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ABSTRACT
—

Consideration is given to the means by which appropriate
diagnostic checking functions of the data can be developed to
guard against feared model discrepancies. A formal basis for
the selectiontof a function is given for situations where the
feared‘jnadequacy can be characterized by a discrepancy para-
meter E;uﬂwhich takes a (possible inappropriate) value of gﬂffa;‘Mjﬂ-
in the model., The relationship of this checking function with
the posterior distribution obtained from an elaborated
("robustified") model which allows for the discrepancy parameter
to be estimated is discussed. The nature of the diagnostic check
is briefly described for problems relating to transformation of
the dependent variable and to serial correlation; while a more
thorough investigation of the checking function is given for
problems relating to outlying observations and to transformation
of predictor variables, Several examples are given to illustrate
these ideas.)?
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SIGNIFICANCE AND EXPLANATION

OO ey, s -

' Statistical metnods are useful as tools in scientific model-
building investigations. In particular, at each stage of an investi-
gation it is of interest to not only estimate the parameters of the
model being postulated at that time, but to also check the fitted
model in its relation to the data with the intent to reveal its in-
adequacies., if any.

In this paper, a diagnostic checking function is developed for
the latter purpose above., This diagnostic check is useful in situa-
tions where a feared model inadequacy can be characterized by a so-
called discrepancy parameter 3 which may have a true value differ-
ent from the value Eog assumed by the current model. The relation-
ship of using this checking function to using a broader model which

allows 2 to be estimated (rather than assuming that g = BO) is

explored.
: Examples are discussed in which 8 measures the need to allow
for outliers, the need for data transformation, and the need to

allow for serial correlation of errors.
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The responsibility “or the wording and views expressed in this
gescriptive summary lies with MRC, and not with the authors of
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THE DUALITY OF DIAGMNOSTIC CHECKING AND ROBUSTIFICATIOHN
IN MODEL BUILDING: SOME COWNSIDERATIONS AND EXAMPLES

Steven P. Bailey and George E. P. Box

Sk i . "

1. Introduction.

11 "“The advancement of statistical methods to the present
‘ state has depended critically upon the interaction of mathe-
matics with real data, and we cannot but benefit if more
attention is given to the characteristics of the real world
than has been done in recent decades." This view, expressed
by Stigler (1977), is characteristic of the recent renewal
of interest in finding out what the real world is really
Tike. (See also Box, 1979d.)

In this spirit, Chen and Box (1979a,b) recently con-

?i ' iducted a study of real data. In their investigation of nine
data sets, they used the contaminated exponential power dis-
tribution in modeling the experimental errors, and the results
suggest, in their words, that "heavy tailed distributions are
sometimes caused by inhomogeneity in mean and variance such
as might be encountered early in an expgriment because of
start-up difficulties. After such inhomogeneity has been
allowed for, the observations seem to be adequately repre-
sented by a contaminated normal distribution. Thus, for a
carefully planned experiment, a contaminated normal distri-
bution is 1ikely to be appropriate.”

Thus a particular combinatfon of robustification and
difagnostic checking techniques are being recommended as

Sponsored by the United States Army under Contract hos. DAAGC3-
75-C-0024 ana DAAG23-80-C-0041.

-t QR PTA TS T MR e T WU N B eyt v




appropriate for modeling data from a well-planned investi-
gation, Specifically, the investigator who wishes to imple-
ment the above suggestions can do so by making provisions in
the model for the possibility of discrepant observations {and
thereby robustifying against outliers) while tentatively ex-
cluding from the model additional provisions for the pos-
sibility of non-normal kurtosis (and thereby being content

to later perform a diagnostic check to assess whether or

not this exclusion is warranted).

0f course, the experienced investigator will be aware
of the fact that there are numerous other potential problems
besides the two mentioned above which need to be considered
when deciding upon what to include in a model versus what
to tentatively omit from a model. Of particular importance
are questions concerning the possibility of serjal cor-
relation and the need to transform the response and/or
predictor variables,

Since it is impossible to attempt to provide for all
possible contingencies when choosing a model, it is
important for the investigator to have available appropriate
diagnostic checking procedures which are capable of detecting
when deficiencies, such as the ones mentioned above, exist in
the model. A general method for developing such procedures

will now be considered.
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2. A formal basis for the selection of a diagnostic
checking function.

As discussed by Box (1979b), criticism of a tentative
model M in the 1ight of the observed data Yd is often
done informally (for example, by examining residuals),
and yet has an underlying formal justification in that
any peculiar aspect of Y4 which may cause the investigator
to doubt the adequacy of M will correspond to an appropriate
summary measuré g(zd) of that aspect which is judged
unusual when assessed against its predictive reference
distribution. p(g(z){M).

A formal basis for the selection of a checking function
g(z) has recently been suggested by Box (1979¢) in the con-
text of considering any particular model departure that can
be represented in terms of a so-called discrepancy parameter
B . Letting BO denote the assumed value of B8 for the

model M , this proposed checking function is given by

]
9.{y) = — an p(y|B) , (1)
B" 33 ~ BaB
0

where p(ng) denotes the conditional predictive distribution
for a given chofce of 8 (and hence p(gIBO) is the predic-
tive distribution appropriate for the model M ).

One justification for the appropriateness of (1) as
a dfagnostic checking function can be developed by noting

the relationship between the conditional predictive




distribution p(z[s) and the pseudo-likelihood function
Pg(BIZ) . As used by Box (1979a: see also Bailey and Box, 1%
the pseudo-likelihood arises when, instead of setting B

at a specified value Bo for the model, the discrepancy
parameter is assessed a prior distribution p(8) and esti-

mated along with the other model parameters. Defined by

p(8ly)

, (2)
p(g)

pz(ﬁlg)

the pseudo-likelihaod differs for differing choices of p(g)
only by a multiplicative constant which depends on Y » and
hence it represents information about @8 contained in the
data. It is convenient to consider for definiteness a
standardized form of (2) ; namely, the posterior distribu-
tion pu(B'X) wHich results from using a uniform prior

Pu(8) . For this choice it then follows from

p(sly) = plylslp(s) (3)

that

P (Bly) = plyls) . (4)

Hence (1) can be rewritten




galy) = %g enop (8ly) - - (5)
so that this predictive check is seen to be measuring an
1htuitive1y interesting quantity; namely, the instantaneous
rate of change of the logarithm of the pseudo-likelihood
(or "log pseudo-likelihood"”, for short) at the "ideal"
value 84 .

The interpretation of the predictive check (1) will
depend upon the nature of the discrepancy parameter B8
under study. Two different situations can occur.

First, consider the case where it makes sense to taik
about possible £ values over a wide range, with the "ideal"
value BO somewhere in the middle of this range. Thus, if
the actual data observed, Yq give rise to a value

gg(yq) which is small in absolute value, then the appropri-

ateness of an assumption B8 = 8 is not seriously questioned.

0
However, an unusually large value of '95(¥d)| » &8s assessed

by the predictive distribution p(gB(xd)IBO) , will cast
doubt on the validity of the 8 = BO model assumption,
Specifically, a large positive value of gs(ld) will suggest
that values of B8 that are larger than Bo may be more
reasonable to consider, whereas a large negative value of
Qe(gd) will suggest that smaller values of B8 than the
{deal value Bo may be more appropriate. Hence, the use of

this predictive check cbrresponds, in a sampling theory
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framework, to a hypothesis test of B = 30 against a two-

sided alternative. Several examples will be given later in
this section.
Now, consider the casé” where it only makes sense to

talk about B values for which B8 > B Here, the pre-

0
dictive check (1) can be viewed as a sampling theory hypo-

thesis test of 8 = BO against the one-sided alternative
corresponding to larger values of 8 . (An example relevant
to this case will be presented in Section 3.)

8(X) will lend more support to a model
assumption of B = Bo than will larger values of gB(X) .

smaller values of g

0f course a convenient reference value to compare gB(g)

to in this case is zero since, from the earlier argument,
a value gs(gd) > 0 will indicate that the log pseudo-
likelihood will initially increase as B 1is allowed to
increase from B84, while a value gﬁ(ld) < 0 will indicate
an initial decrease in pu(Blg) when B8 is increased

from BO

Some applications of the proposed checking function,.

Box (1979c) illustrates the use of the checking
function (1) by applying it in two particular situations

which we now briefly discuss.

*An analogous argument can, of course, be given for
the case where B8 < 8g by redefining the discrepancy para-
meter to be the negative of what it presently is and then
using the above development.




Suppose that the investigator tentatively fits, to the
n-dimensional vector y = (yy,...,y,)' of untransformed

observations, the normal linear model - Nn(xg,czl) s, where

@ 1is p-dimensional. However, suppose further that he wishes
. to perform a diagnostic check which would indicate whether or
not it would be more appropriate to fit the same model to

some suitable transformation of the observations. In particu-

lar, if the family of transformations

)y
fu ” x40
(A) A u=]b )n (6)
u Ln y s A #0

discussed by Box and Cox (1964) 1is considered, then a diag-
nostic checking function g;(y) of the form (1) can be

used, where X5 =1 1is the value of X for the tentative

model.
For this situation, Box (1979c) derives the conditional

predictive distribution

p(!lk) - 9v(X-1)[{(X)-R {(X)]-kv

R = I -Xx(x'\)"'x* , v=n-p ,
where y 1is the geometric mean of the untransformed

¥
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observations. Upon taking the logarithm of (7) , differenti-
ating with respect to A , and evaluating this derivative at

Ag = 1, he finds the resulting diagnostic checking function

to be
Y'R y
g, (y) = = (8)
s
where
vs? = y'Ry ,

<

Y = yu[1 - (M) , u=1,...,n.
Y

Thus, the predictive check (8) seeks a correlation
between the residusls from fitting y to Nn(Xg,GZI)
and the residuals from fitting Y to N,(X8,0%I) ,
since the two residual vectors are given by Ry and RY ,
respectively. If a strong correlation is found, then this
indicates the need for transformation. Now, by
recalling the earlier discussion pertaining to the general
predictive check gs(z) in its form (5) , it is seen that
a strong positive correlation between these two sets of re-
sfiduals will indicate that values of A > ko = 1 are worthy
of consideration; whereas a strong negative correlation

between the two residual sets is seen to indicate that

values of A < Xo = 1 may be more appropriate. An example




OV

illustrating the application of this diagnostic check will
be given in Section 4.

Note that this predictive check can be conducted in
informal manner by simply plotting the two sets of residuals
against each other. Note also the relationship of this check
to the somewhat similar checks proposed by Tukey (1949) and
by Andrews (1971). Specifica]ly, by defining Zu(T) = 93
Zu(A)

and = §u &n 9u s where the 9u 's . are the predicted

values from a fit of y to Nn(xe,ozl) , it is then seen

~

that Tukey's transformable nonadditivity check seeks a cor-

relation between the residuals from a fit of the yu 's to

the model and the residuals from a fit of the Zu(T) ‘s to

the same model. Similarly, Andrews' check is concerned with

the correlation between the residuals from fitting the Yy ‘s

and those from fitting the Zu(A) 's . i

N

We now turn to a second illustration of the applica-

bility of the general predictive check (1). Box (1979c)
considers the situation in which the investigator tentatively ‘
assumes the independence of the Yy 's but wishes to per-
form a diagnostic check relative to the possible presence
of first-order autoregressive behavior in the error structure.
(See, for example, Pallesen, 1978,)

We shall not go through the details of deriving this result
here. It turns out that the diagnostic checking function (1).

B i S
o - Py

s a multiple of the lag one sample autocorrelation coefficient,

-9
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upon which the familiar test df Durbin and Watson (1950,
1951) is based. As was the case with the predictive check
corresponding to the need for transformation, this check for
serial correlation can, if preferred, be performed in an
informal manner through residual plotting (in this case,

by plotting the ull residual versus the (u-1)SY residual
for u = 2,...,n).

3. . diagnostic check for discrepant observations.

We now illustrate the nature of the checking function

(V) for the situation described by Box and Tiao (1968), where

L _

each observation has a probability - of being discrepant in
some specific manner. The predictive distribution conditional ?
on a specific choice of is expressed in terms of the n+] .
predictive distributions conditional on specific choices of the .
number of outliers r as 1
Sy AT )
, r=0 N

(Bailey ana Lo, 19005, <o that

n

g 0" I eyl

2
-— 9 =
=5 11 plyle)

n
(M o (1-a)" Tp(y|r)
r=0 T ~
n-1 . .
—n(1-a)n-1p(x'r'0)+{ :][(n'jB)IJ ](] J)n-J-]J(;)p(X r=J)}+nQn- p(ylr:n)
- r= ~ *
n
2 (Ma"(1-2)" oy r) :
r=0 (]0)
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Thus, the checking function ga(y). corresponding to

departures from the ideal situation where ag = 0 , becomes

-n p(ylr=0)+n p(ylr=1) plylr=1)
9,(y) = = n -1 = n(hy-1)
p(ylr=0) p(ylr=0)
(11)
with h. = E(_XI_":]_).
7 plylr=0)

As a first application of this checking function, con-
sider the analysis of Darwin's data presented in Bailey and Box
(1980), which uses a "mistaken sign" model for the bad observa-
tions. Using the value h] = 2,10 from Table 5 of that paper
results in g,(y) = 15(2.10 - 1) = 1€.5. Recalling again the

interpretation of this diagnostic check that is suggested by (5),
this value thus indicates that :n pu(wiz) will have an initial
slcpe of 16.5 at = 9= 0 (inspection of pu(xﬁx) as given in
Figure 10a of that paper bears this out) and hence indicates the
relative implausibility of an assuuption that . = 0 (that is, an
assumption that, with probability one, none of the 15 observations
has an incorrect sign).

Now, r = 0 and r = 1 are the only cases which enter
into the calculation of g'(y). Tor convenience, we introduce

the following notation, Let the subscript i" denote those

quantities which pertain to an assumption that

~]ll=-

AR T
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the ith observation is bad and all other observations are
good. Then, for example, 2; would be a vector of zeroes, ex-
cept for the jth element, which would equal one and would thus ]

single out the ith sbservation as being discrepant. Also, let

i=Q0 correspond to the assumption that no observations are

discrepant.

s b 8 e

Returning, then, to the consideration of ga(x), note that

n
plylr=1) = %— iz]p(glgi), (12)

so that the predictive check (11) can be rewritten

n

9 (y) = il]91’a(g) , (13)
(ylzg)

where 9i,ql¥) = B-gl‘ﬂ—- (14)
- plylz,)

Thus (13) expresses the checking function ga(!) as a sum-
mation of n individual checking functions, the ith of
which compares the predictive ratio of the hypotheses "only
Y4 discrepant" and "no observations discrepant" to unity.

It is of interest to consider the nature of this diag-
nostic check for the situation described in Bailey and Box (1930)
where p(glg.a‘.gf) is Nn(x1§‘°221) for 1 =0,1,...,n, Usina
their results,it follows that (14) reduces to

X -1 2 -
\r[:mx‘ AN (f-i).‘ 5-1 s

|
Lo

9, ,(y) = (15)

-

' e =) : < i
ot Yo't Yy so U
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where

o
"

length of parameter vector 8,

v = n-p,
TR T e (18)
= (52X Xy

tD)>
-t N

~ . -1 ~
(y-X;85) 23~ (y-X;84).

/

In particular, if it is assumed that a bad observation is
one having a standard deviation which is k times as large as the

common standard deviation of all good observations (see, for ¥

example, Box and Tiao, 1968), then (15) becomes

1 ) V
| XX =¢x.x."|7] "2 c, 2 )
9; ,a(y) = T]{[i 00 =i~ 1+ v+1 riz -1 (17)

e e afh A ek N

lxo'xgl

'?

where . ‘

/ _ .
] X; Xo foralli=1, ..., n ;
' Lth ;
& Xy = 17 row of X,, ,
g b= 1--32 , ,  (1g) !
| ¢g = (5Da0-0xy" (X'Xg)'xy), j
| Y% '8 q
§i Y / !
X '
-
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For the special case, with p=1, where 6 is a Tocation
parameter, and thus X0=1, it follows that (17) reduces to

1
(1) = % R, (19)

where
n-1

R +ﬁ%r"—;2ri2)7_. (20)

P
"

Hence, from (13) , the predictive checking function is

]
—
—
l:

-
2
=]

"

9,(y) = ¢ (21)

where
n
R= L R;. - (22)

Note that the Ri's and R quantities.considered by Chen and Box (1979a)
in their investigation of the weighting structure of the posterior
mean of a location parameter for a contaminated normal population.
Specifically, each Ri is proportional to the inverse of the t-ordinate
corresponding to the standardized residual rs of the "bad" observation,
with ry defined in (16); so that if ry is large, due to the ith
observation truly being discrepant, then Ri and thus R will also be
large, yielding an unusually large value of the predictive checking
function ga(x), as given by (2Z1).

We now turn to a specific example which illustrates the practical

use of the diagnostic checks discussed in these last two sections.
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4. An example: John's 23 data.

John (1978) gives data from a 2° factorial experiment designed
to study the effects of five factors on the strength of a type of
metal coating ma;erial, with abrasion loss as the measured response.
The exbériment was run in two blocks, confounding the highest order
interaction with the bperator effect, as two different workers applied
the coating.

The experimental design is set out in Table 13 , where X1=Xg
and Xg denote, respectively, the five factors under study and the
blocking factor, and where for each X; the coding is such that the
two factor levels used in the experiment correspond to xi=-1 and
xi=1. The data generated from this design are given in Table ib,

along with the corresponding predicted values and residuals from

fitting the data to the model

5 [ H
Y, =04+t 0.x, +L T 8..X%, X. +8.%. +e 3 u=l, ..., 32, ( 23)
u 0 i=1 U5y j=it] iJhiu"ju 676U “u

th

where Xiu denotes the value of x, corresponding to the u~" observation.

i
These residuals and predicted values are plotted against each
other in Figure la, and inspection of this plot shows two possibly
deviant observations (y10 and yg). John performs a significance test
for two outliers, based upon the work of John and Draper (1978), and
finds "no evidence of any outliers being present". However, he tempers

this conclusion by noting that a similar significance test for just

one outlier does give indication that Y10 is an outlier.

e . . O TR
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1 FIGURE 1. RESIDUAL PLOTS FOR JOHN'S 2s DATA (UNTRANSFORMED)
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When applying the predictive check (11) to this example,
using k=5, it is found that h1=1.90 (and, incidentally, h2=2.03),
so that ga(x) = 32[1.90-1] = 28.8. Note, in particular, that the
value of this checking function is positive, which indicates that
the log pseudo-likelihood for o will initially increase as a is

allowed to increase from a0=0.

Thus this diagnostic check is giving some indication that

the basic model should be elaborated to allow for the possibility

SEORCEEE it R

of outlying observations. This can be done using the methodology

developed by Bailey and Box (1980), which entails specifying a prior

distribution for frequency o inwhichdiscrepant observations occur. However
for present purposeg, it will be sufficient to consider a sensitivity
analysis approach (Box and Tiao, 1968), whereby (i) an analysis of

the data is performed for each of a number of different fixed values

for a and (ii) these analyses are compared to assess how inferences

are affected by the choice of «.

Thus, consider the model (23) , where now the errors e, are
assumed to come from a contaminated normal distribution for which (i)
the nature of the contamination is an inflation of the variance by
a factor of k?=25 and (ii) the frequency of the contamination is given,
in percentages, by 100a%. The posterior means and posterior standard
deviations of the parameters in (23) , based upon the assumption just

given, are exhibited in Table 2 for various choices of a. Of course,
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TABLE 2. POSTERIOR MEANS AND STD. DEVIATIONS (IN PARENTHESES)

FOR 6's OF Mj; FOR JOHN'S 25 DATA (UNTRANSFORMED)
FOR VARIOUS VALUES OF a WITH k=S5.

;' a 0 .001 .005 .01l .025 .05 .10
3 8 ¢.38 4.36 4. 33 031 “.28 €t Y
0 ¢ N « 30 t .30 ¢ +303 C «29) ¢ .,28) ¢ .2
8 -.29 -.90 -.92 -.95 -1.¢0 -1.03 -1.05
1 ¢ .31 ( I .30 ( 3 ¢ .28) ( 27) ( «28)
8 s Y e o5 56 +56 . W87
2 ¢ I C .33 «C IO [QET.} C .29) ¢ .28) ¢ 273
e ‘071 '070 e,58 'obé ‘062 ‘oba '059
3 ¢ W30 ¢ .31 ¢ .3 ( 10 ¢ 293 i .22) {27
9 2.5% 2.48 24063 2.61 2.57 2.5S 245¢
4 ( 31D ¢ 30 t I ( .20 ( .29) ¢« .22 ¢ 2M
. 27 «28 30 .32 «35 ’ «37 19
5 < 3D ¢ <31 ¢ .30 « .30} ¢ #4290 . € .28) C 7Ty
e ‘06\" '.6‘ - 81 -.58 . -eS3 .50 .48
i 12 ¢ 1Y ¢ W31 C 30 C .20 ¢ .29 ¢ L.27) € W28
8 .16 .16 13 W22 .26 029 31

13 € .313 € .31 € <103 € L300 € 428} < .27) ¢ 26D

e wet3 -y b6 -0b7? LR A -aTe . -, 77 -,29
14 ¢ .31 ( .31 C <30 ¢ 2 ( .29 ¢ .27 (LY
0 Y -.16 -1 e -0s =03 -.01
15 ¢ .31 ¢ ) ¢ 506 ¢ o3 (23 C 27 C o28)
9 .15 - 1¢ -t -.2N “.23 .25 -.27
» 23 W31 ( «31) C 30 ¢ .20 (.29} ¢ .23 ¢« .27
f ) <29 o2 .32 1 37 39 oot
9 24 ¢ W3 0 W31 W30 € L300 € W29 ¢ W28 U LeYy
e Y B -y 3 .15 ‘o" ’021 ‘-23 °'25
25 ¢ iN ¢ 1) ¢ JI0) t .I® ( .29) ¢t .28) ¢ L21)
8 -.e0 -8 ~.te -Le =41 -39 -.3?
‘ 34 ( 31 ¢ .3 C W30 ¢ W3 ¢ W29 ¢ .28 C i
; e . «0S .04 033 waf? ~,03 -.03 -, 05
{ 35 ¢ WJID ¢ .30 ¢ 30 ¢ JIM ¢ .29) C 23 ¢ 2?7
’ 8 .24 .24 .27 .29 .32 e3¢ Y
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9 -2 -.00 .02 .35 Y 013 .15
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the a=0 column corresponds to an assumption that there are no
_discrepant observations. The other choices of a considered were
o« = .001, .005, .01, .025, .05 and .10.*

A study of how the posterior mean change as o increases
shows that there is no dramatic shift for any individual parameter.
However, when considered as a whole, these posterior means for the
elements of 8 are significantly affected by a change in a. This
is evident through a comparison of the posterior means using a=0
with those using a=.10, since it is seen that all p=17 posterior
means differ in these two cases by at least one unit in the first
decimal place.

Table 3a gives posterior probabilities of each Yy being
discrepant conditional on a fixed number of observations r being
discrepant. (Hence, these probabilities do no depend on the choice
of a.) For r=1 discrepant observation, o is seen to be approxi-
mately seven times as likely to be the bad observation as is Yg-
Furthermore, for r=2, Yg is approximately three times as likely to
be one of the 30 good observations as it is to be one of the two
bad observations, while Y10 is approximately five times as likely to

be one of the bad values as it is to be one of the good values.

*In carrying out these analyses as well as similar analyses later in
this chapter, it was further assumed that no more than two outliers
were present in the data. In view of the values of o considered,

this assumption is not unreasonable.
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TABLE 3.  CONDITIONAL POSTERIOR PROBABILITY THAT vy, IS
DISCREPANT (I.E., HAS VARIANCE INFLATED BY A FACTOR
k2 = 25) GIVEN THAT EXACTLY r OBSERVATIONS ARE
DISCREPANT: JOHN'S 25 DATA, USING M.

%Y1 -t&%y&ndlg,r==l)

n
qu[Z = Pr(yubadlg, r=2) = v-zl Pr(yu and yvbad Yr r=2)

(a) Untransformed (A=1) (b) Transformed (A =0)
| u %ﬂlxloo gd;xloo qd}XIOO Eﬂleoo
‘ 1 N80 U7 1.524 2.t 5%
2 054 20C¢.é 105?5 1:23’*
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& CE50 0810 2,435 4,756 |
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51 e537 2641 2.03% L.202
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; 27 $Seh 1,543 1.35¢ 2,870
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These findings seem to indicate that of these two observations,

which are candidates for being discrepant based on the residual

plot in Figure la , only Y10 is indicated as truly being discrepant.
Whereas some investigators might be content with the above

analysis of the data, as providéﬁ by the elaborated model which

takes into account the possibility of bad data values, other inves-

tigators might wonder if there were alternate modeling options that

should also be investigated. In particular, by noting that

/Yy

data through transformation of the response variable y is indicated.

Ymax! Ymin = 12.6/1.0, the potential for an improved explanationof the

Thus, consider again the model (23) with the standard
assumptions concerning the su's. The diagnostic checking function
(8) can be used to assess the need for transforming the yu's.

Informally, this involves observing the correlation between the

residuals from fitting the yu's to the model and the residuals
from fitting the Yu's to the model, wifh Yu defined by (3). These
two sets of residuals are given in Tables 1b and 1c¢ , respectively,
and they are plotted against each other in Figure 1b . Strong
negative correlation is noticed (specifically, the calculated cor-
relation is -.789), thus indicating the desirability to consider
transformations of the form yu(x), given in (), with k<ko=\.

It will therefore be beneficial to elaborate the basic
model to provide for this needed transformation. This can be done

using the method of Box and Cox (1964). (See also Box and Tiao, 1973).




Of particular interest will be the posterior distribution of A based
on a locally uniform prior for A. (Equivalently, this will be the
pseudo-1ikelihood function of A.) Figure 2 shows the posterior
distribution of X not only for the model (23) (hereafter referred

. (1)
to as Mz) with y,

substituted for yu,,of course, but also for a
constrained model M] which is strictly linear in the 6 input factors
X1=Xg (i.e., M1 excludes from M2 the ten terms corresponding to all
two factor interactions of factors 1-5). It is seen that both
pu(A|Z,M2) and pu(AIX,M]) strongly support the u§e of a logarithmic
transformation (A=0).

The constrained model M] is considered in addition to the
original model M2 because it is often the case that a suitable
transformation will not only result in the assumptions on the eu's
being more nearly satisfied but also will result in a simpler form
of the response function being appropriate. The specific assessment
of this aspect of transformation c¢an be achieved through the consider-
ation of Figure 3 , which is a plot* of F()\) versus A, where F(A) is
the F statistic appropriate for testing whether the 10 interaction
terms of M2 (that are not in M]) can be excluded in fitting the
transformed yu(k)'s. [This statistic, which has as a predictive
distribution the F distribution with 10 and 15 degrees of freedom

when M] is true, is obtained from the analysis of variance table in

*There are additional plots that the investigator may wish to look
at when considering the question of transformation; see, for example,
Oraper and Hunter (1969).
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the usual way as a ratio of mean squares. As an illustration,

the analysis of variance tables are given in Tables 4a and 4b
for the cases A=1 (no transformation) and A\=0 (log transformation),
respectively, from which it is seen that F(1)=1.58 and F(0)=.54.

The message to be gleaned from Figure 3 1is that although
there is no value of X (at least in the range -2<i<2) for which
the first-order model M] is judged inappropriate, all values of

A in the range -2<A<0 lead to a strikingly better first-order fit
than is provided by the untransformeéd dita (A=A0=1).

In particular, consider the log transformation, as suggested
by Figure 2. The transformed data, as well as the predicted values
and residuals obtained from fitting to the unconstrained model "2’
are given in Table 1d . Figure 4a 1is a plot of these residuals
versus their corresponding predicted values, and there is nothing
about this plot that might indicate model inadequacy. Furthermore,
when the logged data is fitted to the simplified first-order model M1,
the resulting plot of residuals versus predicted values, given in
Figure 4p , also does not suggest any model inadequacy.

Further confirmation of the benefits derived from using the
log transformation can be given by illustrating that it is no longer
necessary to make allowances for outliers. This can be shown from
both the diagnostic checking and the robustification points of view.

With regard to diagnostic checking, not only does the residual plot

in Figure 4a fail to indicate any spurious observations, but also the
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diagnostic check (11) 1is given by ga(y) = n(h1-1) = 32(.49-1) = -16.3,

and hence the negative value for this checking function does not dis-
credit an assumption that a=0. With regard to robustification,
consideration of Tab]es 5 and 3b (which parallel Tables 2 and

3a for the untransformed data) shows that an assumption of a=0 is not

unjuystified. Specifically, Table 5 gives the posterior means and

the posterior standard deviations for the parameters of M2 for various
fixed values of o when fitting the logged data, and these posterior
means as a whole are seen to exhibit somewhat more stable behavior

throughout the range of a considered than was exhibited in Table 2

for the untransformed data. Furthermore, the posterior probabilities
for any given Yy being discrepanf conditional on a fixed number of
outliers are given in Table 3b , and although the probabilities cor-
responding to Y10 and Ypq are somewhat larger than the other prob-
abilities in both the r=1 and the r=2 cases, there is no compelling

evidence that either of these observations are outliers.

We summarize the results of our investigation of John's data
as follows:
(1) The application of various diagnostic checks indicates that
a standard analysis of these data (without making allow-

ances for model departures such as the presence of outliers

ST T et L A T A e A . T

or the need for transformation) is inappropriate.
(11) Model robustification with respect to the possibility of

outliers in the untransformed data shows the presence of

exactly one discrepant value. Recalling that the residual




> e

TABLE 5.
a
1.172
90 ;
91 (

o
[
~—
N
.
<
o~
@
[
-
.
o
o
-
~
~

POSTERIOR MEANS AND STD. DEVIATIONS (IN PARENTHESES)
FOR 8's OF M, FOR JOHN'S 25 DATA (USING LOG
TRANSFORMATION) FOR VARIOUS VALUES OF o WITH k=5.

N .J0§ 010 23 <9538 «1CC

1.17¢ 1.172 t.170 1.129 1.17¢C 1.173
<0468 ( .08) C .089) ( .CéE) ( LD&PI ¢ ,7cS) & ,3239)
? “.1e? -.108 -.16° -.172 -.176 -.180
«882) € L,0e8) U .Ts3) € L0653 € L0092 ( .388) ( JQeg)
072 022 274 L?7 .81 . G8s

63) ¢ LJ68) € L068) ( LCeB) ( ,069) ( L0&B) € .Cad)
-, 1318 -13% - 137 -.139 .00 -.122

«068) € LQeB) ( ,C6B) (  ,068) ( .CeS) ( JNEE) ( L0ef)
292 b7 2056 4G4 «891 «687

«388) (. L06%) ( ,068) C ,9&8)

«J51 Na2 «D0? Sy, N I 72

«Ne8)  JeB8) U ,048) L L048) ¢ LC48) L .068) ¢ .Ced)

-.10¢6 - 108 -.10¢ .13t .67 -.103

) U W38 € L0e8) ( LQ68Y ( L049) ( L0&%) (  LG&S)

0eJ&? .3‘7 .347 QQ‘, -D‘? 00‘7

088) ( CLl) ¢ «£62) ( «J6P) ( «£69) [{ «{09) ( «0639)

'00'07 ‘-0‘7 .47 -00‘7 -.047?2 -OC~Q

+388) ¢ L0481 ¢ 0483 ¢ ,9¢B) ¢ L069) ¢ ,08%) ( .Ce9)

=333 =.033 -.JC? -.0C¢ -.004 = 0G4

«068) ( .J635 ¢ L0883 € .063) ( L069) C ,Ce9) ( .J09)

‘O:S? -.037 -.037 -,23? -, 02 -.G3?

0963) 4 .Q0¢c8) ( +Col) 4 cCGS) [4 .069) [4 .009) 4 «C7J)

«J1¢ 014 014 Q19 “e018 «Q16

«2683 € L0828) € L088) (  .06%) U .089) ¢ .0e%) € GO

'coia -.3&0 -c°~° =340 .01 -.G‘l

2348) U W038) € LC88) (. ,068) € L3O € L0693 ¢ .0e9)

..t -.f43 .02 -.042 -.0¢2 -.042

2068) (L0833 € LT88) € .068) (0693 € .069) ( .C70)

BT e st i




plot in Figure la (which was considered during the diag-
? nostic checking of the standard model) suggested that as

: many as two observations may be discrepant, we thus see
that the situation is clarified through the robustification
of this model.

(ii1) An improved explanation of the data can be obtained by

SEE R Sl

considering model robustification with respect to the

possible need for transformation of the response variable
(rather than with respect to the possibility of outliers),
and this leads to an analysis based on the logarithmically

; transformed data.

ré 5. A diagnostic check for transformation of the predictor variables.

In the example just discussed, the diagnostic check gx(!)
indicated the need to consider a transformation of the response
variables y in order to obtain an adequate representation of the

relationship between y and the input variables, given in coded form

by the xf's.
In s{tuations where the k input variables under consideration —
5’(51""’Ek)' in uncoded form — are all quantitative (i.e., can
take on any value over some continuous range), it may be the case
that a better empirical relationship between g and y can be developed

by dealing with transformations of some or all of the elements of £ 1

-~

rather than with § itself. j

~




In particular, consider the normal 1inear model for which

p(xlg,az.é) is Nn(X(ﬁ)g,czI), so that for the uh observation

Ply,[8.0%:2) is N(gu(é)'g.czl, with §u(5)' corresponding to the yth

row of x(ﬁ). The vector A = (Al,...,Ak)'denotes that each 5u(é)'

th

depends on the u~ set of inputs £, = (glu....,aku)' only through

the transformed set of inputs gu(é) (£1u(xl)....,£ku(xk))' where

(
g, i Ay #0,
g, M) o= (24)

gy, A =0

Note that gu = gu(éo), whereké = 1. Thus, for example, the investi-
gator may wish to fit a low order polynomial model in the untransformed
predictor variables 3 to the data, when it may actually be more appro-
priate to be using the same order polynomial (or perhaps even a poly-

nomial of lower order) expressed in terms of some suitably transformed

" predictor variables E(é). For this situation it would be useful to

have available a diagnostic check which could be used to assess the
appropriateness of using A= 50 = 1. Specifically, the particular
checking function suggested by (1) can be considered for each };.
The derivation of this predictive check is now given.

We assume that, for any specified A, p(g,c’lﬁ) is locally
uniform in 61,...,6 and 1n 0. However, since prior independence

P
between 6 and A 1s clearly an inappropriate assumption, then following

the argument of Pallesen (1977, Section 2.3.1), we employ the prior




' 11
p(g’azlé),,'x(}) x(}')lzaz .
This combines with

n
p(y|8,0%,1) = (2mo?)"2 exP{"Z]?z({'XQ)Q)'(!-X(}-)g)} (26)

to give p(y,8,0%|1) which, upon integrating out 8 and %, yields

the conditional predictive distribution

plyln)=(vs2) ¥, (27)
where )
A - n ‘A
vsz = (X'x(}')gé)'(l'x(}')gé) = u§1(yu'§u(p 9}.)2,
(28)
éx = [x(é)'x(i)]"x(i)'x v = n-p.
Hence,
B I Py = - ¥ Ligr )(aA vl
n -~
z - 2.li. ;‘: [_:_( (’\)ngé)z]
n ‘A 1A
R AR NI R
. -x (A)'g Ay ()
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Thus, evaluation of this expression at ) = Ao = 1 gives

NOR g“’”(y) ' g"”(y),

(BT)(y) - —2' z {(y &.@)[a%i'(fu(é).g)]lkﬂ}

-~ o~

((BT)

3 ‘LU ~k)]lk=

~

(8T) (BT)  (BT) (P)  (P)

= (Zﬂ""’zin )' and z, = (zﬂ,...
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and where
x, = x,%0), R = xen e, xex(2o),
(35)
6 =9 , §2 = s2
-l 20

denote the appropriate quantities for an analysis based on assuming

A=2g= 1
Writing
-, (BT) (P)
Zg =z vz (36)
the overall predictive check for the ith predictor variable gi is thus
y'Rzi ,
9, (y) = =% (37)
1 ~ t4

and it has_therinterpretatiqp_of_;egking,aicqrrglation between the
residuals from fitting y to Nn(Xg,czI) and the residuals from fitting
z; to the same model. Strong positive correlation will suggest that
values of xi>1 may be more appropriate, while strong negative correla-
tion will suggest that values of xi<1 méy need to be considered.

In considering the two components which combine to form gli(z)
according to (30) , it is noted in particular that the first compo-
nent g&BT)(X) can be interpreted in the context of the iterative
proceduie for the joint estimation of 6 and A proposed by Box and
Tidwell (1962). (See also Box and Draper, 1979.) The steps involved

in the first iteration of this procedure are as follows (using. the

notation defined above):




:
]
r
k
‘y

(1) Fit the model Nn(xg,czl) to the data y.

(i1) Use § from (i) to obtain the matrix Z(BT) having

(8T)
u

(i11) Fit the model N_(Xe+2‘8T(x-1),0%1).
nt < ~ o~

entries z, given by (33).

In the particular case where transformation of only the ith
predictor variable Ei is contemplated, step (iii) above reduces

to fitting the model Nn(xg+§.(BT)(Ai-1),021), and the relevance
of gAiLZ) as a diagnostic checking function in this context is
readily seen.

It is interesting to note that the estimated §, which is
calculated using an assumption that A= 50 = 1 is used in step
(ii) above as a matter of convenience, according to the authors;
whereas explicit consideration of the nature of §A with respect
to A is provided through. the presence .of the~seco;d term,-
gﬁz)(z), in the function gxi(x). It can thus be expected that
diagnostic checking based on gxi(x) will be more sensitive to
the need for a power transformation of §; than diagnostic checking

based on the results of the first iteration of the Box-Tidwell
procedure (and hence based on g(i:)(x)).
6. Summary

The question of what tentatively to include in a model and
what tentatively to omit from a model merits careful consideration

by the investigator. The answers,of course, will depend upon the




nature of the phenomenon that the investigator is attempting to
model. What is clear, however, is that there is a need for the
investigator to have for his use not only (i) well developed
techniques which allow for model elaboration with respect to
those aspects of model departure that he fears the most and/or
are the most likely to occur, but also (ii) suitable diagnostic
checks which allow for model criticism with respect to those
aspects not explicitly provided for in the model. The techniques
developed and discussed in this paper are of use in filling
these needs.

7. Two final examples.

In the introduction of this paper , reference was made to
the suggestion of Chen andeox,(1979a,b) that a contaminated
normal distribution will often be a reasonable choice of an error
distribution when modeling data from a well pianned experiment. To
illustrate the practical application of this suggestion, a side-
by-side comparison of two data sets analyzed from this viewpoint
is presented in this section.

Both sets of n=27 observations were from experimentsusing the same
design. The design, displayed in Table 6a , can be used in fitting
a second degree polynomial in four factors, denoted by

4 4 3 4

y ‘60+ T9.,x, + 7189, 24 T LI 8,

X, 46, X g 3=V s 27, (38)
i=1 i%u i=1 ii*u i=1 j=i+l ij Xiu ju L Lu Q Qu
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where, as indicated above, the eu's will be assumed to follow a
contaminated normal distribution. (Specifically, the type of
contamination used in the Section 4 example will also be used
here, so that each observation has a probability o of being
contaminated in that it has a standard deviation which is k=5
times as large as the standard deviation of an uncontaminated
observation.) This design can be divided into three orthogonal
blocks, which explains the presence of the linear and quadratic
blocking variables X{u and *Qu in (38).

The two sets of data considered are those of Bacon (1970)
and of Box and Behnken (1960). (The latter reference is, in fact,
the paper in which the design in Table 6a was introduced.)

These data are given in Tables 6b and 6¢ , along with the
corresponding predicted values and residuals from fitting ( 38)
to each set of data under the assumption of no contamination

(x=0). Actually, for the Bacon data, a simpler model than ( 38)
was found to be acequate, in that terms involving X3 and the two
plocking terms were omitted from the model.

Plots of the residuals versus the predicted values are
shown in Figure 5. For the Bacon data (Figure 5a ) no unusual
behavior is noticed. However, for the Box-Behnken data (Figure 5b),
the possibility of two bad values (_y]0 and y]3) is suggested. It

is of interest to explore how the analysis of each of these sets
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of data is affected when the possibility of discrepant observa-

tions is allowed for by choosing a#0 and using the techniques
developed by Box and Tiao (1968).

Considering the Bacon data first, the posterior means and

standard deviations for the p=10 parameters used in the model

are shown in Table 7 for various choices of a, and these

quantities are seen to be remarkably stable over the range of
o studied. Furthermore, the posterior probabilities for any
specified Yy being discrepant conditional on a fixed number of
outliers r, which are given in Table 8a for the cases r=1 and
r=2, do not indicate the presence of any bad observations.
Thus the conclusion arrived at by visual inspection of
the residual plot in Figure 5a — namely, that there are no
discrepant observations in Bacon's data — is further supported,
from the robustification point of view, by an analysis using a
model which takes into account the possibility of bad observations.
Of course, other model criticism techniques should be
employed to explore other areas in which the model may be
improved upon. For example, consider the analysis of variance
displayed in Table 9a. In this table, the residual sum of
squares obtained from fitting to the data a full second order
polynomial model in all four factors (including x3) is partitioned
in such a way so as to provide diagnostic checks not only for the
need to account for block to block variation, but also for the

possibility that a third or higher order polynomial model might

be needed to adequately approximate the underlying response surface.
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Specifically , letting eiii’ eijj’ and eii] denote coefficients

i3’ xisz, and xixjx], respectively, in a third order polynomial
representation; we have the following properties of this design:

of x

:
i
t
i
!

(i) The design does not allow for the separate estimation of ei and

eiii’ since X; = x].3 for all design points.

(ij) It does not allow for the estimation of eijl’ since xixjx] = 0 for

all design points.

(i11) It does not allow for the separate estimation of the 6...'s, but

133
does allow for the estimation of certain contrasts of the eijj's

independent of the estimation of coefficients in the second

order model. i

i
]
TABLE 7 POSTERIOR MEANS AND STD. DEVIATIONS (IN PARENTHESES) b
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With regard to (iii), each sum of squares denoted by Li in

Table 9a is associated with all linear contrasts of the eijj estimates
for j # i. The remaining sum of squares at the bottom of the table
o is associated with coefficients of order higher than three. (A
similar type of partitioning has been previously explored by Draper
and Herzberg, 1971, for the central composite response surface designs;
for some related work involving single degree of freedom contrasts,

g see Box, Hunter and Hunter, 1978, and Box and Draper, 1979.) The
somewhat large sum of squares given for L] in the table suggests

possible lack of fit of a second order polynomial due to contrasts

of 6122, 6133, and 6]44 of significant non-zero magnitude. Practi-

cally speaking, this suggests that a closer approximation to the

true surface may be gained by transforming one or more of the four
factors before fitting the second order polynomial (Box and Draper,
1979), but this possibility will not be explored in further detail
here.
Turning now to the Box-Behnken data (Table 6¢), Table 10 gives
¢ the posterior means and standard deviations for the p = 17 parameters
in the model (38). It is seen that many of these quantities undergo
a noticeable change when the contamination frequency parameter o is
allowed to assume non-zero values. The most dramatic of the changes
in the expectations is observed in the posterior mean for 6]4. where
the contemplation of even a small non-zero value for o switches the

sign of E(e]4|y,a). Moreover, for all parameters except 614. the
4"
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TABLE 10, POSTERIOR MEANS AND STD. DEVIATIONS (IN PARENTHESES)
FOR 6's OF MODEL FOR THE BOX-BEHNKEN DATA, FOR
VARIOUS VALUES OF o WITH k=5,
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corresponding posterior standard deviations are about halved, which
effectively increases the size and sensitivity of the experiment by
a factor of four.

Note, however, that from Table 8b the posterior probabilities
for Yu being bad, given that exactly r values are bad, suggest that
there is only one bad observation and not two, as first suggested
by the Figure 5b residual plot. Specifically, forr =1, Y10 receives
94% weight as compared to 6% weight for Y133 while the weights for
r = 2 do not strongly indicate that both of these observations are
outliers. Finally, in considering the analysis of variance in
Table 9b, it is seen that the sums of squares corresponding to both
L] and L4 are large. This is, of course, what would be expected if
it were known that any one of observations 10-13 was an outlier,
since the effect that the bad observation would have on the posterior !
distribution of 814 when o # 0 is allowed would be "hidden" in the
9114 and 8144 third order bias coefficients under the restrictive

o = 0 model.

Computational Footnote.

The present speed and capacity of computers make it feasible
to utilize model robustification techniques, such as those illustrated
in these two examples, as well as in the example of section 4,
involving John's 25 data, to guard against feared model discrepancies.
However, much work needs to be done in the area of developing general

programs which will actually do these robust analyses and thus take

advantage of the existing computer capabilities.
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