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ABSTRACT

Consideration is given to the means by which appropriate

diagnostic checking functions of the data can be developed to

guard against feared model discrepancies. A formal basis for

the selection'of a function is given for situations where the

feared inadequacy can be characterized by a discrepancy para-

meter which takes a (possible inappropriate) value of

in the model. The relationship of this checking function with

the posterior distribution obtained from an elaborated

("robustified") model which allows for the discrepancy parameter

to be estimated is discussed. The nature of the diagnostic check

is briefly described for problems relating to transformation of

the dependent variable and to serial correlation; while a more

thorough investigation of the checking function is given for

problems relating to outlying observations and to transformation

of predictor variables. Several examples are given to illustrate

these ideas.
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I

SIGNIFICANCE AND EXPLANATION

Statistical methods are useful as tools in scientific model-

building investigations. In particular, at each stage of an investi-

gation it is of interest to not only estimate the parameters of the

model being postulated at that time, but to also check the fitted

model in its relation to the data with the intent to reveal its in-

adequacies, if any.

In this paper, a diagnostic checking function is developed for

the latter purpose above. This diagnostic check is useful in situa-

tions where a feared model inadequacy can be characterized by a so-

called discrepancy parameter which may have a true value differ-

ent from the value B0  assumed by the current model. The relation-

ship of using this checking function to using a broader model which

" allows to be estimated (rather than assuming that = is

explored.

Examples are discussed in which B measures the need to allow

for outliers, the need for data transformation, and the need to

allow for serial correlation of errors.

I I . -. .
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The responsibility ror the wording and views expressed in this
aescriptive summary lies with MRC, and not with the authors of
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THE DUALITY OF DIAGNOSTIC CHECKING AND ROBUSTIFICATIOJ
IN MODEL BUILDING: SOM.1E CONSIDERATIOJS AND EXAfIPLES

Steven P. Bailey and George E. P. Box

I. Introduction.

"The advancement of statistical methods to the present

state has depended critically upon the interaction of mathe-

matics with real data, and we cannot but benefit if more

attention is given to the characteristics of the real world

than has been done in recent decades." This view, expressed

by Stigler (1977), is characteristic of the recent renewal

of Interest in finding out what the real world is really

like. (See also Box, 1979d.)

In this spirit, Chen and Box (1979a,b) recently con-

ducted a study of real data. In their investigation of nine

data sets, they used the contaminated exponential power dis-

tribution in modeling the experimental errors, and the results

suggest, in their words, that "heavy tailed distributions are

sometimes caused by inhomogeneity in mean and variance such

as might be encountered early in an experiment because of

start-up difficulties. After such inhomogeneity has been

allowed for, the observations seem to be adequately repre-

sented by a contaminated normal distribution. Thus, for a

carefully planned experiment, a contaminated normal distri-

bution is likely to be appropriate."

Thus a particular combination of robustification and

diagnostic checking techniques are being recommended as

Sponsorea by the bnTfed States Ar'riy under Contract-Nos.-DMG2-
75-C-0024 ana DAAG29-80-C-O041.



appropriate for modeling data from a well-planned investi-

gation. Specifically, the investigator who wishes to imple-

ment the above suggestions can do so by making provisions in

the model for the possibility of discrepant observations (and

thereby robustifying against outliers) while tentatively ex-

cluding from the model additional provisions for the pos-

sibility of non-normal kurtosis (and thereby being content

to later perform a diagnostic check to assess whether or

not this exclusion is warranted).

Of course, the experienced investigator will be aware

of the fact that there are numerous other potential problems

besides the two mentioned above which need to be considered

when deciding upon what to include in a model versus what

to tentatively omit from a model. Of particular importance

are questions concerning the possibility of serial cor-

relation and the need to transform the response and/or

predictor variables.

Since it is impossible to attempt to provide for all

possible contingencies when choosing a model, it is

important for the investigator to have available appropriate

diagnostic checking procedures which are capable of detecting

when deficiencies, such as the ones mentioned above, exist in

the model. A general method for developing such procedures

will now be considered.



2. A formal basis for the selection of a diagnostic

checking function.

As discussed by Box (1979b), criticism of a tentative

model H in the light of the observed data Yd is often

done informally (for example, by examining residuals),

and yet has an underlying formal justification in that

any peculiar aspect of Yd which may cause the investigator

to doubt the adequacy of M will correspond to an appropriate

summary measure g(yd ) of that aspect which is judged

unusual when assessed against its predictive reference
i distribution. p(g(y)IM).

A formal basis for the selection of a checking function

g(y) has recently been suggested by Box (1979c) in the con-

text of considering any particular model departure that can

be represented in terms of a so-called discrepancy parameter

8 . Letting 80  denote the assumed value of B for the

model M , this proposed checking function is given by

g (y) tn (1)
g8Q p j8 - Bo

where p(yls) denotes the conditional predictive distribution

for a given choice of B (and hence p(y18 0 ) is the predic-

tive distribution appropriate for the model M ).

One justification for the appropriateness of (1) as

a diagnostic checking function can be developed by noting

the relationship between the condi.tional predictive



distribution P(YIB) and the pseudo-likelihood function

P (By) • As used by Box (1979a; see also Bailey and Box, 19

the pseudo-likelihood arises when, instead of setting s

at a specified value $0  for the model, the discrepancy

parameter is assessed a prior distribution P(B) and esti-

mated along with the other model parameters. Defined by

P(sly)

px(Bly) P( ) , (2)~ P(8)

the pseudo-likelihood differs for differing choices of P(S)

only by a multiplicative constant which depends on y , and

hence it represents information about 8 contained in the

data. It is convenient to consider for definiteness a

standardized form of (2) ; namely, the posterior distribu-

tion pu(sly) which results from using a uniform prior

pu(0) . For this choice it then follows from

P(81Y) P(Y!)p(8) :3)

that

Pu(sly) = P(Yls) • 4)

Hence (1) can be rewritten

A-4-



go(y) * n p u(StY)~ 5)

so that this predictive check is seen to be measuring an

intuitively interesting q.uantity; namely, the instantaneous

rate 'of change of the logarithm of the pseudo-likelihood

(or "log pseudo-likelihood", for short) at the "ideal"

value s0

The interpretation of the predictive check (1) will

depend upon the nature of the discrepancy parameter 8

under study. Two different situations can occur.

First, consider the case where it makes sense to talk

about possible B values over a wide range, with the "ideal"

value a0 somewhere in the middle of this range. Thus, if

the actual data observed, Xd , give rise to a value

g0(Yd) which is small in absolute value, then the appropri-

ateness of an assumption 8 = B0  is not seriously questioned.

However, an unusually large value of Ig8(Xd)I , as assessed

by the predictive distribution p(g (d)10O) , will cast

doubt on the validity of the 8 = 80  model assumption.

Specifically, a large positive value of gB(Xd) will suggest

that values of 0 that are larger than So may be more

reasonable to consider, whereas a large negative value of

go(Xd) will sugges.t that smaller values of B than the

ideal value $0 may be more appropriate. Hence, the use of

this predictive check corresponds, in a sampling theory

-5- )1



framework, to a hypothesis test of 0 = $0 against a two-

sided alternative. Several examples will be given later in

this section.

Now, consider the case where it only makes sense to

talk about s values for which 0 > $ • Here, the pre-
0

dictive check (I) can be viewed as a sampling theory hypo-

thesis test of S = 0 against the one-sided alternative

corresponding to larger values of S . (An example relevant

to this case will be presented in Section 3.)

smaller values of g (y) will lend more support to a model

assumption of = B0 than will larger values of g (X) .

Of course a convenient reference value to compare g,(y)

to in this case is zero since, from the earlier argument,

a value g5 (yd) > 0 will indicate that the log pseudo-

likelihood will initially increase as S is allowed to

increase from 0 , while a value g6(Yd ) < 0 will indicate

an initial decrease in pu(aly) when S is increased

from $0  *

Some applications of the proposed checking function.

Box (1979c) illustrates the use of the checking

function (1) by applying it in two particular situations

which we now briefly discuss.

An analogous argument can, of course, be given for

the case where S < $Q by redefining the discrepancy para-
meter to be the negative of what it presently is and then
using the above development.



Im --I

Suppose that the investigator tentatively fits, to the

n-dimensional vector y = (Yl,'"*,Yn)' of untransformed

observations, the normal linear model Nn(Xea 2I) , where

8 is p-dimensional. However, suppose further that he wishes

to perform a diagnostic check which would indicate whether or

not it would be more appropriate to fit the same model to

some suitable transformation of the observations. In particu-

lar, if the family of transformations

(y ) u = l,...,n (6)

dUby = X 0 0

discussed by Box and Cox (1964) is considered, then a diag-

nostic checking function gX(X) of the form (1) can be

used, where A0 
= 1 is the value of X for the tentative

model.

For this situation, Box (1979c) derives the conditional

predictive distribution

p(ylX) (A-l)[y(x),R y(X)]-v

(7)

R I - X(X'X)Ix '  , v = n - p

where y is the geometric mean of the untransformed

-7-



observations. Upon taking the logarithm of (7) , differenti-

ating with respect to X , and evaluating this derivative at

0 = 1 , he finds the resulting diagnostic checking function

to be

Y'R y

gX =y) 2s (8)

where

Vs2  - 'R y

u y

Thus, the predictive check (8) seeks a correlation

between the residuals from fitting y to Nn(Xe,a 21)

and the residuals from fitting ! to Nn(X6,a 21)

since the two residual vectors are given by RX and RY

respectively. If a strong correlation is found, then this

indicates the need for transformation. Now, by

recalling the earlier discussion pertaining to the general

predictive check go(Z) in its form (5) , it is seen that

a strong positive correlation between these two sets of re-

siduals will indicate that values of X > X0 = 1 are worthy

of consideration; whereas a strong negative correlation

between the two residual sets is seen to indicate that

values of X < X0 1 may be more appropriate. An example



illustrating the application of this diagnostic check will

be given in Section 4.

Note that this predictive check can be conducted in

informal manner by simply plotting the two sets of residuals

against each other. Note also the relationship of this check

to the somewhat similar checks proposed by Tukey (1949) and

by Andrews (1971). Specifically, by defining Zu(T) =Y
(A) y n ,weeteY

and Z u  = y £n , where the 's are the predicted

values from a fit of y to N n(Xe,a 2 l) , it is then seen

that Tukey's transformable nonadditivity check seeks a cor-

relation between the residuals from a fit of the yu's to

the model and the residuals from a fit of the Zu (T) s to

the same model. Similarly, Andrews' check is concerned with

the correlation between the residuals from fitting the yu's

and those from fitting the Zu(A) 's

We now turn to a second illustration of the applica-

bility of the general predictive check (1). Box (1979c)

considers the situation in which the investigator tentatively

assumes the independence of the yu's but wishes to per-

form a diagnostic check relative to the possible presence

of first-order autoregressive behavior in the error structure.

(See, for example, Pallesen, 1978.)

We shall not go through the details of deriving this result

here. It turns out that the diagnostic checking function (1).

is a multiple of the lag one sample autocorrelation coefficient,

MMO-9-



upon which the familiar test of Durbin. and Watson (1950,

1951) is based. As was the case with the predictive check

corresponding to the need for transformation, this check for

serial correlation can, if preferred, be performed in an

informal manner through residual plotting (in this case,

by plotting the uth residual versus the (u-l) s t residual

for u - 2,...,n).

3. diagnostic check for discrepant observations.

We now illustrate the nature of the checking function

(1) for the situation described by Box and Tiao (1968), where

each observation has a probability of being discrepant in

some specific manner. ihe predictive distribution conditional

on a specific choice of is expressed in terms of the n+l

predictive distributiwis conditional on specific choices of the

num ber of outi iers r as
n1 -, (nr(-)nr,

r= 
0

Y I I a ox ', 1 -1 o tha t

n r(_0 a )n-r] (nE [- Or p(y r)

aa nZ (n) ar(l.,)n-rp(y r)

r=O r

n-i
n-lOLn lPY "-1 - - n py ri ,n n-l,

-nl-~nIpyr:O)+: 7 [(n-ja) , 1 -,A)njl( +M~ ~rn
I r)P)y nzj~l p~y r-n)

r=l

r=O r (10)
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Thus, the checking function g (y) , corresponding to

departures from the ideal situation where a0 = 0 , becomes

-n p(ylr-O)+n p(Xjr1) n[ p(Xr1)
ga(y) n = r1] J n(h1-1)p(ylr=O) p( ylr=O)

p(XIr=j)
with h. =

i p(Xl r=O)

As a first application of this checking function, con-

sider the analysis of Darwin's data presented in Bailey and Box

(1980), which uses a "mistaken sign" model for the bad observa-

tions. Using the value hI  2.10 from Table 5 of that paper

results in g (y) = 15(2.10 1) = 16.5. Recalling again the

interpretation of this diagnostic check that is suggested by (5),

this value thus indicates that *.n pu(i. y) will have an initial

slope of 16.5 at 0 = 0 (inspection of pu( y) as given in

Figure lOa of that paper bears this out) and hence indicates the

relative implausibility of an assumption that 0 (that is, an

assumption that, with probability one, none of the 15 observations

has an incorrect sign).

flow, r =  0 and r I are the only cases which enter

into the calculation of g (y). For convenience, we introduce

the followinq notation. Let the subscript "i" denote those

quanti ties which pertain to an assumption that

-11- s 1



the ith observation is bad and all other observations are

good. Then, for example, zi would be a vector of zeroes, ex-

cept for the ith element, which would equal one and would thus

single out the ith observation as being discrepant. Also, let

irO correspond to the assumption that no observations are

discrepant.

Returning, then, to the consideration of g (y), note that

1 n
P(ylr -l Ir ! p(y]lz ), (12)

so that the predictive check (11) can be rewritten

n
ga{y) E 1 g,.(y) ,(13)

P(Ylzi) (4where gi,a(y) p(yz) (14)

Thus (13) expresses the checking function g (y) as a sum-

mation of n individual checking functions, the ith of

which compares the predictive ratio of the hypotheses "only

Y1  discrepant" and "no observations discrepant" to unity.

It is of interest to consider the nature of this diag-

nostic check for the situation described in Bailey and Box (19UO0

where p(yje,a 2,zi) is Nn(Xieaz,,) for i a Ol,...,n. Usino

their results,it follows that (14) reduces to

--

(l y )~ a 1 -" X ol , s 1 1 (15)1 O IS
Lir1, X1



where

p z; length of parameter vector 8,

V n-pI
(16)

v =(Y-X18)E- (yX8

In particular, if it is assumed that a bad observation is

one having a standard deviation which is k times as large as the

commion standard deviation of all good observations (see, for

example, Box and Tiao, 1968), then (15) becomes

1 I

(xp -o) L] [2 + cT i22
g±I O-l ( Lr1 17)

where

X = X 0 for all i 1,.. n

X= ithrow of X09

=i~ 1 18)

k

=i ( )O(l-Ox 1'(X0XY exO i)f

-13-



For the special case, with pal, where e is a location

parameter, and thus X0=l, it follows that (17) reduces to

I
(y) = 'R i (19)

where
n-1

Ri  (1 + -.1 -l ri.) (20)

Hence, from (13) , the predictive checking function is

1

g (y) n .1 -- )R-n, (21)
C& k n-0

where
n

R a Z R.. (22)
i=l

Note that the Ri's and R quantities considered by Chen and Box (1979a)

in their investigation of the weighting structure of the posterior

mean of a location parameter for a contaminated normal population.

Specifically, each Ri is proportional to the inverse of the t-ordinate

corresponding to the standardized residual ri of the "bad" observation,

with ri defined in (1); so that if ri is large, due to the ith

observation truly being discrepant, then Ri and thus R will also be

large, yielding an unusually large value of the predictive checking

function g (y), as given by (21).

We now turn to a specific example which illustrates the practical

use of the diagnostic checks discussed in these last two sections.

-1 4-



4. An example: John's 2s data.

John (1978) gives data from a 2s factorial experiment designed

to study the effects of five factors on the strength of a type of

metal coating material, with abrasion loss as the measured response.

The experiment was run in two blocks, confounding the highest order

interaction with the operator effect, as two different workers applied

the coating.

The experimental design is set out in Table la , where Xl-x 5

and x6 denote, respectively, the five factors under study and the

blocking factor, and where for each xi the coding is such that the

two factor levels used in the experiment correspond to xi=-l and

xi=l. The data generated from this design are given in Table lb,

along with the corresponding predicted values and residuals from

fitting the data to the model

5 4 5

Yu 0+E e i u iu+ z ijxiuxju+e6x6u+c u; u=l, ... , 32, (23)
i i=ljil

where Xiu denotes the value of xi corresponding to the uth observation.

These residuals and predicted values are plotted against each

other in Figure la , and inspection of this plot shows two possibly

deviant observations (ylo and y9 ). John performs a significance test

for two outliers, based upon the work of John and Draper (1978), and

finds "no evidence of any outliers being present". However, he tempers

this conclusion by noting that a similar significance test for just

one outlier does give indication that ylo is an outlier.

-1 r,
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FIGURE 1. RESIDUAL PLOTS FOR JOHN'S 2 DATA (UNTRANSFORMED)USING M 2
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When applying the predictive check (11) to this example,

using k=5, it is found that hl=l.9O (and, incidentally, h2=2.03),

so that ga(y) = 32[l.90-l] = 28.8. Note, in particular, that the

value of this checking function is positive, which indicates that

the log pseudo-likelihood for a will initially increase as a is

allowed to increase from a=.

Thus this diagnostic check is giving some indication that

the basic model should be elaborated to allow for the possibility

of outlying observations. This can be done using the methodology

developed by Bailey and Box (1900), which entails specifying a prior

distribution forfrequency ca in which discrepant observations occur. However

for present purposes, it will be sufficient to consider a sensitivity

analysis approach (Box and Tiao, 1968.), whereby (i) an analysis of

the data is performed for each of a number of different fixed values

for a and (ii) these analyses are compared to assess how inferences

are affected by the choice of a.

Thus, consider the model (23) , where now the errors eu are

assumed to come from a contaminated normal distribution for which (i)

the nature of the contamination is an inflation of the variance by

a factor of k2=25 and (ii) the frequency of the contamination is given,

in percentages, by 00al%. The posterior means and posterior standard

deviations of the parameters in (23) , based upon the assumption just

given, are exhibited in Table 2 for various choices of a. Of course,

)-I>-"



TABLE 2. POSTERIOR MEANS AND STD. DEVIATIONS (IN PARENTHESES)
FOR O's OF M2 FOR JOHN' S 25 DATA (UNTRANSFORMED)
FOR VARIOUS VALUES OF a WITH k-S.

0 .001 .005 .01 .025 .05 .10

0 4.36 4.36 4.33 4.31 4.2& 4.6 4.25
.31) C .31) ( .30) ( .30) ( z9) C .28) ( .2?)

1 .9 -.90 -.92 -.95 I.Co -1.03 -1.05
1 .31) ( .11) ( .30) ( .30) ( ,Z ) ( .2?71 .26)

.4 .46 .49 .51 .54 .56 .57
2 .31) .31) C .30) C .!0) C .29) ( .2) C . ?

83 "71 -.70 -.68 -.66 -.62 -.60 -.59
3 .3) C .31) .30) C .i0 C .Z9) ( .28) C .27)

2.66 2.6S Z.03 2.61 2.57 2.55 2.4 .31) C .31) C .30) _70) .29) C .28) C .2?)

5  .27 .28 .30 .3? .3s .37 .19
5 .31) C .31) C .30) ( .30) j .29) C .28) C .17)

81 -.6i -.64 -.61 -.58 -. 53 -.50 -.48
12 C .31) .;1) C .30) C .31) C .2s) C .27) C .2c)

3 16 .16 .1 .22 .26 .29 .31
S13 C .31) C .31) ( .!o) C .30) ( .29) C .27) C .26)

61 .3 -.6'. -.-6-7 .? -.77 -.3.1
14 ( .:31) 31 .30) C.310) Z 2') C.27) C illj

1 .31) c .31) C .30) C .30 C .23) C .27) .6)

e2 -.15 -.1e -.1 -.Z1 -.23 -.25 -.27
23 C .31) C .31) C .30) c .30) .2q) c .2a) C .J7)

.29 .29 .32 .3 .37 .39 .41
24 3) .31) ( .30) c .30) ( .29) C .ze) ( .23)

e -.1 -.13 -.15 -.17 -.21 -.23 -.25
25( .1) ) .20) c ._0) ( .29) ( .28) ( .2!)

8 -.4* -.48 -.44 -. " -.& -.39 -.37
34 ( .3' 1) C .31) ( .30) c .31) ( .29) ( .28) C .7)

83 .05 .0' .1? .Z -.o -.05 -.0
35 ( .31) C .31) ( .30) C .30) ( .29) C .28) c .i?

24 . .24 .2? .29 .3? .34 .36
45 C .31) c .31A C .303% C .30) C .29) C .2s) C .27)

-.31 -.00 ,02 .05 .10 .13 .15
6 C .31) C .31) C .Z0) ( .30) c .28) ( .27) 4 .26)

-, ..... _ : _... ......... , ,. . - , V ' 'J- '- '19-"



the a=0 column corresponds to an assumption that there are no

discrepant observations. The other choices of a considered were

* .001, .005, .01, .025, .05 and .10.*

A study of how the posterior mean change as a increases

shows that there is no dramatic shift for any individual parameter.

However, when considered as a whole, these posterior means for the

elements of e are significantly affected by a change in a. This

is evident through a comparison of the posterior means using ct=O

with those using a=.l0, since it is seen that all p=17 posterior

means differ in these two cases by at least one unit in the first

decimal place.

Table 3a gives posterior probabilities of each yu being

discrepant conditional on a fixed number of observations r being

discrepant. (Hence, these probabilities do no depend on the choice

of a.) For r-l discrepant observation, YlO is seen to be approxi-

mately seven times as likely to be the bad observation as is y9 .

Furthermore, for r=2, yg is approximately three times as likely to

be one of the 30 good observations as it is to be one of the two

bad observations, while ylo is approximately five times as likely to

be one of the bad values as it is to be one of the good values.

*In carrying out these analyses as well as similar analyses later in

this chapter, it was further assumed that no more than two outliers

were present in the data. In view of the values of a considered,

this assumption is not unreasonable.

-20-



TABLE 3. CONDITIONAL POSTERIOR PROBABILITY THAT YU IS
DISCREPANT (I.E., HAS VARIANCE INFLATED BY A FACTOR
k2 - 25) GIVEN THAT EXACTLY r OBSERVATIONS ARE
DISCREPANT: JOHNj'S 25 DATA, USING M2 .

qul -Pr(y ubadly, r - 1)

n
qu12 ' Pr(y ubadly, r - 2) = Z Pr(y and yvbadly, r = 2)" v=l

(a) Untransformed (X= 1) (b) Transformed (X= 0)

u %i x 100 qu2 00oo q ul i o iui2 l10o

1 .7 2..1 j-'
. 64 c.0 1.,75 3.
.4,92 1 .319 3., 9)
* 1 .763 2.1" 4.24.
t *7:, 1-.6U. '2:•~~ 97 2.3. 173 7

4 .5!7 1.937 1.336 '.73'
,

7 .55C 1 .994 1.84; 6.14
5 -,-. Ill"; 31; 4 . d

9 10.23- 2 5.77t 2.869 6 .1
10 70.11. 8.3 . 32 19.82' 33.42r
11 .733 5.005 _.5 .754
12 -. 3 i.J 53 . 9,.2
13 .649 3.740 1.375 3.143
14 .5 02 7.9F 1.369 " .22
15 1.140 3.744 2.739 5.41

16.& .93 4 .61 .i5 O7
17 .47T 2.010 1.357 2

1I .489 1751 1./93 o.5I7

20 .492 1 .21 1.(.57 37
21 .537 2.1 2.03 2 2

2 c16 7 .7V 2. 13..
23 .982 2.1..Q 1.825 31.4:524 .s59 ;'.331 397 .1
25 . s 2.123 1.335
26 .597 1.465 .".
27 .5e, I .5" I.35 2 Q
27

29.Isis I 2.1S7 4.0-

30 .- " 2.O9j *.
3 1 " .

. 2.553 5.323



These findings seem to indicate that of these two observations,

which are candidates for being discrepant based on the residual

plot in Figure la , only yl 0 is indicated as truly being discrepant.

Whereas some investigators might be content with the above

analysis of the data, as provided by the elaborated model which

takes into account the possibility of bad data values, other inves-

tigators might wonder if there were alternate modeling options that

should also be investigated. In particular, by noting that

Ymax/Ymin = 12.6/1.0, the potential for an improved explanationof the

data through transformation of the response variable y is indicated.

Thus, consider again the model (23) with the standard

assumptions concerning the eu's. The diagnostic checking function

(8) can be used to assess the need for transforming the Yu'S.

Informally, this involves observing the correlation between the

residuals from fitting the Yu's to the model and the residuals

from fitting the Yu's to the model, with Yu defined by (9). These

two sets of residuals are given in Tables lb and Ic , respectively,

and they are plotted against each other in Figure lb . Strong

negative correlation is noticed (specifically, the calculated cor-

relation is -.789), thus indicating the desirability to consider

transformations of the form yu ( ), given in (6), with X<X 0=.

It will therefore be beneficial to elaborate the basic

model to provide for this needed transformation. This can be done

using the method of Box and Cox (1964). (See also Box and Tiao, 1973).



Of particular interest will be the posterior distribution of X based

on a locally uniform prior for X. (Equivalently, this will be the

pseudo-likelihood function of X.) Figure 2 shows the posterior

distribution of X not only for the model (23) (hereafter referred

to as M2 ) with yu(M) substituted for yu ,.of course, but also for a

constrained model M, which is strictly linear in the 6 input factors

xl-x 6 (i.e., M, excludes from M2 the ten terms corresponding to all

two factor interactions of factors 1-5). It is seen that both

Pu(XIzM 2) and pu(Xjy,Ml) strongly support the use of a logarithmic

transformation (X=O).

The constrained model M is considered in addition to the

original model M2 because it is often the case that a suitable

transformation will not only result in the assumptions on the cu's

being more nearly satisfied but also will result in a simpler form

of the response function being appropriate. The specific assessment

of this aspect of transformation can be achieved through the consider-

ation of Figure 3 , which is a plot* of F(X) versus X, where F(X) is

the F statistic appropriate for testing whether the 10 interaction

terms of M2 tthat are not in M,) can be excluded in fitting the

transformed y u( N s. [This statistic, which has as a predictive

distribution the F distribution with 10 and 15 degrees of freedom

when M is true, is obtained from the analysis of variance table in

*There are additional plots that the investigator may wish to look
at when considering the question of transformation; see, for example,
Draper and Hunter (1969).
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Pu xly,m 2)

FIGURE 2. POSTERIOR DISTRIBUTIONS OF X FOR

DIFFERENT MODELS FOR JOHN' S 25DATA
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the usual way as a ratio of mean squares. As an illustration,

the analysis of variance tables are given in Tables 4a and 4b

for the cases X=l (no transformation) and X=O (log transformation),

respectively, from which it is seen that F(l)=l.58 and F(O)=.54.

The message to be gleaned from Figure 3 is that although

there is no value of X (at least in the range -2<X <2) for which

the first-order model M is judged inappropriate, all values of

X in the range -2<X<O lead to a strikingly better first-order fit

than is provided by the untransformed data (X=X 0=l).

In particular, consider the log transformation, as suggested

by Figure 2. The transformed data, as well as the predicted values

and residuals obtained from fitting to the unconstrained model M2,

are given in Table Id . Figure 4a is a plot of these residuals

versus their corresponding predicted values, and there is nothing

about this plot that might indicate model inadequacy. Furthermore,

when the logged data is fitted to the simplified first-order model Mi.

the resulting plot of residuals versus predicted values, given in

Figure 4b , also does not suggest any model inadequacy.

Further confirmation of the benefits derived from using the

log transformation can be given by illustrating that it is no longer

necessary to make allowances for outliers. This can be shown from

both the diagnostic checking and the robustification points of view.

With regard to diagnostic checking, not only does the residual plot

in Figure 4a fail to indicate any spurious observations, but also the
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F IGURE 4. PLOTS OF RESIDUALS VS. PREDICTE VALUES FOR JOHN' S
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diagnostic check (11) is given by g(y) = n(hl-l) = 32(.49-1) = -16.3.

and hence the negative value for this checking function does not dis-

credit an assumption that a=O. With regard to robustification,

consideration of Tables 5 and 3b (which parallel Tables 2 and

3a for the untraniformed data) shows that an assumption of ct=O is not

unjustified. Specifically, Table 5 gives the posterior means and

the posterior standard deviations for the parameters of M2 for various

fixed values of a when fitting the logged data, and these posterior

means as a whole are seen to exhibit somewhat more stable behavior

throughout the range of a considered than was exhibited in Table 2

for the untransformed data. Furthermore, the posterior probabilities

for any given yu being discrepant conditional on a fixed number of

outliers are given in Table 3b , and although the probabilities cor-

responding to y,0 and Y23 are somewhat larger than the other prob-

abilities in both the r-I and the r=2 cases, there is no compelling

evidence that either of these observations are outliers.

We summarize the results of our investigation of John's data

as follows:

(1) The application of various diagnostic checks indicates that

a standard analysis of these data (without making allow-

ances for model departures such as the presence of outliers

or the need for transformation) is inappropriate.

(ii) Model robustification with respect to the possibility of

outliers in the untransformed data shows the presence of

exactly one discrepant value. Recalling that the residual

- -- i



TABLE 5. POSTERIOR MEANS AND STD. DEVIATIONS (IN PARENTHESES)
FOR O's OF M2  FOR JOHN'S 25 DATA (USING LOG
TRANSFORMATION) FOR VARIOUS VALUES OF t WITH k- 5.

CL .30.0 .010 ~ S .~

1 1 71 1.17.17 1. .1.171 1.17C 1.170

16 ,I 7 -. 1c7 -. 1o.; -. 161) -. 172 -. 176 -. 16f)
O s 065.) C L'9) C) ( .u )

62 .7? .072 .07! .7.C? .C1 .084

2 .,68) ( .362) C .069) C .8) C.09) f .06e ( .C.)

6 -.13 -.1. - -.137 -.131 -. o -.122
3 .06S) C 0Q8) ( C68s) C .ce C .Cc) ( .06) Col)

64 -,9! t,7 .oa6 .,0 .691 .6S?

4 . 6a) -069) .069) C .c.8) C .069) C .068) C .068)

e ~ 01 mz .00! . 66 .061 .079,
e5  .06.8) C .Oka.) C.0a.8) " .0431 ( 4069) .048 C .048)
e12  1. -. 10' -.104 -.10L -.1 4 -.'OG -.i03

12 6!) C .069) C .0SC) C .c69) C .06) .G69)

r 1 .e .3-67 .04 7 .14 7 .0/ 7 .OC ? .0 467
613 ,061 .C2) c .C6-) ..36P) ( ,Co) C .Co9) .049)

.. 4-.? -. 06 - .0) 07 -. 047 -. 01? -.C4
14 69)FJ61 (.3C (.06) (.O6v) cC*.09)

15 , -. 033 -.033 -.0C -. 00' -.004 -.OG41 c . ) ( .463, C .061) C .063) ( .060) C 069) ( .069)

-.037 -.:37 -.037 -.037 -. 13 - .. " -.GJ?
23 ( .68) C .0o8) ( .068) ( .-C3) ( .C69) ( .09) ( .C7O)

e .14 .01' .014 .014 .Ol5 .ols .016
2 .6 c .06) .068) ( .06A) ( .06) C -. P,9) C .C?0)

3 -.04 , -- 3.0 6.0 -.040 -.041 .04Z
25 .06 ) C .06S C .0 ) C .068) C . 906 ) C .069) C .080

:o635 -.043 -.0'C -.043 -.04 -.042 -.0' -. 03
34 C .068) 8 .068) C .8) .068) ( .069) C .069) C . 0)
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plot in Figure la (which was considered during the diag-

nostic checking of the standard model) suggested that as

many as two observations may be discrepant, we thus see

that the situation is clarified through the robustification

of this model.

(iii) An improved explanation of the data can be obtained by

considering model robustificatlon with respect to the

possible need for transformation of the response variable

(rather than with respect to the possibility of outliers),

and this leads to an analysis based on the logarithmically

transformed data.

5. A diagnostic check for transformation of the predictor variables.

In the example just discussed, the diagnostic check 9,(y)

indicated the need to consider a transformation of the response

variables- y in order to obtain an adequate representation of the

relationship between y and the input variables, given in coded form

by the x 's.

In situations where the k input variables under consideration

§-Ul,...,Ck)' in uncoded form-are all quantitative (i.e., can

take on any value over some continuous range), it may be the case

that a better empirical relationship between C and y can be developed

by dealing with transformations of some or all of the elements of

rather than with { itself.

II I ....-. ,-



In particular, consider the normal linear model for which

p(yje,a2 ,,X) is Nn (x()e,a2I), so that for the uth observation

p(yule,a2 ,s) is -N xuQ)'ea2), with x (
)' corresponding to the u

th

row of XiX ). The vector X = (Xl,...,Xk) 'denotes that each xu(M,

depends on the uth set of inputs u = (Ulu"".'&ku)' only through

the transformed set of inputs &u( = (lu(Xl) ...,1ku(Xk))' where

{ iu u(i (24)
In C iu Xi =0.

'Note that = §u (O), where A0 = ~. Thus, for example, the investi-

gator may wish to fit a low order polynomial model in the untransformed

predictor variables E to the data, when it may actually be more appro-

priate to be using the same order polynomial (or perhaps even a poly-

nomial of lower order) expressed in terms of some suitably transformed

predictor variables _(Q). For-this situation it would be useful to

have available a diagnostic check which could be used to assess the

appropriateness of using X = X= . Specifically, the particular

checking function suggested by (1) can be considered for each Xi.

The derivation of this predictive check is now given.

We assume that, for any specified X, p(O, 21X) is locally

uniform in e1,...,e p and In a. However, since prior independence

between e and X is clearly an inappropriate assumption, then following

the argument of Pallesen (1977, Section 2.3.1 ), we employ the prior

~-32-



p(e,a2I I)x(X)'X(X)Ia2 (25)

This combines with

p(yIea 2,) = (21ra2)I exp{-1I (y-X (26)

to give p(y,e,a 2j) which, upon integrating out e and a 2,yields

the conditional predictive distribution

V
p(yIX)=(vs ) " , (27)

where

Vs2 ) ] X - (Y,-xO )W 2 '
~ ~ ~ ~ ~u=l " ~

(28)

= Xv = n-p.

Hence,

hn P(yIX) = - . [(-)(-., 5 ). .

= - (-(Y-x M;) 2] ),
-o u ~ -~ -

x n

7 - ( r --,, (x ex a]
X u=l u )- a] •U

in IA

-x: - -u ax1-x . (29)
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Thus, evaluation of this expression at = = 1 gives

gX' ( y ) = g CBT)(Y) + g P)(y),x (30)

with

(BT) = 1 A aYuXu) ),

9yRzi (BT)

- R - s ) (31)

and
(P) (Y) 1 n ~ A - "g9' X _= {(u-Xu' O) [ (XU')] 2X =I

- 7 u~i ~ eE~(x l)

y'Rz i (P)

(32)

(BT) (BT) (BT) (P) (P) (P)
where i = (Zil. Zin )' and zi = (Zil,..,Zin)' with

(BT) a@ (X) 'I
z iu ax i (-u ~ )]IX=, (33)

and
(P) [ C-( ^ (34)

il -u X



and where

u u (X°01, R x(x'x)-x', x-X ,
(35)

e _ , s2 = s

denote the appropriate quantities for an analysis based on assuming

Writing

i = i(BT) + zi ( P) 9 (36)

the overall predictive check for the ith predictor variable i is thus

y'Rzi
g =i(Y) = SF (37)

and it has the interpretation of seeking a'correlation between the,.

residuals from fitting y to N (Xe,a 21) and the residuals from fitting
n -

to the same model. Strong positive correlation will suggest that

values of Xi>l may be more appropriate, while strong negative correla-

tion will suggest that values of Xi<l may need to be considered.

In considering the two components which combine to form (y)
gi

according to (30) , it is noted in particular that the first compo-
nent )(y) can be interpreted in the context of the iterative

g Bi )(~

procedure for the joint estimation of e and X proposed by Box and

Tidwell (1962). (See also Box and Draper, 1979.) The steps involved

in the first iteration of this procedure are as follows (using. the

notation defined above):
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(i) Fit the model N (X8,a21) to the data y.
n

(ii) Use e from (i) to obtain the matrix Z(BT) having

entries ziBT) given by (33).

(iii) Fit the model N (Xe+z(BT)(X-1),a2I).n --

In the particular case where transformation of only the ith

predictor variable Ei is contemplated, step (iii) above reduces

to fitting the model N nX6+zi(BT)(i- l),a 2), and the relevance

of gX (y) as a diagnostic checking function in this context is

readily seen.

It is interesting to note that the estimated e, which is

calculated using an assumption that X = X 1 is used in step

(ii) above as a matter of convenience, according to the authors;

whereas explicit consideration of the nature of with respect

to p is provided through- the--presence -of the second term,-

Sgp)(y), in the function gi(y). It can thus be expected that
I - 1

diagnostic checking based on g,(y) will be more sensitive to

the need for a power transformation of Ei than diagnostic checking

based on the results of the first iteration of the Box-Tidwell

procedure (and hence based on g (BT)

6. Summary

The question of what tentatively to include in a model and

what tentatively to omit from a model merits careful consideration

by the investigator. The answers,of course, will depend upon the

-36-
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nature of the phenomenon that the investigator is attempting to

model. What is clear, however, is that there is a need for the

investigator to have for his use not only (i) well developed

techniques which allow for model elaboration with respect to

those aspects of model departure that he fears the most and/or

are the most likely to occur, but also (ii) suitable diagnostic

checks which allow for model criticism with respect to those

aspects not explicitly provided for in the model. The techniques

developed and discussed in this paper are of use in filling

these needs.

7. Two final examples.

In the introduction of this paper , reference was made to

the suggestion of Chen and Box (1979a,b) that a c-ontaminated

normal distribution will often be a reasonable choice of an error

distribution when modeling data from a well planned experiment. To

illustrate the practical application of this suggestion, a side-

by-side comparison of two data sets analyzed from this viewpoint

is presented in this section.

Both sets of n=27 observations were from experiments using the san. e

design. The design, displayed in Table 6a , can be used in fitting

a second degree polynomial in four factors, denoted by

4 4 3 4
Y,=On+ E eXiu+i E OiiXiu 2+ Z ijxiuxju+O LX Lu+ Q ;XQu+Fu;U=l,..,27, (38)

i=li=l j i+l

~-37-
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where, as indicated above, the c's will be assumed to follow a

contaminated normal distribution. (Specifically, the type of

contamination used in the Section 4 example will also be used

here, so that each observation has a probability a of being

contaminated in that it has a standard deviation which is k=5

times as large as the standard deviation of an uncontaminated

observation.) This design can be divided into three orthogonal

blocks, which explains the presence of the linear and quadratic

blocking variables XLu and XQu in (38).

The two sets of data considered are those of Bacon (1970)

and of Box and Behnken (1960). (The latter reference is, in fact,

the paper in which the design in Table 6a was introduced.)

These data are given in Tables 6b and 6c , along with the

corresponding predicted values and residuals from fitting (38)

to each set of data under the assumption of no contamination

(a=0). Actually, for the Bacon data, a simpler model than (38)

was found to be aoequate, in that terms involving x3 and the two

blocking terms were omitted from the model.

Plots of the residuals versus the predicted values are

shown in Figure 5. For the Bacon data (Figure 5a ) no unusual

behavior is noticed. However, for the Box-Behnken data (Figure 5b ),

the possibility of two bad values (ylo and Y1 3) is suggested. It

is of interest to explore how the analysis of each of these sets

-39



FIGURE 5. PLOTS OF RESIDUALS VS. PREDICTED VALUES FOR DATA FROM

BOX-BEHNKEN DESIGN.
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im

of data is affected when the possibility of discrepant observa-

tions is allowed for by choosing (0 O and using the techniques

developed by Box and Tiao (1968).

Considering the Bacon data first, the posterior means and

standard deviations for the p=lO parameters used in the model

are shown in Table 7 for various choices of a, and these

quantities are seen to be remarkably stable over the range of

a studied. Furthermore, the posterior probabilities for any

specified yu being discrepant conditional on a fixed number of

outliers r, which are given in Table 8a for the cases r=l and

r=2, do not indicate the presence of any bad observations.

Thus the conclusion arrived at by visual inspection of

the residual plot in Figure 5a - namely, that there are no

discrepant observations in Bacon's data - is further supported,

from the robustification point of view, by an analysis using a

model which takes into account the possibility of bad observations.

Of course, other model criticism techniques should be

employed to explore other areas in which the model may be

improved upon. For example, consider the analysis of variance

displayed in Table 9a. In this table, the residual sum of

squares obtained from fitting to the data a full second order

polynomial model in all four factors (including x3 ) is partitioned

in such a way so as to provide diagnostic checks not only for the

need to account for block to block variation, but also for the

possibility that a third or higher order polynomial model might

be needed to adequately approximate the underlying response surface.

j ~ ~~~-41-......_



Specifically , letting eii i, 6ij j , and 
8ijI denote coefficients

of xi3 , xixj2, and xixi , respectively, in a third order polynomial

representation; we have the following properties of this design:

(i) The design does not allow for the separate estimation of e. and

1
3

iii, since x = i  for all design points.

(ii) It does not allow for the estimation of eijl , since xixjx
= 0 for

all design points.

(iii) It does not allow for the separate estimation of the 6. j's, but

does allow for the estimation of certain contrasts of the ...ijj

independent of the estimation of coefficients in the second

order model.

TABLE 7 POSTERIOR MEANS AND STD. DEVIATIONS (IN PARENTHESES)

FOR 8's OF MODEL FOR BACON'S DATA, FOR VARIOUS VALUES

OF a WITH k=5.

0 .001 .005 .01 .025 .05 .10

E) 74 in 74.1z 7 1 74.18 74,1F 74.18 74.10
0 :45) ( .45) ( .4 ) .4) 45) .5) .4

-11.44 -11.44 -11.L4& . 5 - 1 4 -11.47 - I ;

13 .I) ( .3 ) C .30) C .3i) C .31) ( .32) C .54)

0 . 1. 59 1. 57 1.59 1.59 1.59 .5

2 ( .30) C .3.) C .3C) C .3T) C .3 ) C .30) C , )

C 74 '4.74 4.7L 4.74 4.74 4.7! 4.72
4  .$') ( .3C) C .3Z) C .3r) C .31) C .3?) C .32)

!.51 1.51 1.51 1.51 1.50 1. 5 .1.50

11 .4) ( .43) .4!) .43) C .431 C .44) ( .'S

-.32 -. 32 -. 32 -. 3? -.32 -.32 -.3?
822 C .4' 3) ( .43) C .43) C .43) C .41) . I) ( .-v)

8. .3.6p .8 .8? .8?
44 C .') C .)3) C , 3) C .43) C .43) .44) C .'4)

.02 -1.43 -1.48 -1.1.6 -1.48 -1.48 -1.1.8 -1.48

'12 ( 52) C .$Z) C.8 .53) C.53) .54) C .56)

3" 1 .s-:01 -. -. 39 -. a -. 31 -.39

14 1 .53)

8 5~ .... 50 050 .50
24 C.i C .52) 1.!Z C 5) 52 .5t)
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TABLE 8. CONDITIONAL POSTERIOR PRO13BABILITY THAT yu IS
DISCREPANT (I.E., HAS VARIANCE INFLATED BY A FACTOR
k2 = 25) GIVEN THAT EXACTLY r OBSERVATIONS ARE
DISCREPANT: DATA FROM FOUR FACTOR BOX-BEHNKEN DESIGN.

qUll = Pr(y ubadly, r = 1)

n
q =2 Pr(y ubadly, r 2) Pr(yu and Yvbadly, r = 2)

vq1
v2u

(a) Bacon's data (b) Box-Behnken data

u qu1 x100 qu12 x100 qul × 1 0 0 qu12 x 1 0 0

1 ,Z 69 7,666 .018 *.73,

2 1..c4 IK.261 .0'4 .

4.623 .609 .016 .. 3-

5 ,55 .8 78 .015 11

7 %.6: Z.3;6 .0 4 *.' 9r

7 .s? LI .01 3 " ,

S6-.7 2.-12 .012 6.4 1it
.. 976 1F. ! 35 93.898 s 2 , 27

11 7,t8 ?(. 2 .011 -.7,')

S.813 1I.3 .01

.2 .. 549
! e 5,.730E 4LI PtE

17 Is1. 3.82 11 2.3%7 .

1 51

•27.,,.* .37t

-43-P

?0 .•17c , 4 .1 ?' 4 . .. 1 -1

'2-'"~.0 .71 ., .21 2.

2 - 4 .,43 i1 .016 ".5 6

6 .11 . 3
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With regard to (iii), each sum of squares denoted by L. in

Table 9a is associated with all linear contrasts of the e estimates

for j # i. The remaining sum of squares at the bottom of the table

is associated with coefficients of order higher than three. (A

similar type of partitioning has been previously explored by Draper

and Herzberg, 1971, for the central composite response surface designs;

for some related work involving single degree of freedom contrasts,

see Box, Hunter and Hunter, 1978, and Box and Draper, 1979.) The

somewhat large sum of squares given for LI in the table suggests

possible lack of fit of a second order polynomial due to contrasts

of 0122' e133' and 0144 of significant non-zero magnitude. Practi-

cally speaking, this suggests that a closer approximation to the

true surface may be gained by transforming one or more of the four

factors before fitting the second order polynomial (Box and Draper,

1979), but this possibility will not be explored in further detail

here.

Turning now to the Box-Behnken data (Table 6c), Table 10 gives

the posterior means and standard deviations for the p = 17 parameters

in the model (38). It is seen that many of these quantities undergo

a noticeable change when the contamination frequency parameter a is

allowed to assume non-zero values. The most dramatic of the changes

in the expectations is observed in the posterior mean for 014' where

the contemplation of even a small non-zero value for a switches the

sign of E(e1 y41y,). Moreover, for all parameters except 014, the
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TABLE 10. POSTERIOR MEANS AND STD. DEVIATIONS (IN PARENTHESES)

FOR O's OF MODEL FOR THE BOX-BEHNKEN DATA, FOR

VARIOUS VALUES OF a WITH k= 5.

a 0 .001 .005 .01 .025 .05 .10

e 90.60 90.-0 90.6f 9C.60 90.60 90.t
0 .94) .56) ( .45) C .4)) ( *41) C .41) ( .41)

1.93 2.35 2.46 2.4p 2.49 2.49
1 c .47) C .39) 4 .2b) .25) ( .i) ( .2?7 1 .Z)

E) -1.96 -. 1095 -1.96 -1.96 -1.96 -1.496 -1.96
02 c .47) c .29) .22) ( .111) ( .20) ( .20) ( .20)

e 1.13 1.13 1.13 1.13 i.3 1.13 1.13
3 C .7) f .29) ( .22) ( .21) ( .20) C .20) c Z^,)

-3.68 -3026 -3.15 "3.11 -3.12 -3.12 -3.1?

.4 ( 047) c 39) ( .28) ( .25) t .23) .22) .2)

11 -1.4? -i.79 -i.EZ -1. 90 -. -1.90 -. ¢

1 .7C) ( .54) C .4( .4.) C .1) C .4 ) ( .-2)

6 -4.33 -4.14 -4.10 -4.09 -.. 09 -4. - 9.Oq
22 ( .70) ( .4t) ( .36) ( .35} C .3) ( .34) ( .34) .1

633 ?.Z4 -2.05 -2o01 -2.CO -2.00 -2.00 -2..
3 .70) .46) ( .36) ( o35) ( .JL) C .34) .3'.)

64 -2.58 -2.95 -3.05 -3.06 -3.06 -3.0e--1.0
44 4 .70) C .54) ( .44) ( .42) ( .1) ( .41) C .. )

6 -1.67 -1.67 -1.67 -1.67 -1.67 -1.07 -1.67
12 ( .1 .50) C .39) ( .36) ( .35) t .35) .31.)

6 -3.83 -3.82 -3.82 -3.82 -3.92 -3.C2 -3.h2

13 ( .81) ( .50) C .39) ( .36) ( .35) C ,34) C ..3

4 .95 -. 17 -.46 -. 1Q -.51 -.50
14 C .91) ( 10) ( .9S) C .93) ( .92) .94) C .el

6 -1.67 -1.6? -1.67 -1.67 -1.67 -1.67 -4.6?

23 4 .81) c .50) ( .39) " .6) C .35) C .35) C .351)

6 -2.62 -2.o2 -2.62 -2.6? -2.62 -Z.2 -2.2
24 ( .81) ( .00) ( .39) C .36) C .35) 0 ,35) c .35)

834 -,.5 -4.25 -4.25 -..25 -4.w -4.25 -4.25
34 ( .891) c .30) c *39) ( .36) C .35) C .3 ) .34)

;- L  -1.08 -1.08 .-1.08 -1.0' -1.0 -'.08 -1.0$

L ,3A) c .24) C .1) C .17) t .16) .16) C .16)

1.25 1.42 1.t 1.47 1.47 1.47 1.4s
Q21) .20) C .1?) ( .16 *.) C .I ) .6
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corresponding posterior standard deviations are about halved, which

effectively increases the size and sensitivity of the experiment by

a factor of four.

Note, however, that from Table 8b the posterior probabilities

for yu being bad, given that exactly r values are bad, suggest that

there is only one bad observation and not two, as first suggested

by the Figure 5b residual plot. Specifically, for r = 1, ylo receives

94% weight as compared to 6% weight for Y13; while the weights for

r = 2 do not strongly indicate that both of these observations are

outliers. Finally, in considering the analysis of variance in

Table 9b, it is seen that the sums of squares corresponding to both

L and L4 are large. This is, of course, what would be expected if

it were known that any one of observations 10-13 was an outlier,

since the effect that the bad observation would have on the posterior

distribution of 614 when a 0 is allowed would be "hidden" in the

e114 and e144 third order bias coefficients under the restrictive

a = 0 model.

Computational Footnote.

The present speed and capacity of computers make it feasible

to utilize model robustification techniques, such as those illustrated

in these two examples, as well as in the example of section 4,
5

involving John's 2 data, to guard against feared model discrepancies.

However, much work needs to be done in the area of developing general

programs which will actually do these robust analyses and thus take

advantage of the existing computer capabilities.
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