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ABSTRACT

An inter' al function Y assigns an interval Y(x) = [x(x),}(x)] in the ex-

tended real number system to each x in its interval X = [a,b] of definition.

b
The integral of Y over {a,b] is taken to be the interval fY(x)dx = [Lz(x)dx '
a a

~b b

fy(x)dx], where fx(x)dx is the lower Darboux integral of the lower endpoint

a a .

function y, and .fy(x)dx is the upper Darboux integral of the upper endpoint
a

3

function }. As these Darboux integrals always exist in the extended real number
system, it follows that all interval functions are integrable, no matter how nasty
the endpoint functions y, ; are. The interval integral defined in this way in-‘ '
cludes the interval integral of R. E. Moore as the special case that y, ; are
continuous, and hence Riemann integrable.

In addition to a construction of the interval integral in a form suitable
for numerical approximation, some of its basic properties and other implications
and applications of its definition are presented. The theory of interval inte-
gration given here supplies a previously lacking mathematical foundation for the

numerical-solution of integral equations by interval methods.

AMS (MOS) Subject Classifications: 65R20, 65Gl0, 65D30, 45L10, 45105, 45Gl0,
28B20, 26A42

Key words and phrases: Interval analysis, interval functions, interval integra-
tion, interval integral equations, numerical solution of
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SIGNIFICANCE AND EXPLANATION

Solving physical problems with the aid of digital computers often involves

-performing hundreds or thousands of inexact arithmetic operations on inaccurate

data. A study of the effect of these errors cn the final result to determine if
it is useful (or even meaningful) is often required, and may be tedious.ﬁ By the
methods of interval analysis, the computation may be carried out automatically on
intexvals which contain the data to yield intervals in which any exactly computed
result would lie. .It can also be argued that the intervals calculated are actual-
ly the solutions to certain problems; for example, the intervals of deflection of
a structure corresponding to intervals of loading forces may give a better pic-
ture of its stability and safety than knowing its exact configuration under a
specific selection of forces. :

Whether one interprets the obtained interval to contain the answer or be the
answer, it is important to be able to compute interval solutions efficiently, with
as little extraneous expansion as possible. However, the subject of interval anal-
ysis is still in the early stages of its development. Algebraic operations on, in-
tervals are well understood, and can be expressed in terms of the endpoints of the
1 intervals involved. \In the case of transformations of interval functions Y (¥ (x)
is an interval for eagh x), this simple situation may not hold, excepﬁ in special
cases. In particular, the lack of a theory of integration of interval functions
has hampered the develo;ment of interval methods for the solution of integral
equations, which constitute an important class of mathematical models of real
.situations. Thié report provides such a theory by defining integrals of interval
functions to be an interval with the limits of integrals of step-functions respec-
tively less and greater than the integrand as endpoints. As these lower and up-
per Darboux integrals of basic integration theory always exist, it follows that
all interval functions are integrable. The simplicity of this theory is due to
the fact that intervals, rather than real numbers only, are accepted as values of

integrals,xeven if the integrand is a real function (called a degenerate :.interval

function in this context).n Progress in mathematics is often made in this way, by
introducing a new object ag a solution; for example, imaginary numbers as square
rbots of negative numbers. > Some useful properties of the interval integral de-
fined in this report are derived, and its potential usefulness in connection with

g the numerical solution of integral equations is indicated.
' the wording and views expressed in this descriptive
and not with the authors of this report.

Y The responsibility for
summary lies with MRC,
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- INTEGRATION OF INTERVAL FUNCTIONS

_* , w w Wk khw
Ole Caprani , Kaj Madsen and L. B. Rall ' '

1. Intervals in the extended real number system. In ordinary interval

analysis (5], [6], the term interval refers to closed intervals of real numﬁérs,
(1.1 X = la,b] = {x | a<x<b},
with finite endpoints a, b. The width

(1.2) - o w(X) = w(la,b]) = b - a

-

of an interval with real endpoints is consequently finite. To develop the theory
of integration of interval functions given below, it is convenient to use the ex-
tended real number system, which includes the values + « [3]. Thus, in addition
to finite intervals of the form (1.1) with a, b finite, there will be infinite
intervals in the system of one of the following types:

(i) semi-infinite intervals

. ACClniionior =
b . e _
(1.3) S = [a, 4}, S§ = [-», b], a, b finite; BPiZ  Goeikl &;}/
a WY T A D =

’ | Do s i
Ullveipuived (]

i {(ii) the real line Justitiestion .
S —_— , T
= v

{ ¥y

{

i (1.4) R = [~», +], "

; el “t .~1 . 3 i
1 = ML ]
,'{ L i.’ "‘* s v gr i
! and (iii) ~the indegenerate intervals s !
ii iist ! sab i {
:; . -0 _ : |
s R R B AL

A ! {

(In what follows, "+=" will often be written simply as "«=".)

All the infinite jintervals will be defined to be of infinite width, that is,
* Department of Computer Science, University of Copenhagen
#* Institute for Numerical Analysis, Technical University of Denmark '
#%%* Mathematics Research Center, University of Wisconsin-Madison. Sponsored in part
by the United States Army under Contract Nos. DAAG29-75-C~0024 and DAAG29-80-C-0041

and the Danish Natural Science Research Council Grant No. 511-15849.
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(1.6) wis)) = wis) = w(R) = w(s™) = w(s, ) = +o

in the extended real number system. This definition is consistent with the type

of limiting process used to define "improper" integrals, that is,

1i 1i
(1.7) S, = paalabl = [a,=], s = Tla,=] = (=],
and hence
_ lim _ lim
{1.8) w(Sm) = e w(Sa) = e (0) = o,

S0 that it is reasonable in this sense to assign infinite widths to the inde-
generate intervals s and S_.
In what follows, a closed interval in the extended real number system will

be called simply an interval.

2. Interval arithmetic. 1Interval arithmetic ([5.]1,[6 1) as defined for finite

interval may also be performed in the system of intervals in the extended real
number system defined in §1 if suitable rules are adopted for camputing with the
values +». 1In essence, these "rules" are a shorthand notation for the results
of the types of limiting processes to be encountered in the theory of integra-
tion presented below. McShane ([3], p. 21) gives the following rules:

(i) == < a < » for every real number a;

(ii) wra = asw=w if 0 < a < o

(iii) meg = gew ww jf = :. a < 0;

(iv) (-®)ea = as(-») = == if 0 < a < =

(V) (-®)ea = as(-®) = » if -» < a < 0;
a

(vi) —= —2_ =0 if ais real;
o (~o)

(vii) @®+ a=a+»o=o if a > =x;
(viii) =-» + a=a + (=») = e if a < w;

(ix) we() = Qew = (=~®»)e() = Qe (=) = 0.




Thus, rule (2.1) (ix) takes care of the "indeterminant form 'Qe»'" which

can arise if one of the factors in a multiplication is an infinite interval. The

wi,‘*gma LI

product of two intervals will be defined to be

SR

(2.2) {a,bl*{c,d] = [min{ac,ad,bc,bd},max{ac,ad,bc,bd}]

e

in the extended real number system. 1In ordinary interval arithmetic ([51], p. 9),
(2.2) is a consequence of the definition [a,ble*[c,d] = {z lz = x+y, x€[a,b],
y€lc,d]} of multiplication of intervals. 1In the extended real number system,
however, one has {z lz.= x+y, x€[-1,1], y€[=»,=]} = {-», 0, »} by (2.1)(ii) (iii)
(ix), and the result is not an interval. Use of the rule (2.2) gives [-1,1]-
[o,®] = [-eo,»], which circumvents this problem.

As in ordinary interval arithmetic, division by intervals containing 0 will

not be defined. The reciprocal of an interval,

, (2.3) lc,d1™} = [1/a,1/¢1, oflc,dl,

is defined for all zero-free intervals, with rule (2.1) (vi) used if [c,d] is an
infinite interval. One has
{ S- = [al”]-l = [0, 1/a]I a> 0; s;l = [°°l°°]-l = [010]3

(2.4) -1

)™ = (2,017 = (1/b, 01, b<0; (S = [-w,-=1") = [0,0].

The indeterminant form "«/o" will thus not occur in the interval arithmetic un-
der discussion, as division is defined by

| g (2.5) [a,b)/[c,d] = la,bl-[c,dl”t, oflc,dl,

and [c,d]-l, if it exists, will have only finite endpoints by (2.3) and (2.4).

The indeterminant form "= - =" can appear in addition or subtraction ac-

cording to the usual rules ([5], pp. 8-9),




| e e,

[a,b] + [c,d] = [a + ¢c,b + d],
(2.6) {

[a,b} - (¢, 4] = [a-4,b - ¢],

but only if at least one of the terms is an indegenerate interval. Thus, an ad-

ditional rule to augment the list (2.1) is needed, which is

[a,»] + [-»,-w] = [a,®] = [=,»] = [=e, ]
(2.7) (%) {

[==,b] + [®,®] = [-®,b] = [~=,~0] = [~=,], i

where a,b may be finite or infinite. Thus, rule (2.7) (x) assigns the value +x
to » - = as an upper endpoint of an interval, and -« as a lower endpoint.

Thus, the total collection of rules for interval arithmetic in the system
of intervals defined over the extended real numbers consists of (2.1) (i)~-(ix),
(2.7) (x), (2.2), (2.3), (2.5), and (2.6). The interval arithmetic constructed
in this way contains ordinary interval arithmetic on finite intervals ([5],([6]) .f
in the sense that it gives the same results for finite intervals. The operations
on infinite intervals are defined in such a way as to be convenient in the sequel
for the construction of a theory of integration of interval functions. Other ex-
tensions of interval arithmetic to infinite intervals are possible, but will not

be considered here.

3. Interval functions. Y is said to be an interval function of x on {a,b] if

it assigns a nonempty interval
2 (3.1) Y(x) = [y(x) ,y00)] ={y]| yx <y <y}

to each x€[a,b]. The (extended) real-valued functions y, y are called the end-

points, or boundary functions of Y, and the notation

(3.2) Y=1[y,y)

will be used, as well as the alternative notation

¢
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(3.3) L ¥(x) = [y, y)(x)

for the interval (3.1).

The interval function Y can also be identified with its graph, which is the

set of points
(3.4) Y = [a,b]x¥(x) = {(x,y) | x€[a,b], y€Y(x)}

in the xy-plane. Geometrically, the graph (3.4) extends from the "lines" x = a
on the left to x = b on the right, and from the "curves" defined by y = y(x) be-
low to y = ;(x) above (recall that extended real values are permitted).

In the context of interval functions, a real-valued (or extended real val-

ued) function f is considered to be the degenerate interval function

(3.5) £=1[f,f].

In the extended real number system, numbers ¢ < d exist such that the graph
(3.4) of Y is contained in the rectangle R = [a,b]x[c,d] = {(x,y) | x€[a,b], Y€

{c,d]} in the xy-plane, that is,
(3.6) Y < [a,b] x[c,d] = R.

The set of all rectangles R for which (3.6) holds will be denoted by R(Y) or by

(Y) if it is desired to specify the interval of definition [a,b] of Y.

R(a,b]
If [a,b] is a finite interval, then Y is said to be finitely defined. 1If

(3.6) holds with ¢,d finite, then Y is called a bounded interval function. A
bounded and finitely defined interval function is said to be finite; the graph
of a finite interval function is obviously contained in a finite rectangle R with
area w((a,b})+w([c,d]) = (b - a)e{(d - c).

Definition 3.1. For

inf
(3.7) c= x€la,b]

- 8UWP =
{y(x)}, a x€[a'b]{y(x)},
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the interval

(3.8) {c,d])

Yia,pl =

is called the vertical extent of the interval function Y on (a,b]. If the inter-

val of definition of Y is understood, then VY may be abbreviated as VY.

[a,b]
The rectangle

(3.9) R(VY) = R

[a,b](VY) = [a,b]lxVY

[a,b]

is the "smallest" containing the graph of Y. One has
(3.10) R(W) = N R;
RER(Y)
that is, R(7Y) is the intersection of all rectangles (3.6) which contain the
graph of Y.

Vertical extent of an interval function, as defined above, has the important
property of being inclusion monotone with respect to the interval of definition
of the interval function and inclusion of interval functions; Y « 2 means that
the graph of Z contains the graph of Y considered to be point-sets in the xy-
plane. More precisely, (3.7) and the definition (3.8) of vertical extent lead
directly to the following result:

Lemma 3.1. If I, J are intervals on the x-axis with I € J, then
(3.11) VYI c VYJ;

if Y, 2 are interval functions on X = [a,b] such that Y = Z, then

(3.12) VY[a,b] c Vz[a,b]'

4. Vertical measure and Darboux sums. Definition 4.1. The interval

(4.1) = w([a,b]) VY .

Wia,0 Y (a,b] 5

is called the vertical measure of the interval function Y on (a,b]. Note that N

this quantity is interval-valued, and specifies the interval of definition of

the interval function Y on which its vertical extent VY is obtained.
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(The goal in this paper is to construct a theory of Riemann-type integrals

of interval functions. The horizontal measure

(4.2) (Y) = [a,b]w(VY

Hla,b] fa,b1’

of ¥ on [a,b] may be useful in a Lebesgue-type integration theory, but this will

not be pursued further here.)

Remark 4.1. Vertical measure is inclusion monotone with respect to inclu-
sion of interval functions: If Y < Z, then W (Y) ow (2) . Horizontal
(a,b] [a,bl]
measure is inclusion monotone with respect to the interval of definition: 1If

I cJ, then HI(Y) c HJ(Y).
Proof: The assertions of Remark 4.1 follow immediately from Lemma 3.1.

As usual, a set of points {xo, Xiy eoey xn} such that

1'

(4.3) a=x, <X < ...<x <x =b
defines a partition
(4.4) An = (Xl, xz, ceoy xn)
of the interval X = [a,b], where
(4.5) xi = [xi_1 ,xi], i=1],,2,...,n.
Obviously,
n n
(4.6) x= UX, wx = ) wix,).
i=l i=1

Definition 4.2. The interval

n n
(4.7) T Y= Jw(X)evy, = J W (¥)
by qm FTE gy ®yy %)

is called the Darboux sum of the interval function Y corresponding to the parti-

tion A of X = {(a,b), where VY,£ = VY =7VY has been written for brevity.
n i X (x,_q0%,]

For




(4.8) VYi = [c:.L 'di]'

one has
(4.9) c; = ;’e';{x(x)}, a, = ig.{;(x)},
1 1
and
n n
(4.10) By Y= 0] ciewix), | @ ewx)l;
n ~ i=1 i=1

the endpoints of I

A Y are thus respectively the lower Riemann sum of the func-
n

tion y and the upper Riemann sum of the function ; corresponding to the parti-
tion An of X [71.
The upper and lower limits of the interval (4.10) may also be interpreted

as (elementary) integrals of step-functions ([3 1, p. 54),

1 n WD '

{ (4.11) [ epowix) = [stax = [ sax,

1 i=1 a X

] and

i n -] —

= (4.12) 7 a.ewix) = [ s(x)ax = [ s(x)ax.
i=1 * . a X

In (4.11), the ster Junction s(x) will have the values

inf
(4.13) s(x) = ci = xEXi{l(X)}' xi_1 < x < xi'

in all nondegenerate intervals xi of the partition An. At each of the partition

oints X, listed in (4.3), there will be a finite number of intervals Xx. 5.
points j-

i
xi-ji+1"'°'xi' xi+1""' xi+ki which contain xi. Define i
i
(4.14) s(x,) = min{cj !xi € xj}, i=0,1,...,n. j
Similarly, i
S0 =4, =P 5 |
: (4.15) s(x) = a, x€xi{y(x)}. X1 < X <%,

RT2 S =




Sy oyl
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in nondegenerate intervals xi of the partition An’ and
(4.16) s(x,) = max{dj lxi € xj}, i=o0,1,...,n,

at the partition points x

0’ xl, ceny xn. It follows that

(4.17) s(x) < y(x) <y(x <s(x), a<x<b.

The properties of integrals of step-functions are well-documented ([3 ],
pp. 54-57), for example, if sy and s2 are step-functions on an interval X, and

k is a finite constant, then

L L
(@) [ kes (x)dx = k-[xsl(x)dx;

' , \
(4.18) () [yl (0) + 5, (x))ax = [ i) (x)dx + [ 8, (x)ax;
(e) 4if s,(x) <s,(x) for all x € X, then

's (x)dx < f's (x)ax.
X1 X"2

Furthermore, if s(x) is a step-function on X, then for each partition Am of X,

m
(4.19) I [, stoax = [ swax.
=1 73

The integral of a step function is also invariant under translation ({31, p.
= 57).
The above results may be used to prove corresponding assertions about the

Darboux sums (4.7), taking into account the differences between real and inter-

val arithmetic.

- pL L

Theorem 4.1. If Y, 2 are interval functions on X = [a,b] and k is a con-

stant, then

NP e g, 2 i e

by Ry .
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ZA keyY = k-ZA Y;
n n

(b) ZA (Y + 2) ZAY+2Az;
n n n 1
(4.20) 5

if Yc 2 on X, then

ZA Y c ZA Z (inclusion monotonicity).
n n

Proof: For finite k, (4.20) (a) follows directly from (4.18) (a); rule (2.7)

(x) allows one to drop the restriction of k to finite values. For Y = [x_,;],

Z = [E_,Zi, the inequalities

inf inf inf
(a) x'{y_ + 2z} > x.{y_} + x_{
1 h 8 1

v

z},

(4.21)

+
A

sup,— , — sup .~ sup -
(b) x_{y z} < x‘{y} + x.(z},
1 1 1

1,2,...,n, ([3], p. 25) give

on the intervals xi, i

(4.22) V(Y + Z)X. c VYX. + VZX.'
1 1 i

from which

(4.23) Wx.(Y +2) c wx‘(Y) + wx'(z),
1 1 1

Finally, the inclusion monotonicity of

; i=1,,2,...,n, and (4.20) (b) follows.

the vertical measure W (see Remark 4.1) with respect to inclusion of interval

functions gives (4.20) (c). QED.

An analog of (4.19) is also available immediately.

For m = 2, suppose that

a <p<b, and that

W

(4.24) A o (x

oy

ll,Xlz,...,Xlnl) '

is a partition of X {a,p], similarly,

1

A(2)
n

(4.25) = (x21,x22,...,x2n )

2 2
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is a partition of x2 = [p,bl]. For n = n, + R, it follows that

(4.26) A = ( )

n xll'x12'°"'xlnl'x21'°"'x2n2

will be a partition of X = [a,b], and

Y+ 3 Y=12I Y.
A(l) Al2) An

%y ny

(4.27) z

This may be extended by induction to any positive integer m > 2.

A type of mean-value (or mean interval-value) theorem holds for the Darboux
sums (4.7).

Theorem 4.2. If X = (a,b] is a finite, nondegenerate interval, then an in-
terval ?(An) c VYX exists for each partition An of X such that
(4.28) zAnv = w(X)*¥(4).

Proof: By (4.7) and (4.20) (a),

1 n w(xi)
(4.29) m—-z%y = izl(m)-vvi = [r,s],

say, where for a, = w(Xi)/w(x), i=1,2,...,n,

) ) )
(4.30) r = ®,C,, 8 = a.4d,, a, =1,
gmp 21 gmp B g
Thus,
min max

c= (i){ci} <rs< (i){ci}'
(4.31)

min max

193} 28 < qyle;) = a

and hence [r,s] € V¥ . Thus, by (4.29), (4.28) holds with ?(An) = (r,s]. QED.

5. Step-functions and Riemann sums. For each positive integer n, let Sn denote

the set of all step-functions s, on X having n + 1 partition points Xyt Xyo eoes

disposed according to (4.3). Furthermore, let

«ll-




§11(Y)={En |§n€5n.§n(x)iy_(x),aixf_b},

(5.1)

s, ={s |5 €, (x)>y(x),acxcb.

-= belongs to {¥), and _; z +» to

The sets §n (Y), Sn(Y) are nonempty, as )

| 4@

En(Y). By (5.1) and (4.18) (c), for each s, € S (Y), s € S (Y), one has

lb IE
(5.2) £_sn(x)dxi£ s (x)ax,

and consequently

(5.3) = SWP {f s (x)dx} < —
a

C = . es ES {f s, (x)dx} =
=n=n

nna

Definition 5.1. For each positive integer n, let Dn denote the set of par-

titions (4.4). The interval

(5.4) ZnY = N ZA Y= [cn ,gn]
Anevn n

is called the Riemann sum of order n of the interval function Y over [a,b].

Lemma 5.1. The interval XnY is nonempty; furthermore, if m > n, then
(5.5) L’mY c.):nY.

Proof: The assertion of the nonemptiness of the interval (5.4) is simply

a restatement of (5.3). Denoting the set of Darboux sums (4.7) by Sn' ifm > n,

then

(5.6) Sn c Sm,

as if T A c Sn, then one may take the partition Am defined by
n

(5.7) a=x <X <...ixn=xn+l=...=xm=b,

for which £ L Y = ZA Y, and thus ZA Y € sm for m > n. The inclusion (5.5) then

Am n n

follows from (5.6) by the definition (5.4). QED.

-]12=
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The properties of Darboux sums listed in Theorem 4.1 survive the intersec-

tion (5.4) and thus become properties of Riemann sums, giving immediately the

following result.

Theorem 5.1. If Y, Z are interval functions on X = [a,b] and k is a con-

stant, then

(a) I keY = k*I Y;
n n
(b) Zn(Y +2) c an + L Z;
(5.8) n
(c) if Y Z on X, then

EnY c an (inclusion monotonicity).

The additivity of Riemann sums with respect to the intervals over which they

are defined will now be investigated. 1In order to be definite, the notation

(5.1) zny[a,b] = Zan

will be used to indicate the interval of summation X = [a,b]. Suppose that

a <p<band x1 = [a,pl, xz = [p,b]l. The following results apply to the expres-
sion of the sum of an interval function Y over X in terms of its sums over x1

and x2.

Lemma 5.2. If X = [a,b] is finite and nondegenerate, then

(5.10) W[a'p](Y) + w[p,b](Y) c w[a,b](Y)'
that is,
(5.11) w([a'p]).vy[a'p] + w([P'b])-VY[p'b] c w([a,b])-VY[a’b].

Proof: Let VY[a,p] = [c1 ,dll, VY[p,b] - [c2 ,62], VY[a,b] = [ec,d].

Then, by definition of vertical extent,

(5.12) c= min{c1 ,cz}. d= max{dl ,dz}.

-13-
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For o = w([a,p])/w([a,b]), one has 1 > a > 0 and w([p,bl)/w([a,b]) =1~ a > O.

Thus,
(5.13) w([a,p])'VY[a,p] + W([p,b])'VY[p’b] =
= w([a,b])-(ac1 + (l-u)c2 ,adl + (l-a)dz),
and, as j
(5.14) c<acy + (1-a)e, <ad + (1-ald, <4, '

by (5.12), (5.11) follows. QED.
Theorem 5.2. If X = [a,b] is finite and nondegenerate, then for each pos-
itive integer n > 2,

n {z

n1+n2=n

(5.15) z

2n¥ta,p) © n"ta,pl * InY1p,01? € -1 fa,m

Proof: The set Sn of Darboux sums (4.7) may be decomposed into two disjoint
subsets for each positive integer n > 2: The set S§ of sums corresponding to q
partitions A: which have p as a partition point, the set of which will be denoted

L]
by Uﬁ, and the complement of Si relative to Sn, Sﬁ = sn\sg, that is, the set of

all Darboux sums corresponding to partitions An for which p is not a partition

g

point. As sPes , one has
n n
(5.16) n ZA Y

zny[a,b] c
P n
AT €
n n

(a,bl”’

By (4.27), for I Y € sﬁ, one can write

A
n
. .17 I § =3I Y + 2
) (5.17) 4" la,p) & la,p) 2y Yip,p1’ ‘
! n
3 1 2
{
where ny + n, = n., Consequently, as

-14-
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(5.18) }

n z, Yy = n {r v +I Y
AﬁEDi 8, la/pl n,+n,=n n, [a.p) ny .3

the first inclusion of (5.15) follows.

of X = [a,b] for n > 2, and let A¥ denote
}.

Now, consider a partition An-l
the partition of X obtained by adding the point p to the set {xo,xl reeesX g

Either p = xi for some i, 0 < i < n-1, in which case .

5.19 = Y = Y + I Y
(5.19) v Yiawl T p¥ram) T Yiap Y I Yipmlt
n-1 A n n
n 1 2 f
nl + n2 = n, or a nondegenerate interval xi = [xi_1 ' xi] c An-l exists such that
X1 < p< xi' As
(5.20) w(lx, .,pl)VY + wi(lp,x.])VY cwllx, ,,x1)VY ;
i-1 [xi_l'p] 1 [vai] i-1"71 [xi_llxi] :

by Lemma 5.2, one has

(5.21) L pY[a,b] c EA Y[a,b]
A n-1
n
. _ oP
in this case. Thus, as {):APY[a,b]} Sn'
n
(5.22) Za_ tam) T Tne1ia,m)

Pn z p’i (a,b] c n
’
AnEDs An An-levn-l

by (5.20) and (5.21), and the second inclusion in (5.15) now follows fram (5.18).

QED.

A mean interval-value theorem also holds for Riemann sums.

Theorem 5.3. If X = {[a,b] is finite and nondegenerate, then for each posi-

tive integer n, an interval ;n c VYX exists such that

(5.23) EnY = w(X) 'Yn.

«]l5=~
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Proof: As before, let Dn denote the set of all partitions An for each pos-
itive integer n. Then, by (4.28),
(5.24) LY= N I, Y=wx: 0 'f(An),
A €D “n s_€D
n n n n

so that (5.23) holds with

(5.25) Y = 0N YY) cvy,
n An€0 n X

n
as each Y(An) c VYX. QED.

6. Interval integrals.

Definition 6.1 (The Interval Integral). If Y is an interval function de-

fined on X = [a,b], then the interval integral of Y over [a,b] is defined to be

the interval
b ©
(6.1) [rxyax = [ y(xax = nz v,
a n=1
As usual, Y is said to be integrable over X if its interval integral (6.1) is
defined.
Remark 6.1. By Lemma 5.1, the interval integral (6.1) is a nonempty closed
interval, as it is the intersection of a (countable) collection of nested closed

intervals.

Remark 6.2. An equivalent definition of the interval integral (6.1) is
(6.2) [gimax = (fyxax, T y(xax],

where, for the sets of step-functions

(6.3) §_' u§nr S =
n=1 n

s ,
ln

N c 8

the lower Darboux integral of y over X = [a,b] is defined to be ([ 31, p. 57),

. sup
(6.4) Ly (x)ax E.€‘§{.";(§.(x)dx}.

and similarly, the upper Darboux integral of ; over X = [a,b] is

-16-
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(6.5) fxy(x)dx = §€§{ is(x)dx}.

The set S defined in (6.3) is the set of all step-functions bounded above by
y: similarly, S is the set of all step-functions which are greater than or egqual
to §'at each point of X. As these sets are non-empty (recall the step-functions
8 = == and s = +»), the Darboux integrals (6.4) and (6.5) always exist, no matter
how nasty the functions y, §'are from the standpoint of ordinary integration the-
ory. This observation furnishes the following result.

Theorem 6.1 (Theory of Interval Integration). If Y is an interval function
defined on X = [a,b], then its interval integral (6.1) over ([a,b] exists.

In other words, all interval functions are integrable (in the sense of in-
terval integration). The simplicity of this theory is due to the fact that inter-
vals are accepted as values of integrals, including the case that the integrand
is degenerate (i.e., a single real function). The requirement that the integral
of a real function be a real number rather than a possibly nondegenerate interval
leads to numerous difficulties and correspondingly rich theories of integration
(as elucidated in [ 3], for example), which constitute socme of the most important
chapters of real analysis. By the introduction of interval values for integrals,
these difficulties are resolved, and the operation of integration is extended to
all functions, interval or real. This is analogous to the way that the introduc-
tion of complex numbers extends the operation of root extraction to all numbers,
complex or real. However, just as complex analysis does not supercede real anal-
ysis, it is to be expected that interval analysis will develop as a camplementary,
rather than a competitive, discipline to real analysis.

Some implications of the definitions of the interval integral given above,
and some basic properties of interval integrals will now be investigated.

Remark 6.3. If y, ; are Riemann integrable on [a,b), then

b b b
(6.6) Jrixrax = [(R)[y(x)ax, (R)[y(x)ax],
a a a
«17-
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1ﬁ terms §£ the Riemann integrals of the lower and upper endpoint functions.

This follows from (6.2) and the definition of a Riemann integrable function
({21, p. 57) as one with equal upper and lower Darboux integrals; it Riemann in-
tegral is taken to be this common value, so that if y is a Riemarn integrable
function on X = [a,b}, then its Riemann integral is

b
(6.7) (R)iy(x)dx = fyodx = T y(x)ax.

Remark 6.4. In case y, ; are continuous on [a,b), then the construction of

the interval integral of Y may be simplified by taking only the equidistant parti-

tions Z; defined by the points

k
(6.8) xk = a + ;w(b -a), k=20,1,...,n,
for each positive integer n, so that w(xk) = %y and hence by (4.20) (a),
1 B
(6.9) I Y==>=e7 VY.
A n . i
n i=1

Here, the formation of the Riemann sums ZnY can be skipped, and the interval in-
tegral is given by

b ® b b
(6.10) Jr(max = n:_vy= ((R)fyx)ax, (R) [y (x)ax],
a n=1 An a a

({31, pp. 58-59), as continuous functions are Riemann integrable.

The interval integral (6.10) is the one proposed by R. E. Moore for contin-
uous interval functions ([5 ], Chapter 8; {6 ], pp. 50-56), as the endpoint func-
tions of a continuous interval function are necessarily continuous ({5 ], p. 18;
(61, p. 33). Of course, even in the case y, ; are continuous, one may be able

to find a partition An of la,b] other than Z; such that EA Y is properly contained
n

in the Darboux sum (6.9), and hence provides a "more accurate” approximation to
the interval integral than given by use of the equidistant partition. Some addi-
tional remarks about the numerical approximation of interval integrals will be
made later.

Some basic properties of interval integrals come directly from the properties

~18-
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of the corresponding Riemann sums (5.4) which hold under the i{ntersections in
(6.1). Thus, from Theorem 5.1, one has the following result,

Theorem 6.,2. If Y, Z are interval functions on X = (a,b) and k is a con~

ptant, then

b b
(a)  [ke¥(x)dx = ke [¥(x)dx;
Cooa a

b b b
(b) f(v(x) + Z(x))dx & fY(x)dx + fz(x)dx;
a a a
(6.11)
(¢) if Yc 2 on X, then

fg(x)dx c fg(x)dx (inclusion monotonicity) .
a a
By taking intersections over all positive integers n of the expressions in
(5.15), ohe gets immediately:
Theorem 6.3, If Y is an interval function defined on a finite, nondegener-
ate interval X = (a,b], and p is such that a < p < b, then
e P b b
(6.12) [Y(x)ax + [Y(x)dx = [y(x)dx.
a p a
Similarly, Theorem 5.3 furnishes the following mean interval-value theorem
for interval integrals.
Theorem 6.4, If Y is defined on a finite, nondegenerate interval X = ([a,b],
then an interval ¥ c vy, oxists such that

(6.13) f?(x)dx = w({a,b])e¥.
a
Proof; Taking intersections of both sides of (5.23) over all positive in-
tegers n gives (6.13) with
' — by —
(6.14) Y = nglyn c VYx.

QED

Theorem 6.4 is useful in connection with properties of indefinite integrals.

pDefinition 6.2. The interval function
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X
(6.15) I,Y(x) = £Y(t)dt

is called the indefinite integral of the interval function Y over [a, x] for

x > a. (IbY(x) is similarly defined over [x ,b] for x < b.)
Theorem 6.5. If Y is a bounded interval function on [a,b], then IaY(x) is
a continuous interval function at any p € [a,b].

Proof: Suppose that VY fc,d], and take, as usual,

fa,b] =

(6.16) ]vv[a'bll = max{|c|,|a[},

hich is finite b is. < < -
whi is finite by hypothesis For a<p< b, a<x<p, Y[x,p] c VY[a'b] ex

ists such that

p X -
(6.17) £Y(x)dx = [y(t)at + wilx,pl) ¥,

a

by Theorems 6.3 and 6.4; likewise, an interval Y c VY exists such that
[Plx] [a'b]

x p -
(6.18) Jrat = fy(x)ax + w(ix,p}) ¥
a a (p,x]

for p < x < b. Given any ¢ > 0, for § = e/lvy[a,b]" the endpoints of I_Y(p) ;
thus differ from the endpoints of IaY(x) by less than ¢ for Ix - p] < §. Conti-
nuity of IaY(x) from the right at x = a and from the left at x = b is obtained
from (6.18) and (6.17), respectively, as IaY(a) = 0 by Theorem 6.4. QED.

Indefinite integrals also exhibit a type of differentiability if the limits

lim 1 lim =
. 'Y = ———— =
(6.19) I'Y(x) ptx w(ip , X1 IpY(x) ptx Y[p,x] ,
and E
lim 1 lim =
1 - ———— =
(6.20) LY = e 1% (x) atx Yixual
exist and are equal, where Y and Y are the intervals defined in Theoren ;
[p,x] (x.q]

6.4, and x lies interior to the interval of definition [a,b) of Y. (One-sided

derivatives at x = a and X = b are defined by (6.20) and (6.19), respectively.)

Definition 6.3. If the limits I:Y(x) and I;Y(x) exist and are equal, then

-20-
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(6.21) LY = IIY(x) = T!Y(x)
is called the derivative of the indefinite integral of Y at x.

The following thoorem gives a condition under which the derivative of an
indotinite‘interval integral is equal to its integrand.

Theorem G.6, If Y is & continuous interval function on [a,b), then its in-
dofinlte integral is differentiable, and

LY =Y(x), a <x<b,
(6.22)
I¥(a) = ¥Y(a), I'Y¥(b) = Y(b),

Proof: Let, for exampla, = [z(p) ,;(p)] for p < x. Considering the

Y[Plxl
upper endpoint function y of Y as an interval function, it follows from (4.31),

(3.25), and (6.14) that z € ;}p As ;'Ll continuous if ¥ is a continuous in-

Ix]'
terval function,

lim

V; lim ~
pix (p/x)

(6.23) w y(x) = pAxX z(p).

gimilarly, ;i: z(p) = y(x), so that I'Y(x) exists, and

(6.24) I'Y(x) = ¥(x), a < x < b,

In tho same way, one has
(6.25) ILY(x) = Y(x), a <x <D,
which establishes (6.22). QED.

7. Relationships between interval, Riemann, and Lebesgue integrals of real

functions. Ordinarily, no distinction will be mady between a real) function y and
the corresponding degenerate interval function (y] = (y,y]) having equal upper and
lower endpoint functions., It is convenient, however, to distinguish between pos-
sible integrals of y over an interval X = [a,b]. The notation

' b b b
(7.1) [y(xyax, (L) [y(x)ax, (R)[y(x)dx,

a a a

will be used to denote respectively the interval integral of‘y as a degenerate
interval function (which integral always exists), the Lebesgue integral of y if

y in Lebesgue integrable over (a,b], and finally, the Riemann integral of y if

——— =2l=- ‘ .
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Remark 7.1, The integral of a dogenerate interval function y is a degener-

X,

ate interval, that is,

b

(7.2) fy(x)dx = [r,r],
a

if and only if the roal function y is Riemann integrable over (a,b], so that
‘ b
(7.3) .. r= (R y(x)dx.
a

éhis follows directly from Remark 6.3 and the definition (6.7) of the Rie-

" mann integral.

Thus, one ordinarily expects an interval integration, even of a single func~
tion, to result in a nondegenerate interval. For example, if xp is the charac~
teristic function of the rationals, that is,

xp(x) = 1 for x rational,

(7.4) i

xp(x) = 0 for x irrational, E
then ;
(7.5) .

fxp(x)dx = [0, 1],
0

as is well-known. On the other hand, some nondegenerate interval functions have

degenerate interval integrals. Consider the function Y defined by

R LR R T

[ o, 0<x < L
(0,1}, x'%"r :
1 2
(7.6) Y(x) = 1, '5' <X < '3'r
2
{1,21, X = gl
2
- 2, 3’< xil’ 1

%

i.e., ¥ is an interval step-function, which includes the "risers” as well as thof

"treads",  For this function,

. 1
(7.7 - fe(xydx = [1,11,
0
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ay the lower and uppor boundary functions of Y have cqual (Riemann) integrals.

Any interval function Y may be interproted, of course, as a set of functions,
thqt is,
(7.8) Y= {y|y(x) <y(x) <y(x), asx<bl,
If Y is degenerate, then the sct (7.8) consists of only the single function y =
Y =-;~ Otherwise, Y.will contain a number of functions, among which there may
be subscts with certain distinguishing properties (continuity, differentiability,
monotonicity, etc.). For the discussion of integration, the following subsets
of functions will be singled out for special mention.

Definition 7.1. If Y is an interval function on {a,b], then the set of

Lebesgue (Riemann) integrable functions y € Y will be called the lLebesjue (Rie~

mann) core of Y, and will be denoted by C (¥) (C (¥)).

One has CR(Y) c CL(Y) always, but these sets may, of course, be empty. For
example, if M is a subset of [0,1l] which is not measurable in the sense of Lebesgue,
then its characteristic function Xy is a degenerate interval function with an emp-
ty Lebesgue {and hence Riemann) core. The charaéteristic function xp of the ra-
tionals considered earlier (see (7.4)) provides an example of a degenerate inter-
val function with an empty Riemann core, but a nonempty Lebesgue core (the func=-
tion X, itself),

Definition 7.2. The value v(C (Y)) (v(cR(Y))) of the Lebesgue (Riemann) core
of Y on [a,b)'is defined by

b
{ v(CL(Y)) = {r|rs= (L)£y(x)dx, y € CL(Y)},
(7.9) L
vic (1) = {r|r= (R)ja‘y(x)dx, y €c (0},
respectively, providgd that the indicated cores of Y are nonempty.
Fach get V(CL(Y)) and v(CR(Y)), when nonempty, are convex, that is, if one

1

r2]. This is because if Yy has integral r and Y, has integral Ty then the

functions Yy = ¥y + 9(y2 - yl) are all integrable for 0 < 6 < 1, and have

contains values rl, Ty with r, < rz, then it contains the entire interval [rl,



inteqgrals equal to r, = rl + O(r2 - rl), 0«01, which is just another cx-

pression for the interval [rl ,rz). As a matter of fact, the theory of Lebesgue

-integration [ 3] leads to the conclusion that

(7.10) IL(Y) = v(cL(v)),

if it exists, is a closed interval, which will be called the Lebesque subintcr-

!gl of the interval integral (6.l) of Y over [a,bl. The set v(CR(Y)), on the
other hand, is not necessarily closed. This is considered to be a defect of Ric-
ﬁapgwintegration,'and led to the construction of the theory of Lebesgue‘integra-
tion. However, as v(CR(Y)) is convex, then its closure,

(7.11) IR(Y) = V(CR(Y))

is a closed interval which, if it exists, will be called the Riemann subinterval

of the interval integral of Y over [a,b].

The purpose of the introduction of the intervals (7.10) and (7.11) is to
provide some quantitative information about the Lebesgue and Riemann cores of an
interval function Y which measures its "integrability" in a certain fashion. 1In
the metric topology for intervals ([5), [6]), the distance between intervals
[a,b] and [c,d] is defined to be

(7.12) -~ .+ d(fa,bl,[c,d]) = max{|a - c|, |b - d]|}. ‘

. (In the extended real number system, rule (2.7) (x) is used to resolve any inde-

terminant forms entering into (7.12).)
Definition 7.3. For

. b
(7.13) I(Y) = [y(x)dx,
a

if tﬁe Riemann core CR(Y) of Y is nonempty, then

(7.14) p(Y) = d(IR(Y) s 1(Y))

ig called the Riemann gap of the interval function Y on [a,h]; similarly, if
CL(YT is nonempty, then

(7.15) A(Y) = d(IL(Y) » T(Y))

-24- I
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is called the Lebesgue gap of Y on (a,b].

Remark 7.2. One has
(7.16) AY) < o(Y)
in case both numbers are defined.

This follows from the inclusion CR(Y) c CL(Y) . If only one of the numbers
A(Y), p(Y) is defined, it will be A(Y) by the same token. For the example (7.4)
of the degenerate interval function xp, one has )\(xp) = 1, and p(xp) is not de-
fined,

Theorem 7.1. 1If the endpoint functions y, ; are Riemann integrable over

[a,b], then A(Y) = 0; if A(Y) = 0, then y, ; are Lebesgue integrable, and
b b b

(7.17) JY(xdx = (L) fyx)ax , (L) fy(x)ax].
a a a

Proof: By Remark 6.3, the Riemann integrability of y, ;means that p(Y) =0,
hence A(Y) = 0 by (7.16). Conversely, if A(Y) = 0, then the integral I(Y) is
finite, and bounded sequences {y“}, {;n} < Y of Lebesgue integrable functions may
be found which converge to y and ;, respectively. It follows ([3 ], p. 8l1) that

y and ; are Lebesgue integrable on [a,b], and, as

lim

n-o

b
(7.18) (L) fy_(x)dx = [ y(x)dx,
a

one has that
b
(7.19) Ly(xax = (1) fy(x)ax,
a

and similarly for y, whence (7.17). QED.
Remark 7.3. If y and ; are Lebesgue integrable on [a,b], then
b b
(7.20) A = max{ (L) {y_(x)dx - [(xax, fy(x)dax - (L) {;(x)dx}.
This is true because y is the "smallest" Lebesgue integrable function con-
tained in the interval function Y, and ; the "largest" in the sense that for each

function y € CL(Y), one has y(x) < y(x) <y(x), a<x<b., Thus,

25~




b b
(7.21) vic (1) = (L) fy(x)ax, (L) fy(x)dx],
a a

from which (7.20) follows by (7.12). ”

8. Improper integrals. In ordinary integration theory, an integral

(8.1) r= fs(x)dx

a
is said to be improper if the interval of integration {a,b] is infinite, or if
its integrand is unbounded on X = [a,b] in the sense that given any M > 0, there
exists a nondegenerate subinterval xM of X such that |y(x) | > M for x € X, Sup-
posing that y is unbounded at x = a, that is, xM = [a,a)l, a = a(M) > a, and in-

tegrable (in the sense of Riemann) on [a, b], one defines the improper Riemann

integral of y over ([a,b] to be

b lim b
(8.2) (IR fy(x)ax = % (R) fy(x)ax,
a o

provided this limit exists (in the extended real number system; infinite values
will be accepted here for improper integrals). Similarly, if y is Riemann in-

tegrable over [a,b] for b > a finite, then

lim

(8.3) (IR)£y(x)dx = .

b
(R) [y (x)dx
a

by definition, again if the indicated limit exists.

The definition of interval integrals given in §6 yields values of cértain
improper Riemann integrals if the integrand y is interpreted to be the degenerate
interval function [y, y], for example,

1

(a) I x-l/3dx = [% e ],
0
1 -1
(8.4) (b) [ x fax = [», =],
(0]
(c) | (c<e™)ax = [-=, -1].
0

In the above, the value of the improper Riemann integral appears as the finite
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endpoint in each of the intervals (8.4)(a) and (8.4) (c). The indegenerate in-

terval (8.4) (b) indicates correctly that the corresponding improper Riemann in-

- tegral is divergent.

Definition 8.1. An interval integral (6.1) is said to be infinite if its

vaiugr;s one of the'indegenerate intervals [-» , =] or (™, o], indeterﬁinanf if
it is equal to R = [~» , w], or improper if its value is a semi-infinite inter-
Qal (a, =] or [~«,Db]; otherwise, it is said to be finite.

The relationship between improper interval and Riemann integrals will now
be considered for the cases (8.2) and (8.3), as illustrated by (8.4) (a) and
(8.4) (c), réSpectively.

Suppose that y(x) is unbounded above at x = a. Thus, every Darboux sum

(4.7) will contain a term of the form (after elimination of nondistinct partition

points, if necessary),

(8.5) w(Xl)'Vyl = [w(xl)'cl , ],

where-xl = [a fxil,'and- ‘ . .
- inf

(8.6) c, = xEXl{y(x)}.

The interval integral of y will hence either be improper or infinite. The fol-
lowing theorem is illustrated by (8.4) (a).

Theorem 8.1. Suppose that y is Riemann integrable over [a,b] for a<a < b,

and the indefinite interval integral Iay(a) satisfies

' o
lim lim
(8.7) ore T (@) = £y(x)dx = [0, =];

then, the improper Riemann integral (8.2) of y over [a,b] exists, and

b b
(8.8) fy(x)ax = [(IR) [y(x)dx , =].
a a

Proof: One has

b o b
(8.9) fy(x)dx = [y(x)ax + [y(x)ax,
'. a a o

by Theorem 6.3, and, by Remark 6.3,
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b b b . b
(8.10) fy(x)dx = [(R)fy(x)dx ,(R)fy(x)dx] = (R)fy(x)dx,
o ] a ]

as degenerate intervals may be identified with the corresponding real numbers.
Taking the limit as ata of both sides of (8.9) gives (8.8). QED.
In the case of integration over an infinite interval, say [a, #], suppose,

for example, that y is negative, but that y(x)*0 as x ~ », as in (8.4)(c). Then,

each Darboux sum (4.7) will correspond to a partition An with xn_1 finite, x =

+»=, and as
(8.11) Vyn = [c,0],

inf . .
where ¢ = xé; {y(x)} < o0, w(Xn) = w([xn_l s ®]) = o, then each will contain a term

n
equal to
(8.12) w(xn)-Vyn = [~=,0],
by rules (2.1)(iii) and (2.1)(ix). The situation illustrated by the example
(8.4) (c) is a case of the following result.
Theorem 8.2. Suppose that y is Riemann integrable over the finite interval

[a,b] for each b > a, and the indefinite interval integral Imy(b) satisfies

(8.13) P 1y (b) = (==, 01

then, the improper Riemann integral (8.3) of y over [a, »] exists, and
o0 [ od

(8.14) fy(x)ax = [-=, (IR) [y(x)dx].
a a

Proof: This follows exactly in the same way as Theorem 8.1 by writing

L b
(8.15) Jyixrax = [y(x)dax + [y(x)ax,
a a b

and noting that

b b
(8.16) fy(x)ax = (R) fy(x)dx
a a

as a degenerate interval. QED.

Other cases of improper interval and Riemann integrals may be treated in

- 28&




...,,.,
= TR
Beo

a similar fashion.

9. Computational implications of the theory. One purpose of the theory of 1

integration of interval functions developed above is to provide a theoretical
framework for the investigation of the numerical sclution of linear and nonlinear

integral equations such as
b

(9.1) u(x) = (R [g(x,t,u(x),ult))dt
a

by interval methods. One approach along these lines is to reformulate (9.l1) as
an interval equation,

(9.2) U= T(U),

for an interval function U which contains the desired solution u of the integral
equation (9.1). Under certain conditions, the operator T will be a contraction
mapping ([1l], ([2]), and the iteration process

(9.3) Un+1

- T(Un), n=0,1,2,...
will converge to give a solution of (9.2). To implement this for the integral
equation (9.1), one forms the interval functions Gn = [gn ,;;], n=0,1,2,...,

where

g, (x,t) = inf{g(x,t,un(x),Un(t))},

R,

(9.4)
;;(x,t) = sup{g(x,t,Un(x),Un(t))},

and then (9.3) becomes
b

(9.5) U g0 = {cn(x,c,un(x).un(t))dt

sttt

in terms of interval integration. Of course, if gn(x,t) and ;;(x,t) are Riemann

integrable in t, then the endpoint functions a1 Ynel of Un+1 are obtained by

Riemann integration. From a numerical standpoint, in this case approximations

u* _ <u utt >y
J n+l — =n+l’ “n+l = “n+d

? number of methods, including the use of Darboux sums as defined in §4 ([7], with

may be obtained to prescribed accuracy by any one of a
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higher-order accuracy being obtainable from integration of Taylor polynamial ap-

proximations to the endpoint functions, or by other rules of numerical integration
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({4}, (5], [6), {9]), provided, of course, that the endpoint functions are smooth

enough.

A particularly simple case occurs if g is monotone in the sense that

gn(x,t) = g(x,t,gn(x),gn(t)),
(9.6)
gn(x,t) = g(x,t.un(x).un(t)).

that is, the endpoint functions of Un transform into the endpoint functions of Gn'
and furthermore, g transforms Riemann integrable functions into Riemann integra-

ble functions. Here, the iteration (9.5) can be carried out using only the end-

point functions if one starts with an interval U [go ,Eb] which has Riemann

0=

integrable endpoint functions. An example of this approach to the solution of a

nonlinear integral equation was given by Rall (7}, in which step~-functions were

used as endpoint functions (and T was approximated by a numerical operator S such

that T € 8§). In many cases, continuous solutions u are sought for integral egua-

tions (9.1), which gives rise to the following concept.

Definition 9.1. The continuous core CC(U) of an interval function U on {a,b])

is defined to be the set of continuous functions y contained in U, that is

(9.7) Cotu) = {y |y € uncla,bl}.

Evidently, CC(U) c.cR(U), the Riemann core of U defined earlier.
If g is a continuous function of its arguments, and the interval operator
T is such that the continuous function v defined by
b
(9.8) vix) = (R)[glx,t,u(x),ult))dt
a
belongs to T(U) for u € CC(U), then it follows that each continuous solution u
of (9.1) will belong to CC(U) if U is a fixed interval of T, that is, if (9.2)

holds. Thus, it is tempting to try to compute the sequence (9.3) using only

Cc(Un), where Uo is taken to have continuous endpoint functions. However, in

general, the functions gl(x,t) and Ei(x,t) obtained from (9.4) will be only semi-~

continuous if Uo is replaced by CC(UO), and these so-called L- and U-functions

may not even be Riemann integrable [3]. The theory of interval integration
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developed in this paper resolves this difficulty by allowing computation with
the interval functions Un directly, regardless of the character of their endpoint
functions.

Remark 9.1, If u € CC(UO) is a solution of (9.1), then for the sequence
(9.3) constructed by the operations (9.4) and the interval integration (9.5), it
follows from the condition (9.8) for continuous g that

(9-9) u € cc(un)' n= 0,1,2,--.3

furthermore, for

(9.10) U= AU,
n=l

one has u € CC(U).

Remark 9.2. In the favorable case that Un+ C'Un' n=20,1,2,..., and

1

lim sup

(9.11) e [a,b]

{w(Untx))} =0,

one has that U = [u,u] = u defined by (9.10) satisfies the integral equation
(9.1), as a degenerate interval integral of a degenerate interval function is
necessarily a Riemann integral; furthermore, one has error bounds of the form

(9.12) g (x) <ulx) culx), a<xs<b,

for n = 0,1,2,....
Further applications of interval integration to the solution of integral

equations will be investigated in subsequent papers.
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