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ABSTRACT

We display the numerical results associated with the collocation
of three elgenvalue problems using from one to four Gauss points per

partition interval in order to document the sharpness of the error
bounds we have previously obtained. The ordinary differential operators
involved are real with constant coefficients; two of the problems have

an elgenvalue whose ascent exceeds one. We propose an explanation
for the observed manner in which a set of simple approximate eigenvalues
can approach a single multiple eigenvalue.
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SIGNIFICANCE AND EXPLANATION

In Mathematics Research Center Technical Summary Report #1937, we

reported on some new results concerning the rate of approximation to

eigenvalues of an Ordinary Differential Equation achievable by collocation

with piecewise polynomial functions. In the present report, we report on

the numerical experiments which first led us to guess these results. The

experiments now serve to show that the convergence rates proved in tIRC

TSR 41937 are indeed as good as could, in general, be expected. At the same

time, they provide carefully worked out examples, of a kind we had difficulty

finding in the literature, particularly for the case of an eigenvalue whose

algebraic and geometric multiplicities differ (i.e., an eigenvalue of ascent

greater than 1). For such a case, the theory predicts a considerable

reduction in the convergence rate (when compared with a simple eigenvalue),

and the numerical experiments show that this is not a limitation of the theory

but corresponds to actual computations. Finally, the report gives an

explanation of sorts for a rather striking convergence behavior in the case

*of an eigenvalue with ascent greater than 1. Such convergence behavior

might be detectable numerically, and so might offer a means of detecting when

the ascent is greater than 1, i.e., when a certain averaging (which, as the

theory shows, improves the convergence rate) should be used.

The responsibility for the wording and views expressed in this descriptive
summary lies with IRC, and not with the authors of this report.

! ) . , .o .



COLLOCATION APPROXIMATION TO EIGENVALUES OF
AN ORDINARY DIFFERENTIAL EQUATION:

NUMERICAL ILLUSTRATIONS

Carl de Boor and Blair Swarz

Introduction.

This is the second in a sequence of three papers concerned with the

approximation of an elgenvalue of an m-th order ordinary differential

equation Mx=XNx (subject to m homogeneous side conditions) through

the use of piecewise polynomial projection methods as exemplified by
collocation. We present here the numerical experiments which
illustrate (indeed, pointed us toward)the convergence results we have

previously described and proved [4]. The ascent, a, of an ODE's eigen-

value plays a crucial role in the bounds obtained on the convergence

rate of approximating eigenvalues from the known convergence rates associ-

ated with the nonsingular problem Mx=y. For this reason we first describe

a technique which can sometimes be applied to determine this ascent

a priori. We then pose elgenvalue problems for three constant co-

efficient operators: one problem in which N is not the identity;

others in which the order of the operator M, along with the eigenvalue's

ascent and algebraic multiplicity, is two and three, respectively.

Numerical results follow concerning the approximate eigenvalues

Jassociated with collocation at from one to four Gauss points per parti-
tion interval; most of them exemplify the sharpness of our 0 (lal2k/m)

error estimates for each approximating eigenvalue and of our O(I6 2k

estimates for certain averages of all approximating elgenvalues. But,

in one case involving a uniform partition, the individual numerical

approximations of a multiple eigenvalue appear to converge faster

than these estimates; we prove this is not illusory when collocating

this problem with piecewise quadratics, concluding that the approximat-

ing eigenvalues then has the same ascent (two) as the approximated

eigenvalue. In most of the cases concerning the approximation of a

multiple elgenvalue, however, the numerically obtained elgenvalues

appear to be simple and to converge to their common limit along equiangular

rays in the cumplex plane; we end with an elementary explanation of

this asymptotic phenomenon.

Continuing our first paper [4] on these matters, we begin with

Sponsored by the United States Amy under Contract Nos. DAAG29-75-C-0024
and DAAG29-80-C-0041 and by the United States Department of Energy under
Contract No. W-7405-ENG. 36.
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5 . A way to find the ascent of an eigenvalue of a differential equation.

In this section we develop a technique which, in some circumstances, en-

ables one to tell what the ascent of an eigenvalue of an ordinary differential

equation actually is. The technique resembles one-parameter shooting; it

is applied later to determine the ascent of an eigenvalue in each of the

three problems we chose for our numerical examples.

As usual, we consider our eigenvalue problem

(0) Mx=ANx on (0,1) M=Dm+ Zi a< D NXi b D n<m

(with sufficiently smooth coefficients) subject to the homogeneous side con-

ditions (all of order less than r.)

(I) $lX x ... V 6m- I x  = O,

(2) mx O;

under which M is presumed to have an inverse, M. We suppose A (tO) is an

eigenvalue. We also presume we have in hand another linear functional im

which has the property that, for X. near A, there is a unique solution u,

to the problem Mu, = XNu, when u, is subject to the m-l side conditions (1)

together with the final inhomogeneous condition emUx =1. The map

thereby defined is a smooth map for X near A (take

u, EC[0,l], say). (In particular, in each of our three examples, M and N

are constant coefficient operators, the m-l conditions (1) are the initial

conditions aix = (Dlx)(0). 9mx is the initial condition (Dmlx)(O), and

mx is some linear combination of derivatives at t=l. The map Xtu is then
analytic.)

In these general circumstances we have the following Facts:

1. (A, u )is an eigenelement iff F:X "aE u~ has a zero at A. (In fact,
jI the final Fact fixes the ascent of A'at the precise order of this zero.)

II.The eigenvalue A is simple geometrically. (For if (A, y) is an
eigenelement, then x:= y- Y )U Gker(M- .N) and satisfies (1)

together with amix=0; i.e., A O0.)

III. If >,O,.. ,A are near A, then

.I(M- o )[,O .. , r ]U> = [ I ... 'r ]Nu,,

with []f,, the (_-i)th divided difference with respect to the

parameter X.



For
.!' (M- AoN) [XO,...,9Arlux N[O""..x ](ANu ) -O),.,r]Nu,

E .[,...,N]NUu x O[xO,...,Xr]Nu

using Leibnlz' formula (see, e.g., de Boor [1, page 5). Consequently,

IV. jM [r]'. (D!)r /.r! satisfies not only the m-i side conditions (1)

but also the recursion

(3) (M rX) r Nr-i) UE03) u.
(M~~ A Anu, A

V. If F:X*8mUA has a zero of order at least a at A, then

a) [r] -li
a) ) 0 satisfy the side conditions (1) and (2). (For

drF/dxr = mdru /dxr = rBmU )

b) -p:=1/A is an elgenvalue of T:=NM u, too, is simple

geometrically; and its ascent is the ascent of A.

c) With (~r]. ( r]
v MUA r) Or' t,

we have v[OJ =Mucker(u-T), and (from (3))

GO -T)vrr] = ]Tv[r-1]  1r<a

d) v[Olt 0, while, for 1 <r <a, v[r]e span(v)i 4 r would imply

2r [0) = rTr v[0) = ( - T )rv[r]  ( - T )rsp *n(v[i])i
r  {0}.

Hence v[O ,... ,v a 'I] are linearly independent, and
v[r]Eker(-T)r+\ ker(Ij-TI)r. The same statements hold

L for the sequence (Tv Er0) "-i

e) The ascent of u is at least a. (For va'clIeker(v -T)'\ker(u-T)al.)

VI. If F:A.*8mUA has a zero of exact order m at A, then the ascent of v

is a; i.e., the ascent of A is a. For if the ascent of u were to exceed
there would be some f satisfying the side conditions (1),(2) so that

(- T)Mf u PTv

But then

(M-AN)f ENula -l]

"-(M A AN~ulal

" * * _____ _-_______.__-,, • ' ._



T

using (3). It would follow that f-u a3 E ker(M-AN); therefore

f-ua3=cu (since both satisfy the m-i side conditions (1)). But

then, as both f and .uA also satisfy condition (2), it would follow

that

ua (d"F/dx ) I Ar!;O=M A  =X=

and this would contradict the assumption that A is a zero of F of

exact order a. III

r" \

I
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§6. Three numerical experiments: problem descriptions and summary of results.

In this section we recall the numerical experiments which led us to

conjecture the conclusions proved in the first three sections of this

paper [4]. The experiments seemed necessary because previously published

results, as noted in [4], proved more tantalizing than conclusive.

Three elgenvalue problems (5.0-5.2) were considered, all with constant

coefficients and non-self adjoint operators a. As mentioned in the previous

section, the geometric multiplicity of all elgenvalues was one since m-i

side conditions were the usual initial conditions (D Ix)(O)=O I < <m-l.

Problem I illustrates the case of an operator N of order greater than

zero. It uses the third order equation

Lx : 3 ~x + a 2 D2x + aDx + a0x -0, t in (0,1),
a2:= -5, a,:= 20, ao:= 17.8111159551842

under boundary conditions

0 = xMO Z (Dx)(O) = x(l).

One solution takes the form

where x(t) = exp(at) - exp(bt)[cos(ct) + (a-b)sin(ct)/c),
a - -0.73544611132431, b = 2.86772305566215, c a 3.99928443790975.

(These numbers were obtained as follows. If x has the above general form

with a and b given by

= = 2 2 1/2
b b(c,a 2) := {[a 2 +3(c -.a,)] -a2 /3, a = a(c,a2) := - (a2+2b), c arbitrary,

and with

a1 = 20, a0 = aO(c,a 2) := - a(b2+c2), a2 arbitrary

then Lx = 0 and x(O) = (Dx)(O) = 0. Then, for a2 = -5, the function f given by

f(c,a) := x(l)/(D 2x)(0)

has a zero, determined numerically as c -3.99...; the numbers _'b -

associated with this choice for c are exhibited above.)

We obtained problem I by choosing
M :-L-a0 2  N =D2

- '' ,



so that an eigenvalue for (5.0)-(5.2) is X=5. We became convinced that

the ascent of this eigenvalue is one through the following exercise:
having fixed the value of a0 = 80(c,.2) at 17.811..., the definitions of

aO(c,a2 ) b(c,a 2), and a(c~c2) determine c as a function of a2 in such

a way that x satisfies Lx=O and x(O)=(Dx)(O)=O. Then (for a2 near -5)

F(X) = F(-a 2) := f(c(a 2 ),a2 ) (=x(l)/(D 2x)(0))

is the function F=3 of section five. Numerically, we found c(-5:c)

and corresponding F,:=F(5±c), c = .05 (-.01) .01; we report the follow-

ing difference quotients centered upon X=5:

C .05 .04 .03 .02 .01

[(F+-F.)/2e - 0.134260] x 106 101 65 36 16 4

2We took this (apparent)E2 convergence as sufficient evidence that

dF/d X1=5 * 0; i.e., that the ascent of this eigenvalue is one.

A description of the numerical method used and details of the

numerical results are given in the next section. These results exhibit

the kind of "superconvergence" one associates with collocating a third-

order nonsingular problem, both for the (real) approximate eigenvalue

and for the breakpoint values of the approximate eigenfunction.

The second and third problems were chosen to exhibit results

for eigenvalues of ascent greater than one.

Problem II is a second order problem from Coddington and Levinson

S[ 5 , p.312]:
w ' 2  2

M:= D N:= I, X=r;

II 4under boundary conditions

0 =x(O) =(Dx)(0)+(Dx)(1).

The functions required to determine the ascent as in section five are

u(t) = sin -- /\C, F(+) = 2u 1 +cosvC;

so that F vanishes iff =.(K)2, K an odd integer. At each such eigenvalue

dF/d also vanishes while d 2F/d.2 =-1 /(41 I3/2 ) # 0. Thus the ascent of each2
eigenvalue is two. We fixed upon x= -, ; the eigenfunction and generalized

eigenfunction are then, respectively,

- Mai



xl(t) sin (rt), x2{t) = t cos(7rt);

one notes that ({-X)x2 -2rxl (as it should), while both satisfy the

boundary conditions.

The numerical results for Problem Hare amusing in that for uniform

partitions one obtains unexpected "superconvergence"; and only for a

nonuniform partition (we took

(1) t i = /(2-E.) Ei = i/l , Oil)

did we observe the splitting of the approximate elgenvalues into two simple

ones, converging as the square-root of the "superconvergent" rate from

opposite (and not necessarily real) directions. Appendix I provides a

proof, in the piecewise quadratic case, that the approximate elgenvalues

associated with uniform partitions are real, have ascent two, and therefore

converge as fast as their average; i.e., at the rate 0(6M ).

Friedman [ 8, p.226] presents a second order problem whose (complex)
elgenvalue has ascent two under separated (complex) boundary conditions.

Problem III is a third order problem with ascent(X)-o=t3 * alg.mult(X):

M:= D 3  N:= I,

under the separated boundary conditions

0 = x(O) - (Dx)(0) = x(1) + b(Dx)(1) +c(D2)(l).

The constants and eigenvalue = r 3, namely

b = -0.11629166020407, c = 0.0094658373919757, r = -10.205352107415

were determined by shooting from t -0 (see Appendix II) so that the

function F(A) -B3ux of section five had a zero of third order; i.e., the

ascent of this elgenvalue is three.

Approximations for this problem were considered only for the previously

described nonuniform partiton; the approximate elgenvalues appeared to be

simple and to converge at essentially the same rate (the cube-root of the
"superconvergent" rate) along three equiangular rays emanating from X in the

complex plane. (The piecewise cubic case seems an exception; and, as It

appears to contradict the Proposition in section 8 , we feel that we may not

have gotten close enough to the asymptotic situation in that case.)

-7-
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In Problems II and III the geometric, harmonic, and arithmetic

means of the a approximate eigenvalues (also of their reciprocals) con-

verged, as hoped, at the appropriate "superconvergent" rates.

Approximate eigenfunctions converging at this same rate at the

breakpoints were easily constructed using these mean values and solving,

by collocation, the appropriate approximating initial value problem. Such

approximations are not necessarily eigenfunctions of any approximate

operator, for they fail to satisfy the boundary condition at t = 1 exactly.

The eigenfunctions of the approximate operators in Problems II and III,

themselves, cannot be expected to exhibit much accuracy. After all, an

exact eigenfunction also satisfies a nonsingular problem Mx-ANx=O, under

side conditions (Oii=O)' I together with an additional independent inhomo-

geneous side condition which we may regard as a normalization. Thus the

corresponding eigenfunction of the approximate operator is also the

collocation approximation to a nonsingular approximating problem

M_7-ANy=O; it is very close to the solution of the latter problem and

consequently only withinO(A-XI) of the solution of the former. This

is borne out by the numerical experiments; and the fact that, as noted

in section two of [4], the invariant subspace is approximated (for a=3)

to within O(,Al k) (which is better than O(jX-XD=O(1A 2k/3 ) simply means

that the error in each of these three approximations to the single eigen-

function lies mainly in their span.

-8
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17. Three numerical experiments: method and tabulated results.

Each of the three eigenvalue problems of section six has the form

Mx =ANx in (0,1), order M -m, constant coefficients,

subject to m-l homogeneous initial conditions (D i- x)(0)=0 together

with an additional homogeneous side condition amr0. In each problem we

focus on how well a single known eigenvalue X is approximated. Approximate eigen-

elements (xA, x in ;+k,,' are sought using collocation at k Gauss points

in each of the t intervals of the partition t. The basis chosen for pm+k,L

was a set of B-splines with appropriately chosen (multiple) knots;

information about such matters (including many computer programs ) can

be found in de Boor [1]. The associated matrix eigenvalue problem,

involving the B-spline coefficient vector c, takes the general form

(1) Mc -XANc = 0 (MOI even when N=I),

where the kx (kZ+m) matrices M and N have the special almost block-diagonal

structure described in de Boor and Swartz [2] and illustrated, e.g., in de Boor
and Swartz [3]. To this system we adjoin the m homogeneous side conditions

induced by (B0=O)".

As indicated in sections five and six, the geometric multiplicity of

the eigenvalue of interest is one. Taken with the m-l initial conditions,

this fact allows us to compute the approximate elgenvalues by straight-

forward shooting for the complex zeroes of the function (B x X)( A), using

X as the shooting parameter, while holding gm.6=(P )(0) fixed at one.

Indeed, using one interpretation of Gauss-point collocation, we may concisely

describe the whole process as finding approximate eigenvalues using shooting

with an implicit Runge-Kutta scheme.

The (complex) roots of (am x)(xA) near X were sought out numerically
using MUller's method as implemented in the computer program found in
Conte and de Boor [6, pp.74-80]. This program searches for a prescribed

number of complex roots, given initial guesses which we took uniformly as l.lX.

(A less confused version of the program description may be found in the book's

third edition.) The convergence parameters used in the program were
EP 0 1 2  0 14

EP" 10- , EP2 - 10'
-7together with a third parameter EP3=l0 7 which took effect if the last

-9-
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change in the root was that small relative to the magnitude of X -A

(all three exits were used, in fact, at one time or another). The range of

the number of iterations taken, per root, was (excluding asterisked places

in the tables to follow)
Problem I II(uniform mesh) II(nonuniform mesh) III

iterations 7-14 7-32 6-30 7-28

with the higher figures associated generally with problems of large

dimension. For the reader who is curious concerning the results of

requests for additional roots we report the following: the eigenvalue

of Problem II has ascent two and, for uniform partitions, the ascents of

the approximate eigenvalues also appears to be two. A request for two

roots in an analogous problem (uniform mesh) yielded two real, almost
2identical roots near the analog of -7 ; a request for four (non-uniform

2mesh) yielded two simple approximations near the analog of - , two
2

near -9- (the next nearest eigenvalue).

Given a candidate for , the linear system corresponding to the

initial value problem would have been solved most efficiently (computationally)

by solving a succession of local linear systems, block by block,

beginning with the (k+m)x (k+m) block corresponding to the initial interval.

Nevertheless, the method actually used was the complex band-matrix solver

embedded in the LINPACK collection of subroutines [7]; for this our input

specified and supplied m+k-l super- and sub-diagonals constructed from the

output of de Boor's B-spline package [1]. (These matrices were readily

available, having been previously used in a relatively inefficient numerical
method based, not on shooting, but on finding a zero of the determinant of

the linear system (1) (plus side conditions) via Gaussian elimination.)
The tables to follow concern the convergence of the eigenvalues

obtained numerically on a CDC 7600 using single precision arithmetic. The
errors recorded in the tables are the magnitude of the relative error. The
"rates" recorded are the slopes of the relevant secant lines on a log-log

plot of these errors against I/t, where Z is the number of mesh intervals.
In these tables, the number -1.23-4 represents -l.23xlO " . Asterisks follow

errors presumed to be contaminated by roundoff problems or by problems

associated with switches in convergence criteria for Muller's method. For
complex , we also report the coordinates of exp[iArg(A -x)], i.e., the

.j numbers

RE Real part( -)/ - X1, IE := Imag. part(X - )/I -'j.

'J -10-
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In the cases of nonuniform meshes~the harmonic mean of the simple

approximating XAIs (i.e., the reciprocal of the arithmetic mean of the

corresponding uA s) was generally better than the arithmetic or geometric

means - sometimes by an order of magnitude (but not always - e.g., in

Problem II, nonuniform mesh, k=2, the error in the harmonic mean was up to

three times that of the geometric mean; and in problem II, k-2, the error

in the harmonic was up to four times that of the arithmetic mean). For

nonuniform meshes, then, we report the simple approximating eigenvalues

(but not necessarily in te r in which Muller's method found them),
and immediately follow them with the data for their harmonic mean.

Otherwise, we note the following:

1. The hoped for superconvergent rates (modulo the ascent of the

eigenvalue) are borne out by the results.

2. The real, simple eigenvalue in Problem I is approximated by a
real eigenvalue; the direction of convergence depends on k.

3. The errors in the pair of simple eigenvalues approximating the real,

multiple eigenvalue in Problem II (nonuniform mesh) are essentially

real (imaginary) when k is odd (even), and they have opposite sign.

4. Roundoff problems prevent the multiple approximate eigenvalue of

Problem II (uniform mesh) from yielding better than 10" error; errors

100 times better could be attained (with more work, though) by the

geometric mean of the two simple eigenvalues associated with the nonuniform

mesh.

5. The error in one of the three simple eigenvalues in Problem III

(nonuniform mesh) is always real; convergence to X takes place along

three equiangular curves for k>l; for k = 4, rates exceed provable rates.
6. The case k=l of Problem III (nonuniform mesh) is curious; for the

errors in two of the simple eigenvalues seem to approach zero at a

rate 0(_- 5) along curves whose slopes are almost ±1 in quadrants

I and IV, while the error in the third appears to be on the negative
74real axis and to have the faster rate (but larger magnitude) 0(r" ).

Were these rates in fact true asymptotically, it would contradict

Proposition 8.1 (take a = 2 in (8.2b) in the next section) which

asserts that the slower two must converge from opposite directions.

We prefer to believe (and the table may bear this out) that the

rates exhibited have not yet attained their asymptotic behavior.

The second author undertakes to preserve other data (including errors in

approximating eigenfunctions obtained by the initial-value technique previously

mentioned) for the next decade and to reproduce them (upon reasonable request)

during that time.
-11-
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Problem I, uniform mesh, x = 5
k=l k=2

t xA Irel.er.! rate j. Irel.er" rate

2 3.26 3.5-1 5.78 1.6-1
4 1.47 7.1-1 -1.02 5.04 8.8-3 4.15
6 5.77 1.5-1 3.74 5.01 1.6-3 4.14
8 5.41 8.2-2 2.22 5.00 5.1-4 4.08

10 5.25 5.1-2 2.13 2.0-4 4.05
12 5.17 3.5-2 2.09 9.8-5 4.04
14 5.13 2.5-2 2.06 5.3-5 4.03

k=3 k=4
2 4.96 9.0-3 5.00 5.1-5
4 5.00 1.2-4 6.24 " 3.6-7 7.15
6 1.0-5 6.05 1.4-8 7.91
8 1.8-6 6.02 1.5-9 7.97

10 " 4.7-7 6.01 2.4-10 8.09
12 1.6-7 6.01 " 7.6-11* 6.27
14 6.3-8 6.01 " 4.0-12* 19.22

2
Problem I, uniform mesh, -A = i 29.87

k=l (see also App.I) k=2, -x 9.87
Z -x Irel.er.j rate Irel.er.IA rate

A
10.67 8.1-2 2.3-3

4 10.11 2.5-2 1.71 1.7-4 3.75
6 9.98 1.1-2 1.94 3.4-5 3.91
8 9.93 6.4-3 1.97 1.1-5 3.91
10 9.91 4.1-3 1.98 4.8-6 3.80
12 9.90 2.8-3 1.99 2.4-6 3.88
14 9.89 2.1-3 1.99 1.8-6* 1.82

I k=3 k=4
2 9.87 3.3-5 4.2-7
4 6.4-7 5.69 1.2-7* 1.87
6 2.8-7* 2.05 2.3-7* -1.66
8 2.9-7* -.14 2.7-7* -0.58

10 2.4-7* 0.85 2.0-7* 1.43
12 4.9-7*-3.96 2.6-7* -1.67
14 1.0-7*10.30 3.8-8* 12.61

' -12-



Problem II, nonuniform mesh (6.1), - =v2~ z9.87
Two simple approximating eigenvalues and their harmonic mean

k=, RE =±l, IE =0 k=2, -Real(xA )9.87
t -Re(A) Irel.er.I rate I rel.er.f rate RE IE

13.51 3.7-1 4.9-2 -0.05 1.00
4 7.97 1.9-1 4.9-2 -0.05 -1.00

10.03 1.6-2 2.2-4 -1.00 -0.00

11.26 1.4-1 1.39 1.2-2 2.06 -0.01 1.00
8 8.83 1.1-1 0.87 1.2-2 2.06 -0.01 -1.00

9.90 3.0-3 2.42 3.4-5 2.66 1.00 -0.00

10.73 8.7-2 1.17 5.1-3 2.05 -0.00 1.00
12 9.16 7.2-2 0.92 5.1-3 2.05 -0.00 -1 .00

9.88 1.3-3 2.10 9.1-6 3.27 1.00 0.00
10.50 6.4-2 1.11 2.8-3 2.03 -0.00 1.00

16 9.33 5.5-2 0.94 2.8-3 2.03 -0.00 -1.00
9.88 7.1-4 2.04 3.1-6 3.70 1.00 -0.00

10.36 5.0-2 1.08 1.8-3 2.02 -0.00 1.00
20 9.43 4.5-2 0.95 1.8-3 2.02 -0.00 -1.00

9.87 4.5-4 2.02 1.3-6 3.83 1.00 -0.00

k=3, RE =±1, IE =0 Z k=4, -Real(A) 9.87
9.93 5.6-3 4.5-4 -0.00 1.00

4 9.82 5.5-3 4 4.5-4 -0.00 -1.00
9.87 2.9-5 2.5-7 -1.00 -0.00

9.88 6.8-4 3.03 9.4-5 3.88 -0.00 1.00
8 9.86 6.8-4 3.01 6 9.4-5 3.88 -0.00 -1.00

9.87 2.9-7 6.61 8.4-9 8.35 -1.00 -0.01
2.0-4 3.07 2.9-5 4.04 -0.00 1 .00

12 " 2.0-4 3.06 8 2.9-5 4.04 -0.00 -1.O0
2.1-8 6.52 8.7-10* 7.88 -0.73 0.68

8.2-5 3.04 1.2-5* 4.06 -0.00 1.00
16 " 8.2-5 3.04 10 1.2-5* 4.06 -0.00 -1.00

3.1-9 6.68 3.4-9* -6.10 -0.01 1.00

4.2-5 3.03 5.7-6* 3.97 -0.00 1.00
20 " 4.2-5 3.03 12 5.7-6* 3.97 0.00 -1.00

9.6-10" 5.16 1.5-9* 4.37 0.96 0.29

-13-



Problem III, nonuniform mesh (6.1), -A2.1063
Three simple approximating eigenvalues and their harmonic mean

k=l k=2

t -Re(XA) Irel.er.I rate RE IE Z -Re(x A) Irel.er.I rate R E I[
1187 1.3-1 0.89 0.45 1025 6.2-2 -0.57 0.82

40 1187 1.3-1 0.89 -0.45 124 025 6.2-2 -0.57 -0.82
877 1.8-1 -1.00 0.00 1139 7.2-2 1.00 0.00
1063 4.6-4 1.00 0.00 1062 4.4-4 -1.00 -0.00

1162 1.1-1 0.69 0.84 0.55 1032 5.2-2 1.21 -0.56 0.83

50 1162 1.1-1 0.69 0.84 -0.55 28 1032 5.2-2 1.21 -0.56 -0.83
904 1.5-1 0.71 -1.00 0.00 1024 5.8-2 1.38 1.00 0.00

1063 2.9-4 1.97 1.00 -0.00 1063 2.4-4 3.86 -1.00 0.00

1146 9.9-2 0.67 0.79 0.61 1037 4.4-2 1.24 -0.55 0.83

60 1146 9.9-2 0.67 0.79 -0.61 32 1037 4.4-2 1.24 -0.55 -0.83
924 1.3-1 0.73 -1.00 -0.00 1114 4.8-2 1.38 1.00 0.00

1063 2.1-4 1.98 1.00 -0.00 1063 1.4-4 3.89 -1.00 0.00

1135 8.9-2 0.66 0.76 0.65 1041 3.8-2 1.26 -0.54 0.84

70 1135 8.9-2 0.66 0.76 -0.65 36 1041 3.8-2 1.26 -0.54 -0.84
939 1.2-1 0.73 -1.00 -0.00 1106 4.1-2 1.38 1.00 -0.001063 1.5-4 1.99 1.00 -0.00 1063 9.0-5 3.91 -1.00 0.00

1127 8.2-2 0.65 0.74 0.68 1044 3.3-2 1.27 -0.54 0.84
80 1127 8.2-2 0.65 0.74 -0.68 40 1044 3.3-2 1.27 -0.54 -0.84

950 1.1-1 0.74 -1.00 0.00 1101 3.5-2 1.37 1.00 -0.00

1063 1.2-4 1.99 1.00 0.00 1063 6.0-5 3.93 -1.00 0.00

1121 7.6-2 0.65 0.72 0.70 1046 2.9-2 1.28 -0.53 0.85
90 1121 7.6-2 0.65 0.72 -0.70 1046 2.9-2 1.28 -0.53 -0.85

960 9.7-2 0.74 -1.00 -0.00 1096 3.1-2 1.37 1.00 -0.00
1063 9.2-5 1.99 1.00 -0.00 1063 4.1-5 3.94 -1.00 -0.00

k =3
1020 7.7-2 -0.52 0.85 1046 3.1-2 -0.52 0.85

8 1020 7.7-2 -0.52 -0.85 1046 3.1-2 -0.52 -0.85
1144 7.7-2 1.00 0.00 6 098 3.3-2 1.00 0.00

1062 8.0-4 -1.00 0.00 1063 9.5-6 1.00 -0.00

1042 3.8-2 1.72 -0.51 0.86 1054 1.7-2 2.12 -0.50 0.87

12 1042 3.8-2 1.72 -0.51 -0.86 8 1054 1.7-2 2.12 -0.50 -0.87
1104 3.9-2 1.68 1.00 -0.00 1081 1.7-2 2.30 1.00 0.00
1063 8.8-5 5.45 -1.00 0.00 1063 1.2-5 -0.71 -1.00 0.00
1051 2.3-2 1.85 -0.50 0.86 1058 8.9-3 2.85 -0.49 0.87

16 1051 2.3-2 1.85 -0.50 -0.86 10 1058 8.9-3 2.85 -0.49 -0.87
1087 2.3-2 i.87 1.00 0.00 1072 8.7-3 2.94 1.00 0.00
1063 1.9-5 5.34 -1.00 0.00 1063 3.7-6 5.08 -1.00 0.00

1055 1.5-2 1.92 -0.50 0.86 1060 4.8-3 3.39 -0.49 0.87

20 1055 1.5-2 1.92 -0.50 -0.86 12 1060 4.8-3 3.39 -0.49 -0.87
1078 1.5-2 1.93 1.00 0.00 1068 4.7-3 3.45 1.00 0.00
1063 5.5-6 5.52 -1.00 -0.00 1063 1.2-6 6.46 -1.00 -0.01

1057 1.0-2 1.96 -0.50 0.87 1062 2.5-3 4.24 -0.48 0.88
1057 1.0-2 1.96 -0.50 -0.87 1062 2.5-3 4.24 -0.48 -0.88
1074 1.0-2 1.96 1.0 -0.00 1065 2.4-3 4.35 1.00 -0.00
1063 2.0-6 5.68 -1.0 0.00 1063 3.7-7 7.42 -1.00 0.05

1059 7.6-3 1.97 -0.50 0.87 5.7-4* 11.1 -0.26 0.97
1059 7.6-3 1.97 -0.50 -0.87 5.8-4* 10.9 -0.26 -0.9728 1071 7.6-3 1.98 1.00 0.00 16 3.0-4* 15.4 1.00 -0.00

1063 8.6-7 5.32* -1.00 0.02 4.7-6* 0.37 -0.93

-14-
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§8. An observation about a multiple etgenvalue's asymptotics. Two of our

numerical examples concern problems in which the algebraic multiplicity, a,

coincides with the ascent, a, where both ara greater than one. In these

examples the approximate eigenvalues (for a sequence of non-uniform partitions)

were observed to be simple and to converge to their common limit along equi-

angular rays in the complex plane. In this section we offer an elementary

explanation of this phenomenon.

The conclusions concerning the approximate solution of eigenvalue problems

which are relevant here are the following (justification for them is found in

Part I of this paper [ 4 ]). One is given (in principle) an axa matrix j

of complex numbers whose sole complex eigenvalue u O has algebraic multiplicity

a (of course) and ascent a; we suppose 24c . One is similarly given a

sequence of a xa matrices (_jn)T; they arise from the collocation process using
a sequence usino

a sequence (AnX of partitions of [0,1] whose maximum interval lengths satisfy

40nl *o. The a eigenvalues of -n are denoted by ((n ))a; their reciprocals
are the approximate eigenvalues one actually calculates in collocation, the

ones which approximate the single desired eigenvalue 1/u. One knows that

J in the following sense: there is a sequence (6n)T of positive numbers

converging to zero, computable in principle from the partition sequence, so that

(1) J-J n=O(6 );
n)n

consequently each jn approximates L to the extent that

(n) I/ )

(A sequence of matrices (z(n))7 and a sequence of complex numbers (n)T satisfy
the order relation Z(n) ) iff there is some K)O and some integer N so that
ma z(n)I<K _0tn()
max -ij )I<K)nI' n)N. They satisfy Z(n)o(w ) iffforeveryc)O there is
some N(c) so that max ) for nN(c) iff Z(n)

il, - i , - i n ..

We now suppose there are r "worst" approximate eigenvalues. By this we
for ech n, (n) a-

mean that, for each n, (u can be and has been reordered so that

K l I (un - P / u n ) -  l(

(n) ,n(n)

eventually for i l,...,r, while ini - a -o((I -), i>r. Indeed, we

we shall assume more: that the error in each has the beginnings of an

asymptotic expansion in that of the first. More precisely, we suppose that,

for each n, ( (n) ) can be and has been reordered to form a vector

which satisfies

-Ab-



)(n
(2a)u U+ W 0

wi th
(n) T0 :a

and V some fixed complex a-vector. (In such circumstances w1 is necessarily

one; and the number of worst eigenvalues is the number of nonzero components of W.)

In addition, we assume that the r worst approximate eigenvalues converge

slower than the known bound 6n on J-, i.e.,

(2b) 61/(0'I) =o(C ) for some integer e with 2< e< a.n n
Very loosely speaking, P(n) is a differentiable perturbation of -w with respect

(n) (n)
to the error in v and the error in u is sufficiently bad relative to

the known bounds on J--n"

A situation such as we have just described could be anticipated for

collocation if a sequence of partitions (A of [0,1) was constructed by

specifying each partition point in An using (tn)= f(i/n)) where f is

some sufficiently smooth homeomorphism of [0,I]. In this case, if k collocation

points are specified for each partitio,. interval using k fixed reference points

(pi)k in [-1,1] (independent of n and of A ), then a known sequence for the
bound (1) on -Jn is given by 6n= n .  If the k reference points are

fl n 2k
the k Gauss points, then one may Instead take dn= IAn1k"  We offer no

justification for (2) other than that it appears to be satisfied (with =a)

in some of our numerical examples.

Finally, for ot , let

oj(l):-- the jth elementary symmetric function of the components of y;

for example, o(y) = v1 + . . .+ a ; the geometric mean of (vj) is I a( )I/a;
. the harmonic mean, aaa()/Ua. 1 (_). Then we offer simple proof of the following

Proposition 1. Suppose J-J is bounded as in (1), while the sequence of

vectors ( (n))1 of approximate eiaenvalues satisfies (2). Then there

are at least a worst approximate eigenvalues; i.e., (wj f o),. Furthermore,

(oj(w) -0)1" . Finally, if there are exactly 6 worst approximate elpenvalues,
i e., if (wj 0)a +
I If, then there is some complex number const f0 such that

wj =const exp(2ij/o), I<J48.

j-1b-
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The proof begins with a fact concerning the elementary symmetric
~functions.

Lemma 2. For any vector IeCa and with (ta

G 1.1M j' 0-4 oj -a

Proof (for completeness' sake). Express each side of the equation

nl.[z-(u+vj) a& (-.
~Vj

in terms of the elementary symmetric functions:

a.0 (- l) J Oj(U +x)za ' i • IM.(-l)aJ(1)(z - )a-j.

Now equate coefficients of corresponding powers of z. III

Up to a sign, the characteristic polynomials of the axa matrices -n are

Pn(Z) -za +qn(z), (degree (qn) =a-1);

and they constitute a sequence of perturbations of the characteristic polynomial

(z - ,)a za + q(z)

of the a xa matrix J. The next result says (roughly) that if, for such
polynomials, the perturbed zeroes have a certain asymptotic form and if

the slowest converging zero converges slower than the th root of the rate
at which the p highest order coefficients of gn are converging (to those of q)

then at least p+l perturbed zeroes converge this slowly. The proof is a
simple extension of the obvious proof for the case pa1.

Lemma 3. Let (In)l be a sequence of vectors in CA of the form

(3) In-W+o(1) ( some WeCa independent of n)

which satisfies, for some sequence (En); of complex numbers converging to
Zero, for some complex number u, and for some positive integer p, the relations

(4) a (k + enln ) "oj W)+°((cn)P),-C l<J, p-
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where k:- T (u,,)TE1 a . Then o .(w )-O, l<j<p. Consequently, the

components of W consist of the a zeroes of the polynomial

7t(z):= za+ a  ( w)za -j

so that if a- p or more components of W are zero, then w= .

Proof. We suppress the subscript n. Because of Lemma 2, and since o0 (CY)=

while = ( =(T)J, assumption (4) means that

zj_) 1=10i (EY) jti )I- = 0j + o(EP), I <;j 4p.

Consequently, the vector Z:= (a (E_))PeCp satisfies the linear system

L =o(cP),

where L is a lower triangular matrix, independent of n, whose main diagonal

consists entirely of ones. Hence ll=,, o(cP). Now, cj(q ) =ciaj(1), so that

3- -( Cp'j) =o(), p.

But, from assumption (3),

C (1) = a (w) +(I ), 4l j4p.

Hence j(,)=0 (lj4p) since aj(w) is independent of n yet o(l). Consequently3 - Z=

n l(z - wj) = a + Zjp+l (-l )oj(_W)z a j .

Recall, now, how o (w_) is a sum of products of j components of w" III

Proof of Proposition 1. Using (1) ( as remarked at (2.15) of part I of

this paper [ 4 )

i oj(u(n))=oj(6)4O(6n), l<j~a.
(' nn

In Lemma 3, take p:=s-l. Then with cn V (n) -,

Scj(k(n)) =a (U)+o(Cn)P), l<j<p

by assumption (2b); furthermore, cn O. We also take

((n)- )fI(n: = 46(n . A)/cn

.1

K . _..__ _ _ _;, = _ _. ........ .. .... .. ...



(unless n= O when we let Kn:" l given in (2a)). Because of assumption (2a)
the hypotheses of Lemma 3 are now satisfied; we conclude that

() -0. l<j 0B.

Furthermore, if more than a-$ components of X were zero, then w would be 9.
But Wl, hence at least 0 components of w are not zero. Finally, if (w!j 0)o
but (w. IO) , then

as well. Hence W consists of the a roots of

tz 7 z a a.( )ioi(W)za'i aza'(zB -c), c:& (-)+nlwjo, I
"i j()-z Z.(1 -)+

Contextual Remarks. The elementary results represented by Lemma 3 and
Proposition 1 join a large body of work concerning the zeroes of perturbed
polynomials and the etgenvalues of perturbed matrices. Thus, as an
immediate consequence of Lemma 3 we have the following result concerning

-j differentiable perturbations of the polynomial (z-z)a:

Corollary 4. Suppose that, as the positive real variable x
discretel (if not continuously) approaches zero, the coefficients of
the polynomial

a I )a-i a
i Z=O0 (-1) al(Mx) (- [z-Pj(x)

. - J-1

take on the limiting values (a)(.u)i, the leading p + 1 coefficients
approaching their limits with better than first order accuracy, i.e.,

(da1/dx)(O +) - 0 , 0 C i < p, some p > 0.

Suppose, too, that for the same value of p, duj/d(x /r exists at

xZO+9 lejqa. Then

a {[dL./d(xi ))(0+) - 0 , 0< i < p ;

so that, not only does pj-,u, l•Ja, but also at least D + 1 components of
[dmu/d(xl/P)](O+) are not zero if a single component is not zero.

-19-



This may be compared, for example, with a stronger structure

theorem of Wilkinson [l0,pp.64-65] which, under its stronger hypotheses

and adapted to perturbations of (z-u)a, says

Theorem (Wilkinson). Let ul(X),...,-a(X) be the a zeroes of a polynomial

za 
+ l-~[ p i ix]ai

here each p. is a polynomial which vanishes at x= 0. Then (ui)a consists
of Jdisjoint subsequences; theaj zeroes in the jth subsequence are the a

values of a series

V+c w +dw 2 + ...

corresponding to the a different values of w -xl/aj.

Wilkinson's result is observed in its elgenvalue context by Kato

t9 , footnote, p.73], who considers elgenvalue problems for both analytic
matrices [ 9, Chap. II, §l through i4] and merely differentiable ones

[92. cit., §5]. (Kato's results become relevant if QnT is somehow
construed as a perturbation of J via a single small continuous parameter x;

in such circumstances the eigenvalues of J(x) would constitute a "U-group".)

For both kinds of perturbations the elgenvalues are of course continuous;

in the analytic case they can have only algebraic singularities. In both

jcases, the spectral projector associated with J(X) is at least differentiable,

although the individual spectral projectors associated with distinct

Ii approximate elgenvalues will have algebraic poles (or worse behavior)

j'i unless the ascent of p is one. In both cases, if the ascent of u is one,
the approximate eigenvalues are shown differentiable (among a variety of

other results). But when the ascent exceeds one and J(X) is merely

differentiable (a case somewhat analogous to the situation above), Kato

offers little else.

2
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Appendix I: Quadratic spline eigenvalues can have ascent two if the

Partition is uniform; convergence can be O(h2)i other tridiagonal schemes

Can have these two properties.

Consider the (non-self-adjoint) eigenvalue problem from Coddington

and Levinson [5, p.312]

(1) D2w - Xw - 0, w(O) - 0, Dw(l) + Dw(O) - 0

The eigenvalues are

=-(kr)2, k odd, k > 0;

from sections five and six we conclude they have geometric multiplicity
one and ascent two (hence their algebraic multiplicity, too, is two).

The corresponding eigenfunctions are

wl(t) = sin(krt),

while the corresponding generalized elgenfunctions

w2(t) = t cos(kwt)

satisfy the boundary conditions and (as they should)

(D2 - X)w2 = -2krwl , hence (D2 - A)2w - 0.

We consider the approximating problem obtained by collocating

(1) with C1 quadratic splines midway between a uniformly placed set of

knots on [0,1]. We show that, with h:- IA1,

(a) ;se eenvalues are (h2) accurate a d have ascent twox the mos negat1e eigenvalue .a ascent one if t is odd),
(b) its eigenfunctions are, up to a constant factor, exact-

at the knots. If they are no-malized by matching Dw1 (0)
2 2

t hy are 01(p5 )accurate at the knots. Either is O(h ) accurateinL. , as is 'its derivative.
(c) the correspondinp generalizea elgenfunctions are, with their first

derivatives, O(h ) accurate in L,.

Thus the collocation of (1) with C quadratics on a uniform

partition does not demonstrate the sharpness of the poor convergence

rates we prove for problems whose eigenvalues have ascent > 1. However,

the collocation of (1) using a non-uniform partition can exhibit such

poor convergence rates, as is seen in the numerical results for Problem 11.

To prove (a)-(c) we begin by considering the second centered divided

difference operator D+P.. Let h - 1/g. Then, if u(t):- exp [Kir(t--)]

(- K real),
(2) (D+D - 0) u- 0, a:--2 (1 - cos 6)/h 2, 6:- K V h.

Let v(t) :- t u(t). Then

D+D v -(t O+O. + 2 D0)u, D0 :a (D+ + D)/2,



so that

(3) (D+D - a) v i v u, v :=2 sin e/h.

Letting

U(t):= sin [K(t-¢)],

the imaginary part of (2) yields

(DID - 0) U = 0.

Setting

V(t) :(-c os [K r(t-w)]

we have from the real parts of (2) and (3) that

(DID. - o) V = --v U, hence (DID. -o) V 0.

Let S be the (e+2)vector of coefficients of the t+2 translates

of the quadratic B-spline associated with knots uniformly placed h apart

on [0,1]. Then the difference equations associated with collocating D2-X,

using this basis, at the t midpoints of a uniform mesh areXh)c=0 2  .Z+j.

(DD-A) c , A:=I + hDD/8, c = (c A I

Let

(4) a :=a/(0 + a h 2/8) (the denominator is never zero).

Were the jthcoefficient given by U(t.) (V(t.), respectively) we would have

(DD - A) U = 0

(D+D. - A) V =-v (1-h2 l8)u

so that

(DD- A)2 V = 0.

Now K and are completely arbitrary here - it is the boundary condi-

tions which will determine thei. These conditions, expressed in terms

of the B-spline coefficients, are

(6) co + c a 0 , (D+ c)0 + (D_ c)z+ 1 a 0

Pick, now,

(7) K 1, 3,..., 2L(t-l)/2j + 1 : Kmax; o:- h/,

-22-

.EnM

-- ---- --



thereby determining B-spline coefficients (using U and V, respectively)

(C). = sin [K(tj-h/2)], t. := jh, j=O ,...,i+I; K < K max
(8) j'" a

(B)j = (tj-h/2) cos [K7(tj-h/2)]; K < Kmax(z even); K<Kmax (k odd).

The coefficient vector C satisfies the boundary conditions (6); in view

of (5) it is an eigenvector with associated eigenvalue a = ;K* The ascent

of - will be at least two, by (5), if the boundary conditions (6) are also

satisfied by the coefficient vector B of (8) with the same choice (7) for K.

But with this choice it may be verified that

(B)0 = -(B) 1 = - h cos (Kx h/2)/2

(al) (D+B)0 = - (DB) e+l = cos (Kr h/2)

hence the eigenvalues ; indeed have ascent at least two.

Since the algebraic multiplicity of X = 2(Kr) is two, there

are exactly two approximate eigenvalues which converge to it; from (7),

(4), and (2) we see that, eventually, both of these are ;K" Hence the

algebraic multiplicity of -K is, eventually, at most two, so its ascent,

as it exceeds one, is eventually exactly two. Because the average of the

two eigenvalues approximating X converges at the superconvergent rate

associated with collocation at the single Gauss point per partition interval,

we conclude

(a) + 2
K = +O(h)'

the convergence constant being computable from (4) and (2).
Reriark. In the same fashion, any sequence of approximate

eigenvalues, all with ascent exceeding one, which converges to X (a

sequence, say, associated with collocation of (i) at k Gauss points per in-

terval) will converge at the superconvergent rate O(h2k). Unfortunately,

*such a sequence has not been found to enable us to analytically verify the

* numerical results for Problem II, uniform mesh, when k exceeds one.

-23-
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O(h ) superconvergence (to a given X of ascent and multiplicity

two) of some sequence of approximate eigenvalues also would follow if the

ascent of every approximate eigenvalue exceeds one. And, indeed, the

ascent and algebraic multiplicity of the eigenvalues aK (K specified by

(7)) is exactly two (except for CK ax if Z is odd) if one can show that the

eigenvalues are distinct so that the z vectors (8) span the !-space of co-

efficients which satisfy the two homogeneous constraints (6). But, from (2)

and (4), da/dK < 0 for 0 < Kih = 6 < r. Consequently, since 0(K=0) = 0,

0> KI > OKif 0< K < K 1. Thus the choice (7) indeed yields (for h fixed) a

strictly monotone decreasing sequence of negative eigenvalues whose ascents

and algebraic multiplicities are all two except, possibly, for the last.

Although approximate eigenfunctions are not of major concern in

this paper, they are almost in hand for this example, and we pause now

to consider them.

The value of the spline corresponding to C of (8), at a knot
t. = jh, is

Sc(t ) = (Cj + cj+l)/2

(bl)
= Cos (Kn h/2) sin (w K t.)

Hence the spline eigenfunctions are exact at the knots - up to a constant

factor. The mid-knot value of 2-C (at (tj. lj)/2) is

Sc(t.) = [(I + h2 D+ D/8)C]

(1 + ah2/8)Cj = w1(tj) + O(h
2);

hence l = O(h). If the spline eigenfunction is normalized by

requiring that its derivative at 0, (D+C) O, match that of wI then

i3 Snor(t )  = { K h / [2 tan (r K h/2)3) sin (n K t.j)

(b2) wl(tj) + 0(h 2);

the mid-knot values of snorm are also 0(h2) accurate.

-24-
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That the spline, a., corresponding to B of (8), differs from the

generalized eigenfunction w2(t) - t cos (Kit) by O(h2 ) may be seen as follows:

4 (O) = A2(O) while 1,(l) * - cos (Kt h/2) - w2(1) + O(h2). At the th

mid-knott,
-ij

sB(tj) = [(I + h2 D+ D./8)B)j

(c) =[B + h2(a B - v C)/8

=. cos (K~tr) + O(h2)

Hence II.w2 _ = O(h2).

The derivatives of s, s , and 1. are piecewise linear. As

each can be shown to be 0(h2 ) accurate at the knots, these derivatives are

also O(h2 ) accurate in L. III
As an aside, this Appendix also shows that the usual finite-

difference operator D+Phas eigenvalues and eigenfunctions with similar

properties if the unknowns represent function values at the mid-knots

R )4 rather than B-spline coefficients; the boundary conditions (6)

describe the usual extrapolations in this context. For the approximate

eigenvalues for this problem are aK (rather than ;K); the mesh point values

of the elgenfunctions and generalized elgenfunctions (at are given

by (8). If we use this difference-scheme interpretation but take A

(above (4)) to be I + h2Q Q /12, then the approximate elgenvalues are

2
; °K = aK / (+aKh /12) XK + O (h4)

the difference scheme is then the Numerov scheme. The "linear spline

Galerkin" scheme (along with the knot-collocated C cubic spline scheme)

has an

A a I + h2D+D./6

and consequent 01 approximations (here we take Q_)1 as knots

and B-spline coefficients as unknowns; the collocated boundary conditions

are satisfied by (8)).
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Appendix II:An Eigenvalue Problem with Ascent Three.

Consider the initial value problem

D3u - u x 0, X= r3 , r* 0;

u(O) Du(O) = 0 , D2u(O) = 3r2.

Then

u(t) f(rt),

where

f(y):= exp (y) - 2 exp (-y/2) cos (ay -/3)

o:= V-/2

Furthermore,

(Dtu)(t) = r g(rt),

(Dt2u)(t) =r2 h(rt);

where

g(y):= exp (y) - 2 exp (-y/2) cos (ay + 7r/3)

h(y):= exp (y) - 2 exp (-y/2) cos (ay - n)

We seek numbers a=l, b, L and a value R such that the function

2G(r) := a u(l) +b (Dtu)(l) + c (Dt u)(1)

has a zero of third order at =R*O. (The third homogeneous boundary
condition for the eigenvalue problem will be taken to be

[ax + bDx+c D2x)(l-0; an eigenfunction will be f(Rt).) Forming
G' and G", we seek values y=R such that the matrix

D2

f L yg y2h

M(y):= f' (yg)' (y2h)I

f" (yg)" (y2h)"
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is singular. Using the relations fwg, g'sh, hrnf, we see that

Ai(y) - diag (I 1, y0Y 2 ) N(y)

where the symmnetric matrix N is given by

f Ag y2 h

N(y):= yg 2g+ 2y h + f

y 2h 2y 2h +y3f 2y 2h +4y 3f +y4

Finally, then, we search 2for a zero y=R of det[N(y)); the coefficients

of u(l), (Du)(l), and (D u)(1) are then the solution of

N(R) (1, b. c)T . 0

These constants are displayed in section 6, Problem III.

That R is a zero of G of exact order three follows if

2
GI= f"' + b (yg)"' + c (y h)"' 0 0 at y=R.

This last is so since, as may be checked,

Gi"' (R)/3 -b f(R) + 2c[Rg(R) + f (R)J 0.

Finally, we note that the functions required in section five are

[2 1/3 3/

We observe that if G has a zero of exact order three at R f' 0, then

F also has such a zero at x 1 since then

d 3F/dx 3 X.R3 G"' (R)/(3R 2)4
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