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: ABSTRACT

? The recently advanced philosophy of model building is developed further.

1 i It is stressed how Bayesian inferences based on the posterior distribution of
the model parameters are appropriate only after sampling theory inferences

based on the predictive distribution of the data fail to discredit the model.

1 ¢ An example involving the normal distribution is discussed in detail. ODiagnostic
checking functions are developed which can be applied in an intuitive sequential
manner. Careful attention is also given to the nature of the predictive distri-
bution for the extreme situation where information about the parameters is very

precise or very vague. For the latter case, it is illustrated how the predic-

tive distribution can simultaneously (i) reflect this vague information in an

appropriate manner and (ii) allow for the checking of the adequacy of the basic
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distributional assumptions such as normality and independence.

~
v

A particular problem in the interpretation of predictive distributions

arises in situations involving a discrete data-generating distribution with
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vague prior knowledge about the parameter(s). This problem is explored in depth

for the case of the binomial distribution.
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SIGNIFICANCE AND EXPLANATION

The objective of many scientific studies is to develop a model which will
provide a reasonably simple yet sufficiently adequate representation of the
phenomenon under consideration. At various stages of a scientific investiga-
tion, a confrontation occurs between the model being tentatively entertained
at that stage and the data that have been collected up to that stage. Model
estimation and model criticism are the two devices which are used by the
investigator in performing the dual roles of model sponsor and model critic
that are necessary for the advancement of knowledge. This paper explores in
further detail a viewpoint of model building, whereby model criticism requires
the sampling theory made of statistical inference, while model estimation
enploys the Bayesian mode of statistical inference. In particular, the

implications of having only vague prior information about the model parameters

are explored.
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The responsibility for the wording and views expressed in this descriptive
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SOME ASPECTS OF MODEL ESTIMATION AND MODEL CRITICISM

Steven P. Bailey and George E. P. Box

1. Introduction.

The objective of many scientific studies is to de-
velop 2 model which will provide a reasonably simple yet
sufficiently adequate representation of the phenomenon
under consideration. The most useful models. of this nature
will typically be those which elucidate not only the deter-
ministic relationships among the variables of interest but
also the stochastic relationships among the experimental
errors associated with these variables. (Here the meaning
of the term "deterministic relationship" is not restricted
to mechanistic relationships derivable from existing
theory; rather suitably developed empirical relationships,
such as polynomials, are also considered as being determinis-
tic.) In thispaper a theory of model building recently
advanced by Box (1979b) will be outlined and studies in further
detail. (See also, for example, the following: Box, 1979%a;
Box, Hunter and Hunter, 1978; Box and Jenkins, 1976; Box and
Tiao, 1973; Box and Youle, 1955).

At various stages of a scient{fic investigation, a
confrontation occurs between the modél being tentatively
entertained at that stage and the data that have been
collected up to that stage., Model estimation and model

criticism are two fnferential devices which aid the

Sponsored by the United States Army under Contract Nos. DAAGZ9-75-C-0024
and DAAG29-80-C-0041.




investigator in performing the dual role of model sponsor
and model critic.

Model criticism techniques focus on the question of
whether or not there is approximate concordance between the
data currently available and the model in its current form.
If some particular aspects of the data seem to be dis-
cordant with respect to the model, then either the model
will need to be appropriately modifie& in an attempt to
alleviate the model deficiencies, or further data will need
to be collected in order to explore the inadequate aspects
of the model. The broad spectrum of diagnostic techniques
available for model criticism ranges from the informality
of examining residual plots to the formality of carrying
out goodness of fit tests, but it is argued that all such
techniques are justified by the sampling theory mode of
inference.

Model estimation is meaningful only when the appli-
cation of the above model criticism techniques fails to
reveal any model inadequacies. If such is the case, then
it is appropriate to employ Bayes' Theorem in estimating
the unknown model parameters by obtaining their joint
posterfior distribution. The use of Bayesian inference in
model estimation is a logical consequence of the view that

a model {s, in effect, a joint probability statement of all

assumptions, both explicit and implicit, which are to be




tentatively entertained at the current stage of the

A fnvestigation.
E % Now, the model building process is iterative by
E ; nature, and, as such, there is no single approach that will
. i be appropriate at every stage of this iteration. Thus 1t

is not unreasonable to argue as above that two different

g

kinds of statistical inference are required in order for

G s sl

an investigator. to be able to both sponsor and criticize

a model,
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2. Model specification and subsequent inferences.

Denote by M the model under consideration at a
given stage of an investigation. This model can be con-
veniently expressed as the joint distribution of the po-

tentially observable data vector y and the unknown

i e

parameter vector 6 and can thus be written

p(y.0[M) = p(yle,M)p(8[M). (1)

When viewed as a function of y for 9 given, p(glg.M)

e

P SO S

is referred to as the data-generating distribution or, more
simply, the data distribution; when viewed as a function of
8 for y fixed, p(zlg.M) is the 1ikelihood function. This 3

factor combines with the prior distribution p(6|M) , which

as argued above is an essential part of the model, to yield

the complete model statement given by (1).
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This expression can be subsequently factored as

p(y.0[M) = p(e|y.M)p(yiM) (2)
where
plyIM) = £p(glg.M)p(§IM)dg (3)

: and

p(yle,M)p(e[m)
p(ely.M) = AL (4)
p(yIM)

are, respectively, the predictive distribution of y and
the posterior distribution of 8 with © denoting the
parameter space of 8 . Upon obtaining the actual data,
which will be denoted by Yq ° the posterior distribution
is

P(yql8,MIp(8]M)

p(e M) = ’ (5)
*g PlyqlM)

where the normalizing factor in the denominator is seen to
be the predictive density (3) evaluated at Yq-
The predictive distribution (3) acts as a reference

distribution for the observed data vector Yq » and thus an

overall portmanteau check of the "goodness”" of the model M

is given by the probability

Rt LR
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Prip(yIM) < ply4lMIM, (6)

If this probability is unusually small, then the posterior
distribution p(glgd.u) provides the means of making
inferences about the parameters © of a model M that is

of questionable relevance! Stated in this way, the role of

the predictive distribution in model criticism is Jjusti-
fiably emphasized.

0f course, due to its portmanteau nature, the check
(6) does not comment on the specific ways in which the
n-dimensional data vector Yq may be in discord with the
model M . Of more use to the investigator will be indi-
vidual checks which are sensitive to particular aspects of
possible model inadequacy. Thus, if a particular function
of the data, say g(!) » 1s appropriate for assessing the
validity of a particular model assumption, then the referral
of the observed value 9(¥d) to its reference distribution
p(g(z)]ﬁ) , obtainable by integration of the predictive
distribution, provides a formal check relative to the as
assumption in question. Moreover, informal model criticism
techniques such as the examination of residuals can be
viewed as a search for any unusual feature of Y4 which
suggests podel inadequacy; so that, if desired, a formal
assessment of the "unusualness" of such a feature can be

effected by referring an appropriate summary measure of

the feature to its reference distribution derivable from
ply[™) .




To {llustrate the above concepts, an example is now

considered.

3. The normal distribution.

Suppose that y = (yl,...,yn)' is a vector of n
independent observations that are normally distributed with
common mean 6 and common variance o2 , where 6 and o?
are unknown but have a joint prior distribution such that
conditional on a given o2 , 8 s ﬁorma1ly distributed with
mean 8, and variance ozlno and that marginally o‘/voaoz
has an inverted x?® distribution with vy degrees of
freedom. We will not necessarily assume that no is an
integer or that VO = n0 - 1; however, if this were the case,
then the above joint prior distribution would be equivalent
to assuming that a relevant set of past data Yo °

(yOI,...,yon )' had been combined with a non-informative
0

n
2 =5y, = 0

prior for & and o so that eo Yo ng ufl you and

1 1o
= B  cumen _—2

ooz soz - I (You yo) . (See, for example, Box
0 u=1

and Tiao, 1973.)

Thus

.n
p(y|e,o0?,M) = (2mc?) z exp{-zl; [vs? + n(y - 8)2%]} (7)
b o

ith y = 1 2 v = n-l and s? = 1 2 (y -Yy)?%; and
" Y n uiyfu ! v u=1'u ’




p(8,0?|M) = p(e]o®,M)p(a?|M) , | (8)
2 2“02 -3 nO
p(efa?,M) = (&—)"% exp{-—(0& - &8 )%} , (9)
o 203 0
Vo T . v -v,02
Vo Y - {41 0 0°0
p(a?|M) = {I‘(--Q-)Z2 }'l(a’)';2 +ﬂ(voos)f_ exp{ } s
2 202

(10)
these combine to give the complete model! statement
ply,8,0%|M) = p(yle,o®,M)p(8,0%|M)
= p(yle,o?.M)p(e]o®,M)p(dIM) . (11)
Now it is well known that the joint posterior distri-

bution of 8 and o2 1is such that conditional on a given

62 , 6 1s normally distributed with mean & =

ngég + ny g?
._;;_:—;—- and vartiance ng ¥ 1 and that, marginally,

o’/(vo + n)d? has an inverted x2? distribution with

vg *+ n degrees of freedom, where (vo +n)g: =

non(i - eo)z

2 4+ ys? + . Thus
n°+n

VOGO




p(6,0*[y,M) = p(8ly,o®,M)p(a?|y.M) , (12)

2 n, +n ~
p(8|y,o%,M) = (;%E%—i)'% exp{- Ozaz (6 - 08)%} , (13)
and
V. + n Vo +n
Vo * N 7, Y
p(o?|y.M) = (r( > )2 } " (e?)
\’0 +n
«(v, + n)d?
x {{vg + n)g?} 2 exp {—2 } .
202
(14)

If (11) is factored as

P(y,8,0%{M) = p(e,o*|y,M)p(ylM)

= p(8ly,o®M)p(a®|y,M)p(y[M) ,

(18)
it follows that
Vo +n \
2 - 2 )
P(ZI") = CIC(VO + n)& ] ’
(16)
)
-0 n r[(vq + n)/2] ;2
c a 2- 0 i 0 2 .
1 ‘" (no +n T(VO/Z) vOGO) J




Model criticism will involve using the above pre-
dictive distribution to assess whether or not relevant
aspects of the observed data vector y, are in concor-
dance with M . For this example, the most useful diag-
noiiic sample quantities can be expected to directly involve
Yy, s, and the standardized residuals re=(y-yl)/s;
thus it will be convenient to make the following transforma-
tion. First, make an orthogonal transformation from y to
vse (vl.....vn)' with v, = vn Y , and then transform ffom

v to ¥y, s*,and y = (u,...,upp)" with

. .
(3 i T
')
J1_11

The first transformation has unit Jacobian, while the

Y3

second transformation has Jacobian

v i+l s
- 1n-2 .
J = cz(s‘)z "1 (1+:—3—)( 2 )
> (18)
n -1
c; = n¥n-1) % [r(n-1]%, J
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Hence,
p(y,s?,ulM) = p(y|M)|J]
v Vo tn
-1 -
s CICZ(Sz )-2- [(\’0 + ﬂ)O’z] [ 2 ]
_2 2 _ j + 1
ML el e (19)
=1 J

In the above, the factor involving a given uj is pro-

portional to the s;andardized t density with j degrees

of freedom, so that

u? -(j + 1)
) j
plugh) = a1+ 33 © 2 7,
r (20)
rL(§ + 1)/2]
3 T o(im)Er(ise) /

The uy 's are mutually independent and indepepdept.of ¥y

and s? , so that |
\
n-2 n-2 v - (-1 i
p(ulM) = Rlp(uj|M) = Cy n1(1 + i) z ﬁ
. ! L (21)
4
n=2 .(kl) -1 - .
¢y - Ny - v 2 (-] ’i.)

i=1
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# &
T %;‘
);
:
K4
E

(Vo +n

[lvg + 0321 Z . (22)

v
_ c,C = -1
p(Y.s2|M) = L2 (s2)2
C3

2 2 2 -
Writing vpsp = V4% + vs® , where Vp

Vo *v = vyt - 1, so that (vo + n)g: =
2 non(y - 90)2
vpsp * g ¥ 1 » (22) then becomes
v Vo +n v, + 1
C.C 2 -1 -( ) -( )
- 12 2
P(Fastln) = (R ()8 vpsp) 2 T -:—;) .
(23)
where
(y - 8p)
0 (24)

1, Ly, -
(no+n') *p

The above establishes that transformation from y to t

will achieve 1ndepeﬁdence. The Jacobian of this trans-

formation is

\
Y . ol L% . b
;: ("O + ;) sp C4(vpsp) ’
y\  (25)
. (L., 1 -k
C4 (no + n)k vp . J




Hence,
_ 1
plt,s2|M) = p(F,s2{m)|L ,1
at
v, + Vv v.+1
c.c,C LA | S Gl (P
= EEHEHT s = +§-§) =)
v Vp + 1
c,C,C 232 " 1 2" ( ) 1
= (1:3§54 (s) Vg * V Cs(1 + %;) 2
(vps3) 2 )
= p(s®|M)p(t]M) , (26) ,
v, + 1
P N
- tz '( 2 )
p{t]|M) Cs(1 + q) ,
> (27)
. . r(vp + 1)/2]
® (v m)%r (v, /2) : )
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Y.
C1C2C4, [ (s2)2

(st|M) = (=22
P | ( C3Cs ( 3 vg2+ v
vpsp)
(\)0+\)) (z)%).-l
Cq{ChC - S :
1v¥2“-4 -7
= (—E—E——i(voqa w o 2 Vo + vV
) v_s
[1+__{pp] 2 )
Yo%
-1
. c1°z°4°s) F .
CaC Va *+ V
3¥5 v 0
51+—F z
v
va * V v
0 0
() L -G
C5 = VO 2 (08) 2 1
with
2
F = &~ ,
) qoz
so that

«13-

(28)

(29)




( 3
F% ik
( §
p(FIM) = ¢, v°+vr ,
[} + X é] 2
~ vo P4
P (30)
V0+V
\Y
r( 2 v 2 C1€2CqC6, ,
C; = ————(=)" = (=)o} . J
Vo, vy VO C3¢s °°0
r(zir(3)

In summary, then, by transforming from y to
t = (¥ - eg)/(1/ng + 1/n)%s3 , F e s2/o} , and the
quantities u = (ul,....un_z)' defined by (17), the
predictive distribution of y in (16) can be alternately

expressed in the form
n-2
p(t,FulM) = p(tna)p(nmju1 p(u[M) (31)

whichis more convenient for the purposes of model criticism.

Nature of the diagnostic checks.

The above quantities can be utilized in the following

sequential manner:
(1) The vector r of standardized residuals has a

sampling distribution which is uniform over the surface of
an n-1 dimensional hypersphere of radius vn-1 which

1ies in the subspace that is orthogonal to the vector 1

-14-
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in n space (Andrews, 1971). Since this sampliing distribu-

tion 1s independent of 6 and o? , 1t will also be the

predictive distribution of the standardized residuals. Now,

the purpose of examining residuals, either informally through

’i‘ residual plotting or formally through the explicit considera-

tion of any suitably chosen function g(r) » §s to assess

ST S )
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whether or not r 1ies in a "suspicious" direction (Box,

1960) due to some inadequacy in theassumed data-generating dis-

tribution (for example, caused by a lack of independence or of
normality). Since any function of r can be equivalently

expressed as a function of U , the suspiciousness of the

observed value 9(Id)('h(2d)) of any function g(r)(=h(u))

of tnterest can be assessed by using the reference distri-
bution p(h(g)ln) obtainable from p(ulM) .

For the purpose of illustration, suppose it was sus-

pected that the responses y might be approximately

1inearly affected by a variable & (say, lab temperature)

%f which takes values £, = (Ej4....E44)' for the n

observations. If, in terms of the orthogonal transformation

from y to v wused earlier, we define v, = C'y with

; A -~ -~ - n

. C = - E41)/S.4 » where -1l 3 and

; € = (8q - Bal)/Sgq o W R

; - = ° T )2

: sed jfggid sd) ,» then a checking functifon appropriate

for this situation would be wu,_ , , as defined by (17).

Referral of the observed quantity U(p-2)d to the t

distribution with n-2 degrees of freedom provides a check




on this possible departure from the adequacy of p(!le.o’.M).
Note how this check 1inks up with the techniques of residual
plotting.(of the Ty 's vs. the €54 's) and analysis of
variance (where it turns out that "zn-z)d is the mean
square ratio MSyipear/MSregidual)-

(2) If the above checks yased on the ug ‘s and the
quantities derivable frocm them do not invalidate the part of the
model given by the data-generating distrjbution. then atten-
tion can be shifted to the apﬁropriateness of the prior dis-
tribution. In particuler, referral of the observed duantity
Fq = s;/oa to the F distribution with v and Vb degrees
of freedom provides a check on the concordance of the sample

estimate of o?2 , s; » with the prior mean for o2 , °3 .

(3) A chegk cn . the concordance of Ya. the

sample estimate of 6., with 60 » the prior mean of 8 ,

is provided by referring the quantity t4 =
- 1 1
(¥q - 60)/(ﬁa_+ ﬁjqu to the t distribution with

Vp * Vg + v degrees of freedom. Note that the denominator

of t4 utilizes the estimate s;d of o2 which results

from pooling s and 06.

(4) If all of the above checks do not indicate ‘
model fnadequacy, then the investigator can proceed to make

inferences about 6 and ¢? from p(e.azlgd,M) .




In particular,

(1) @ , the posterior mean-of 6 , ts obtained as

3 weighted average of Yd and eo ,» and

(11) &% , the posterior mean of o2 , {s obtained by

pooling s;d with the single degree of freedom

estimate non(ya - 96)2/(“0 +n) of ao? .

TR

A numerical example.

DeGroot (1970, p. 171) gives an example involving the
present model, where the joint prior distribution of € and
g? is chosen to satisfy E(e|{M) = 2 , Vvar(e|M) = §5 ,
E(o2|M)= 3 , and Var(c"2| M) = 3 . In our notation,

this corresponds to

6g = E(e|M) = 2, ‘
2 211 .
o = [E(e2m)]") = T,
r (32)
vo *® 2[03 Var(a‘ZIM)]'1 = 2[(%)’3]‘1 = 6,
[0 ot 1 . (6 (L) (1 1
g * '\','0_"._'2'00["“'(”“)] " (T)(g)(g) BT I ‘




! DeGroot then uses the summary statistics Ya = 4.20

n
- ¥,)? = ysk . =
and ufl(yud Yg) vsq ® 5.40 from a vector y4q of n=10

observations to obtain the joint posterior distribution of

6 and o? , which, in our notation, is such that conditional

on a given o2 , @ 1is normally distributed with mean

= . M * Mg | (1)(2) + (10)(4.20) _ 42.2
d ng + n .1 +10 10.1

and variance o*/(ng+n) = 02/10.1 , and that marginally
0?/(vg + n)3§ has an inverted x® distribution with

vg +n = 16 degrees of freedom, where

- 2
non(yd eo)

(vg * n)gi = vgof + vsg +
no-l-n

(.1)(10)(4.20 - 2)* « 7.88 .
.1 + 10

= 6(}) +5.40 +

However, before making inferences based on
p(e.azlgd.n) » the diagnostic checks discussed above should

be employed to see whether or not ¥4 {s concordant with

M . In particular, by referring '
5 2
1 s
? Fq » -5 - —i— = 1.80
i g 1
1 -18-

¥
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to the F distribution with v = 9 and vg * 6 degrees

of freedom and referring

. (¥q - 9) 4.20 - 2
d ° 4 - 1
1, Lk 6(3) + 9(.60)7*%
G+ s 1, 1,%0'3
ng n’ >pd (.1,+ 10] =3
2.20
[(10.1{5(7.@)]15 988

to the t distribution with Vg t Vv = 15 degrees of freedom,
no evidence is seen of model inadequacy with respect to the
prior distribution. Of course, a thorough criticism of the
model M would require that checks based on the standar-
dized residuals r

~d
appropriateness of p(g|e.c’,M) ;+ however only the minimal

be carried out to assess the

sufficient statistics Yd and s; are given by DeGroot.

Extreme cases of precise or vague prior knowledg;?\;

The diagnastic checks developed for the present model
are summarized in the center box of Table 1 . The rest of
this table indicates the behavior of these checks when the

prior information about 6 and/or o2 is of an extreme

nature (either very precise or very vague).
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The special cases where the prior knowledge about o2
is so precise that, in effect, it is assumed that o* s
known to equal as » have been considered by Box (1979b, pages
13-19, where o; in his notation corresponds to oa/n0 in
the present notation). Also, the special cases where the
prior knowledge about 6 1is so precise that, in effect, it
is assumed that 6 1s known, have been discussed by Box
(1979b, pages 24-26, where the assumed value of 8 fis
denoted by 8¢ in the present notation).

In particular, consider the case where there is very
precise information about both 6 and o2 . This situation
can be approximated using a 1imiting argument where g = =

and Vg * = . On this argument, the portmanteau predictive

check given by (6) will correspond to a test of the good-
ness of fit of the data to the N(8,,05) distribution,
Specifically, this test can be carried out by referring the
observed value of the statistic

qQ = Irl(!L—eﬂ) = t2 + vF (33)

u=1 %

to the 2 distribution with n degrees of freedom, where
the limiting forms of t and F are as given in Table 1
For a discussion of the relationship between precise prior

knowledge and sign1f1cance'tests. see Box (1979b).




Alternatively, consider the situation where there 1is
relatively little prior information about either ¢ or g2 .
This could be reflected by values of n and v which are

0 0
very small relative to n . However, in lieu of an explicit

’specification of g and Vg o the posterior distribution

of 9 and o2 can be numerically approximated in a suitable
manner by using a 1imiting argument such as that which will
be developed in the next section. The consequence of this,
though, would be that the predictive checks involving t and
F cannot be formally made. This should not deter the investi-
gator from rejecting the model M based on observed values of
¥4 and/or s; that he considers to be extremely unlikely,
since such an action can be viewed as resulting from an
informal check which, if formalized through the explicit
consideration of No and vo » would result in unusually
small probabilities Pr[p(t|M) < p(tdIM)lM] and/or
Prip(F|M) < p(F4IM)|M] . Further discussion of this point
is given by Box (1979b).

Finally, it 1is noted in Table 1 that, regardless of
the nature of the prior distribution p(e,02|M) , the model
checks involving the standardized residuals r (or, equiva-
lently, the residual functions u1,...,un_2) are always
avajlable for the investigator to use in assessing the con-

cordance between the observed data Yq and the distributional

form p(y|e,0%,M) .




4, Discussion.
Further insight into the impact that vague prior know-
ledge has on the predictive distribution in the example of

the previous section can be gained by considering the fol-
lowing argument.

Suppose that the investigator wishes to characterize
the relatively little prior information about 6 and o2
by utilizing a prior in which o and ¢q(°z) are locally
uniform and 1ndependen€, where
o9 » Q#0

(a2 = 34
¢q o) 7 ¢neoe , q=20 (34)

3

so that
q 1
7 -
p(e,02|M) « (0?) . (35)

The relevant posterior distributions based on the above

prior are given by Box and Tiao (1973, Section 2.4.6). In
the context of the previous section, p(e,0%|y,M) for the
above sfituation can be obtained as the 1imiting case of

(12) - (14)", where ng >0, vy~ =-(q+1) and

*Note in passing that the limiting case where ng+ 0
and vo * 0 will correspond to using a pr1gr obtained from
Jeffreys' Rule in the case there © and o° are not assumed
to be independent a priori. (See, for example, Box and Tiao,
Section 1.3.6.) However, scmewhat paradoxically, the resulting
prior p(@,0%|M) =« (02)3)2 would have, from (34) and (35),

the interpretation that & and o~ are locally uniform and
independent a priori.




of ~ 0 , since p(e,02|M) as given by (8) - (10) corresponds
in the 1imit to the prior (35) above when terms not involving
8 and o2 are ignored.
Using (22) and ignoring terms that do not involve
either y or ;2 , 1t follows that
-
p(Y.s2[M) « (s2) (36)

in the above 1imiting case, so that the predictive distri-
bution of the maximum 1ikelihood estimates & = y and

A

g2 = (n-1)s%/n behaves like

1.,
p(6.62|M) « (52)2, (37)

By comparing (37) with (34), the following intuitively
reasonable observation can be made: If the local uniformity
and independence of 8 and ¢q is assumed a priori, the
behavior of the predictive distribution is such that the r
maximum l1ikelihood estimates & and $q = ¢q(8’) are
similarly uniform and independent. Stated another way, if
the investigator believes a priori that a wide range of ]
values for (e,¢q) are equally plausible, then the predic-

tive distribution for (8.$q) will appropriately reflect 3
this state of indifference.
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It 1s of interest to consider whether similar results
hold in other modeling situations. In particular, an
example involving a discrete data-generating distribution is

now investigated.

5. The binomial distribution.

Consider a situation in which
(1) N Bernoulli trials are performed, in each
of which‘the probability of success is 6 ,
(11) uncertainty about & 1{s expressed as a
beta prior with parameters by and b2 , and
(111) the investigator can observe the number of
successes, say Y , that occur in the
N trials.

The model M corresponding to the above is thus

p(Y,o|M) = p(Y{o,M)p(e[M) , (38)
where
p(rie) = (Me¥(1 - )Y (v e0,m) (39)
and
r(b, + b,) b, b, -1
p(a|M) = _(._J_t_l)_e 1 (1 -9)2 | (80)
r(by)r(b,)
=25~




Subsequently,

T (N+by+b2)

N-Y+b2-1
POIV.M) = TO¥eb )T (N-Y+b,)

e'*b1-1(1 . g) (41)

and

P(by + bz) T(Y + by)I(N - Y + bj)
I‘(b1)r(b2) T(N + by + bjp) ’

p(YIM) = (Y) (42)
so that once the actual observation Y4 becomes available
to the investigator, the posterior distribution p(ele.M)
can be obtained from (41) and a check on its relevance can
be made by referring Yq to the predictive distribution
(42) . This predictive distribution, which is sometimes
called the beta-binomial (see, for example, Kendall and

Stuart, 1969, page 146) is such that

b
= N —1
E(Y[M) = N 5+, Mo

f (43)
b1ba(by+bp+N) Ng+N
Var(Y[M) = NT5 3b, 7310, 75,+17 * Meo(1-%0) § 7

where 8g = by/(by+bp) and Ny = by+by .
For the situation where there is relatively precise
prior knowledge about @ 1n that No i{s very large in com-

parison to N , the predictive check involving Y will

approximately correspond to the Neyman-Pearson significance
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test of the null hypothesis 8 =8, . (This correspondence
becomes exact as Ny + =.)

Of more practical interest is the situation where there
is relatively 1ittle prior knowledge about 8 {in that No
is small in comparison to N . Arguing as in the example
of the previous section, the investigator may wish to charac-
terize this lack of prior information by employing a prior
which is locally uniform in some appropriate metric
¢ = ¢(8) . Three particular choices for this metric

are now considered in detail.

Case 1: ¢ = 6.

Since the admissible range 0 <6 <1 1is finite, a
prior for 8 which is globally uniform (rather than just
locally uniform) can be used. This prior would correspond
to the choices by = b, =1 1in (40), so that 6 = .5
and Ny = 2 1in (43).

Figure 1 shows, for N = 10 , the joint distribution
p(e.glM) for this situation, where & = Y/N 4is the maximum
1ikelihood estimate of 6 . From (42),

p(Y[M) = E}T (Y = 0,...,N) (44)

so that a uniform prior on © over the interval 0 <6 <1
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results in a discrete uniform predictive for 8 ,» assigning

probability 1/(N+1) to each of g = 0,%.....1 . Note how this

relationship between the prior for @ and the predictive for

8 1s analogous to the relationship between the prior for the

normal model parameters and the predictive for their maximum

1ikelihood estimates that was discussed in the previous section.
To further develop the prior-predictive correspondence

in the present example, consider the predictive cumulative

distribution function of &

f 0 y t <0

. ] Intln
Fﬁ(t) < N

\ 1 y t > 1
where [Nt] denotes the integer part of Nt . Since the
prior cumulative distribution function of © s

r0 , t <0

Fe(t) = J t , 0<t<

L1, t>1
it 1s easy to see that Fﬁ(t) converges in distribution to
Fa(t) » since ([Nt]+1)/(N+1) > t.as N » = for all 0 <t <1

Case 2: ¢ = sin~1/8. \\\\

This metric is recognized as the familiar asymptotic

variance stabilizing transformation for the binomial distri-
butfon. It is also the metric in which an approximately

noninformative prior distribution, as determined by Jeffreys'




Rule, will be locally uniform. (See, for example, Box and
Tiao, 1973, Sections 1.3.4 and 1.3.5.) However, since the
admissible range 0 ¢ sin~/g < n/2 is finite for this metric,
a globally uniform prior can be considered. In terms of the
original metric 6 , this prior will correspond to the choices
by = b, = % in (40), so that 8y = .5 and Ny = 1 in (43).

From (42),

I T(Y + %) T(N - ¥ + &)
mT(Y + 1) T(N-Y +1)

p(Y[M) = (Y = 0,...,N). (47)
Note that this is a symmetric, "u-shaped" discrete distribution
and, as such, the value(s) of Y having smallest probability
will be Y = N/2 for N even and Y = (N#1)/2 for N odd .

Hence, all values of the maximum likelihood estimate ¢ =
sin-1/8 = sin~1/T7R will not be equiprobable in the predjctive

sense, The failure of the uniform prior for ¢ = sin-1/8 to

produce a uniform predictive distribtuion for & 1in this case

is seemingly inconsistent with the logical findings in the
examples previously discussed (the normal example in Section 4
and Case 1 above for the binomial example).

Further comparison of the present case (¢ = sin']/g)
with the previous case (¢ = 8) reveals a possible source
of the above apparent inconsistency. For the ¢ = 6 case,
Qith N fixed, the N+1 possible realizations of the esti-
mate 6 (i.e., & = §/N for i = 0,...,N) are evenly

spread over the interval 0 < 8 < 1 corresponding to the

-30-




admissible range for 6 . This, along with the uniform
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prior for 6 , results in predictive probabilities for

8 which are uniformly distributed over these N+1 possible
values. However, for the ¢ = sin~!v/§ case, the N+1
possible realizations of the estimate ¢ (i.e., & =
s1n'1/T7N for 1 = 0,...,N) are unequally spaced over the
interval 0 < ) g_% corresponding to the admissible range
for ¢ (although they are spaced symmetrically about the
midpoint of this range, w/4). Note that this unequal
spacing is such that the possible values for $ become

more spread out as one moves away from the midpoint and
towards either end of the admissible interval, It can

/ thus be heuristically argued that, due to the continuous
uniform prior for ¢ , the discrete predict[ve.ﬁjsthbution
of 3 compensates for the nonuniformity, per se, of the
spacing of possible 8 values by assigning larger probabili-
ties to those values which are further away from the midpoint
n/4 , in accordance with the increasingly spread out nature
of these values. The result of this compensation is that

the predictive probabilities of different intervals for 3

having the same length are more nearly equal than they would

be 1f, say, the predictive probabilities of the N+1 possible

values for 3 were all equal,




A formal justification of the above heuristic argument
can be developed by comparing the prior cumulative distri-

bution function of ¢

0 » t< 0
L T

F¢(t) J a2 * deteg (48)
1 s t> %

with the predictive cumulative distribution function of ¢
¢

0 s, £t <0
(NSTn®t] ) r(4 s m) TN - 1+ ) i
F . r - . >
3¢t 120 T OD(1 +1)T(N -1 +1) AR
1 . t>% .
-— ew wv eow - wma- e wwew - - ——:*
(49)

It turns out that F$(t) converges in distribution to
F¢(t) » & result which immediately follows from the fact
that the predictive distribution of € converges to the
prior distribution of 8 for any choice of b; > 0 and
b >0 1n (40) (and, in particular, for the choice

by = by = % pertaining to the present case). The proof
of this fact 1s given in the Appendix; verification of this
fact for the particular choice by = bz = 1 was given in

the discussionof Case 1 above.
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Visual insight as to the nature of the above result 1

can be gained by considering Figures 2a, b and c, which

show for N = 20, 50 and 100 , respectively, the predictive
cumulative distribution function of & = sin“1/¥/N (the solid
1ine in each figure) as compared with the uniform prior cumu-
lative distribution function of ¢ = sin~!yg (the broken
line in each figure). Notice that, even for N = 20, these
two distribution functions are in c¢lose agreement except at
the extreme ends of the interval 0 < § g‘g , where the dis-
agreement will necessarily be accentuated due to the discrete
nature of 3 and the way in which the possible realizations
of & are spread along this interval.

Thus, to summarize this second case, it has been

argued that the pgggtgyive distribution (47), which at

-— eressestasy - - . i
> & - - —.-.-.-‘- L d B -

first glance seems to betray the vague prior information

about ¢ = sin-1/g that is used fin generating it, can upon
closer look be interpreted in a sensible manner when expressed
in terms of ¢ = sin"/YTﬁ » since it is the unequal spacing
of the possible ¢ values that produces this u-shaped
distribution,

0
Case 3: ¢ = 2n(755).

This metric corresponds to the logarithm of the odds

in favor of observing a success as the outcome of a single

Bernoulld trial. Consideration of the "log odds" as an
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appropriate metric in which to express prior ignorance has
been advocated by several authors. (See, for example,
Lindley, 1955. Section 7.2 .)

In terms of the original metric 6 , a locally uniform

. 6
prior for ¢ = 2n(375) will be such that
p(e|M) « e-1(1 -9)"1 , (50)

Note that, unlike the previous two cases discussed, the
admissible range for the present choice of ¢ 1is infinite.
(Specifically, this range is the extended real 1line,
-» < ¢ <» .) Hence it does not make sense to talk about a
globally uniform prior for ¢ . Also notice, however, that
df_terms not fnvolving 8 are igngred, then (50) canbe ~__ _ __ |
obtained as the limiting case of (40) with b] + 0 and
b - 0 (or, equivalently, with Ng = 0 for 85 =3 fixed,
using (43)).

It is precisely this 1imiting argument that Dawid
(1979) uses ‘as an illustration of a situation where the
appropriateness of model checking via the predictive dis-
tribution is, in his view, questionable. Specifically, he
notes that the 1imiting form of the predictive distribution

for this example 1is

Pr(Y = 0|M) = pr(Y = N|M) = 13 , (51)

RS P Y EX SR
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so that, in Dawid's words, "any value 0 <Y < N discredits
this 'model-cumeprior'."

It should be noted, however, that although Y = 0
and Y = N have a combined predictive probability of unity
in the limit, the corresponding limiting posterior distribu-
tion of ¢ (or, for that matter, of © ) does not exist
({.e., 1s improper) for both of these values of Y 1

To better understand what is happening for this case,
it is worthwhile to take a closer look at this limiting
process. For any fixed Ny >0 , with 8 * &. also fixed,
the prior distribution for 8 1{s equivalent to a globally

uniform prior in the metric
No

—=1

e - 01% 0 ae . (52)

(In particular, the choices Ng = 2 and N0 = 1 cause (52)
to correspond to 8 and sin“/E s respectively; these were
the previous two cases discussed.) The result in the Appendix
can then be applied to conclude that the predictive cumulative

distribution function of the maximum likelihood estimate

"It 1s interesting to note that Lindley (1965) takes
the view that "relfable inferences cannot be made about the
ratfo of successes to failures until an example of each has
occurred” whereas Bernardo (1979) finds using the Case 3 prior
to be "less than adequate" in comparison to using the prior
discussed in Case 2.
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Y/N 201
[0 - 01F at (53)

of the metric (52) converges to the uniform prior cumula-
tive distribution function for this metric. Thus the argu-
ments supporting the reasonableness of the predictive dis-
tribution for Cases 1 and 2 will also apply to the present
general situation where Ny > 0 . ‘
However, setting N0 = 0 (rather than No small and
positive) causes the metric (52) to correspond to
zn(T%E] and thus have an infinite admissible range (rather
than the finite range obtained with any N0 >0 ). Further-
more, the Appendix result cannot be used as a formal
argument supporting the predictive distributional form.
Nevertheless, the heuristic argument used in Case 2 to justify
the nature of the predictive distribution there applies here,
too; since Y =0 and Y = N yfeld maximum Tikelihood esti-
mates ¢ = -» and § = « , respectively, for ¢ = zn(T%E
which are so far removed from the other possible realizations
‘ of 8 that, in order to appropriately reflect the improper
? . prior for ¢ over the whole extended real 1ine, the pre-
dictive distribution for @ assigns probability 3 to each
of § = 2= . (In other words, this is an extreme case of 2

"u-shaped" distribution caused by the discrete nature of 3

and the unequal spacing of its realizations.)




Further remarks on the binomial example.

The binomial example just discussed

3 i11lustrates how care should be exercised in the interpre-
tation of predictive distributions which arise from discrete
data-generating distributions in situations where the prior

information about the parameters is vague.

In this example it was explained how, given a
reasonable representation of vague prior knowledge with
respect to some metric of ¢ , the predictive distribution
of the maximum 1ikelihood estimate of the metric of interest
will appropriately reflect this ignorance. The three most
popular candidates for representing the vague prior infor-
mation were eaép discussed individually. (For the problem
of deciding which of these three choices should be preferred
over the others, the reader is referred to Section 3.4 of
Bernardo, 1979, and the references in that paper.)

It sﬁould be noted that, although these three
choices give rise to quite different predictive distributions
for Y , the corresponding posterior distributions for @
will not differ greatly in most cases, when N 1is not too
small., Specifically, Good (1965) comments that "“when there
are more than three successes and three failures, there is
1ittle difference between the three methods. . .for many

5 practical purposes.”
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Finally, note that from the beginning it has been

assumed that only the number of successes Y that occur in
the N trials is observed by the investigator. Suppose,
instead, that each of the N actual Bernoulli trial results
is observed individually, so that a vector y-® (y1.....yN)'
of zeros and ones corresponding to failures and successes,
respectively, represent§ the experimental results. Then, in
terms of the previous model p(Y,8|M) given by (:38), the

relevant model now becomes
p(y.0|M) = p(yle,M)p(e|M)
= plylY.M)p(Y,0]M) , (54)

where the additional factor

4

M7 for yy=v
0 otherwise

plylY,M) = < (55)

can be viewed as the conditional predictive distribution of
y given Y and can thus be used in obtaining diagnostic
checks for departure from the assumed form of the data-

generating distribution caused by, say, serial dependence.
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7. Summary.

This paper has dealt with an approach to model
building whereby a sampling theory argument is used in
criticizing a tentative-model by referring diagnostic functions
of the observed data to their appropriate reference predictive
distributions, while a Bayesian argument is used in esti-
mating the modeI parameters vi; the posterior distribution.
Examples involving the normal and the binomial distributions
{1lustrated the main points of this approach., Particular
attention was given to situations in which prior knowledge
about the parameters was vague and, for the binomial case,
particular difficulties in predictive distribution interpre-

tation were discussed.
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Appendix. Proof that the predictive
distribution of @& converges
to the prior distribution of
@ for the binomial model.

The prior cumulative distribution function of o

and the predictive cumulative distribution of 8§ are,

respectively,
/
0 y t <0
t r(by + b,) by=-1 b,-1
Fglt) = < ihha Ehihe 1A (1 - v) 2 qu » 0<t<
0 P(b])r(bz)
1 » t > 1
: (A1)
/ (
0 » t <0
[Nt] T(by+by) T(i+by)T(N-1+bs)
Fglt) =¢ 1 () — 2 1 L 0<t <
i=0 r(bI)P(bz) P(N+b1+b2)
1 y t > 1
\
(A2)

These agree exactly on the intervals t <0 and t > 1,

-

: For t =0 F.(0) = 0, while Fq(0) = o1tB2) F(Ntbo) 0
] = - s -

‘ or ® P Yhe T r{by) Tr(N+dy+bp)

;{; r(N"'bz) -bz

% as N » o , since r(N+b1+b2) behaves 1ike N for

N large , as can be verified from Stirling's series. (See,
for example, Box and Tiao, 1973, Appendix A2.2.) 1t thus
suffices to show that

[}
! ;"“c“’?:"“l‘ "«',':;“-tvp. ] DAY OAL s




[gt] N r(i + b1)P(N -1 + bz)

b]'] bz']
u

(i - u) du

4

t
/
j=g 1 (N + by + by) 0
(A3)
as N+ for 0 <t«< 1.
Now, the summand on the left-hand side of (A3) can

be written

r(N +1) (i +by)r(N-1+by)

> (A4)
P(N + b] + bz) F(i + 1) P(N -1+ ])
which behaves like
1-by=b, b,y-1 by-
NV 2y 2 (A5)

for N, {1 and N-i all large; so that summation from

{={anNI+1 to 4= [Nt] for N large gives

1,01-1

o by-1

(Nt]
] T (1 - %) , (A6)

N fs[en N]+1

which 1s recognized as a Riemann sum representation of

the integral

[Nt]/N b,-1 b2-1
u
[an N]/N

V- ) du . (A7)

poveTS




Furthermore, when N {s large and i 1is small in

comparison, (A4) behaves like

1-by=by T(1 + b,) b,-1
N 1772 17y 2

3 A8
r(i +1) (h8)

so that summation from {1 = 0 to {1 = [an N] for N large

gives

N-b] [zg N] (1 + b]) N-b] r{[2n N] + by + 1)

— = R (A9)
i=0 T(if + 1) r([en N] + l)b1
which behaves like
b
%T (L&ﬂiﬂl) 1 (A10)

and thus approaches zero as N + « , Hence, letting

N+« 4n (A7) gives the desired result (A3).
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