AD=-AD89 620 STANFORD UNIV CA DEPT OF OPERATIONS RESEARCH F/6 12/1
AN ACCELERATED COVERING RELAXATION ALGORITHM FOR SOLVING 0=1 PO--ETC(U)
JUN 80 D GRANOTe F GRANOT» W VAESSEN NOOQ14=T6~C=0818

UNCLASSIFIED TR=93 NL

foiys |
= k |32 .
—— ol P

Y
fliL ="
—— 1.8

28 s s

MRROCOPY RESOLUTION TEST CHART 4
NATIONAL BUREAU OFf STANDARDS- 1963 A

et

piiniog aadwumniit

[T N

p—

e — .
PRy - - S S

AN ACCELERATED COVERING RELAXATION
ALGORITHM FOR SOLVING 0-1 POSITIVE
POLYNOMIAL PROGRAMS

BY

DANIEL GRANOT, FRIEDA GRANOT
and
WILLEM VAESSEN

TECHNICAL REPORT NO. 93
JUNE 1980

PREPARED UNDER CONTRACT
N00014-76-C~-0418 (NR-047-061)
FOR THE OFFICE OF NAVAL RESEARCH

Frederick S. Hillier, Project Director

Reproduction in Whole or in Part is Permitted
for any purpose of the United States Government

This document has been approved for public release
and sale; its distribution is unlimited.

DEPARTMENT OF OPERATIONS RESEARCH
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

ey Tl OR =

/ P
‘ 7 4,/7 .
""’—Tthhe purpose of this paper is to present an accelerateg/élgorithm for

Abstract Lt
solving 0-1 positive bolynomial (PP)/problems of finding/é/o-l vector x

that maximizes cx subject to f(x)'%éb, where f(x) = (fé&x)) is an m-vector

of polynomials with nonnegative coefficients. Like oﬁr covering relaxation
algorithm (1979) the accelerated algorithm is a cutting-plane method in which
each relaxed problem is a set covering problem and the cutting planes are
Tinear covering constraints. However by contrast with other cutting-plane
methods in integer programming (including our original method), we do not

solve the relaxed problems to optimality after the introduction of the
cutting-plane constraints. Raiher, we first solve each relaxed set-covering
problem heuristically and only if the heuristic solution is feasible for
PP do we solve the relaxed problem to optimality. The promise of such an
approach stems from the excellent performance of the various heuristic
algorithms for solving integer programs. Indeed the extensive computational
experimentation we performed reveals that the accelerated approach has reduced
significantly both the number of covering problems solved to optimality and

the computational time required to solve a PP problem. For example the

average computational time required to solve a PP problem with 40 variables

and an average of 10.5 terms per constraint and 3 variables per term was reduced
using the accelerated method from 84.7 to 25.8 seconds while the average number

of covering problems solved to optimality was re d from 11.5 to 3.8,l

P

AN gt oo K ogie e S

1. Introduction
We consider in this paper the 0-1 positive polynomial (PP) problem of finding
a 0-1 n vector x = (xj) that maximizes cx subject to f(x) < b where ¢ = (cj) and

. Pi .
b = (b;) are non-negative, f(x) = (f,(x)) where f.(x) = zk=laik"chkxj with a, >0

and Nk CN-={1,2,...,n} for each 1 <k <p1. and ieM = (1,...,m}.

Polynomial terms in 0-1 variables have been found to be extremely useful in
modeling diverse problems in business and engineering. They are used, e.g., when
formulating media-selection problems [27], to incorporate risk into capital budget-
ing [18], for planning of irrigation systems [17], in cluster analysis [20], and
in various scheduling problems [13,19]

The two major approaches proposed in the literature for solving PP problems
are: the linearization approach and the Boolean-algebra approach.

In the linearization approach [8,9,26] each distinct polynomial term is
replaced by a new variable, and additional side constraints are introduced to
ensure that the values of the term and the variable replacing it coincide. The
main drawback of the linearizaton approach is the radical increase in the size of
the linear 0-1 problem obtained. An implicit-enumeration algorithm for solving
the transformed linear 0-1 problem in which the additional side constraints intro-
duced by the linearization are considered only implicitly was developed by Taha
[22,23]. His computational experiments reveal, though, that such an approach
could solve only very modest size problems. _

Using Boolean-algebra techniques, F. Granot and Haimer [12] have shown con-
structively that every PP problem is equivalent to a linear covering problem in
the complementing 0-1 variables. They have further suggested an algorithm for
solving the PP problem that generates the equivalent linear covering problem

and then solves it by available methods. Unfortunately, an attempt to solve

¢, G O— e E LT

t s « ke,
PR Y LR -~

B .. [s

o

PP problems along the above lines failed, mainly due to the large number of con-
straints in the equivalent linear covering problem. In [10] Granot et al. have
developed a covering relaxation method for solving PP problems. This method
produces an optimal solution to PP by solving a nested sequence of linear set-
covering problems, each of which is a relaxation of the original PP problem.
Computational results reported in [10] indicate that the covering relaxation
approach is a viable method for solving modest size sparse PP problems. However,
an increase in the density of PP (i.e., in the number of distinct polynomial terms
in each constraint) significantly increases the number of covering problems required
to be solved, which in turn results in excessively high computational times.

The purpose of this paper~is to accelerate the performance of the covering
relaxation algorithm by reducing the number of covering problems solved to opti-
mality. Both the covering relaxation and the newly introduced accelerated method
are cutting plane algorithms in which relaxation is achieved via the set-covering
problem and the cutting planes are linear covering constraints. However, in
contrast with other cutting-piane methods in integer programming, we do not solve
the augmented problem to optimality after the introduction of the cutting-plane
constraints. Rather, we first solve the augmented covering problem heuristically,
and only if the heuristic solution is feasible for PP do wesolve it to optimality.
The promise of such an approach stems from the excellent performance of the various
heuristic algorithms for solving integer programming problems, see, e.g., [3,6,
14,15,21,24]. Indeed, the extensive computational experiments we performed, which
are reported in section 5, show that the accelerated approach has reduced both
the number of covering problems solved to optimality and the computational time
required to solve a PP problem by over 70%. This reduction enabled us to solve
PP problems with a larger number of polynomial terms in each constraint. For

example nine out of ten PP problems with 40 variables, 40 constraints in which the

number of terms per constraint is uniformly distributed between 1 and 30 were

— i

BT ST - =t
R SN e

solved in less than 200 seconds. The average CPU time required to solve
those problems was 64.2 seconds while the number of covering problems solved

to optimality was on the average 4.8.

2. The Accelerated Covering Relaxation Algorithm

We start by presenting a general framework for our Accelerated Covering
Relaxation (ACR) algorithm for solving PP problems. This is followed by a de-
tailed description of the varigus steps in the algorithm.

The ACR Algorithm

te

:

Generate an initial linear covering problem that is a relaxation of PP,

to be referred to as the covering relaxation (CR) problem.

Step 1. Solve CR heuristically, and let X denote the heuristic solution. If
x is infeasible for PP, go to Step 2; otherwise go to Step 3.

Step 2. Generate covering constraints from violated polynomial constraints at x.
Augment CR with the newly generated constraints to form the new CR problem.
Go to Step 1.

Step 3. Solve CR to optimality, and let x denote an optimal solution. If X
is feasible for PP, it is also optimal; otherwise, go to Step 2.

The improved performance of the ACR algorithm, when compared with the cover-
ing relaxation method [10], is mainly due to the addition of step 1. In the ACR
algorithm we always attempt to generate the cutting p]aneS from the heuristic
solution x found at step 1. Only if this heuristic solution is feasible for PP,
we solve the CR problem to optimality.

Propositions. The ACR algorithm coverges in finitely many iterations to an optimal
solution of PP,

Proof. Optimality follows since each CR problem is a relaxation of the original '

PP problem. Further, with each application of step 2 of the algorithm we eliminate
the current solution x to CR, which is infeasible to PP, Since the number of binary
vectors is finite, the convergence follows.

The heuristics algorithms that are used in step 1 are presented in the next
section. In section 4 we present various strategies for generating cutting planes
from violated polynomial constraints, which are employed in step 2 of the ACR algo-

rithm, We further present there a method for generating an initial CR problem.

3. Heuristic Algorithms for Solving Linear Covering Problems

We develop in this section four different heuristic algorithms for solving
linear covering problems. In step 1 of the ACR Algorithm we apply the four heuristics
to CR, and choose as the heuristic solution x the best one produced from these four
heuristic algorithms,

Consider again the covering relaxation problem of finding a 0-1 n-vector X = (x,)

i
that minimizes cx subject to Di(i) 2 1 for all ieM where Di(i) = chNaijij and 35
is 0-1 for each icM and jeN. We assume, of course, that the CR problem is feasible,
i.e., Di(l) 21 for all ieM.

At eac~ stage in the various heuristics there will be a set F of indices
J of "fixed"” variables ij whose values have been previously determined and a set
MF of indices j of "free" variables whose values may still be revised. To describe
the heuristics, we need a bit of notations. To this end, let Mg = (i: i€M and
chFaijij > 1) and let J; be the set of indices j in N\F such that ij=l and D, (x)=1
for some ieM\ "F with aij=l. Denote by Pk(i) the set of indices j in N for which

ij-k and ‘ij'] for some i in M\ M minimizing Di(i), for k=0,1.

Heuristic 1. (A prima) greedy heuristic that starts with the initial point x=}

oo gie pates it g o

and F=J

n
Step 1. If MF=M then x* is the desired heuristic solution where i;-l for jeF and

23=0 for j¢F. Otherwise

. - . . - -1
Step 2. Let k be an index j in P](x)\ F that maximizes cj/ZieM\MF ‘13"’1(")‘”
where ties are broken by choosing j the smallest index that maximizes cj. Revise

x by reducing ik to zero. Set F=FLJ{k}UJFqu)and go to step 1.

Clearly, Heuristic I will terminate in at most n iterations.

Heuristic 11. (A dual greedy procedure that starts with the initial point X=0 and
F=0).

Step 1. Let k be an index j in Po(x) that minimizes Cj/zieM\'MF(aij/ZjeNaijL
where ties are broken by choosing j the smallest index that minimize cj. Revise X

by setting ik=l, and F = PU{k}. If MFfM go to step 1. Otherwise put F = {j: ij=0}.
If HJJF = N, X is our desired heuristic solution. Otherwise set F = FUJF and

go to step 1 of Heuristic I or III.

Heuristic I1I. The same as Heuristic I except that the maximization in step 2 is
done over all indices j of free variables, and not only those free variables in

minimal constraints.

Heuristic IV. The same as Heuristic II except that the minimization at step 1

is done over all indices j for which ij = 0,

Remark 1. The reason for returning to Heuristic I or IIl at the end of Heuristic Il

is to check whether some of the variables whose values are one can be reduced back

to zero.

e ——

Remark 2. The four greedy heuristics developed above differ slightly from the
ordinary greedy heuristics suggested in the literature for solving integer programs,
see, e.g. [15,21,24]. This difference is due to the fact that our criterion for
selecting the variable whose value is either decreased (Heuristics I and III) or
increased (Heuristics II and IV) depends on the weights Di(i) and ZjeNaij’ respect-
ively. Dropping these weights, i.e. choosing to increase or decrease the value of
a variable in accordance with the ratio Cj/Ziaij' resuits with slightly inferior

heuristics, as exhibited in section 5 table 5. Similar conclusions were independently

reported in [16].

4. Generating Covering Constraints

In this section we present various strategies for generating covering constraints
from violated polynomial constraints. These strategies are employed in step 2 of
the ACR algorithm.

Let x* denote either a heuristic or an optimal solution to the current CR problem

and let

p'
(1) zi=]ai"j€Nixj <b

be any polynomial inequality derived from a violated constraint of PP at x* = 1-x*
after dropping the vanishing terms at x*, i.e., Z?=1°i"jeNix§ = Z?=]ai>»b. Further,

let S € N be such that ZN csd > b and its corresponding covering constraint
j=
(2) Zjeij >1

where |S| is the cardinality of S. Clearly, when (2) is added to the constraint

set of CR it eliminates x*. In fact (2) eliminates zﬂ"sl 0-1 vectors from the
feasible set of CR (some of which might have been previously eliminated by other

covers), and it seems plausible therefore that a best covering constraint (2) that

can be produced from (1) is one in which |S| is minimal. Moreover, choosing
covers with minimum cardinality will produce covering problems with lower density
which, in turn, will decrease the computational time for solving a PP problem.

For this reason we have developed an implicit-enumeration algorithm for generating

a cover with minimal cardinality. In this algorithm we associate with each term

J
is minimum.

; "jeNix' a variable y,, and search for a set I for which }, ;a; > b and Ve Nl

; When the number of terms in a constraint is large, finding a cover with
minimum cardinality may require excessive computational time. In this event one

4 can use the following two greedy heuristic methods for generating good covers.

[. The Ordinary Method

. Vs b .

Assume that a, >'ai+], i=1,..., p'=-1in (1), and let S = Ui=1"i where ¢ is
the smallest index for which 2?:]31 > b. Then, the cover produced by the Ordinary
Method is zjesxj >1.

II. The Weighted Method

. 2
Assume that a./[N.| =a,,,/IN;4q], i=1,...,p'-1, and let S = UizqN; where 2

is the smallest index for which [%glai > b. Then the cover produced by the

} Weighted Method is {jcsxj >1.

ﬁ _ Remark 3. Let Zjesij 2 1 be the cover produced by the weighted method and let

: I = {i: NCS}. Clearly, Zielai > b. However, one can easily construct examples for
which the set I produced by the weighted method strictly contains a subset I' of I
such that Zief a; > b. That is, the cover produced by the weighted method can be

. strengthened.

Remark 4. Let chsij > 1 be a cover produced by the ordinary method. Then one

can easily construct examples in which the subset S produced by the ordinary method

strictly contains a subset S' of S for which Zj;S'ij # 1 is a cover of the polynomial ﬂ

I T R R W R e A 31 B LS e 1.3 <

inequality (1).

Example

Consider the polynomial inequality

8x]x2x3 + 7x2x3 + 6x]x4 + 5xyx. + 5x, + 4x,. + 2x, < 15.

175 4 5 3
Then, the ordinary method produces the cover X + X, + X3 + x4=< 3, the weighted

method produces the cover Xo + X3+ X, + x5-< 3, whereas the minimum cardinality

covers are x]+x2+x3<2 and Xy + X, + x. €2.

4 5

;] Generating the Initial CR Problem

The initial CR problem uséd in the Covering Relaxation algorithm [10] is the
unconstrained 0-1 problem of finding a 0-1 vector X minimizing cx. The optimal
solution is x=0. Clearly, any subset of the constraints of Granot and Hammer's
equivalent covering problem [12] can be used as the constraints of the initial
CR problem. 1In step O of the ACR algorithm the initial CR problem is produced by
employing F. Granot's [11] efficient greedy heuristics for solving PP problems.

; This choice of an initial CR problem was found to reduce the number of iterations
as well as total computational time required to solve a PP problem. Explicitly

. let x designate a heuristic solution to PP obtained by using any of the methods

‘ in [11] and let T(x) = {j: xj=0}. For each jeT(x) denote by PPj the polynomial

-

problem obtained by substituting xk=0 in PP for all keT(xN\{j}. Further, let FJ be 1

the collection of covering constraints derived by generating one covering constraint

.-
- it e’

from each violated polynomial constraint in ppJ using the ordinatry method. The
initial CR consists of all covering constraints in UjeT(x)F .

One can advance the following intuitive argument for explaining the effective-
~! ness of using this initial CR problem in step 0. Any heuristic solution X produced
by the greedy methods in [11]} is a near-optimal solution for PP, and is in fact quite

frequently optimal. Therefore, the set of covering constraints in the initial CR

[EEE R e e e
A D IS ay o - . . . - e -

‘ "

PR W Tees e o s e " Y " B)

T —— i ¥ e BRI T L o A A T i LT

o .
N S i ot e e s e e e e it et e e

1 problem and hence in every subsequent CR problem tends to form a fairly tight

relaxation of the feasible set of PP in the neighbourhood of its optimal solution.

1 5. Computational Results

Our algorithm was coded in Fortran IV and tested on an AMDAHL 470 V-6

aw e w

computer model II using the IBM optimizing compiler. It was tested on randomly-

g g e

generated problems that were generated as follows.
The cost vector ¢ was determined by setting ¢ = 1 and cj+] = cj + ¢ where ¢
is uniform on [0,10]. Every constraint is of the form

p
, _ e
Zj=1aijyj <b, with ¥y = "i=1xRi

where the number of terms p is uniform on [1,P]; the number of variables e in each
term is uniform on [1,E]; aij is uniform on [1,20]; Ri is uniformly chosen between
1 and n; a is a constant between 0 and 1 that measures the tightness of the con-
straints; the right-hand side bi is chosen to equal ajglaij (we have a = 0.5 in
all problems reported since for that choice of o the PP problems are the most
difficult to solve [10]); m 1is the number of constraints and n is the number
of variables. Some specific test problems can be found in [25].

The various modifications that were introduced in sections 2, 3 and 4 to
accelerate the performance of the covering relaxation algorithm [10] are primarily
designed to reduce the number of covering problems that have to be solved to

optimality. In order to evaluate their effectiveness, therefore, we should test

. ' the performance of the ACR algorithm on PP problems whose optimal solution was
‘t produced by the covering relaxation algorithm at the cost of solving relatively
1

many covering problems to optimality.

The extensive computational experiments performed in [10] have revealed that

P NS N

o IO ¥ o i o S b e T it ol AR S 11

i,

the dominant factor affecting the number of iterations (i.e., number of cover-

ing problems solved to optimality) in the covering relaxation algorithm is the
maximum number of polynamial terms P in each polynomial constraint. An increase

in P increases very significantly the number of iterations (and, of course, there-
fore the computational time). On the other hand, an increase in the number of
variables n has no significant effect on the number of iterations. Clearly, how-
ever, an increase in n significantly increases the camputational time, but this

is mainly due to the increase in the number of variables n in the covering problems
which became therefore much more difficult to solve.

For these reasons we tesfed the ACR algorithm on PP problems for which P is
relatively large. We did not attempt to solve PP problems for which n is larger
than 40 since (i) (as explained above) the number of variables n has no significant
effect on the number of iterations in the covering relaxation algorithm and (ii)
our algorithm for solving the covering problems to optimality is a very rudimentary
implicit enumeration algorithm which requires excessive computational time to solve
covering problems with more than 40 variables.

We use at step 3 of the ACR algorithm Balas' implicit enumeration algorithm
to solve the linear covering problem to optimality. No surrogate constraints or
subgradient optimization techniques are employed. However, various simplification
and elimination rules are applied to the constraint matrix of the covering problem
before the problem is solved. Clearly, the sequence of CR problems solved, either
heuristically or to optimality,by the ACR algorithm is nested. Therefore, we
2lways start the search for an optimal solution of a CR problem from that node
in the solution tree corresponding to the first feasible solution of the previous
CR problem which was solved to optimality (if any). This approach certainly reduces

the conputational time for solving a PP problem. However, still, most of the

computational time for solving a PP problem is spent on solving CR problems to

1.

optimality. This is evident from Figure 1 below, which presents the percentage

of total CPU time required by the ACR algorithm (Method VA) to solve covering
problems to optimality as a function of CPU time per iteration. We may further
conclude from Figure 1 that the overall computational time for solving a PP problem

can be significantly reduced by employing a more efficient algorithm, e.g., [2,4,5],

s

for solving the covering problems to optimality.

! % CPU time
used to 7
solve CR
problems to
optimality

11474 SO

50%

—
CPU (in seconds)

mll

1

-
o0 ¢

} per iteration

Fiqure 1

17. ;

We have investigated the computational efficiency of the following methods
for solving PP problems.

Method 1 - This is the covering relaxation method studied in [10], i.e., the
ACR algorithm with step 1 omitted. The initial CR problem is the
unconstrained problem of choosing a 0-1 vector x minimizing cx.

i At each iteration: (i) we generate one covering constraint from

: each violated polynomial constraint using the ordinary method,

; and (ii) we solve the covering problem to optimality.

Method Il - Same as Method I except that step 1 of the ACR algorithm is carried

! out.

Method IIl - Same as Method f] except that the initial CR 1in step O of the ACR
algorithm is generated from a heuristic solution to the PP problem
as explained in section 4.

1 Method IV - Same as Method III except for the way a cover is generated from a

violated polynomial constraint. In this method we first arrange

the terms of the polynomial inequality in decreasing order of

ai/lNil’ and then the implicit enumeration method is used to generate

five covers. These five covers are the first five encountered in the
depth-first search of the solution tree. In fact, the first of these
five covers is the one produced by the weighted method. The covering

constraint chosen is the first minimum-cardinality cover generated,

Method IVA - Same as Method IIl except that the cover generated from cach violated
polynomial inequality has minimum cardinality.

! Method V - The difference between Method V and Methods III, IV and IVA is in the

way we generate the covering constraints from the violated polynomial

inequalities. The number k of covers generated at each

iteration is equal to the number of violated polynomial inequalities.

A

However, those k covers generated are the ones with minimum cardinality

- e tame NN
-d
K}

! ‘- . » Ay -
' o P AR o - - . - e e e - —— - - ——
- . - .] » ;

o i T

€3 A AT

13,

i.e., one cannot generate another covering constraint at that
iteration whose cardinality is strictly smaller than the cardinality
of any of these k covers,
Method VA - Same as Method V except that the number of covers generated at
each iteration depends on the number k of violated polynomial in-
i equalities. Explicitly, the number of covering constraints
: generated equals Max{k,[.2m]}.
%) Method VAA - Same as Method VA except that the weights Di(i) or chNaij a“e not
used in Heuristics I, II, III, IV for solving the CR problem (see

remark 2).

In tables 1-6 below we use the following notation:

CPU - The true execution time in seconds required to solve a PP problem
excluding the time required to generate the problem. j
OPT - The number of covering problems solved to optimality.
HEUR - The number of covering problems solved heuristically.
COVERS - The number of constraints in the last covering problem solved to
- optimality.
g DENSITY - The average density of those covering problems soived to optimality.

EFFECTIVENESS - The average percentage of optimal value to best approximate value

for all CR problems that were solved to optimality.

o

- —
—

Table 1

az=z 5 E=5,

METHOD 11l

OPT. HEUR. COVERS

Py

vvsc:c'-'a-o

—!-N

OOONO—OA
—Nﬂ‘..ﬁ

O~ ~r~oo
e e e s
—————

—”'\OOHQ
- -

Beiehiddadd
SR 271

!\!F{QOOON
=0 AN 00 o= o=
-—

roMmewnnn
e ——nmm
rovwo~own
onvonw—

METHOD [1
CPU OPT.

COVERS

HEUR.

Qe=eene
NN D~ NN
——

Qv—wlﬂw-—N
_———-——

—ﬂONﬂ‘hN
OOO——U"O

OO €O O 0D 0O O =

PRTRR8S
22

°\n°'°N°
P—MONOM'

c~wvwNno
b o s =

PTNOMNO -
~
Pmoanaw

METHOD |

COVERS

HEUR.

0PY.

(<]

o§nc~ou
W o~~~
—R2R[GRRe

CLLS L)
—N.I"OOQ

—-_M—0ow~o
OO-—N(’«GQ

m'NQNO!—

93°8$

oNoanmn
bnmmoc—

Ncnnuon
Qﬂ—-o—"-
ZR3I<S

VD e~ ~
-

]

14,

w
L]
s
o
L]
o

METHOD ¥V

CPy OPT,

MEUR. COVERS DENSITY

0.09

MO ONW®D
Ll RV E TRV
000000

moNGnoam

O® YNy ™m
—~_—N e 0o

:.nwo-oru
—~—w e

QeMmmeno®

ORI Iy I

D — O
COOC~mm

0.2}
0.22

METHOD IV A

OPT.

WEUR. COVERS DENSITY

CPU

el Feoed
—NN

OOQOOOO

".NO—N

smomo
E—NP\ 08

°N°ﬂ!—~°\
-——nvvso

Qe —amn
- 0N O

—_ @ Ny
[-1-1-X-T A & J

Table 2

METHOD IV

CPY OPT.

COVERS DENSITY

HEUR.

E2EJIER

cocoaos

VOQ'\O—Q

ONlhlbhﬂci
-t G D

ON@M-NO
——-nv.hw

Q~m—ema
PRy R

— QD Ny
0O0O~ww

METHOD 111

COVERS DENSITY

HEUR.

Py 0PT.

OO =D O
O r—=tNNNm

ccocooo

*TNOWwEON
O NWe S
——NHew

ooena—w
Ll KX & X X &
€ == M = 00 O
PPN

—ﬂhooﬂ'
OOO—--—UHA

NN O OO M
'—Nﬂﬂﬂ——

= €) W N D
« s e a_ e w9
e el L K|

mroO® o~ OWn

’

N“Q—'Nz
-

NP D~~~

30230

40280

COVERS DENSITY

R
OPT. HEUR. COVERS DENSITY

Py

- Y.
8~2§~ ~

OOQOOQO

szOosm

~ "
SEERTSS

O'\'-OO—N
—_—- e~ O

o= o -) g O
e e e a s
— -0 O
—noo——‘
SOCO~an

METHOD VA
CPy OPT.

™~ ~
=RE8FS
3. ¢ . e
o000 00

wnacenne
- Mm e

NONTw W
o s e e w8
— o g g o

Nneane
000000

2=SORY
-2-X-1-%-1J

L Ll 1ol 2ot

sERnes

E=S§
DENSITY

COVERS

MEUR,

a* .5 E=8§
DENSITY

Table 3:
COVERS

WETROD v

HEUR.

0PT.

(4T]

sﬂw Now

OOOOOOO

*ONOMOON
-2 NN ™M
22X8ITL

OQOO—-ON
-—.-f‘l'#hh

c—n—mwa
—;—-—-—-—~~
— 00 0
coco~mm

as .S
METHOO VA

Py OPT.

S2gRGR

NNOONIﬁ

=85385

LT L e
S I
- Y

om0 @ N
RNt
- g g N N

L LY
oea—~~

-.OU!QOO
. Ve
= = 0 0N Y

aenvoe®
N TSN
-0t

Table 4

€=

COVERS DENSITY

P—nnnoc

ﬂﬂ\\ﬂQONN
O—‘Iﬁ-—s(\

WEUR

NW’DF‘Ng
-—— g

30230

METHOO VA

- N—

e o i

e

<

Lot Tt L 1]
BRI Ix]
- e aw 0 P

Nvoena
OQOU‘.z

o
soc00

58382
(-]
mneneh
=t £33 &
=2

.ﬁ'ﬂs-.
—NQ.N

annoh

20230

40240

* In two Of the ten runs the optime] solution was not obtained after 150 seconds of CPUtime. The average is of the other efight runs,

* Mo attempt was made to solve these problems.

cies e

Kk St

——

h

-

,6.

Method VAA

EFFECTIVENESS

orr. HEUR. COVERS

Cry

“NMeM—

00 Qﬁ&
PR ARN

TODVDNNACO DO
O™ N-X.
33

o o 0N

OO"NQON
——ﬂﬂﬂh'\

(=X e B - XV NV,]
Rt
g e - N

— N D - D
AR
OO0 Q~anN

HQQNO—O

l'\
zuggnge
=

N'—\ﬂﬂﬂo
—N"NOO

~me~eow
————me

M ROCRhN
Rt
QNEIOOn™

N ™

Table §

Method VA

COVLRS

EFFECTIVENLSS

OPT. HEUR,

CPu

B LY
il
TP DDOD
FrO0PPRR

Q&!\oﬂrsm

OOQD””
Oﬁﬁﬁc\ﬂg

Wal

4Ux40

17,

Table 6: a = .5, £ =65,

mn | P | METHOD V A

CPU_— OPT—WEUR. COVERS DEN

2 | 0 - 1.0 1.0 * 10.4 0.09

s | 0.3 10 .1 1.7 0.13

8] 06 1. 3.1 26.2 0.16

n| os 11 3.6 37.6 0.21

0x30 |14 | 1.1 1.3 3.6 44.6 0.22

7| 21 2% 71 66.7 0.27
20 | 206 2.2 6.7 67.5 0.28 i

23 | 31 30 8.5 1707 0.29

% | 777 a6 nM.2 955 0.32

30 | 14.3 4.4 131 103.0 0.36

7103 T 7113 007

5 | 2.0 1. 21 23.4 0.10

8 | 4.8 1.3 3.6 39.4 0.14

nl 72 15 51 49.8 0.16

1w | 136 2.4 6.0 70.4 0.18

7 | 2800 2.9 8.5 98.) 0.22
40x40 1,0 | 25.8 3.0 8.9 100.9 0.23 |
t 23 | 31,7 37 10.3 108.0 0.25 g

26 | 63.8 5.2 132 148.6 0.27 +
30 | 6a.2 a8 147 14206 0.31 +

+ In one of the ten runs the optimal solution was not
obtained after 200 seconds of CPU time. The average
is of the other nine runs and so is underestimated.

!"

e e = =

i e i

o4

W R - - -t B S > e -

The following conclusions can be drawn from the above tables.

a) From Table 1 it is apparent that a substantial improvement in the performance
of the covering relaxation method [10] (i.e. Method I) is realized with the intro-
duction of step 1 of the ACR algorithm (i.e. Method II). Attempting to generate
cutting planes from a heuristic solution to a CR problem results in a very signifi-
cant decrease in both the number of covering problems solved to optimality and the
computational time. Observe, though, that the introduction of step 1 has increased
both the number of iterations (as measured by the number of covering problems solved
heuristically in Method II and to optimality in Method I) and the average number of

constraints in the last covering problem.

b) When the initiél CR problem in Method II is generated from a heuristic

solution to the PP problem (i.e. Method I1I1) additional improvements are realized.
Explicitly, there is a further significant reduction in both the number of CR
problems solved heuristically and the size of the last CR problem, particularly

for large P.

c) Table 2 measures the effectiveness of employing various strategies for
generating cutting planes on computational performance. For large values of
P(P=17,20), there is a significant decrease in the CPU time and the number of

CR problems solved heuristically when we attempt to generate covering constraints
with low cardinality. Observe that there is hardly any difference between Method 1V,
in which we choose the best of the first five covers generated and Method IVA, in
which we generate a cover with minimum cardinality from each violated polynomial
inequality. Of course, this might change when P is much larger. The densfty of

the CR problems, as expected, is reduced when we generate minimal cardinality covers
(1.e. Method V).

-y

5 e

19

d) From Table 3 we conclude that by generating at each iteration at least .2m
covering constraints with minimum cardinality (i.e. Method VA), both the number

of CR problems solved to optimality and the CPU time are significantly decreased.

e) From Table 4 it is evident that PP problems with more variables in a term are

easier to solve.

f) From Table 5 we see that the effectiveness of our greedy heuristics is
uniformly superior to that of the ordinary greedy heuristics, in which the weights
are not incorporated in the selection criterion of variables whose values are
either decreased (Heuristics I, III) or increased (Heuristics II, IV), as explained
in Remark 2. This superiority results in a better computational performance

of our ACR algorithm.

g) From Table 6 we conclude that increasing P - the maximum number of terms

in a polynomial constraint - beyond 20 increases significantly the CPU time
required to solve a PP problem. Indeed the CPU time appears to grow exponentially
in P. Observe that the increase in the number of covering problems solved to

optimality is more moderate.

We used the data in Tables 1 and 6 to estimate the regression equation
between OPT - the number of set covering problems solved to optimality and P.
For method I the regression equations were found to be
a) n=40: OPT = .27 + .57P R 553.03
b) n=30: OPT = -.66 + .59P v Sp07
For method VA the regression equations were found to be
a) no=40: OPT = -,03 + .17P , 802

b) n =230: OPT = -.37 + .16P , .sb'.02

D e b e oG g (s S B e 1 i o e ot Sl O, s O S0 0 T ENGAS Cor ¥- 51, oeh 1 o o S o A s

L erai e RS IReAT A n i s

0,

where Sh is an unbiased estimate of the standard deviation of the coefficient of
P in the various regression equations. A1l four reoressions were obtained after
eliminating the runs for P=2.

By comparing the appropriate regression equations we realize that, on
the average, method VA solves 70% less coveringiproblems to optimality than
method I. Further observe that in method VA, an increase in the number of
variables from 30 to 40 has increased, on the average, the number of covering
problems that need to be solved to optimality only by one half of a problem. This con-
firms our conclusion based on the computational results in [10] that the number of
variables n has no significant.effect on the number of covering problems that

need to be solved to optimality by the covering relaxation methods.

Acknowledgement

The authors gratefully acknowledge some very constructive remarks made

by Professor Arthur F. Veinott, Jr. on a previous version of this paper.

———

RN

(2]

(3]

(4]

(5]

(6]

(71

(el

(9]

(o]

(1]

(12]
(13]

[14]

(15]

REFERENCES

BALAS, E., "An Additive Algorithm for Solving Linear Programs with Zero-
One Variables", Operations Research, Vol. 13 (1965), pp. 517-546.

BALAS, E. and Andrew HO, "Set Covering Algorithms Using Cutting Planes,
Heuristics, and Subgradient Optimization: A Computational Study",
WP No. 6-79-80, GSIA (July 1979).

BALAS,E. and C. H. MARTIN, "Pivot and Complement - A Heuristic for 0-1
Programming", MSR Report No. 414, Carnegie Mellon University,
February 1978.

CHRISTOFIDES, N. and S. Korman, "A Computational Survey of Methods for the
Set Covering Problem", Management Science, Vol. 21 (1975), pp. 591-
599.

ETCHEBERRY, J., "The Set Covering Problem: A New Implicit Enumeration
Algorithm", Operations Research, Vol. 25 (1977), pp. 760-772.

FAALAND, B. H. and F. S. HILLIER, "Interior Path Methods for Heuristic
Integer Programming Procedures”, Operations Research, Vol. 27,
(1979), pp. 1069-1087. .

GARFINKEL, R. and G. L. NEMHAUSER, Integer Programming, John Wiley & Sons,
1972.

GLOVER, F. and E, WOOLSEY, "Further Reduction of Zero-One Polynomial
Programming Problems to Zero-One Linear Programming Problems",
Operations Research, Vol. 21, No. 1 (1973), pp. 141-161.

GLOVER, F. and E. WOOLSEY, "Converting the 0-1 Polynomial Programming
Problem to a 0-1 Linear Program", Operations Research, Vol. 22,
No. 1 (1974), pp. 180-182.

GRANOT, D., F. GRANOT and J. KALLBERG, "Covering Relaxation for Positive 0-1
Polynomial Programs", Management Science, Volume 25, No. 3 (1979),
pp. 264-273.

GRANOT, F., "Efficient Heuristic Algorithms for Positive 0-1 Polynomial
Programming Problems", Working Paper 595, Faculty of Commerce and
Business Administration, U.B.C., Vancouver, B.C., (August 1978).

GRANOT, F. and P. L. HAMMER, "On the Use of Boolean Functions in 0-1

Programming", Methods for Operations Research, XII, (1971), pp. 154-184.

HAMMER, P.L. and S. RUDEANU, Boolean Methods in Operations Research,
Springer-Verlag (1968).

HILLIER, F.S., "Efficient Heuristic Procedures for Integer Linear
Programming with an Interior", Operations Research, 17 (1969),
pp. 600-637.

KOCKENBERG, G.A., B.A. MCCOIL and F.P. WYMAN, "A Heursitic for
General Integer Programming”, Decision Sciences, Vol. § (1974),
pp. 36-44,

o7, ‘4
a

[16] LOULOU, R. and E. MICHAELIDES, "New Greedy-like Heuristics for the Multi-
dimensional 0-1 Knapsack Problem", Operations Research, Vol. 27 j
(1979), pp. 1101-1114, j

[17] ORON, G., "Optimizing Irrigation System Design", Ph.D. Dissertation, Ag.
Eng. Dept., Technion, Haifa, Israel (1975).

[18] PETERSON, D.E. and D. LAUGHHUNN, “Capital Expenditure Programming and
Some Alternative Approaches to Risk", Management Science, Vol. 17
(1971), pp. 320-336. i

e

[19] PRITSKER, A., L. J. WATTERS and F. WOLFE, "Multiproject Scheduling With
Limited Resources: A Zero-one Programming Approach", Management
Science, Vol. 16 (1969), pp. 93-108.

(20] RAO, M.R., "Cluster Analysis and Mathematical Programming", Jourpal
of the American Statistical Association, Vol. 66 (1977), pp. 622-626.

R —_————

[21] SENJIU, S. and Y. TOYODA, “An Approach to Linear Programming with 0-1
Variables", Management Science, 15 (1968), pp. B196-207.

[22] TAHA, H.A., "A Balasian-Based Algorithm for Zero-One Polynomial
Programming,” Management Science, Vol. 18(1972), pp. B328-B343.

[23] TAHA, H.A., "Further Improvements in the Polynomial Zero-One Algorithm,"
Management Science, Vol. 19(1972), pp. B226-B227.

[24] TOYODA, Y., "A Simplified Algorithm for Obtaining Approximate Solutions to
0-1 Programming Problems", Management Science, 21 (1975), pp. 1417-1427.

: [25] VAESSEN, M., “Qovering Relaxation Methods for Solving the Zero-One Positive
: Polynomial Programming Problems", M.Sc. Thesis, Computer Science
' Department., IN 80-4, U,B.C. (May 1980).

{ 26) WATTERS, L.J., "Reduction of Integer Polynomial Programming Problems to
. Zero-0One Linear Prograsming Problems", Operations Research, Vol. 15
[(1967), pp. 1171-1174,

| ! [27) ZANGWILL, W., "Media Selection by Decision Programming", Journal of
Advertising Research, Vol. 5, (1965), pp. 30-36. ;

4 Y
'

AR if- Ry 2 AR

— e e en

UNCLASSIFIED

SECURITY CLASSIFICATION OF THis PAGE /VYhen Dete Eatered)

REPORT DOCUMENTATION PAGE

REZAD INSTRUCTIONS
BEFORE COMPLETING FORM

IV "REPORTY NUMBER
93 -~ i

Foovv ACCESSION NC.

RECIP:ENT'S CATALOG NUMBL R

4. TITLE (end Subtitie)

AN ACCELERATED COVERING RELAXATION ALGORITHM
FOR SOLVING O-1 POSITIVE POLYNOMIAL PROGRAMS

—

TYPE OF REPOAT & PERIOD COVERED

Technical Report

PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s)

Daniel Granot, Frieda Granot and
Willem Vaessen

3. PERFORMING ORGANIZATY.ON NAME AND ADDRESS

Operations Research Program -~ ONR
Department of Operations Research
Stanford Un1vers1ty. Stanferd, Calif.

NO0014-76-C-0418

0. ’ROG!AM ELEMENT. 'lOJlCT TASK

A & WOAK UNIT NUNMSER

NR-047-061

CONTRACY OR GRANT NUMBER(s) ‘
[M

1Y CONTROLLING OFFICE NAME AND ADORESS

OFFICE OF NAVAL RESEARCH
OPERATIONS RESEARCH PROGRAM CODE 434
ARLINGTON, VA. 22217

12.

REPCRY DATE

JUNE 1980

—

NUMSER OF PAGES

4. MONITORING AGENCV NAME & ADDRESS(H different from Controlling Office)

18.

SECURITY CLASS. (of this report)

UNCLASSIFIED

T8a. DECL ASSIFICATION/ DOWNGRADING
SCHEOULE

T16. DISTAIBUTION STATEMENT rof thie Report)

jts distribution is unlimited.

This document has been approved for public release and sale;

=

17. OISTRIAUTION STATEMENT (of (he abeiract entered in Block 20, i diilecent trom Report)

19. SYPPLEMENTARY NOTES

Also issued as Technical Report No. 30-10, Dept. of Operations Research
Stanford University, under National Science Foundation Grant MCS76-81259,

———p o e

INTEGER PROGRAMMING
INTEGER POLYNOMIAL PROGRAMMING

9. XEY WORDS /Continrue on reveree slde i/ necossary and identily by block number)

POLYNOMIAL PROGRAMMING
ALGORITHMS

20. ABSTYRACYT (Continuve en reverse slde Il nacessary and (dentify by blosk mamber)

See other side

snsmae —J
'o.“
DD 1iau'ms W73 2ormion o7 1 wov a8 18 ossaLete UNCLASSIF IED
[[V ¥ CLABIPICATION OF YHit B AD)

——— -

- —

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGR (When Dete Bnteved)

Technical Report No. 93

The purpose of this paper is to present an accelerated algorithm for
solving 0-1 positive Polynomial (PP) problems of finding a 0-1 vector x

that maximizes cx subject to f(x) < b, where f(x) = (fi(x)) is an m-vector

of polynomials with nonnegative coefficients. Like our covering relaxation
algorithm (1979) the accelerated algorithm is a cutting-plane method in which
each relaxed problem is a set covering problem and the cutting planes are
linear covering constraints. However by contrast with other cuttina-plane
imethods in integer programming (including our original method), we do not
solve the relaxed problems to optimality after the introduction of the
cutting-plane constraints. Raiher, we first solve each relaxed set-covering
*problem heuristically and only if the heuristic solution is feasible for
PP do we solve the relaxed problem to optimality. The promise of such an
approach stems from the excellent performance of the various heuristic
algorithms for solving integer programs. Indeed the extensive computational
rexperimentation we performed reveals that the accelerated approach has reduced
significantly both the number of covering problems solved to optimality and
the computational time required to solve a PP problem. For example the
average computational time required to solve a PP problem with 40 variables
and an average oflO.Qterms per constraint and 3 variables per term was reduced
lusing the accelerated method from 84.7 to 25.8 seconds while the average number

of covering problems solved to optimality was reduced from 11.5 to 3.8

UNCLASSIFIED
SECUNITY CLAIRIMICATION OF TwiE PASETRen Bate Bntsied)
. AW ~ i ”,—

