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ABSTRACT

Calculations with interval arithmetic and interval extensions of real func-
tions are often used to obtain lower and upper bounds for what would be the
theoretical results of precise computations on exact data. A more traditional
way to represent approximate data and results contained in intervals is by means
of a representative point x in the interval and an associated measure of error
E. For example, the midpoint of an interval has absolute error as an approxi-
mation to other points of the interval which is bounded by half the width of
the interval. In general, the chosen point is said to be optimal with respect
to the measure of error if the maximum value of E over the interval is mini-
mized. A general method for determination of optimal points x* and minimal
error bounds EL-"is given. In particular, the harmonic mean of the endpoints
of positive intervals is s1t to be optimal with respect to relative (or per-
centage) error, and the geometric mean plays the same role with respect to rela-
tive precision, which is a measure of error introduced recently by F. W. J. Olver
[SIAM J. Numer. Anal. 15 (1978), 368-393]. In addition, the optimal point and
error bound x*, E* may be regarded as alternative coordinates for representa-
tion of an interval. Explicit rules for interval arithmetic are given in terms
of the arithmetic, geometric, and harmonic means of the endpoints and the asso-
ciated optimal error bounds. Comparisons are also made between the results of
exact or rounded interval arithmetic and the a priori estimates of relative
precision presented in the cited paper by Olver, which show that the intervals
resulting from calculation with interval arithmetic can be expected to be
smaller than predicted.

AMS (MOS) Subject Classifications: 65G10, 41A50

Key Words: Optimal error bounds, Interval Arithmetic, Absolute error, Relative
error, Percentage error, Arithmetic, geometric and harmonic means,
Excess width

Work Unit Number 3 (Numerical Analysis and Computer Science)

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and the
Danish National Science Research Council Grant No. 511-15849.

, I".



SIGNIFICANC~E AND EXPLANATION

The numerical solution of practical problems almost always involves per-

forming inaccurate calculations on inexactly known data. Thus, in addition to

the answers produced by a computer, some indication of their reliability is re-

quired. Such an estimate of accuracy may be merely to justify the expense of

the computation; however, in cases where the results have implications for hu-

man life and safety, as in the design of critical components of aircraft, a

guarantee of reliability is imperative. one way to obtain numerical results

with such assurance is by interval computation. If the data x are known to lie

in an interval 1, and one computes an output interval J = F(I), where F is an

interval transformation which is an interval extension of a real function f,

then the output interval J will contain the values y = f(x) of exact transfor-

mations of the data. Ordinarily, interval calculations are done in terms of

lower and upper bounds; I - [a,b) is transformed into J = [c,d]. The rules for

interval calculation are customarily expressed for intervals in this standard

form, and in many applications, lower and upper bounds for the exact results

are satisfactory. Often, however, one prefers to think of a single number x

and its associated error bound E, that is, the maximum error with which x ap-

proximates other points of the interval. In particular, x* is optimal with

respect to E if E is minimized on I, the corresponding value E* being the op-

timal error bound obtainable. For example, x* = mIa ,bl = (a + b) /2 is optimal

with respect to absolute error, and E* = (b -a)/2. In other problems, one mayI wish to optimize different measures of error, such as percentage error or the
recently introduced concept of relative precision. A general method for de-

termination of x*,E* is given in this paper. For positive intervals, it turns

out that the harmonic mean x* -h[a,b] - 2ab/(a +b) is optimal with respect to

percentage error, while the geometric mean x* = g(a,bJ ] i of the endpoints

is optimal with respect to relative precision. The numbers x*,E* may be used

instead of the endpoints a,b as an alternate representation (or format) for

the interval I. Rules for interval arithmetic in some of these alternative

formats are given. Finally, it is shown that exact or rounded interval arith-

metic produces intervals which are usually smaller than predicted by a priori

error estimation, and in no case larger. The results presented are intended

to increase the usefulness of interval methods of error estimation.

The responsibility for the wording and views expressed in this descriptive
summwary lies with MRC, and not with the author of this report.



REPRESENTATIONS OF INTERVALS AND OPTIMAL ERROR BOUNDS

L. B. Pall

1. Intervals and interval analysis. Just as real and complex numbers are the

basic units of real and complex analysis, respectively, the closed finite real

intervals

(1.1) I = {x a 5 x -< b), -- < a !5 b <

are the basic units in the branch of mathematics known as interval analysis [4],

[5], which is the study of transformations of sets of the type (1.1), which

will be called simply intervals for brevity, into others. Geometrically, the

set IR of all intervals (1.1) may be visualized as the closed halfplane in the

a,b-plane which includes and is bounded below an on the right by the line a-b
(see Figure 1).

b

a- b

i

'IR

Figure 1. IR as a subset of the ab-plane.

Thus, IR is two-dimensional. As in the case of complex numbers, which

have representations in rectangular coordinates as z = x + iy, or in polar co-
ie

ordinates as z - re , various representations are possible for intervals.

Some of these representation, which are convenient in one situation or another

for computation an error estimation, will be presented in this paper.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and the
Danish National Science Research Council Grant No. 511-15849.
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2. Interval extensions and error eptimation. Interval analysis has important

applications to numerical analysis in connection with error estimation. Sup-

pose that one wishes to calculate

(2.1) y - f(x),

where f:DcR-R is a continuous real function on its domain of definition D. It

may happen that x is not known exactly, or is not representable exactly on a

given computer; however, it is known that xeI, where I is an interval which can

be represented exactly. The set

(2.2) f(I) = {y I Y = f(x), xcIi

will be an interval by the continuity of f, but it may not be possible to com-

pute or represent f(I) exactly. For example, f(x) may be defined by an infinite
process (series, product, integral, etc.) so that a finite number of computa-

tional operations will give an approximation to f(x) which is accurate up to

some truncation error, and there will of course be roundoff error in the actual

calculations.

Interval analysis deals with the problem of error estimation by the use of

interval transformations F:DcIR-IR which are computable (or rounded) interval

extensions of real functions f. Thus, one actually computes the interval J

defined by

(2.3) J = F(I),

where F has the following properties:

(i) Representation. F(I) is exactly representable for each representable

interval I;

(ii) Extension. F is an extension of f in the sense that f(I) C F(I) for

each interval I contained in the domain of definition of f;

(iii) Inclusion monotonicity. F is inclusion monotone, which means that

for intervals I,12 in the domain of definition of F, I1 C 12 s F(I) C F(I 2 ).
21 121

The interval J may be taken to be the answer to the problem of evaluation

of the real transformation (2.1) by inaccurate calculations on inexact data,

as it contains the results of all exact values of f for all exact data points

xCi.

In traditional numerical analysis, it is customary to think in terms of

the error (or more positively, accuracy or precision) of an approximate result,

rather than use intervals directly. Thus, one picks a representative point x

* from the interval, and assigns a measure of error to that point as a way of

Irepresenting the interval. The interval I is thought of as arising from errors

-2-
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in the data, and the enlargement of f(I) to F(I) as being due to transforma-

tion errors (i.e., truncation and roundoff errors, called abbreviation errors

by Olver [6]). If the representative point is picked in such a way that the

maximum value of the error over the entire interval is minimized, then this

point and the resulting error bound are said to be optimal. The representa-

tion of intervals by optimal points and error bounds will be illustrated by an

example in the next section, following which the general theory will be dis-

cussed.

3. An example of an optimal point and error bound. A simple interval method

for numerical integration (11 applied to

2
(3.1) y =fl + 4x dx

0

yields lower and upper bounds for the value of the integral,

2
(3.2) 4.3306334 <- f'l + 4x dx _< 4.3452908.

0

The standard format for the representation of an interval (1.1) is, of course,

(3.3) 1 = [a , bi

in terms of its lower endpoint

(3.4) a = X(1) = min{x xEII,

and upper endpoint

(3.5) b = u(I) - max{x xcI}.

Thus, (3.2) may be expressed as

2
(3.6) f/l + 4x dx E (4.3306334 , 4.34529081.

0

Another way to write (3.2) is as

2
(3.7) fV' + 4x dx , 4.3379621 + 0.0073287

0

*in terms of the midpoint

(38) m(1 m[a , b - a + b
2

and the halfwidth (or radius)
b - a

(3.9) aI1 = a[a ,b] -

of the interval I. This gives

(3.10) I = m(1) * Ct(I) - [m(1) a c(I)1

as an alternative format for the representation of the interval I. In tradi-

tional terminology, (3.7) states that one may take m(I) - 4.3379621 as an

-3-
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approximate value for the integral (3.1), with absolute error bounded by a(I)

0.0073287. There are also other measures of error of interest in various

problems, such as percentage or relative error, for which the harmonic point

of the interval is optimal, or the newly introduced concept of relative pre-

cision (6], for which the geometric point plays the same r6le [7]. These lead

to alternative representations for intervals. The general situation will now

be discussed, after which some examples of useful interval formats and the cor-

responding rules of interval arithmetic will be given.

4. optimal points and error estimates. Precise definitions will now be made

of the concepts of measures of error and corresponding optimal points and er-

ror bounds in intervals.

Definition 4.1. A measure of error of the approximation of a real number

y by a real number x is a non-negative continuous function E = E(x,y) which is

strictly monotone increasing with respect to the distance

(4.1) d(x,y) = Ix - yI

between x and y and such that

(4.2) E(x,x) = 0.

Definition 4.2. The error of approximation of points of an interval I by

a real number x corresponding to a given measure of error E is
=max

(4.3) C(x) = yi{Exy).

Definition 4.3. A point x*EI is said to be optimal in I with respect to

the measure of error E if

(4.4) C(x*) = minc {(x)} = min max{E(xy)}.

Although the following result is self-evident, it will be dignified with

a proof.

I Remark 4.1. The optimal point x*el satisfying (4.4) exists, is unique,

and is the solution of the equation

(4.5) E(x,a) = E(x,b).

Proof: If a = b, then x* = a = b; otherwise, the function

(4.6) h(x) = E(x,a) - E(x,b)

is continuous, and h(a) < 0, h(b) > 0 by hypothesis. Thus, an x*EI exists

such that h(x*) - 0, and thus x* satisfies equation (4.5). Now, suppose that

y < x*. It follows that

(4.7) E(y,b) > E(x*,b) = E(x*,a)

'.9 -~4-'.'



as E is strictly monotone increasing in Ix - bi, and if y > x*, then similarly

(4.8) E(y,a) > E(x*,a) - E(x*,b)

from which the uniqueness and optimality of x* follow. QED.

Definition 4.4. The value

(4.9) E* = E(x*,b) - E(x*,a)

obtained for optimal x*eI is called the optimal error estimate on I for the

measure of error E.

One object of this paper is to introduce x*,E* as alternative coordinates

for the representation of the interval I. As the inverse functions

(4.10) Z(xE) - {y E(x,y) - E, y 5 x),

and

(4.11) u(x,E) - {y J E(x,y) - E, y 2 x),

are single-valued and continuous by the hypotheses on the error function E,

one has the equivalence of the standard representation of the interval I and

the x*,E* coordinates through the equations

(4.12) a - t(x*,E*), b = u(x*,E*),

and the definitions of x*,E* in terms of a,b by equations (4.5) and (4.9).

5. The standard format and interval arithmetic. Interval extensions of the

arithmetic operations form the basis of what is called interval arithmetic [4],

(5]. In the standard format (3.3) for representation of the intervals I

la,b] and J - [c,d], the fundamental rules for the operations of interval arith-

metic are:

i) Addition

(5.1) I +J= [a,b] + [c,d] = [a + b, c + d];

(ii) Subtraction

(5.2) I - J [a,b] - [c,d] - [a - d ,b - c];

(iii) Multiplication

(5.3) I*J = [a,b]'[c,d] = [min{ac,ad,bc,bdl ,max{ac,adbc,bdl];

(iv) Reciprocation is defined only for intervals J such that 0 1 J,

(5.4) J-l , [cd] 1  [ if cd >0.

Remark 5.1. Arithmetic operations between real numbers k and intervals

are defined by identification of real numbers with degenerate intervals; one

writes

d-5-4r



(5.5) k= Ek,k]

and uses the rules for interval arithmetic; for example, if k 2 0, then one has

k-[a , b] - (ka ,kb].

Remark 5.2. Division is defined as a compound operation; if 0 d J, then
E -l

(5.6) 1/1 = li if c-d >(J)u(J5 > 0.

Definition 5.1. An interval I is positive if Z(I5 > 0, negative if u(I)

< 0, and zero if equal to 0 - t0 , 01; I is positive (negative) semidefinite if

nonzero, P(I).u(I) -0 and u(I) > 0 (MII) < 0); finally, I is indefinite if

(1).u(I) < 0.

Remark 5.3. By analysis of the signs of the intervals I,J, it is possible

to calculate the product IJ in certain cases by shortcut methods. However,

even with a programmable pocket calculator, it is easy to compute all four pro-

ducts and sort out the smallest and largest. It is also possible to derive ex-

plicit (but clumsy) formulas for the product of two intervals, based on the

identities

(5.7) minix,y- x + y -2 Ix - , maxxx,yl - x + y + Ix - yl

The derivation of such formulas for the product of intervals is left as an ex-

ercise for the reader.

Before leaving the familiar standard format for an interval 1, it will be

noted that this representation provides upper and lower bounds for the points

of I, which is the information required in many practical situations. A bi-V In
ologist, for example, may be interested in the range of water temperatures in

which a certain species of fish can survive. Another illustration is the

"weight and balance" calculation performed by a pilot before flying to deter-
mine if the moment of his airplane about its center of gravity along its lon-

gitudinal axis is within safe limits for its gross weight. Many other examples

of the direct use of intervals may be found, and of problems to which, "The in-

4 terval is the answer."

6. The midpoint-halfwidth format and absolute error. The simplest measure of

the error of approximation of y by x is the absolute error

(6.1) E(x,y) - Ix - y1,

which is simply the distance between x and y. For this error function, equa-

tion (4.5) becomes

(6.2) x - a - b - x,

which is easily solved for the optimal point and error estimate

(6.3) x* (a + b)/2 -m(a,b),

-6-



(6.4) E* = (b - a)/2 - a(a , b] w[a, b],
2

respectively, where the width w(I) = w[a, b) of the interval I is of course

(6.5) w(I) = w[a ,b] = b - a.

The representation of the interval I in midpoint-halfwidth format (or A-format)

is then

(6.6) I = [m(I} * Q(I)],

where the comma in the standard format has been replaced by the * sign. (One

can also use the notation (6.6) without the square brackets, if no confusion

is entailed.) As has been shown above (and has been known for a long time),

this representation is optimal with respect to absolute error. The transforma-

tion from (6.6) back to the standard format is by means of the evident rela-

tionships

(6.7) a - L(I) = m(I) - a(I), b = u(I) = m(I) + a(I).

The basic rules for interval arithmetic in this format are:

(i) Addition

(6.8) m(I + J) = m(1) + m(J), (I + J) = c(I) + a(J);

(ii) Subtraction

(6.9) m(I - J) = e(m) - m(J), a (I - J) = (I) + a(J);

(iii) Multiplication

m(I*J) M (I)-M(J) + (I)-m(J) + A(I)c(J)
- Ic(I)}*m(J) - A(I)-.u(J) I},

(6.10)

c(%1*J) UM j*i(I).ct(J + =-'L(I) m(J) + A(I) 'c(J) I +

+ Ic(I).m(J) - A(I). Ca(J)j

where

A(I) M- M + c(I) - -m(I) ,

(6.11)

11(CO = I(I)M + OLMIj + jm(I) - CL(Il) 

(iv) Reciprocation is defined only for intervals J such that 0 J,

-l2 2M(J-) = m J)/(m(j) CL(J) ),
(6.12)

a(J-) = O()/mJ) 01j))), if mWJ) > l)

Remark 6.1. There are several alternative expressions to (6.10)-(6.11)

7it-7



for the product of two intervals in midpoint-halfwidth format, which the reader

may wish to derive.
2 2

Remark 6.2. The condition m(J) > ct(j) in (6.12) enforces Im(J)l >(J),

and thus the interval J will be positive or negative.

Remark 6.3. The midpoint m[a , b) is also called the average, or arithmetic

mean of the numbers a,b.

Finally, the set IR of intervals may be represented in the m, coordinate

system simply as the closed upper halfplane of the m,a-plane (see Figure 2).

a

I
IR

m
0

Figure 2. IR as a subset of the m,a-plane.

7. The harmonic point-relative width format. Relative and Rercentage error.

A measure of error which is useful in many circumstances is the relative error

of approximation of a real number y $ 0 by a real number x of the same sign,
which is defined by

(7.1) E(x,y) = IX- |

y

For simplicity, it will be assumed that the numbers being considered are posi-

tive; the same results hold, with appropriate changes of sign, for intervals

of negative numbers. For relative error, equation (4.5) becomes

x - a b - x(7.2) a = -
a b

which has as its solution

2ab
(7.3) x* h a[a ,b] h (),

the harmonic point of I (also called the harmonic mean of a,b), with the cor-

responding optimal error estimate

(7.4) E* b a - ra, b r(),
a - 8-b

)- I iI r , , I ?ml ll , " r I I .



the relative width of I. This gives the corresponding harmonic point-relative

width format (or R-format) for the representation of the interval I:

(7.5) I = [h(I) R r(I).

The transformation from this format back to the standard format is given by

(7.6) a = (I) = h(I)/(l + r(I)), b = u(I) = h(I)/(l - r(I)).

For positive intervals I,J, the basic rules of interval arithmetic in the

R-format are:

i) Addition
22

(h(I) + h(J)) - (h(I)r(J) + h(J)r(I))2h(I + J)
h(I) + h(J) - (h(I)r(J)2 + h(J)r(I)

(7.7)
h(I)r(I) + h(J)r(J) - (h(I)r(I)r(J)

2 + h(J)r(J)r(I)
2

r(I + J)
h(I) + h(J) - (h(I)r(J) + h(J)r(I)

(ii) Subtraction is defined only if I - J is positive,
2

h(I - J) . (h(I) - h(J)) - (h(I)r(J) + h(J)r(I))
2

h(I) - h(J) - (h(I)r(J) + h(J)r() 2)

(7.8)22 r(I - J) h(I)r(I) + h(J)r(J) - (h(I)r(I)r(J)2 + h(J)r(J)r(I)

rh h 2 2 h Wh(I) - h(J) - (h(I)r(J) + h(J)r(I) 2 )
if h(I) - h(J) > h(I)r(J) + h(J)r(I);

(iii) Multiplication

h(I)h(J) r(I) +r(J)
(7.9) h(I*J) = 1 + r(I)r(J) r(IJ) = 1 + r(I)r(J) ;

(iv) Reciprocation
(j) 2

-l 1- r (J) -l
(7.10) h(J ) = (J) , r(J = r(J).

Remark 7.1. The condition on subtraction in (7.8) insures that d < a in

the standard format I = [a b], J = [c, d.

Remark 7.2. The formulas (7.7)-(7.8) for addition and subtraction in this

format are unwieldy; a transformation to and from the standard format is prob-

ably preferable for these operations.

Example 7.1. The interval expression (3.6) may be written

k * 2
(7.11) f/ +4x dx E [4.3379497 R 0.001689438]

0

in the R-format. This means that one may take x* = h(l) = 4.3379497 as the ap-

proximate value of the integral (3.1), with relative error bounded by E* r(I)

0.001689438, which can be symbolized by

-9-
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2
(7.12) f"1 +4x dx c 4.3379497 R 0.001689438.

0

Remark 7.3. In conversion from (a ,b] to [h(I) R r(I)J format, r(I) is

rounded upward, if necessary, so that [a, b] c [h(I) R r(I)]. This directed

rounding has been employed in (7.11) and the numerical examples cited below.

Remark 7.4. The percentage error is 100 times the relative error (7.1),

so that x* - h(I) is also optimal for percentage error, with

(7.13) E* p() - 100%r(I)

being the corresponding optimal error bound.

Thus, one may write (7.12) as

2
(7.14) f'l + 4x dx - 4.3379497 * 0.1689438%,

0

showing that the percentage error in taking h(I) = 4.3379497 as an approxima-

tion to y in this example is less than 0.17%. The percentage format (or P-

format) for representation of positive intervals is thus

(7.15) I - h(I) * p()% - [h(I) % p(I)].

8. The geometric point-ratio format. Relative precision and approximate rel-

ative precision. The geometric point g (I) = g [a , -] = and the ratio p (I)

- p[a ,b) = /b/a may also be used to represent a positive interval I - (a ,b].

This coordinate system will be called the geometric point-ratio format (or G-

format), and symbolized by

(8.1) Eg =g(1) 0 p (1) 1

The sign 8 is a combination of the x and I signs, symbolizing the transforma-
A tion

(8.2) a = 1(1) - g(I)/p(I), b = u(I) - g(I).p(I)

from the format (8.1) into the standard format, in the same way that * is used
A in the midpoint-halfwidth format. The geometric point g(I) - g(a,b] = ' is

also called the geometric mean of the positive numbers a,b.

The G-format is related to error estimation through the maximum ratio

function M defined by

ra , Y 2 2 2 2Ex + y+ Ix2-
(8.3) M(x,y) - max , - 2xy.1
for x > 0, y > 0. On the positive interval I - [a ,b, the minimum of the max-

imum value of M is attained for x* satisfying

(8.4) 2 b
a

-10-



that is, x* = g(I). This point will be optimal for each error function

(8.5) E(x,y) - f(M(x,y)),

where f is continuous, strictly monotone increasing, and f(l) = 0. As

(8.6) M(x*,a) = M(x*,b) = p(I),

one has

(8.7) E* = f(p(I))

as the optimal error estimate for the error function (8.5). In particular,

the relative precision

(8.8) r.p.(I) = ln p(I)

and a roximate relative precision

(8.9) a.r.p.(I) = p(I) - 1

defined by Olver [6] fit into this category, and lead to the respective

formats

(8.10) I [g(I) r.p. ln p(I)] and I = [g(I) a.r.p. p(I) - 1]

for the representation of intervals.

Example 8.1. In the formats (8.1) and (8.10), the interval expression

(3.6) may be written

2
(8.11) f + 4x dx E [4.3379559 S 1.00169091,

0

or as

2
(8.12) f/i + 4x dx 4.3379559 r.p. 0.001689438,

0

or

2
(8.13) f.l + 4x dx 4.3379559 a.r.p. 0.0016909.

0
Directed rounding has been used in the conversion of (3.6) into the above
formats.

As conversion between the r.p. and a.r.p. formats (8.10) and the G-format
(8.1) is immediate, the rules of interval arithmetic will be stated for the G-

format.

(i) Addition

g(I + J)2 (g(I) + g(j))2  (I)(J) (P() - p(j))2
PCI) p(J)

(8.14)
p(I + 3)2 g(M)p(1) + gJ)g(J)

P(I)P(T g(I)p(J) + g(J)p(I)

- 11-



(ii) Subtraction is defined only if I - J is positive,

2( 2 - ggI (1 2 (___)_ 2,

( - J) (g) g(J) - (%g(31(I)P(J) - 1)
p (1) 0 (J)

(8.15)

(I - J)2 = p(I)(g(Z)p(I)p(J) - g(J)) if g(1) -g(J)p(1)p(J) > 0;
p(J) g(I) - g(J)p(T)p(J)

(iii) Multiplication

(8.16) g(I.J) - g(I).g(J), p(I.J) M-p (J);

(iv) Reciprocation

-1 -1 -1
(8.17) g(J-) = l/g(J) - g(j)-, p(j-) p(j).

The set IR+ of positive intervals is shown in Figure 3 in the [a b],

[m o i], [h R rl, and (g S p1 coordinate systems.

b

+ i a b+

IIRV IR

II IR

am

0 0o

(a) The a,b-plane. (b) The mr,a-plane.

P

h 9-

(c) The hr-plane. (d) The gp-plane.

j Figure 3. The set IR+ of positive intervals.

Remark 8.1. The transformations from the G-format into the relative pre-

cision (r.p.) and approximate relative precision (a.r.p.) formats may be made

-12-
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by using the formulas

(8.18) p(1) =e 'p(I)

and

(8.19) p (I) = 1 + a.r.p.(I),

which follow directly from (8.8) and (8.9), respectively. From (8.14)-(8.17),

the rules of interval arithmetic in the r.p. format are obtained from the fol-

lowing formulas for the relative precision, the geometric point being given in

the same way.

(i) Addition

(8.20) r.p.(I + J) +r.p(I) + r.p.(J) ++
2 2 "n g(I)p(J) + g(J)p(I)

(ii) Subtraction is defined only if I - J is positive,

r.p.(I - J) = r.p.(1) - r.p.(J) + 1 ____(I)p(I)p(J) - (J)
2 2 g(I) - g(J)p(I)p(J)

(8.21)

if g(I) - g(J)p(I)p(J) > 0;

(iii) Multiplication

(8.22) r.p.(I.J) = r.p.(I) + r.p.(J);

(iv) Reciprocation

(8.23) r.p.(J-) = r.p.(J).

Remark 8.2. The [g * p] format is related to the [m * a] format for pos-

itive intervals by means of logarithms. If I is positive, then the logarithm

of I is defined to be the interval

(8.24) ln(1) = [ln{R (1) ,ln{u(1)1].

Thus,

11a(8.25) ln{g(I) I - -(ln(I()) + ln{u(I) ) = m(ln(I)),

and

1(8.26) ln{p(I)) r.p.(I) = l(ln{u(1)) - ln{Z(I)I)

as noted by Olver [6].

9. Choice of format for intervals. In various applications, one of the for-

mats presented above may be preferable to the others. For error estimation in
positive intervals, the classical inequality between the arithmetic, geometric,

and harmonic means of two positive numbers a,b is

(9.1) h[a ,b] :5 g[a ,b) :s m~a , b] ,

with equality if and only if a - b [23. Thus, the choice of x* - g(I) to

-13-



optimize relative precision may be viewed as a compromise between minimization

of absolute and relative errors over 1. In addition, the choice of the geo-

metric point has important theoretical and computational implications, as dis-

cussed by Olver (6].

For expression of interval arithmetic, the standard and the midpoint-

halfwidth representations are simpler for addition and subtraction, while the

harmonic point-relative width and geometric point-ratio formats are simpler for

multiplication and reciprocation (and hence division). It should be pointed

out that for positive intervals,

(9.2) IoJ = [ac ,bd]

in standard format, and for the A-format, it follows from (6.11) that A(I) -

(I), a(I) = m(I), so that (6.10) simplifies to

m(I.J) = m(I)*m(J) + (I).O(J),

(9.3)

CA(I.J) = m(I)*c(J) + 0(l)om(J).

These formulas compare favorably in simplicity to the corresponding rules in

the R- and G-formats.

Rather than insisting on one format or another throughout a computation,

it may be expedient to transform from one to another during the calculation, or

to represent input data or output results. Relations such as

(9.4) m(JI ) l/h (J)= h(J) - I  c(j-) = M(J)/g(j)

which are among the many charming relationships between the arithmetic, geo-

metric, and harmonic means, indicate the possiblities of coordinate transfor-

mations in interval calculations.

10. A priori error estimates and excess width. At any stage in an interval

computation, one has an output interval J = FI) for which the representative
point x* (J) and the optimal error estimate (or bound) E*(J) for a given measure

of error E may be found by expressing J in x*,E* coordinates. This is called

a posteriori error estimation, as the calculations called for by the transfor-
mation F have been performed. Another type of error analysis is concerned with

the estimation of x*(J), E*(J) (usually E*(J) in particular), given x'(I), E*(I)

for the input interval I, before the transformation F is performed to obtain J.

This is called a priori error estimation. From the standpoint of interval anal-
ysis, a priori error analysis gives an estimated interval K such that J C K,

and hence

(10.1) E*(X Z E*CJ),

with the inequality being strict if the excess width of X over its subinterval

~ '-- 14-



is positive, where excess width is defined to be

(10.2) d(K,J) - max{i(J) - I(K) , u(K) - u(J)) for J C K,

which is simply the distance between K and J in the ordinary metric topology

for intervals (4], (5].

A priori error estimation may be viewed as a type of approximate interval

arithmetic, in which the results of various operations are expressed by simple

formulas which yield intervals containing the results which would be actually

computed. The highly interesting methods of Olver (6] may be interpreted in

this light. For example ([61, (2.2)), the expression

(10.3) a -a; ap(),

which means that a is an approximation to a of absolute precision a in the term-

inology of (6], may be expressed in the notation of the present paper as

(10.4) a e (a * =

i.e., a = m(I), a - a(I). Olver gives ((6], (2.4)) the formula

(10.5) ab c ui; ap(I 'B + f fQ + 00),

which in interval notation defines the interval K with

m(K) = m(I)m(J),

(10.7)

a (K) = Im(I)C,(J) + !m(J) a (1) + a (I)(J),

where J = [b * 8] contains the point b. Comparison of (10.7) with (9.3) shows

that (10.5) represents an approximation K to I.J which, for I,J positive, has

excess width

(10.8) d(K, I.J) = 2a(I)a(J),

which is positive if IJ are each nondegenerate. It may be noted that u(K) =

u(IoJ), i.e., formula (10.7) gives the correct upper endpoint of I-J for posi-

tive I,J.

similarly, Olver's definition ([61, (3.2)) of the relative precision of

approximation of a by a,

(10.9) a a; rp(a),

means

(10.10) a c [a * erp )]  =

in the notation of the present paper, that is, - g(1), rp (a) - In p(1). For

relative precision of addition ((61, (3.5)), Olver gives the formula

14. 4



ae +be

In the notation of §8, this defines an interval K with

(10.12) g(K) - g(I) + g(J), p(K) - g(I)0() + g(J)P(J)
g(I) + g(J)

In standard format, the interval I + J is
(10.13) 1 + a - [ + g(J) g(I)o(I) + g(a)p(J)]

p (I) p (J)

which shows that u(K) - u(I + J), and K has excess width

(10.14) d(K, I + J) - g(I)g(J) (p(I) - p(j))
p(I)p(J)(g(I)p(I) + g(J)p(J))

which will be positive if p(I) # p(J).

The error analysis given by Olver in [6] also provides formulas to predict

the results obtained with various types of rounding. As adapted to directed

rounding used in interval arithmetic, excess width in the predicted intervals

will also be observed as above. This does not detract from the usefulness of

the a griori methods given in (6); it simply means that one can expect the re-

sults obtained by the use of properly rounded interval arithmetic to be better

than predicted.

11. Historical remarks. The optimality of the midpoint of an interval with

respect to absolute error has been known for a long time. The same relation-

ship between the harmonic point and the relative (or percentage) error was

learned from George P61ya in a seminar he conducted at the University of

California, Berkely, in 1956. on the basis of these results, the A-, R-, and

P-formats were made available as optional alternatives to the standard format

in the programs 11, [31, for interval numerical integration and the solution

of nonlinear systems of equations, respectively. The results given above on

the significance of the geometric point for relative precision had to wait, of

course, for the fundamental paper by Olver 16].
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