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ABSTRACT

\\/Awe display the numerical results associated with the collocation
of three eigenvalue problems using from one to four Gauss points per
partition interval in order to document the sharpness of the error
bounds we have previously obtained. The ordinary differential operators
involved are real with constant coefficients; two of the problems have
an eigenvalue whose ascent exceeds one. We propose an explanation
for the observed manner in which a set of simple approximate eigenvalues
can approach a single multiple eigenvalue. o
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SIGNIFICANCE AND EXPLANATION

In Mathematics Research Center Technical Summary Report #1937, we
reported on some new results concerning the rate of approximation to
eigenvalues of an Ordinary Differential Equation achievable by collocation
with piecewise polynomial functions. In the present report, we report on
the numerical experiments which first led us to guess these results. The
experiments now serve to show that the convergence rates proved in MRC
TSR #1937 are indeed as good as could, in general, be expected. At the same
time, they provide carefully worked out examples, of a kind we had difficulty
finding in the Titerature, particularly for the case of an eigenvalue whose
algebraic and geometric multiplicities differ (i.e., an eigenvalue of ascent
greater than 1). For such a case, the theory predicts a considerable
reduction in the convergence rate (when compared with a simple eigenvalue),
and the numerical experiments show that this is not a limitation of the theory
but corresponds to actual computations. Finally, the report gives an
explanation of sorts for a rather striking convergence behavior in the case
of an eigenvalue with ascent greater than 1. Such convergence behavior
might be detectable numerically, and so might offer a means of detecting when
the ascent is greater than 1, i.e., when a certain averaging (which, as the

theory shows, improves the convergence rate) should be used.

The responsibility for the wording and views expressed in this descriptive

summary lies with IIRC, and not with the authors of this report.




e e

e e i e i i | 21 m it s S 2 S S e

e o o A 2

o A W T

1
{

Contract No. W-7405-ENG. 36.

COLLOCATION APPROXIMATION TO EIGENVALUES OF
AN ORDINARY DIFFERENTIAL EQUATION:
NUMERICAL ILLUSTRATIONS

Carl de Boor and Blair Swarz

Introduction.

This 1s the second in a sequence of three papers concerned with the
approximation of an eigenvalue of an m-th order ordinary differential
equation Mx=ANx (subject to m homogeneous side conditions) through
the use of piecewise polynomial projection methods as exemplified by
collocation. We present here the numerical experiments which
f1lustrate (indeed, pointed us toward)the convergence results we have
previously described and proved [4]. The ascent, o, of an ODE's eigen-
value plays a crucial role in the bounds obtained on the convergence
rate of approximating eigenvalues from the known convergence rates associ-
ated with the nonsingular problem Mx=y. For this reason we first describe
a technique which can sometimes be applied to determine this ascent
a priori. We then pose eigenvalue problems for three constant co-
efficient operators: one problem in which N is not the identity;
others in which the order of the operator M, along with the eigenvalue's
ascent and algebraic multiplicity, is two and three, respectively.
Numerical results follow concerning the approximate eigenvalues
associated with collocation at from one to four Gauss points per parti-
tion interval; most of them exemplify the sharpness of our 0(|A|2k/°)
error estimates for each approximating eigenvalue and of our 0(|A|2k)
estimates for certain averages of all approximating eigenvalues. But,
in one case involving a uniform partition, the individual numerical
approximations of a multiple eigenvalue appear to converge faster
than these estimates; we prove this is not illusory when collocating
this problem with piecewise quadratics, concluding that the approximat-
ing eigenvalues then has the same ascent (two) as the approximated
eigenvalue. In most of the cases concerning the approximation of a
multiple eigenvalue, however, the numerfically obtained eigenvalues
appear to be simple and to converge to their common limit along equiangular
rays in the complex plane; we end with an elementary explanation of
this asymptotic phenomenon.

Continuing our first paper [4) on these matters, we begin with

Sponsored by the United States Army under Contract Nos. DAAG29-75-C-0024
and DAAG29-80-C-0041 and by the United States Department of Energy under
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5 . A way to find the ascent of an eigenvalue of a differential equation.
In this section we develop a technique which, in some circumstances, éen-

ables one to tell what the ascent of an eigenvalue of an ordinary differential
equation actually is. The technique resembles one-parameter shooting; it

is applied later to determine the ascent of an eigenvaiue in each of the

three problems we chose for our numerical examples.

As usual, we consider our eigenvalue problem
A - _pm i =N i
(G) Mx=2aNx on (0,1), M=D +Zi<maiD , N Z'i={)biD s, nh<m

(with sufficiently smooth coefficients) subject to the homogeneous side con-
ditions (all of order less than m)

(M Byx=...%8
(2) 8% = 03

m-’lx:O’

under which M is presumed to have an inverse, Mf]. We suppose A (#0) is an
eigenvalue. We also presume we have in hand another linear functional Em
which has the property that, for » near A, there is a unique solution u

A
to the problem My, = iNu, when u

\ is subject to the m-1 side conditions (1)
together with the final inhomogeneous condition & u) =1. The map

P
U

thereby defined is a smooth map for A near A (take

HAEEQEO,]], say). (In particular, in each of our three examples, M and N
are constant coefficient operators, the m-1 conditions (1) are the initial

conditions Bi5 = (Q1'15)(0). émi is the initial condition (gm“ﬁ)(O), and

EmX is some linear combination of derivatives at t=1. The map a»u
analytic.)

AIS then

In these general circumstances we have the following Facts:
I. (&, gA) js an eigenelement iff f:x-»emgkhas a zero at A. (In fact,
the final Fact fixes the ascent of A at the precise order of this zero.)
11.The eigenvalue A is simple geometrically. (For if (A, y) is an
eigenelement, then x:= y- (Em}i)yAeker(ﬂ-Aﬂ) and sat'is?'ies (1)
together with £ x =0; i.e., x =0.)
I11. If AO,...,Ar are near A, then

(M- XON)[lo,...,)r]uA =[k1,...,xr]NuA,
with [3gy..0000f, the (j-1)h divided difference with respect to the
parameter ).
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For
(M- Ao")["o"""r]“x = [*0"""‘r3“"“x) - J\o[xo....,)u'_]ﬂuA

=1 -[Ju1 seee ,xr]Nux + Ao[xo.. .. .xr]Nul - "o["o" .. "r]N“x

using Leibn4z' formula (see, e.g., de Boor [1, page 5). Consequently,

Iv. y£r1:= (gx)ru)‘/_r! satisfies not only the m-1 side conditions (1)

but also the recursion

(3) (M- xN)u}[\r] = NuEr'”, u£°]:= uj .

V. If F:awpou, has a zero of order at least o at A, then
a) (gl[\r])S']satisfy the side Eogditions (1) and (2). (For
r LN r. r
d F/da emd ux/dx rigaus .)
b) wu:=1/A is an eigenvalue ofI:sM'l . u, too, is simple
geometrically; and its ascent {s the ascent of A.

c) With
v[r]:= Mu%r]. 0<r«<aqa,

we have _\g[OJ:f_@Ae ker(u-T), and (from (3))
(u -T)V[r]=uTv[r-1], 1<r<a.

d) 1[0]#0, while, for 1<r<a, y[rJESpan(yU])kr would imply

u2rv[0] = urTrv[UJ = (U - T)rv[r]e (U - T)rspah(v[ﬂ)kr = {0}.

Hence 1[01,...,1["‘]] are linearly independent, and
![r]eker(u-l)”]\ ker(u-TI)". The same statements hold
for the sequence (T_v["])g".

e) The ascent of u is at least a. (For l[“JJEker(u-I)“‘\ ker(u-l)“'l.)

VI. If F:awg u, has a zero of exact order a at A, then the ascent of u
is a; i.e., the ascent of A is a. For if the ascent of . were to exceed
a there would be some f satisfying the side conditions (1),(2) so that
(u-T)Mf =purvlo-1],
But then
(- an)f = pule1]
«(M - myul®)




using (3). It would follow that j}g&“] € ker(M-AN); therefore

f7g£“3=gg\ (since both satisfy the m-1 side conditions (1)). But
then, as both f and u, also satisfy condition (2), it would follow
that

=g uled o (g .
0 = g u’ = (d*F/dx) |, /et

and this would contradict the assumption that A is a zero of F of
exact order a. |||




§6. Three numerical exgeriments: groblem descrigtions and summary of results.
In this section we recall the numerical experiments which led us to
conjecture the conclusions proved in the first three sections of this

paper [4]. The experiments seemed necessary because previously published
results, as noted in [4], proved more tantalizing than conclusive.

Three eigenvalue problems (5.0-5.2) were considered, all with constant
coefficients and non-self adjoint operators M. As mentioned in the previous
section, the geometric multiplicity of all eigenvalues was one since m-1
side conditions were the usual initial conditions (Qi°15)(0)=0. 1<i<nm-1.

Problem I illustrates the case of an operator N of order greater than
zero. It uses the third order equation

Lx := D3x + azozx +a,0x + agx = 0, t in (0,1),
a,:= -5, a,:= 20, a5:= 17.8111159551842

under boundary conditions
0 = x(0) = (Dx)(0) = x(1).
One solution takes the form

x(t) = exp(at) - exp(bt)[cos(ct) + (a-b)sin(ct)/c],

a = -0.73544611132431, b = 2.86772305566215, ¢ = 3.99928443790975.
(These numbers were obtainred as follows. If x has the above general form
with a and b given by

where

b = blc,ay) := {[a2#3(c?-a))]'/2

-az}/3, as= a(c,az) = - (a2+2b), c arbitrary,
and with

3, = 20, ag = ao(c,az) = - a(b2+c2), a, arbitrary ,
then Lx = 0 and x(0) = (Dx)(0) = 0. Then, for 3, = -5, the function f given by

flc,a,) = x(1)/(0%)(0)

has a zero, determined numerically as ¢ = 3.99...; the numbers a,b,a,
associated with this choice for ¢ are exhibited above.)
We obtained problem I by choosing




so that an eigenvalue for (5.0)-(5.2) is A=5. We became convinced that
the ascent of this eigenvalue is one through the following exercise:
having fixed the value of a, = a5(c,a,) at 17.811..., the definitions of
90(9’92)’ g(q,gz), and a(c,c,) determine ¢ as a function of 3, in such

a way that x satisfies Lx=0 and x(0)=(Dx)(0)=0. Then (for a, near -5)

FO) = F(-a,) = flcla,)a,) (=x(1)/(0%x)(0))

is the function F=gqu, of section five. Numerically, we found c(-5%¢)
and corresponding F, :=F(5ze), € = .05 (-.01) .01; we report the follow-
ing difference quotients centered upon A=5:

e 05 04 .03 .02 .00
[(F,-F_)/2¢ - 0.136260] x 16® 101 65 3 16 4.

A We took this (apparent)e2 convergence as sufficient evidence that
gfjgxlx=5 # 0, i.e., that the ascent of this eigenvalue is one.

A description of the numerical method used and details of the
numerical results are given in the next section. These results exhibit
the kind of "superconvergence" one associates with collocating a third-
order nonsingular problem, both for the (real) approximate eigenvalue
and for the breakpoint values of the approximate eigenfunction.

The second and third problems were chosen to exhibit results
for eigenvalues of ascent greater than one.

1 Problem Il is a second order problem from Coddington and Levinson
‘1 [5 , p.0N2]:

»l M:= Dz, N:=1, A= -m;

'é under boundary conditions

0 =x(0) =(Dx)(0) +(Dx)(1).
The functions required to determine the ascent as in section five are

u () =sin Vo3t AST, F(3) =gu, =1 +cosvei;
? l‘ so that F vanishes iff x=-(gr)2, K an odd integer. At each such eigenvalue
5 ) dF/d» also vanishes while gff/gxz =-1/(4{x]3/2)f 0. Thus the ascent of each

; i eigenvalue is two. We fixed upon A= -n"; the eigenfunction and generalized
eigenfunction are then, respectively,




x](t) = sin (nt), xz(t) = t cos(nmt);

one notes that (ﬁ-x)52 = -2n§] (as it should), while both satisfy the
boundary conditions.

The numerical results for Problem II are amusing in that for uniform
partitions one obtains unexpected "superconvergence"; and only for a
nonuniform partition (we took

(1) t, = Ei/(z-ii). g, =i/, 0<i< {)

did we observe the splitting of the approximate eigenvalues into two simple
ones, converging as the square-root of the "superconvergent" rate from
opposite (and not necessarily real) directions. Appendix I provides a
proof, in the piecewise quadratic case, that the approximate eigenvaiues
associated with uniform partitions are real, have ascent two, and therefore
converge as fast as their average; i.e., at the rate o(1a1%).

Friedman [ 8, p.226] presents a second order problem whose (complex)
eigenvalue has ascent two under separated (complex) boundary conditions.

Problem III is a third order problem with ascent(1)=a=3 = alg.mult()):

M:= D3, N:=1I,

under the separated boundary conditions

b(Dx) (1) + ¢ (0%)(1).

+

0 = x(0) = (Dx)(0) = x(1)

The constants and eigenvalue X =‘53, namely

b =-0.11629166020407, ¢ = 0.0094658373919757, r = -10,205352107415

were determined by shooting from t =0 (see Appendix 1I) so that the
function F(2) = Bau, of section five had a zero of third order; i.e., the
ascent of this efigenvalue is three.

Approximations for this problem were considered only for the previously
described nonuniform partition; the approximate eigenvalues appeared to be
simple and to converge at essentially the same rate (the cube-root of the
"superconvergent” rate) along three equiangular rays emanating from A in the
complex plane. (The piecewise cubic case seems an exception; and, as it
appears to contradict the Proposition in section 8, we feel that we may not
have gotten close enough to the asymptotic situation in that case.)
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In Problems II and III the geometric, harmonic, and arithmetic
means of the a approximate eigenvalues (also of their reciprocals) con-
verged, as hoped, at the appropriate "superconvergent" rates.

Approximate eigenfunctions converging at this same rate at the
breakpoints were easily constructed using these mean values and solving,
by collocation, the appropriate approximating initial value problem. Such
approximations are not necessarily eigenfunctions of any approximate
operator, for they fail to satisfy the boundary condition at t = 1 exactly.
The eigenfunctions of the approximate operators in Problems II and III,
themselves, cannot be expected to exhibit much accuracy. After all, an
exact eigenfunction also satisfies a nonsingular problem Mx-ANx=0, under
side conditions (615=0)T-] together with an additional independent inhomo-
geneous side condition which we may regard as a normalization. Thus the
corresponding eigenfunction of the approximate operator is also the
collocation approximation to a nonsingular approximating problem
My-1 Ny=0; it is very close to the solution of the latter problem and
consequently only withinO(|x- AI) of the solution of the former. This
is borne out by the numerical experiments; and the fact that, as noted
in section two of [4], the invariant subspace is approximated (for a=3)
to within 0(|A|k) (which is better than O(IA-AA|)=0(|A|2k/3) simply means
that the error in each of these three approximations to the single eigen-
function lies mainly in their span.




§7. Three numerical experiments: method and tabulated results.

Each of the three eigenvalue problems of section six has the form

Mx =Nx in (0,1), order M =m, constant coefficients,

subject to m-1 homogeneous initial conditions (gi'lg)(0)=0 together

with an additional homogeneous side condition emﬁso. In each problem we

focus on how well a single known eigenvalue 1 is approximated. Approximate eigen-
elements (xé.gA), X, in P:+k,a’ are sought using collocation at k Gauss points

in each of the £ intervals of the partition o. The basis chosen for Pm+k,ﬁ
was a set of B-splines with appropriately chosen (multiple) knots;
information about such matters (including many computer programs ) can

be found in de Boor [1]. The associated matrix eigenvalue problem,
involving the B-spline coefficient vector c, takes the general form

Mm Mc-AANc=0 (M#1 even when N=1),

where the k& x (k€ +m) matrices M and N have the special almost block-diagonal
structure described in de Boor and Swartz [2] and illustrated, e.g., in de Boor
and Swartz [3]. To this system we adjoin the m homogeneous side conditions
induced by (eigAeo)?.

As indicated in sections five and six, the geometric multiplicity of
the eigenvalue of interest is one. Taken with the m-1 initial conditions,
this fact allows us to compute the approximate eigenvalues by straight-
forward shooting for the complex zeroes of the function (emgﬁ)(xA), using
A, as the shooting parameter, while holding §m5ﬂ=(gm'15A)(0) fixed at one.
Indeed, using one interpretation of Gauss-point collocation, we may concisely
describe the whole process as finding approximate eigenvalues using shooting
with an implicit Runge-Kutta scheme.

The (complex) roots of (emgﬁ)(AA) near A were sought out numerically
using Muller's method as implemented in the computer program found in
Conte and de Boor [6, pp.74-80]. This program searches for a prescribed
number of complex roots, given initial guesses which we took uniformly as 1.1x.
(A less confused version of the program description may be found in the book's
third edition.) The convergence parameters used in-the program were

12 14

EP1=10""°, EP2 =107 ",
together with a third parameter EP3=10"

7 which took effect if the last




change in the root was that small relative to the magnitude of X - A

(all three exits were used, in fact, at one time or another). The range of
the number of iterations taken. per root, was (excluding asterisked places
in the tables to follow)

Problem I I1(uniform mesh) II{nonuniform mesh) III
iterations 7-14 7-32 6-30 7-28

with the higher figures associated generally with problems of large
dimension. For the reader who is curious concerning the results of
requests for additional roots we report the following: the eigenvalue
of Problem Il has ascent two and, for uniform partitions, the ascents of
the approximate eigenvalues also appears to be two. A request for two
roots in an analogous problem (uniform mesh) yielded two real, almost
identical roots near the analog of -wz; a request for four (non-uniform
mesh) yielded two simple approximations near the analog of -rz, two

near -972 {the next nearest eigenvalue),
Given a candidate for XA , the linear system corresponding to the

initial value problem would have been solved most efficiently (computationally)

by solving a succession of local linear systems, block by block,

beginning with the (k+m) x (k+m) block corresponding to the initial interval.
Nevertheless, the method actually used was the complex band-matrix solver
embeddea in the LINPACK collection of subroutines [7]; for this our input
specified and supplied m+k-1 super- and sub-diagonals constructed from the
output of de Boor's B-spline package [1]. (These matrices were readily
available, having been previously used in a relatively inefficient numerical
method based, not on shooting, but on finding a zero of the determinant of
the linear system (1) (plus side conditions) via Gaussian elimination.)

The tables to follow concern the convergence of the eigenvalues
obtained numerically on a CDC 7600 using single precision arithmetic. The
errors recorded in the tables are the magnitude of the relative error. The

"rates” recorded are the slopes of the relevant secant lines on a log-log
plot of these errors against 1/£, where £ is the number of mesh intervals.
In these tables, the number -1.23-4 represents -1.23x10'4. Asterisks follow
errors presumed to be contaminated by roundoff problems or by problems
associated with switches in convergence criteria for Miller's method. For

complex >, we also report the coordinates of exp[__i_Arg(AA -1}], i.e., the
numbers

RE := Real part(>, -3)/1x, -2, IE := Imag. part(n, =2)/[r, -],
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In the cases of nonuniform meshes,the harmonic mean of the simple
approximating AA's (i.e., the reciprocal of the arithmetic mean of the
corresponding uA's) was generally better than the arithmetic or geometric
means - sometimes by an order of magnitude (but not always - e.g., in
Problem II, nonuniform mesh, k=2, the error in the harmonic mean was up to
three times that of the geometric mean; and in problem III, k=2, the error
itn the harmonic was up to four times that of the arithmetic mean). For
nonuniform meshes, then, we report the simple approximating eigenvalues

(but not necessarily in the 7 er in which Miuller's method found them),

and immediately follow them with the data for their harmonic mean.

Otherwise, we note the following:
1. The hoped for superconvergent rates (modulo the ascent of the
eigenvalue) are borne out by the results.

3 2. The real, simple eigenvalue in Problem I is approximated by a

: real eigenvalue; the direction of convergence depends on k.

3. The errors in the pair of simple eigenvalues approximating the real,
multiple eigenvalue in Problem II (nonuniform mesh) are essentially
real (imaginary) when k is odd (even), and they have opposite sign.

4. Roundoff problems prevent the multiple approximate eigenvalue of

: Problem II (uniform mesh) from yielding better than 10'7 error; errors

! 100 times better could be attained (with more work, though) by the

: geometric mean of the two simple eigenvalues associated with the nonuniform

mesh.

T

5. The error in one of the three simple eigenvalues in Problem III
(nonuniform mesh) 1is always real; convergence to A takes place along
three equiangular curves for k>1; for k = 4, rates exceed provable rates.

:i _ | 6. The case k=1 of Problem III (nonuniform mesh) is curious; for the

errors in two of the simple eigenvalues seem to approach zero at a

rate 0(£f‘65) along curves whose slopes are almost +1 in quadrants

I and IV, while the error in the third appears to be on the negative

real axis and to have the faster rate (but larger magnitude) 0(£f’74).

Were these rates in fact true asymptotically, it would contradict

Proposition 8.1 (take B8=2 in (8.2b) in the next section) which

asserts that the slower two must converge from opposite directions.

A We prefer to believe (and the table may bear this out) that the

‘ ] rates exhibited have not yet attained their asymptotic behavior.

The second author undertakes to preserve other data (including errors in
approximating eigenfunctions obtained by the initial-value technique previously
mentioned) for the next decade and to reproduce them (upon reasonable request)

during that time.
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Problem II, nonuniform mesh (6.1), -X=172z 9.87
Two simple approximating eigenvalues and their harmonic mean
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Problem III, nonuniform mesh (6.1), -x~1063
Three]simple approximating eigenvalues and their harmonic mean
k=2

£ -Re(xrp) |rel.er.| rate RE I £ -Re(x,) |rel.er.| rate RE IE

1187 1.3-1 0.89 0.45 1025  6.2-2 -0.57 0.82
a0 1187 1.3 0.89 -0.45 . ,, 1025  6.2-2 -0.57 -0.82 ‘

4 877  1.8-1 -1.00 0.00 - 1139 7.2-2 1.00 0.00

i 1063  4.6-4 1.00 0.00° 1062 4.4-4 -1.00 -0.00
: 1162 1.1-1  0.69 0.84 0.55 1032 5.2-2 1.21 -0.56 0.83 )

5o 1162 1.1-1  0.69 0.8 -0.55° .. 1032 5.2-2 1.21 -0.56 -0.83

904 1.5-1  0.77 -1.00 0.00 . 1024 5.8-2 1.38 1.00 0.00

1063 2.9-4 1.97 1.00 -0.00 1063 2.4-4 3.8 -1.00 0.00

1146 9.9-2  0.67 0.79 0.6} 1037 4.4-2 1.24 -0.55 0.83

g0 1146  9.9-2  0.67 0.79 -0.61 ,, 1037 4.4-2 1.24 -0.55 -0.83

924  1.3-1  0.73 -1.00 -0.00 1114 4.8-2 1.3 1.00 0.00

1063 2.1-4 1.98 1.00 -0.00 1063 1.4-4  3.89 -1.00 0.00

1135 8.9-2 0.66 0.76 0.65 1041 3.8-2 1.26 -0.54 0.84

i 70 113  8.9-2 0.66 0.76 -0.65 .. 1041  3.8-2 1.26 -0.54 -0.84

939  1.2-1  0.73 -1.00 -0.00 1106 4.1-2  1.38 1.00 =0.00

1063 1.5-4 1.99 1,00 -0.00 1063 9.0-5 3.91 -1.00 0.00

1127  8.2-2  0.65 0.74 0.68 1044  3.3-2 1.27 -0.54 0.84

go 1127 8.2-2 0.65 0.74 -0.68 ,. 1044 3.3-2 1.27 -0.54 -0.84

950 1.1-1  0.74 -1.00 0.00 1101 3.5-2  1.37 1.00 -0.00

1063 1.2-4 1.99 1.00 0.00 1063 6.0-5 3.93 -1.00 0.00

1121 7.6-2  0.65 0.72 0.70 1046 2.9-2 1.28 -0.53 0.85
9o 1121 7.6-2 0.65 0.72 -0.70 ,, 1046 2.9-2 1.28 -0.53 -0.85 4

960  9.7-2  0.74 -1.00 -0.00 1096 3.1-2  1.37 1.00 -0.00

.. 083  9.2-5 0 1.99 1.00 -0.00 .19§§nﬂn"%¢1 -5 3.9 -1.00 -0.00

T3 g} .39 1,00 -0.00

1020 7.7-2 -0.52  0.85 1046 3.1-2 -0.52 0.85

L g 1020 7.7-2 -0.52 -0.85 . 1046  3.1-2 -0.52 -0.85

44 7.7-2 1.00 0.00 1098  3.3-2 1.00 0.00

1062  8.0-4 -1.00  0.00 1063  9.5-6 1.00 -0.00

: 1042 3.8-2 1.72 -0.51 0.86 1054 1.7-2  2.12 -0.50 0.87

j 1, 1042 3.8-2 1.72 -0.51 -0.86 o 1054 1.7-2  2.12 -0.50 -0.87

- 1104  3.9-2 1.68 1.00 -0.00 1081 1.7-2  2.30 1.00 0.00

, 1063 8.8-5 5.45 -1.00 0.00 1063 1.2-5 -0.71 -1.00 0.00

| 1051  2.3-2 1.85 -0.50 0.86 1058  8.9-3  2.85 -0.49 0.87

l B 16 los1  2.3-2 1.85 -0.50 -0.86 ,, 1058 8.9-3 2.85 -0.49 -0.87

i 1087 2.3-2  1.87 1.00 0.00 1072 8.7-3 2.94 1.00 0.00

;;Ji 1063 1.9-5 5.3¢ -1.00 0.00 1063 3.7-6  5.08 -1.00 0.00

; 1055 1.5-2 1.92 -0.50 0.86 1060 4.8-3  3.39 -0.49 0.87

"i ,0 1055 1.5-2 1.92 -0.50 -0.86 ,, 1060 4.8-3  3.39 -0.49 -0.8

! ¥ 1078 1.5-2  1.93 1.00 0.00 1068 4.7-3  3.45 1.00 0.00

; H 1063 5.5-6  5.52 -1.00 -0.00 1063 1.2-6  6.46 -1.00 -0.01

: 1057 1.0-2  1.96 -0.50 0.87 1062 2.5-3 4.24 -0.48 0.88
i ,q 1057 1.0-2 1.95 -0.5¢ -0.87 ,, 1062 2.5-3 4.24 -0.48 -0.88 ’
3 1074 1.0-2 1.96 1.0 -0.00 1065 2.4-3  4.35 1.00 -0.00 ]
I 1063 2.0-6 5.68 -1.0  0.00 1063 3.7-7 7.42 -1.00 0.05 -
' | 1059  7.6-3 1.97 -0.50 0.87 " 5.7-4* 1.1 -0.26 0.97 "

' : ,g 1059 7.6-3  1.97 -0.50 -0.87 " 5.8-4* 10.9 -0.26 -0.97

g ; 1077 7.6-3 1.98 1.00 000 16 3.0-4* 154 1,00 -0.00

1063  8.6-7  5.32% -1,00 0.02 " 4,7-6* 0.37 -0.93




§8. An observation about a multiple eigenvalue's asymptotics. Two of our
a1 A S

numerical examples concern problems in which the algebraic multiplicity, a,
coincides with the ascent, o, where both are greater than one. In these
examples the approximate eigenvalues (for a sequence of non-uniform partitions)
were observed to be simple and to converge to their common 1imit along equi-
angular rays in the complex plane. In this section we offer an elementary
explanation of this phenomenon.

The conclusions concerning the approximate solution of eigenvalue problems
which are relevant here are the following (justification for them is found in
Part I of this paper [ 4 ]J). One is given (in principle) an a xa matrix J
of complex numbers whose sole complex eigenvalue u# 0 has algebraic multiplicity
a (of course) and ascent a; we suppose 2<a . One is similarly given a
sequence of a xa matrices (gn)T; they arise from the collocation process using
a sequence (An)T of partitions of [0,1) whose maximum interval lengths satisfy
IAnI-»O. The a eigenvalues of in are denoted by (u§"))?; their reciprocals
are the approximate eigenvalues one actually calculates in collocation, the
ones which approximate the single desired eigenvalue 1/u. One knows that
gn-»g_in the following sense: there is a sequence (Gn)T of positive numbers
converging to zero, computable in principle from the partition sequence, so that

(1) J-9,=0(s.);
(n)

consequently each y; ' approximates . to the extent that
SMeueote)™, 1<y<a.

(A sequence of matrices (Z("))T and a sequence of complex numbers (gn)? satisfy
the order relation _Z_(") =0(w,) iff there is some K>0 and some integer N so that
max IZ$3)1<5'3"n" n>N. They satisfy A =o(w ) iff for every e>0 there is
; £ b
some N(c) so that max|g$3)|<elyn! for n3Ne). 2™ =001) i£f 2(M a0,

¥, -

1
We now suppose there are r "worst" approximate eigenvalues. By this we
mean that, for each n, (ugn))? can be and has been reordered so that

K< iug") -u|/|u1(n) - ul <K

(n) (n)

eventually for i=1,...,r, while TPIRER 'O(u] -u), i>r. Indeed, we

we shall assume more: that the error in each has the beginnings of an
asymptotic expansion in that of the first. More precisely, we suppose that,
for each n, (ugn))? can be and has been reordered to form a vector 2(")et°
which satisfies

a]lb=
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(2a) g(n) =y +en[\g+0(] )i

with
€n® u%n)-u + 0, u:= (u,.. .u)TECa.

and y some fixed complex a-vector. (In such circumstances L is necessarily

one; and the number of worst eigenvalues is the number of nonzero components of w.)
In addition, we assume that the r worst approximate eigenvalues converge

slower than the known bound Gn on g-gn, i.e.,

(2b) 6:'/(8’]) =o(en) for some integer £ with 2<g<a.

Very loosely speaking, E(n) is a differentiable perturbation of u with respect
to the error in u]" , and the error in usn) is sufficiently bad relative to
the known bounds on J-J .

A situation such as we have just described could be anticipated for
collocation if a sequence of partitions (An)T of [0,1] was constructed by
specifying each partition point in & using (§$")= f(j/g))?go, where f is
some sufficiently smooth homeomorphism of [0,1]. 1In this case, if k collocation
points are specified for each partition interval using k fixed reference points
(p. )1 in [-1,1] (independent of n and of Ay ), then a known sequence for the
bound (1) on 3-J 1is given by & =8, 1 If the k reference points are
the k Gauss points, then one may instead take $n ={Anf2k. We offer no
justification for (2) other than that it appears to be satisfied (with a=a)
in some of our numerical examples.

Finally, for yet?, let

cj(g):= the jth elementary symmetric function of the components of y;

for example, o\(y) =y +...+v,; the geometric mean of (gj)? is oa(¥)1/a;
the harmonic mean, a°a(!)/°a-1(¥)‘ Then we offer simple proof of the following

Proposition 1. Suppose J- J is bounded as in (1), while the sequence of

vectors (y( )) of approximate eigenvalues satisfies (2), Then there

are at least g worst approximate eigenvalues; i.e., hv fo)1 Furthermore,

(o (u) 0)1 . Finally, if there are exactly g worst approximate eigenvalues,
. If (w ):+1, then there is some complex number const #0 such that

wj-const exp(2nij/8), 1<j<8.

«]b=




The proof begins with a fact concerning the elementary symmetric
functions.

Lemma 2. For any vector y€ €® and with T (u.-...u)Te c®,

oyy +g) o) AT ocy<a.

Proof (for completeness' sake). Express each side of the equation
a and o) -
nj.'|[z' (u"'Vj)] nj'][(z u) VJ]

in terms of the elementary symmetric functions:
Buol-1 o u 022 o 1810 (g (2 - ).

Now equate coefficients of corresponding powers of 2. Il

Up to a sign, the characteristic polynomials of the a xa matrices gn are
Po(2) = 2® +q,(2), (degree (q ) =a-1);
and they constitute a sequence of perturbations of the characteristic polynomial

i | (z-u)? =22 +q(2)

of the a xa matrix J. The next result says (roughly) that if, for such
polynomials, the perturbed zeroes have a certain asymptotic form and if

the slowest converging zero converges slower than the gth root of the rate

at which the p highest order coefficients of g, are converging (to those of g)
then at least p+1 perturbed zeroes converge this slowly. The proof is a
simple extension of the obvious proof for the case p=1.

e iz o

e

Lemma 3. Let (y, )] be a sequence of vectors in ¢* of the form
(3) y,=w+o(1) ( some ye¢® independent of n)

; which satisfies, for some sequence (en); of complex numbers converging to
i : zero, for some complex number .. and for some positive integer p, the relations

) (4) o5(u+ epyp) 'UJ(HHO((:“)D). 1<j<p,
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where ,:= (u.....u)Te €2, Then oj(g) =0, 1<j<p. Consequently, the
components of w consist of the a zeroes of the polynomial

n(2)= 2 TG -1 o (w2, 3

so_that if a-p or more components of w are zero, then w=0.

Proof. We suppress the subscript n. Because of Lemma 2, and since oo(cy) =]
while 9 (u) -( )uY, assumption (4) means that

0. (L)"‘Z

eI o ) votPy,  1<y<n.

Consequently, the vector g:= (cj(eg))fe ¢P satisfies the linear system
Lg=0(cp),

where L is a lower triangular matrix, 1ndependent of n, whose ma'ln diagonal
consists entirely of ones. Hence ||g|l“=o(e Y. Now, oJ(cx) = eJo (¥). so that

oj()_L)=o(cp'J)=o('l), 1<j<p.
But, from assumption (3),
OJ(¥) =°J.(!)+O(1)’ 1€j<p.
Hence oj(g) =0 (1<j<p) since °j(‘§) is independent of n yet o(1). Consequently
a . 2,8 ,7a _1yd a-j
nj=](z wj) z +Zj=p+]( 1) cj(g)z

Recall, now, how °j(§) is a sum of products of j components of y. H

Proof of Proposition 1. Using (1) ( as remarked at (2.15) of part I of

this paper [ 4 ])
osu!™) =osu) +0le),  T<i<a.

In Lenma 3, take pi=g-1. Then with ¢ := u{™ .,
es6{™) =050 +ol(c)P), 1<5<p

by assumption {2b); furthermore, en-»o. We also take

xn:z (E(N) - E)lcn

“lu-

) N ' -




(unless e =0 when we let y := g given in (2a)). Because of assumption (2a)
the hypotheses of Lemma 3 are now satisfied; we conclude that

Oj(!)'OQ 1<j<B.

Furthermore, if more than a-8 components of y were zero, then yw would be Q.

But w]-l hence at least B components of y are not zero. Finally, if (!ﬂ # 0)?
but (w 0) 241" then

o;(y) =0, B<j<a
as well, Hence y consists of the a roots of

2(2) = z°+{:.8(-1)‘ai(g)z“‘ =22°8(2f . (), ci= (- 1)5"‘:1] w0, |l

Contextual Remarks. The elementary results represented by Lemma 3 and
Proposition 1 join a large body of work concerning the zeroes of perturbed
polynomials and the eigenvalues of perturbed matrices. Thus, as an

. immediate consequence of Lemma 3 we have the following result concerning

;j differentiable perturbations of the polynomial (z-u)2:

CorolIar; 4. Suppose that, as the positive real variable

discretely (if not continuously) approaches zero, the coefficients of
the polynomial

N A A

i - a
I3ag -7 oy (ulx))2® (= 1 Leous(0D)

take on the 1imiting values (?)(-u)i, the leading p + 1 coefficients
approaching their 1imits with better than first order accuracy, j.e.,

ks

(ddildx)(0+) =0 , 0<i<p, some p > 0.

% Suppose, too, that for the same value of p, duj/d(x /p) exists at
] x=0,, 1<j<a. Then

oylldwd(x' /P01 =0, o<i<p;

S0 that, not only does u.»u, 1<j<a, but also at least b+ 1 components of
% (du/d(x /p)](o ) are not zero if a single component 1s not zero.

|
|
5
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This may be compared, for example, with a stronger structure
theorem of Wilkinson [10,pp.64-65] which, under its stronger hypotheses
and adapted to perturbations of (z-u)2, says

Theorem (Wilkinson). Let “I(X)'°"’”a(X) be the a zeroes of a polynomial

za~+Z:=](-l)i[(?)ui +Pi(x)]Za'i;

here each p; is a polynomial which vanishes at x=0. ;ﬂﬂﬂL(ui)? consists

of Jdisjoint subsequences; thQaj zeroes in the jth subsequence are the 3y
values of a series

2
+ +d.w +...
u cjw Jw

corresponding to the 3y different values of w '=x]/aj-

Wilkinson's result is observed in its eigenvalue context by Kato
{ 9, footnote, p.73], who considers eigenvalue problems for both analytic
matrices [ 9, Chap. II, §1 through 54] and merely differentiable ones
(op. cit., s5]. (Kato's results become relevant if (J )] is somehow
construed as a perturbation of J via a single small continuous parameter x;
in such circumstances the eigenvalues of J(x) would constitute a "u-group",)
For both kinds of perturbations the eigenvalues are of course continuous;
in the analytic case they can have only algebraic singularities. In both
cases, the spectral projector associated with J(x) is at least differentiable,

although the individual spectral projectors associated with distinct
approximate eigenvalues will have algebraic poles (or worse behavior)

unless the ascent of u is one. In both cases, if the ascent of u is one,
the approximate eigenvalues are shown differentiable (among a variety of
other results). But when the ascent exceeds one and J(x) is merely
differentiable (a case somewhat analogous to the situation above), Kato
offers little else.

ol 28




‘one and ascent two (hence their algebraic multiplicity, too, is two).

ed v Vo =2
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Aggendix 1: guadratic sg11ne eigenvalues can have ascent two if the

partition is unifbrmi convergence can be O(hz); other tridiagonaI schemes
can have these two properties.

Consider the (non-self-adjoint) eigenvalue problem from Coddington
and Levinson [5, p.312]

(1) 0®W « aw =0, w(0) = 0, Dw(1) + DW(0) = 0 .

The eigenvalues are
A ==(kn)2, k odd, k > 0;

from sections five and six we conclude they have geometric multiplicity

The corresponding eigenfunctions are
w](t) = sin(knt),

while the corresponding generalized eigenfunctions
wz(t) = t cos(knt)

satisfy the boundary conditions and (as they should)
(D2 - A)wz = -2kmw,, hence (Dz - A)zwz

We consider the approximating problem obtained by collocating

(1) with g? quadratic spiines midway between a uniformly placed set of

knots on [0,1]. We show that, with h:= [4], ﬁ
a s e nvalues are 0 2 cura and have ascent two
(a) IS cep the most negaéikg genv as ascent one if £ is odd),

(b) 1its eigenfunctions are, up to a constant factor, exact™
at the knots. If they are normalized by matching Dw](o)
hen they are 0(? ) accurate at the knots. Efther is o(h ) accurate
s

L.
(¢) the correspondin gde%'ér"hzed' eigenfunctions are, with their first

derivatives, 0(h°) accurate in L_.

Thus the collocation of (1) with Q} quadratics on a uniform
partition does not demonstrate the sharpness of the poor convergence
rates we prove for problems whose eigenvalues have ascent > 1. However,
the collocation of (1) using a non-uniform partition can exhibit such

poor convergence rates, as fs seen in the numerical results for Problem II.
To prove (a)-(c) we begin by considering the second centered divided

difference operator D.D_. Let h = 1/£. Then, if u(t):= exp [ikr{t-¢)]

(v »K real),
(2) (0,0 - o) u =0, o:=2 (1 - cos 8)/h, 6:= K w h,

Let v(t):= t u(t). Then
0,0_ v =(t DD _+2Dlu, Dy (D, +0)/2,

2. P VLN - ~ = e
‘adhd ‘ B, L7
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so that
(3) (DD - 0)v=1ivu, v:=2sine/h
Letting |
U(t):= sin [Ka(t-2)],
the imaginary part of (2) yields
(0,D_- o) U=0.
Setting
V(t) := (t-¢) cos [Kn(t~¢)]
we have from the real parts of (2) and (3) that
(D,D_ ~ o) V=~ U, hence (DO,D_- 0)2 v =0.

Let ¢ be the (£+2lvector of coefficients of the £+2 translates

of the quadratic B-spline associated with knots uniformly placed h apart
on [0,1]. Then the difference equations associated with collocating g?-x,
using this basis, at the‘f midpoints of a uniform mesh are

2
Let

(4) o :=g/(1 +0 h2/8) (the denominator is never zero).

:th . . .
Were the j~'coefficient given by y(gj) (y(gj), respectively) we would have

(0,D. - GA) U=0

(%) (0,0_ - & A) V =-v (1-n%5/8)u ,
so that
(0,0_ - 3 A2V =o.

Now K and v are completely arbitrary here - it is the boundary condi-
tions which will determine them. These conditions, expressad in terms
of the B-spline coefficients, are

(6) Cg+c =0, (0, cly+ (D clyy=0
Pick, nows
(7) K=1, 3.0, 2L(&-1)/25 41 = Ko 5 wi= b2,




e ek v

thereby determining B-spline coefficients (using U and V, respectively)

——
o
—
"

sin [Kn(tj-h/Z)], tj = jh, j=0,...,241; K< K

max *

—

(e~

~—
"

(tj-h/z) cos [Kn(tj-h/Z)]; K< Kmax(Q even); K<K ., (& odd).

The coefficient vector C satisfies the boundary conditions {6); in view

of (5) it is an eigenvector with associated eigenvalue o = o . The ascent
of o will be at least two, by (5), if the boundary conditions (6) are also
satisfied by the coefficient vector B of (8) with the same choice (7) for K.
But with this choice it may be verified that -

(B)0 = -(8)y = - h cos (Kn h/2)/2

(a1)
(D,8), = - (D_B),,y = cos (Kn h/2) ;

hence the eigenvalues ¢ indeed have ascent at least two.

Since the algebraic multiplicity of A = -(53)2 is two, there
are exactly two approximate eigenvalues which converge to it; from (7),
(4), and (2) we see that, eventually, both of these are GK.
algebraic multiplicity of BK is, eventually, at most two, so its ascent,

Hence the

as it exceeds one, is eventually exactly two. Because the average of the
two eigenvalues approximating A converges at the superconvergent rate
associated with collocation at the single Gauss point per partition interval,
we conclude

(a2) =)+ 0(h2) R

9K
the convergence constant being computable from (4) and (2).

Rerark. In the same fashion, any sequence of approximate
eigenvalues, all with ascent exceeding one, which converges to A (a
sequence, say, associated with collocation of (i) at k Gauss points per in-
terval) will converge at the superconvergent rate O(QZk). Unfortunately,

such a sequence has not been found to enable us to analytically verify the
numerical results for Problem II, uniform mesh, when k exceeds one.
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O(Q?) superconvergence (to a given A of ascent and multiplicity
two) of some sequence of approximate eigenvalues also would follow if the
ascent of every approximate eigenvalue exceeds one. And, indeed, the
ascent and algebraic multiplicity of the eigenvalues EK (K specified by
(7)) is exactly two (except for EKmax if & is odd) if one can show that the

eigenvalues are distinct so that the g vectors (8) span the g-space of co-
efficients which satisfy the two homogeneous constraints (6). But, from (2)
and (4), do/dK < 0 for 0 < Knh = 6 < n. Consequently, since g(k=0) = 0,

0>0, >0, if0c< Kyh < Koh < 1. Thus the choice (7) indeed yields (for h fixed) e
1 2
strictly monotone decreasing sequence of negative eigenvalues whose ascents

and algebraic multiplicities are all two except, possibly, for the last.
Although approximate eigenfunctions are not of major concern in
this paper, they are almost in hand for this example, and we pause now
to consider them.
The value of the spline corresponding to C of (8), at a knot

Ej = Jh, is
Sc(tj) = (CJ + Cj'ﬂ )2

(b1)

cos {Km h/2) sin (7 K tj) .

Hence the spline eigenfunctions are exact at the knots - up to a constant
factor. The mid-knot value of s. (at £, := (t.  +t.)/2) is
s (at B = (15 44t)/2)

2

sc(f.) [(I +n

§ D, D_/8)C];

(1 + oh2/8)Cj = w(E) + 0(he);

hence ch-hhnw = O(Q?). If the spline eigenfunction is normalized by
requiring that its derivative at 0, (D,C),, match that of w, then
3 (tj) = {n Kh/ [2 tan (r K h/2)]} sin (n K tj)

norm
(b2) = w](tj) + O(hz);

2
the mid-knot values of Snorm 2T€ also 0(h®) accurate.




That the spline, s Sp» corresponding to B of (8) differs from the
generalized eigenfunction wz(t) = t cos (Krt) by O(h ) may be seen as fol]ows
sg(0) = w2(0) while s _8(1) = - cos (Kr h/2) = w2(1) + O(h ). At the 1

mid-knot ij ,
sp(Ey) = [(1 + 12 0, D_/8)B],

(c) = [8 + h2(o B - v C)/8]y
= Ej cos (Knij) + O(hz) .

- 2
Hence llsg-wll o(h%).

The derivatives of s $¢* Snorm? and s Sg are piecewise linear. As
each can be shown to be 0(3?) accurate at the knots, these derivatives are
also O(Q?) accurate inL_. |||

As an aside, this Appendix also shows that the usual finite-
difference operator D D has eigenvalues and eigenfunctions with similar
properties if the unknowns represent function values at the mid-knots
(id)% rather than B-spline coefficients; the boundary conditions (6)
describe the usual extrapolations in this context. For the approximate
eigenvalues for this problem are oy (rather than o ), the mesh point values
of the eigenfunctions and generalized eigenfunctions (at ({1) ) are given
by (8). If we use this difference-scheme interpretation but take A

(above (4)) to be I + Q?D+D_/12, then the approximate eigenvalues are
5, = 0y / (1+a,h2N12) = a, + 0(h%) ;
K K K K ’
the difference scheme is then the Numerov scheme. The "1inear spline
Galerkin" scheme (along with the knot-collocated g? cubfc spline scheme)

has an
A=1+ hZD+D_/6
and consequent O(Q?) eigenvalue approximations (nere we take (id)% as knots

and B-spline coefficients as unknowns; the collocated boundary conditions
are satisfied by (8)).




Appendix I1:An Eigenvalue Problem with Ascent Three.

Consider the initial value problem

D3u ~Au=0, 2= r3 , T #0;

u(0) = Du(0) = 0 , 0%u(0) = 3r.
Then
u(t) = f(rt),
where
fy):= exp (y) - 2 exp (-y/2) cos (oy - n/3) ,
c:=V3/2.
Furthermore,

(Dgu)(t) = r g(rt),
(0,2u)(t) =r hirt);

where

a(y):
h(y):
We seek numbers g=l, bs ¢ and a value.g such that the function

6(r) = au(1) +b (Dw)(1) + ¢ (0,%u)(1)

exp (y) - 2 exp (-y/2) cos (oy + n/3) ,

exp (y) - 2 exp (-y/2) cos (oy - m) .

has a zero of third order at r=R#0. (The third homogeneous boundary
condition for the eigenvalue problem will be taken to be

[ax+ bDx+c 925](1) =0; an eigenfunction will be f(Rt).) Forming
G' and G", we seek values'!=5_such that the matrix

ki ¥9 yzh

Miy):= | £ (v9)' (y2h)'

F‘(ygr'(yth'J




= g

st e s

T TG O

is singular. Using the relations f'=g, g'=h, h'=f, we see that
. -1 -2
My) = diag (1, y ', y °) N(y)

where the symmetric matrix N is given by

B b
f yq ¥
Ny):=|yg yg+ yzh 2y2h + y3f
v2h 2y%h + y35 2y%n + ay3F + y“g )

Finally, then, we search for a zero y=R of det[N(y)], the coefficients
of u(1), (Du)(1), and (D u)(1) are then the solution of

N(R) (1, b )T
These constants are displayed in section 6, Problem III.

That R is a zero of G of exact order three follows if
Gm = 4 b(yg)m + c(yzh)"' * 0 at y:R.

This last is so since, as may be checked,

6" (R)/3 =bf(R) + 2c[Rg(R) + f(R)] = 0.
Finally, we note that the functions required in section five are
u, () =u(t)/3r? = 013y (3 2 23, (r=rd)
FOD e, <6033 (023
We observe that if G has a zero of exact order three at R # 0, then

F also has such a zero at ) -11 » since then
d F/dx lA-R3 G"'(R)/(3R ) $

-27-
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