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ABSTRACT

Part I. The traditional assumptions of infinitesimal smoothness, implic-

itly made in various applied topics, do not agree with what is observed at micro-

scopic and smaller dimensions. Mathematical models closer to what actually

occurs, are made possible by the theory of generalised curves, and by the match-

ing up and resonance of the infinitesimal patterns they generate. Phenomena

hitherto not fully accounted for, may be partly due to such generalised patterns

in stress lines of bridges, streamlines of shock waves, and rays of light.

Part II. In relativistic quantum physics, generalised curves appear on

account of the indefiniteness of the metric, and the infinitesimal zigzagging

corresponds to successive emission and absorption of radiation. The Nowosad

theory, a preview of which is given here, accounts in this way for the elementary

particles in a logical manner, and provides at the same tie de Broglie's Pilot

Wave and the quantum potentials of Bohm and Vigier. Moreover such things as the

Pauli exclusion become theorems. The theory makes use of singular integrals and

of reduced quaternion-valued analytic functions.
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SIGNIFICANCE AND EXPLANATION

Generalised infinitesimal patterns in stress lines and streamlines,

and in light rays, are suggested as possible contributory causes affecting

the durability of bridges and aircraft and the refraction of light. This

last phenomenon is the basis of a theory of elementary particles in physics,

due to Nowosad.
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NEW APPLICATIONS OF GENERALISED CURVES, PARTICULARLY IN PHYSICS

L. C. Young

(This is the substance of invited addresses to the Canadian Fathe-
matical Society at Trent University, to Fc!laster University, to
the ltcLeod Applied Seminar at Oxford University, and to the loffe
Colloquium at Imperipl College. The present virsion is dedicatec
to my sister Dr C&cily Tanner on her SO-th birthday, 6 Feb. 19eO).

Part I : Generalities, intuitive applications, exact definitions.

1. Introduction. The calculus of variations has long been a most

applicable branch of nathematics, and the origin of conceptual advances

in convexity, duality, functional analysis, advances that transformed a

whole range of subjects. The present applications are conceptual: they

link the variational 'fine structure' to the fine structure that science

is discovering in the world. What was yesterday abstract acquires a

significance more real and more fundamental than our tables and chai:-s,

and the ground beneath our feet. For this, we must overcome subjectiie

judgements tied to the particular evolution of our species and of ou:

minds. To make poosible the life from which we spring, we had to find,
in the physica', world, an average stability, to which our size, our
life-span and our senses could adapt, ignoring the chaotic turmoil of

underlying micro-phenomena, just as in learning to drive we ignore what

goes on under the hood. What we subjectively still call real, many oZ

us, may be little more than a set of buttons to be pushed, on a conve-

nient biological instrument panel mainly consisting of our senses. it

is a vastly over-simplified model, an abstraction built into our nature,

our outlook, our language, our science.

We speak *ithout reservation of 'draing a straight line'; we t'.r_

straight the pith of a falling particle, and the bee-line, or crow's

line of flight. For Felix Klein, these were more properly thin strip=

or tubes, and in such lines hjemslev wrote a 'natural geometry'. Thit

has partly been resurrected with today's fuzzy sets', after being

discredited in Clifford's Common sense of the exact sciences, where ..t

was stipulated (with suitable conventions as to upper and lower) that

the straight line considered to be drawn uas to be, not the thin str.p

traced, but its upper edze. Actually, thin edge, when examined closel.y

under a ma-nifying -lass, looks more like a vpw-ed.e, with very fine

sharp teeth: it is quite evident that its length is at least half as
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much agin as the ohortest distnrnce. If we wish to neglect the finite

size of the teeth, and yet to ret-:in a riathematical concept resembllin-

what we draw, we mu.nt i,:maine a limitin.5 situation, in which we hrnve,

not a strai-ht line, but an infinitely fine snw-ed-e, or infinitesim-nl

zigzag, that nppenre to coincide with a strai/ht line. The concept is

not even wholly.new: books on riechanics have long spoken of a perfectly

rough pl-ne, as quite different from an ordinary smooth one. What this

means is that the infinitesimal structure is not flat.

In my book (3), the distinction between a straight line, and an

infinitesimal zigzag on it, nay be seen in the problem of sailing

against the wind in a straight river, with a followino current which io

strongest in midstream. The optimal solution requires tacking, i.e.

suitably zigzagging, but the tacks must be infinitesimal, to remain

where the current helps most. W.:'e cannot actually sail on such an

infinitesimal zigzag: we can only approximate to it by a finite zigzag;
but then, neither can we sail in a rigorous straimht line -- that also

we would have to approximate.

2. Elastic sh.-in!--e, dynanical friction, infinitesimnl rerturl'.-

tions. Until wa get to the exact definitions, we shall use the intui-

tive language of engineers and physicists, so that infinitesimal will

mean, more or less, too small to be seen, even if the object to whicha

this is applied is millions of times larger than our atoms and molecules.

If we try to be more exact in this sort of context, w, have to

bring in micro-phenomena that alter the whole picture.

This bein- so, a number of familiar objects and phenomena can now

illustrate generalised curves. Cne of the simplest is a thread of an

elastic band. 3tretched, it can be straight, or it can curve round Eome

object; then, as we reduce the tension, it wrinkles up on an apparently

shorter path, and the wrinkles turn it in,;o an infinitesimal zigzag- of

the original length. Pon-elastic materials may wrinkle up too, but eo
not necessarily smooth out when subsequenzly stretched. This is how, on

a frozen lake, daily temperature changes, and the resulting expansicns

and contractioas, turn a smooth sheet of ice into a triangulated surface.

Another familiar illustration of a g-neralised curve arises from

dynamical friction. (This has been remarkid by Nowosad.) When a ta::J is

stopped by traffic lights, half way up a nill, the driver uses, not his
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brAre3, but his clutch. lith the clutch engnged, the engine velocity is

transmitted to the taxi's forward motion; with it disen-aned, the taxi

slips back, accelerated by gravity. Classically, acceleration cannot bal-

ance velocity, but the driver achieves the impossible: the vehicle remains

apparently stationary. 'he clutch is neither engaged, nor dieengaged, but

wobbles from one position to the other, like a country blessed with two

political parties. The taxi keeps movin- infinitesimally forward and

infinitesimallyback: the disi-lacerient, as function of the time, zigzags

infinitesimolly on the horizontal. The sae dynaical friction can, and

must, be used in contexts where there are no reliable bralkes, as in that

of politics, or in other activities governed by exponential growth: an

exponential starts with miserable slowness, but suddenly shoots up; and

a second exponential is either too late, or so fast increasin 5 that it

poses even greater threats. Dynamical friction can also be used where

there is no proper steering, as in space science. (In this subject there

are also no brakes, but that is less important.) To stay in orbit, a

satellite must balance perturbing gravitational accelerations by bursis

of engine power, and therefore by velocity changes, since -- strictly --

the velocity changes when a rocket ejects even one high speed particlt.

The actual trajectory is thus an infinitesimal zigzag on the desired

orbit. This applies equally if the orbit is unstable, for instance for

a periodic orbit that is desired to tak-turns at being close to the

Earth and the Vcon. We can speak of the motion as subject to infinitesi-

mal ba'anced perturbationz.

More generally, we can argue that almost any motion caused by man

is subject to such perturbations, and so follows a L.neralised, rather

than an ordinary, trajectory. This is because it proceeds by infiniteEi-

mal spurts: for instance the propulsion produced by revolving engines is

uneven during the small time of a revolution. Normally, the spurts never
Spropell quite in the right direction, and they need correctin- by steering,

so that the resulting motion iu infinitesimally perturbed in the balarced

* manner described above. Natural motion can, of course, sometimes also

proceed in this way: the sun's motion is disturbed back and forth by the

rocket action of sunspots; and terrestrial objects may have their motion

similarly affected by, say, even slight waves of sound.

It almost soes without syin, that an entirely similar phenomenon

atust affect the rays of light of eeometrical optics, and turn then into

infinitesimal zigzags, by what Newton crilled 'fits of easy reflection and
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refraction'. This is then a proper bridge between geometrical and wave

theories of light. Consider,, for instance, a ray passing/ through optical

material and emerging on the other side. The refraction law of IHarriot,

Snell or Descartes -- w-hichever you may prefer to call it -- fails to

explain how light, after slowin- down in the material, suddenly r anases

to emerge at its origiinal speed. !:otorists, after passing through a
village, press the accelerator: where is the accelerator for light? nave

we been deceived? lovi can we be so sure that light is ever slowed down

at all? The slower time throuSh the material can result from a proportion-

ately longer path, that only looks straight, but is really an infinite-
simal zigzag, to avoid infinitesimal hurdles set up by matter on the way.

If physicists had thought cf this possibility, particularly de Broslie,

and later Bohm and Vigier, who came close, they mirht have anticipated
the Nowosad theory that I speak of in Part II.

3. Ratchin' families, and the resonance of stress and strain curves.

Generalised curves need completing by a further concept when we come -;o

consider familis of curves; and this leads directly to a wave theory.

In a family of zigzaSeing curves, the ups and downs can either get in

each other's way , or they can be -ore or less synchronised. In the la-ter

case we speak of a matched family. This was doubtless at the back of New-

ton's mind in the quotation above; we have 'fits' of ups, and fits of

downs. This takes me to what has been of late a most disturbing topic!

the premature collapse of britfes and the breaking up of aircraft. I an.

conceraied with mathematical aspects, hitherto not properly taken into

account, and that need completing by an exact mathematical theory. These

are things that affect all forms of matter, because the strepmlines in

fluids, and the lines of stress and strain in solids, can be generalitied

curves that tend to match. In fluids, this is on account of the fluid

pressure; in solids it can arise from a lack of uniformity in the grain

of wood, the coarse granular nature of stone, the crystalline patternf.

of &lass and metals, all of which can be considered as regularly or aE.

randomly rlaced obstacles to lines of stress and strain.

I shall begin with the case of a bridge, and for simplicity I shtll

treat the latter as if it were in a (vertical) plane, and made up of

long filaments stuck toeether, alons which the main stresses and strains

are transmitted. To avoid the infinitesimal obstacles I mentioned above,

these filaments must be Ceneralised curves, and moreover their infinite-

simal zizn-: pattern will become more or less pronounced as the material



contracts or expands, but since they are not elastic, they tend to brerk

and to form a -ap or an overlap. I pass over factors taken into account

in past theory, that accelerate the weakenin5 of the bridge. Cne i:.:Tor-

tant factor, so far ignored, is the matching tendency in the infinitesi-

mal patterns of nei-hbouring layers. This is induced, and accelerated, by

relative lateral sliding of successive filaments, due to traffic vibration,

temperature difference, and so on, and it naturally means that cracks tend

to match also. Then resonance buids up, until the whole bridge vibrates

with the traffic, in larger and larger ups and downs, such as have been

photo-.raphed just prior to collapse.

4. The reneralised streanlines of shock waves. In aircraft, similar

causes affect metal fatigue, but past theory has also underestimated the

shock waves. If atmospheric streamlines are generalised, the local atmo-

spheric velocity can easily be at least doubled, and this increases even

more the pressure, which by Bernoulli's equation varies with the square of

the velocity. Experimental evidence indicates, according for instance to

Nickel (9), that near the aircraft there are great velocity differences,

compared to the basic average streaming. This magnification of local

velocities suggest intense infinitesimal zigzaging, but how could the latter

be caused? The question takes us back to the zigzagging that I associated

earlier with man-induced motion of an object such as an aircraft, and

also to the saw-elged nature of the apparently smooth metal. '!e could

hardly expect these infinitesimal patterns not to affect siriarly those

of nearby streamlines. But in fact the effecv is -reatly intensified. The

velocities concerned, and still more the pressures, are in any case high,

so that the air iu compressed near the aircraft, and behaves a little more

like a liquid or s, solid. Through such a med'um, we can imagine our finely

saw-edGed aircraft sawing its way at high sp.oed, much as a mechanical saw

slices through wovd. From the compressed atm,,spheric layer, it ejects a

spray of high speed atmospheric sawdust that shoots its way throurh nei-h-

bourinS layers. Tze effect is mathematically like dynamical friction.

Intense zigziggingr takes place in the infinitesimal elements of the

otherwise unexceptionable streamlines that ceme near the aircraft, as the

streamline particles are pushed off their course by the 'sawdust', and

pushed back with equal violence by atmospheric pressure. To deal properly

with all this wild buffetine by shock waves nnd turbulence, we need a

modern fluid mechanics, with generalised curves as streamlines, and with

C eneralised flows, as in my book (3) and in recent representation theorems

of Lewia and Vinter (4).



5. The functiou-'rc-.- definitions in t-rrs of duality ind rrobbility.

I have not so far distin-ui.hed clea'rly between infinitesimal zigziss and

rather fine zigza-s, just as I have mainly iZgnored the fine structure txat

our world really possesses the quantitised relativistic whirl of micro-

particles , and the (already sirplified and idealised) statistical wander-

ings of Brownian molecules. ':e must be ,iore precise, before we start to

apply mathematical concepts in a context where our senses and our intui-

tion no lon-er Cuide us.

I shall not in fact need the mathematical description of a matched

family of Generalised curves C, , which depend on a parameter a. But

since I have used the intuitive concept above,I will mo so far as to

su~sest a definition in terms of the concept of generalised curve itself.

If the apparent path of Cs is given by a vector-valued function x(t,a),

we simply rewrite the latter X(t) , where X denotes a variable continu-

ous function of a , and we consider a generalised curve in the space of

the variable X , such that its apparent path is given by X(t) . If we

then re-express this in terms of the original space, we shall have whrt

I suggest calling a matched family. Thus the concept reduces to that cf

a generalised curve, and I may now limit myself to the latter.

In my book (3), there are two definitions of generalised curves:

one involves duality, and corresponds, in the history of functional ana-

lysis, to fadamard's representation of a linear functional on the space

of continuous functions, as the limit of a certain type of expression;

the other, which similarly corresponds to the Riesz representation of the

functional cons:.dered by Hadamard, is in terms of probability measuret

in the space of directions. First it is necessary to identify by defiri-

tion an ordinar. curve with the correspond.ng curvilinear integral, i.e.

with a linear functional of a special form on the space of inteSrands.

For the purpose of our applications in Part II, the ordinary curve in

question will be supposed, in the parametr..c case, rectifieble and given
in terms of the arc length by a Lipschitzinn function. Ir the non-

parametric case, the ordinary curve will be supposed LirSchitzian, with
a derivative who.se absolute value does not exceed the velocity of licl.t.

Further, all curves concerned are to be situated in a conpa't set A in

the space of x , and we denote by B a suitable ball in a cinilar space
of the variable , or elr.. (in the para~metric case) the unit s2here.
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'-,"e denote by F the space of continuous functions f(xX) on AxB

InsteAd of oefining our ordinary curve by the function x(t) , we iden-

tify it with the linear functional

L(f) = J f(x(t),dx(t)/dt) dt fe F

i.e. with a linear functional L possessing at least one such represen-

tation in terms of a corresponding Lipschitzian x(t) . Thus our ordinary

parametric or non-paranetric curve becomes an element L of the dual of

the space F. We term generalised curve a weak limit of such elements,

i.e. an expression

lia n L n(f)

where the Ln are linear functionals of the kind just defined above in

terms of corresponding Lipschitzian functions xn(t) , and where the limit

exists for each f e F . This is the definition in terms of duality. The

alternative (Riesz type) definition involves a unit measure V on B ,

which is associated with a Lipschitzian x(t) and which depends itself

on t. ';, e term p a tangential probability ;A t , attached to x(t) . For

fixed t , we term mean value of f at the t:.me t , or at the point of

parameter t , the integral in v of the fun:tion of * given by f(x(t) ,.);

we shall denote this mean value, or expectation, by i.:(f) , and we extend

the notation temrorarily to the case where f is vector-valued. The

tangential probability will be required to satisfy the condition that

Mt(f) reduces to dx(t)/dt almost everywhere when we choose for f the

identity function f(x,A) = f(k) = . This being so, we term, in our

second definitiot, generalised curve a linear functional L(f) , if an

only if there exist such a tangential probability and anm associated Lip-

schitzian x(t) , such that

L(f) = -1 t(f) dt for fe F

We note that in the parametric case t represents a generalised arc leugth,

which in general increases faster then the arc length of the curve defined

by x(t) ; and that, in the non-parametric ctse, we can identify one of

the componri.nts of x with the variable t , if we wish the underlying s)ace

to have this additional dimension.

A local taniential probability, to replace a tangent or derivative,

is the first sirn of a relationship with the fine structure of modern

phyFi.s. Ahis substitution in imeateril for interands f(x,I) linear

sAx 0 Lijus gener,%lised curves are a non-linear theory, whereas Schwartz
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distributions are a linear theory. Similnrly prohability does not enter

into the linear sum.mation processes of Cosaro, Abel and so on, in the

theory of divr7ent series and sequences. Thus we find no probability in
books on diver-ent series. Yet the series I- I + - 1 ... , or equiva-

lently the sequence I , 0 , 1 , , ... , corresponds to a sequence of alter-

nate castings of 'heads' and 'tails' for a coin: the Cesaro bum , could
only reprcsent a fictitious mean position, with the coin on its ri:. A

more natural description of a lirniting state of affairs is obtaine.d by

assigning equal probabilities to the values 0 and 1 . In such matters,
the use of probability comes from number theory, a subject reputed to con-

tribute less than its share to human progress, and I think wrongly so

reputed. Probability appears, for instance, in the classical Kronecker-'.eyl

theorem, and to disregard it in plausible arguments can have unfortunate

results, as in the main lemma of (5).

Duality also is connected with modern physics, but in its basic rhi-

losophy. Physical quantities are known to uu only by experiments whose out-

come is expressed by the values of inte-rali, i.e. by elements of a dual

space. In mathematics, thin-s are much the name: mathematical entities are
important by their use, and this again is ii evaluating certain integrals,

such as the curvilinear integral, considered above. In either case, what

really matters is some element of a dual space. Geometers had duality long

ago, but, as stressed by Dieudonnd (6), they spoilt it by insisting that

the dual space be identified with the oriCinal one. it was only when this
identification was given up, that it became possible to use duality to

define new elemeits, such as Generalised curves or Schwartz distributions,

which are needed in existence theorems. Modern duality thus begins with
Jinkowski, with .3%nach, and with Dieudonnh and Schwartz (7).

In the calculus of variations, as I show in my book (3), Ceneralised

curves provide almost automatic existence theorems. Iowever, in the appli-

cations to physi:s, it is important to note that Seneralised curves are

needed also as tie solutions of a large clans of problems, typical exanples

of which are Givin in (3). These are the problems in which the intecrand

f(xg~) fails to be convex in . This is precisely what happens to the
problem of Ceodesics in relativistic srace-time, and this accounts for the

need of Seneralisid curves in physics, as we shall shortly see.
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Part II :Elementary particle physics, the Nowosad theory.

6. Preliminary ronarks. This is a preview of what I can only call a

breakthrough in micro-physics, and except for iny havinG introduced long

ago the notion of genaralised curve, my part in it is expository. I hoze

the present brief account will make it easier for Dr Nowosad to publish

soon the complete details of his researches to date, rather than wait

until every single one of the known elementary particles has been fitted

into his scheme. le have -iven joint public lectures in this manner, I

giving the first lecture, and he the second. I have also, of course, had

the advantase of long oral discussions with him, and of seeing written

notes and summaries that he used in his lectures, the latest being a

lecture to the international physics institute at Trieste in Sept. 19,9,

the summary of which is reproduced at the end of the present paper.

The path followed by Nowosad is extremely logical: there are no

mysterious 'q-numbers', no a priori indeterminacy rules nor exclusion

principles; any such matters are now theorems. Everything must follow

from the local relativistic metric, an indefinite quadratic differenti,l

form (Lasransiar.). 1e are actually concerned only with what happens in

a minute portion of space-time, and the local metric represents in a

sense the total effect on this portion, exerted by the outside world. !-'e

can therefore ignore the outside, and expand our minute portion to a

whole 4-dimensional relativistic manifold with a local metric. On this

manifold, our fizst task is to se-k for primitive, or intrinsic, objects.

The latter include, of course, the geodesics determined by the metric,

and among them there will be generalised curves. These will be the pat'.s

of the particles of lirht, the rhotons. These are then the primitive

particles, from *hich all others must be derived. Indeed, in the Nowos.ad
mathematical model which simulates what Goes on in our tiny portion of

space time, matter, or the illusion of matter, is derived by infinitesi-
mal zigzagginS of photons. In this way nothing extraneous has been intro-

duced, since the zir'zags result directly from the indefinite metric. The

key to the Nowosad theory is thus the concept of Seneralised curve.

It is hard to believe: in our tiny rortion of space-time, matter

behaves like flivkerine light. Yet, if we are to achieve unity at all,

out of the host of lone or shcrt lived elementary particles that our

remarkable experiments have uncovered, this is the one solution that
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stares us in the face. It will veem even more logical as we cet to the
details, and we shall see that so far it aGrees very well with experiment.
Of course we must remember that it applies to a limited context, a tiny
portion of space-time; moreover, physics has seen a number of nice theo-
ries, each in turn leading to remarkable experiments that put it out of
date. The ,uantum M.echanics of the Dirac era was in its way quite beauti-
ful, prior to the discovory of a host of micro-particles. I would be
sorry to see the present limited theory made the excuse of some grindice
pro-ram, some new gospel, in which philosophers, theolorgians and popular
scientists would vie with one another in their biblical pronouncerents
"In the beginnin5 there was liht", ..As it was in the beginning,
-- and then to see it all upset by yet more beautiful experiments and by
a more perfect theory, as physics progresses along its own zigzag path.
Nevertheless, I cannot pass by this opportunity to quote the pioneer of
the present theory, de Bro:.lie (8);

Light has just revealed itself as capable of condensing into matter,
whilst matter is capable of dissipatiy,g into light. Giving free
scope to onar imagination, we could suppose that at the beginninc of
time, on the morrow of some divine 'Faat Lux', light, at first alo-e
in the uni-erse, has little by little produced by progressive con-
densation the material universe such as, thanks to light itself, we
can contemplate it today. And perhaps one day, when time will hate
ended, the universe, recoverinv its original purity, will again
dissolve into light.

7. Connection with the Dirac and wave theory. Particles will here
be asrociated with waves, and.we must begin by studyin- the latter. Te
primitive object that corresponds to our metric, is then the dual, or
Hamiltonian, quadratic form q*(y) , whose coefficients, like those o0"
the original (L.rangian) quadratic, depenc in general on :the point it
here x varies, as explained, on a relativistic 4 -dimensional canifoli.
From either forL, we derive a correspondint; volume magnification, which
is then a scalar, and I shall assume that the latter is properly taken
into account in all forrm:ulae. As further primitive objects, we associa te
with a twice differentiable function v(x) , the squared norm of its
gradient, and tke Laplacian. To define thee, we set qy = aq/ ay

and take for y the gradient v v = vx = V/a x , and we write

"2 q(y) , v ax, yq* )

where y is the appropriate scalar,
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'ith the help of th-, se quantities, we obtain as dual primitive

objects the extremnl finiction,i for the Dirichl t or energy interral

f IV vi2 , and therefore the solutions of Lirlace's equation A v = 0

which is here a wave equation, whose additive sy.tcm of solutions cin

termed harmonic or wave functions. To derive 'states' in physics, we

must pass to a n'ultiplicative system, by writin" = eiv  where the
'phase' v is harrmonic. t:e then have the fundamental identity

-P-1 A IV v 12 ,

which follows from the generzl identity

A f(w) = fA W + f"IVII 2

for a twice differentiable function f of a twice differentiable function

w . The fundamental identity means that, for the state P whose phase is

the harmonic, or critical, object v, the Dirichlet or energy integral

becomes the sir.sular integral

involving the Laplacian. Instead of , we would write here, in the

quantum Mechan:.cs of the Dirac era, the complex conjugate of

8. The ourntum ji'm-s. In the sincular integral of the preceding

section, mathematicians will see rather an analogy with the complex Con-

tour integral If'ldf , whose value is an inte-er multiple f 2it : if

we vary the contour or the analytic function f , the integral can alter

only by multiples of what we may call a 'quantum jump' 2il .Nowosal's

doctor thesis r:hows that our singular integral behaves similarly. 1'ore

generally, if £ is a linear functional ard A a linear operation, he

found quantum :umps for the functional Z( ' A ') in correspondins
commutative B* al-ebras. Cuantum jumps thus arise automatically, because

of the lotarit.mic singularity introduced by the multiplicative nature

rof the superpomition of states in physics.

Nowosad -..ves a simple example to illustrate how this comes about.

A is the Laplacian, and the underlying function-algebra is that of

continuous almo>st periodic functions in space-time; the functional t(f)

denotes the limit of the mean value of f in a ball whose radius tenis

to infinity. IL the basic exponentials •ekx , which Cenerate the algebra,

kx denotesan ordinary Luclidean scalar product of vectors, while for

- - -11-



coefficients k k , oto, the expressions hc12 , (kko ) etc, indicate

squared norris and -scalar prodrcts in the dual metric of that of special
ikx

relativity. The state * is a so-called 'Plane wave', and is termed

'isotropic' if 1kI 2 : 0 ; it satisfies in any case the relation A; =

- -IkI2o , so that 9.('P A 'P) = -II . Evidently, if 4P is isotrc>ic,

the phase kx mtst reduce to a scalar multiple of & - et , where c is

the velocity of light, and where E , t are ortho-onal projections of %

in 3-space and on the time axis, so that we may regard as a plane wave

travelling with the velocity of light alon- a direction in 3-space. Con-

sider now two plane waves P 0 1 1 , where 4P1 = V 0 and P is
isotropic: the correspondin- coefficients are related by k1 = % + k 0 , and

we shall suppose k , k0 not orthoConal in the metric, to ensure that the

difference Ik! 2 - fkt 02 = 2(kko) = 20k 1) does not vanish. If we cet

a t 1 + (1-t) and c = t/(1-t) , we find that, on the portion
o < I , i.e. 0 t < , of the P -sace segment joining €o 'P

"I oIP o  "% --1 0

+ A'P = '++ L

o 1 + e

The series converges uniformly: we multiply throurh and integrate term by

term in the ball of radius r, and we then make r tend to infinity. The

mean values still converge uniformly, and since t( n) = 0 for n-1,2,...,

we see that 'p t " A 'Pt). is 'he constant -1k '2 for 0 < t < .Sim-
ilarly it is the different constant -1k1 1 for 4 <t <1 . At t= 4

we get a 'quantum jump', and not without riason: the denominator becomes

1 'P , which vwinishes when kx/r is an odd integer, i.e. on a famil:- of

parallel planes of 3-space which move with the velocity of light.

9. The photon and its Dilot wave. In the pr.ecedine example, the quan-

turn jump in the energy interal can be regarded as radiation from planes.

To obtain a photon, we would have to have radiation from a point, moving

with the velocity of light, i.e. from a 1-limensional set in apace-time.

* In place of 1 +4P , we would need a function which vanishes on such a
1-dimensional set. We must generalise the apparatus, and use a more general

form of Nowosad's quantum Jumps. Instead of an isotopic plane wav-,

we can introduce a so-called monochromatic wave 4P a eiv  in which the

* phase Y + subject to AV iv 12 h 0 . Alternatively , we can tAke
a complex-valued phase u. iv ,in which case the same conditions become ,

-12-



for the real and imarinary parts, O=Au=Av =(Vu.7v, Ivu12 -1vvr 2  3y

the General identity of section 7, these conditions mean that an arbitrary

twice differentiable f(v) in the real case, or analytic f(u+iv) in the

complex case, satisfies, as composite function, Laplace's equation. in both

cases, however, the zeros of such a function do not occupy one-dimensional

sets. Can we increase the number of components of f by a Seneralization

of analytic function, such as is provided, say, by minimal nurfaces Zince

we require a function-algebra, there is little choice: we have to gc over

to quaternions, which are not covmutative. Fortunately we can obtain the

desirable commutativity with 'reduced quaternions' u+iv~jw , whose fourth
2 2

component vanishes. Since the square of iv+jw is -v -w , it follows suc-

cessively that the square and n-th power of a reduced quaternion, and gencr-

ally the sum of any convergent series of its powers with real coefficients,

are likewise reduced quaternions. Such series are the quaternion-valued

analytic functions of Fueter (1931): nobody imagined that they might some

day acquire practical significance. A Fueter function f is derived by

f = ( _u + i + _w ) P

from the real part P(u,v,w) of an ordinary analytic function F(u+ir)

with real coefficients, where r2 = v2 + %2

I shall depart slightly from the Nowosae definitions, by now substi-

tuting for u,vw functions subject to O= Afu+iv+jw)=(Vu,Vv) = (Vu,Vw) ,
IVU 2 = VV12+ 1w12 , and to the ratio w/v= e satisfying Iv812=0 . This

ensures that every such P then satisfies Laplace's equation. These matters,
and the precise place at which exponentials are introduced to provide the

quantum jumps, as explained earlier in this rote, will doubtless be cleared

up when Nowosad's work appears -- here I mercly give a preview. In this way

we obtain what may be termed a monochromatic reduced-quaternion valued func-

tion algebra, generated by the functions u,vw . What is important is that,

for an f in this Fueter algebra, the zeros Lre obtained, either from 3 ,

or from 2 equations: the two poossibilities arise because the 'imaCinary

part' of f is the product of iv + Jw by a real factor r'IP * However

only the first ponsibility provides zeros on loci of the right dimension,

on which our quantum jump, our photon, then roves with the velocity of licht.

Elaborate thourh this all may seem, it does then provide, for the photon,

the simplest of all particles, a mathematical model associating it with a

reduced quaternion-valued f , as its 'pilot wave'.

-13-



10. The - mecanism of riterial rarticles. Only the simplest

generalised curves, other than ordinary curvez, appear in the Nowosad

theory, the ones in which, at each point, there are no more than two

associated directions. This is because, for a particle other than a photon,

there is both emission and absorption of radiation, and in general the

outGoing and incoming direction of light quanta will be different. To

each of the two directions, we associate a corresponding nodel of a pho-

ton, i.e. a reduced quaternion-valued al.gebra of monochromatic waves.

To have a generalised curve, we must associate further, with the two

directions, their respective probabilities p,,p, . Evidently, if V1,V2

are velocity vectors for light in the two directions, the mean velocity
V = p1V + P2V2

will be that of the particle on its apparent path. Similarly, if fl,f

are the functions in our two algebras whose singularities are associated

with the local emission and absorption, the mean

f = PjfI+ p2f2

will be a fully quaternion-valued function, also associated with the

apparent path. In this way, not only is the particle slowed down apparently

to the mean velocity vector, but there is an apparently associated, fully

quaternion-valued f ,for which we find by combination a complicated

wave equation with a right-hand side: this right-hand side turns out to

be a certain multiple cf f , where q is a potential occurring in the

work of Bohm and Vigier. Fully quaternion-vilued and even complex quater-

nion-valued states are not uncommon in the literature. (See, for instance,

Edmonds 10.)

11. Summary of further results. We see that we have come close tc

things that have been tried: the main differences are conceptual. But

this is precisely what makes it possible to put the theory to practical

use and practica. test, by solving a number

-14-



o, theoretical and quantitative problems in our mathematical model of

micro-physics. For instance, Dr Nowosad has confirmed orally that in

his theory the Pauli exclusion principle and the existence of the alost

ellusive quark are now among the theorems; moreover some quantitative

results are mentioned in the abstract, reproduced below, of his Trieste

September 1979 lecture. It i6 almost inconceivable that this agreement
with experiment and with accepted principles could be merely by chance.
Neither is there room in Nowosad's logically constructed set up for

any tinkering: quantum theory is reduced to a study of specific inte-

grals and of their discontinuities, the form of the integrals being in

the main dictated by that of the relativistic line element, which in

its turn incorporates the effect of electro-magnetic theory and so forth

on the minute corner of space-time, an effect produced by the outside

world or by our own experimental laboratory.

12. The official abstract of Dr Nowosad's Trieste lecture ",Iuanta

and reometry -- a constructive axproach.': A light quantum is defined

in a V4 by mrians of a real commutative a!.gebra with values on the reduced

quaternions, having three real genera tors, all its elements being

monochromati,- waves. This is done in order that solutions of the wave

equation with a singularity on a single c'haracteristic curve may be

constructed. i, particle is characterised by two such algebras, one

representing emission (outgoing) and the other absorption (incoming)

of light quanta. Massive quanta, moving on time-like trajectories, are

represented through the concept of generalised curve, constructed out

of two families of light rays, one for each algebra. The generators of

the above alz3bras satisfy a given set of partial differential equations,

and it is shomn that the metric must then have the form

do 2 = a(x1 ,x4)(dx 1
2 - dx42) + b(x3lx4)(dx 2

2 +dx32)

It is shown that the elements in this algebra generated by the given

six generators (of which only four are functionally independent) a- e
analytic functions of x2 + ix3 , hence the wave equation for them *educes

to the etring equation. This gives the correct quantization of the

* internal states of the particle. By requiring that the momentum-energy

* tensor be that of the electro-magnetic field, that the background manifold
be R 4 and that the sinmularities in tOe space sections be bounded, an

explicit expression is obtained for do involving three arbitrary
constants, and allowing for both stable and unstable particles.
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Using the values of the electric charge and mass of the proton and

the mass of its quantum (pion), one obtains, disregarding integrations

inside the singularity, the values

r a7 10- 14 cm (radius),

z 2 10 cm- (cosmological constant),

K 10 (coupling factor between the cravitational
and the electromagnetic fields).

The area of the Euclidean unit sphere is twice as small in the given

metric; this accounts for the gyromagnetic factor.

Finally the need for generalised curves brings in and clarifies the

issue of indeterminism and hidden variables. It is shown that also the

pseudo-Riermannian metric must be taken in the generalised sense, in order

to accomodate more than one particle in the given manifold.

AJ
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