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ABSTRACT

The global behaviour of a class of predator-prey systems, modelled by a
pair of non-linear ordinary differential equations, under constant rate
harvesting and/or stocking of both species, is presented. Theoretically
possible structures and transitions are developed and validated by computer
simulations. The results are presented as transition loci in the F-G (prey

harvest rate ~ predator harvest rate) plane.
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SIGNIFICANCE AND EXPLANATION

This report gives general and complete results on the coexistence of

predator-prey systems under constant rate harvesting and stocking. A

theoretical analysis is presented and a number of computer simulations are

included. Certain phenomena not included in the analysis are uncovered.

The significance of the work is in showing that different structures of

the system can exist, that coexistence regions decrease as harvest rates

increase, and that contrary to indications given by system linearization,

collapse can occur well before mathematically critical harvest rates are

reached. This information should be useful in resource management programs.
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COEXISTENCE PROPERTIES OF SOME PREDATOR-PREY
SYSTEMS UNDER CONSTANT RATE HARVESTING AND STOCKING
by

F. Brauer1 and A. C. SOudack2

1. Introduction

In a sequence of papers [Brauer, Soudack and Jarosch (1976); Brauer and Soudack
(1979a); Brauer and Soudack (1979b); Brauer and Soudack (1980)], we have analyzed the
global behaviour of predator-prey systems under constant rate harvesting of either species
and under constant rate stocking (which may be viewed as negative harvesting) of either
species and of both species simulataneously. 1In all of this previous work, the focus of
our attention has been on the nature of the phase portrait for a given harvest rate and on
the transitions between types of behaviours as the harvest rate is changed.

In this paper we generalize our earlier results to allow two independent constant
harvest rates (positive or negative) for the two species. We also make a slight change in
emphasis and concentrate on classification of regions in the harvest-rate plane rather than
on the phase portraits. Of course, the phase portrait analysis can also be carried out,
and some such analysis is necessary for the desired classification of regions. However, we

have chosen to suppress much of this detajl in order to concentrate on the question of

1Department of Mathematics, University of Wisconsin-Madison, Madison,
Wisconsin 53706.

2Department of Electrical Engineering, University of British Columbia,
Vancouver, B.C., V6T 1W5, Canada.

'8ponsored by the United States Army under Contract No. DAAG29-80-C-0041 and
in part by NSERC of Canada, Grant No. 67-3138.
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what qualitative behaviour is to be expected under changes of one or both harvest rates.
Even though the class of models studied is unrealistically simple, our results imply
warnings about unexpected dangers which may be relevant to the management of real-life

systems.
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2. General Theory

We consider the system

x' = x f(x,y) - F
1) '
y =y gix,y) =G

as a model for the sizes x(t) of a prey population and y(t) Qf a predator population.
Here, f(x,y) and g(x,y) are the respective per capita growth rates of the two
population sizes. As in our previous work (Brauer, Soudack and Jarosch (1976); Brauer and
Soudack (1979a); Brauer and Soudack (1979b); Brauer and Soudack (1980)] we assume that
these depend only on the population sizes at time ¢t. The prey species is harvested at a
constant time rate F, while the predator species is harvested at a constant time rate
G. We permit either F, or G, or both, to be negative, to represent stocking rather
than harvesting of the corresponding species.

The predator-prey nature of the model is expressed by the assumptions
(2) £e(x,y) < 0, gulx,y) >0, gy(x,y) <0
for x> 0, y > 0 (subscripts denoting partial derivatives. These assumptions imply that
the equation g(x,y) = 0, representing the (unharvested) predator isocline, defines x as
a monotone non-decreasing function x = I'(y) for 0 < y < ®, We assume that this isocline
intersects the x-axis at (J,0); that is, that J =T(0), or
(3) g(J,0) =0 .
As we have pointed out previously (Brauer and Soudack (1979a)), in many of the commonly-
used models for function g 1is independent of y, corresponding to the situation in which
the predators do not interfere with one another in their search for prey. 1In this case the
predator isocline g(x,y) = 0 is the vertical line x = J.

The hypothesis (2) also implies that the equation f£(x,y) = 0, representing the
(unharvested) prey isocline, defines y as a single-valued function y = ¢(x) which we
assume non-negative on an interval 0 € a € x € K ¢ ®» with &(K) =0, or

(4) f(K,0) =0 .
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It is necessary to distinguish three possibilities, as follows:

(i) o > 0, corresponding to £(0,0) < 0.

(1i) a« = 0, corresponding to £(0,0) > 0, and there exists L < = such that
(5) £(0,L) = O

(141) a=0, L=,

Biologically, a > 0 is the case in which the prey population is unable to develop if it
gets too small, even in the absence of predators. If a = 0, the prey population can
establish itself from a small initial population; 1 is the maximum predator density for
which the prey population can establish itself. If a = 0, L = », the prey population can
establish itself for any predator population. Finally, we assume
(6) a<J<CK
The cases J > X and J < a may be analyzed by the same methods and are essentially
trivial. A discussion of the biological significance of the numbers a, J, X, L may be
found in [Brauer and Soudack (1979a)].

An equilibrium i(;,§) of the system (1) is an intersection of the prey isocline
xf(x,y) ~F = 0 and the predator isocline yg(x,y) - G = 0, To study the (local)
stability of an equilibrium, we linearize about the equilibrium, forming the matrix

X £ (X,9) + £(x,§) k£ (k)
A(P) =

¥ g tk$) ¥ g (&) + gtk
and then determine the eigenvalues of A(i). In particular, if det A(P) ¢ 0, then the
eigenvalues have opposite sign and P is a saddle point. If det AP) > 0, then the real
parts of the eigenvalues have the same sign and P 4s a node or spiral point which is
asymptotically stable if <¢r A(s) < 0 and unstable if tr A(P) > 0 (corresponding to
eigenvalues with negative real part and positive real part respectively).

If G 0, the predator isocline y g(x,y) = G is a curve which approaches the
curve g(x,y) = 0 asymptotically. The portion of this curve in the first quadrant lies to

the right of gi(x,y) = 0 if G > 0 and to the left of gi(x,y) =0 4if G < 0.




To describe the prey isocline x f(x,y) = F for F ¥ 0, we define
: . .
7 £ (x,y) = £(x,y) =5 -

. Then the prey isocline is the curve f'(x,y) = 0; we shall regard f'(x,y) as a modified

e

per capita growth rate for each fixed F. It is easy to see that for every F < 0, £
- M satisfies the same hypotheses as f and is of the type a = 0, L = ®, jindependent of the
type for F = 0, For F > 0, there are two critical values of F. For sufficiently
small F > 0, f' satisfies the same hypotheses as f and is of the type
a> 0, with a = a(F) < J and
K = K(F) > J. There exists F, > 0 such that either
(i) a(Pc) < J, K(Fc) = J
or
(it) a(Fc) = J, x(rc) >J .
Further, there exists F > F. for which
L ] -
2 . a(F ) = K(F )
1 : [Brauer and Soudack (1979b)]. Then £* satisfies the same hypotheses as f and is of the

. type a > 0 for 0 < F < F.

This suggests that models of the type a > 0 with F = 0 may be the result of some
‘ harvesting of prey by biological mechanisms outside the system, while models of the type
a=0, L = may represent some external stocking of prey. Models with a =0, L < =

which are the type most frequently studied, represent a critical balance between external

i
4
i harvesting and stocking.
i For each suitably chosen fixed F, we may now view the system (1) as a pure predator
5 harvesting or stocking model
4 G ’ .
3 x =xf (x,y)
1 7 '
2 Yy =y gix,y) =G ,
. with the prey harvest or stocking built into the prey growth rate. Thus as G is varied
; for any fixed F, the possible transitions are of the same types as for pure predator
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harvesting (Brauer and Soudack (1979a)). The first question we wish to examine is the
existence of an equilibrium of the system (1), or (7), in the interior of the first
quadrant. It is known [Brauer and Soudack (1979a)] that there exists G* = G*(F) > 0 such
that the system (1) has an equilibrium P_ = p.(r,c), not & saddle point, in the interior
of the first quadrant of the x-y plane if 0 € G < G*, and has no equilibrium in the
interior of the first quandrant if G > G*. This holds for all F < 0 and for
sufficiently small positive F. Ié is easy to see graphically that G*(F) must be a
monotone decreasing function of F for =% < F < o,

If G < 0 we must distinquish between the cases F > 0 and F < 0 because of the
difference between the cases o > 0 and a = 0, L = ®», [Brauer and Soudack (1980)]. 1If
F > 0, corresponding to o > 0, there exists G = G {F) < D such that the system (1)
has an equilibrium P, = P.(F,G) {not a saddle point) in the interior of the first
quadrant if 0 >G> G, and has no equilibrium in the interior of the first quadrant if
G < G”. It is easy to see that G (F) 41is a monotone incresing function of F. If F <
0, corresponding to a = 0, L = @, the system (1) has an equilibrium P_ in the interior
of the first quadrant for all G < 0.

The above analysis is valid for all F < 0, but for positive F it is obviously
valid only for 0 € F < Fc' However, if a(Fc) < J, K(Fc) =J and G < 0, it is easy to

*
see that it is in fact valid for 0 < F ¢ F . Similarly, if a(Fc) = J, K(Fc) >J, and G

> 0, it is valid for 0 < F < F.. We may collect this information on the values of the
harvest rates F and G for which there is an equilibrium P_ = P“(P,G) in the interior
of the first quadrant of the x-y plane. In Figures 1 and 2, the interior of the shaded
region indicates the set R of such values in the F-G plane. Such figqures have been
given before for species in competition [Yodzis (1976), Reading (unpublished), Griffel

(1979)]).
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As we have shown in our earlier work on harvesting of one species [Brauer and Soudack
(197%9a, 1979b)), the existence of an equilibrium in the interior of the first quadrant of
the x-y plane does not guarantee the survival of both species. Resolution of this
question depends not only on the existence of an equilibrium but also on the structure of
separatrices at the one or more saddle points in the interior of the first quadrant. We
have given a classification in the two one-species harvesting problems which can be
combined into the following classification for any model of the form (1) with (F,G) in
the interior of R, so that there is an equilibrium P_(F,G) in the interior of the first
quadrant of the x-y plane. There is then at least one saddle point in the first quadrant,
possibly on one of the axes.

Case 1. There is an orbit running from a saddle point as t + == to P, or a limit
cycle around P_ as t + 4=,

Case 2. There is an orbit running from a saddle point as t + - to a saddle point
as t » +o (homoclinic-type orbit). The two saddle points may be the same.

Case 3. There is an orbit running from P_ or a limit cycle around p, as ¢t + -»
to a saddle point as t + +»,

For each case there are two alternatives which we index as a or b according as the

equilibrium PB_ is (locally) asymptotically stable or unstable respectively. 1In case 1a,

P_ is asymptotically stable and there is a region of asymptotic stability for P, - the

set of initial values for which the solution tends to P, as t + =, which can be

described in terms of the separatrices at saddle points. In case 1b, P, 1is unstable but

there is an asymptotically stable limit cycle with a domain of asymptotic stability which
again can be described in terms of separatrices. Case 2 may be viewed as a transition
between case 1 and case 3. In case 3a, P is asymptotically stable, but the domain of

asymptotic stability consists only of the interior of an unstable periodic orbit around
P, In case 3b, P, is unstable, and every orbit goes to an axis in finite time,

corresponding to extinction of one of the species. Thus in practical terms, the two

species can coexist only if the system is in case 1, even though in case 3a there is a
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"small” set of initial values for which there is coexistence, and in case 2 there may be a
coexistence region which is extremely susceptible to collapse under small perturbations of
harvest rates.

This suggests the importance of dividing the region R in the F-G plane into
subregions corresponding to the various cases in order to determine the set of values
{(F,G) for which the system can continue to function with both species co-existing. For
any given (PF,G) € R, we may calculate P_(F,G), and then ¢tr A{P_(F,G)}. The set of
peints (F,G) ¢ R for which ¢tr A{P“(F.G)} = 0 ig a curve 0 in R corresponding to the
transition between the alternatives a and b (local asymptotic stability and instability
respectively). There may be another curve h in R describing the set of values
(F,G) € R for which there is a homoclinc type orbit and the system is in case 2. While
the curve ¢ may be drawn approximately by calculation of tr A{Pu(F,G)}, the curve h
can be approximated only by computer simulation of the orbits of the system (1) and
classification of cases (Brauer and Soudack (1979a), (1979b)].

By examining the prey and predator isoclines it is not difficult to see that the
qualitative structure for the system (1) with F # 0 4is the same as the qualitative
structure for the system (1) with F = 0, except that there are differences when G = 0
as shown in [Brauer and Soudack (1979b)]. By the same methods as those used in the case F
= 0, we may establish the following results.

Theorem 1: There is a neighbourhood of the origin in the F~G plane in R for which
the system (1) is in case 1a or in case 1b.

Theorem 2: If (F,G) is sufficiently close to the boundary of the region R in
the F-G plane for which the system (1) has an equilibrium, and if ¢r A{PQ(F,G)} ¥ 0,
then the system (1) is in case 1a or in case 3b.

It follows from Theorem 2 that if the curve h goes to the boundary of R, it must
intersect the curve ¢ there, since h can meet the boundary of R only in a point where

tr A{P.(E‘,G)} = 0, We have also shown [Brauer and Soudack (1980)) that in the third
quadrant of the F-G plane, corresponding to stocking of both species, the system is in

case 1a or case 1b, Thus the curve h can not enter the third quadrant.

9=




A final general remark is that as we have shown in (Brauer and Soudack (1979b}}, if
the boundary G = G*(F) of R meets the F-axis at (Fe.0) and the bourdary G = G™(F)
meets the F-axis at (F',O) (Figure 1), then the system is in case a at (F_.,0), while
if G = G*(F) meets the F-axis at (F',0) and G = G™(F) meets the F-axis at (Fe.0),
(Figqure 2), then the system is in case 3b at (Fc,O).

In the next section we shall indicate by considering a class of examples how the
classifications for pure predator harvesting and pure prey harvesting can give information

about the structure of the region R and the classification for two ~ species harvesting.
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3. A Class of Examples

In our previous work on harvesting and stocking [Brauer, Soudack and Jarosch (1976);

' Brauer and Soudack (197%9a), (1979b), {1980)]), we have used the model

= - X X
fix,y) r(1 x) ey

(8)
- (X o 3, . 8Ax=3)
gixy) = 855 = 553 = (3+A) (x+A)
K and J are the K and J

[Holling (1965)] as a source of examples. For this model,

of the general theory in Section 2, while L = rA. BAs we have shown previously,

2
rsA(K-J) rJ * rK
9 G =&’ Te™x@ ®IF =g o
It is easy to calculate that
- o 2% Ay sA(x=-J)
tr A(x,y) r(1 = ) (T (xth) °

(x+A)2
In particular, if F =G =0, then x =J y_ = ,—1; (J+A) (K=J), and

J

r
tr A(x_(0,0), y,(0,0)] = &omas (K=A=22) .

! For F=F, and G = 0, we have x = J, y, =0, and
r

tr A[xn(Fc,O), y.(fc,O)] "3 (k=23) .

For FP=0 and G = Gc, we have xm = %, Y. -;ﬂzz_)(_xi)' and
; 2
SAK(K=J)=r(a+J) (J+K)

tr Alx, (0,6 ), ¥o(0.6.)) = ST 2araen)

-11=
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The stability curve o in the (F,G) plane corresponds to %r A = 0. Thus for a
given pair (F,G), we calculate PQ(F,G), and hence ¢r A[P_ (F,G)]. By varying (F,G)
we may plot the curve 0. The curve h describing the pairs (F,G) for which there is a

homoclinic orbit can n:.t be sketched so easily. For this we need information about the

dynamics of the system, and must compute orbits.
] As we have observed in the general theory, there are situations in which we may have
either predator extinction or prey extinction, depending on the initial state. We remark
that it is easy to separate these two possibilities by computing the orbit from the oriain
3 in the x~y plane backwards in time. This orbit serves as a separatrix between predator
extinction and prey extinction. (In practice, the computation may be carried out more
efficiently if the starting point is taken near the origin rather than at the origin.

We now give several examples using this model to indicate the range of possibilities

and the procedure for analyzing a2 model. For a given choice of the parameters of the model

and a given pair of harvest rates, orbits can be approximated by computer simulation just
as in our previous work [Brauver, Soudack and Jarosch (1976), Brauer and Soudack (1979a, 4
1979b, 1980)]. 1In this paper, we emphasize the shape and structure of the region R in

the F-~G plane for which there is an equilibrium in the interior of the first quadrant of

the x-~y plane, the curve ¢ in R corresponding to the transition between local %
asymptoti~ stability and instability of this equilibrium, and the curve h in R
corresponding to values (F,G) for which there is a homoclinic type orbit. Thus we show
orbits for only one of the examples, even though it is necessary to compute orbits in order
to locate the curve h for every example. The curve ¢ and the boundary of the region
R can be approximated numerically by calculation of equilibria and the trace of the matrix

4, without requiring calculations of orbits. The computations reported below were
carried out on the University of Wisconsin UNIVAC 1110 and the University of British
Columbia Amdahl 470.

Our general procedure in each example has been to examine the case transitions as one

of the harvest rates F,G is varied while the other is held at zero. This gives the

“corners” of the region R. Then the boundary ¢f R can be filled out by varving &

-y2=
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with P fixed. To locate the curves ¢ and h, we proceed just as we did in our

previous work dealing with harvesting and stocking of a single species. For each example
we make some general observations, not all of which are shown in the figures reproduced
here.

Example 1: r =1, s= 1, A= 10, J= 20, K= 40.
For this set of parameters, F. = F' = 10, G, = 0.83, from (9). The system is in case 1a
for all (F,G) ¢ R (Figure 3) and is strongly stable in the sense that orbits approach the
equilibrium P_(F,G) rapidly. The orbits are similar to those in the case of pure
predator harvesting in that the stability region determined by the separatrices at the
saddle point becomes smaller as G is increased. for each F. Outside the region of
asymptotic stability, there is a region of prey extinction and a region of predator

extinction which may be separated numerically by integration of the system backwards in

time from (c,€).
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Example 2: r =1, s =4, A= 10, J = 20, X = 60,
Here, G, = 8.88, r, = 13.33, F' = 15, from (9). In soth F and G separately, the case
transitions are 1b + 2b + 3b (Figure 4)., Note that since the equilibrium is unstable
at (F,,0) the region R extends to (F' ,0) in the first gradrant. As in Example 1, the
region of asymptotic stability becomes smaller as G increases, and there is a coexistence

region only for a small part of R.
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Example 3: r=1,8=7, A= 10, J = 20, K = 40.

T

Here, Gc = 5,83, Fo = F* = 10. The case transition is 1a + 2a * 3a*3 in G for F =
: -
v . 0, and the system is in case 1a for G =0, 0 < F < F . The 3a region is very small,
suggesting that im practical terms the transition is 1a + 3b. The system is weakly stable

inn the sense that orbits approach the equilibrium P_ very slowly. For this example, we

have also indicated the region R in all four quadrants of the F-G plane (Figure 5).
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Example 4: r =1, s =5, A= 10, J = 20, X = 45,
Rere, G, = 5.787, F. = 11.17, F* = 11.25. The case transitions are 1a + 1b + 2b + 3b
in F and 1a *» b+ 1a in G. PFigure 6 indicates that the curves ¢ and h meet on
the boundary of the region R. There are two components of the curve o0 in the first
quadrant; in Figure 6, we see how the curve ¢ goes into the second quadrant and then
returns to the first quadrant, so that the two components are in the first quadrant are not
really separate. The reader should note from Figure 6 that for fixed F = 1 and
increasing G, the case transition is 1a + 1b + 2b + 3b + 2b » 1b » ta; this is much

more complicated than for F = 0, but can still be read from the figure.
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Example 5;: r =2, g =1, A= 10, J = 20, K = 60.
Here, Gc = 4.4?, Fc - 26.3, F' = 30. The case transitions are 1b » 1a in G and

b + 2b + 3b in F. Again, as may be seen, several transitions are possible when one

of F and G is held fixed and the other is varied, more than in the special cases F =
0 and G = 0. We have included some phase portraits for this example., We see (Figure 7)
that for ¥ = 3, G = 0.5 the system is in case 3b. For F =3, G= 1 (Fiqure 8) the
system has just shifted to case 1b; the limit cycle is large with a further increase in

G to F=3, G=2 (Pigure 9) the system is still in case 1b but the limit cycle is
smaller. For F = 3, G =3 (Figure 10) the system is in case ta. Note that in Figures
11, 12, 12, the separatrix between predator extinction and prey extinction is roughly the

same but the region of coexistence shrinks as G increases even though P, 1s stabilizing

(locally). Por larger F, F= 13, G = 1.6 (Figure 11) and F = 13, G = 2 (Figure 12) we

Y v e

have cases 1b and 1a respectively. The predator extinction - prey extinction separatrix is |
lower, giving a larger region of prey extinction and smaller regions of coexistence and

predator extinction. 1In Figure 13, we have shown all four quadrants of the F-G plane,

E: L ' with the curves ¢ and h meeting at two points of the boundary of R. The 1b region in

the fourth quadrant is unstable in practical terms because the limit cycles come very close

P’ to the coordinate axes. There is also a small 1a region in the fourth guadrant, but this

also is not practically stable because P, 1is very close to the y-axis.
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We have also examined some variations on Example 5, holding r = 2,
s= 1, A= 10, J = 20 and changing K. PFor example, with X = 50, the curve o passes
through the origin (an immediate consequence of the fact that
K= 23 + A}, Qualitatively, the picture (FPigure 14) is much like that for
K = 60 (Figure 13), except that the curves o and h have moved down. Similarly, for K

= 70 the picture is similar except that the curves ¢ and h move upwards.
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4. Conclusions.

In this paper, we have generalized and completed the study of constante-rate harvesting
and stocking in a class of idealized predator-prey systems. In general, the existence of a
saddle point in the first quadrant of the phase plane causes the trajectories to be similar
to those for predator harvesting alone rather than to prey harvesting alone (see References
2 and 3). There is however, one more transition trajectory separating the regions of
predator extinction and prey extinction, as would be surmised.

Thus, we confined our attention to the F~G plane, and utilizing the fact of
continuity across the F and G axes, we established a region R, for which P exists
and loci o and h which divide R into regions of stability, local instability, and no
coexistence of species at all. The behaviour of the system, for all F and G, including
all combinations of harvesting and stocking, is described by the loci in this plane.

One notable difference between two-species and one-species harvesting is that we no
longer must stay in Case 3b once we get there. Increasing harvest rates might again
establish coexistence regions. This phenomenon does not exist if either species is
harvested separately.

The case of two-species stocking is not examined in detail here, since the results are

given in [Brauer and Soudack, 1980). It is enough to notice that the ¢ locus never
L g - s A

P

- “——— B4 4

enters the 3Td quadrant of the F-G plane and thus there is a region of coexistence for
all stocking rates.

Examples where one specle is stocked and the other harvested, corresponding to the and
and 4th quadrants of the F=G plane, were considered, but the results are not included
because the phase portraits are merely combinations of the cases for single specie
harvesting and stocking. The relevant information is included in the description of the
F=G plane.

Admittedly, there is some question regarding the idealirzed models considered in this
study. However, studies of these idealized models have shown that the results obtained by

linearization around equilibrium points are often incorrect and that such systems tend to
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be much more fragile than expected, as far as coexistence is concerned. The next step is
to consider more realistic harvesting strategies and to expand the models to include age
and/or size structure.
The authors wish to thank Mr. Al MacKenzie of the Department of Electrical ;

Engineering, University of British Columbia, for preparing the figures in this paper.
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