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ABSTRACT
O
Paxt-I. The traditional assumptions of infinitesimal smoothness, implic-

itly made in various applied topics, do not agree with what is observed at micro-

scopic and smaller dimensions. Mathematical models closer to what actually

occurs, are made possible by the theory of generalised curves, and by the match-

ing up and resonance of the infinitesimal patterns they generate. Phenomena

hitherto not fully accounfed for, may be partly due to such generalised patterns

in stress lines of bridges, streamlines of shock waves, and rays of light.
. Paxt;iI. In relativistic quantum physics, generalised curves appear on
account of the indefiniteness of the metric, and the infinitesimal zigzagging
corresponds to successive emission and absorption of radiation. The Nowosad
theory, a preview of which is given here, accounts in this way for the elementary
particles in a logical manner, and provides at the same time de Broglie's Pilot
wave and the quantum potentials of Bohm and Vigier. Moreover such things as the
Pauli exclusion become theorems. The theory makes use of singular integrals and

of reduced quaternion-valued analytic functions.
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SIGNIFICANCE AND EXPLANATION

Generalised infinitesimal patterns in stress lines and streamlines,
and in light rays, are suggested as possible contributory causes affecting
the durability of bridges and aircraft and the refraction of light. This
last phenomenon is the basis of a theory of elementary particles in physics,

due to Nowosad.
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NEW APPLICATIONS OF GENERALISED CURVES, PARTICULARLY IN PHYSICS

L. C. Young

(This is the substance of invited addresses to the Canadian Mathe-
matical Society at Trent University, to Mcliaster University, to
the ticLeod Applied Sewinar at Cxford University, and to the Joffe
Colloquium at Imperizl College. The present version is dedicatec
to my sister Dr Cecily Tarner on her CO-ih birthday, 6 Feb, 12£0).

Part I : Generalities, irntuitive anmplications, exact definitions.

1. Introduction, “he calculus of variations has long been a rost

applicable tranch of mathematics, and the origin of conceptual advances
in convexity, duality, functional analysis, advances that transformed a
whole range of subjects. The present applications are conceptual: they
link the variational 'fine structure!' to the fine structure that science
is discovering in the world. What was yesterday abstract acquires a
significance more real and more fundamental than our tables and chairs,
and the ground beneath our feet. For this, we rmust overcome subjective
judgements tied to the particular evolution of our species and of our
minds. To make pocsible the life from which we spring, we had to find,
in the physical. world, an average stability, to which our size, our
life~span and our senses could adapt, ignoring the chaotic turmoil of
underlying micro-phenomena, just as in learning to drive we ignore what
/ goes on under the hood., “hat we subjectively still call real, many ol
us, may be little more than a set of tuttons to be pushed, on a conve-
;j nienl biological instrument panel mainly consisting of our senses. It
is a vastly over-simplified model, an absiraction built into our nature,
our outlook, our language, our science.

T
5

Ve speak sithout reservation of 'drawving a straight line!; we torn
straight the path of a falling particle, and the bee-line, or crow's
line of flisht. For Felix Xlein, these were more properly thin strips
or tubes, and »n such lines Kjemslev wrote & 'natural geometry', Thi:
has partly been resurrected with today's "fuzzy sets', after being
discredited in Clifford's Connon sense of the exact sciences, where :t
was stipulated {with suitable conventions as to upper and lower) thal
the straight line considered to be drawn vas to be, not the thin strip
traced, but its urrver edse. Actually, thin edge, when examined closely

3 ? under a masnifying class, lcooks more like a Saw-cdcse, with very fine
sharp teeth: it is quite evident that its length is at least half as

4 Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and
P DAAG29-80-C-0041.




much again as the shortest distnrnce. If we wish to neglect the finite
L size of the teeilh, and yet to retnin a mathematical concept resembling
. what we draw, we must imagine a limiting situation, in which we have,
d not & straight line, but an infinitely fine saw-edge, or infinitesimnl
3 zigzag, that aprears to coincide with a straisht line. The concept is
not even wholly.new: books on mechanics have long spoken of a perfectly
rougn plene, as quite diffcrent from an ordinary smooth one. What this

means is that the infinitesimal structure is not flat.

In my book (3), the distinction between a straight line, and an
infinitesimal zigzag on it, may be seen in the problem of sailing

against the wind in a straisht river, with a following current which is

strongest in midstream. The optimal solution requires tacking, i.e.
suitably zigzagging, but the tacks must be infinitesipal, to remain

where the current helps most. e cannot actually sail on such an

infinitesimal 2igzag: we can only approximate to it by a finite zigzag;
but then, neither can we sail in a rigorous straight line -- that also
we would have to approximate,

2. Elastic shrinlkiace, dvnamicazl friczicn, infinitesimal nerturba-
tions. Until w2 get to the exact definitions, we shall use the intui-
tive language of engineers and physicists, so that infinitesimal will

mean, more or less, too small to be seen, even if the object to which

i this is applied is millions of times larger than our atoms and molecules.
If we try to be more exact in this sort of context, wr have to

bring in micro-phenomerna that alter the whole picturc.

This beinj so, a number of familiar objects and phenomena can now
illustrate generalised curves. Cne of the simplest is a thread of an
elastic band. Stretched, it can be straigit, or it can curve round come
object; then, as we reduce the tension, it wrinkles up on an apparently

~shorter path, and the wrinkles turn it into an infinitesimal zigzag of

the original length. Non-elastic materials may wrinkle up too, but do :
not necessarily smooth out when subsequen:ly stretched. This is how, on . '
a frozen lake, daily temperature changes, and the resulting expansitns

and contractioas, turn a srmooth sheet of ice into a triangulated surface.

Another familiar illustration of a g2neralised curve arises frem
dynamical friction. (This Las been remark:d by Nowosad.) When a tazi is
stopped by traffic lights, half way up a nill, the driver uses, not his
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branes, but his clutch. With the clutch engnged, the engine velocity is
4 transmitted to the taxi's forward motion; with it disengaged, the taxi
slips bacli, accelerated by gravity. Classically, acceleralion cannot bal-
ance velocity, but the driver achieves the impossible: the veihicle remains
apparently stationary. The clutch is neither engaged, nor divengaged, but
wobbles from one position to the other, like a country blessed with two
political partics. The taxi keeps moving infinitesimally forward and
) infinitesimslly back: the disylacement, as function of the time, zignags
infinitesimalily on the horizontal. The sare dynamical frictien can, and
must, be used in contexts where there are no reliable brakes, as in that

of politics, or in other activities foverned by exronential srowth: an

exponential starts with miserable slowness, bLut suddenly shoots up; and
a second exponential is either too late, or so fast increasing that it
poses even greater threats. Dynamical friction can also be used where
there is no proper steering, as in space science. (In this subject there
are also no brakes, but that is less important.) To stay in orbit, a
satellite nust balance perturbing gravitationzl accelerations by tursts
of engine power, and therefore by velocity changes, since -- strictly --
the velocity changes when a rocket ejects even one high speed particle.,
The actual trajectory is thus an infinitesinmal zigzag on the desired
orbit. This applies equally if the ordit is unstable, for instance for
a periodic ortit that is desired to tzké.turns at being close to the

Farth and the }con. e can speak of the motion as subject to infinitesi-

.

z mal bz'anced perturbatiors.

liore generally, we can argue that almost any motion caused by man

is subject to such perturbations, and so follows a ( *neralised, rathe:
than an ordinary, trajectory. This is because it proceeds by infiriteci~-
mal spurts: for instance the propulsion preduced by revolving engines is
uneven during the swmall time of a revolution. Normally, the spurts never
propell quite in the right direction, and they need correcting by steering,
so that the resulting motion is infinitesirally perturbed in the balarced

manner described above, Natural motion can, of course, sometines also

proceed in this wey: the sun's motion is disturbed back and forth by the
rocket action of sunspots; and terrestrial objects may have their motion

:
-‘a
%
§ . similarly affected by, say, even slight waves of sound.

It almost coes without saying, that an entirely similar phenomenon
must affect the rays of light of geometrical optics, and turn them into

infinitesimal cigzags, by what Newton called 'fits of easy reflection and
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refraction'. This is then a proper bridge tetween seometrical and wave
theories of light. Consider, for instance, a ray vassing throuch ontical
material and emercing on the other side. The refraction law of Harriot,
Snell or Descartes -« vhichever you may rrefer to call it -- fails to
explain how light, after slowing down in the matcrial, suddenly ranaces

b to emerge at its original speed. lotorists, after passing threuch a
village, press the accelerator: where is the accelerator for lizht? Yave
we been deceived? iow can we be s0 sure that light is ever slowved down
at all? The slower time through the material can result from a propor%icn-
ately longer path, that only loolks straisht, but is really an infinite-
simal zigzag, to avoid infinitesimal hurdles set up by matter on the way.
If physicists had thought c¢f this possibility, rarticularly de Rrozlie,
and later Bohm and Vigier, who came close, they might have anticipated
the Nowosad theory that I speak of in Part II. '

3. Matchine families, and the resonance of stress and strain curves.

Generalised curves need completing by a further concept when we conme o
consider fanilies of curves; and this leade directly to a wave theory.

In a family of zigzagging curves, the ups and downs can either get ir
each other's way, or they can be more or less synchronised. In the la=ter
case we speak of a matched family., This was doubtless at the back of !ew-
ton's mind in the quotation above: we have 'fits' of ups, and fits of
downs. This takes me to what has been of late a most disturbinsc topic:
the premature cullapse of bridsmes and the breaking up of aircreft. I am
concer.aed with mathematical aépects. hitherto not properly taken into
account, and that need completing by an exact mathematical theory. These
are things that affect all forms of matter, because the streamline in

fluids, and the lines of stress and strain in solids, can be generalired
curves that tend to match. In fluids, this is on account of the fluid
pressure; in soiids it can arise from a lack of uniformity in the grain
of wood, the coarse granular nature of stone, the crystalline pattern:
of glass and metals, all of which can be considered as recularly or as
randomly rlaced obstacles to lines of stress and strain,

I shall beyiin with the case of a bridge, and for simplicity I shell
treat the latter as if it were in a (vertical) plane, and made up of
long filaments =tuck together, along which the main stresses and strains
are transmitted., To avoid %he infinitesimal obLstacles I mentioned above,
these filaments rust be generalised curves, and moreover their infinite-

>, simal zigzag pattern will becowe more or less pronounced as the material
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contracts or expands, but since they are not elastic, they tend to Ereek,
and to form a gap or an overlap. I pass over factors taken into account

in past theory, that accelerate the weakening of the tridge. Cne iupor-
tant factor, so far iznored, is the matching tendency in the infinitesi-

mal patterns of neishbouring layers. This is induced, and accelerated, by
relative lateral sliding of successive filaments, due to traffic vidbration,
temperature differcnce, and so on, and it naturally means that cracks tend
to match also. Then resonance buids up, until the whole btridge vibrates
with the traffic, in larger and larsger ups aad downs, such as have been

photographed just prior to collapse.

L, The ceneralised streanlines of shock waves. In aircraft, similar

causes affect metal fatigue, but past theory has also underestimated the
shock waves. If atmospheric streamlines are generalised, the local atro-
spheric velocity can easily be at least doubled, and this increases even
pore the pressure, which by Bernoulli's equation varies with the square of
the velocity. Experimental evidence indicates, according for instance to
Nickel (9), that near the aircraft there are great velocity differences,
compared to the basic average streaming. This magnification of local
velocities suggest ‘ntense infinitesimal zigzagging, but how cculd the latter
be caused? The guestion takes us back to the zigzagging that I associated
earlier with man-induced motion of an object such as an aircraft, and
also to the saw-edged nature of the apparentiy smooth metal. ‘e could
hardly expect these infinitesimal patterns not to affect simi’arly those
of nearby streamlines. But in fact the effect is greatly intensified. Tie
velocities concerned, and still more the pressures, are in any case high,
so that the air is compressed near the aircraft, and behaves a little rniore
like a liquid or &« solid. Through such a med;uﬁ, we can imagine our finely
saw-edged aircraft sawins its way at high spered, much as a mechanical sav
slices through wood. From the compressed atmospheric layer, it ejects a
spray of hich speed atmospheric sawdust that shoots its way through neizh-
bouring lavers. T:ie effect is mathematically like dynamical friction.

Intense zigzigcing takes place in the infinitesimal elements of the
otherwise unexceptionadble streamlines that ccme near the aircraft, as the
streanline particles are pushed off their course by the 'sawdust', and
pushed dack with equal violence by atmospheric pressure. To deal properly
with all this wild buffeting by shock waves tnd turbulcnce, ve need a
modern fluid mechanics, with generalised curves as streamlines, and with
gencraliced flows, as in my book (3) and in recent representation theorens
of Lewis and Vinter (%).




5. The functicn-sracs dafinitions in trrms of duality and vrobrebilitv.

I have not so far distin-uished clearly between infinitesinal zigzass and
rather fine ziguags, just as I have mainly igsnored the fine structure tlat
our world really possesses the quantitised relativistic whirl of micro-
particles, and the (already simplified and idealised) statistical wander-
ings of Brownian molecules. ‘e must be riore precise, before we start to
apply mathematical concepts in a context where our senses and our intui-

tion no longer guide us.

I shall not in fact need the mathematical description of a matched
family of generalised curves C, » which depend on a parameter a. But
since I have used the intuitive concent above,I will g0 so far as to
suggest a definition in terrs of the concept of generalised curve itself.
If the apparent path of C_ is given by a vector-valued function x(%t,a},
we simply rewrite the latter X(t) , where X denotes a variable continu-
ous function of @ , and we consider a generalised curve in the space of
the variable X, such that its apparent path is given by X(t) . If we
then re-express this in terms of the original space, we shall have whet
I suggest calling a matched family. Thus the concept reduces to that ¢f
a generalised curve, and I ray now limit myself to the latter.

In my book (3), there are two definitions of generalised curves:
one involves dualiiy, and corresponds, in the history of functioral ana-
lysis, to Hadamerd's representation of a linear functional on the space
of continuous functions, as the limit of a certain iype of expression;
the other, whick similarly corresponds to the Riesz representation of the
functional cons.dered by ladamard, is in terms of probability measures
in the space of directions. First it is necessary to identify by defiri-
tion an ordinary curve with the corresponding curvilinear intecgral, i.e.
with a linear functional of a special form on the space of integrands.
For the purpose of cur applications in Fart II, the ordinary curve in
question will be suprosed, in the parametric case, rectifiable and given
in terms of the arc length by a Lipschitzian function. Ir the non-
parametric case, the ordinary curve will be supposed Lipschitzian, with
e derivative whuse absolute value does not exceed the velocity of lirht,
Further, all curves concerned are to be situated in a compact set A in

the space of x, and we denote by B a suitable ball in a einilar space

of the variatle X, or e¢lss (in the parazmctric case) the unit sphiere,
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e denote by F the space of continucus functions f{x,%X) on AxD ,
Instend of defining our ordinary curve by the function x(t) , we iden=-

tify it with the linear functional
L(s) = [ f(x(t),ax(t)/dt)dt fe F ,

i.e, vith a linear functional L rossessing at least one such revresen-
tation in terrs of a corresponding Lipschitzian x{t) . Thus our ordinary
paranetric or non-parametric curve becomes an element L of the dual of
the space F, We ternm generalised curve a weakx * limit of such elenents,
i.e. an expression

lim“Ln(f) ’
where the Ln are linear functionals of the kind just defined above in
terns of corresponding Lipschitzian functions xn(t). and where the linit
exists for each feF . This is the definition in terms of duality. The
alternative (Riesz type) definition involves a unit measure u on B,
which is associated with a Lipschitzian x(t) and which depends itself
on t. Ye term  a tangential probability autt, attached to x(t} . For
fixed t, we tern mean value of f at the time t, or at the point of
parameter t , the integral in u of the function of X% given by f(x(t),>);
we shall denote this mean value, or expectation, by Kt(f) , and we extend
the notation tenmrorarily to the case where f is vector-valued. The
tangential probability will be required to satisfy the condition that
Mt(f) reduces to dx(t)/dt almost everywhere when we choosc for f the
identity function f(x,%) = f(%X) = X . This being so, vwe term, in our
second definitior, generalised curve a linear functional L(f) , if and
only if there exist such a tangential probahility and an associated Lip-
schitzian x(t) , such that

L(f) = }'Ht(f) dt for feF .

Ye note that in the parametric case t reprcsents a generalised arc leugth,
; which in general increases faster than the arc length of the curve defined
N by x(t) ; and that, in the non-parameiric cese, we can identify one of
the compon:nts of x with the variable t, if we wish the underlying s»ace
to have this additional dimension,

A local tangential probability, to replace a tangent or derivative,
is the first sirn of a relationship with the fine structure of modern
phyrirs, This substitution is izmaterinl for integrands f(x,%) 1linear

in x. inus gencrulised curves are a non-linear theory, whereas Schwartz




distributions are a linear theory. Similarly rrohability does not enter
into the linear surmation processes of Cesaro, Abel and so on, in the
theory of divergent series and sequonces. Thus we find no probability in
books on divergent series. Yet the series 1-1+1-«1+,.. , or cquiva-
lently the sequence 1,0,1,0,... , corresponds to a sequence of alter-
nate castings of 'heads' and 'tails' for a coin: the Cesaro sum - could
only represent a fictitious mean position, with the coin on its rim., A
more natural description of a liniting state of affairs is obtaincd by
assigning equal prodabilities to the values 0 and 1. In such matters,
the use of probability comes from number theory, a subject renuted to con-
tridbute less than its share to human progress, and I think wrongly so
reputed. Probadbility appears, for instance, in the classical Xronecker-'eyl
theorem, a2nd to disregard it in plausible arguments can have unfortunate
results, as in the main lemma of (5).

Duality also is connected with modern physics, but in its basic phi-
losophy. Physical quantities are known to us only by experiments whose out-
come is expressed by the values of intesrals, i.e. by elements of a dual
space. In mathematics, things are much the same: mathematical entities are
important by their use, and this agsin is i1 evaluating certain intezrals,
such as the curvilinear integral, considered above. In either case, what
really matters is some element of a dual space. Geometers had duality long
ago, but, as stressed by Dieudonnd (6), they spoilt it by insisting that
the dual space be identified with the original one. It was on.y when this
identification was given up, that it became possible to use duality to
define new elemeats, such as generalised curves or Schwartz distributions,
which are needed in existence theorems. Modern duality thus begins with
Minkowski, with 3anach, and with Dieudoriné and Schwartz (7).

In the calculus of variations, as I show in my book (3), generalised
curves provide almost automatic existence theorems. However, in the apoli-
cations to paysiss, it is important to note that generalised curves are
needed also as tis solutions of a large class of problems, typical examples
of which are given in (3). These are the problems in which the integrand
£(x,%) fails to be convex in % . This is precisely what happens to the
problen of geodesics in relativistic space-iime, and this accounts for the
need of generalis:d curves in physics, as we shall shortly see,




. Part II : Elementary particle physics, the Nowosad theory.

6. Preliminary remarks. This is a preview of what I can only call a

E breakthrough in nmicro-physics, and except for my having introduced long
; ago the notion of genaeralised curve, my part in it is expoeitory. I hore
: the present brief account will make it easier for Dr Nowosad to publish
soon the complete details of his researches to date, rather than wait
until every single one of the known elementary particles has been fitted
into his scheme. ‘e have given joint public lectures in this manner, I
giving the first lecture, and he the second. I have also, of course, had
the advantage of long oral discussions with him, and of seeing written

1 notes and summaries that he used in his lectures, the latest being a

: lecture to the international physics institute at Trieste in Sept. 1579,

the summary of which is reproduced at the end of the present paper.

The path followed by Nowosad is extremely logical: there are no
mysterious 'q-nuzbers', no a priori indeterminacy rules nor exclusion
principles; any such matters are now theorems. Everything must follow
from the local relativistic metric, an indefinite quadratic differential
form (Lagrangiar). lie are actually concerned only with what havppens in
a minute portion of space-time, and the local metric represents in a
sense the total effect on this portion, exerted by the outside world. e
can therefore ignore the outside, and expand our minute portion to a
whole 4-dimensional relativistic manifold with a local metric. Cn this
manifold, our ficrst task is to se -k for primitive, or intrinsic, objecis.
The latter include, of course, the geodesics determined by the metric,
and among them there will Le generalised curves. These will be the pat's
of the particles of light, the rhotons. These are then the prinitive
particles, from shich all others must be derived. Indeed, in the Nowos.ad
mathenatical model which simulates what goes on in our tiny portion of
space time, mattor, or the illusion of matter, is derived by infinitesi-
mal zigzagging of photons. In this way nothing extraneous has been int:o-
duced, since the zigzags result directly from the indefinite metric. The
key to the Nowosad theory is thus the concept of generalised curve.

It is hard %o believe: in our tiny portion of space-time, matter
behaves like flickering light. Yet, if we are to achieve unity at all,
out of the host of long or shert lived elementary particles that our

} remarkable experiments have uncovcred, this is the one solution that

.




stares us in the face. It will ceem even more logical as we zZet to the
details, and we shall see that so far it agrees very well vith experiment,
Of course we must remember that it applies to a limited context, a tiny
portion of space~time; moreover, physics has seen a number of nice theo-
ries, each in turn leading to rerarkable experiments that put it out of
date. The Jjuantum Mechanics of the Dirac era was in its way quite beauti-
ful, prior to the discovery of a host of sicro=-particles. I would be
sorry to see the present limited theory made the excuse of some grandicaze
program, some new gospel, in vhich philosophers, theologians and pooular
scientists would vie wiih one another in their biblical pronouncefients
“In the beginning there was light", "As it was in the beginning, e..."
-= and then to see it all upset by yet more beautiful experiments and by
a8 more perfect theory, as physics progresses along its own ziczag path,
Nevertheless, I cannot pass by this opportunity to quote the pioneer of
the present theory, de Bro-lie (8);
Light has just revealed itself as capable of condensing into matter,
whilst matier is capable of dissipating into light. Giving free
scope to onr imagination, we could sunpose that at the beginning of
time, on the morrow of some divine 'Fiat Lux', lizht, at first aloze
in the universe, has little by little produced by progressive con-
densation cthe material universe such as, thanks to light itself, we
can contemplate it today. And perhaps one day, vhen time will have
ended, the universe, recovering its original purity, will again
dissolve into light.
7. Connection with the Dirac and wave theory. Partiéles will here
be asrociated with waves, and.we must begin by studying the latter. The
primitive object that corresponds to our metric, is then the dual, or
Hamiltonian, quadratic form q°*(y) , whose coefficients, like those o
the original (L:grangian) quadratic, depenc in general on the point «x
here x varies, as explained, on a relativistic Y-dimensional manifold.
From either foru, we derive a corresponding volume magnification, whieh
is then a scalar, and I shall assume that the latter is properly taken
into account in all forrulae. As further brimitive objects, we associnte
with a twice differentiable function v(x) v the squared norm of its
gradient, and tre Laplacian. To define these, we set q.y = 3q*/ dy
and take for y the gradient vv = Ve = 3v/3x , and we write

2 -
IVVI b q.(y) ] Av = Y 1(3,’3x.Yq.y) ’

where v is the approprinte scalar.
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With the help of lhuse quantities, we obtaia as dual primitive

objects the extremnal functions feor tie Dirichlet or enersy integral
[ lvv)?

which is here a wave equation, whose additive system of solutions can

, and therefore the solutions of Larlace's cquation 4 v =20,

termed liarmonic or wave functions, To derive 'states' in physics, we
. s . cas iv
rust pass to a multinlicative system, by writing Y = e » where the

'phase! v is harronic. Ye then have the fundamental identity
ol ae = -lvv]?,

which follows from the generzl identity

2

Af(w) = f'Ay 4+ £V

for a twice differentiable function f of a twice differentizble function
W o The fundamental identity mneans that, for the state ¥ whose phase is
the harmonic, or critical, object v, the Dirichlet or energy intecral

becones the sirgular integral
- j‘ﬂ-lA\D >

s : . -1 . . s
involving the laplacian. Instead of ¥ s vie wvould write here, in the

guantum Mechani.cs of the Dirac era, the complex conjugate of v .

8. The curntun jnmns. In the singulaer integral of the preceding

section, mathenaticians will see rather an analogy with the comnlex con=-
tour integral ff-1df y whose value is an integer multiple of 2ix : if
we vary the corntour or the analytic function f , the integra2l can alter
only by multiples of what we may call a 'quantum jump' 2i7 . Nowosai's
doctor thesis shows that our singular integral behaves similarly. lore
generally, if £ is a linear functional ard A a linear operation, he
found quantiua ;umps for the functicnal (v '1A ¢) in corresponding
copmutative B* algebras. Cuantum jumps thus arise automatically, because
of the logaritl.mic singularity introduced by the multiplicative nature
of the superposition of states in physics.

Nowosad gi.ves a simple example to illustrate how this comes about.
A 1is the Laplacian, and the underlying funetign-alsebra is that of
continuous alrost periodic functions in space-time; the functional £(f)
denotes the linit of the mean value of f in a ball whose radius tenis
to infinity. In the basic exponcentials eikx » which generate the algebra,
kx denotes an crdinary luclidean scalar product of vectors, while for

-11-
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coefficients lc.l% s etc, the expressions I ' (kko) etc, indicate

squarcd nornms and -scalar products in the dual metric of that of special
ikx

relativity. The state e is a so~called 'plane wave', and is termed
'isotronic' if Iklz = 0 ; it satisfies in any case the relation Ay =

1] - d
= =|%|“v , s0 that (v Ta ) = «|%|T . Evidently, if ¢ is isotrevic,

the phase kx must reduce to a scalar rultiple of £ -ct , vhere ¢ is
the velocity of light, and wvhere & ,t are orthoconal projections of =
in 3-space and on the time axis, so that we may regard ¢ as a plane wave
travelling with the velocity of light along a direction in 3-svace. Con-
sider now two plane waves SR U vhere 0, = ¥O and v is
isotropic: the corresconding coefficients are related by ):1 =X+ ko s and
we shall suppose k, l:o not orthogonal in the rmetric, to ensure that the
difference Ik.‘l2 - Iko |2 = 2(kk°) = 2(k.k1) does not vanish. If we se%
vy = LY, (1-t)¢o and ¢ = t/(1-t) , we find that, on the vortion

0 e6< 1, ie. 0Lt <3, of the ¢-space sesment ioining v Pa s

kg 1Pe =e iy 1% v, lxgl® - el 1%
vt'1A¢

t
Y + eV, . _ 1 + €v o

O N N L Y o O I A

The series converges uniformly: we multiply throush and integrate term by
term in the bali of radius r, and we then make r tend to infinity. The
mean values still converge uniformly, and since 2 (¢ n) = 0 for n=1,2,e0ey4

we see that 2{v t-1 A wt)- is ‘he constant -|'::°| 2 for 0<t< 1 . 8ig-

-

flarly it is the different constant =|k,|° for # <t <1 .4t t=3
we get a 'quentum jump', and not without r~ason: the denominator becores
1+ v , which vanishes when kx/r is an odd integer, i.e. on a family: of

parallel planes of 3-space which move with the velocity of light.

9. The photon and its vilot wave. In the preceding example, the nuan=
tum juamp in the energy integral can be regarded as radiation from planes.
To obtain a photon, we would have to have radiation from a point, moving
with the velocity of light, i.e. from a 1-iinmensional set in space-tiue.
In place of 1+ ¢y , we would need a function which vanishes on such a

1~dinensional s»t. Ve must peneralise the apparatus, and use a more general
form of Nowesad's quantum jumps. Instead of an isotopic plane wav:,

we can introduce a so-called monochromatic wave ¢ = ei' s in which the
phase v ic subject to Av = |[Yv|® = O . Alternatively, we can take

a conplex~valued phase u+ iv , in which case the samc conditions become,

«12-
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for the real and irarinary parts, O=zluszAv =(Vu.% = [V u{g-[wla . 3y
the general identity of section 7, these conditions mean that an arbitrary
twice differentiable f(v) in the real case, or analytic f(u+iv) in the
complex case, satisfies, as composite function, Laplace's equation. In both
. cases, however, the zeros of such a function do not occupy one-dimensional
sets. Can we increase the nurber of components of f by a generalisation
of analytic function, such as is provided, say, by minipal surfaces® 3ince
we require a function-algebra, there is little choice: we have to pc over
to quaternions, which are not commutative. Fortunately we can obtain the
desirable commutativity with 'reduced quaternions' u+iv+jw , whose fourth
conponent vanishes. Since the square of iv+jw is -v%-wa y it follows suc-
cessively that the square and n-th power of a reduced quaternion, and gener-
ally the sum of ary convergent series of its povers with real coefficieants,
are likewise reduced quaternions. Such series are the quaternion-valued
analytic functions of Fueter (1921): nobody imagined that they might some

day acquire practical significance. A Fueter function f is derived by

I TP T |
- tE=(rimg*im)e

from the real part P(u,v,w) of an ordinary analytic function F(u+ir)
, with real coefficients, wvhere r2= v2+ -.-:2

» I shall depart slightly from thke Nowosad definitioms, by nov substi-
f; tuting for u,v,w functions subject to 0= A{ﬁ+iv+jw)=(vu,vv) = (Vu,%) ,
|v ul2 =|v~:|2+|v~.~1|2 y and to the ratio w/v=190 satisfying |Ve|2=o . This

ensures that every such P then satisfies Laplace's equation. These matters,
and the precise place at which exvoneatials ecre introduced to provide the
quantum jumps, as explained earlier in this rote, will doubtless be cleared
up when Nowosad's work aprears -- here I merely give a preview. In this vay
we obtain what may be termed a monochromatic reduceéd-guaternion valued func-
tion algebra, gencrated by the functions u,v,v . What is important is that,
for an f in this Fueter algebra, the zeros cre obtained, either from 3,
or from 2 equations: the two possibilities arise because the 'imaginary

) part' of £ is th: product of iv+ jw by a real factor r"1Pr « However

H only the first possibility provides zeros on loci of the right dimension,

é ' on which ocur gquantum jump, our photon, then roves with the velocity of light.
Elaborate though this all may seem, it does then provide, for the photon,
the simplest of all particles, a mathematical model associating it with a
reduced quaternion-valued { , as its 'pilot wave'.

-13-




B¢ ol a7 o b il i i

10. The micca~rcing mechanism of naterial narticles. Only the simplest
£ P

generalised curves, other than ordinary curves, appear in the lowosad
theory, the ones in which, at cach point, there are no more than two
associated directions. This is because, for a particle other than a rhoton,
there is both cmission and absorption of radiation, and in general the
outgoing and inconming direction of light quanta will be different. To
each of the two directions, vie associate a corresponding model of a pho-
ton, i.e. a reduced quaternion-valued alzebra of monochroratic waves.
To have a generalised curve, we rmust associate further, with the two
directions, their respective probabilities PyiPs o Bvidently, if V1,V2
are velocity vectors for light in the two directions, the mean velocity

Vo= ¥y ¢ PV,
will be that of the particle on its apparent path. Similarly, if f1.f2
are the functions in our two algebras whose singularities are associated
with the local enission and absorption, the mean

T o= pfy ¢ 00,
will be a fully quaternion-valued function, also associated with the
apparent path. In this way, not only is the particle slowed down apparently
to the mean velocity vector, but there is an apparently associated, fully
quaternion-valued f , for which we find by combination a complicated
wave equation with a right-hand side: this right-hand aide turans out to
be a ¢ rtain multiple of £Q , vhere § is a votential occurring in the
work of Bohm and Vigier. Fully quaternion-valued and even complex guater-

pion-valued states are not uncommon in the iiterature. (See, for instance,
Edmonds 10,)

11, Summary of further results. We see that we have come close tc

things that have been tried: the main differences are conceptual. But
this is precisely what makes it possible to jut the theory to practical
use and practical. test, by solving a number




o. theoretical and quantitative problems in our mathematical model of

micro-physics. For instance, Dr Nowosad has confirmed orally that in
his theory the Pauli exclusion principle and the existence of the most
ellusive quark are now among the theorems; moreover some quantitative
results are mentioned in the abstract, reproduced below, of his Trieste
Septenber 1679 lecture. It is almost inconceivable that this agreement
with experiment and with accepted principles could be merely by chance.
Neither is there room in Nowosad's logically constructed set up for

any tinkering: Quantum theory is reduced to a study of specific inte-~
grals and of their discontinuities, the fofm of the integrals bveing in
the main dictated by that of the relativistic line element, which in
its turn incorporates the effect of electro-magnetic theory and so forth
on the minute corner of space~time, an effect produced by the outside

world or by our own experimental laboratory.

12. The official abstract of Dr Nowosad's Trieste lecture '"Quanta

and geometry -- a constructive avnroach.'’ A light quantum is defined

in a VQ by m:ans of a real commutative algebra with values on the reduced
quateraniouns, having three real generators, all its elements beings
monochromati: waves. This is done in order that solutions of the wave
equation with a singularity on a single characteristic curve may be
constructed. i« particle is characterised by two such algebras, one
representing emission (outgoing) and the other absorption (incoming)
of 1light quanta. Hassive quan®a, moving nn time-like trajectories, are
represented through the concept of generalised curve, constructed out
of two familizs of light rays, one for each algebra. The generators of
the above al3j2bras satisfy a given set of partial differential equatidns.
and it is showmn that the metric must then have the form
2

5) .
It is shown that the elements in this algebra generated by the given
six gencrators (of which only four are functionally independent) a-e
analytic functions of x2~+ix3 v hence the wave equation for them -educes
to the gtring equation. This gives the correct quantization of the
internal states of the particle. By requiring that the momentum-energy
tensor be that of the electro-magnetic field, that the background manifold
be Ru and that the singularities in the space sections be bounded, an
explicit expression is obtained for dsz s involving three arbitrary
constants, and allowing for both stable and unstabdle particles,

ds® = a(x;.xu)(dx12-dx42) + b(xs,xh)(dxaa;rdx

=15~




Using the values of the electric charge and mass of the proton and
the mass of its quantum (pion), one obtains, disregarding integrations
inside the singularity, the values

10-1& ¢m (radius),

Yo 23 2 '
107 ¢m ~ (cosmological constant),

A
K

ny N M

10-6 (coupling factor between the gravitational
and the electromagnetic fields).

The area of the Euclidean unit sphere is twice as small in the given

metric; this accounts for the gyromagnetic factor.

Finally the need for generalised curves brings in and clarifies the
issue of indeterminism and hidden variables. It is shown that also the
pseudo-Rierannian metric must be taken in the generalised sense, in order

to accoriodate more than one particle in the given manifold.
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