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The performance of a single-stage surface-to-orbit shuttle--

Jwhether chemical-propellant or nuclear--can be considerably improved by

9mixed-modet propulsion. A mixed-mode shuttle would be fitted with

I engines designed to use two different propellant combinations--a high-

1 thrust (mode 1) propellant, such as ammonia, and a high-specific-impulse

(mode 2) propellant, such as hydrogen.

IThe first step in the evaluation of the mixed-mode nuclear shuttle

is * preliminary trajectory optimization study. This study, using a

simple mission and a simple shuttle model, would be the basis .for more

Icomplex trajectory optimization studies. The problem considered in this

thesis is that of minimizing the propellant expenditure of a mixed-mode

- nuclear shuttle for a given orbit. The starting point for any optimiza-

tion problem is a mathematical model of the system, in state variable

form.

Application of the methods of optimal control theory results in a

two-point boundary-value problem and an associaied algebraic problem.

Three numerical methods are briefly described which could be used to

solve these problems., However a more flexible method, that of finite

differences, is proposed in this study to handle the more restricted

problem. Replacement of the derivatives with finite-difference approxi-

mations results in a set of nonlinear algebraic equations. These

equations are solved by the Newton-Raphson technique; central-difference

i approximations are used for the Jacobian matrix, and the linearized

algobraic equations are solved by the Gauss elimination method. A

I procoduro is presented for obtaining good starting values for the

- -



Newton-Raphson iteration. This is done by neglecting the effects of

jatmosphere; as a resuI4 the optimality conditions are greatly

simplified.,AS it turned out, this procedure proved sufficient for an

evaluation of mixed-mode propulsion. Consequently, the finite-

c1difference method was not used to obtain numerical results, although the

correctness of the program was verified.

I The analysis of the problem is given in detail, along with numerical

results for various combinations of the input variables, and the

finite-difference computer program, properly documented.

In conclusion, suggestions for extensions of this work are presented

and methods of approach are outlined.
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OIAPTER I

INTRODUCTION

Since the end of the Apollo program, the trend in space transpor-

Itation has been towards low cost. The intention was that reusability

of space vehicles and equipment, conmonality, and integration of manned

Iand unmanned flights would accomplish this task. The space shuttle was

Sborn out of this trend.

The present shuttle was supposed to drastically reduce the cost of

surface-to-orbit transportation. However, this shuttle will be cheaper

to develop than to operate. The estimated payload costs were 350 dollars

* per kilogram per low altitude low inclination orbits and the actual

figure will undoubtedly be substantially higher.

The present shuttle has operational deficiencies as well. One of

its 3ain objectives is to carry large payloads into earth orbit with

greater reliability and economic payback. But the payload capability

itself is quite limited--only 29,500 kilograms maximum in low altitude

[ |low inclination orbit and this decreases rapidly as orbital altitude and

inclination increase. In addition, there is very little orbital maneuver

I capability. Finally, one has the nuisance of sea-recovering the boosters.

Therefore it is logical to look to the possibility of a single-

stage shuttle because operational and developmental costs could be

[greatly reduced. But the present propulsion systems do not permit

single-stage winged shuttles with reasonably large payload fractions or

S 1 perhaps with any payload at all.

The concept of mixed-mode propulsion may make a reusable one-stage-

to-orbit shuttle feasible. 'ixed-mode" propulsion for surface-to-orbit



I
shuttles was first proposed by Robert Salkeld in an article published in

I 1971.1 There is a tradeoff between thrust and specific impulse, but

this tradeoff shifts during ascent. High thrust is at a premium at

Iliftoff, but as speed and altitude are built up the tradeoff shifts in

1the direction of high specific impulse. A mixed-mode shuttle would be

fitted with engines designed to burn two different propellant combina-

Itions--a high-thrust (mode 1) combination, such as kerosene and oxygen.

and a high-specific-impulse (mode 2) combination, such as hydrogen and

oxygen--simultaneously. At liftoff, the engines would be operating in

mode 1; they would transition to mode 2 during ascent. Detailed studies

have shown that mixed-mode propulsion makes single-stage winged shuttles

of modest size practical.

Based on initial economic analysis, the initial cost of mixed-mode

shuttles will be far less than for the single-mode alternatives. Robert

Salkeld believes the mixed-mode concept can cut the overall cost of a

1000-flight shuttle program at least 40% while producing a much more

effective system.

Operationally, the mixed-mode shuttle also seems to be a good bet.

The mixed-mode propulsion can increase performance in a vehicle of a

j Jgiven size or reduce the size of a vehicle of a given performance.

I. Propellant volume is reduced, allowing for a larger payload capability,

-. thus satisfying one of the main objectives for the space shuttle. Thus

Ii the potential performance gains from mix.pd-mode propulsion warrant its

study.

[Donald Kingsbury has pointed out that the mixed-mode concept
can also be applied to nuclear rockets.2 The most likely mode 1 pro-

I pellant is ammonia, which has a fairly high density but readily
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dissociates into a mixture of nitrogen and hydrogen having a fairly low

j molecular weight. The mode 2 propellant would be hydrogen.

The first step in the evaluation of the performance of a mixed-mode

1nuclear shuttle is an ascent-trajectory optimization study. The purpose

1of this work is to program the thrust vector for a mixed-mode single-

stage nuclear surface-to-orbit shuttle so as to minimize the propellant

expenditure required to reach a given orbit. (M-inimizing the propellant

expmeiture required to reach a given orbit is equivalent to maximizing

the final mass of the shuttle.) The following assumptions are made:

1. The shuttle is launched from a site on the equator into

an equatorial orbit. As is appropriate for a preliminary

* study, this assumption is restrictive, but not unrealistic. It

considerably simplifies the computation and the presentation of

results, without sacrificing any of the essential features of

the problem. The shuttle's performance would be.slightly reduced

for non-equatorial launch sites and non-equatorial orbits.

. 2. The nozzle flow may be treated as a one-dimensional ideal-gas

flow. This assumption is acceptable for a preliminary study,

and it greatly simplifies the computation.

3. The nozzle flow is expanded to ambient pressure. This assumption

implies that the shuttle is fitted with an aerospike nozzle. If

this is not the case, the assIumption is slightly optimistic.

4. The effective pump power and the reactor-exit stagnation tempar-

ature are independent of the reactor-exit stagnation pressure.

I ("Effective puImp power" is the power required to pump the

propellants, assumed to be incompressible, from zero pressure

to the reactor-exit stagnation pressure.) The accuracy of this

oI
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assumption depends upon the quality of the puap and heat-

exchanger designs.

5. The effect of Reynolds number upon the drag and lift coeffi-

1cients is negligible.

6. Atmospheric temperatures and pressures are approximately those

of the Standard Tropical Atmosphere.

The following are given, in addition to the configuration and the

choice of propellants:

1. Final altitude and velocity.

2. Reactor-exit stagnation temperature.

3. Effective pump power/initial mass.

4. Nozzle throat area/initial mass.

5 . Base area/initial mass.

(Note that, for a given family of designs, the payload/initial mass ratio

may depend upon all these things, as well as upon the propellant capacity

per unit initial mass.)

The following is an outline of the remainder of this work:

f bCHAPTER II. THE MATHEMATICAL FORMULATION OF THE PROBLEM

The differential equations (equations of notion) which describe the

i~ I. system are derived and explained. Boundary conditions are given.

The performance index is defined.

[I CHAPTER III. THE OPTIMAL CONTROL PROBLEM

Optimal control theory is applied to obtain the equations which must

be solved to compute the optimal trajectory.

I CHAPTER IV. THE NUMERICAL SOLUTION

A finite-difference method for the solution of the optimal control

problem is described. Three alternative numerical methods are alsoI
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QIAPTER V. APPROXIMATE COMPUTATION OF THE OPTIMAL TRAJECTORY

j The algorithm for obtaining good starting values to be used to begin

the Newton-Raphson iteration.

1HAPTER VI. NUMERICAL RESULTS AND CONCLUSIONS

The results are presented from the approximate trajectory method.

CHAPTER VII. RECOM4ENDATIONS

Possible extensions of this work and methods of approach are sug-

gested.

I

I

I

I
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CHAPTER II

I
WIE MATHEMATICAL FORMULATION OF THE PROBLEM

The starting point for an optimal control investigation is a mathe-

Jmatical model in state variable form. A state vector for a system is a

1minimum set of data required to predict the future behavior of the system.

The state variables satisfy a set of first-order ordinary differential

I equations called the state differential equations. The state differen-

tial equations contain certain variables in addition to the state vari-

ables. These are referred to as the control variables. The control

variables are usually taken to be quantities which can actually be mani-

pulated.

The choice of what variables are to be treated as state variables

and what variables are to be treated as control variables is purely one

of convenience. However, the number of state variables and the number

of control variables is determined by the mathematical model of the

system.

The control optimization problem is that of finding a control vector

that "optimizes" the performance of the system.

.- For this case, let the state variables be r, ;, and ;, where r is

~ Ithe distance from the center of the planet and # is longitude; let the

control variables be 0 and pr' where B is the angle from the horizontal
to the thrust axis, Positive upward, and pr is the stagnation pressure at

the reactor exit; and let the independent variable be m, where a is the

Sratio of the shuttle's instantaneous mass to the initial mass.

The shuttle's radial and transverse accelerations in terms of the

state variables and their derivatives areI!
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a r-# (F + Lr + -mg)/m, (2.1)

1
a, r# 2;; - (F, + LO + D*)/m. (2.2)

where Fr, L r, and Dr are the radial components of the thrust, lift, and

drag per unit initial mass and g is the gravitational acceleration and

F#, L#, and D are the transverse components of the thrust, lift, and

drag per unit initial mass.

iThe transverse force is thus

(F - D) cos B - L sin B,

and the radial force is

(F - D) sin 0 + L cos B - mg,

where g a gor2/r , gO being the gravitational acceleration at the surface

of the planet, and r0 being the radius of the planet.

Let (r,;,;) (xX 2 ,x 3 ), the state variable vector, and let

(pr,) - (ul,u2), the control variable vector. The state differential

equations are

dr/din rI(i, + ) f1(~~) (2.3)

d /dm (-goro/r * r# * ((F - D) sin 0 . L cos B)/m)/(a 1  "'2-

* f2(x,u,m), (2.4)
!~



1 8
d#/& (-2;; W ( D) Cos 0 L sinB)/m)/(a 1 + ; 2 ) r af,(x,uum),(2.5)

where I. and ~2 are the model1 and uode-2 propellant flow rates per

unit initial mass, go is the gravitational acceleration at the surface

J of the planet, r. is the radius of the planet, and F, D, and L a"e

thrust, drag, and lift per unit initial mass.* The right -hand sides of

-. these differential equations are functions of the state variables, one

* - of the control variables, the independent variable, and *l nF, D,

and L. One must express ;, , F, D, and L as functions of the state

and control variables.

The thrust is given by

P ( T r/(ye - e' 1-/2( (Pa/Pr) (Y 1) a 1 ; ;2), '(2.6)

where Te and Nare the specific-heat ratio and the moleculrwih

of the exhaust, pr is the reactor-exit stagnation pressure, Tr is the

reactor-exit stagnation temperature (given), p a is the atmospheric

jpressure (a function of altitude), and R is the-universal gas constant. 3

The specific-heat ratio and the molecular weight of the exhaust are given

I. by

V0  (y131(y - ')WI + 'jA2 /(Y - )W2 )/c;Ia/(y1 - 1)1(1+

;2 -.f l)v 2)9 (2.7)

*; + 2 /~ / 1 W ) (2.8)
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where y, and y2 are the specific-heat ratios, and WI and W2 are the

molecular weights, of the two propellants (after dissociation, if it

occurs.)

The propellant flow rates satisfy the equations

(ye 11)/2( e - 1) 1
1l a 2 u -C21Cye (eWe/Rr)l 2prAn ,  (2.9)1
P 3 -(al/pl +2/p2)Prs (2.10)

where A. is the nozzle throat area per unit initial mass (given'), P is

the effective pump power per unit initial mass (given), and pI and P2

are the densities of the two propellants.4 Substituting Eq. (2.7) and

(2.8) into Eq. (2.9), and eliminating one of the flow rates between the

resulting equation and Eq. (2.10), one obtains an equation that can be

solved numerically for the other flow rate, for given reactor pressure.

Thus P n F(pr,pa(r)); Pr is a control variable and r is a state variable.

The reactor pressure, pr' must satisfy two inequality constraints.

Since ; and '2 are both negative, pr must be bomded by the value pA

for which ;2 -0 (pure auuonia), and the value PH for which al -0 (pur

* Ii hydrogen). To find PA' set 2 0 in equations (2.9) and (2.10). After
'2

eliminating a4 between these equations, the resulting equation will be

solved for pr. This value will be PA" Similarly, to find PH$ set l 1 0

in equations (2.9) and (2.10). After eliminating '2 between these

equations, the resulting equation will again be solved for pr . This time

I this value will be PH. Thus the constraints on the control vector are

I



I
I 10

andI
0 < u2- < Y/2. (2.12)

The drag and lift are given by

SD ya p a M2  (M,a)Ab/2, (2.13)

L a apM2 CL M,a)Ab/2, (2.14)*a

where Y is the specific-heat ratio of air, M is the flight Mach number,

CD and CL are the drag and lift coefficients, a is the angle of attack,

and Ab is the base area per unit initial mass (given). The Mach number

and the angle of attack are given by

M a /2 2 - 2r2 1/2 (2.1S)(a/yRIa)1 2  .+( ) r)

a t- n -r/ (-bOTr) (2.16)

j* Lwhere Wa is the molecular weight of air, Ta is the atmospheric temper-

ature (a function of altitude), and w is the planet's rotational angular

velocity. The temperature in the i-th layer of the atmosphere is given

[ by

iI T-TiC (r - ri)ri, (2.17)

and the pressure by
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Pa Pi(Ta/Ti) (It  0), (2.18)

P Pa p Piexp(- (r  ri)goW/RTi) ( 1 3
0), (2.19)

where Tiis a constant, and Ti and P. are the temperature and pressure

at the base of the layer, at r a ri . Thus drag and lift are functions

of the state variables and 0, one of the control variables.

Thus the right-hand sides of the state differential equations are

functions of the state and control variables and the independent variable.

The initial and final state variables are given, i.e.

xi( -f) - i xi(l) .Xo , (2.20)

where x0  and xf are specified. In the case of a circular orbit,o ,,
i2 3 1/2wh";adf

rf - 0 and if (g~rO/rf) whr nf are the final values ofr

and ;. The final conditions ofi the state variables can be written in the

form Gi(x(uf),mf) - 0, where Gi (xm),m) a xi (m) - xf forthe xf are

given.

Having formulated a mathematical model of the system and having

I iestablished initial and final conditions on the state variables, one mast

* define a performance index which is to be maximized or minimized. In

this case, the performance index is I = af and this performance index is

to be maximized.

Thus the problem is in the form of an optimal control problem, where

I one maximizes the functional I a mf subject to the differential con-

straints given by equations (2.3) - (2.5), the inequality constraints

given by equations (2.11) and (2.12), and the boundary conditions given

3 Iby equations (2.20).
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CHAPTER III

THE OPTIMAL CONTROL PROBLEM

The control optimization problem is that of finding a control vector

that "optimizes" the performance of the system. The optimal control

problem formulated in Chapter II is a member of a class of optimal con-

trol problems considered below. In the general problem discussed below,

the independent variable is chosen as t, for convenience, which is

equivalent to the mass variable, m, of the problem discussed in Chapter

II.

Let the state vector x be an N-vector and the control vector u be

an N-vector; let x satisfy the set of first-order ordinary differential

equations

dxi/dt - fi(xujt) i-l,...,N, (3.1)

and let the performance index be

to
I uP(x(tf)Dtf) + t* Q(x,,t)dt. (3.2)[ t

I is said to be a functional of u. Let t0 and x(to) be given, and let

[ Gi(x(tf),tf) - 0 i(l...,L (L - N+l), (3.3)

[ where tf may or may not be given. The control vector u, may have to

satisfy inequality constraints as well. The problem is to compute u(t),

and tf if it is not given, such that I is extremized.

'I _ __

-17 ljjjjj______
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This is the Bolza problem. If P(x,t) - 0, one has the Lagrange

problem; if Q(x,ut) O, one has the Mayer problem. The Bolza problem

can be put into either the Lagrange or the Mayer form, if desired. The

problem considered in this thesis is a Mayer problem, since I - t .

The following are necessary conditions for the extremization of the

performance index 4

S1.A is introduced as a costate vector with N components, which

must satisfy the set of first-order ordinary differential

equations

N

dli/dt -D -(x,u,t)ivxi - J 1 af.(x,u,t)/ax (3.4)

jul8 ... ,N,

These equations are referred to as the costate differential

equations.

2. The control vector u must satisfy the set of algebraic equations

N

SQ(x.u.t)/Du .I x3af.(x.u.t)/u 1 - 0 (x.s)'ma

j lif there are no constraints on the control vector. These equa-

tions are referred to as the optimality conditions. If there

jare constraints on the control vector, the solution to these

equations may violate these constraints. In that case, one

chooses the control vector that comes as close as possible to

- o6"
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extremizing the function Q(x.ut) + I ?4f (x u.t) without

I violating the constraints.

1 3. The final conditions

_ Lxi(tf) - DP(x(tf).tf)/axi + I qjaGj(x(tf).tf)/Dx i  0 (3.6)

,. jul,... ,N,

must be satisfied, where the q's are additional variables in-

troduced which are referred to as Lagrange multipliers.

4. If tf is not given, an additional final condition

Ni ~ ~~QXc,:f) .uc, ) .tf) +./ kc,:f) f xc, ) .uc,:f). )
L

- LIf)tf/a qi3G(x(tf),tf)/Dt a 0, (3.7)

must be satisfied. This is referred to as the transversality

[condition.
Equations (3.1) and (3.4) can be solved for x(t) and A(t), with

IL the control vector determined by equation (3.S), and with the constants

of integration, the Lagrange multipliers, and, if it is not given, tf,

determined by the initial conditions on the state vector, equations (3.3),

[ and (3.6), and, if tf is not given, equation (3.7).

The unknowns thus to be determined are an N-vector function x, an N-

Ii vector function X, an M-vector function u, L q's, N constants of inte-

I gration, and perhaps tfo The equations from which these are to be deter-

mined consist of N state differential equations, N costate differentialI
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equations, N optimality conditions, L terminal constraints, N final

I conditions on the costate variables, and if tf is not given, a transver-

sality condition. Thus there ar the same number of equations as there

are unknowns.

I

.1 it.
$1!

,11
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CHAPTER IV

THE HMERICAL SOLUTION!
In general, the control optimization problem leads to a nonlinear

Itwo-point boundary-value problem that cannot be solved analytically to
1 obtain the optimal control function.

There are several methods for the numerical solution of the Bolza

problem. The purpose here will be to present three iterative numerical

techniques that could be used to solve the trajectory optimization prob-

lea. Two of the three techniques are procedures for solving general

nonlinear two-point boundary-value problems. The third technique is

applicable only to control optimization problems. The methods are

briefly discussed below without the inequality constraints on the control

vector.

Assuming that tf is fixed, xCtf) is free, x(t O) is fixed, and to is

given, the two-point boundary-value problem can be summarized by the

following equations:

dxi/dt - fi(xut) i-l,...N (4.1)

dXi/dt a 3Q(x~utt)/axi !-j~ ial,...,N (4.2)

• !i

N

, Ild - lAQ~ )fax I - t)/3 uti/a. iz... 4

-Q(x,u,t)/3u, + f (xut)/au 0 i-l,...,M, (4.3)

.I X(t)x 0  (4.4)

A i(tf) - aP(x(tf),tf)/ax, 0 i-l,...,,. (4.S)

A ' -C-I-
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The boundary conditions come from the N initial conditions on x, given

i by (4.4), and the N final conditions on X, given by (4.5). The perfor-

i mance index is

ItJ I = P(x(t),tf) I+ft0 Qxut)dt.

1Each of these numerical techniques are based on the following pro-
-~ cedure:

An initial guess is used to obtain the solution to a problem in

which one or more of the necessary conditions is not satisfied. This

solution is then used to adjust the initial guess in an attempt to make

the next solution come closer to satisfying all of the necessary con-

ditions. If these steps are repeated and the iterative procedure con-

verges, all the necessary conditions may eventually be satisfied.

In the steepest descent method,5 the control function u(t) is

*guessed. To select a u(t) to begin the procedure , one utilizes whatever

physical insight he has about the problem. Since the initial conditions

on the state vector are given, the state differential equations can be

rnumerically integrated forward to obtain x(t). Then X(tf) can be found

by equation (4.S). Now since the final conditions on the costate vector

oae known, the costate differential equations (4.2), can be numerically

Lintegrated backwards to obtain X(t). The next step is to solve the

optimality equations (4.3), for a new u(t), using the calculated x(t) and

A(t). The procedure is repeated until the difference between successive

I anproximations becomes relatively small or until it is evident that con-

i vergence will not occur, in which case another u(t) needs to be selected.

The method of steepest descent is generally characterized by ease

I> M
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of starting; the initial guess of u(t) is not usually crucial. Yet as

a minimum is approached, the method has a tendency to converge slowly.

In each iteration, numerical integration of 2N first-order differential

equations is required. In addition, the optimality equations must be

solved for a suitable number of values of t.

The variation of extremals technique6 is an application of the New-

ton-Raphson iteration. This technique, unlike the steepest descent moth-

od, can be used to solve the general two-point boundary-value problem.

In the variation of extremals technique, every trajectory generated by the

algorithm satisfies equations (4.1) - (4.4), and hence is an extremal.

Here an initial costate vector X(t0) is assumed. Now the state and co-

state differential equations can be numerically integrated forwards to

solve for x(t) and 1(t), with u(t) being determined from the optimality

condition. The calculated A(tf) is a function of the assumed initial

costate vector; it does not satisfy equation (4.5). Thus the set of N

algebraic equations represented by equation (4.5) is solved for

Xl(tO) ,...,N(tO) by the Newton-Raphson method. This set of equations

are solved for the corrections to the approximate solution. The compu-

tation of the right-hand sides of the linearized algebraic equations re-

quires the numerical integration of the state and the costate differential

equations. The computation of each column of the coefficient matrix re-

Iquires another integration of the differential equations. Thus at each

1. iteration the 2N differential equations must be integrated Nil times and

a set of N linear algebraic equations must be solved.

Ii ]In the variational of extremals technique, divergence may result

from a poor guess, but once convergence begins (if it does), it is rapid.

IActually, it may be better to guess x(tf) instead, since one would
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probably have more knowledge about the final values of the states from

the physical nature of the problem. If one guesses x(tf) instead of

A(t 0), then the costate and state differential equations would now be

integrated backwards in time.

The last technique to be considered is quasilinearization.7 This

method can also be used to solve the general two-point boundary-value

problem. In this method, an x(t) and A(t) are assumed. The state and
costate differential equations are linearized about this nominal tra-

jectory, bearing in mind that u, as a function of x, 1, and t, can be

computed by solving the optimality conditions. One can obtain a general

solution to the linearized state and costate differential equations in the

following way. First, a particular solution is obtained by numerically

integrating the linearized equations with the specified initial conditions

on the state variables and with zero initial values for the costate

variables. N linearly independent solutions to the corresponding homo-

geneous differential equations are obtained by solving the homogeneous

equations N times, using a different set of initial conditions each time.

A convenient choice of initial conditions would make one of the costate

variables one, and all of the other variables zero. The general solution

can be written as the su of a particular solution and a linear combin-

,, j ation of N complementary solutions--N rather than 2N, because the par-

ticular solution satisfies the initial conditions on the state variables

by itself and the complementary solutions all satisfy homogeneous initial

conditions on the state variables. The coefficients can be determined

such as to satisfy the final conditions on the costate variables by sol-

S ving a set of linear algebraic equations. The solution does not satisfy

the exact state and costate differential equations. It satisfies a linearI



20

approximation to those equations. This procedure is repeated using the

new x(t) and X(t) each time until the difference between successive

approximations becomes sufficiently small or until it becomes evident

that convergence will not occur, in which case another x(t) and X(t) needs

to be selected.

In the quasilinearization method, divergence may result from a poor

guess. The initial guess of the state-costate trajectory is made pri-

marily on the basis of whatever physical information is available about

the particular problem being solved. Each iteration requires the solu-

tion of a set of 2N nonhomogeneous first-order linear differential aqua-

tions, the solution of a set of 2N homogeneous linear first-order dif-

ferential equations, with N different sets of initial conditions, and the

solution of a set of N linear algebraic equations.

The three methods discussed thus far would all require modifications

to handle the fixed final-state problem where the final value of the

independent variable is not given and also to include inequality con-

straints whenever needed.8

A more flexible method is that of finite differences which could

accomodate terminal constraints of any form, from the no-constraint prob-

lem to a fully specified state for free or fixed tf. Replacement of the

derivatives in the differential equations to be solved with finite-

difference approximations results in a set of nonlinear algebraic equa-

tions to be solved. These equations will be solved with the Newton-

Raphson iteration. The following discussion describes the procedure.

11 Let

h - (tf - to)/K, (4.6)

|'
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where K is a specified positive integer, and let

g' g(t 0 + Ah), (4.7)

where g - x, u, or X.

Using the forward-, backward-, and central-difference approxi-

9nations

df(t)/dt • (-3f(t) + 4f(t h) - f(t 2h))/2h + O(h2 ), (4.8)

df(t)/dt = (3f(t) - 4f(t - h) + f(t - 2h))/2h + O(h2), (4.9)

2

df(t)/dt (f(t h) - f(t - h))/2h + 0(2), . (4.10)

the differential equations (3.1) can be approximated by the set of alge-

braic equations

(x . xJ-)/2h- fi(xJ,uJto+jh) -0 (4.11)

and the differential equations (3.4) can be approximated by the set of

jalgebraic equations

0 ,1 2 3 0 0  N 0 0
(_3X i 4A A P/2h + ,xu 't0Vx,+ . f( u 't 0)/ax - (4.12)
.1-u,...l,

4'- • I ~-
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l ){'x)/2h + aqCxJ u",t jh)/Dx1 *

S fkCxiJuJ,to+jh)/ax. - 0 1-I,...,N J=I,...,K-1, (4.13)
kal

(3K - 4A K-1 + '2)/2h + BQ(xK to+Kh)/axl

N "K KK

I x .af. (xK,uK,t0 +Kh)/3x1 , 0 i-l,...,N, (4.14)
Jul J

The central-difference formula has been used from t between to and

tf' the forward-difference formula for t-t0 and the backward-difference

formula for twtfV The equations represented by (4.11) are referred to

as the state algebraic equations and equations (4.12) - (4.14) are re-

ferred to as the costate algebraic equations.

In order to conform to the same notation, equations (3.3), (3.S),

(3.6), and (3.7), can be written as

II

O Q(x ,u ,t04.jh)/au i + I Xkjafk(x ,uJ tojh)/3ui 0 (4.16)
k-1• 1

ap, x .- 0PxX toKh)/ax i + ~q j3G j (xl ,toOlh/
= 0 t"11xi m,...,N. (4.17)

Q(K o K 14 NAK Kf KA+h

N IK

I ap(xSt 0 +Kh/ I qi3Gi(x ,t 0 *I0)/3 0. (4.17)

*1A! 1
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The Newton-Raphson method may be used to solve equations (4.11) -

(4.17), and if tf is not given, equation (4.18), for the x's, u's, A's,

q's, and if tj is not given, h. If there are inequality constraints on

the control variables, one can compute the trajectory in segments. On

some segments, the optimality conditions do not violate any of the

constraints, and may therefore be ignored. On other segments, some of

the optimality conditions cannot be satisfied without violating some

of the constraints. On these segments, the optimality conditions that

cannot be satisfied without violating the constraints are replaced by

those constraints, treated as inequalities.

A particularly important problem is that of extremizing tf for

given final state. This problem may be treated as a Mayer problem with

Patf, Q-0, and

Gix((tf),tf) u xi(tf) - Xf i 0 il,...,N,

where xf is given. In this case, equations (4.12) - (4.14) become
i

(-3A + 41- 1)/2h + OfjCx uO'tn)/fxi 0 i=l,...,N, (4.19)

(1X'" - l-)/2h +* I Jfk(xJ,uJ ,tojh)/axi 0 0 (4.20)

K K-1 JK-,...K-1

I ' (3X-4X +* 2)/2h + X af (X-U tO+h)/3X u 0 (4.21)

I
il,... ,0,

Ju

"ml o" #N #m =,.,.,.a . h.*. lI . .
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i~~ai (X~l 0. ON4.h/a. J60 0. iu,.1 j O K, (4.22)
kul

X 1Kg Kx 'u K t *h) + I1a0. (4.23)
iii

If necessary, central-difference approximations can be used for the

derivatives in equations (4.19) - (4.22). Equations (4.11) and (4.19)-

(4.23) can be solved by the Newton-Raphson method for the x's, u's, A's,

and h. Again, if there are inequality constraints on the control vari-

abls, one can divide the traj ectory into segments on some of which the

constraints may be ignored and on some of which some or all of the op-

timality conditions are replaced by constraints.
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CHAPTER V

APPROXIMATE COMPUTATION OF THE OPTIMAL TRAJECTORY

In order to ensure convergence, it may be necessary to have a rea-

sonable good initial approximation for the iterative procedure described

in the previous chapter. Approximate trajectories can be obtained in the

following way.

It is assumed that the effects of atmosphere are ignored, i.e.,

Pa 0 0, and the specific heat ratios of the propellants are taken to be
equal, i.e., Y1  2 Te" Substituting equation (2.9) into equation

(2.6), one obtains F a ClPr' where

C1  Y(2/(y - 1))1/2(2/(y * 1)) (y'l)/2('1) An.  (S.1)

Thus the state differential equations take the simpler form

dr/dm - /-, (5.2)

d;/d - (-goro/r2 + r;2 * CPr sin O/m)/;, (S.3)

i d;/dm (-2;; + C lP r cos o/m)/;r, (5.4)

where -i is the total propellant flow rate per unit initial mass.

Next it is desired to compute m as a function of pr. Letting

S1 ; "2 o i and ye a y, and substituting equation (2.8) for W into (2.11),

I equation (2.11) now is of the form f(;,;I) a 0. Letting ;2 " ; " ;I in
equation (2.12) and eliminating ia between equations (2.11) and (2.12).

,%I
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and equating the two of them, one has an equation in a only. This equa-

tion is a quadratic. Thus two solutions exist--one positive and one

negative. The negative solution is used since m is negative by defini-

tion. Thus

* C3 12C2Pr -C 3 14C2 Pr  C4P/C 2)

where C2, C3 , and C4 are defined by

C2 * p1W2 . p2V1, (5.6)

C3 a * 02(Wl - W2 ), (S.7)

C4 * y(2/(y + 1)1C(Yl)/(Y-l) 1  pZWlW2A2/RTr (5.8)

where y is the propellant specific heat ratio.

The costate differential equations become

2 3.2 2'i 1. dAl/dm a (-) 2 (2g 0r 0/r + + ) 3(-2;; + Clpr cos l/m)/r2)/m, (5.9)

ju 2 ' a (- 1 2A3;/r) /A, (s.10)

dA d/dm (-2X r; 2X ;~/r)/;. (5.11)

The optimality conditions become

(_1 22 .2 3 2

(Xr A2 (-goo/r *r ) - A;;/)(2C3 + (C3 + 4C2 C P)1 "..

1 33-C
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(2CIC 3p/m) (12 sin B * A5 cos B/r 0, (S.12)

tan B - 12r/A3 U (5.13)

B can be obtained from Eq. (5.13). Equation (5.12) can be rewritten as

a fourth-order polynomial in Pr, and this equation can be solved iters-

10
tively by the Bairstow method, which is an application of the Newton-

Raphson method; one hopes that one at most of these solutions will be

between P. and PH. Thus the control variables can be calculated for

given values of the state and costate variables and the independent vari-

able.

For a set of estimated initial values of the costate variables, the

state and costate differential equations can be integrated numerically.

A good integration formula to use to do this is the Runge-Kutta method.

The right-hand sides of the differential equations (5.9) - (5.11) are

linear homogeneous functions in terms of AID A., and 13. Also the opti-

mality condition (5.12) is a linear homogeneous algebraic equation in X1.

12. and A3 . Equation (5.13) is also linear homogeneous in 12 and A3,

after multiplying it by A3. Hence, if the initial values of the costate

- variables are multiplied by a comon factor, the trajectory is unaffected,

Iand the subsequent values of the costate variables are all multiplied by

the same factor. Therefore one can assign an arbitrary initial value to

SI -one of the costate variables, say X3. In order to satisfy the trans-

venality condition for any desired final mass, one needs only to multi-

ply the estimated initial values of the costate variables by the proper

j factor. Thus any point on the trajectory can be a final state. A tra-

jectory computed in this way is a minimum-propellant trajectory for the

"" " I .a, '' . ...I I,+ ,, ...*-, . ..."'++ ,,.,, .. L lm ...
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computed final state; but this final state is not known beforehand.

(All this is still true if one does not ignore the atmosphere and if one

does not assume that the two specific heat ratios are equal; the opti-

mality conditions and the right-hand sides of the costate differential

equations are still linear and homogeneous in the costate variables.)

It follows from the optimality condition on 0, equation (5.13), that

12 and 13 must always have the same sign since tan 0 > 0 for every point

on a realistic trajectory. Therefore, if 12 and 13 are over going to

change sips, they must do it at the same time, i.e. A2X3 0 0. One way

to ensure that 12 and 13 never have opposite signs is to start 12 and X3

with the same signs and ensure that they both change in the same direc-

tion and that this direction is away from 0; obviously this is not a

necessary condition. If 13 changes in the direction away from 0, then

13 and d13 should have the same sign. Since dm is negative, one has

"3d 3/dm < 0. By equation (5.11), this requires 12/13 < r/r2i. This

inequality implies the initial value of tan B < ;/r;. Evidently at the

beginning of an optimized trajectory, one cannot have 0 - 0, since B

must always be positive. Therefore, the trajectory must follow a non-

* optimized boost phase which may use either chemical or nuclear propulsion.

(One suspects, although this has not been verified that in order to

achieve a circular orbit, a shuttle would have to execute a nonoptimized

pushover maneuver.) Now to ensure that 12 and 13 change in the same

direction, one must have (dA2/dm)(dl3 /dm) 3 0. Using equations (S.10)

*and (5.11) and assuming that 12/13 r 3), then in order to have

(dA2/dm)(d 3/dm) > 0, one must have 11/I3 ' 2;/r. One would also like to

3 I have the initial values of A1 and 12 chosen such that pr would be within

its limits PH and PA' The optimal p. decreases during ascent. Therefore,
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it may happen that at some point on the trajectory, the optimality con-

dition will cease to have a solution between pHand p.If this

happens, one 3iMply Sets Pr. PH
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CHAPTER VI

NUMERICAL RESULTS AND CONCLUSIONS

The purpose of this work is to determine the thrust vector program

for a mixed-mode nuclear shuttle that minimizes the propellant required

to reach a given orbit. The thrust is determined by the control variables

B, which specifies the thrust direction, and pr, which is the reactor

pressure. Thrust is also a function of reactor pressure, reactor temper-

ature, the nozzle throat area, and the turbopump power.

Application of the methods of optimal control theory to this problem

results in a two-point boundary-value problem and an associated algebraic

problem as has been shown in the earlier chapters. All of the numerical

data presented in the following tables were computed by the methods de-

scribed in Chapter V.

As will be soon demonstrated, the performance advantage of mixed-

mode propulsion turned out to be quite small. Therefore, it was not

worthwhile in this particular problem to compute more accurate trajec-

tories using the rather expensive procedure described in Chapter IV.

However, the correctness of the computer program, OPTCON, written to

implement the latter procedure, was verified. In most cases of course,

'one will not be so fortunate as to obtain a simple approximate solution

to an optimization problem, and the more elaborate procedure will have

to be used from the beginning.

In Table 1, the state and control variables for a minima-propellant

trajectory, computed by the approximate method described in Chapter V,

are given as functions of mass. The following set of input parameters

are used:
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An - 10.3 a 2/ton,

P - 100 kw/ton,

Tr a 3000 K,

y a 1.4.

For these parameters, the reactor pressures for pure hydrogen and

pure ammonia flow are:

2 2
PH = 6000 KN/m PA w 13,100 KN/m

The initial values for the costate variables are:

Al(l) z 2.27 x 10-
11 a 1 ,

X 2(1) = 1.69 x 10' s/m,

13(1) = 1 s

For reasons given in Chapter V, any point on this trajectory may

be considered a final state. For example, the final mass for a minimum-

propellant trajectory from radius r a 6380 kcm, radial velocity r = 0.5

k*l/s, and angular velocity - 7.25 x 10"S s"1 to r a 6S90 km, r = 1.22

, km/s, and ;4.99 x 10-4 s"1, is f = 0.6.

As Table 1 indicates, the initial value of pr is a little greater

I. than PH' but it drops to PH immediately and remains there throughout the

trajectory. The radial velocity, ;, decreases slightly just after igni-

tion and then increases until cutoff. The angular velocity, ;, increases

I. until just before cutoff. Then it decreases slightly.

Table 2 gives the state variables at m a .2 as functions of the

Iinitial value of the costate variable 11, denoted by Ai(). All the input

data are the same as for Table 1, except for the initial value of X1

As A1 increases, the final values of r and'; decrease slightly and the

3final value of ; increases slightly as well. As X (1) increases, the

initial value of pr decreases slightly.

'I
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Table 1. State and Control Variables as Functions of Mass for a Typical

Trajectory

m r, km km s "1  s-1 Pr, k'm-2 0

i.0 6380 0.500 0.725x10 "4  7210 0.823

0.9 6420 0.464 1.64 6000 0.835

0.8 6450 0.491 2.73 6000 0.873

0.7 6500 0.713 3.87 6000 0.935

0.6 6590 1.22 4.99 6000 1.02

O.S 6720 2.11 5.87 6000 1.13

0.4 6960 3.53 6.67 6000 1.24

0.3 7350 5.73 6.90 6000 1.36

0.2 7980 9.18 6.50 6000 1.48

IEL

'1 *

!I.

A I
" -;[
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Table 2. State Variables at a u.2 as Functions of the Initial Value of

the Costate VariableXI

O.lxlO* 8000 9.21 6.27410

0.2 8000 9.21 6.28

0.3 7990 9.21 6.29

0.4 7990 9.21 6.30

0.5 7990 9.21 6.31

0.6 7990 9.21 6.32

0.7 7990 9.20 6.33

0.8 7990 9.20 6.34

0.9 7990 9.20 6.35

1.0 7990 9.20 6.37

2.0 7980 9.18 6.47
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Table 3 gives the state variables at m - .2 as a function of the

initial value of the costate variable )2' denoted by X2(1). All input

parameters have the same values as those of Table 1, except for A2(1).

As X2f1) increases, the final values of r and r increase, whereas the

final value of ; decreases. The initial value of pr increases as A2 (1)

-7
increases, and for values of X2(l) < 1.4 x 10' 

, the initial value of

Pr = PH' Therefore, the shuttle would be running strictly on hydrogen.

Table 4 shows the state variables at m = .2 as a function of An o

the nozzle throat area. In this case, all the input parameters are the

same as in Table 1, except for A . The final value of r and * increase
n

as An increases while the final value of r first increases slightly,

then decreases. For An < 10-3 m2/ton, the initial value of pr w PH. The

pressure increases briefly after ignition, then drops back to PH' As

An increases above 10"3 m2/ton, the initial value of pr decreases and

for An : 1.2 x 10
-3 m2/ton, this initial value -PH'

Table 5 gives the state variables at m - .2 as functions of pump

power per unit initial mass, P. As P increases, the final value of r

first increases slightly, then decreases. The final value of r increases;

for small values of P, it increases very rapidly. As P decreases below

100 kw/ton, the initial reactor pressure, pr, decreases, and for P < 100

kw/ton, this initial value of pr 0Pf" The pressure increases briefly

just after ignition, then falls back to PH. As P increases above 100

j kw/ton, the initial Pr decreases, until for P > 120 kw/ton, this initial

pressure - PH.

As is the case for any new idea, the feasability of mixed-mode pro-

pulsion must be demonstrated, both from a theoretical and a practical

viewpoint. Even though mixed-mode propulsion is theoretically
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Table 3. State Variables at mn .2 as Functions of the Initial Value of

the Costate VariableX2

II
A ( a, A -r ms

1.4xl -7 820 . 7.S~ -

1.0 7880 9.18 6.10

A 1.6 7970 9.37 6.74

1.2 7960 95 7.04

1. 909.86S

1. 909.767
1.I909.370
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Table S. State Variables at am .2 as Functions of the Pump Power, P

P. kw t- ,k ,kms- * -

80 7950 8.62 S.77x10-4

90 7980 8.95 6.22

100 7980 9.18 6.50

110 7970 9.37 6.74

120 7960 9.S3 7.04
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advantageous, it is not a good idea if it is not practical to implement

or if it does not have substantial advantages over other propulsion

systems. In designing a nuclear rocket, the first inclination is to

choose hydrogen gas as the propellant because hydrogen has a low molecular

weight--thus providing high exhaust velocity. Thus a comparison between

mixed-mode propulsion and straight hydrogen propulsion is warranted here.

Using the same input parameters as in Table 1, but running only on

hydrogen propellant, the cutoff radius %-, is reduced from 7980 to 7960

km, the radial velocity r, from 9.18 to 9.17 km/s, and the angular ve-

locity ;, from 6.50 x 10- to 6.37 x 10 Thus for a particular

set of input parameters, it appears the use of mixed-mode propulsion

only slightly improves the performance of a shuttle above pure hydrogen

propulsion. This slight improvement would hardly justify the additional

cost and complexity of mixed-mode propulsion.

A trajectory was computed for straight ammuonia propellant and it

was found that the performance for mixed-mode propulsion was far better

than from ammonia propulsion.

It must be pointed out here that it may be possible to find input
parameters for which the advantage of mixed-mode propulsion would be

greater. For example, if the engines were very heavy, mixed-mode pro-

pulsion would be more advantageous. Chemical shuttles are marginal

systems, whereas nuclear shuttles are not. Consequently, nuclear shuttles

*are much less sensitive to changes in mission and design parameters.

This explains why the gains from mixed-mode propulsion are much larger

for chemical shuttles than for nuclear shuttles.

In order to verify the correctness of OPTCON, the finite-difference

program, a calculation was done for the unconstrained segment of the

, !t



38

trajectory using the same input data as in Table 1. The program, OPTCON,

is of course a general one, and can be used for a wide variety of prob-

lems.

The results from OPTCON agreed closely with those computed from the

method of Chapter V. Both methods were used to compute a trajectory with

the initial state r = 6381 km, r * 0.S km/s, * -7.249 x 10"$ s"1 and

the final state r a 6410 km, - 0.4691 ka/s, - 1.511 x 10" s "1  The

final mass as computed by OPTCON after five iterations was 0.9126, and

the final mass as computed by the method of Chapter V was 0.9125. Midway

through the OPTCON trajectory, pr was 6,594 /I.m2 and B was 0.8182. Mid-

way through the other trajectory, pr was 6,565 KN/m and B was 0.8255.

It appeared that after five iterations, the OPTCON solution was oscil-

lating about a fixed point, but it was not apparent that the amplitude of

the oscillations was decreasing.

r

: 1

'1
!I.
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CHAPTER VII

RECOMENDATIONS

As was indicated previously, certain restrictions were imposed upon

the problem from the outset, as was appropriate for an initial trajec-

tory study. The following extensions to the study could be made, thus

making the results more realistic. These studies will require more effort

than the restricted problem. They are listed in order of increasing

complexity.

1. Allowance for non-equatorial launch sites and nonequatorial

orbits.

Two more state variables, with the corresponding state and

costate differential equations, and two more control variables,

with the corresponding optimality conditions, must be introduced.

The added state variables are latitude and the time derivative

of latitude. Two additional angles must be given in order to

specify the thrust direction.

2. Allowance for a coasting period; this is required in order to

reach high orbits.

Up until now, it has been assumed that the shuttle has been

operating under power all the way. But high orbits cannot be

• * reached under power all the way because the length of the powered

trajectory cannot be long enough. In order to reach high orbit,

one must incorporate a coasting phase in the trajectory. The

following describes how to optimize a trajectory that includes

a coasting phase. The first step is to compute an optimal tra-

jectory with some specified final state. Next, the state vector

S..__ __ _.. .._"__._ ,- .- -
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is computed after a specified coasting time. Finally, one com-

putes an optimal trajectory from that state to the desired final

state. The final mass is a function of the state at the begin-

ning of the coasting period and the length of the coasting

period. This function can be maximized by an application of the

Newton-Raphson method. Thus one is faced with an optimal con-

trol problem inside a function optimization problem.

3. Allowance for non-ideal-gas effects in the nozzle flow; compu-

tations should be made for the limiting cases of equilibrium

flow and frozen flow.
11

Before now, thrust has been taken to be a function of

reactor pressure, reactor temperature, the nozzle throat area,

and the turbopump power, which it is. But thrust is really a

more complicated function than was assumed before. It was

assumed before that the molecular weight of the exhaust gas was

a simple function of the mixture ratio and independent of pres-

sure and temperature. it was also assumed that the specific

heat of the exhaust gas is independent of temperature and pres-

sure. Neither assumptions are correct. The molecular weight

of the exhaust is a function of pressure and temperature and

the specific heat is a function of temperature and pressure.

[ •Therefore, the calculation of thrust as a function of reactor

j . pressure needs to be changed. There are two limiting cases

which can both be handled easily, and which should both be con-

jl sidered. They are listed below.

1. The case of frozen flow

The composition of the exhaust gases is assumed to be

.-

Mai
4 . o -
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constant all along the nozzle at the reactor-exit equilib-

riu composition.

2.* The case of equilibrium flow

The gas is assumed to have its equilibrium composition at

every point.

Mimi
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APPENDIX A

PROGRAM OPTCON

OPTCON solves the following problem: Let the state vector x be an

N-vector and the control vector u be an M-vector; let x satisfy the set

of first-order ordinary differential equations

dx /dt = Fi(xju,t) il..,N. (A.I)

Let to, x(t 0 ), and xCtf) be given. The problem is to compute u(t) and

tfs, such that tf is extremized. This will be referred to as the extremal

tf problem.

The following are the necessary conditions for the extremization

of tf:

1. The N-vector X must satisfy the set of first-order ordinary

differential equations

N
d.%i/dt = - )j3Pj(XUet)/ xi iil,...,N, (A.2)

I is referred to as the costate vector, and these equations are

referred to as the costate differential equations.

2. The control vector u must satisfy the set of algebraic equations

N

Ijlxj3F ( .,,)/3ui 0 iul...M, (A.3)I -

These equations are referred to as the optimality conditions.

3. Since tf is not given, the final conditionIf
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J i (tf)Fxtf)Utf), tf) + 1 - 0,I iI)

I must be satisfied. This is referred to as the transversalitY

condition.

1 OPTCON uses a finite difference method to solve equations (A.1) -

1(A.4). The left-hand sides of equations (A.1) and (A.2) are replaced by

central difference approximations. Thus equations (A.1) and (A.2) are

Japproximated by a set of nonlinear algebraic equations; N state equations

at each of I-2 points and N costate equations at each of K points. In

addition, one has M optimality conditions at each of K points and a trans-

versality condition. All of these equations are solved by the Newton-

Raphson method for the N(K-2) state variables, the NK costate variables,

the N4 control variables, and tf.

Initial estimates for the state, costate, and control variables

must be supplied. To solve the set of nonlinear equations Y1(x,....xN)

"=0,... N(XI,...,xN)nO by the Newton-Raphson method, the derivatives of

the F's with respect to the x's must be calculated. This is done in

subroutine JM by use of central difference formulas. In this case,

subroutine G is used to compute the F's. In this caso, the F's contain

derivatives. Subroutine G calls D to calculate these derivatives by

I means of finite difference formulas. The right-hand sides of the state

differential equations are calculated by DE. Subroutine DE would need

LI to be rewritten for each new optimization problem; the only changes

that would have to be made in the other subroutines are in DO loop indices

and the like. NR calls subroutine GE to solve the linearized algebraic

SI equations for the corrections to the unknowns.

A listing of the program follows.
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IMPLICIT REAL*8 (A-H,O-Z)
C--KIL(MN+L2*
C--DIMENSION A(K),Al(K),A2(K),DA(K),GA(K,K),U(L*M),X((L-2)*N),XO(N),

C-X( N ),XL (L*N) ,Y(K) ,Y1 (K) ,Y2 (K)
DIMENSION A(115),A1(1 15),A2(1 15),DA(115),GA(1 15,115),

u 1~~U(30) ,X(39) ,XO(3) ,XF(3) DXL(45) ,Y( 115) ,Y1 (115) ,Y2(1 15)
DIMENSION P(8),R(8),T(8),TP(8)
COMM4ON TO,XO,XF
COMMON/COMI/AB,C1 ,C2,C3,C4,GO,OMEGAP,R,RO,RU,T,TP,XK,XKA,XMA
EXTERNAL G
DATA TO,XO,XF/1 .D3,6.381D6,5.D2,7.2490-5,6.41006,
14.691D2,1.5110-4/
DATA AB,AN,GO,OMEGA,ROIRHOI ,RHO2,RU,TR,W,XK,
IXKA ,XM1 ,XM2 ,XMA/ .03 ,1.DO ,9. 80700 ,7 .2720-5 ,6.37106,
26.8210-1,7.0-2,8.31403,3.03,1 .D5,2*1 .4D0,8.51600,
32.0 1600,2.89601/
DATA P/1.013D2,2.263D1,5.475D0,8.680-1,1 .109D-1,5.90-2,
11.821D-2,1.038D-3/, R/6.371D6,6.382D6,6.39106,
26.40306,6.418D6,6.42306,6.43206,6.4506/, TI
32.881502,2 .1665D2,2.166502,2.2865D2,2.7065D2,
42.7065D2,2.5265D2,1 .806502/, TP/-6.50-3,O.DO,
51 .D-3,2.80-3,O.DO,-2.D-3,-4.D-3,O.DO/
DATA A(i )I-6.25001
DATA XL/2.27D-11,1 .690-7,1 .0000,2.1630-11,1 .69D-7,1 .0000,
12.0510-11,1.690-7,9.9990-1,1 .935D-1 1,1.690-7,9.9980-1,1.8150-11,
21 .6910-7,9.997D-1 ,1.6910-11,1.6910-7,9.9950-1 ,1.5620-11,1 .692D)-7,
39.992D-1,1.4290-11,1.693D-7,9.9890-1,1.2920-11,1.694D-7,9.985D-1,
41.1490-11,1.6950-7,9.9800-1,1.0020-11,1 .6960-7,9.9750-1,
58.5020-12,1.6970-7,9.9690-1,6.9310-12,1 .6990-7,9.9620-1,
65.3070-12,1.7010-7,9.9530-1.,3.6290-12,1.7030-7,9.9440-1/
DATA U/7.208D3,8.2310-1,7.103D3,8.233D-1,7.00403,8.235D-1,-
16.90903,8.2370-1,6.81803,8.2410-1,6.73003,8.2450-1,6.64603,
28.2490-1,6.56503,8.2550-1,6.48603,8.2610-1,6.4103,8.2690-1,
36.33503,8.2770-1,6 .26403,8.2860-1,6.19403,8.2960-1,6.12503,
48 .3080-1 ,6.05903.8 .320-1/
DATA X/6.38306,4.992D2,7.734D-5,6.38506,4.982D2,8.231D-5,
16.386D6,4.969D2,8.738D-5,6.388D6,4.954D2,9.258D-5,6.39D6,4.937D2,
29.7880-5,6.39206,4.91702,1.0330-4,6.39406,4.8952,1 .0890-4,
36.39706,4.87102,1 .1450-4,6.39906,4.84502,1 .2030-4,6.40106,
44.81802,1.2620-4,6.40306,4.78802,1.3220-4,6.40606,4.75702,
51.3840-4,6.40806,4.72502,1 .447D-4/I Til-XjI)9.3840-7

00 4 1=1,39

4 A(1+76)=XCI)

CAL ASIG - OTCN.XJ-
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I C2=RHO1XM2.RHO2,XM1
C3=W*RHOI*RHO2*(XMI-XM2)
C4=(RHO1.RH02)*XM1*XM2*AN**2*XK*(2./(XK+.) **
1((XK+t.)/(XK-1.))/(RU*TR)

C --- CALL NR(G,K,A,DA,GA,A1,A2,Y,Y1,Y2)
CALL NR(G,115,A,DA,GA,A1,A2,Y,Y1,Y2)
WRITE (6,10)
WRITE (6,100) A(1)

WRITE (6,20)
C- WRITE (6,110) (A(I),I=2,1+L*N)

WRITE (6,110) (A(I),1=2,46)
WRITE (6,30)

C- WRITE (6,120) (A(I),I=2+L*N,1+L*(M+N))
WRITE (6,120) (A(I),1=47,76)
WRITE (6,40)

C --- WRITE (6,110) (A(I),I=2+L*(M+N),K)
WRITE (6,110) (A(I),1=77,115)

10 FORMAT (1X,1HH)
20 FORMAT (IX,1HP)
30 FORMAT (1X,IHU)
40 FORMAT (1X,1HX)
100 FORMAT (1X,1PD1O.3)
C ---- FORMAT (N(1X,1PO10.3))
110 FORMAT (3(IX,1PDIO.3))
C ---- FORMAT (M(1X,1PDIO.3))
120 FORMAT (2(1X,1PDIO.3))

STOP
END
SUBROUTINE NR(F,N,X,DX,FX,X1,X2,Y,Y1,Y2)

C --- SUBROUTINE NR USES THE NEWTON-RAPHSON METHOD TO SOLVE A SET
C --- OF N NONLINEAR ALGEBRAIC EQUATIONS F(X)=O, WHERE F IS AN
C --- N-VECTOR FUNCTION OF GIVEN FORM, AND X IS AN UNKNOWN N-VECTOR.
C ---- THE NEWTON-RAPHSON METHOD REPLACES A SET OF NONLINEAR ALGEBRAIC
C --- EQUATIONS WITH LINEAR EQUATIONS, THE SOLUTION OF WHICH SHOULD
C --- BE CLOSE TO THE ORIGINAL EQUATIONS. SUBROUTINE NR CALLS JM
C --- -WHICH USES A THREE-POINT CENTRAL DIFFERENCE FORMULA TO COMPUTE
C....-THE COEFFICIENT MATRIX(JACOBIAN MATRIX). NR THEN CALLS
C --- SUBROUTINE GE WHICH USES THE GAUSS ELIMINATION METHOD TO SOLVE

SC -- THE LINEARIZED EQUATIONS FOR THE CORRECTION VECTOR. INITIALLY,
C- X MUST CONTAIN AN ESTIMATE SOLUTION.. THIS IS OVERWRITTEN BY
C --- THE SUCCESSIVE APPROXIMATIONS TO THE SOLUTION.
C----- THE USER SUPPLIES A SUBPROGRAM TO EVALUATE THE EQUATIONS
C--THEMSELVES.
C .... THE INPUT DATA ARE:
C --- N NUMBER OF EQUATIONS=NUMBER OF UNKNOWNS

1 C -- X VECTOR OF UNKNOWNS
4 C ----- THE WORKING ARRAYS, WITH THEIR DIMENSIONS, ARE:

C --- OX N
C --- FX N X N
C --- Xt N

I .
''U I I - " '' .... .... ..
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C ---- X2 N
C ---- Y N
C ---- Y1 N
C --- Y2 N
C----DX, FX, X, Xi, X2, Y, Y1, AND Y2 MUST BE DIMENSIONED IN THE
C ---- CALLING PROGRAM.
C ----- F IS A DUMMY NAME FOR A USER SUPPLIED SUBROUTINE THAT
C----COMPUTES F(X). THIS SUBROUTINE'S ARGUMENT LIST IS (X,Y); X IS
C --- AN N X I INPUT ARRAY, AND Y IS AN N X 1 OUTPUT ARRAY CONTAINING
C --- F(X).
C-... THIS SUBROUTINE'S ACTUAL NAME MUST APPEAR IN AN EXTERNAL
C----STATEMENT IN THE CALLING PROGRAM. XI, X2, YI, AND Y2 ARE N
C-.VECTORS. X, DX, FX, X1, X2, Yi, AND Y2 MUST BE DIMENSIONED IN
C ---- THE CALLING PROGRAM.

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION DX(N),FX(N,N),X(N),XI(N),X2(N),Y(N),YI(N),
IY2(N)
EXTERNAL F

I CALL JM(F,N,X,FX,Xt,X2,Yi,Y2)
CALL F(XY)
CALL GE(FX,Y,N,DX)
DO 2 I=I,N

2 X(I)=X(I)-OX(I)
WRITE (6,100) X(1)
WRITE (6,110) (X(I),1=2,46)
WRITE (6,120) (X(I),1=47,76)
WRITE (6,110) (X(I),1=77,115)

100 FORMAT (IX,1PDIO.3)
110 FORMAT (3(IXPDO10.3))
120 FORMAT (2(1X,1PDlO.3))

DO 3 I=I,N
IF (DABS(DX(I)/X(I)).GT.1.D-6) GO TO 1

3 CONTINUE
RETURN
END

* SUBROUTINE JM(F,N,X,FX,XI,X2,Y1,Y2)
C ---- SUBROUTINE JM COMPUTES THE DERIVATIVES OF THE N-VECTOR FUNTION
C ------- F(X) WHERE X IS AN N-VECTOR. SUBROUTINE JM USES A THREE-POINT
C - ------ CENTRAL-DIFFERENCE FORMULA TO COMPUTE THE DERIVATIVES OF THE'!C ----- FUNCTIONS.

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION FX(NN),X(N),XI(N),X2(N),YI(N),Y2(N)
DO I Is1,N
XI(I)=X(I)

I X2(I)=X(I)
DO 3 Jm1,N
Xl(J)=O.999*X(J)
X2(J)=i.0O01*X(J)
CALL F(X1,Y])

i4 CALL F(X2,Y2)
00 2 101,NU! o-,N



2 FXCI,J)-(Y2(I)-Y1Ii))/(O.OO2*XCJ))
Xl (J)aX(J)

3 X2CJ)=XCJ)
RETURN
END
SUBROUTINE GE(A,C,N,X)

C---ThE GAUSS ELIMATION SUBROUTINE SOLVES THE SET OF SIMULTANEOUS
C----LINEAR ALGEBRAIC EQUATIONS AX-C WHERE A IS A GIVEN N X N
C--MATRIX. C IS A GIVEN N-VECTOR, AND X IS AN UNK(NOWN N-VECTOR.I C----A, C, AND X MUST BE DIMENSIONED IN THE CALLING PROGRAM. THE
C--USER MUST IINPUT THE NUMBER OF EQUATIONS TO BE SOLVED. THIS

4 C -- SUBROUTINE RETURNS THE SOLUTION OF THESE LINEAR ALGEBRAIC
C--EQUATIONS TO THE MAIN PROGRAM. THE COEFFICIENT MATRIX A AND
C--THE C VECTOR ARE OVERWRITTEN DURING EXECUTION.

I IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION A(N,N),C(N),X(N)
M=N-1
DO 3 K=1,M
L=K+l
DO 2 1=L,N
IF (DABS(A(I,K)).LE.DABS(A(K,K))) GO TO 2
DO 1 J=K,N
AIJ-ACI,J)
AK J=A(CK ,J )
AC I,J)=AKJ

1 A(K,J)=AIJ
CI=CC I)
CK=C(K)
C(I)=CK
C(K)inCI

2 CONTINUE
DO 3 I=L,N
6-A( I,K)/A(KK)
CCI)=CCI)-B*C(K)
DO 3 JL,N

3 ACI,J)=A(I,J)-B*A(K,J)
X(N)=C(N)/A(N,N)
DO 5 1=,M
KzN-I
L=K41
XC K) C (K)
DO04 J=L,N

4 XCK)=X(K)-A(K,J)*X(J)

-SUBROUTINE OE(XDOT,XMU,X)
C---SUBROUTINE DE EVALUTATES THE RIGHT HAND SIDES OF THE STATE

C------- DIFFERENTIAL EQUATIONS FOR GIVEN VALUES OF X, U, AND T.
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION P(S),R(8),T(8),TP(8),U(2),X(3),XDOT(3)
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COMMON/COM1/ABC1 ,C2,C3,C4,GO,O4EGA,P,R,RO,RU,T,TP,XK,XKA,XMA
PR-U (1)
BETA=U(2)
Q=C3/(2. *C2*PR)-DSQRT( (C3/(2. *C2*PR) )**24.C4*PR**2/C2)
1=0
IF (X(1).LT.R(2)) 1-1
IF (I.EQ.1) GO TO 3
IF (X(1).GT.R(8)) 1=8
IF (I.EQ.8) GO TO 3
DO 2 1-2,7
IF (X(1).GT.R(I).AND.X(1).LT.R(I+1)) GO TO 3

2 CONTINUE
3 TA=T(I)+(X(1)-R(I))*TP(I)

IF (TP(I).EQ.O.) PA=P(I)*DEXP((R(I)-X(1))*GO*
1Xt4A/(RU*T(I)))
IF (TP(I).NE.O.) PA=P(I)*(T(I)/TA)**(GO*XMA/(RU*

1TP(I )))
PA=0.
ALPHA=U(2)-DATAN(X(2)/(X(1 )*(X(3)..OMEGA)))
XNM=DSQRT(XMA*(X(2)**2+(X(1 )*(X(3)-OMEGA))**2)/
I (XKA*RU*TA))
FX=C1 *PR-XKA*PA*XNM**2*CO( ALPHA,XNM)*AB/2.
FY=XKA*PA*XNM**2*CL (ALPHA ,XNM) *AB/2.
SBETA=DS IN(BETA)
CBETA=DCOS (BETA)
X(DOT(1 )=X(2)/Q
XDOT(2)=(-GO*(RO/X(1) )**2+X( I)*X(3)**2+(FX*SBETA+
1 FY*CBETA) /XM)/Q
X(DOT(3)=(-2.*XC2)*X(3)+(FX*CBETA-FY*SBETA)/XM)/
1(Q*X(1))
RETURN
END
SUBROUTINE D(FU,FX,T,U,X)

C -- SUBROUTINE D EVALUATES THE DERIVATIVES IN EQUATIONS 4.19-4.22
C--BY MEANS OF CENTRAL DIFFERENCE FORMULAS.

IMPLICIT REAL*8 (A-H,O-Z)
C--DIMENSION FI(N),F2(N),FU(N,M),FX(N,N),U(M),U1(M),uJ2(M)
C--X(N),X1(N),X2(N)

~ I * DIMENSION F1(3),F2(3),FU(3,2),FX(3,3),U(2),Ul(2),U2(2),
* I. 1X(3) ,X1 (3) ,X2(3)

C C--DO 1 1-1,M
DO 1 1=1,2

I. * U1(I)-U(I)
I U2(1)=U(I)

SC--DO 2 11l,N
j DO 2 Iw1,3

Xl (I )X( I)
2 X2(1)-X(l)
C--DO 4 J1l,M

* DO 4 J-1,2
Ut (J)uO.999*U(J)
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U2CJ)=1 .OO1U(J)
CALL DE(FI ,TU1 ,X)
CALL DE(F2,T,U2,X)

C----OO 3 I=1,,N
00 3 1-1,3

3 FUCI,J)=(F2(I)-FI(i))/(O.002*U(J))
Ul (J)=U(J)

4 U2(J)=U(J)
C ----- O6 Jz,N

D0 6 J1l,3
Xl (J)=0*g99*X(J)
X2(J)1 .OO1*X(J)
CALL DE(F1 ,T,U,X1)

------------CALL DE(F2,T,U,X2)

00 5 I1l,3
5 FX(I,J)=(F2(l)-FI(i))/(O.OO2*X(J))

Xl CJ)=X(J)
6 X2(J)=X(J)

RETURN
END
SUBROUTINE G(A,Y)

C--SUBROUTINE G COMPUTES THE LEFT-HAND SIDES OF THE STATE ,COSTATE,
C ----- OPTIMALITY, AND TRANSVERSAL ITY EQUATIONS. A USER-SUPPLIED
C--SUBROUTINE DE, WHICH EVALUATES THE RIGHT-HAND SIDES OF THE STATE
C----'-DIFFERENTIAL EQUATIONS, IS REQUIRED. SUBROUTINE G ALSO USES ANOTHER
C--SUBROUTINE, D, TO CALCULATE THE DERIVATIVES IN THESE EQUATIONS.

IMPLICIT REAL*8 (A-H,O-Z)
* COMMON TO,XO,XF

C-K1+L*(M+N)+(L-2)*N
C--DIMENSION A(K),F(N),FU(N,M),FXCN,N),GP(NL),GU(M,L),GX(N,L-2),P(N.L).
C ---- IPJ(N),U(M,L),UJ(M),X(N,L),XO(N),XF(N),XJ(N),Y(K)

DIMENSION A(115),F(3),FU(3,2),FX(3,3),
IGP(3,15) ,GU(2,15),GX(3.13) ,PC3,15) ,PJ(3),U(2,15),UJC2),X(3,15),

* 2X0(3) ,XF(3) ,XJ(3) ,YC 115)

C--DO 1 J1I,L
DO 1 J=1,15

~ C----DO 1 11l,N
00 1 1*1,3

C--P(I,J)=AC14N*(J-1)+1)
I PCI,J)-A(143*(J-1)+1)
C - 00 O2 J1l,L

00 2 J1I,15
C C- 00- O2 11I,t

DO 2 1=1,2
I' C-----U( I,J)-A( I+M*(J-1 )+L*NI)

2 U(I,J)EA(1+2*(J-1)+46)
C--DO 3 Is1,N

*D 03 1=1,3
XC 1,1),NXO( I)
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C----X I ,L) XF( I)
3 X(1,15)-XF(I)
C-- 00 4 J=2,L-1

00 4 J=2,14
C----DO 4 11l,N

D04 1=1,3
C C--X(l,J)OA(l+N*(J-2)+L*(M+N)+1)
4 X(l,J)=A(1+3*(J-2)+76)

1 C----DO 13 J=1,L
DO 13 J=1,15

C----DO 5 I-1,M
D05 1=1,2

5 UJ(I)=U(I,J)

C C----- O6 11,N

D061=1,3
6 XJ(I)-X(I,J)

TJ=TO+(J-1 )*H
CALL DE(F,TJ,UJ,XJ)
CALL D(FU,FX,TJ,UJ,XJ)

C - 00- o7 1=1,14
00 7 1=1,2
GU(l,J)0O.

C -----ODO 7 K=1,N
00 7 K=1,3

7 Glj([,J)=iGU(I,J)+P(K,J)*FU(K,I)
IF (J.EQ.1) GO TO 9

C--IF (J.EQ.L) GO TO 11
IF (J.EQ.15) GO TO 11

C ----- DO 8 11, N
00 8 1=1,3

2 ~~GX( I,J- )=(X( I,J+1 )-X( I,J- ) )/(2.*H)-F( I)
GPCI,J)=(P(I,J+1)-P(IJ-1))/C2.*H)

C - 00- O8 K-1,N
DO08 K=1,3

j8 GP(I,J)=GP(I,J)+P(K,J)*FX(K,I)
- GO TO 13

C - 00D 10 11,#N
9 00 10 1=1,3

GP( 1,1 )=(-3.*PC 1,1 )+4.*P( 1,2)-PC 1,3) )/(2.*H)

C-0 10 K=1,3
10 GP(1,1)-GP(I,1)+P(K,1)*FX(K,I)

GO TO 13
11 611.
C -----ODO 12 I.1,N

DO 12 1=1,3
GHuGH+PC I.J)*FPCI)

C--- 00 12 Kw1,N

00 12 K*1,3
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12 GP(I,J)-GP(l,J)+P(K,J)*FX(K,I)
13 CONTINUEI Y(1 )wGH

00---D 15 J1I,L
00 15 JlI,15

C---DO 14 1 I, N

00 14 1-1.3

114 Y(I+3*(J-1)+1)=GP(I,J)
C C- 00- O15 I=1,M

00 15 1=1,2
C--- YCI+M(J-1)4L*N+1)uGU(I,J)
15 Y(1+2*(J-1)+46)=GUCI,J)1 C--DO 16 Jul,1

00 16 J-113

IC----0O 1611,)+(MN ) GXC I,4)

- 16 Y(I+3*(J-1)+76)inGX(I,J)
RETURN
END
FUNCTION CD(ALPHA,XNM)
INPLICIT REAL*8 (A-H,O-Z)

RETURN
END

-- - FUNCTION CL(ALPHAXNM)
IMPLICIT REAL*8 (A-H,O-Z)I CL-0.
RETURN
END

'&okffwI



APPENDIX B

NEWTON-RAPHSON METHOD

Consider the set of nonlinear algebraic equations

F(,2.,) * 0 jal,...,n.2

Let (xx 21....x) be an approximate solution. The Taylor series ex-

pansion of Fj(xlx2,...,xn) to first order is

Fi(XIX 2e*ixn) u Fj(x 'x,...,xi) . i i i i(xF• ' o* 3F Cxl~x ,..., a l/xk
ljpx~*'*" J l2 2 -n (kx)x

j-l,2,... ,n,

If x ' ...,x*I is then defined such that

1

co@lthen x R.08% may be an improved approximation. Thus a set

of nonlinear algebraic equations has been replaced by a set of linear

equations, the solution of which should be close to the solution of the

original equations. This set of linear equations can be solved by the

Gauss elimination method, and the values obtained can be used to obtain

another approximation, and so on, until the difference between successive

approximations becomes sufficiently small, or until it becomes clear

Sthat convergence will not occur. In the latter case. one starts over

with a new initial estimate.

3o
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This procedure is called the Newton-Raphson method.

The nxn matrix having 3F j/3xk in the jth row and the kth .column is

called the Jacobian. It is often necessary to calculate the Jacobian

numerically by using central-difference formulas.

In the case of a single equation,

x 4 Xi~ F (x i)/(dp~x i)/dx).
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