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ABSTRACT

An inter, al function Y assigns an interval Y(x) t[(x),y(x)] in the ex-

tended real number system to each x in its interval X = [a,b] of definition.
b b

The integral of Y over ia,b] is taken to be the interval fY(x)dx = [iy(x)dx
a a

_b b
fy(x)dxl, where fx(x)dx is the lower Darboux integral of thc lower endpoint
a a

function , and f'y(x)dx is the upper Darboux integral of the upper endpoint

a

function y. As these Darboux integrals always exist in the extended real number

system, it follows that all interval functions are integrable, no matter how nasty

the endpoint functions x, y are. The interval integral defined in this way in-

cludes the interval integral of R. E. Moore as the special case that Y, y are

continuous, and hence Riemann integrable.

In addition to a construction of the interval integral in a form suitable

* for numerical approximation, some of its basic properties and other implications

and applications of its definition are presented. The theory of interval inte-

gration given here supplies a previously lacking mathematical foundation for the

numerica-l-solution of integral equations by interval methods.
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SIGNIFICANCE AND EXPLANATION

Solving physical problems with the aid of digital computers often involves

1' performing hundreds or thousands of inexact arithmetic operations on inaccurate

data. A study of the effect of these errors on the final result to determine if

it is useful (or even meaningful) is often required, and may be tedious. By the

methods of interval analysis, the computation may be carried out automatically on

intervals which contain the data to yield interva.1 in which any exactly computed

result would lie. It can also be argued that the intervals calculated are actual-

ly the solutions to certain problems; for example, the intervals of deflection of

a structure corresponding to intervals of loading forces may give a better pic-

ture of its stability and safety than knowing its exact configuration under a

specific selection of forces.

Whether one interprets the obtained interval to contain the answer or be the

answer, it is important to be able to compute interval solutions efficiently, with

as little extraneous expansion as possible. However, the subject of interval anal-

ysis is still in the early stages of its development. Algebraic operations on, in-

tervals are well understood, and can be expressed in terms of the endpoints of the

*intervals involved. In the case of transformations of interval functions Y (Y(x)

is an interval for ea h x), this simple situation may not hold, except in special

cases. In particular, the lack of a theory of integration of interval functions

has hampered the development of interval methods for the solution of integral

equations, which constitute an important class of mathematical models of real

.situations. This report provides such a theory by defining integrals of interval

functions to be an interval with the limits of integrals of step-functions respec-

tively less and greater than the integrand as endpoints. As these lower and up-

per Darboux integrals of basic integration theory always exist, it follows that

all interval functions are integrable. The simplicity of this theory is due to

the fact that intervals, rather than real numbers only, are accepted as values of

integrals, even if the integrand is a real function (called a degenerate interval

function in this context). Progress in mathematics is often made in this way, by

* introducing a new object a] a solution; for example, imaginary numbers as square

* roots of negative numbers. Some useful properties of the interval integral de-

fined in this report are derived, and its potential usefulness in connection with

the numerical solution of integral equations is indicated.

The responsiility for the wording an vlews expressed n this descriptive

summary lies with MRC, and not with the 
authors of this report.



INTEGRATION OF INTERVAL FUNCTIONS

* ** * **,***

Ole Caprani , Kaj Madsen and L. B. Rall

1. Intervals in the extended real number system. In ordinary interval

analysis 15],[61, the term interval refers to closed intervals of real numbers,

(1.1) X = [a,b] = {x I a < x < b),

with finite endpoints a, b. The width

(1.2) w(X) = w([a,b]) = b - a

of an interval with real endpoints is consequently finite. To develop the theory

of integration of interval functions given below, it is convenient to use the ex-

tended real.number system, which includes the values + [3 ]. Thus, in addition

* to finite intervals of the form (1.1) with a, b finite, there will be infinite

intervals in the system of one of the following types:

(i) semi-infinite intervals

S~b

(1.3) S. = [a, + S], = [-r, b], a, b finite; I
a DD C - . f"

(ii) the real line Jut ifig..in

!(1.4) R = [m

and (iii) the indegenerate intervals '' -AA

(1.5) S = [- , -a1, s = [+r, +-1.

(In what follows, "+-" will often be written simply as "c".)

All the infinite ,ntervals will be defned to-be of infinite width, that is,
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(b -m

(1.6) w(S) w(S) - w(R) = w(S ) = w(S+) - +
a+D

in the extended real number system. This definition is consistent with the type

of limiting process used to define "improper" integrals, that is,

(1.7) l r m ia,b = [a,-], S lim[a,-] E[,w],

(1.7) a = bLa' = a

and hence

lir lim
(18)w(S ) = W(Sa) = a (c) =

00 a--~ a a--

so that it is reasonable in this sense to assign infinite widths to the inde-

generate intervals S and S.

In what follows, a closed interval in the extended real number system will

be called simply an interval.

2. Interval arithmetic. Interval arithmetic (15.],6 1) as defined for finite

interval may also be performed in the system of intervals in the extended real

number system defined in §1 if suitable rules are adopted for computing with the

values +-. In essence, these "rules" are a shorthand notation for the results

of the types of limiting processes to be encountered in the theory of integra-

tion presented below. McShane ([3 ], p. 21) gives the following rules:

(i) -- < a < - for every real number a;

(ii) --a = a- = if 0 < a < w;

(iii) w-a = asm = -®if - < a < 0;

(iv) (--).a = a-(- - ) = -o if 0 < a < m;

(2.1) (v) (--)-a = a-(--) = if -- < a < 0;

(v)a a
(vi) - -= 0 if a is real;cc (- )I

(vii) + a a + = if a >-

(viii) - + a = a + (-®) - -o if a < w;

(ix) w.o = oCO = (-0).o = 0 (-0) -0.

-2-
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Thus, rule (2.1)(ix) takes care of the "indeterminant form '0-0" which

*can arise if one of the factors in a multiplication is an infinite interval. The

product of two intervals will be defined to be

(2.2) (a,b]*[c,d] = [min{ac,ad,bc,bd),max{ac,ad,bc,bd}]

in the extended real number system. In ordinary interval arithmetic ([5 ], p. 9),

(2.2) is a consequence of the definition [a,b] ° [c,d] = {z Iz = xoy, xE[a,b],

yE[c,d] ) of multiplication of intervals. In the extended real number system,

however, one has {z Iz = x-y, xE[-l,l], yE[m,wl = {-w, 0, -} by (2.1)(ii)(iii)

(ix), and the result is not an interval. Use of the rule (2.2) gives [-1,1]

[0,0] = [-oo], which circumvents this problem.

As in ordinary interval arithmetic, division by intervals containing 0 will

not be defined. The reciprocal of an interval,

(2.3) [c,d]- I = [1/d , l/c], 0[c,d],

is defined for all zero-free intervals, with rule (2.1)(vi) used if [c,d] is an

infinite interval. One has

S- 1 = [a,-]-i = (0 ,1/a], a > 0; S-1 = 1-I,] [0,0];(2.4) a b 1-
S)-i-i -. 00-1 -i

(S [-oo,b] - (l/b, 0), b < 0; (S ) M[,-m] , [0,0].

The indeterminant form "0/0" will thus not occur in the interval arithmetic un-

der discussion, as division is defined by
-- l

(2.5) [a,bl/[c,d) - [a,bl.[c,d] O[c,d)

and [cd] , if it exists, will have only finite endpoints by (2.3) and (2.4).

The indeterminant form "0 - 0" can appear in addition or subtraction ac-

cording to the usual rules (15 ], pp. 8-9),

-3-



IrI
{ [a,b] + [c,d] - (a + c ,b + d],

(2.6)
[a,b] - [c,d] - [a - d,b - c],

but only if at least one of the terms is an indegenerate interval. Thus, an ad-

ditional rule to augment the list (2.1) is needed, which is

[a,-] + [-=,-=1 = [a,e] - [oo1 [-o,=1
(2 .7 ) (x ) [ -b(27(x[ -w,b] + [oa,c] = [-w,b] - [-,= =[-,,

where a,b may be finite or infinite. Thus, rule (2.7) (x) assigns the value +=

to = - = as an upper endpoint of an interval, and -- as a lower endpoint.

Thus, the total collection of rules for interval arithmetic in the system

of intervals defined over the extended real numbers consists of (2.1)(i)-(ix),

(2.7)(x), (2.2), (2.3), (2.5), and (2.6). The interval arithmetic constructed

in this way contains ordinary interval arithmetic on finite intervals ([ 5 1, [6 ])

in the sense that it gives the same results for finite intervals. The operations

on infinite intervals are defined in such a way as to be convenient in the sequel

for the construction of a theory of integration of interval functions. Other ex-

tensions of interval arithmetic to infinite intervals are possible, but will not

be considered here.

3. Interval functions. Y is said to be an interval function of x on [a,b] if

it assigns a nonempty interval

(3.1) Y(x) = [y(x) ,y(x)] = {y I y(x) < y < y(X)}

to each xE[a,b]. The (extended) real-valued functions y, y are called the end-

points, or boundary functions of Y, and the notation

(3.2) Y = ,Y)

will be used, as well as the alternative notation

-4-
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(3.3) Y(x) = [,Y ] (x)

for the interval (3.1).

The interval function Y can also be identified with its graph, which is the

set of points

(3.4) Y = [a,b]xY(x) = {(x,y) JxE[a,b], yEY(x)}

in the xy-plane. Geometrically, the graph (3.4) extends from the "lines" x = a

on the left to x = b on the right, and from the "curves" defined by y = y(x) be-

low to y = y(x) above (recall that extended real values are permitted).

In the context of interval functions, a real-valued (or extended real val-

ued) function f is considered to be the degenerate interval function

(3.5) f = f, f].

In the extended real number system, numbers c < d exist such that the graph

(3.4) of Y is contained in the rectangle R - [a,b]x[c,d] - {(x,y) I xE(a,b], yE

Ec,d]} in the xy-plane, that is,

(3.6) Y c [a,b] xtc,d] = R.

The set of all rectangles R for which (3.6) holds will be denoted by R(Y) or by

Ra,b] (Y) if it is desired to specify the interval of definition [a,b] of Y.

If [a,b] is a finite interval, then Y is said to be finitely defined. If

k. (3.6) holds with c,d finite, then Y is called a bounded interval function. A

bounded and finitely defined interval function is said to be finite; the graph

of a finite interval function is obviously contained in a finite rectangle R with

area w([a,b]).w([c,d]) - (b - a)*(d - c).

Definition 3.1. For

inf {y(x)), ,-
(3.7) c - xE[a,bi{ylx)), d xEfa,bl



the interval

(3.8) VYa,bi = [c,d]

is called the vertical extent of the interval function Y on (a,b]. If the inter-

val of definition of Y is understood, then VY[ab] may be abbreviated as VY.

The rectangle

(3.9) R(VY) = R [a,b](VY) = (a,b]xVY[b]

is the "smallest" containing the graph of Y. One has

(3.10) R(VY) = n R
RER(Y)

that is, R(VY) is the intersection of all rectangles (3.6) which contain the

graph of Y.

Vertical extent of an interval function, as defined above, has the important

property of being inclusion monotone with respect to the interval of definition

of the interval function and inclusion of interval functionsi Y c Z means that

the graph of Z contains the graph of Y considered to be point-sets in the xy-

plane. More precisely, (3.7) and the definition (3.8) of vertical extent lead

directly to the following result:

Lemma 3.1. If I, J are intervals on the x-axis with I c J, then

(3.11) VY1 C VY ;

if Y, Z are interval functions on X = ta,b] such that Y c Z, then

(3.12) VY[a,b ] c VZ a,b ] .

4. Vertical measure and Darboux sums. Definition 4.1. The interval

(4.1) W a,b](Y) = w([a,b]).VYtab ]

is called the vertical measure of the interval function Y on [a,b]. Note that

this quantity is interval-valued, and specifies the interval of definition of

the interval function Y on which its vertical extent VY is obtained.

-6-



(The goal in this paper is to construct a theory of Riemann-type integrals

of interval functions. The horizontal measure

(4.2) H [a,b]() = [a,b]*w(VY[a,b]

of Y on [a,b] may be useful in a Lebesgue-type integration theory, but this will

not be pursued further here.)

Remark 4.1. Vertical measure is inclusion monotone with respect to inclu-

sion of interval functions: If Y C Z, then W (Y) c W (Z). Horizontal[a,b] [a,b]

measure is inclusion monotone with respect to the interval of definition: If

I C J, then H I (Y) C H (Y).

Proof: The assertions of Remark 4.1 follow immediately from Lemma 3.1.

As usual, a set of points {x0, X1 , ... , xn  such that

(4.3) a = <x < ... < xn 1 < x b

defines a partition

(4.4) An = (X1 , X2 ' . n

of the interval X = [a,b], where

(4.5) X. = (i-1 ,xi]1 i =n.

Obviously,

n n

(4.6) X = Xi , w(X) = w(X.).
i=lil

Definition 4.2. The interval

n n
(4.7) 1 Y w(X)VY

n i i-I i-

is called the Darboux sum of the interval function Y corresponding to the parti-

tion A of X = (a,b), where VY. VY -VY has been written for brevity.
n i Ex (x. 1,x I

For

-7-



(4.8) VY. =c dC ,d]

1. L

one has

(4.9) =i xE:X {(x)l, d. sup X.~

and

n n
(4.10) E A ( = c..w(x.) i d..w(X .)H;

n i1i1

the endpoints of Z Y are thus respectively the lower Riemann sum of the func-
n

tion y and the upper Rieznann sum of the function y corresponding to the parti-

tion 6 of X [7].
n

The upper and lower limits of the interval (4.10) may also be interpreted

as (elementary) integrals of step-functions ([3 1, p. 54),

n ,b fsx
(4.11) 1 c ..w(x) = f S(x)dx = '~~x

i=l a x

and

n ,b
(4.12) ~ .wX)=J (x)dx =f~~x

d.w(. a X x

In (4.11), the ster, .unction sWx will have the values

(4.13) SWx - C. = xi Y(X))I x~ < X <X P

in all nondegenerate intervals X.i of the partition A n. At each of the partition

points x. listed in (4.3), there will be a finite number of intervals X..,

x +i . xF x ... x which contain x, Define

(4.14) s(x i miun{c. Ix E xl i =0,1,...,n.

Similarly,SU

(4.15) sWx d = X {Y(X)), X. 1  < x <

---- --------



* in nondegenerate intervals X of the partition A , and

(4.16) s(x.) =max{d. xi C X }, i - 0,1 ... n.
1 3 j

at the partition points x0, x1 , ... , x . It follows that, n

(4.17) s(x) < y(x) < Y(x) < s(x), a < x < b.

The properties of integrals of step-functions are well-documented ([3 1,

pp. 54-57), for example, if s1 and s2 are step-functions on an interval X, and

k is a finite constant, then

(a) fxsk.sl(x)dx - k.fxs,(x)dx;

(b) fx(sl(x) + s (x))dx - fxsl(x)dx + fxS2 (x)dx;(4.18)2 2

(c) ifs 1(x) < s 2(x) for all x E X, then
1 -2

< J_ s2 (x)dx.

Furthermore, if s(x) is a step-function on X, then for each partition A of X,m

m i

jml j

The integral of a step function is also invariant under translation ( 3 1, P.

57).

The above results may be used to prove corresponding assertions about the

Darboux sums (4.7), taking into account the differences between real and inter-

val arithmetic.

Theorem 4.1. If Y, Z are interval functions on X = [a,b] and k is a con-

stant, then

-9-



(a) Ek-Y - k-Z Y;
n n

(b) E An(Y +Z)ca E AnY+EAn

(4.20)
(c) ifYca Z onX, then

zA Y a E A z (inclusion monotonicity).

n n

Proof: For finite k, (4.20)(a) follows directly from (4.18)(a); rule (2.7)

(x) allows one to drop the restriction of k to finite values. For Y Ey, I

Z = [z ,z], the inequalities

(a) inf { Z} inf {) inf {}

(4.21)1i

(b) sf + Z}< sup {Y1 + supfTj1x. - x.i x.

on the intervals X.,, i = 1,2,...,n, ([E3], p. 25) give

(4.22) V(Y +Z) C VY +Vx. x.i x

from which

(4.23) W (Y +Z) a W (Y) + W (z),

2. = 1,2,...,n, and (4.20) (b) follows. Finally, the inclusion monotonicity of

the vertical measure W (see Remark 4.1) with respect to inclusion of interval

functions gives (4.20) (c). QED.

An analog of (4.19) is also available immediately. For m =2, suppose that

a < p < b, and that

(4.24) A (1 ) = (X 1 x12 .. x1

is a partition of X,= [a,p], similarly,

(4.25) A (2 ) X2' 2 x 2n 2  =( 2 X2 1 * 2

-10-



is a partition of X2  [p,b]. For n = n1 + n2 , it follows that

(4.26) A - (X11 X 12' 'X1X 2n)

will be a partition of X = [a,b], and

(4.27) E (1)Y + r (2)Y = E Y.
A n

n n
1 2

This may be extended by induction to any positive integer m > 2.

A type of mean-value (or mean interval-value) theorem holds for the Darboux

sums (4.7).

Theorem 4.2. If X = [a,b] is a finite, nondegenerate interval, then an in-

terval Y(A n ) C VYX exists for each partition An of X such that

(4.28) E Y = w(X)* (A n )

n

Proof: By (4.7) and (4.20)(a),

(429 n w(X)

n i=l

say, where for ai w(Xi)/w(X), i = 1,2,...,n,

n n n
(4.30) r= a ici , s I a icdip i =i.

i-l i-l i-i

Thus,

C min, }<< max{

(4.31)

min d ) max d d,

and hence tr,s] c VY . Thus, by (4.29), (4.28) holds with Y(An) n Ir,s]. QED.

5. Step-functions and Riemann sums. For each positive integer n, let Sn denote

the set of all step-functions sn on X having n + 1 partition points x0, xI , ... ,

disposed according to (4.3). Furthermore, let

~-11-



S .(Y) {sn -SES' -snxW < yx)W a < x < b),

(5.1)

L Y {Sn s nES n " (xn) > y(x), a < x <b)

The sets S n(Y), S n(Y) are nonempty, as a ~ bel.ongs to S n(Y), and Z n c to

S (Y). By (5.1) and (4.18) (c), for each s E S (Y), s E S (Y), one has
n -n - n n

b b
(5.2) f s M(x)dx < f s(x)dx,

a a

and consequently

(5.3) c snx~x <b - CS -( = d.n -nESna n -a

IDefinition 5.1. For each positive integer n, let DV denote the set of par-

titions (4.4). The interval

(5.4) 1nY = nA ( c nFd I
n nE n n

is called the Riemann sm of order n of the interval function Y over [a,b].

Lemma 5.1. The interval Z Y is nonempty; furthermore, if m > n, then

(5.5) EIY C:E Y.

Proof: The assertion of the nonemptiness of the interval (5.4) is simply

a restatement of (5.3). Denoting the set of Darboux sius (4.7) by S ,if m. n,
n

then

(5.6) S nC SM

as if Z C S , then one may take the partition A Mdefined by
n

(5.7) a = x0<.X x< ... < xnM nl x M - b,

for which Z Y - E Y, and thus E aY E S Mfor m > n. The inclusion (5.5) then
m n n

follows frcm (5.6) by the definition (5.4). QED.

-12-



The properties of Darboux sums listed in Theorem 4.1 survive the intersec-

tion (5.4) and thus becomne properties of Riemann sums, giving immediately the

following result.

Theorem 5.1. If Y, Z are interval functions on X [ a,b] and k is a con-

stant, then

(a) E k*Y =k*EY;

(5.8) n n n

(c) if Y aZon X, then

Z Y a E nZ (inclusion monotonicity).

The additivity of Riemann sums with respect to the intervals over which they

are defined will now be investigated. In order to be definite, the notation

(5.1) En [ a,b] n YX

will be used to indicate the interval of su.mmation X - [a,b]. Suppose that

a < p. <band X,= [ap], X 2 = [p,b]. The following results apply to the expres-

*sion of the sum of an interval function Y over X in terms of its sums over 1

and X 2 '

Lemma 5.2. If X - (a,b] is finite and nondegenerate, then

(5.10) W [a,p] Y [p,bJ Y [a,b] Y

that is,

(5.11) w~ja,pj)-VY ap]+ w([p,bl)*VY [p cw ((a,b])*VY [~l

Proof: Let VY lap =I, dl, -Y ,pb =I2 d2, VY =ab [c d].A Then, by definition of vertical extent,

(5.12) c - min{cl c 21, d - max{dl Id 2.

-13-



For ax = w([a,p])/w([a,bi), one has 1 > ax > 0 and w([p,bi)/w([a,bJ) =1 - ax > 0.

Thus,

(5.13) w([a,p])*VY [a,p) + w([P~b])-VY (pb)

and, as = W(a,b]) -(ac 1+ (1-1)c2'd1 + (1-a)d 2)

(5.14) c < c 1 + (1 - cX) c 2 lad,+ (1 - cx)d 2 d,

by (5.12), (5.11) follows. QED.

Theorem 5.2. If X - [a,b] is finite and nondegenerate, then for each pos-

itive integer n > 2,

(5.15) En Y a,b] C n .i n1 Y a,p] n Y p,b]iC n-i (a,b)]

Proof: The set S nof Darboux sums (4.7) may be decomnposed into two disjoint

nn

partitions A~ which have p as a partition point, the set of which will be denoted
n

by Dand the omaplement of Sprelative to S ' ,p = S %sthat is, the set of
nn n n nn

all Darboux sums corresponding to partitions A nfor which p is not a partition

point. As SP- S , one has

(5.16) E A C nrYn [a,b] A (a,b]~

n ni

By (4.27), for Z Y E Sp, one can write
Ap n

n

(5.17) zAnY [ab E A nY [api +iZ~ E n[p,b]'

where n 1 + n 2 =n. Consequently, as

-14-



(518 E Y n {E { Y + E Y

A&O 'I a,b] n +n =n n 1 la,p] n 2 EP 1b

the first inclusion of (5.15) follows.

Now, consider a partition A of X [a,bI for n > 2, and let APdenote
n-1 n

the partition of X obtained by adding the point p to the set {x O1X1,...,x~ n-1

Either p x for some i, 0 < i < n-1, in which case

(5.19) EA YEPY Eab A +ap A jpb]
An1 la,b] P[J] An [~] an (~l

n 12

n + n n, or a nondegenerate interval X. - Ix. , I C n- exists such that

x i1< p< x . As

(5.20) w(x i11pl)VY j 1 1 ] + W~jp'x ]).VY 1xiICW[x-, )V (x x

by Lemma 5.2, one has

(5.21) EAPY jab] C E AnY[ab

n

in this case. Thus, as {E Y S =

AP [ab] n'
n

(5.22) n~V z~ Y a,b] A '6 n A 1 Y a,b] n-i [a,b]
n n n n- n-i

by (5.20) and (5.21), and the second inclusion in (5.15) now follows from (5.18).

QED.

A mean interval-value theorem also holds for Riemann sums.

Theorem 5.3. If X - a,b] is finite and nondegenerate, then for each posi-

tive integer n, an interval V c- VY exists such that

(5.23) E Y =W(X)*n n

-15-



Proof: As before, let V denote the set of all partitions A for each pos-~n n

itive integer n. Then, by (4.28),

(5.24) zY- A n Y  w(X). n (A
n E An nE

n n n n

so that (5.23) holds with

(5.25) Y n n Y(A) CVY,
n n

as each Y(An ) c VYx . QED.
n X

6. Interval integrals.

Definition 6.1 (The Interval Integral). If Y is an interval function de-

fined on x = [a,b], then the interval integral of Y over [a,b] is defined to be

the interval

b G
(6.1) fY(x)dx = fXY(x)dx - n n Y.

a n=l

As usual, Y is said to be integrable over X if its interval integral (6.1) is

defined.

Remark 6.1. By Lemma 5.1, the interval integral (6.1) is a nonempty closed

interval, as it is the intersection of a (countable) collection of nested closed

intervals.

Remark 6.2. An equivalent definition of the interval integral (6.1) is

(6.2) fxY(x)dx - [Lxy(x)dx, 7xY(X)dx],

where, for the sets of step-functions

0 0o

(6.3) SM US I = US
nml--n n=l n

the lower Darboux integral of y over X (a,b] is defined to be (1 31, p. 57),

(6.4) fy(x)dx =x.;_

and similarly, the upper Darboux integral of y over X - (a,b] is

-16-



(6.5) 7 (x)dx-•

The set S defined in (6.3) is the set of all step-functions bounded above by

y; similarly, S is the set of all step-functions which are greater than or equal

to y at each point of X. As these sets are non-empty (recall the step-functions

- -e and s +e), the Darboux integrals (6.4) and (6.5) always exist, no matter

how nasty the functions y, y are from the standpoint of ordinary integration the-

ory. This observation furnishes the following result.

Theorem 6.1 (Theory of Interval Integration). If Y is an interval function

defined on X = [a,b), then its interval integral (6.1) over (a,b] exists.

In other words, all interval functions are integrable (in the sense of in-

terval integration). The simplicity of this theory is due to the fact that inter-

vals are accepted as values of integrals, including the case that the integrand

is degenerate (i.e., a single real function). The requirement that the integral

of a real function be a real number rather than a possibly nondegenerate interval

leads to numerous difficulties and correspondingly rich theories of integration

(as elucidated in 1 3], for example), which constitute some of the most important

chapters of real analysis. By the introduction of interval values for integrals,

these difficulties are resolved, and the operation of integration is extended to

all functions, interval or real. This is analogous to the way that the introduc-

tion of complex numbers extends the operation of root extraction to all numbers,

complex or real. However, just as complex analysis does not supercede real anal-

ysis, it is to be expected that interval analysis will develop as a complementary,ii rather than a competitive, discipline to real analysis.

Some implications of the definitions of the interval integral given above,

and some basic properties of interval integrals will now be investigated.

Remark 6.3. If y, y are Riemann integrable on [a,b], then

b b b
(6.6) JY(x)dx - [(R)fy(x)dx, (R)J'(x)dx],

a a a
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in terms of the Riemann integrals of the lower and upper endpoint functions.

This follows from (6.2) and the definition of a Riemann integrable function

( ], p. 57) as one with equal upper and lower Darboux integrals; it Riemann in-

tegral is taken to be this common value, so that if y is a Rieman integrable

function on X = (a,b], then its Riemann integral is

b
(6.7) (R)fy(x)dx-- f y(x)dx = f-y(x)dx.

a

Remark 6.4. In case y,. y are continuous on [a,b], then the construction of

the interval integral of Y may be simplified by taking only the equidistant parti-

tions T defined by the points

(6.8) k a+ k (b - a), k - 0,,...,n,
n

for each positive integer n, so that w(Xk) = n' and hence by (4.20)(a),
n vY..

(6.9) EA Y  I= .
nn i=

Here, the formation of the Riemann sums E Y can be skipped, and the interval in-
n

tegral is given by

b 0 b b
(6.10) fY(x)dx = n E_ Y = (R)fy(x)dx, (R)J"(x)dx],

a n-A a a
n

((3 1, pp. 58-59), as continuous functions are Riemann integrable.

The interval integral (6.10) is the one proposed by R. E. Moore for contin-

uous interval functions ([5 ], Chapter 8; (6 ], pp. 50-56), as the endpoint func-

tions of a continuous interval function are necessarily continuous (E5 ], p. 18;

[6 1, p. 33). Of course, even in the case y, y are continuous, one may be able

to find a partition A of [a,b] other than E such that Za Y is properly containedn

in the Darboux sum (6.9), and hence provides a "more accurate" approximation to

the interval integral than given by use of the equidistant partition. Some addi-

tional remarks about the numerical approximation of interval integrals will be

made later.

Some basic properties of interval integrals come directly from the properties

. -18-
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of the corroeponding Riemann aum- (5.4) which hold under the intersections in

(6.1). Thus, from Theorem 5.1, one has the following result.

Thooream 6.2. If Y, Z are interval functions on X * (a,b] and k is a con-

tent, than

b b
(a) fk.Y(x)dx - k.fY(x)dxi

a a

b b b
(b) f(Y(x) + Z(x))dx a JY(x)dx 4. JZ(x)dx,

a a a
(6.11)

(c) if Y c Z on X, then

b b
fY(x)dx c JZ(x)dx (inclusion monotonicity).
a a

By taking intersections over all positive integers n of the expressions in

(5.15), o'ne gets immediatelyt

Theorem 6.3. If Y is an interval function defined on a finite, nondegener-

ate interval X m [a,b], and p is such that a < p < b, then

p b b
(6.12) fY(x)dx + fY(x)dx - fY(xldx.

a p a

Similarly, Theorem 5.3 furnishes the following mean interval-value theorem

for interval integrals.

Theorem 6.4. if Y is defined on a finite, nondegenerate interval X • [a,b],

then an interval Y a VY exists such that
x

b
(6.13) fY(x)dx " w([a,b])*.

a

Proofs Taking intersections of both sides of (5.23) over all positive in-

tegers n gives (6.13) with

(6.14) n n Y n a 7YXn=1

QED.

Theorem 6.4 is useful in connection with properties of indefinite integrals.

Definition 6.2. The interval function



x

(6.15) aY(x) = fY(t)dt
a

is called the indefinite integral of the interval function Y over [a, x] for

bx > a. (I Y(x) is similarly defined over [x , b] for x < b.)

Theorem 6.5. If Y is a bounded interval function on (a,b], then I Y(x) is
a

a continuous interval function at any p E [a,b].

Proof: Suppose that VY~ab] = [c,d], and take, as usual,

(6.16) IVY =a,b) I max{jc,Id},

which is finite by hypothesis. For a < p < b, a < x < p, Y C VY ex-

- Ix,pJ ta,b]

ists such that

p x
(6.17) fYlx)dx - JY(t)dt + w([x,pl).ya a [x,p]

a a

by Theorems 6.3 and 6.4; likewise, an interval Y [P,x C VY[a,b ] exists such that

x p
(6.18) fY(t)dt = fY(x)dx + w[x,p).-Y

a a [p,x]

for p < x < b. Given any c > 0, for 6 = /1VY the endpoints of IaY(p)

thus differ from the endpoints of I Y(x) by less than e for Ix - Pi < 6. Conti-a

nuity of I aY(x) from the right at x = a and from the left at x = b is obtained

from (6.18) and (6.17), respectively, as I Y(a) = 0 by Theorem 6.4. QED.a

Indefinite integrals also exhibit a type of differentiability if the limits

lim 1 lim -
(6.19) I-Y(x) 1 YWx Y) ]

- ptx w([p 'xl p ptx 1p'x1

and

lira 1 Iqx- ) lira-
(6.20) I'Y(x)+ q+x w([x,q]) q+x [x,q]

exist and are equal, where Y[px] and Y [x,q] are the intervals defined in Theoren

6.4, and x lies interior to the interval of definition [a,bJ of Y. (One-sided

derivatives at x - a and x - b are defined by (6.20) and (6.19), respectively.)

Definition 6.3. If the limits I'Y(x) and I:Y(x) exist and are equal, then
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(6.21) I1Y a I'Y(x) a I'Y(x)

iu called the derivative of the indefinite integral of Y at x.

The following theorem gives a condition under which the derivative of an

indatinite interval integral is equal to its integrand.

Theorem 6.6. If Y is a continuous interval function on (a,b), then its in-

definite integral in differentiable, and

IxY * Ylx), a < x < b,(6.22)
I'Y(a) - Y(a), Z'Y(b) . Y(b).

Proof, Let, for example, Y pX] [zl(p) zlp)] for p < x. Considering the

upper endpoint function y of Y as an interval function, it follows from (4.31),

(5.25), and (6.14) that z C y p,xl* As y is continuous if Y is a continuous in-

tarval function,

(6y -(x) - -(p).16.23)P+X VYp'x] P+ F(),

Similarly, lirnxZlp) - y(x), so that I'Y(x) exists, and

- (6.24) I'Y(x) - Y(x), a < x < b.

In the same way, one has

(6.25) I'Y(x) Y Y(x), a < x < b,, + -

which establishes (6.22). QED.

* * 7. Relationships between interval, Riemann, and Lebesgue integrals of real

function.. Ordinarily, no distinction will be madQ between a real function y and

the corresponding degenerate interval function (y) w (y,y] having equal upper and

lower endpoint functions. It is convenient, however, to distinguish between poe-

siblo integrals of y over an interval X - ta,b]. The notation

b b b
(7.1) fy(x)dx, (L)fy(x)dx, (R)fy(x)dx,

a a a

will be used to denote respectively the interval integral of y as a degenerate

interval function (which integral always exists), the Lebeegue integral of y if

y ix Lebesgue integrable over a,b), and finally, the Riemann integral ofy if

-21-



it Oxist.S

Remark 7.1. Tho integral of a degenerato interval function y is a degener-

ato intorval, that is,

b
(7.2) fycx)dx f r, r),

a

if and only if the real function y is Riomann integrable over (a,b], so that

b
(7.3) X - (R)fy(x)dx.

a

This follows directly from Remark 6.3 and the definition (6.7) of the Rio-

mann integral.

Thus, one ordinarily expects an interval integration, even of a single func-

tion, to result in a nondegenerate interval. For example, if X is the charac-

teristic function of the rationals, that is,

X(x) n 1 for x rational,

X (x) - 0 for x irrational,

then

fX (x) dx -(0,21,

0,

(7.6) Y(x) < 1, < 2

3 3

(121, x <

3 -

i.e., y is an interval step-function, which includes the "risers" as well as the"

"ltreads"l. For this function,

(7.7) fYxdx 11 1,1,
0

________-22-



as th ' lowur-And upper boundary functions of Y have equal (Riemann) integrals.

Any interval function Y may be interpreted, of course, as a set of functions,

that is,

(7.8) Y ={Y (x) y(x) y(x), a < x < b).

If Y is degenerate, then the set (7.8) consists of only the single function y -

= y. Otherwise, Y.will contain a number of functions, among which there may

be subsets with certain distinguishing properties (continuity, differentiability,

monotonicity, etc.). For the discussion of integration, the following subsets

of functions will be singled out for special mention.

Definition 7.1. If Y is an interval function on [a,b], then the set of

Lebesgue (Riemann) integrable functions y E Y will be called the Lebesgue (Rie-

mann) core of Y, and will be denoted by C (Y) (C (Y)).
L R

One has C(Y) c C L(Y) always, but these sets may, of course, be empty. For

example, if M is a subset of (0,1 which is not measurable in the sense of Lebesgue,

then its characteristic function XM is a degenerate interval function with an emp-

ty Lebesgue (and hence Riemann) core. The characteristic function X of the ra-
p

tionals considered earlier (see (7.4)) provides an example of a degenerate inter-

val funcion with an empty Riemann core, but a nonempty Lebesgue core (the func-

tion X itself).

Definition 7.2. The value v(C (Y)) (v(C (Y))) of the Lebesgue (Riemann) core
L R

of Y on [a,b]'is defined by

b
V(CL(Y)) - {r Ir (L)fy(x)dx, y E CL(Y),

a
(7.9) Lv(CR(Y)) - {r I r "(R) fy W dx, y E CRM

a

* respectively, provided that the indicated cores of Y are nonempty.

Each set v(C (Y)) and v(C (Y)), when nonempty, are convex, that is, if one
L R

contains values rI, r2, with rI < r2, then it contains the entire interval [ri,

r ]. This is because if yl has integral rI and y2 has integral r2, then the

functions y0  Y + 0(y2  y) are all integrable for 0 < e < 1, and have
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integrals equal to r0 W r1 + O(r - r ), 0 < 0 1, which is just another ex-

pression for the interval [ri , r . As a matter of fact, the theory of Lebesgu.

integration [3 ] leads to the conclusion that

(7.10) L(Y) = V(C L(Y)),

if it exists, is a closed interval, which will be called the Lebesgue subinter-

val of the interval integral (6.1) of Y over [a,b]. The set v(C R(Y)), on the

other hand, is not necessarily closed. This is considered to be a defect of Rie-

mann integration, and led to the construction of the theory of Lebesgue integra-

tion. However, as v(C (Y)) is convex, then its closure,
A R

(7.11) 1R(Y) = V(CR (Y))

is a closed interval which, if it exists, will be called the Riexnann subinterval

of the interval integral of Y over [a,b].

The purpose of the introduction of the intervals (7.10) and (7.11) is to

provide some quantitative information about the Lebesgue and Riemann cores of an

interval function Y which measures its "integrability" in a certain fashion. In

the metric topology for intervals ([5 1, [6 ]), the distance between intervals

[a,b] and [c,d] is defined to be

(7.12) - d([a,b],[c,d]) = max{la - c , lb - dI}.

(In the extended real number system, rule (2.7)(x) is used to resolve any inde-

terminant forms entering into (7.12).)

Definition 7.3. For

b
(7.13) I(Y) - fY(x)dx,

a N
if the Riemann core C (Y) of Y is nonempty, then

R

(7.14) p(Y) = d(I (Y) ,I(Y))
R

is called the Riemann gap of the interval function Y on [a,b]j similarly, if.

C L(Y) is nonempty, then

(7.15) X(Y) - d(I (Y) ,I( ))
L
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is called the Lebesgue 2ap of Y on (a,b].

Remark 7.2. one has

(7.16) A(Y) < P(Y)

in case both numbers are defined.

This follows from the inclusion C R(Y) a C L(Y). if only one of the numbers

X(Y), p(Y) is defined, it will be X(Y) by the same token. For the example (7.4)

of the degenerate interval function X , one has X(X ) 1, and p(X ) is not de-

fined.

Theorem 7.1. If the endpoint functions y, y are Riemann integrable over

[a,b], then A(Y) - 0; if A(Y) = 0, then y, y are Lebesgue integrable, and

b b b
(7.17) fY(x)dx= - (L)fy(x)dx , (L)Jy(x)dxJ.

a a a

Proof: By Remark 6.3, the Riemann integrability of y,, y means that p (Y) = 0,

hence X(Y) = 0 by (7.16). Conversely, if X(Y) = 0, then the integral ICY) is

finite, and bounded sequences {41, {y a Y of Lebesgue integrable functions may

be found which converge to y and y, respectively. It follows ([3 3, p. 81) that

y and y are Lebesgue integrable on [a,b], and, as

(7.18) n-, (L)JfinxWdx - If,,y (x)dx,
a

one has that

b
(7.19) LXZ(x)dx - (L)fY.(x)dx,

a

and similarly for y, whence (7.17). QED.

Remark 7.3. if X and y are Lebesgue integrable on [a,b], then

b b
(7.20) X- max{(L)f1y(x)dx - Lxx~x)dx 7x;7(x)dx - (L)f7(x)dx}.

a xa

*This is true because y. is the "smallest" Lebesgue integrable function con-

tained in the interval function Y, and y the "largest" in the sense that for each-

function y C CL() one has X.(x) < y(x) < y(x), a < x < b. Thus,

Ly)
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b b
(7.21) v(C LY)) [ [(L)fY(x)dx, (L)ff(x)dxl,

a a

from which (7.20) follows by (7.12).

8. Improper integrals. In ordinary integration theory, an integral

b
(8.1) r - fy(x)dx

a

is said to be improper if the interval of integration ta,b] is infinite, or if

its integrand is unbounded on X = (a,b] in the sense that given any M > 0, there

exists a nondegenerate subinterval XM of X such that jy(x)j > M for x E XM. Sup-

posing that y is unbounded at x = a, that is, X [a , a], a = a(M) > a, and in-

tegrable (in the sense of Riemann) on (a, b], one defines the improper Riemann

integral of y over [a,b] to be

b b
(8.2) (IR)fy(x)dx = li (R)fY(x)dx,a~a

a a

provided this limit exists (in the extended real number system; infinite values

will be accepted here for improper integrals). Similarly, if y is Riemann in-

tegrable over [a,b] for b > a finite, then

Sb
(8.3) (IR)fy(x)dx l 1 (R)fy(x)dxb-

a a

by definition, again if the indicated limit exists.

The definition of interval integrals given in §6 yields values of certain

improper Riemann integrals if the integrand y is interpreted to be the degenerate

interval function [y , y], for example,

(a) "/3 ,

02

(8.4) (b) fx'ldx = (-,],

0

(c) f (-e dx =- ,-1].

0

In the above, the value of the improper Riemann integral appears as the finite
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endpoint in each of the intervals (8.4)(a) and (8.4)(c). The indegenerate in-

terval (8.4)(b) indicates correctly that the corresponding improper Riemann in-

tegral is divergent.

Definition 8.1. An interval integral (6.1) is said to be infinite if its

value is one of the indegenerate intervals [-c , -c] or [c , -], indeterminant if

it is equal to R ( [- , c], or improper if its value is a semi-infinite inter-

val [a , -] or [-- , bJ; otherwise, it is said to be finite.

The relationship between improper interval and Riemann integrals will now

be considered for the casei (8.2) and (8.3), as illustrated by (8.4)(a) and

(8.4) (c), respectively.

Suppose that y(x) is unbounded above at x = a. Thus, every Darboux sum

(4.7) will contain a term of the form (after elimination of nondistinct partition

points, if necessary),

(8.5) w(Xl).7Yl [W(Xl).C t ] ?

whereX = a , x i l, and
/ inf

(8.6) c I = (Y(X)}.
xEX1

* The interval integral of y will hence either be improper or infinite. The fol-

lowing theorem is illustrated by (8.4)(a).

Theorem 8.1. Suppose that y is Riemann integrable over (a, b] for a <a < b,

and the indefinite interval integral I y() satisfies
a

lim8a.7)  lim = fy (x) dx - [0, ]
(8.7) lia aoa

a

then, the improper Riemann integral (8.2) of y over [a,b] exists, and

b b
(8.8) fy(x)dx = [(IR)fy(x)dx ,cc].

a a

Proof: One has

b a b
(8.9) fy(x)dx = fy(x)dx + fy(x)dx,

a a a

by Theorem 6.3, and, by Remark 6.3,
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b b b b
(8.10) fy(x)dx - [(R)fy(x)dx, (R)fy(x)dx] - (R)Jy(x)dx,

L a a

as degenerate intervals may be identified with the corresponding real numbers.

Taking the limit as aca of both sides of (8.9) gives (8.8). QED.

In the case of integration over an infinite interval, say [a , 0], suppose,

for example, that y is negative, but that y(x)+0 as x - -, as in (8.4)(c). Then,

each Darboux sum (4.7) will correspond to a partition An with xn 1 finite, x n

+0, and as

(8.11) Vy [c , 0],
n

where c {y(x)} < 0, w(X) = w( x ]) = then each will contain a termXEX n n-L

equal to

(8.12) w(X n ) - Vy n = [--, 0],

by rules (2.1)(iii) and (2.1)(ix). The situation illustrated by the example

(8.4) (c) is a case of the following result.

Theorem 8.2. Suppose that y is Riemann integrable over the finite interval

[a,b] for each b > a, and the indefinite interval integral I y(b) satisfies

(8.13) I y(b) = [--, 01;

then, the improper Riemann integral (8.3) of y over [a, 0] exists, and

(8.14) fyx)dx [- (IR) y(x)dxl.
a a

Proof: This follows exactly in the same way as Theorem 8.1 by writing

(8.15) Jy(x)dx - fy(x)dx + ty(x)dx,
a a b

and noting that

b b
(8.16) fy(x)dx - (R)fy(x)dx

a a

as a degenerate interval. QED.

Other cases of improper interval and Riemann integrals may be treated in
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a similar fashion.

9. Computational implications of the theory. One purpose of the theory of

integration of interval functions developed above is to provide a theoretical

framework for the investigation of the numerical solution of linear and nonlinear

integral equations such as

b
(9.1) u(x) = (R)fg(x,t,u(x),u(t))dt

a

by interval methods. One approach along these lines is to reformulate (9.1) as

an interval equation,

(9.2) U - T(U),

for an interval function U which contains the desired solution u of the integral

equation (9.1). Under certain conditions, the operator T will be a contraction

mapping (1], [2]), and the iteration process

(9.3) U n+ - T(U n), n - 0,1,2,...

will converge to give a solution of (9.2). To implement this for the integral

equation (9.1), one forms the interval functions Gn - [,gn], n - 0,1,2,...,

where

2(x,t) - inf{g(x,t,Un (x),Un(t))),

(9.4)

gn(xt) = sup{g(x,t,U (X),Un(t))},

and then (9.3) becomes

b
(9.5) Un+l(x) - JG(X,t,Un(X),Un(t))dt

a

in terms of interval integration. of course, if n(x,t) and gn(x,t) are Riemann

integrable in t, then the endpoint functions u+l, un+l of Un+l are obtained by

Riemann integration. From a numerical standpoint, in this case approximations

* n+l - Un+l ~l n+l may be obtained to prescribed accuracy by any one of a

number of methods, including the use of Darboux sums as defined in §4 [7], with

higher-order accuracy being obtainable from integration of Taylor polynomial ap-

proximations to the endpoint functions, or by other rules of numerical integration
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(r41, [5], [6], 19]), provided, of course, that the endpoint functions are smooth

enough.

A particularly simple case occurs if g is monotone in the sense that

in(x,t) = g(x,t,u (x) ,u (t)),

(9.6)

gn(x't) = g(x,t,un (x) un(t))'

that is, the endpoint functions of U transform into the endpoint functions of G n
n n

and furthermore, g transforms Riemann integrable functions into Riemann integra-

ble functions. Here, the iteration (9.5) can be carried out using only the end-

point functions if one starts with an interval U0 =( , u 3 which has Riemann
-0_ 0

integrable endpoint functions. An example of this approach to the solution of a

nonlinear integral equation was given by Rall (7], in which step-functions were

used as endpoint functions (and T was approximated by a numerical operator S such

that T C S). In many cases, continuous solutions u are sought for integral equa-

tions (9.1), which gives rise to the following concept.

Definition 9.1. The continuous core C c(U) of an interval function U on [a,bJ

is defined to be the set of continuous functions y contained in U, that is

(9.7) C c(U) = {y I Y E UAC[a,b]}.

Evidently, C (U) a C (U), the Riemann core of U defined earlier.
C R

If g is a continuous function of its arguments, and the interval operator

T is such that the continuous function v defined by

b
(9.8) v(x) = (R)fg(x,t,u(x),u(t))dt

a

belongs to T(U) for u C C (U), then it follows that each continuous solution u

of (9.1) will belong to C c(U) if U is a fixed interval of T, that is, if (9.2)

holds. Thus, it is tempting to try to compute the sequence (9.3) using only

C (Un ), where U0 is taken to have continuous endpoint functions. However, in

general, the functions %,(x,t) and gi(x,t) obtained from (9.4) will be only semi-

continuous if U is replaced by C (U ), and these so-called L- and U-functions
0 C 0

may not even be Riemann integrable 13]. The theory of interval integration
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developed in this paper resolves this difficulty by allowing computation with

the interval functions Un directly, regardless of the character of their endpoint

functions.

Remark 9.1. If u E C c(U 0 ) is a solution of (9.1), then for the sequence

(9.3) constructed by the operations (9.4) and the interval integration (9.5), it

follows from the condition (9.8) for continuous g that

(9.9) u C C c(U), n = 0,1,2,...;

furthermore, for

00

(9.10) U- n u ,n=l n

one has u C C (U).

Remark 9.2. In the favorable case that Un+ 1 C U , n - 0,1,2,..., and

(9.11) lim sup {W(Un(x))} = 0,
n-*- [a,b] n

one has that U = [u , u] = u defined by (9.10) satisfies the integral equation

(9.1), as a degenerate interval integral of a degenerate interval function is

necessarily a Riemann integral; furthermore, one has error bounds of the form

(9.12) u (x) < u(x) i u(x), a < x < b,

for n = 0,1,2,....

Further applications of interval integration to the solution of integral

equations will be investigated in subsequent papers.
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ABSTRACT (continued)

_b
function y, and fy(x)dx is the upper Darboux integral of the upper endpoint

a
function y. As these Darboux integrals always exist in the extended real number
system, it follows that all-interval functions are integrable, no matter how nasty
the endpoint functions y, y are. The interval integral defined in this-way in-
cludes the interval integral of R. E. Moore as the special case that y, y are
continuous, and hence Riemann integrable.

In addition to a construction of the interval integral in a form suitable
for numerical approximation, some of its basic properties and other implications
and applications of its definition are presented. The theory of interval inte-
gration given here supplies a previously lacking mathematical foundation for the
numerical solution of integral equations by interval methods.
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