
AD-AO89 620 STANFORD UNIV CA DEPT OF OPERATIONS RESEARCH F/6 12/1

AN ACCELERATED COVERING RELAXATION ALGORITHM FOR SOLVING 0-1 PO--ETCIUl

JUN 80 D GRANOT. F GRANOT. W VAESSEN N0001DA76C-0418

UNCLASSIFIED TR-93 NL

El

L132

ii.25i 1.2

MPROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 196-1 A

AN ACCELERATED COVERING RELAXATION

ALGORITHM FOR SOLVING 0-1 POSITIVE

POLYNOMIAL PROGRAMS

BY

DANIEL GRANOT, FRIEDA GRANOT

and

WILLEK VAESSEN

TECHNICAL REPORT NO. 93

JUNE 1980

PREPARED UNDER CONTRACT

N00014-76-C-0418 (NR-047-061)

FOR THE OFFICE OF NAVAL RESEARCH

Frederick S. Hillier, Project Director

Reproduction in Whole or in Part is Permitted
for any purpose of the United States Government

This document has been approved for public release
and sale; its distribution is unlimited.

'4i

DEPARTMENT OF OPERATIONS RESEARCH

* STANFORD UNIVERSITY

STANFORD, CALIFORNIA

-

Abstract /

he purpose of this paper is to present an acceleratedalgorithm for

solving 0-1 positive Polynomial (PP)iproblems of findinga 0-1 vector x

that maximizes cx subject to f(x) '!b, where f(x) = ((x)) is an m-vector

of polynomials with nonnegative coefficients. Like our covering relaxation

algorithm (1979) the accelerated algorithm is a cutting-plane method in which

each relaxed problem is a set covering problem and the cutting planes are

linear covering constraints. However by contrast with other cutting-plane

methods in integer programming (including our original method), we do not

solve the relaxed problems to optimality after the introduction of the

cutting-plane constraints. Rather, we first solve each relaxed set-covering

problem heuristically and only if the heuristic solution is feasible for

pp do we solve the relaxed problem to optimality. The promise of such an

approach stems from the excellent performance of the various heuristic

algorithms for solving integer programs. Indeed the extensive computational

experimentation we performed reveals that the accelerated approach has reduced

significantly both the number of covering problems solved to optimality and

the computational time required to solve a PP problem. For example the

average computational time required to solve a PP problem with 40 variables

and an average of 10.5 terms per constraint and 3 variables per term was reduced

using the accelerated method from 84.7 to 25.8 seconds while the average number

of covering problems solved to optimality was re d from 11.5 to 3.8

t'j .' 4 I/ la

* ,i .iI

,~r 44

1.

1. Introduction

We consider in this paper the 0-1 positive polynomial (PP) problem of finding

a 0-1 n vector x = (x.) that maximizes cx subject to f(x) < b where c = (c.) and
= (bi) are non-negative, f(x) = (fi(x)) where f i with ak > 0

1 1 i(x) lklaikwjcNkx ihak~

and Nk C N = (1,2,...,n) for each 1 < k 4 pi and icM = (l,...,m).

Polynomial terms in 0-1 variables have been found to be extremely useful in

modeling diverse problems in business and engineering. They are used, e.g., when

formulating media-selection problems [27), to incorporate risk into capital budget-

ing [18], for planning of irrigation systems [17], in cluster analysis (20], and

in various scheduling problems [13,19]

The two major approaches proposed in the literature for solving PP problems

are: the linearization approach and the Boolean-algebra approach.

In the linearization approach [8,9,26] each distinct polynomial term is

replaced by a new variable, and additional side constraints are introduced to

ensure that the values of the term and the variable replacing it coincide. The

main drawback of the linearizaton approach is the radical increase in the size of

the linear 0-1 problem obtained. An implicit-enumeration algorithm for solving

the transformed linear 0-1 problem in which the additional side constraints intro-

duced by the linearization are considered only implicitly was developed by Taha

[22,23]. His computational experiments reveal, though, that such an approach

could solve only very modest size problems.

Using Boolean-algebra techniques, F. Granot and Hammer [12] have shown con-

structively that every PP problem is equivalent to a linear covering problem in

the complementing 0-1 variables. They have further suggested an algorithm for

solving the PP problem that generates the equivalent linear covering problem

and then solves it by available methods. Unfortunately, an attempt to solve

PP problems along the above lines failed, mainly due to the large number of con-

straints in the equivalent linear covering problem. In [10] Granot et al. have

developed a covering relaxation method for solving PP problems. This method

produces an optimal solution to PP by solving a nested sequence of linear set-

covering problems, each of which is a relaxation of the original PP problem.

Computational results reported in [10] indicate that the covering relaxation

approach is a viable method for solving modest size sparse PP problems. However,

an increase in the density of PP (i.e., in the number of distinct polynomial terms

in each constraint) significantly increases the number of covering problems required

to be solved, which in turn results in excessively high computational times.

The purpose of this paper is to accelerate the performance of the covering

relaxation algorithm by reducing the number of covering problems solved to opti-

mality. Both the covering relaxation and the newly introduced accelerated method

are cutting plane algorithms in which relaxation is achieved via the set-covering

problem and the cutting planes are linear covering constraints. However, in

contrast with other cutting-plane methods in integer programming, we do not solve

the augmented problem to optimality after the introduction of the cutting-plane

constraints. Rather, we first solve the augmented covering problem heuristically,

and only if the heuristic solution is feasible for PP do we solve it to optimality.

The promise of such an approach stems from the excellent performance of the various

heuristic algorithms for solving integer programming problems, see, e.g., [3,6,

14,15,21,24]. Indeed, the extensive computational experiments we performed, which

are reported in section 5, show that the accelerated approach has reduced both

the number of covering problems solved to optimality and the computational time

required to solve a PP problem by over 70%. This reduction enabled us to solve

PP problems with a larger number of polynomial terms in each constraint. For

example nine out of ten PP problems with 40 variables, 40 constraints in which the

number of terms per constraint is uniformly distributed between I and 30 were

solved in less than 200 seconds. The average CPU time required to solve

those problems was 64.2 seconds while the number of covering problems solved

to optimality was on the average 4.8.

2. The Accelerated Covering Relaxation Algorithm

We start by presenting a general framework for our Accelerated Covering

Relaxation (ACR) algorithm for solving PP problems. This is followed by a de-

tailed description of the various steps in the algorithm.

The ACR Algorithm

Step 0. Generate an initial linear covering problem that is a relaxation of'PP,

to be referred to as the covering relaxation (CR) problem.

Step 1. Solve CR heuristically, and let i denote the heuristic solution. If

x is infeasible for PP, go to Step 2; otherwise go to Step 3.

Step 2. Generate covering constraints from violated polynomial constraints at x.

Augment CR with the newly generated constraints to form the new CR problem.

Go to Step 1.

Step 3. Solve CR to optimality, and let x denote an optimal solution. If

is feasible for PP, it is also optimal; otherwise, go to Step 2.

The improved performance of the ACR algorithm, when compared with the cover-

ing relaxation method [10], is mainly due to the addition of step 1. In the ACR

algorithm we always attempt to generate the cutting planes from the heuristic

solution i found at step 1. Only if this heuristic solution is feasible for PP,

we solve the CR problem to optimality.

Propositions. The ACR algorithm coverges in finitely many iterations to an optimal

solution of PP.

Proof. Optimality follows since each CR problem is a relaxation of the original

41.

PP problem. Further, with each application of step 2 of the algorithm we eliminate

the current solution i to CR, which is infeasible to PP. Since the number of binary

vectors is finite, the convergence follows.

The heuristics algorithms that are used in step 1 are presented in the next

section. In section 4 we present various strategies for generating cutting planes

from violated polynomial constraints,which are employed in step 2 of the ACR algo-

rithm. We further present there a method for generating an initial CR problem.

3. Heuristic Algorithms for Solving Linear Covering Problems

We develop in this section four different heuristic algorithms for solving

linear covering problems. In step 1 of the ACR Algorithm we apply the four heuristics

to CR, and choose as the heuristic solution i the best one produced from these four

heuristic algorithms.

Consider again the covering relaxation problem of finding a 0-1 n-vector i = (i)
that minimizes ci subject to Di(i) > 1 for all iM where Di(i) xjcNaij.j and aij

is 0-1 for each icM and jcN. We assume, of course, that the CR problem is feasible,

i.e., Di(l) > 1 for all icM.

At eac: stage in the various heuristics there will be a set F of indices

j of "fixed" variables i. whose values have been previously determined and a set(J
M F of indices j of "free" variables whose values may still be revised. To describe

the heuristics, we need a bit of notations. To this end, let MF = (i: ieN and

ajcFijj > 1) and let JF be the set of indices j in NF such that i= and Di(R)=l

for some iEM\ MF with a i-1. Denote by Pk(') the set of indices j in N for which
-k and a j-I for some i in M\ MF minimizing Di(i), for k-O,1.

Heuristic 1. (A primal greedy heuristic that starts with the initial point i-l

I

- - - -- - : : : -: :

5J.

and F-J)

Step 1. If MF=M then i* is the desired heuristic solution where i -l for JcF and

it=O for jiF. Otherwise

Step 2. Let k be an index j in PI)\ F that maximizes c Ili)

where ties are broken by choosing j the smallest index that maximizes cj. Revise

i by reducing Xk to zero. Set F=Fu{k)UJFR,{k)and go to step 1.

Clearly, Heuristic I will terminate in at most n iterations.

Heuristic II. (A dual greedy procedure that starts with the initial point i=O and

F=0).

Step 1. Let k be an index j in PO(i) that minimizes cJ/XiEM\ MF(aij/ljcNaij3

where ties are broken by choosing j the smallest index that minimize c . Revise i

by setting ik=1 , and F = FU{k). If MF M go to step 1. Otherwise put F - (j: i.=O).

If FUJF - N, i is our desired heuristic solution. Otherwise set F = FuJF and

go to step I of Heuristic I or III.

Heuristic III. The same as Heuristic I except that the maximization in step 2 is

done over all indices j of free variables, and not only those free variables in

y! minimal constraints.

A
Heuristic IV. The same as Heuristic II except that the minimization at step 1

is done over all indices j for which ij = 0.

Remark 1. The reason for returning to Heuristic I or III at the end of Heuristic I

is to check whether some of the variables whose values are one can be reduced back

to zero.

-

6.

Remark 2. The four greedy heuristics developed above differ slightly from the

ordinary greedy heuristics suggested in the literature for solving integer programs,

see e.g. [15,21,24]. This difference is due to the fact that our criterion for

selecting the variable whose value is either decreased (Heuristics I and III) or

increased (Heuristics II and IV) depends on the weights i(i) and jNCNaij, respect-

ively. Dropping these weights, i.e. choosing to increase or decrease the value of

a variable in accordance with the ratio cj/i1 aij, results with slightly inferior

heuristics, as exhibited in section 5 table 5. Similar conclusions were independently

reported in [16].

4. Generating Covering Constraints

In this section we present various strategies for generating covering constraints

from violated polynomial constraints. These strategies are employed in step 2 of

the ACR algorithm.

Let i* denote either a heuristic or an optimal solution to the current CR problem

and let
(1) JP' jE a i xj 4 b

(1 il 1jcNij

be any polynomial inequality derived from a violated constraint of PP at x*

after dropping the vanishing terms at x*, i.e., =lai 7 Ca > b. Further,

let SC N be such that IN CSa > b and its corresponding covering constraint

(2) ijcS j > 1

where Isl is the cardinality of S. Clearly, when (2) is added to the constraint

set of CR it eliminates i*. In fact (2) eliminates 2nIS 0-1 vectors from the

feasible set of CR (some of which might have been previously eliminated by other

covers), and it seems plausible therefore that a best covering constraint (2) that

- --- ------- 'S

I.

can be produced frau (1) is one in which ISI is minimal. Moreover, choosing

covers with minimum cardinality will produce covering problems with lower density

which, in turn, will decrease the computational time for solving a PP problem.

For this reason we have developed an implicit-enumeration algorithm for generating

a cover with minimal cardinality. In this algorithm we associate with each term
Vj NiXj a variable Yi, and search for a set I for which Jtiai > b and IUi1 N1l

is minimum.

When the number of terms in a constraint is large, finding a cover with

minimum cardinality may require excessive computational time. In this event one

can use the following two greeay heuristic methods for generating good covers.

I. The Ordinary Method

Assume that ai) a i=l,..., p'-l in (1), and let S = U~1i Ni where z is

the smallest index for which i=]ai > b. Then, the cover produced by the Ordinary

Method is jS 1.

II. The Weighted Method

Assume that ai/INij > ai+/INi+lI, i=l,...,p'-l, and et S = N where t

is the smallest index for which X=lai > b. Then the cover produced by the

Weighted Method is ljcS~j >

Remark 3. Let icsj) 1 be the cover produced by the.weighted method and let

I = {i: NiS}. Clearly, liclai , b. However, one can easily construct examples for

which the set I produced by the weighted method strictly contains a subset I' of I

such that Jicf aj b. That is, the cover produced by the weighted method can be

strengthened.

Remark 4. Let licS~i > I be a cover produced by the ordinary method. Then one

can easily construct examples in which the subset S produced by the ordinary method

strictly contains a subset S' of S for which li'SRi > 1 is a cover of the polynomial

4 ll• I

inequality (1).

Example

Consider the polynomial inequality

8xlx 2x3 + 7x2x3 + 6x1x4 + 5x1x5 + 5x4 + 4x5 + 2x3 < 15.

Then, the ordinary method produces the cover x1 + x2 + x3 + x4 < 3, the weighted

method produces the cover x2 + x3 + x4 + x5 < 3, whereas the minimum cardinality

covers are x1 + x2 + x3 <2 and x1 + x4 + x5 <2.

Generating the Initial CR Problem

The initial CR problem used in the Covering Relaxation algorithm [10] is the

unconstrained 0-1 problem of finding a 0-1 vector i minimizing d. The optimal

solution is i=O. Clearly, any subset of the constraints of Granot and Hamer's

equivalent covering problem [12] can be used as the constraints of the initial

CR problem. In step 0 of the ACR algorithm the initial CR problem is produced by

employing F. Granot's [11] efficient greedy heuristics for solving PP problems.

This choice of an initial CR problem was found to reduce the number of iterations

as well as total computational time required to solve a PP problem. Explicitly

* let x designate a heuristic solution to PP obtained by using any of the methods

in [11] and let T(x) = {j: xj=O). For each jcT(x) denote by PPJ the polynomial

* Iproblem obtained by substituting xk=O in PP for all kcT(x)\{j). Further, let Fj be

the collection of covering constraints derived by generating one covering constraint

from each violated polynomial constraint in PPJ using the ordinatry method. The

initial CR consists of all covering constraints in jcT(x)Fi.

One can advance the following intuitive argument for explaining the effective-

ness of using this initial CR problem in step 0. Any heuristic solution i produced

by the greedy methods in [11) is a near-optimal solution for PP, and is in fact quite

frequently optimal. Therefore, the set of covering constraints in the initial CR

'7-

IWall"

9.

problem and hence in every subsequent CR problem tends to form a fairly tight

relaxation of the feasible set of PP in the neighbourhood of its optimal solution.

5. Computational Results

Our algorithm was coded in Fortran IV and tested on an AMDAHL 470 V-6

computer model II using the IBM optimizing compiler. It was tested on randomly-

generated problems that were generated as follows.

The cost vector c was determined by setting co = 1 and cj+ 1 = c. + c where E

is uniform on [0,10]. Every constraint is of the form

P e
Jj=laijyj I bi with yj = li=l XRi

where the number of terms p is uniform on [1,P]; the number of variables e in each

term is uniform on [l,E]; ai is uniform on [1,20]; Ri is uniformly chosen between

1 and n; a is a constant between 0 and 1 that measures the tightness of the con-
straints; the right-hand side bi is chosen to equal a a (we have a = 0.5 in

1 j=l
all problems reported since for that choice of a the PP problems are the most

difficult to solve [10]); m is the number of constraints and n is the number

of variables. Some specific test problems can be found in [25).

The various modifications that were introduced in sections 2, 3 and 4 to

accelerate the performance of the covering relaxation algorithm [10] are primarily

designed to reduce the number of covering problems that have to be solved to

optimality. In order to evaluate their effectiveness, therefore, we should test

*. the performance of the ACR algorithm on PP problems whose optimal solution was

produced by the covering relaxation algorithm at the cost of solving relatively

many covering problems to optimality.

The extensive computational experiments performed in (10] have revealed that

the dominant factor affecting the number of iterations (i.e., number of cover-

ing problems solved to optimality) in the covering relaxation algorithm is the

maximum number of polyncmial terms P in each polynomial constraint. An increase

in P increases very significantly the number of iterations (and, of course, there-

fore the computational time). On the other hand, an increase in the number of

variables n has no significant effect on the number of iterations. Clearly, how-

ever, an increase in n significantly increases the computational time, but this

is mainly due to the increase in the number of variables n in the covering problems

which become therefore much more difficult to solve.

For these reasons we tested the ACR algorithm on PP problems for which P is

relatively large. We did not attempt to solve PP problems for which n is larger

than 40 since (i) (as explained above) the number of variables n has no significant

effect on the number of iterations in the covering relaxation algorithm and (ii)

our algorithm for solving the covering problems to optimality is a very rudimentary

implicit enumeration algorithm which requires excessive computational time to solve

covering problems with more than 40 variables.

We use at step 3 of the ACR algorithm Balas' implicit enumeration algorithm

to solve the linear covering problem to optimality. No surrogate constraints or

subgradient optimization techniques are employed. However, various simplification

and elimination rules are applied to the constraint matrix of the covering problem

before the problem is solved. Clearly, the sequence of CR problems solved, either

heuristically or to optimality,by the ACR algorithm is nested. Therefore, we

always start the search for an optimal solution of a CR problem from that node

in the solution tree corresponding to the first feasible solution of the previous

, CR problem which was solved to optimality (if any). This approach certainly reduces

the conputational time for solving a PP problem. However, still, most of the

computational time for solving a PP problem is spent on solving CR problems to

I

optimality. This is evident from Figure 1 below, which presents the percentage

of total CPU time required by the ACR algorithm (Method VA) to solve covering

problems to optimality as a function of CPU time per iteration. We may further

conclude from Figure 1 that the overall computational time for solving a PP problem

can be significantly reduced by employing a more efficient algorithm, e.g., [2,4,5],

for solving the covering problems to optimality.

% CPU time
used to
solve CR
problems to
optimality

100% -..

50%

1 8 16 CPU (in seconds)

Figure 1 per iteration

,I -

1?.

We have investigated the computational efficiency of the following methods

for solving PP problems.

Method I - This is the covering relaxation method studied in [10), i.e., the

ACR algorithm with step 1 omitted. The initial CR problem is the

unconstrained problem of choosing a 0-1 vector x minimizing cx.

At each iteration: (i) we generate one covering constraint from

each violated polynomial constraint using the ordinary method,

and (ii) we solve the covering problem to optimality.

Method II - Same as Method I except that step 1 of the ACR algorithm is carried

out.

Method III - Same as Method II except that the initial CR in step 0 of the ACR

algorithm is generated from a heuristic solution to the PP problem

as explained in section 4.

Method IV - Same as Method III except for the way a cover is generated from a

violated polynomial constraint. In this method we first arrange

the terms of the polynomial inequality in decreasing order of

ai/Nil, and then the implicit enumeration method is used to generate

five covers. These five covers are the first five encountered in the

depth-first search of the solution tree. In fact, the first of these

five covers is the one produced by the weighted method. The covering

constraint chosen is the first minimum-cardinality cover generated,

Method IVA - Same as Method III except that the cover generated from each violated

polynomial inequality has minimum cardinality.

Method V - The difference between Method V and Methods III, IV and IVA is in the

way we generate the covering constraints from the violated polynomial

Inequalities. The number k of covers generated at each

iteration is equal to the number of violated polynomial inequalities.

However, those k covers generated are the ones with minimm cardinality

. .r . -

I :i

i.e., one cannot generate another covering constraint at that

iteration whose cardinality is strictly smaller than the cardinality

of any of these k covers.

Method VA - Same as Method V except that the number of covers generated at

each iteration depends on the number k of violated polynomial in-

equalities. Explicitly, the number of covering constraints

generated equals Max(k,(.2m]}.

Method VAA - Same as Method VA except that the weights Di() or ljNaij a-e not

used in Heuristics I, II, III, IV for solving the CR problem (see

remark 2).

In tables 1-6 below we use the following notation:

CPU - The true execution time in seconds required to solve a PP problem

excluding the time required to generate the problem.

OPT - The number of covering problems solved to optimality.

HEUR - The number of covering problems solved heuristically.

COVERS - The number of constraints in the last covering problem solved to

optimality.

DENSITY - The average density of those covering problems solved to optimality.

EFFECTIVENESS - The average percentage of optimal value to best approximate value

for all CR problems that were solved to optimality.

,A

14.

Ilk 0 N% Cl !1

...--N.......

0.

CO@

I

w' u a! S1! 09 0!.. -
LI 7N 1%97U !1%'

In@ .I mmw0 I

a, - 0 CW*
M. a,, @ ~ n

IV

0. 000inW %000. M h.'W ' We=I' 0I

-- ft

C! .! C C!

- aiIoC

0OU~~C'4 vWNn

00 00 00 0

W! !, 4

* o c~ B -e-mf

-g - - - f fm t

. U000000 0C4iio

00

C4 0%r

p. pa

* 0 N~ 0' 0IIL

16.

LO 0 0 00 f@t0

ui'

o ~ ~ e Nftm~ CW @S-

C4 - - ft

Table 6: a =.5, E 5.

mxn PMETHOD V A
CPU OPT. HEUR. COVER DENSITY

2 0.1 1.0 1.0 10.4 0.09
5 0.3 1-1 1.7 17.7 0.13
8 0.6 1.1 3.1 26.2 0.16

11 0.8 1.1 3.6 37.6 0.21

30x30 14 1.1 1.3 3.6 44.6 0.22
17 2.1 2.4 7.1 66.7 0.27
20 2.6 2.2 6.7 67.5 0.28
23 3.1 3.1 8.5 70.7 0.29
26 7.7 4.6 11.2 95.5 0.32

1 30 14.3 4.4 13.1 103.0 0.36
2 0.3 1.1 1.2 14.3 0.07
5 2.0 1.1 2.1 23.4 0.10
8 4.8 1.3 3.6 39.4 0.14

11 7.2 1.5 5.1 49.8 0.16
14 13.6 2.4 6.0 70.4 0.18
17 24.0 2.9 8.5 98.1 0.22

40x40 20 25.8 3.0 8.9 100.9 0.23
23 31.7 3.7 10.3 108.0 0.25
26 63.8 5.2 13.2 148.6 0.27 +
30 64.2 4.8 14.7 142.6 0.31 +

+ In one of the ten runs the optimal solution was not
obtained after 200 seconds of CPU time. The average
is of the other nine runs and so is underestimated.

yr! - -

The following conclusions can be drawn from the above tables.

a) From Table 1 it is apparent that a substantial improvement in the performance

of the covering relaxation method (10) (i.e. Method I) is realized with the intro-

duction of step 1 of the ACR algorithm (i.e. Method 1I). Attempting to generate

cutting planes from a heuristic solution to a CR problem results in a very signifi-

cant decrease in both the number of covering problems solved to optimality and the

computational time. Observe, though, that the introduction of step 1 has increased

both the number of iterations (as measured by the number of covering problems solved

heuristically in Method I and to optimality in Method I) and the average number of

constraints in the last covering problem.

b) When the initial CR problem in Method II is generated from a heuristic

solution to the PP problem (i.e. Method III) additional improvements are realized.

Explicitly, there is a further significant reduction in both the number of CR

problems solved heuristically and the size of the last CR problem, particularly

for large P.

c) Table 2 measures the effectiveness of employing various strategies for

generating cutting planes on computational performance. For large values of

P(P=17,20), there is a significant decrease in the CPU time and the number of

V CR problems solved heuristically when we attempt to generate covering constraints

with low cardinality. Observe that there is hardly any difference between Method IV,

in which we choose the best of the first five covers generated and Method IVA, in

which we generate a cover with minimum cardinality from each violated polynomial

inequality. Of course, this might change when P is much larger. The density of

the CR problems, as expected, is reduced when we generate minimal cardinality covers

(i.e. Method V).

d) From Table 3 we conclude that by generating at each iteration at least .2.

covering constraints with minimum cardinality (i.e. Method VA), both the number

of CR problems solved to optimality and the CPU time are significantly decreased.

e) From Table 4 it is evident that PP problems with more variables in a term are

easier to solve.

f) From Table 5 we see that the effectiveness of our greedy heuristics is

uniformly superior to that of the ordinary greedy heuristics, in which the weights

are not incorporated in the selection criterion of variables whose values are

either decreased (Heuristics I, III) or increased (Heuristics II, IV), as explained

in Remark 2. This superiority results in a better computational performance

of our ACR algorithm.

g) From Table 6 we conclude that increasing P - the maximum number of terms

in a polynomial constraint - beyond 20 increases significantly the CPU time

required to solve a PP problem. Indeed the CPU time appears to grow exponentially

in P. Observe that the increase in the number of covering problems solved to

U optimality is more moderate.

We used the data in Tables 1 and 6 to estimate the regression equation

between OPT - the number of set covering problems solved to optimality and P.

For method I the regression equations were found to be

a) n-40: OPT = .27 + .57P , b-.03

b) n-30: OPT a -.66 + .59P ,Sb.07

For method VA the regression equations were found to be

a) n a 40: OPT - -.03 + .17P , k,* .02

b) n - 30: OPT a -.37 + .16P , Sb .02

where sb is an unbiased estimate of the standard deviation of the coefficient of

P in the various regression equations. All four regressions were obtained after

eliminating the runs for P=2.

By comparing the appropriate regression equations we realize that, on

the average, method VA solves 70% less coveringproblems to optimality than

method I. Further observe that in method VA, an increase in the number of

variables from 30 to 40 has increased, on the average, the number of covering

problems that need to be solved to optimality only by one half of a problem. This con-

firms our conclusion based on the computational results in [10] that the number of

variables n has no significant effect on the number of covering problems that

need to be solved to optimality by the covering relaxation methods.

I

Acknowledgement

The authors gratefully acknowledge some very constructive remarks made

by Professor Arthur F. Veinott, Jr. on a previous version of this paper.A _ __ _ _ _

;°1.

REFERENCES

[1) BALAS, E., "An Additive Algorithm for Solving Linear Programs with Zero-
One Variables", Operations Research, Vol. 13 (1965), pp. 517-546.

[2] BALAS, E. and Andrew HO, "Set Covering Algorithms Using Cutting Planes,
Heuristics, and Subgradient Optimization: A Computational Study",
WP No. 6-79-80, GSIA (July 1979).

[3] BALAS,E. and C. H. MARTIN, "Pivot and Complement - A Heuristic for 0-1
Programming", MSR Report No. 414, Carnegie Mellon University,
February 1978.

[4] CHRISTOFIDES, N. and S. Korman, "A Computational Survey of Methods for the
Set Covering Problem", Management Science, Vol. 21 (1975), pp. 591-
599.

I5] ETCHEBERRY, J., "The Set Covering Problem: A New Implicit Enumeration
Algorithm", Operations Research, Vol. 25 (1977), pp. 760-772.

[6] FAALAND, B. H. and F. S. HILLIER, "Interior Path Methods for Heuristic
Integer Programming Procedures", Operations Research, Vol. 27,.
(1979), pp. 1069-1087.

[72 GARFINKEL, R. and G. L. NEMHAUSER, Integer Programmingi John Wiley & Sons,
1972.

[8] GLOVER, F. and E. WOOLSEY, "Further Reduction of Zero-One Polynomial
Programming Problems to Zero-One Linear Programming Problems",
Operations Research, Vol. 21, No. 1 (1973), pp. 141-161.

[9] GLOVER, F. and E. WOOLSEY, "Converting the 0-1 Polynomial Programming
Problem to a 0-1 Linear Program", Operations Research, Vol. 22,
No. 1 (1974), pp. 180-182.

[10] GRANOT, D., F. GRANOT and J. KALLBERG, "Covering Relaxation for Positive 0-1
Polynomial Programs", Management Science, Volume 25, No. 3 (1979),
pp. 264-273.

[11] GRANOT, F., "Efficient Heuristic Algorithms for Positive 0-1 Polynomial
Programming Problems", Working Paper 595, Faculty of Commerce and
Business Administration, U.B.C., Vancouver, B.C., (August 1978).

[12] GRANOT, F. and P. L. HAMMER, "On the Use of Boolean Functions in 0-1
Programming", Methods for Operations Research, XII, (1971), pp. 154-184.

[13] HAMMER, P.L. and S. RUDEANU, Boolean Methods in Operations Research,
Springer-Verlag (1968).

[14) HILLIER, F.S., "Efficient Heuristic Procedures for Integer Linear

Programming with an Interior", Operations Research, 17 (1969),
pp. 600-637.

(15) KOCKENBERG, G.A., B.A. MCCOIL and F.P. WYMAN, "A Heursitic for
General Integer Programing", Decision Sciences, Vol. 5 (1974),
pp. 36-44.

[16) LOULOU, R. and E. MICHAELIDES, "New Greedy-like Heuristics for the Multi-
dimensional 0-1 Knapsack Problem", Operations Research, Vol. 27
(1979), pp. 1101-1114.

[17] ORON, G., "Optimizing Irrigation System Design", Ph.D. Dissertation, Ag.
Eng. Dept., Technion, Haifa, Israel (1975).

[18] PETERSON, D.E. and D. LAUGHHUNN, "Capital Expenditure Programming and
Some Alternative Approaches to Risk", Management Science, Vol. 17
(1971), pp. 320-336.

£19) PRITSKER, A., L. J. WATTERS and F. WOLFE, "Multiproject Scheduling With
Limited Resources: A Zero-one Programming Approach", Management
Science, Vol. 16 (1969), pp. 93-108.

[20] RAO, M.R., "Cluster Analysis and Mathematical Programming", Journal
of the American Statistical Association, Vol. 66 (1971), pp. 622-626.

[21] SENJIU, S. and Y. TOYODA, "An Approach to Linear Programming with 0-1
Variables", Management Science, 15 (1968), pp. B196-207.

[22] TAHA, H.A., "A Balasian-Based Algorithm for Zero-One Polynomial
Programming," Management Science, Vol. 18(1972), pp. B328-B343.

[23] TAHA, H.A., "Further Improvements in the Polynomial Zero-One Algorithm,"
Management Science, Vol. 19(1972), pp. B226-B227.

[24) TOYODA, Y., "A Simplified Algorithm for Obtaining Approximate Solutions to
0-1 Programming Problems", Management Science, 21 (1975), pp. 1417-1427.

[25] VAESSEN, W., "Covering Relaxation Methods for Solving the Zero-One Positive
Polynomial Programming Problems", M.Sc. Thesis, Computer Science
Department., IN 80-4, UB.C. (May 1980).

[261 WATTERS, L.J., "Reduction of Integer Polynomial Programming Problems to
Zero-One Linear Programming Problems", Operations Research, Vol. 15
(1967), pp. 1171-1174.

[27J ZANGWILL, W., "Media Selection by Decision Programming", Journal of
Advertising Research, Vol. 5, (1965), pp. 30-36.

'i

UNCLASSIFIED
SE URITY CLA SIICA IO. QF T.4.S PAGE f09. , ow e *000d) !A jS R C I

_____REPORT DOCUMENTATION PAGE JEFRE I4SCOMLTI ORM
111. A 93o %nuWa GOVT ACCESSIO4 %0. 3. RECIPSt4 1$ CATALOG NUIAOLR

4. TITLE (andSubtile) S. TYPE Of REPORT & P9114O0 COVERED

AN ACCELERATED COVERING RELAXATION ALGORITHM ITechnical Report
FOR SOLVING 0-1 POSITIVE POLYNOMIAL PROGRAMS

6. PERFORMNG ORG. REPORT NUMBER

7. AUTwOR(e) 6. CONTRACT ON GRANT NUMSBERI(e)

Daniel Granot, Frieda Granot and NOOO14-76-C-0418
Willem Vaessen

11 PERVORNING ORGANIZAV;ON NAME AND ADDRESS IC. PROGRAMA ELEMENT. PROJECTi TASx

~~ofOperations Research- N
StnodUniversity, Stanford, Calif.____ ___________

ICONTPOLLIINGOiFPICNAME ANDAODRESS 12. REPORT DATE

OPFIERATONS NAVAL RESEARCH JUNE 1980
OPRTOSRESEARCH PROGRAM CODE 434 1.NUMSER Do PAGES
ARLNGTNVA. 22217 2

AGFCVNM & eeRS(1dteet es otoii ffc) i.N GIr LAS(o this report)

It. C ASIF1 CATION/ DOWNGRADIWG

1.DISTPOPUTION STATEMFNT eat this Report)

This document has been approved for public release and sale;
its distribution is unlimited.

1.O1STq,*UT1OK' STATFEMENT (of A.e abmfrigg eantmdin Wee&k D. llIt effoohwg Rope")

IS. SUPPLOWENTAAY NOTES

Stanford University. under National Science Foundation Grant MCS76-81259.

9.~ KEY WORDS lConth..,e an rover* e it E neooeen OW Idetify Ibp W00 osbe

INTEGER PROGRAMMING POLYNOMIAL PROGRAMMING* }INTEGER POLYNOMIAL PROGRAMMING ALGORITHMS

* 20~SO ABSTRACT (Cofinu. on revWO erse sid e m mE iE~oneElp & it 6 mIounIet)

See other side

* Ig I _ ____EIIO FI O O 90"~
DO ~Afl 47 SEITN 10 Nov014-601 - I UNCLASSIFIED

S~N012.a* colMCURIV VIASIPICAIGW4 Of Vail $AGE fR= =0 514101

UNCLASSIFIED
SeCURITY CLASSIFiCASGN OF T64IS PAGE rMbM Do 8EaM

Technical Report 4o. 93

The purpose of this paper is to present an accelerated algorithm for

solving 0-1 Positive Polynomial (PP) problems of finding a 0-1 vector x

that maximizes cx subject to f(x) < b, where f(x) = (fi(x)) is an m-vector

of polynomials with nonnegative coefficients. Like our covering relaxation

algorithm (1979) the accelerated algorithm is a cutting-plane method in which

each relaxed problem is a set covering problem and the cutting planes are

linear covering constraints. However by contrast with other cutting-plane

methods in integer programming (including our original method), we do not

solve the relaxed problems to optimality after the introduction of the

cutting-plane constraints. Rather, we first solve each relaxed set-covering

problem heuristically and only if the heuristic solution is feasible for

pp do we solve the relaxed problem to optimality. The promise of such an

approach stems from the excellent performance of the various heuristic

algorithms for solving integer programs. Indeed the extensive computational

2: experimentation we performed reveals that the accelerated approach has reduced

significantly both the number of covering problems solved to optimality and

the computational time required to solve a PP problem. For example the

average computational time required to solve a PP problem with 40 variables

and an average of 10.5 terms per constraint and 3 variables per term was reduced

using the accelerated method from 84.7 to 25.8 seconds while the average number

of covering problems solved to optimality was reduced from 11.5 to 3.8

seem".CLA........ .

