identify by block number Projectile Stability	IS. DECLASSIFICATION/DOWNGRADING SCHEDULE ed.
Approved for public release; distribution unlimit Approved for public release; distribution unlimit To distribution statement (of the abetract entered in Eleck 20, 11 different if SUPPLEMENTARY NOTES This report supersedes IMR 632, dated March 1979. B. KEY WORDS (Continue on reverse elds if necessary and identify by block number Projectile Stability Rotating Liquids	IS. DECLASSIFICATION/DOWNGRADING SCHEDULE ed.
Approved for public release; distribution unlimit Approved for public release; distribution unlimit Distribution STATEMENT (of the abstract entered in Elock 20, 11 different is supplementary notes This report supersedes IMR 632, dated March 1979. E. KEY WORDS (Continue on reverse elds if necessary and identify by block number Projectile Stability Rotating Liquids Spin-Up	IS. DECLASSIFICATION/DOWNGRADING SCHEDULE ed. nom Report)
Approved for public release; distribution unlimit 17. DISTRIBUTION STATEMENT (of the abeliact entered in Elock 20, if different i 18. SUPPLEMENTARY NOTES This report supersedes IMR 632, dated March 1979. 19. KEY WORDS (Continue on reverse elde if necessary and identify by block number Projectile Stability Rotating Liquids Spin-Up 10. ABETRACT (Continue on reverse elde if necessary and identify by block number	IS. DECLASSIFICATION/DOWNGRADING SCHEDULE ed. nom Report)
Approved for public release; distribution unlimit 17. DISTRIBUTION STATEMENT (of the abetract entered in Elock 20, 11 different f 18. SUPPLEMENTARY NOTES This report supersedes IMR 632, dated March 1979. 18. KEY WORDS (Continue on reverse elde if necessary and identify by block number Projectile Stability Rotating Liquids Spin-Up 28. ABSTRACT (Continue on reverse elde if necessary and identify by block number Specially prepared M687 projectiles were tested at 28 September 1977 and 3 May 1978. Yawsonde data w	<pre> ISe. DECLASSIFICATION/DOWNGRADING SCHEDULE ed. nom Report) w) Wallops Island, Virginia, c ere obtained for all flights</pre>
Approved for public release; distribution unlimit TO DISTRIBUTION STATEMENT (of the abstract entered in Elock 20, if different is US SUPPLEMENTARY NOTES This report supersedes IMR 632, dated March 1979. US. KEY WORDS (Continue on reverse elds if necessary and identify by block number Projectile Stability Rotating Liquids Spin-Up The ABSTRACT (Continue on reverse elds if necessary and identify by block number Specially prepared M687 projectiles were tested at 28 September 1977 and 3 May 1978. Yawsonde data w The payload canisters were one piece cylinders of	<pre> ISe. DECLASSIFICATION/DOWNGRADING SCHEDULE ed. wo wo wo Wallops Island, Virginia, c ere obtained for all flights M687-type except that severa </pre>
Approved for public release; distribution unlimit Approved for public release; distribution unlimit DISTRIBUTION STATEMENT (of the abstract entered in Eleck 30, If different is supplementary notes This report supersedes IMR 632, dated March 1979. ELECTIVE WORDS (Continue on reverse elds II necessary and Identify by block number Projectile Stability Rotating Liquids Spin-Up Re AMETRACT (Continue on reverse elds II necessary and Identify by block number Specially prepared M687 projectiles were tested at 28 September 1977 and 3 May 1978. Yawsonde data w The payload canisters were one piece cylinders of of the canisters had heights that were non-standar	<pre> IS. DECLASSIFICATION/DOWNGRADING SCHEDULE ed. w Wallops Island, Virginia, c erc obtained for all flights M687-type except that severa d. In an attempt to reprodu </pre>
Approved for public release; distribution unlimit Approved for public release; distribution unlimit TO DISTRIBUTION STATEMENT (of the observed in Elock 20, 11 different if SUPPLEMENTARY NOTES This report supersedes IMR 632, dated March 1979. KEY WORDS (Continue on reverse elde if necessary and identify by block number Projectile Stability Rotating Liquids Spin-Up A ABSTRACT (Continue on reverse elde if necessary and identify by block number Specially prepared M687 projectiles were tested at 28 September 1977 and 3 May 1978. Yawsonde data w The payload canisters were one piece cylinders of of the canisters had heights that were non-standar previously observed anomalous despin effects for M	ed. Wallops Island, Virginia, o ere obtained for all flights M687-type except that severa d. In an attempt to reprodu 687 shell at shot exit, seve
Approved for public release; distribution unlimit 17. DISTRIBUTION STATEMENT (of the abetract entered in Elock 20, if different i 18. SUPPLEMENTARY NOTES This report supersedes IMR 632, dated March 1979. 19. KEY WORDS (Continue on reverse elde if necessary and identify by block number Projectile Stability Rotating Liquids Spin-Up	ed. Wallops Island, Virginia, of ere obtained for all flights M687-type except that severa d. In an attempt to reprodu 687 shell at shot exit, sever re tested at yaw levels up t

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

÷.,

たいない

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

20. simulant-loaded binary canisters with burst discs were employed. It is most probable that the burst discs precipitate the anomalous spin behavior. Yawsonde data were also obtained for a 100% filled canister whose height was selected to produce a Stewartson-type instability during liquid spin-up. The flight data from one unstable round was consistent with computations of spin-up eigenfrequencies from recently developed methods.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

TABLE OF CONTENTS

]	Page
	LIST OF F	IGURES	••	••	•	• •	•••	•	• •	•	•	•		•	•	•	•	5
	LIST OF T	ABLES	••	•••	•	• •	•••	•		•	•	•	• •	•	•	•	•	9
I.	INTRODUCT	ION .	• •	••	•	••		•		•	•	•	• •	•	•	•	•	11
II.	BACKGROUN	D	••		•	••		•	• •	•	•	•	• •	•	•	•	•	11
III.	TEST FIRI	NGS .	•••	••	•	•••	•••	•	•	••	•	•	• •	•	•	•	•	13
	A. Ins	trumen	tatio	on.	٠	•••	•••	•	•	•	•	•	•	•	•	•	•	13
	B. Har	dware	Desci	ript	ion	•	•••	٠	•	•••	٠	•	• •	•	•	•	•	13
	C. Yaw	sonde	Data	for	28	Ser	oten	ıbeı	: 19	9 77	•	•	•	•	•	•	•	14
	D. Yaw	rsonde	Data	for	3	May	197	78	•	• •	•	•	•	•	•	•	•	15
JV.	DISCUSSIC	DN	••	••	•	••	• •	•	•	• •	٠	•	•	•	•	•	•	16
v.	CONCLUSIC	ons	• •		•	• •	• •	•	•	• •	•	•	•	•	•	•	•	20
VI.	ACKNOWLEE	GEMENT	s.	••	•	••	• •	•	•	• •	•	•	•		٠	•	٠	20
	REFERENCE	is	•••	• •	٠	••	• •	• •	•	• •	•	•	•	• •	٠	•	•	7 9
	APPENDIX	• •	•••	••		• •	•	• •	•	• •	٠	•	•		•	٠	•	81
	DISTRIBUT	TION LI	ST .		•	•••			•		•	•	•			•	•	83

ACCESSION for	
NUS	White Section
DOC	Bull Section
UNANNOLINCED	D
JUSTIFICATION	
	VALLABILITY CODES and/or special

. . .

Source of the lot of the second

Y 1. 15.

<u>3</u>. -

1 ______

· . . .

...

3

. . . .

The part of the

LIST OF FIGURES

1. m 2.9

Figure		Page
1	M687 Projectile	. 21
2	Sigma N Vs Time Round 7254	. 22
3	Phi Dot Vs Time Round 7254	. 23
4	Sigma N Vs Time Round E1-5975	. 24
5	Sigma N Vs Time Round 1184	. 25
6	Phi Dot Vs Time Round 1184	. 26
7	Sigma N Vs Time Round 1183	. 27
8	Phi Dot Vs Time Round 1183	. 28
9	Wallops Island Launch Facility	. 29
10	Sigma N Vs Time Round E1-9188	. 30
11	Phi Dot (Raw) Vs Time Round E1-9188	. 31
12	Sigma N Vs Time Round E1-9189	. 32
13	Phi Dot (Raw) Vs Time Round El-9189	. 33
14	Sigma N Vs Time Round El-9190	. 34
15	Phi Dot (Raw) Vs Time Round E1-9190	. 35
16	Sigma N Vs Time Round E1-9191	. 36
17	Phi Dot (Raw) Vs Time Round E1-9191	. 37
18	Sigma N Vs Time Round E1-91.	. 38
19	Phi Dot (Raw) Vs Time Round E1-9192	. 39
20	Sigma N Vs Time Round E1-9193	. 40
21	Phi Dot (Raw) Vs Time Round E1-9193	. 41
22	Sigma N Vs Time Round El-9194	. 42
23	Phi Dot (Raw) Vs Time Round E1-9194	. 43

5

Sec. Sale

AND THE TRACE DI ANK NOT TILLED

LIST OF FIGURES (continued)

Figure	<u>P</u> ;	age
24	Sigma N Vs Time Round El-9195	44
25	Sigma N Vs Time Round E1-9195	45
26	Phi Dot (Raw) Vs Time Round E1-9195	46
27	Phi Dot (Raw) Vs Time Round E1-9195	47
28	Sigma N Vs Time Round E1-9196	48
29	Sigma N Vs Time Round El-9196	49
30	Phi Dot (Raw) Vs Time Round El-9196	50
31	Phi Dot (Raw) Vs Time Round E1-9196	51
32	Sigma N Vs Time Round E1-9197	52
33	Sigma N Vs Time Round El-9197	53
34	Phi Dot (Raw) Vs Time Round E1-9197	54
35	Phi Dot (Raw) Vs Time Round E1-9197	55
36	Sigma N Vs Time Round E1-9383	56
37	Phi Dot (Raw) Vs Time Round E1-9383	57
38	Sigma N Vs Time Round E1-9384	58
39	Phi Dot (Raw) Vs Time Round E1-9384	59
40	Sigma N Vs Time Round El-9385	50
41	Phi Dot (Raw) Vs Time Round E1-9385	61
42	Sigma N Vs Time Round E1-9386	52
43	Phi Dot (Raw) Vs Time Round E1-9386	63
44	Sigma N Vs Time Round E1-9387	64
45	Phi Dot (Raw) Vs Time Round E1-9387	65
46	Phi Dot (Raw) Vs Time Round E1-9388	66

6

LIST OF FIGURES (Continued)

Figure		Page
47	Sigma N Vs Time Round E1-9389	67
48	Phi Dot (Raw) Vs Time Round El-9389	68
49	Sigma N Vs Time Round E1-9390	69
50	Phi Dot (Raw) Vs Time Round E1-9390	70
51	Probability of Failure of XM687	71
52	Sigma N Vs Time Round El-9387	72
53	Spin-Up Eigenfrequency History for El-9387 for the n=1 and j=2 Mode	73

LIST OF TABLES

Table		Page
1	Round-By-Round Summary	74
2	Projectile Physical Measurements	75
3	Configuration Data	76
4	Canister Lengths and Aspect Ratios for M687-Type Shell	77
5	Stewartson's Tables for a 100% Cylinder First Radial Mode (n=1)	78
A-I	Axial Moments of Inertia for an M687 Projectile	81

Sec.

I. INTRODUCTION

The 155mm M687 binary projectile is shown in Figure 1. This projectile carries a liquid payload in two cylindrical canisters that are partially filled (approximately 90% of the available volume) and are separated by a pair of burst discs (as shown in Figure 1). During a flight stability investigation centered about the parent projectile, the M483A1, anomalous spin histories were noted for the M687¹. In some instances rapid decreases in spin were observed at shot exit. For unstable flights, substantial losses in spin accompanied large angular motion. Analytical methods treating the stability of liquid-filled shell and liquid spin-up strictly apply to a single canister without burst discs. To provide for a comparison of theory and flight data, special M687 canisters are used. This report provides flight data for single canisters with fill ratios of 90 and 100%. A qualitative examination of the data show only smooth spin decays at shot exit, although the oscillatory nature of the spin records make such an examination difficult. Since non-smooth or anomalous histories were only observed when burst discs were employed, it is most likely that the burst discs produced the rapid despin effects observed at shot exit. A quantitive evaluation of the spin histories would be required, however, for final evaluation. Heretofore, yawsonde data for Stewartson-like spin-up instabilities were not available. For a fill ratio of 100%, a canister aspect ratio was selected by heuristic methods to produce an unstable flight. Three projectiles were tested and one unstable flight occurred. The yawsonde data were compared with results from a recently developed spin-up eigenfrequency code. The computer predictions and the flight data were consistent for this single case. The effects of large angular motion and rapidly decreasing spin during the terminal portions of the trajectory of liquid-filled shell are not addressed in this report.

II. BACKGROUND

The yawsonde allows an excellent method for tracing the flight of a projectile.² The angular and spin motion of a projectile is recorded. The projectile motion is presented in terms of Sigma N and Phi Dot versus time. Sigma N is the complement of the angle between a vector drawn to the sun and a vector aligned with spin axis of the projectile, while Phi Dot is the derivative of the projectile's Eulerian roll angle with respect to the sun plane, i.e., the plane containing the missile's axis

W.P. D'Amioo, V. Oskay, W.H. Clay, "Flight Tests of the 155mm XM687 Binary Projectile and Associated Design Modifications Price to the Nicolet Winter Test 1974-1975," Ballistic Research Laboratory Memorandum Report No. 2748, May 1977. AD B0199690.

W. Mermagen and W. Clay, "The Design of a Second Generation Yawsonde," Ballistic Research Laboratories Memorandum Report No. 2368, April 1974. AD 780064.

and the sun. For cases of large angular motion, the oscillatory nature of Phi Dot does not allow an easy interpretation of $spin^3$. A proper reduction for Phi Dot is outlined in Reference 3, but the data within this report do not incorporate the methods of Reference 3. Hence the spin data are labeled Phi Dot (Raw).

Figures 2 and 3 are extracted from Reference 1 and show the yaw and spin histories of an XM687 (1/2 caliber boattail) that was launched with induced yaw. Figure 3 clearly shows a rapid decay in spin at shot exit and that is the only type of spin decay that will be considered within this report. A decay of 3 rps was evidenced in a little more than 1 second. One would expect a spin decay during the initial stages of flight as the projectile spins up the liquid. A substantial amount of work on the spin decay of 1 iquid-filled projectiles has been accomplished by Kitchens and Gerber.⁴ Figure 2 shows a rapid growth in yaw. This is produced by the large induced motion and is not solely produced by the liquid payload. Only a limited amount of yawsonde data have previously been recorded for bulk-filled liquid instabilities.⁵ Also, these data are for fill ratios of 80 to 90% and do not provide a good comparison with recently developed theories for spin-up in completely filled cylinders.

A short review of the circumstances for non-smooth spin histories follows. First, non-smooth spin behavior is not peculiar to the M687. Flight data from the 8-inch XM736 binary projectile have also exhibited such behavior. Figures 5 and 6, Round 1184, show yawsonde data indicating a non-smooth spin decay, while Figures 7 and 8, Round 1183, show data for a smooth case. Note that the FMA* value for Round 1184 was greater than that of Round 1183. Hence, projectile yaw must be considered in an explanation of rapid spin decay. Second, there is a possibility that the double-walled cylinder of the M687 could slip. The M687 has an innor plastic canister that is supported by an outer metal canister. The canisters are not pinned to each other, but the metal

- 3. C.H. Murphy, "Effect of Large High-Frequency Angular Motion of a Shell on the Analysis of Its Yawsonde Records," Ballistic Research Laboratories Nemorandum Report No. 2591, February 1976. AD B009421L.
- C.W. Kitchens, Jr. and N. Garber, "Prediction of Spin-Decay of Liquid-Filled Projectiles," Ballistic Research Laboratory Report No. 1996, July 1977. AD A043275.
- 5. A. Mark and W.H. Mermagen, "Measurement of Spin Decay and Instability of Liquid-Filled Shell via Telemetry," Ballistic Research Laboratories Memorandum Report No. 2333, October 1973. AD 771919.

*The first maximum amplitude (FMA) is half the largest excursion in Sigmu N first recorded, is a measure of the launch disturbance received by a projectile, and is used as an estimate to the first maximum angle of yaw.

canister is keyed to the projectile body. The XM736, on the other hand, does not utilize an inner canister. From a spin history, the reduction in spin can be translated into an angular momentum decrement. Appendix I examines the observed decrements in spin and compares the associated angular momentum loss to computed values of angular momentum decrements for liquid spin-up and/or canister slippage. Good agreement is obtained if it is assumed that the spin decrement is produced by the liquid, while poor agreement is found if one assumes that the plastic liner and the liquid or the entire canister and the liquid slip. Hence, it seems most likely that anomalous spin effects are a result of an angular momentum exchange between the rigid parts of the projectile and the liquid payload. Slippage of canisters produces angular momentum decrements that are too large for the observed spin losses. このないないで、「ないない」では、「ないない」では、「ないない」で、「ないないない」で、「ないない」で、「ないないないない」で、「ないない」で、「ないない」、「ないない」、「ないない」、「ないない」、

III. TEST FIRINGS

A. Instrumentation

Test firings were conducted at Wallops Island, Virginia, on 28 September 1977 and 3 May 1978. Figure 9 is a sketch of the launch area, which was located at PAD 2. A time-position radar and a break wire time zero system were operated by Wallops Island personnel. A muzzle chronograph and a ground receiving station were set-up and manned by ARRADCOM personnel. Main base telemetry from Wallops Station (approximately ten miles from the launch site) also monitored the yawsondes, but only the data from the mobile site were reduced. A fixed position sleigh was mounted with an M185 155mm tube, and yaw induction was produced by the use of a modified muzzle brake described in Reference 1. Yaw levels of 10 degrees or more were expected.

B. Hardware Description

Standard metal parts from M687 projectiles were used for this test, but special single piece canisters without burst discs were fabricated by the Chemical Systems Laboratory (CSL).* The canister materials were identical to those used in the production of standard M687 binary canisters. Three canister lengths were used, howe metal will be termed and long canister heights were employed, and these shell will be termed M687/S, M687/R, and M687/L, respectively. The M687/S and M687/R shell employed 1/4 caliber boattails, while the M687/L shell used 1/2 caliber boattails. Since the M687/L canister length was selected for unstable liquid payload behavior, half-caliber boattails were used so that aerodynamic damping would not overcome any yaw growth. In order to

*The authors are indebted to Mr. W. Dee and Mr. W. Surratt for these specially modified M687 projectiles.

accurately determine the interior dimensions of the plastic canisters, measurements of interior length and mass were made prior to filling. The canisters were then filled and weighed, and an average interior diameter was computed. Three projectiles with solid payloads were also fired to determine aerodynamic spin damping. Two M687 projectiles were fitted with lexan slugs to simulate the fluid when it is in a state of rigid body rotation. These projectiles (M687-SLUG) and an M483 projectile were fired on 28 September 1977. A round-by-round summary and projectile physical measurements are provided in Tables 1 and 2, respectively. Table 3 lists the various liquids and fill ratios for the canisters and FMA values. Table 4 contains the interior dimensions of all canister types.

C. Yawsonde Data For 28 September 1977

ġ.

Table 3 lists the M687/R projectiles in order of firing. The first projectile, E1-9188, was launched with yaw induction. This water-filled projectile was fired near the opening of the firing window and part of the large initial motion was beyond the view of the attitude sensors. An FMA greater than 10 degrees was achieved as seen in Figure 10. The associated spin history is shown in Figure 11. A time base error due to a faulty tape recorder drive is evidenced in Figure 11. Although the effects of the large amplitude motion on the spin are evident, no rapid spin decay at shot exit was measured. The spin history was typical for an M687. E1-9189, filled with silicon oil, was fired with an FMA of greater than 10 degrees and was also close to the edge of the firing window, as seen in Figure 12. Data for the initial motion was lost between 1 and 4 seconds when the sun was obscured by a cloud. The spin data in Figure 13 were also of a smooth nature. E1-9190 was loaded with silicon oil and was launched with yaw induction. The data (Figures 14 and 15) were of good quality, and behavior similar to E1-9189 was observed. An FMA of 13 degrees was achieved. Subsequent M687/R shell were launched with the standard muzzle brake removed to produce lower than normal launch yaws. E1-9191 was filled with water and had an FMA of 3 degrees (Figure 16). The spin data in Figure 17 exhibited a smooth decay for the entire trajectory. Figures 18 and 19 provide the solar angle data and spin history for E1-9192 which was also filled with water. The data for E1-9191 and E1-9192 are essentially the same. E1-9193 was filled with Freon E2. A laurch yaw of 3 degrees resulted, and a slight growth in the fast mode yaw component occurred at 5 seconds. This behavior damped by 15 seconds, and by 20 seconds the anticipated limit cycle behavior returned with no further unusual behavior noted. The cause of this fast mode growth is unknown, but it could be caused by the liquid payload or by a Mach number dependent, nonlinear, small yaw effect. The spin history of E1-9193 is shown in Figure 21 and was smooth. E1-9194 was also filled with Freon E2, but no unusual angular motion was observed. Solar angle and spin data (Figures 22 and 23) were quite typical for an M657.

The last three rounds of this portion of the program were fired to obtain supersonic spin damping data and did not contain liquid payloads. A standard muzzle brake was employed for all three projectiles. Due to very low level clouds in the vicinity of the launch area, an M483 projectile was fired to determine the quality of data that would be obtained. An examination of the M483 data at the mobile telemetry van indicated that the clouds did not affect the quality of the data and the firing sequence was continued. E1-9195, an M483 (1/2 caliber boattail), was launched at Charge 7 and exhibited only a very small FMA level (Figure 24). Good data were received for 65 seconds of flight with Figure 25 providing the final seconds of the solar angle history. The spin data are shown in Figures 26 and 27. The last two rounds were the M687-SLUG projectiles, E1-9196 and E1-9197. E1-9196 was launched with an FMA value of 3 degrees, and the solar angle data are shown in Figures 28 and 29. Spin data are shown in Figures 30 and 31. E1-9197 was launched with very little initial motion and provided good clean data for more than 60 seconds (Figure 32 and 33). The associated spin histories are shown in Figures 34 and 35.

D. Yawsc. c "ata For 3 May 1978

Three M687/S projectiles were loaded with water and launched with a standard muzzle brake. Two of these shell had canisters that were filled to 100%, E1-9383 and E1-9384. Data are shown in Figures 36-39. The projectile motion was characterized by a slow mode limit cycle and a smooth spin history. E1-9385 was filled to 90%, but the yawsonde data (Figures 40-41) show qualitatively the same behavior as the two 100% filled rounds. Next, three M687/L projectiles were tested. The launch Mach numbers of these three shell were selected for lowest gyroscopic stability so that adverse liquid payload effects would not be overshadowed by aeroballistic damping. E1-9386 showed no unusual behavior in either yaw or spin (Figures 42 and 43). The next projectile, E1-9387, was unstable. The quality of the yawsonde data was excellent in that the optical sensors of the yawsonde were always in view of the sun and the motion of the projectile was traced to a peak-to-peak envelope of 120 degrees (Figure 44). The FMA was less than one degree with a precessional limit cycle dominating the motion for the first 7 seconds. At 7 seconds the fast mode became unstable and by 10 seconds the peakto-peak motion was 13 degrees. The fast mode motion continued to grow and by 11 seconds dominated the motion. At 15 seconds the yawing motion broke into a new behavior which was characterized by very large amplitude double mode motion. The spin history, shown in Figure 45, was smooth until 12 seconds where an unexpected and unexplained increase in spin occurred. Behavior such as this was also observed for XM687 projectiles during the Nicolet winter test of 1974-1975.*

^{*}Private communication, William H. Mermagen.

At 15 seconds a strong coupling between the spin and yaw was observed. The next M687/L projectile, El-9388, had only one operable optical sensor, hence only spin data are available (Figure 46). No unusual effects were noted. The final two projectiles were M687/R shell and were filled with water to 90%. Both shell were launched with yaw induction. E1-9389 had an FMA of 12.5 degrees, while E1-9390 had a value of 12.0 degrees. The yawing histories for these projectiles were quite different, however. E1-9389 had essentially a constant amplitude of yawing motion for the entire trajectory. By 5 seconds, the slow mode was damped and the fast mode had a peak-to-peak amplitude of 16 degrees. This type of motion persisted with a slight growth in amplitude to 18 degrees by 20 seconds. Towards the latter half of the flight the telemetry quality was poor and data were lost. On the other hand, Figure 49 shows the solar angle history for E1-9390. These data are dominated by a slow mode limit cycle (M483-like behavior). The spin histories for both of these rounds (Figures 48 and 50) showed no rapid spin down. The slight decrease in spin exhibited in Figure 48 at 17 seconds is probably the same type of phenomenon that occurred in Figure 45 (E1-9387). The spin histories for E1-9387 and E1-9389 have been re-reduced and no operational errors were found.

IV. DISCUSSION

All of the spin histories from projectiles fired during the 28 September 1977 and 3 May 1978 programs were of the smooth type, even under the conditions of large initial motion. All of the canisters were single cylinders and filled to either 90 or 100%. An examination of all M687-type shell indicated that non-smooth spin histories were associated only with projectiles that carried partially filled, tandem canisters separated by burst discs. 6 , ⁷ The burst discs and the debris produced by rupture could create conditions that are not suitable for laminar spin-up of the liquid. Kitchens and Sedney have conjectured that the rapid despin at shot exit is produced by a transition to a cellular flow similar to the type commonly found between counter rotating cylinders. This type of flow generates a larger shearing stress at the vertical wall of the cylinder than is normally found during laminar spin-up, hence a rapid spin down of the projectile would occur. This conjecture does not incorporate free surface effects nor does it provide for the presence of burst discs and any resulting debris. However, a qualitative examination of the flight data can not positively determine whether a spin history was smooth or non-smooth. Methods

Same and the second

^{6.} C.W. Kitchens, Jr. and R. Sedney, "Conjecture for Anomalous Spin Decay of the 155mm Binary Shell (XM687)," Ballistic Research Laboratories Report 2026, October 1977. AD A050311.

W.P. D'Amico, "An Investigation of the Flight Vibration Environment of the 155mm M687-IVA Projectile," Ballistic Research Laboratories Memorandum Report 2755, June 1977. AD B013792L.

such as those employed by Mark where the angular momentum history of the liquid is calculated from the yawsonde, trajectory, and meteorological data could be used to objectively characterize the spin histories.⁸ Such a procedure is long and involved and will not be accomplished within this data report. However, an examination of all data sources strongly suggests that the presence of burst discs are required for rapid spin decay of M687 shell at very small Ekman numbers.* A correlation developed by Kitchens and Sedney for smooth versus non-smooth spin histories is not consistent with data presented within this report. For larger Ekman numbers, however, the conjecture of Kitchens and Sedney or similar types of fluid dynamical models could be applicable. During the testing of very large viscosity liquids a rapid despin at shot exit may have occurred. The amplitude modulation of the spin data and the quality of the telemetry transmission do not allow for a clear determination of the character of the spin history, however.⁹ This particular projectile was a 155mm shell and carried a single piece steel canister completely filled with glycerol. An FMA of 12 degrees was achieved and the Ekman number was 4.45×10^{-4} , which is within the range of the Ekman numbers discussed within this report.

Much of the recent flight experience with liquid-filled shell has been with binary-type payloads. These payloads have rupture discs and fill ratios of less than 100% and can not readily compare with theories for 100% filled, clear cylinders. To provide yawsonde data that can be compared with new analyses for flight instabilities during spin-up, a non-standard M687 canister length was selected. Table 4 lists the various types of canister geometries and aspect ratios that have been tested. Figure 51 shows a summary of M687 early flight experience and indicates that unstable conditions for this configuration are most probable at a fill ratio of 80%. The rationale for selection of the unstable canister height follows. The mechanism by which the liquid payload destabilized the projectile motion is rather simple in concept. If a natural frequency of oscillation of the liquid (an eigenfrequency) is approximately equal to che nutational frequency of the projectile,

^{8.} A Mark, "Measurements of Anjular Momentum Transfer in Liquid-Filled Projectiles," Technical Report ARBRL-TR-2029, November 1977. AD A051056.

W.P. D'Amico, W.H. Clay, and A. Lark, "Diagnostic Tests for Wick-Type Payloads and High Viscosity Liquids," Bailistic Research Laboratory Memorandum Report ARBRL-MR-72913, April 1979. AD A072812.

^{*} Reference ε uses a Reynolds number (Re= $\rho a^2/\nu$). An Ekman number (E) is commonly used for rotating flows. For the case where both Re and E use an identical characteristic length, then E=1/(Re).

a resonant condition is established; and a wave motion occurs within the liquid. The resulting pressures from this wave motion (not a sloshing motion since the rotational forces are much larger than body forces) produce a destabilizing couple on the projectile. The non-dimensional nutational frequency, τ_{NII} , of the projectile can be determined directly

from the yawsonde data by dividing the faster yawing frequency of motion (from the SIGMA N data) by the local spin frequency (from the PHI DOT data). The Stewartson¹⁰ solution for the non-dimensional eigenfrequencies considers an inviscid fluid that is in rigid body rotation. The analysis of the wave motion indicates a three dimensional structure r, θ , z with mode numbers n, m, j. For the case of a projectile instability m=1, and the notation is collapsed to only n and j with m=1 being understood. It is necessary to determine which combination of n and j, i.e., which mode, produces the poor flight behavior of E1-9387.

Experience with liquid-filled gyroscopes has indicated that the disturbances produced by higher mode numbers are substantially damped by viscosity. Hence, for practical purposes only combinations of n=1 and j=0, 1, 2, 3 are important. Table 5 provides a portion of the Stewartson tables for n=1 and lists the relationship between the eigenfrequencies, τ_{1j} , and the aspect ratio, (c/a)/(2j+1). The j=0 and j=1 modes will not produce resonant conditions since they are associated with eigenfrequencies that are much larger than the non-dimensional nutational frequency, τ_{NII} , of the projectile (approximately 0.08). The j=2 modes

for these projectiles, however, are quite close to $\tau_{_{\rm NII}}.~$ Figure 51 and

Table 5 indicate that a longer cylinder (higher aspect ratio since the diameter of the canister is fixed) should have a higher probability of instability at 100% than the XM687. The M687/L represents the longest canister that could be obtained for an M687-type projectile. On the other hand, the M687/S was not selected to produce unstable behavior. The M687/S was only intended to be a shorter canister height than the standard M687 (or the M687/R).

Three M687/L projectiles were fired with one unstable flight resulting. We would like to determine whether the flight instability occurred prior to spin-up. Analysis of the roll equation for this projectile would produce an angular momentum history of the liquid from which the state of liquid spin-up can be inferred, but this will not be accomplished within this report. Instead, we can use calculations for

10. Stewartson, K., "On the Stability of a Spinning Top Containing Liquid," Journal of Fluid Mechanics 5, Part 4, 1959. M687/R projectiles that have been previously made by Kitchens and Gerber. They have calculated the spin decay and the time to liquid spin-up for M687/R projectiles and found good agreement with yawsonde data when the spin histories were smooth. For an M687/R filled with water and fired under similar conditions to E1-9387, the time required for liquid spin-up was 19 seconds. Figure 52 shows growth of the fast mode component of yaw as early as 8 seconds, hence E1-9387 suffered a spin-up instability.

Recently, numerical procedures have been established for the calculation of spin-up eigenfrequencies for a completely filled cylinder. The codes have been checked against experimental data only for the case of rigid body rotation¹¹, m=1, and axisymmetric oscillations, m=0, during spin up¹². These comparisons indicated reasonable agreement. The codes were used to predict a time dependent eigenfrequency history for E1-9387 for the n=1 and j=2 mode. As a first approximation, the spin history of the projectile was assumed to be a simple impulsive start to the first measured yawsonde spin. Also, no spin decay during flight was assumed. The in-bore spin of the projectile could be computed from an interior ballistics model and the yawsonde determined spin could be fitted for future calculations. Several computed eigenfrequency histories are provided in Figure 53. The solid line represents the history for the aspect ratio of E1-9387, while the dashed lines are for aspect ratios that are slightly different. Note that the aspect ratio of the M687 projectile would represent a 13% decrease from the aspect ratios of E1-9387. The Stewartson eigenfrequency, Table 5, is approximately equal to zero. This inviscid eigenfrequency should be a good approximation to the actual eigenfrequency when the Ekman number is very small. The steady state eigenfrequency prediction from the code also approaches a zero value. From Figure 52, the fast precessional mode began to grow at approximately 7 seconds, while from Figure 53 an eigenfrequency of 0.08 was predicted at that time. Recall, the yawsonde data indicated = 0.08. Hence, the spin-up eigenfrequency prediction matches the τ_{NU} measured value of the coning frequency of the projectile, and a resonant condition should exist. Since a flight instability did result, it

was probably caused by an n=1 and j=2 spin-up mode. This is the first comparison between the spin-up eigenfrequency code and projectile data, and the predictions and the flight data are consistent for this case. It is not known why only one of the three M687/L projectiles was unstable, however.

C.W. Kitchens, Jr., N. Gerber, and R. Sedney, "Oscillations of a Liquid in a Rotating Cylinder: Part I. Solid-Body Rotation," Ballistic Research Laboratory Technical Report ARBRL-TR-02081, June 1978. AD A057759.

^{12.} Y.M.Lynn, "Free Oscillations of a Liquid During Spin-Up", BRL Report No. 1663, Aberdeen Proving Ground, Maryland, August 1973. AD 769710.

V. CONCLUSIONS

Specially prepared single canister M687-type projectiles were fired under the conditions of large and small yaw in an attempt to reproduce previously observed anomalous rapid despin of the projectile at shot exit. A variety of liquids were used to produce data over a substantial range of Ekman numbers with launch yaw levels as high as 10 degrees. All spin histories were qualitatively examined and determined to be smooth. It is conjectured that non-smooth spin histories are produced by binary canisters that contain rupture discs. This conjecture is supported by an examination of previous yawsonde data where non-smooth spin histories have only occurred for binary payloads with burst discs. Yawsonde data for a 100% filled cylinder that suffered a Stewartson-like spin-up instability was also presented, and a comparison with a recently developed eigenvalue code gave consistent results with the one unstable flight that was observed.

VI. ACKNOWLEDGEMENTS

The authors are indebted to Dr. R. Whiting who modified available schemes for spin-up velocity profile and eigenfrequency prediction into a single source code. The eigenfrequency predictions within this report were obtained by Dr. Whiting.

23 ·

「大学がない」、そので

and the second states and

the water to a sol

1.

San China

のないである。

Figure 7. Sigma N versus Time - Round 1183

·· · ·

Sector States . . .

いたの

50, E1-9190 MUZZLE VELOCITY-290.0 M/S ភ្លេង ភ្ ROUND LAUNCH-INDUCED YAW PROJECTILE M687/R 40 TUBE M185,155MM TIME ទទ (RAW) VS 30 (SEC) j Ĩ ង 20 TIME PHI DOT 5 FIGURE 15. 10 ហ 0 ر الالالالالات (الالالال 80 50 70 60 110 (WAA) TOO IH9

20 NUZZLE VELOCITY 306.2 M/S មព ROUND E1-9191 PROJECT SLE M687/R 40 LAUNCH-NO BRAKE TUBE M185.155MM с С 30 (SEC) SIGMA N VS TIME $\langle \rangle$ 5 S 20 TIME 15 N. FIGURE 16. 20 MMM ທ 0 20 N RMƏIR S б С **0**7 0 -60 04-(930)

36

きな感

adolitica di suasta a constanta da constanta da constanta da constanta da segunda da segunda da segunda da segu

Con a second and a second
Ser All Car

38

The second second

50 MUZZLE VELOCITY 294.7 M/S t G ROUND E1-9193 40 PROJECTILE M687/R LPUNCH-NO BRAKE TUBE M185.155MM ອຍ ZU ZU ZU ZU 30 TIME (SEC) SIGMA N VS TIME 3 5 FIGURE 20. 9 1¢ O ୍ଷ (୨३୦) emois 60 **4**0 Ü -40 -60 N

40

a the second of the second second

No. of Street, Street,

and have a second the second second

のないの

SU E1-9194 NUZZLE VELCCITY 295.8 M/5 с Ц ROUND 4 C PROJECT ILE M687/R LAUNCH-NØ BRAKE TUBE M185.155MM TIME 35 30 (SEC) 2011 (RAW) VS 23 2 PHI DOT 20 TIME ļ ŝ FIGURE 23. 10 S Ö R B (Kev/sec) 50 oa 20 60 110 100 (MAA) IHG

43

A SALE OF ALL AND A SALE AND A SA

48

-102-2

Ben and

States and the second

ž.

2 Calebrane Barrison

A Barting all

min sing that

Section Section Section

at at .

يني ويني چي وي المريخي مريد بر المريخي

i Basta - M

Shi indinasi wasa wasa

ELECTION GEOMET

20 -9383 MUZZLE VELOCITY 329.4 M/S ហ ភ្ ц Ш ROUND PROJECTILE M687/S с 40 TUBE MIPS, ISSMM LAUNCH-STANDARD I M I I M I I ដា ពុ (RAW) VS 30 (SEC) ទ ខ្ D 0 T 20 TIME THT i9 37. 0 FIGURE ŝ 0 (MAA) 통 E E 05 00 80 30 061 100 IHd

90 MUZZLE VELOCITY 311-7 M/S 45 E1-9384 PROJECTILE M687/5 Ľ) オ TUBE MIBS. 155MM LRUNCH-STANDARD ROUND 3G 30 (SEC) VS TIME IMM ມ ທ SIGMA N 2C TIME 31 ૹ૽ 0 FIGURE 5 c 1631 ç 503 Ű N AMƏIS 1 2 2 1 С) Э (930)

58

Same Section of the s

50 MUZZLE VELOCITY 321.1 M/S ЧC ROUND E1-9385 PROJECTILE M687/S 01 TUBE M185,155MM LAUNCH-STANDARD 35 25 30 (SEC) SIGMA N VS TIME WAA I 52 52 20 TIME 15 FIGURE 40. 10 M J ŝ O 07 20 ដុ សមារទ 09 O -40 -60 (DEG) Ν

Maria Cara

60

the state in the second

90 E1-9385 MUZZLE VELOCITY 321-1 M/S ល ដ ROUND PROJECTILE M687/S D H TUBE MIBS.155MM LAUNCH-STANDARD TIME ម ភូមិ PHI DOT (RAW) VS 30 (SEC.) 30 zu TIME ۍ د FIGURE 41. 2 3 ð ព 70 06 50 120 (MAA) PHI DOT

والمتعادية والمستعدية والمعاطفة والمعادية

A CONTRACTOR

61

Sale into the

NAME OF A DESCRIPTION OF A

_____ -

S Alle

1.1

はの方法に同語がなる

ΰ

a di Ya

and the second second

STATISTICS STATISTICS

ALTERNATION OF THE PARTY OF THE PARTY

attention for the second s

and the second second second second second second second

. . .

Spin-Up Eigenfrequency

TYPEF T' KOOND-DI-KOOND OOMMAKI	TABLE 1.	ROUND-BY-ROUND	SUMMARY
---------------------------------	----------	----------------	---------

Round Number	Launch Projectile Time Type (UT)		Muzzle Velocity ² (m/s)	Radar Range (m)			
28 September 1977							
E1-9188	M687/R	1641	-	6,573			
E1-9189	M687/R	1656	290.0	6,180			
E1-9190	M687/R	1710	313.0	6,987			
E1-9191	M687/R	1759	306.2	7,002			
E1-9192	M687/R	1816	305.6	6,805			
E1-9193	M687/R	1831	294.7	6,521			
E1-9194	M687/R	1857	295.8	6,596			
E1-9195	M483	1933	671.8	19,528			
E1-9196	M687-SLUG	1951	711.8	18,107			
E1-9197	M687-SLUG	2008	708.4	18,663			
<u>3 May 1978</u>							
E1-9383	M687/S	1644	329.4	7,696			
E1-9384	M687/S	1657	311.7	7,114			
E1-9385	M687/S	1712	321.1	7,339			
E1-9386	M687/L	1724	319.8	7,272			
E1-9387	M687/L	1736	317.7	5,949			
E1-9388	M687/L	1751	316.9	7,171			
E1-9389	M687/R	1849	337.6	7,034			
E1-9390	M687/R	1852	336.3	7,513			

1. All Rounds were fired at a quadrant elevation of 30 degrees.

2. Mussle velocity was measured by a Nera radar chronograph at a distance of approximately 30 metres from the mussle. This velocity was not extrapolate back to the mussle.

TABLE 2. PROJECTILE PHYSICAL MEASUREMENTS¹

COLUMN TO LOS

WI Number	Projectile Type ²	Empty Weight (kg)	CG ³ (m)	Moments or Axial <u>(kg•m²)</u>	f Inertia Transverse (kg)		
28 September 1977							
9188	M687/R	37.59	0.333	0.1601	1.648		
9189	M687/R	37.55	0.333	0.1601	1.650		
9190	M687/R	37,73	0.333	C.1606	1.656		
9191	M687/R	37.30	0.334	0.1599	1.656		
9192	M687/R	37.77	0.334	0.1603	1.666		
9193	M687/R	37.73	0.333	0.1605	1.654		
9194	M687/R	37.69	0.334	0.1601	1.657		
9195	M483	46.02	0.367	0.1539	1.770		
9196	M687-SLUG	39.64	0.335	0.1540	1.688		
9197	M687-SLUG	39.64	0.335	0.1540	1.690		
<u>3 May 1978</u>							
9383	M687/S	38.42	0.367	0.1629	1.726		
9384	M687/S	38.20	0.366	0.1622	1.717		
9385	M687/S	38.29	0.366	0.1623	1.720		
9386	M687/L	37.99	0.368	0.1619	1.706		
9387	M687/L	38.15	0.368	0.1620	1.721		
9388	M687/L	38.02	0.367	0.1620	1.707		
9389	M687/R	37.80	0.334	0.1607	1.660		
9390	M687/R	37,79	0,333	0.1607	1.653		

1. M687-type shell were not filled for measurements of CG and moments of inertia.

2. The M687/S and M687/L had 1/2 caliber boattails, while all M687/S had 1/4 caliber boattails.

3. Center of gravity (CG) is measured from the base.

Control of

WI Number	Projectile Type	Payload/ _% Fill_	Kinematic Viscosity ¹ (cs)	FMA (deg)	Ekman Number ^{2,3}		
Firings of 28 September 1977							
E1-9188	M687/R	water/100	1.0	< 10	5.57X10 ⁻⁷		
E1-9189	M687/R	silicon oil/100	507.8	< 10	2.99X10 ⁻⁴		
E1-9190	M687/R	silicon oil/100	507.8	13	2.77X10 ⁻⁴		
E1-9191	M687/R	water/100	1.0	3	5.59X10 ⁻⁷		
E1-9192	M687/R	water/100	1.0	3	5.60X10 ⁻⁷		
E1-9193	M687/R	Freon-E2/100	0.66	3	3.83X10 ⁻⁷		
E1-9194	M687/R	Freon-E1/100	0.66	1.5	3.81X10 ⁻⁷		
Firings of 3 May 1978							
E1-9383	M587/S	water/100	1.0	1.5	5.19X10 ⁻⁷		
E1-9384	M687/S	water/100	1.0	1.5	5.49210-7		
E1-9385	M687/S	water/90	1.0	2	5.33X10 ⁻⁷		
E1-9386	M687/L	water/100	1.0	2	5.35X10 ⁻⁷		
E1-9387	M687/L	water/100	1.0	1.5	5.38X10 ⁻⁷		
E1-9388	M687/L	water/100	1.0		5.40X10 ⁻⁷		
E1-9389	M687/R	water/90	1.0	12,5	5.06X10 ⁻⁷		
E1-9390	M687/R	water/90	1.0	12	5.09X10 ⁻⁷		

TABLE 3. CONFIGURATION DATA

1. A centistoke (cs) is 0.01 cm²/s.

- 2. Ekman number is defined as $E = v/a^2 p_0$, where v is the kinematic viscosity, a is the canister radius, and p_0 is the spin calculated from the muscle velocity.
- 3. The first measurement of spin from the yawsonde was used as p_{α} for E1-9188 since the muscle velocity measurement was not obtained.

TABLE 4. CANISTER LENGTHS AND ASPECT RATIOS FOR M687-TYPE SHELL*

		Aspect Ratio: $\frac{c/a}{2j+1}$			
Projectile Type	Inside Canister Length (cm)	<u>j=0</u>	<u>j=1</u>	<u>j=2</u>	<u>j=3</u>
M687/L	53.41	4.972	1.657	0.994	0.710
XM687	52,64	4.901	1.633	0.980	0.700
M687/R or M687	47.16	4.391	1.463	0.878	0.627
M687/S	45.21	4.209	1.403	0.841	0.601

*Inside diameter of all canisters was taken as 10.74cm.

77

Receipe Contraction Contraction

TABLE 5. STEWARTSON'S TABLES FOR A 100% CYLINDER FIRST RADIAL MODE (n=1)*

Eigenfrequency	Aspect Ratio
0.00	0.995
0.02	1.018
0.04	1.042
0.06	1.066
0.08	1.091
0.10	1.117

*See Reference 10.

San and san san and san san sa

威利的

Salt & Sale

Sector Contraction

12 these

REFERENCES

- W.P. D'Amico, V. Oskay, W.H. Clay, "Flight Tests of the 155mm XM687 Binary Projectile and Associated Design Modifications Prior to the Nicolet Winter Test 1974-1975," Ballistic Research Laboratory Memorandum Report No. 2748, May 1977. AD B0199690.
- W.H. Mermagen and W.H. Clay, "The Design of a Second Generation Yawsonde," Ballistic Research Laboratories Memorandum Report No. 2368, April 1974. AD 780064.
- 3. C.H. Murphy, "Effect of Large High-Frequency Angular Motion of a Shell on the Analysis of Its Yawsonde Records," Ballistic Research Laboratory Memorandum Report No. 2581, February 1976. AD B009421L.
- C.W. Kitchens, Jr., and N. Gerber, "Prediction of Spin-Decay of Liquid-Filled Projectiles," Ballistic Research Laboratory Report No. 1996, July 1977. AD A043275.
- 5. A. Mark and W.H. Mermagen, "Measurement of Spin Decay and Instability of Liquid-Filled Shell via Telemetry," Ballistic Research Laboratory Memorandum Report No. 2333, October 1973. AD 771919.
- C.W. Kitchens, Jr., and R. Sedney, "Conjecture for Anomalous Spin Decay of the 155mm Binary Shell (XM687)," Ballistic Research Laboratory Report 2026, October 1977. AD A050311.
- 7. W.P. D'Amico, "An Investigation of the Flight Vibration Environment of the 155mm M687-IVA Projectile," Ballistic Research Laboratory Memorandum Report 2755, June 1977. AD B019792L.
- A. Mark, "Measurements of Angular Momentum Transfer in Liquid-Filled Projectiles," Technical Report ARBRL-TR-2029, November 1977. AD A051056.
- 9. W.P. D'Amico, W.H. Clay, and A. Mark, "Diagnostic Tests for Wick-Type Payloads and High Viscosity Liquids," Ballistic Research Laboratory Momorandum Report No. 2913, April 1979. AD A072812.
- 10. K. Stewartson, "On the Stability of a Spinning Top Containing Liquid," Journal of Fluid Mechanics, Vol. 5, Part 4, 1959.
- C.W. Kitchens, Jr., N. Gerber, and R. Sedney, "Oscillations of a Liquid in a Rotating Cylinder: Part I. Solid-Body Rotation," Ballistic Research Laboratory Technical Report ARBRL-TR-02081, June 1978. AD A057759.
- 12. Y.M. Lynn, "Free Oscillations of a Liquid During Spin-Up." Ballistic Research Laboratory Report No. 1663, August 1973. AD 769710.

APPENDIX

SLIPPAGE OF PLASTIC LINERS IN THE M687 CANISTERS

The percentage loss in spin from shot exit to the elbow for Round 7254 was 3.8%. Table A-I shows that the percentage spin loss required for spin-up of the liquid payload and the plastic liners would be 5.4%. Hence, it is concluded that the liners do not slip.

TABLE A-I. AXIAL MOMENTS OF INERTIA FOR AN M687 PROJECTILE

Liquid Payload (kg·m ²)	0.00673
(% of Total)	4.2
Outer Canisters (kg·m ²)	0.0245
(% of Total)	15.2
Plastic Inner Canisters (kg·m ²)	0.0020
(% of Total)	1.2
Shell Casing (kg·m ²)	0.01278
(% of Total)	79.4
Total (kg·m ²)	0.1610

The above percentages also indicate that a slippage of both the complete canister assembly and the liquid would produce a very large, and not observed, spin decrement.

NOT TILLED

PAGE BI

CEDING

No. of		
Copies	Organization	1
	Commander Defense Technical Info Center ATTN: DDC-DDA Cameron Station Alexandria, VA 22314	
1	Commander US Army Materiel Development & Readiness Command ATTN: DRCDMD-ST 5001 Eisenhower Avenue Alexandria, VA 22333	
4	Commander US Army Armament Research & Development Command ATTN: DRDAR-TSS (2 cys) DRDAR-LC, Dr. Frasier DRDAR-LCA-F, A. Loeb Dover, NJ 07801	
1	Commander US Army Armament Materiel Readiness Command ATTN: DRSAR-LEP-L, Tech Lib Rock Island, IL 61299	
1	Director US Army ARRADCOM Benet Weapons Laboratory ATTN: DRDAR-LCB-TL Watervliet, NY 12189	
1	Commander US Army Aviation Research & Development Command ATTN: DRSAV-E P.O. Box 209 St. Louis, MO 61366	
1	Director US Army Air Mobility Research & Development Laboratory	

Ames Research Center Noffett Field, CA 94035

No. of

- Copies Organization
 - 1 Commander US Army Communications Research & Development Command ATTN: DRDCO-PPA-SA Fort Monmouth, NJ 07703

- Commander US Army Electronics Research & Development Command Technical Support Activity ATTN: DELSD-L Fort Monmouth, NJ 07703
- Commander 1 US Army Missile Command ATTN: DRDMI-R Redstone Arsenal, AL 35809
- Commander 1 US Army Missile Command ATTN: DRSMI-YDL Redstone Arsenal, AL 35809
- 1 Commander US Army Tank Automotive Research & Development Command ATTN: DRDTA-UL Warren, MI 48090
- 3 Project Manager Cannon Artillery Weapons Systems ATTN: DRCPM-CAWS US Army Armament Rosearch & Development Command Dover, NJ 07801
- 1 Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL, Tech Lib White Sands Missile Range, NM 88002
- Sandia Laboratories 2 ATTN: F.G. Blottner H. Vaughn Albuquerque, NM 87115

83

FRANKLEY PARK BLANK-HOT FILMO

DISTRIBUTION LIST

No. of Copies Organization

- Director National Aeronautics and Space Administration Marshall Space Flight Center ATTN: Dr. W.W. Fowlis Huntsville, AL 35812
- Director National Aeronautics & Space Administration Goddard Space Flight Center ATTN: Guidance & Control Br Greenbelt, MD 20771
- Aerospace Corporation ATTN: Walter F. Reddall
 2350 East El Segundo Blvd. P.O. Box 92957 Los Angeles, CA 90009
- 2 Calspan Corporation ATTN: G. Homicz W. Rao P.O. Box 235 Buffalo, NY 14221
- Massachusetts Institute of Technology
 ATTN: E. Covert
 H. Greenspan Tech Library
 77 Massachusetts Avenue Cambridge, MA 02139
- Virginia Polytechnic Institute Department of Aerospace Eng. ATTN: G.R. Inger Blacksburg, VA 24061
- University of Colorado Department of Astro-Geophysics ATTN: E.R. Benton Boulder, CO 80302

No. of Copies

oies Organization

- University of Delaware Dept. of Mechanical and Aerospace Engr.
 ATTN: Dr. M.D. Greenberg Newark, DE 19711
- University of Maryland Baltimore Campus ATTN: Dr. Y.M. Lynn 5401 Wilkens Avenue Baltimore, MD 21228
- University of Southern California Department of Aerospace Engineering ATTN: T. Maxworthy P. Weidman L.G. Redekopp Los Angeles, CA 90007

Aberdeen Proving Ground

Dir, USAMSAA ATTN: DRXSY-D DRXSY-MP, H. Cohon

Cdr, USATECOM ATTN: DRSTE-TO-F

PM SMOKE, DRCPM-SNK, Bldg 324

- Dir, USACSL, EA ATTN: DRDAR-CLN-S, W. Dee DRDAR-CLN-SM,J.McKivrigan Bldg E3330
- Dir, Wpns Sys Concepts Team Bldg E3516, EA ATTN: DRDAR-ACW

USER EVALUATION OF REPORT

Please take a few minutes to answer the questions below; tear out this sheet and return it to Director, US Army Ballistic Research Laboratory, ARRADCOM, ATTN: DRDAR-TSB, Aberdeen Proving Ground, Maryland 21005. Your comments will provide us with information for improving future reports.

1. BRL Report Number

2. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which report will be used.)

3. How, specifically, is the report being used? (Information source, design data or procedure, management procedure, source of ideas, etc.)

4. Has the information in this report led to any quantitative savings as far as man-hours/contract dollars saved, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.

5. General Comments (Indicate what you think should be changed to make this report and future reports of this type more responsive to your needs, more usable, improve readability, etc.)

6. If you would like to be contacted by the personnel who prepared this report to raise specific questions or discuss the topic, please fill in the following information.

> . مى مەربىيىتىن بىرىمىيىلىرىمىيىتىن بىرىمىيىتىن ئورايلىرىمىيەتتىنى بىرىمىيەت بىرىمىيەت بىرىمىيەت بىرىمىيەت بىرىمى

Name :_____

Telephone Number:

the second se

Organization Address: