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ABSTRACT

The recently advanced philosophy of model building is developed further.

It is stressed how Bayesian inferences based on the posterior distribution of

the model parameters are appropriate only after sampling theory inferences

based on the predictive distribution of the data fail to discredit the model.

An example involving the normal distribution is discussed in detail. Diagnostic

checking functions are developed which can be applied in an intuitive sequential

manner. Careful attention is also given to the nature of the predictive distri-

bution for the extreme situation where information about the parameters is very

precise or very vague. For the latter case, it is illustrated how the predic-

tive distribution can simultaneously (i) reflect this vague information in an

appropriate manner and (ii) allow for the checking of the adequacy of the basic

distributional assumptions such as normality and independencT.

A particular problem in the interpretation of predictive distributions

arises in situations involving a discrete data-generating distribution with

vague prior knowledge about the parameter(s). This problem is explored in depth

for the case of the binomial distribution.
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SIGNIFICANCE AND EXPLANATION

The objective of many scientific studies is to develop a model which will

provide a reasonably simple yet sufficiently adequate representation of the

phenomenon under consideration. At various stages of a scientific investiga-

tion, a confrontation occurs between the model being tentatively entertained

at that stage and the data that have been collected up to that stage. Model

estimation and model criticism are the two devices which are used by the

investigator in performing the dual roles of model sponsor and model critic

that are necessary for the advancement of knowledge. This paper explores in

further detail a viewpoint of model building, whereby model criticism requires

the sampling theory made of statistical inference, while model estimation

employs the Bayesian mode of statistical inference. In particular, the

implications of having only vague prior information about the model parameters

are explored.
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SOME ASPECTS OF MODEL ESTIMATION AND MODEL CRITICISM

* Steven P. Bailey and George E. P. Box

1. Introduction.

The objective of many scientific studies is to de-

velop a model which will provide a reasonably simple yet

sufficiently adequate representation of the phenomenon

under consideration. The most useful models. of this nature

will typically be those which elucidate not only the deter-

ministic relationships among the variables of interest but

also the stochastic relationships among the experimental

errors associated with these variables. (Here the meaning

of the term "deterministic relationship" is not restricted

to mechanistic relationships derivable from existing

theory; rather suitably developed empirical relationships,

i/ such as polynomials, are also considered as being determinis-

tic.) In this paper a theory of model building recently

* advanced by Box (1979b) will be outlined and studies in further

detail. (See also, for example, the following: Box, 1979a;

Box, Hunter and Hunter, 1978; Box and Jenkins, 1976; Box and

Tiao, 1973; Box and Youle, 1955).

At various stages of a scientific investigation, a

confrontation occurs between the model being tentatively

entertained at that stage and the data that have been

collected up to that stage. Model estimation and model

criticism are two inferential devices which aid the

Sponsored by the United States Amy under Contract Nos. DAAG29-75-C-O024
and DAAG29-80-C-0041.



investigator in performing the dual role of model sponsor

and model critic.

Model criticism techniques focus on the question of

whether or not there is approximate concordance between the

data currently available and the model in its current form.

If some particular aspects of the data seem to be dis-

cordant with respect to the model, then either the model

will need to be appropriately modified in an attempt to

alleviate the model deficiencies, or further data will need

to be collected in order to explore the inadequate aspects

of the model. The broad spectrum of diagnostic techniques

available for model criticism ranges from the informality

of examining residual plots to the formality of carrying

out goodness of fit tests, but it is argued that all such

techniques are justified by the sampling theory mode of

inference.

Model estimation is meaningful only when the appli-

cation of the above model criticism techniques fails to

reveal any model inadequacies. If such is the case, then

it is appropriate to employ Bayes' Theorem in estimating

the unknown model parameters by obtaining their joint

posterior distribution. The use of Bayesian inference in

model estimation is a logical consequence of the view that

a model is, in effect, a joint probability statement of all

assumptions, both explicit and implicit, which are to be

-2-
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tentatively entertained at the current stage of the

investigation.

Now, the model building process is iterative by

nature, and, as such, there is no single approach that will

be appropriate at every stage of this iteration. Thus it

is not unreasonable to argue as above that two different

kinds of statistical inference are required in order for

4I an investigator, to be able to both sponsor and criticize

a model.

2. Model specification and subsequent inferences.

Denote by M the model under consideration at a

given stage. of an investigation. This model can be con-

veniently expressed as the joint distribution of the po-

tentially observable data vector y and the unknown

parameter vector e and can thus be written

P(YeIM) - p(yIeM)p(OlM). (1)

When viewed as a function of y for 0 given, p(yle,M)

is referred to as the data-generating distribution or, more

simply, the data distribution; when viewed as a function of

o for y fixed, p(yle,M) is the likelihood function. This

factor combines with the prior distribution p(OlM) , which

as argued above is an essential part of the model, to yield

the complete model statement given by (1).

-3-
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This expression can be subsequently factored as

P(!.8IM) p(eIyM)p(ZIM) (2)

where

p(YIM) - P(yJ2,M)P(91M)de (3)

and

P ,) P(YM)p(eM) (4)
p(yM)

are, respectively, the predictive distribution of y and

the posterior distribution of e , with e denoting the

parameter space of 8 . Upon obtaining the actual data,

which will be denoted by yd 9 the posterior distribution

is

P(Yd-12,M)P(e -IM)( )
p(2l~dM) • ,(5

P(dII)

where the normalizing factor in the denominator is seen to

be the predictive density (3) evaluated at

The predictive distribution (3) acts as a reference

distribution for the observed data vector d ' and thus an

overall portmanteau check of the "goodness" of the model M

is given by the probability

i i4-



Pr P(YIM) P(!dIM)1MJ. (6)

If this probability is unusually small, then the posterior

distribution p(8lydM) provides the means of making

inferences about the parameters a of a model M that is

of questionable relevancel Stated in this way, the role of

the predictive distribution in model criticism is justi-

fiably emphasized.

Of course, due to its portmanteau nature, the check

(6) does not comment on the specific ways in which the

n-dimensional data vector d may be in discord with the

model M . Of more use to the investigator will be indi-

vidual checks which are sensitive to particular aspects of

possible m6del inadequacy. Thus, If a particular function

of the data, say g(y) , is appropriate for assessing the

validity of a particular model assumption, then the referral

of the observed value g(yd) to its reference distribution

p(g(y)IM) , obtainable by integration of the predictive

distribution, provides a formal check relative to the as

assumption in question. Moreover, informal model criticism

techniques such as the examination of residuals can be

viewed as a search for any unusual feature of d which

suggests model inadequacy; so that, if desired, a formal

assessment of the "unusualness" of such a feature can be

effected by referring an appropriate summary measure of

the feature to its reference distribution derivable from

~P(YlM)•

-5-



To illustrate the above concepts, an example is now

considered.

3. The normal distribution.

Suppose that X - (ylS...,n)' is a vector of n

independent observations that are normally distributed with

common mean 8 and common variance a2 , where e and a2

are unknown but have a joint prior distribution such that

conditional on a given a2 , e is normally distributed with

mean e0  and variance a2/n0  and that marginally a2/v0 a0 2

has an inverted X2  distribution with v0  degrees of

freedom. We will not necessarily assume that n0  is an

Integer or that v0 a n0 - 1; however, If this were the case,

then the above joint prior distribution would be equivalent

to assuming that a relevant set of past data 0

(y0 1,..,y 0 no)' had been combined with a non-informative0 . 1 n
prior for e and a2  so that eo y o u E You and

a02 a = (you 2 n 0)2 " (See, for example, Box
Cy so V0 u EI yo

and Tiao, 1973.)

Thus

n

p(yle,a 2,M) (2wal) "  exp{- 1 [vs 2 + n(- e-)2]) (7)

nit 2 1 n n

nwith u y v n-i , and s " - E (yu  ); and
n uV u=1 u* 1. -6-



p(e,a2JM) - pOeWa2 M)p(aIlM) ,(8)

p(ela29M) - (11, exp{- --2 (e 8 0 ' 9
no 2

V 0  ov -a 2

'02 -1(2 +0 0 0
p(021M) * (r(v-.2Y(2 (2 (va2)F exp{ I

2 002a2

(10)

these combine to give the complete model statement

p(y,8,aIJM) _ pQye.a2,M)p(e,a2IM)

Now it is well known that the joint posterior distri-

bution of 8 and a2 is such that conditional on a given

a2 9 6is nomlydistributed with ma

00o n and variance - and that, marginally,
no +n 0 f

02/(V0 + n)a2  has an inverted X2 distribution with

4' + n degrees of freedom, where (vo + n)a2

V0 02 + Vs 2 + n('- )2 Thus
0 no + n

-7-



p(e,a2(yM) - p(6Iy,q2 ,M)p(q21yM) .(12)

p(O ly.a12,M) * 2 2ira2 )- exn 2 -- (e - )21  (3

and

PWaIy-M) 0 r(2--- 2) 2 1-i(a2) 2
2

v 0 + nl

x ((v + n )a 2  ex (-(v 0 I+
0 ~2c

(14)

If ( 1) i s f actored as

p~y~~ajt) *p(e'a'jym)p(y?4)

*p(ely'a 2,M)p(ajjZ.M)p(yjMw)

(15)

it follows that

V0 + nl

p(.YfM) U ,~v + a2

(16)

-nl no r[(vo + n)/2]0
[ 1 --n- r(v /2)-(~~2

_ _ _ _ _ _ _ -0

Whim"4..



Model criticism will involve using the above pre-

dictive distribution to assess whether or not relevant

aspects of the observed data vector XYd are in concor-

dance with M . For this example, the most useful diag-

nostic sample quantities can be expected to directly involve

y S , and the standardized residuals r - (x -y)/s

thus it will be convenient to make the following transforma-

tion. First, make an orthogonal transformation from .' to

V (v .... ,Vn)' with vn a V , and then transform from

v to , 2,and u (ui,...,n2)' with

V1+1

The first transformation has unit Jacobian, while the

second transformation has Jacobian

V J + 1
J . c2 (s-)T - 1 n + U 2 2

Jul i
(18)

n-i

C2  u nk(n- 1) 2 C r(n- 1)]

-9-



Hence,

p6's1.uIM) - p(yiM)IJI

a~~~ 1I2s2, E(v0 + n)a2] 2

xn-2 (LLA (19)

In the above, the factor involving a given uj is pro-

portional to the standardized t density with j degrees

of freedom, so that

P(ujIM) a j (1 + U.

(20)

r Ed + .1)/1

The u 's are-mutually independent and indepepd~ept.ot*3

and S2 , so that

p~I) n-2 n-2 u2 ( + 1

n-2 n-

C3  J11 aj

.... 2..



Vv + n

1lc2 (St) -C( )
p(Gs 2 IM) [(vo0 +n)°J 2 * (22)

Writing v pS v CaI + vs2 , where v

V0 + V V + n - 1 , so that (v0 + n)a
2

VnS n + no  - n0 , (22) then becomes

(sM CIC2 )( (V -) 11 +O 2*

p y7, s~ m ) C3 Ps V

(23)

where

(7- e0)
t et - (24)(1 + 1)S (

The above establishes that transformation from V to t

will achieve independence. The Jacobian of this trans-

formation is

&, + I ' C4 (vpSp),at n
(25)

C4  ( + (L 1) .

4C 4  no no p

-1.1-



Hence,

at

a C3CC (v- 1 (s) 4% (0 + 7
Vp

1 IL4 LS2 vo + v* C5( 1L

C35 (v si) 2 ILp
p(S2IM4)p(t14) ,(26)

p(tIM) -S (1 +. L)2

(27)

s (v w)hr(v p/2)

-12-
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p(sIM) U (ClC2C) I sC3C5  02
[(v sl 2]

(C4 ) ira V s2 1o+ (28)

I1+ p p 2

*~ c (CCC:6 {[ V, -

+ VVb 2~

Fu (29)
07

so that

-13-



V

P(F 1M) f7 V0 + 

P12 J 1(30)

VO+V02 () ( clcc0c)

C7 " o C (7,oC 3C5  0r (2 r ) r c0 s  -

In summary, then, by transforming from y to
t (V - eo)/(l/n0 + l/n)s' , F - s2/a2 , and the

quantities u - (ul,...,un.2)' defined by (17), the

predictive distribution of y in (16) can be alternately

expressed in the form

n-2
p(t,F,uIM) - p(tlM)P(FIM) II p(uIM) (31)

Jul 

I

whichismore convenient for the purposes of model criticism.

Nature of the diagnostic checks.

The above quantities can be utilized in the following

sequential manner:

(1) The vector r of standardized residuals has a

sampling distribution which is uniform over the surface of

an n-i dimensional hypersphere of radius vnT which

lies in the subspace that is orthogonal to the vector 1

-14-



in n space (Andrews, 1971). Since this sampling distribu-

tion is independent of e and 0 , it will also be the

predictive distribution of the standardized residuals. Now,

the purpose of examining residuals, either informally through

residual plotting or formally through the explicit considera-

tion of any suitably chosen function g(r) , is to assess

whether or not r lies in a "suspicious" direction (Box,

1960) due to some inadequacy in theassumed data-generating dis-

tribution (for example, caused by a lack of independence or of

normality). Since any function of r can be equivalently

expressed as a function of u , the suspiciousness of the

observed value g(rd)(lh(ud)) of any function g(r)(uh(u))

of interest can be assessed by using the reference distri-

bution p(h(u)IM) obtainable from p(uIM)

For the purpose of illustration, suppose it was sus-

pected that the responses y might be approximately

linearly affected by a variable C (say, lab temperature)

which takes values Ed - (1d'*"'nd)' for the n

observations. If, in terms df the orthogonal transformation

from y to v used earlier, we define v. 1 - C'y with

cu(§d - d!)/ S d , where 9d ni Z dj and

n
Sr E(gjd - )2 , then a checking function appropriate

for this tituation would be u,.Z , as defined by (17).

Referral of the observed quantity u(n.2)d to the t

distribution with n-2 degrees of freedom provides a check

-15-



on this possible departure from the adequacy of p(yje,a.,M).

Note how this check links up with the techniques of residual

plotting (of the rid Is vs. the Cjd s) and analysis of

variance (where it turns out that Ufn.2)d is the mean

square ratio MSlinear/Sresidual).

(2) If the above checks based on the u1 's and the

quantities derivable from them do not invalidate the part of the

model given by the data-generating distribution, then atten-

tion can be shifted to the appropriateness of the, prior dis-

tribution. In particular, referral of the observed quantity
a

Fd - Sd/a0  to the F distribution with v and v0  degrees

of freedom provides a check on the concordance of the sample

estimate of a' s, with the prior mean for a2  0

(3) A check on. the concordance of d' the

sample estimate of 8., with 80 1 the prior mean of ,

is provided by referring the quantity td

( d - eO)i(n + I)Spd to the t distribution with

Vp V0 + v degrees of freedom. Note that the denominator

of td utilizes the estimate s2  of a' which resultspd

from pooling s2 and a'

(4) If all of the above checks do not indicate

model inadequacy, then the investigator can proceed to make

inferences about 6 and a' from p(oa~lyd,M)
4

&-1 E-



In particular,

(1M the-posterior mean-of 8 ,is obtained as

a weighted average of Ydand 8 0 and

00) the posterior mean of a2 , is obtained by

pooling Spd with the single degree of freedom

estimate non(yd - e0)l/(n 0 + n) Of

A numerical example.

DeGroot (1970, p. 171) gives an example involving the

present model, where the Joint prior distribution of 8 and

a2 is chosen to satisfy E(81M) -2 , Var(ejM) a 5

E~o21)-3 , and Var(a&2 1 M) - 3 .In our notation,

this corresponds to

00 E(ejM) *2

a0  CE(Co2 1N)) 1  * 7

(32)

vo *2[o- Var(a- 2 1M)J 1 * 2[(1 .3Jl *6

V

-17-



DeGroot then uses the summary statistics Yd -4120

and I (y~ - 7 P ~ - * 5.40 from a vector Yd Of n-10

observations to obtain the Joint posterior distribution of

e and oz , which. in our notation, is such that conditional

on a given a' 0 is normally distributed with mean

A* n0ea0 + nyd * (.1)(2) + (10)(4.20) 42-2 4.18
Odno +n .1 +10 10.1

and variance a' /(n0+n) - a2/10.1 , and that marginally

a/V + n)-2 has an inverted X2 distribution with

v+ n - 16 degrees of freedom, where

+ n2 va6 + V2 + n0nYd - '0)
(V 0 n~ad vO dno + n

-6(1) + 5.40 + ()(042 -) 7.88
.1 + 10

However, before making inferences based on

p(8,C2yK the diagnostic checks discussed above should

be employed to see whether or not Ydis concordant with

M .In particular, by referring

2
Fd * d _ .60 = 1.80F d -2

a 1
0 (*



V

to the F distribution with v - 9 and 0 6 degrees

of freedom and referring

(7d e0) 4.20 - 2
tSpd U + 9(.60)'

0 +0) 6 + 9

2.20
S ~ -__ _ __ _ __ _ K .986
[(10.1)(7.40)]'s

to the t distribution with v0 + v = 15 degrees of freedom,

no evidence is seen of model inadequacy with respect to the

prior distribution. Of course, a thorough criticism of the

model M would require that checks based on the standar-

dized residuals rd be carried out to assess the

appropriateness of p(yje,a',M) ; however only the minimal

sufficient statistics 7d and S2 are given by DeGroot.sd

Extreme cases of precise or vague prior knowledge.

The diagnostic checks developed for the present model

are summarized in the center box of Table 1 . The rest of

this table indicates the behavior of these checks when the

prior information about e and/or a' is of an extreme

nature (either very precise or very vague).
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The special cases where the prior knowledge about a2

is so precise that, in effect, it is assumed that a2  is

known to equal a ,have been considered by Box (1979b, pages
0

13-19, where al in his notation corresponds to a'/nO in
8

the present notation). Also, the special cases where the

prior knowledge about e is so precise that, in effect, it

is assumed that e is known, have been discussed by Box

(1979b, pages 24-26, where the assumed value of a is

denoted by e0 in the present notation).

In particular, consider the case where there is very

precise information about both 8 and a2 . This situation

can be approximated using a limiting argument where n 0

and 0 • On this argument, the portmanteau predictive

check given by (6) will correspond to a test of the good-

ness of fit of the data to the N( 0 ,a2) distribution.

Specifically, this test can be carried out by referring the

observed value of the statistic

n y u - eo(3
Q a E ( a t2 + vF (33)

to the X2 distribution with n degrees of freedom, where

the limiting forms of t and F are as given in Table 1

For a discussion of the relationship between precise prior

knowledge and significance tests, see Box (1979b).

-21-



Alternatively, consider the situation where there Is

relatively little prior information about either e or a2

This could be reflected by values of nO and v0 which are

very small relative to n . However, in lieu of an explicit

specification of n0  and v0 , the posterior distribution

of e and a2  can be numerically approximated in a suitable

manner by using a limiting argument such as that which will

be developed in the next section. The consequence of this,

though, would be that the predictive checks involving t and

F cannot be formally made. This should not deter the investi-

gator from rejecting the model M based on observed values of

d and/or s2 that he considers to be extremely unlikely,

since such an action can be viewed as resulting from an

informal check which, if formalized through the explicit

consideration of no  and v0 , would result in unusually

small probabilities Pr[p(tIM) < p(tdIM)IM] and/or

Pr[p(FIM) < p(FdIM)IM] . Further discussion of this point

is given by Box (197gb).

Finally, it is noted in Table 1 that, regardless of

the nature of the prior distribution p(e,a 2 IM) , the model

checks involving the standardized residuals r (or, equiva-

lently, the residual functions ul,...,un 2 ) are always

available for the investigator to use in assessing the con-

cordance between the observed data Yd and the distributional

form p(yle,a1,,)

* -2-
...



4. Discussion.

Further insight into the impact that vague prior know-

ledge has on the predictive distribution in the example of

the previous section can be gained by considering the fol-

lowing argument.

Suppose that the investigator wishes to characterize

the relatively little prior information about 8 and a2

by utilizing a prior in which 8 and q(a2  are locally

uniform and independent, where

oq , q 0

Oq(* 2 ) (34){ n a q 0

so that

q

p(e,a 2 M) (a2) (35)

The relevant posterior distributions based on the above

prior are given by Box and Tiao ()973, Section 2.4.6). In

the context of the previous section, p(ea 2 jy,M) for the

above situation can be obtained as the limiting case of

(12) - (14)*, where no  - 0 , 0 --(q + 1) and

*Note in passing that the limiting case where no * 0

and "0 * 0 will correspond to using a pritr obtained from
Jeffreys' Rule in the case there e and a are not assumed
to be independent a priori. (See, for example, BoF-and Tiao,
Section 1.3.6.) However somewhat paradoxically, the resulting
prior p(e,c~lM) (o2)3l2 would hive, from (34) and (35),
the interpretation that e and a- are locally uniform and
independent a priori.



/2

00 0 , since p(e,olM) as given by (8) - (10) corresponds

in the limit to the prior (35) above when terms not involving

e and a2 are ignored.

Using (22) and ignoring terms that do not involve

either 7 or sZ , it follows that

p(YsZIM) (sZ)2 (36)

in the above limiting case, so that the predictive distri-

bution of the maximum likelihood estimates e = y and

a2 (n-l)s2/n behaves like

p(aa=jM) (a). (37)

By comparing (37) with (34), the following intuitively

reasonable observation can be made: If the local uniformity

and independence of e and *q is assumed a priori, the

behavior of the predictive distribution is such that the

maximum likelihood estimates and 3 q a *q(82 ) are

similarly uniform and independent. Stated another way, if

the investigator believes a priori that a wide range of

values for (8,0q) are equally plausible, then the predic-

tive distribution for (eoq) will appropriately reflect

this state of indifference.

'14



It is of Interest to consider whether similar results

hold in other modeling situations. In particular, an

example involving a discrete data-generating distribution is

now Investigated.

5. The binomial distribution.

Consider a situation in which

(I) N Bernoulli trials are performed, in each

of which the probability of success is e

(ii) uncertainty about e is expressed as a

beta prior with parameters b1  and b2 , and

(III) the Investigator can observe the number of

successes, say Y , that occur in the

N trials.

The model N corresponding to the above is thus

p(Y,ejM) - p(Ye,Mlp(elM) (38)

where

p(Yje.M) - ()qY(l e)N-Y (y - O,...,N) (39)

and

r(bI + b2 1 bi - I (40
p(ejM) I e2) (1 -e) b2  (40)

r(b1 -)r(b2)

' i -25-



Subsequently,

r(N+bl+b2) Y~l 1 N'Y+b2"I

P(eIY,M) = r(Y+b1 )r(N-Y+b2 ) Yb ( 1 - e) (41)

and

r(b1 + b2 ) r(Y + bl)r(N - Y + b2 )
P ) r(bl)r(b 2 ) r(N + b1 + b2) (42)

so that once the actual observation Yd becomes available

to the investigator, the posterior distribution p(elYd,M)

can be obtained from (41) and a check on its relevance can

be made by referring Yd to the predictive distribution

(42). This predictive distribution, which is sometimes

calfed the beta-binomial (see, for example, Kendall and

Stuart, 1969, page 146) is such that

E(YIM) - N b 0 '

Var(YIM) aNbb 2(bl+b 2+N) NN+N 
(43)

(b +b)2(bl+b2+l) No +1

where eO - bI/(bl+b2 ) and No - bl+b2

For the situation where there is relatively precise

prior knowledge about 8 in that No  is very large in com-

parison to N , the predictive check involving Y will

approximately correspond to the Neyman-Pearson significance
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test of the null hypothesis e -o (This correspondence

becomes exact as NO 4 a.)

Of more practical interest is the situation where there

is relatively little prior knowledge about e in that N0

is small in comparison to N . Arguing as in the example

of the previous section, the investigator may wish to charac-

terize this lack of prior information by employing a prior

which is locally uniform in some appropriate metric

* a(e) . Three particular choices for this metric

are now considered in detail.

Case 1: 0 a e.

Since the admissible range 0 < e < 1 is finite, a

prior for e which is globally uniform (rather than Just

locally uniform) can be used. This prior would correspond

to the choices b1 a b2 = 1 in (40), so that e0 = .5

and No - 2 in (43).

Figure 1 shows, for N = 10 , the joint distribution

p(e,'eM) for this situation, where e - Y/N is the maximum

likelihood estimate of e . From (42),

1
p(YIM) " N+l (Y - 0,...N) (44)

so that a uniform prior on 0 over the Interval 0 < e < 1
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results in a discrete uniform predictive for e , assigning

probability 1/(N+1) to each of 8 * 0,i,...,. Note how this
N

relationship between the prior for e and the predictive for

is analogous to the relationship between the prior for the

normal model parameters and the predictive for their maximum

likelihood estimates that was discussed in the previous section.

To further develop the prior-predictive correspondence

in the present example, consider the predictive cumulative
A

distribution function of 6

0 , t<a

{(Nt5+lF(t)+ 0 < t < 1 (45)e^(t) • N+l

1 , t>1

where [Nt] denotes the integer part of Nt . Since the

prior cumulative distribution function of e is

Fe(t) * t ,0 t < 1 (46)

I t > 1I

it is easy to see that Fa(t) converges in distribution to

Fe(t) , since ([Nt]+l)/(N+l) * t.as N * - for all 0 < t <1

Case 2: sin-1/e.

This metric is recognized as the familiar asymptotic

variance stabilizing transformation for the binomial distri-

bution. It is also the metric in which an approximately

noninformative prior distribution, as determined by Jeffreys'
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Rule, will be locally uniform. (See, for example, Box and

Tiao, 1973, Sections 1.3.4 and 1.3.5.) However, since the

admissible range 0 < sin'I/V < n/2 is finite for this metric,

a globally uniform prior can be considered. In terms of the

original metric B , this prior will correspond to the choices

b, . b2  a ; in (40), so that e. = .5 and N. = 1 in (43).

IFrom (42),

p(YiM) (Y + +) (N - Y + h) (y = 0,...,N). (47)
r(Y + 1) r(N - Y + I)

Note that this is a symmetric, "u-shaped" discrete distribution

and, as such, the value(s) of Y having smallest probability

will be Y - M/Z for N even and Y a (Ntl)/2 for N odd

Hehce, all values of the maximum likelihood estimate =

sin-lIe= sin 1 /77 will not be equiprobable in the predjct .e

sense. The failure of the uniform prior for -sin 1/ to

produce a uniform predictive distribtulon for $ in this case

Is seemingly inconsistent with the logical findings in the

examples previously discussed (the normal example in Section 4

and Case I above for the binomial example).

Further comparison of the present case ( -sin' 1 /)

with the previous case (0 - e) reveals a possible source

of the above apparent inconsistency. For the 0 a e case,

with N fixed, the N+l possible realizations of the esti-

AA

mate e (i.e., 8 Ii/N for I - O,...,N) are evenly

spread over the interval 0 < 0 < 1 corresponding to the

-30-
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admissible range for 8 This, along with the uniform

prior for e , results in predictive probabilities for

e which are uniformly distributed over these N+l possible

values. However, for the * sin 1le case, the N+l

possible realizations of the estimate $ (i.e.,

sin-147ff for I - O,...,N) are unequally spaced over the

A ir
interval 0 < -1 i corresponding to the admissible range
for 0 (although they are spaced symmetrically about the

midpoint of this range, w/4). Note that this unequal

spacing is such that the possible values for 0 become

more spread out as one moves away from the midpoint and

towards either end of the admissible interval. It can

thus be heuristically argued that, due to the continuous

uniform prior for * , the discrete predictive distribution

of * compensates for the nonuniformity, per se, of the

spacing of possible $ values by assigning larger probabili-

ties to those values which are further away from the midpoint

r/4 , in accordance with the increasingly spread out nature

of these values. The result of this compensation is that
A

the predictive probabilities of different intervals for

having the same length are more nearly equal than they would

be if, say, the predictive probabilities of the N+l possible
A

values for * were all equal.

-31-
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A formal justification of the above heuristic argument

can be developed by comparing the prior cumulative distri-

bution function of *

0 , t< 0

t i
F (t) < t < (48)

t >/i
1 , t>-wl

with the predictive cumulative distribution function of 0

0 * t< 0

[Nsln2 t] I r(J + ) r(N - i + )
F M 0 , < t < -

1-0 7 r(l + 1) r(N - i + ) - -2

1 t> .

(49)

It turns out that FA(t) converges in distribution to

F,(t) , a result which immediately follows from the fact
A

that the predictive distribution of 0 converges to the

prior distribution of e for any choice of b1 > 0 and

b2 > 0 in (40) (and, in particular, for the choice

b1 a b2 * pertaining to the present case). The proof

of this fact is given in the Appendix; verification of this

fact for the particular choice b1  b2 - 1 was given in

the discussionof Case 1 above.
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Visual insight as to the nature of the above result

can be gained by considering Figures 2a, b and c, which

show for N a 20, 50 and 100 , respectively, the predictive

cumulative distribution function of $ - sin-1l/y "7 (the solid

line in each figure) as compared with the uniform prior cumu-

lative distribution function of * - sin-'r (the broken

line in each figure). Notice that, even for N - 20, these

two distribution functions are in close agreement except at

the extreme ends of the interval 0 < < ! , where the dis-
2

agreement will necessarily be accentuated due to the discrete

nature of $ and the way in which the possible realizations

of are spread along this interval.

Thus, to summarize this second case, it has been

-Mg& .a jrgejhat the predictive distribution (47), which at
-No -MOEMN .. oft.

first glance seems to betray the vague prior information

about * a sin-l r that is used in generating it, can upon

closer look be interpreted in a sensible manner when expressed

in terms of $ - sinv'l77 , since it is the unequal spacing

of the possible $ values that produces this u-shaped

distribution,

; e_
Case 3: -n

This metric corresponds to the logarithm of the odds

in favor of observing a success as the outcome of a single

Bernoulli trial. Consideration of the "log odds" as an

-33-



LL a

CDo

U-1

- ~ ~ ~ ~ * (D W -r M .*

Prsi-' <I I ~
L) .

LUZ



UD

LLU-

LU

LI

C-35



L-1

Ac:

C3

°

LLJ

uC 3

IIIi ji i I o•i o

S

I'
L)

Li.,i
a-4

9 9

P(sin- .  w IM)

-36-



appropriate metric in which to express prior ignorance has

been advocated by several authors. (See, for example,

Lindley, 1965, Section 7.2 .)

In terms of the original metr-ic e , a locally uniform

prior for = in(j.") will be such that

p(elM) e-l(l - e) " . (50)

Note that, unlike the previous two cases discussed,.the

admissible range for the present choice of 0 is infinite.

(Specifically, this range is the extended real line,

-- < < - .) Hence it does not make sense to talk about a

globally uniform prior for * . Also notice, however, that

if terms not involving e are ign2red, then (50) can be

obtained as the limiting case of (40) with b1 . 0 and

b2 - 0 (or, equivalently, with No - 0 for e0 = fixed,

using (43)).

It is precisely this limiting argument that Dawid

(1979) uses as an illustration of a situation where the

appropriateness of model checking via the predictive dis-

tribution is, in his view, questionable. Specifically, he

notes that the limiting form of the predictive distribution

for this example is

Pr(Y OIM) * Pr(Y * NIM) = 3 , (51)

1 _-37-



so that, in Dawid's words, "any value 0 < Y < N discredits

this 'model-cum-prior'.1

It should be noted, however, that although Y - 0

and Y - N have a combined predictive probability of unity

in the limit, the corresponding limiting posterior distribu-

tion of * (or, for that matter, of 6 ) does not exist

(i.e., is improper) for both of these values of Y !*

To better understand what is happening for this case,

it is worthwhile to take a closer look at this limiting

process. For any fixed No > 0 , with e0  also fixed,

the prior distribution for e is equivalent to a globally

uniform prior in the metric
NO-

f (t(l - t)]2  dt . (52)

(In particular, the choices No u 2 and N0 - 1 cause (52)

to correspond to e and sin' 1 /8 , respectively; these were

the previous two cases discussed.) The result in the Appendix

can then be applied to conclude that the predictive cumulative

distribution function of the maximum likelihood estimate

*It is interesting to note that Lindley (1965) takes

the view that "reliable inferences cannot be made about the
ratio of successes to failures until an example of each has
occurred" whereas Bernardo (1979) finds using the Case 3 prior
to be "less than adequate" in comparison to using the prior
discussed in Case 2.
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No

f fYt( - t) 2  dt (53)

of the metric (52) converges to the uniform prior cumula-

tive distribution function for this metric. Thus the argu-

ments supporting the reasonableness of the predictive dis-

tribution for Cases 1 and 2 will also apply to the present

general situation where No > 0

However, setting N0 a 0 (rather than No small and

positive) causes the metric (52) to correspond to
n and thus have an infinite admissible range (rather

than the finite range obtained with any NO > 0 ). Further-

more, the Appendix result cannot be used as a formal

argument supporting the predictive distributional form.

Nevertheless, the heuristic argument used in Case 2 to justify

the nature of the predictive distribution there applies here,

too; since Y = 0 and Y - N yield maximum likelihood esti-

mates a -, and w - , respectively, for * a tn(1- O)

which are so far removed from the other possible realizations

of $ that, in order to appropriately reflect the improper

prior for 0 over the whole extended real line, the pre-

dictive distribution for $ assigns probability to each

of +@ a + (In other words, this is an extreme case of a

"u-shaped" distribution caused by the discrete nature of

and the unequal spacing of its realizations.)
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6. Further remarks on the binomial examDle.

The binomial example just discussed

illustrates how care should be exercised in the interpre-

tation of predictive distributions which arise from discrete

data-generating distributions in situations where the prior

information about the parameters is vague.

In this example it was explained how, given a

reasonable representation of vague prior knowledge with

respect to some metric of e , the predictive distribution

of the maximum likelihood estimate of the metric of interest

will appropriately reflect this ignorance. The three most

popular candidates for representing the vague prior infor-

mation were eaih discussed individually. (For the problem

of deciding which of these three choices should be preferred

over the others, the reader is referred to Section 3.4 of

Bernardo, 1979, and the references in that paper. )

It should be noted that, although these three

choices give rise to quite different predictive distributions

for Y , the corresponding posterior distributions for e

will not differ greatly in most cases, when N is not too

small. Specifically, Good (1965) comments that "when there

are more than three successes and three failures, there is

little difference between the three methods. . .for many

practical purposes."
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Finally, note that from the beginning it has been

assumed that only the number of successes Y that occur in

the N trials is observed by the investigator. Suppose,

instead, that each of the N actual Bernoulli trial results

is observed Individually, so that a vector Y ' (Y, ...,YN)'

of zeros and ones corresponding to failures and successes,

respectively, represents the experimental results. Then, in

terms of the previous model p(Y,eIM) given by (38), the

relevant model now becomes

p(y,elM) - p(yle,)p(OIM)

a p(yIY,.M)p(Ye.IM) (54)/
where the additional factor

(N)-l" for Y -
p(yIYM) f (55)

0 otherwise

can be viewed as the conditional predictive distribution of

y given Y and can thus be used in obtaining diagnostic

checks for departure from the assumed form of the data-

generating distribution caused by, say, serial dependence.
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7. Summary.

This paper has dealt with an approach to model

building whereby a sampling theory argument is used in

criticizing a tentative-model by referring diagnostic functions

of the observed data to their appropriate reference predictive

distributions, while a Bayesian argument is used in esti-

mating the model parameters via the posterior distribution.

Examples involving the normal and the binomial distributions

illustrated the main points of this approach. Particular

attention was given to situations in which.prior knowledge

about the parameters was vague and, for the binomial case,

particular difficulties in predictive distribution interpre-

tation were discussed.
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Appendix. Proof that the predictive
distribution of e' converges
to the prior distribution of
e for the binomial model.

The prior cumulative distribution function of 8

and the predictive cumulative distribution of §are,

respectively,

0 t < 0

F ~t r(b1 + b2) ubr1-0 - U 21d
Fe(t) f u ( ) d

0 r(bl)r(b2)

t > t 1

(Al)

0 , t<0

Fi)[Nt] Nr(b1+b2) r(i+bl)r(N-t~b2)
8s 1= r(b,)r(b2) r(N+b1 +b2)

1 , t>lI

(A2)

These agree exactly on the intervals t <0 and t > 1

For t 0 F8(0) - 0 , while FO(0 r~ 1 b2) r(T 2  0
r(N'b2  9r(b 1) r(N~b1 +b2)

as N. * since r(~lb)behaeves like N 2for

N large *as can be verified from Stirling's series. (See,

for example, Box and Tiao, 1973, Appendix A2.2.) It thus

suffices to show that



[Nt] ( r(i + bl)r(N -I + b2) t b1-l b2-

i1o r(N +b1  + b2) 0

(A3)

as N-e for 0 <t <1

Now, the summand on the left-hand side of (U3) can

be written

r(N + 1) r(i + bl) r(N - I +* b2) (4

r(N + bi+ b2) r(i + q) r(N - i + 1)

which behaves like

Nl-bl -b2 1b 1-1 (N-ib2-1 (A5)

for N *I and N-I all large; so that summation from

i~ a [n N] + 1 to 1. [Nt) for N large gives

I Nt) b-l b-
.1 -)-- (A6)

N in[In N3+l N N)

which is recognized as a Riemann sum representation of

the integral

CNtJ/N b1- - 2-1 A7
f u (1 U du (7

Eln NJ/N
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Furthermore, when N is large and i is small in

comparison, (A4) behaves like

l-b1-b2 r(i + bl) b2-l
N . ~ ),N (A8)

so that summation from 1 0 to i - [in N] for N large

gives

N b, [In NJ r(1 + b 1) b I r(ain N] + b1 + 1) * (9
1. E0 r(i + 1) N rai*n NJ + l)b It9

which behaves like

and thus approaches zero as N * .Hence, letting

N a in (A7) gives the desired result (U3).
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