W AD~ACS9 609 WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER F/6 9/2
ARACHNE USER GUIDE. VERSION 1.2.(U)

APR 80 R FINKELs M SOLOMON, R TISCWLER ouez9-75-c-“2.
UNCLASSIFIED WRC=TSR-2066

END
oare
inio
10-80
oric

1.0 & e B
== = & yoo
- Lk =

= e

r
rr

L
= e

22 s nie

MICROCOPY RESOLUTION TEST CHART

e e

MRC Technical Summary Report #2066

ARACHNE USER GUIDE
Version 1.2

Raphael Finkel, Marvin Solomon and
Ron Tischler

AD AOB9609

Mathematics Research Center
University of Wisconsin—Madison

610 Walnut Street
Madison, Wisconsin 53706

April 1980 4T

(Received March 4, 1980)

’ Approved for public release
ali Distribution unlimited
S

5 Sponsored by

E U. S. Army Research Office
P. 0. Box 12211

Research Triangle Park
North Carolina 27709

F= 5 80 8 11 037

RO b T T

T e e e et e 1T e e crmmt S £ ot

UNIVERSITY OF WISCONSIN-MADISON
MATHEMATICS RESEARCH CENTER

ARACHNE USER GUIDE+
Version 1.2

Raphael Finkel, Marvin Solomon and Ron Tischler

Technical Summary Report #2066
April 1980

N
) ABSTRACT

~,
had

A}achne is a multi-computer operating system running on a network of
LSI-11 computers at the University of Wisconsin. This document describes
Arachne from the viewpoint of a user or a writer of user-level programs.
All system service calls and library routines are described in detail.

In addition, the command-line interpreter and terminal input conventions
are discussed. Companion reports describe the purposes and concepts
underlying the Arachne project and give detailed accounts of the Arachne

utility kernel and utility processes.

I

AMS (MOS) Subject Classifications - 68-00, 68A35, 68A45, 68A55

Key Words - Distributed computing, Networks, Operating systems,
User interface

Work Unit Number 3 (Numerical Analysis and Computer Science)

\

~
N
A

oL
'Appeared as Computer Sciences Technical Report 379, Computer Sciences

Department, University of Wisconsin-Madison. We have been forced to change
the name of the Roscoe distributed operating system, since Roscoe is a -
registered trademark of Applied Data Research, Incorporated. The new name
we have chosen is Arachne; the operating system and research continue
unchanged.

Sponsored by the United States Army under Contract Nos. DAAG29-75-C-0024
and DAAG29-80-C-0041.

St

Erailic g b aien

PN

.

NSRS I I MR R AT

SIGNIFICANCE AND EXPLANATION

Arachne is an experimental operating system for controlling a network

of microcomputers. It is currently implemented at the University of
Wisconsin on a network of five minicomputers. Some of its essential
features are: All processors are identical, although they may differ in
peripheral units. No memory is shared between processors, and all com-
munication involves messages passed between processes. The way in which
the processors are interconnected is not important. The network appears
to the user to be a single machine.

This report describes Arachne from the viewpoint of a user or a

writer of user-level programs.

Accession Fop
NTIS GRA&I
D>C TAB

Unennounced
Justification

——————————

By

Distrimtion/

Avall and/or
Dist special

—Aveilakility Codes |

The responsibility for the wording and views expressed in this descriptive

summary lies with MRC, and not with the authors of this report.

w
.

o
.

(S SN SN SN SN SN XY
. L] * o . »)
~N O W N

W WwwwWw
s s s & o o
~NOUMSsWN -

e & o o o o o s o s o
= b= \O 00 O UL W N

b b B B o oBn B B b B 0 B

L]
[
[8]

4.13

it s ol ey e

TABLE OF CONTENTS

IN.PRODUCTION'l.ol0!0.000.t.‘....l....!...l......Col..

Purpose Of thiS DOCU'ﬂent. © 90 0% 000000000 GO0 eSO e
Caveat-'oooo.ooo.c......o.o.o..oo-..o.ooo..ooao--oca
Format Of thls GULde.OCl'..l....ll....l...........'.

Revlslons.o.l'.o.o..c.oo.......cc‘..oouco.-oo.oo..--

ROSCOE CONCEPTS AND FACILITIES......'.........I.....

ProcesseSQ'.l..0'OO'oo.....l'oo.n.o.'...otnoo.oo..lﬁ

Links-c-Q.-000..0-...00.0..0.0.0-.a.lotoo...-oooouoo

MESSAgeS . ceersseesessacesarsessssssasncscancsccansossesca
Link restrictionsS..eeceeesccecssscssssossscsccscsnnnes
Service CallS.ieeecesessnesensssesesssssnssasenncnsscs
Utility PrOCESSeSciceeacsvscancescosssosiosnssannsasae
Library routines...ceiceeesiesrsnercrtenteceetenasnans

SUBJECT-AREA GUIDE.0..0'.0l'..'.o..'..Q-ICQQOQ.-.lO'

Links and MeSSageS...ieeesesccsoscesosssnossscsonssnse

processes:.o..o.t.o'o-ooo..ooc..lo.D.o......-..-.-o.

Timil]g...oo......o.l.o'.l'..o.o.o..s.'so.h...lll|&l¢

Interrupts and EXCepPtioNS..ceceecoeevosssressecrscsesns
Input/output.C..’..0.0.'.'..'...!0..00..0.'!..IO.ll.
Miscellaneous ROULINES..eeeeoveesocesssenssssoscanns
Preparing USEr PrOgraMS..ceceecescesccsoscncsssossnosos

ROSCOE PROGRAMI"ER'S MANUAL.0.0..0....'.....0‘..0oo.-

Alias (Library ROULtINE) ceveeeessocosconooscsacossnss
Awaken (Service Call).seeeeeescacesscosenneannsnsocans
Call (Library ROULINE) coevesesescsecocconsosasnocnesns
Catch (S€rvice Call) iveeeveecescosoosoancsaonosnense
Close (Library ROULtING) e.veeeecesovsoscnscnseannnsonne
Copy (Service Call) suveererssoennsvonceccaacsnonanna
Create (Library ROULINE) cveieceesceccoasosoanosnonne
Date (Service Call).Il......'...‘l..l.'l..l.‘..‘.'..
Datetol (Library ROULINE) teveesceseoccscesanosnonsans
Destroy (Service Call) i.eveeseoasecsosanconscassnoss
Die (SerVice Call).l.........CI..O.....“..OOI..'l'l
Display (Service Call) iciveeseoeecococarsonscossnnnnns
Errhandler (Service Call) eeeeeceencecacoscensaneonss
FOork (Library ROULINE) cveeeeeeecoccoconosoannaasannsne
Fsline (Library ROULINE) teveeeeeeesenoonononceocnnns
Handler (Service Call)iviveesereeeseanasasennonsasen
Inline (Library ROULIiNE) tiviveeeeeennonesonnossaasss
}\111 (S’\IVICA Call).....‘...I..'.l...‘.........l.ll'

Killof{

(Library ROUEING) it ovenronnonnsesannnnses

—

[= WO g W > Www N

[l ol [[
B

=
(= N,

17
17

18

18
18
19
20
21
22
22
23
23
23
23

24
25
26
26
27
27

b
)

4.20
4.21
4.22
4.23

4.24.

4.25
4.26
4,27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41

bt ot et = AD QO S NN WY

oo n
[V Sl i =)

Link (Service Call).eveevcoessoscsassocsccsssossncsnsne
Linkok (Service Call).iiievsnsesasssserssnensosscsvence
Load (Service Call)uiieieersosesecesesscccsvsscncccnn
Ltodate (Library ROULING) cecevoersccsssesrrccccsssse
Nice (Service Call) ieeeeosesssosccsasiosecnssasssanas
Open (Library ROUtiINeG) c.evecsvocscososecsscscsccssnse
Outline (Library ROULINE) cesevecrsosncsccscossnrccsos
Parline (Library Routing).ecececoccceccrsssccncssccos
Print (Library Routine) c.eceecessesosvessavsscencoss
Read (Library ROULINE) ceseseoscccrcssrcsccscscacssve
Readline (Library ROULtINE) ccsseeccecsocavescccccsnas
Recall (Library ROULLINE) seeeeccosectacasacscnscnsnson
Receive (Service Call)ieeeecceesssssssccsscvsccccsas
Remove (Service Call)ecesessosccocstacsanccoooscnsas
Seek (Library ROULLINE) cvessvencessecssscscsssrcssans
Send (Service CAll) cieeeensensscscsnsasscsassnssnnans
Setdate (Service Call)ecevecsosesssscsescsssceosscncoocs
Startup (Service Call) cceecsrescscossssconsscsveosnns
Stat (Library ROULINE) ceeeeeecccevscsosccasccocnnsanas
Time (serVice Call)l.0.....'0......I.t........'....l
Unlink (Library ROULING) ceveeescsrccvsoscssnvssscnens
Write (Library ROULINE) ceeesecccssscccsscssosssnscsnse

CONSOLE CobitdANDs.;.‘0.0..0..-....-........0"ooolt"

alias <filenameld> <filename2>..cceesvsescccsccsnsossa
background <filename> <ArQ>¢iesesssscncsssssoscssnas
copy <filenamel> <filename2d>..cescssssosscasocsncsocs
delete <filenamedseesesessoosassosssrossssosscsosccsos
AUND <aAAr eSS > i eesosensseccrrcssssscsnssosasssassans
help....l..l..l!...Q.l.Q.I.'........l....."'Ill..l.
kill <arg>0‘Dl...l.....'.l.......l.‘...'l......‘l...
make <filenamed..ceescncesosoccosasccscannsosasoscscsss
rename <oldnane> <NeWNAMED . .iseecascssssssnsssassrsse
run <filename> { <arg> } { " <filename> { <arg> } }.
set <modelist> or SET <MOAelisStd.cecescessvsoccscscsss
time <fOIMAt D eueeceesssssnossoensasscscnssscnnsnssnsassns
type <filenamed..cecesesasscssoscsssvssnnensessnnsnsss

TERMINAL INPUT pROTOCOLS.o‘oolo..ooo.......0‘.'..0.'

UTILITY PROCESS PROTOCOLS:¢ctosescesssoscosscosascses

Input/output PrOtOCOls..o-.a.-.-c-'.ooo.o..o-.-.oo.o
RGSOUL'CQ “C&nage[P[O'ZOCOIS-.....ooo-.....-‘--o-.....

ACKNO";LEDGEh‘ENTS.l..ot........l..l'.Q'QQQ.....O."IQ

RE["[':[{ENCES-.l-ono.'c-.u.‘.oolooo'otnon.'ttvt'..ooocl

32
32
33
33
34
34
36
36
36
37
38
39
39

40
40

41
41
42
42
42
42
42
42
43
43
43
44
44

44

45

46
48

52

53

ARACHNE USER GU IDE+
Version 1.2

Rapnael Finkel, Marvin Solomon and kon Tischler
1. INTRODUCTION

. Arachne is an experimental operating system for controlling
a network of microcomputers., It is currently implementéd on a
network of five Digital Equipment Corporation LSI-11 computers
connected by medium-speed lines.?* The essential features of
Roscoe are:

1. All processors are identical. Similarly, all processors

run the same operating system kernel. However, they may differ
in the peripheral units connected to them. i
2. No memory is shared between processors. All communica-

tion involves messages explicitly passed between physically con-

i R it

nected processors,

/ 3. No assumptions are made about the topology of ;ntercon—
nection except that the network is connected (that is, there is a %
path between each pair of processors). The connecting hardware 1

is assumed to be sufficiently fast that concurrei.t processes can 4

cooperate in performing tasks. b

- - - - — - -—— -

Pore st

1-1\ppeared as Computer Sciences Technical Report 379, Computer
Sciences Department, University of Wisconsin-Madison. We have been
forced to change the name of the Poscoe distributed operating
system, since Roscoe is a registered trademark of Applied Data
Research, Incorvorated. The new name we have chosen is Arachne;

the operating system and research continue unchanged.

4
£
f
j

*
This eyuipment was purchased with funds from National science
Foundation Research Grant #MCS77-08968.

Sponsored by the United States Armv under Contract Nos. DAACG2O-
75-C-0024 and DAAG29-80-C-0041. !

T T T TR TR M STV Y e Sl A FEN
PR AT : RS N . N

PAPT SN . .
A - N) . L]
A o . PPN SRR, L

4, The network appears to the user to be a single powerful
machine, A process runs on one machine, -but communicating
prccesses have no need to know if they are on the same processcr
and no way of finding out. (Migration of processes to improve
performance is transparent to the processes involved.)

5. The network is constructed entirely from hardware com-
ponents commercially available at the time of construction (Janu-
ary, 1978).

6. The software is all functional. Although Roscoe has

undergone much revision, it has been working for over a year.

1.1 Purpose of this Document

This document describes Arachne from the point of view of a
user Or user-programmer. It is both a tutorial and a reference
guide to the facilities provided to the user. All information
necessary to the programmer of applications programs should be
found here.

Further discussion of the concepts and goals of Arachne are
discussed in [Solomon 78, 79). That document also lists some
research problems ghat the Arachne project intends to investi-
gate. The operating system kernel that provicdes the facilities
listed below is described in considerable detail in [Finkel 78,
80b) . Similar detailed documentation about utility processes
(such as the File System Process, the Teletype Driver, the Com-
mand Interpreter, and the Resource Manager) is contained in
[Finkel 79a, 79by.

hrachne has been developed with extensive use of the UNiIY

ars o arat G Paka -

operating system [Ritchie 74). All code (with the exception of a
small amount Of asscibly language) is written in the C program-
ming languagec {Kernighan 78). The reader of this document is as-
suned to be familiar with both UNIX and C.

A new programming language called Elmer, is being designed
for applications programs under Arachne; it will be described in
a future report. Arachne programs may be written in either Elmer

or C. Currently, the library is available only in C.

1.2 Cuveat

Arachne is in a state of rapid flux. Therefore, many of the de-
tails described in this Guide are likely to change. The reader
who intends to write Arachne programs should check . with one of

the authors of this report for updates.
1.3 Format of this Guide

Section 2 provides an overview of the concepts and facili-
ties of Arachne., Section 3 describes the facilities by name, ar-
ranged according to general subject areas. Section 4 1is a
progranmer's refer?nce manual. Each function is listed alphabet-
ically,—its syntax and purposec are described, and it 1is classi-
fied as a service call (an invocation of an operating system Kker-
nel routine) or a library routine (a procedure linked into the
user program). Section 5 describes the command line interpreter
and lists the commands that may be entered from the terminal.
Seciion 6 describes Lthe conventions governing terminal

input/output, Section 7 presents protocols ‘for communicating

with the various utility processes.

1.4 Revisions

The followiny chanyes have been made to Arachne since ver-
sion 1.0 of this document:

There is & new service call, "linkok", to determine if a
link nuaber is currently valié¢. The library routine "call" uses
this service call to avoid sending a message across a bad link.

Messages now include length information. The 1library rou-
tines "call” and “"recall® have been modified to reflect this
change. The file aﬁd terminal protocols have also been simpli-
fied.

The following changes have been made since version 1.1 of
this document:

A new utility process, the pipe, is now available. Pipes
allow the cutput of one user process to be attached to the input
of another.

The sztructure "uumesy" has been abolished, and "urmesg" no
longer «c¢cntaine the body of the message. Instead, both "send"
and "receive" have a new argument that specifies the message
body.

A new link restriction, MAYERROR, is orthogonal to all other
restrictions. The last argument to send may have the ERROR bit
on, in which case the message is considered an error report if
the link zcross which it is cent has MAYERROR specified. Receipt
of an error report raises an cxception,

The "die" service call now takes a character-string arqu-

k't

22,

R L P oo ia

ment. This arguaent becomes the body of any DESTROYED message
that is gencrated due to the termination of the calling process.

when a process dies, error reports are sent along any links
that it holds with restriction MAYERROR but not TELLDEST.

Many errors caused by service calls raise exceptions. An
exception can only occur during a service call. If it is not
caught, the guilty process terminates. Exceptions may be caught
with the "errhandler" service call.

A new facility for asynchronous message receipt, called
"catzh", allows a procedure to be specified that will be invoked
as soon as a message arrives on the specified channels.

The "display" kernel call returns timing information about
the owner of any link.

We have been forced to change the name of the Roscoe distri-
buted operating system, since Roscoe is a registered trademark of
Applied Data Research, Incorporated. The new naize we have chosen

is Arachne; the operating system and rescarch continue unchanged.

2, ROSCOE CCNCEPTS AND FACILITIES

The fundamnental entities in Arachne are: files, programs,

core images, processes, links, and mescrnes. The first four of

thesc are roughly eguivalent to similar concepts in other operat-
ing systems; the concepts of linke and messages are idiomatic to
Arachne. A file is a seguence of characters on disk. Each file
has directory information giving the time of last modification

and restrictions on readiny, writing, and execution. The con-

B -
IR ,ﬂw}aﬂwisr;mﬁw”mr . e e

tents of a fil¢ may contain header information that further iden-
tifies it as an executable program. Version 1 of Arachne uses
the UNIX file system; therefore, the reader familiar with UNIX

‘should have no problem understanding Arachne files,

Program files contain text (machine instructions), 4initial-

ized data, and a specification of the size of the uninitialized
global data space (bss) reguired by the program. Program files

also contain relocation information and an optional symbol table.
2.1 Processes

A process is a locus of activity executing a program. Each
process is associated with a local data area called its stack. A
program that never wodifies its global initialized or bss data
but only its local (stack) data is re-entrant, and may be shared
by several processes without conflict. A main-storage area con-
taining the text of a program, its initialized data, and a bss
data area, but not including a stack, is called a core image. C
core images may not share text areas unless they are reentrant;
the text and data areas of Elmer programs are loaded separately,
so Elmer pregrams may share text even if they are not reentrant.
The initiation of & process entails locating or creating (by
loading) a core image, allocating a stack, and initializing the
neccssary tables to recorg its state of execution. Similarly,
when a process dies, its tables are finalized and its stack space
is reclaimed. 1If no other processcs are executing in its core
image, then the space occupied by the core image is available for

re~-usce,

DERIFPRPETPRS 715 VT PPN e kL.

2.2 Links

All communication is performed by message passing across
'1i35§;' A link combines the concepts of a communications path and
a "capability."” A link represents a logical one-way connection
between two processes, and should not be confused with a ligg,
which is a physical connection between two processors. The 1link
concept is central to Arachne. It is inspired and heavily influ-
enced by the concept of the same name in the Demos operating sys-
tem for the Cray-l computer [Baskett 77]. Each link connects two
processes: the holder, which may send messages over the link, and
the owner, which receives them. The holder may duplicate the
link or give it to another process, subject to restrictions asso-
ciated with the link itself. (See "Link restrictions" below.)
The owner of a link, on the other hand, never changes.

Links are created by their owners. When a link is created,
the creator specifies a code and a channel. The kernel automati-
cally tags each incoming message with the code and channel of the
link over which it was sent. Channels are used by a process to
partition the links it owns into subsets: When a process wants to
receive a message, it specifies a set of channels. Only a mes-
sage coming over a link corresponding to one of the specified
channels is eligible for reception. A link is named by its hold-

er by a small positive integer called a link number, which is an

index into a table of currently-held links maintained by the ker-
nel for the holder. All information about a link 1is stored in

this table. (No information about a link is stored in the tables

of the owner,)

2.3 Mgscsages

A message may be sent by the holder to the owner of a link.
A message may contain, in addition to MSLEN (currently 40)

characters of text, an enclosed link. The sender of the message

specifies the link number of a link it currently holds. The ker-
nel adds an entry to the link table of the destination process

and gives its link number to the recipient of the message. In

this way, the recipie¢nt becomes the holder of the enclosed link.

If the original link is not destroyed, the sender and the reci-

pient hold identical copies of the link.

2.4 Link restrictions

Links may be created with various restrictions. These can
be c¢heracterized &s modes, permissions, and notifications. The
orthogonal modes are KRCQUEST and REPLY. A reply 1link is dis-
tinguished by the fact that it can only be used once; it is des-
troyed when & message is sent over it. A reply link may not be
the enclosed ling in a message sent over another reply link.
Similarly, a request link cannot be sent over a request 1link.
These restrictions enforce a communication protocol in which all
communications betwecn two processes connacted by a REQUEST 1link
are initiated by the holder of that link.

Two permissions are GLVEALL and DUPALL, controlling distri-
bution of the affected link Lo other parties. A third permission

is MAYZRROR, which allows the holder to send dn error message,

1
i ;
,{ p

N,

WD W Rl e

whore receipt will raise an exception.

The notifications are TELLGIVE, TELLDUP, and TELLDEST. When
these restrictions are in force, unforgeable messages are sent to
the owner of the link when it is given away, duplicated, or des-
troyed. (The last of these messages contains a body provided by

the holder if it dies holding the link.)

2.5 Service calls

The Arachne k2rnel is a module that resides identically on
all the machines of the network and provides various services for
user programs. The services are requested by means of service
calls, which appear to the caller to be procedure invocations.

The chief function of the kernel is to support link mainte-
nance and message passing by providing service calls to create
and destroy links and send, receive and catch messages. addi-
tional service calls create and destroy processes, read and set
"wall-clock” and high-resolution interval timers, specify a
handler to catch exceptions, and establish interrupt handlers for

processes that control peripheral devices.

2.6 Utility processes

Arachne has been designed so that as many as possible of the
traditional operating system functions are provided not by the

kernel, but by ordinary processes. These utility proccsses may

invoke service calls not intended to be used by the casual user,
but otherwisc they behave exactly like user processes. The ter-

minal driver is an exawple. One terminal driver resides on each

",

O T e i SRV E AP

proccessor that has a terminal. All terminal input/output by oth-
e¢r processes is requested by messajes to this process. It under-
stands and responds to most commands accepted by a file (sec
below), as well as a few extra ones, such as "set modes" (e.g.,
echo/no echo, hard copy/soft copy).

A file manager process has access to the Arachne file sys-

tem, currently implemented on the supporting PDP-11/40. A re-
gucst to open a file sent to any file manager process causes a
link to be created representing the open file. To the user of a
file, the open file_behaves like a process that understands and
responds to messages requesting read and write operations. The
file is closed by destroying the link. A version of "the file
manager that wuses a floppy disk instead of the PDP-11/40 file
system is also available; it follows the same protocols as the
other file manager.

The most complex utility process 1is the resource manager

(RM) . Resource managers reside on all processors and are con-
nected by a network of links. A process can request an RM to
create a new process. The RM may create the process on its own
machine or relay the request to another RM based on such con-
siderations as location of the process that requested the crea-
tion, availability of free memory, proximity of resources such as
devices and files, and the possibility that the required program
is already in memory.

The new process is started with a link to its RM, over which
it can request links to the process that requested its creation,

to a file manager process, to a terminal driver, or to other

-10-

ST T e L AT R SR S §

T TN L Ry w e e

4 s e o T T b DR SRt U ol 22 S f gty

resources, The RM can kill the process, or it can give a special
link to another process (usually a terminal driver) that may be

used to kill-it.

2.7 Library routines

Functions provided by service calls are rather primitive,
and communication with utility processes can involve complicated
protocols. An extensive library of routines has been provided to
simplify writing of programs that use service calls and utility
processes. These routines serve to hide the communication neces-
sary to accomplish various tasks, and make it especially easy to
introduce software not originally designed for the Arachne en-~
vironment, These routines can only be used with C programs; the

Elmer library is under construction.

3. SUBJECT-AREA GUIDE

This section lists service calls and 1library routines by

subject area.

3.1 Links and Meséages

A new link is created by a process through the "link" ser-
vice call, Initially, the creator is both holder and owner of
the link. The creator specifies what channel and code to associ-
ate with the link, so that future messages arriving along it can
be selectively received and identified. 1In addition, the creator

may place restrictions on the usc of the link, controlling whoth-

e

er or not it may be given to third parties, duplicated, or uscd
repcatedly, and requiring notifications to be sent along it in
the event of link duplication, transferral, or destruction. Fi-
‘nally, links may specify that they can carry error messages. Re-
ceipt of an error message terminates the recipient.

Messages are sent with the "send" service call, which speci-
fies a 1link over which the message is to be sent, the message
text and an optional enclosed link. It also indicates If the
message is an error message.

Messages are accepted by "receive," which specifies a set of
channels, a place to put the message, and a maximum time the re-
cipient is willing to wait. "Receive" can also be used to sleep
a specified period of time by waiting for a message that will
never arrive. Asynchronous message receipt 1is accomplished by
"catch", which has the same arguments as receive, except it has
no vait time, and it specifies a procedure to call when an ap-
oropriate message arrives. This catcher procedure is very limit-
ed in the kernel calls it can perform.

A simple send~receive protocol is embodied in the library
functions "call" and "recall," which are simpler to use than send
and receive, and should be adequate for most routine communica-
tion. The "call" library routine sends a message along a given
link, enclosing a reply link. It then waits five seconds for a
response, which it returns to the caller. If no answer has ar-
rived in five seconds, it returns failure, and the "recall” rou-

tine can be invoked to continue waiting for the tardy responsc.

-12-

-l

e A e Zeafan T M e i

e e

3.2 Processe

4]

|

A process may spawn others by communicating with the

‘resource mancger; typical cases are handled by the library rou-

tine "fork". The requestor indicates whether the child should be
run as a foregyround, background, or detached job. Foreground
processes are attached to a terminal and can be terminated by en-
try of a contrql-C. Background processes may only be terminated
by requesting the resource manager to remove them, which is ac-
complished by the library routine "killoff". Detached processes
cannot be terminated except at their own request. The caller
also indicates whether the child process may share its core image
with other processes, whether an 0ld and inactive core image may
be used, or whether a fresh core image is required.

Every user process is started holding link number 0, whose
destination 1is the resource manager on that process's machine.
When calling "fork", the parent may indicate a 1link that it
wishes to give to the child; the child obtains this link with the
library routine "parline", which communicates with the resource
manager along link 0. A process can terminate itself by calling
"die"; it can yield the CPU to another process by the service
call "nice". (Scheduling is not pre-emptive.)

Four low-level process-control service calls are provided
for the use of the resource manager; they are not intended for
the typical uscer. The service call "locad" arranges for bringing

new corc images into the processor on which the caller resides,

If there is no room, the call returns failure, and the resource

manager can try to find a neighboring resource managecr that mijht
have better luck. Once a core image is loaded, processes can be
started in it with the service call "startup", which provides the
new process with an initial link 0 of the caller's choosing. The
"kill" service call removes a process, and "remove" reclaims its
core image. The separation of images and processes allows one
core 1image to be used simultaneously be several processes, and a
core image may be saved after the last process is gone to speed

up the next invocation of a process that would use it.

3.3 Timing

Arachne has two notions of time. One 1is the wall clock,
which keeps track of seconds in real time. Messages sent between
resource managers are routinely used to keep the various machines
synchronized. There is also an interval timer, which may be used
to monitor elapsed time in increments of ten-thousandths of
seconds. No process may change the interval timer.

The wall clock is referenced, changed, enciphered, and deci-
phered by "date", "setdate", "datetol", and "ltodate", respec-
tively. The interval timer is referenced by "time". The percen-
tage of time wused by any process may be discovered with

"display".

3.4 Interrupts and Exceptions

User programs may handle their own interrupts. This {..ature
is currently used by the terminal driver. A process may .tab-
lish an interrupt-level routine with the "handler" service <call.
This call names not only the interrupt handling routine and which
interrupt it is intended to service, but also a channel along
which to receive messages sent by that interrupt routinz. The
interrupt-level routine should, of course, be thoroughly dcougged
and fast. Interrupt-level routines may notify the process that
established them by the service call "awaken". This call causes
a special message to be sent to the master routine along the
channel it specified in its "handler" call. Since the master and
interrupt-level routines share code and data, all details of the
communication are embedded in shared variables; the awaken mes-
sage itself is empty.

I1f a processes arranges for asynchronous receipt of messages

by using a "catch" service call (see "Links and Messages" above),

then arrival of such a caught message will not preempt any other
process. However if the catching process is currently executing,
control will immediately switch to the catcher routine within the
process.

Exceptions are raised by many service all errors (usually
poorly formed service calls) and by receipt of error messages.
Usually, exceptions cause the termination of the offending pro-

' cess, Exceptions may be caught by establishing a handler with

;
i
% the "errbanldler” service call. Wwhen an exception arises, the

-]15-

;

handlcr will be invorcd with arguments indicating the valuc re-~
turned fron the failed scrvice call, the service call number, and

all the arguments to the service call. Return from the handler

‘acts like return from the service call.

3.5 Input/Qutout

To use files, a process first obtains a 1link to the file
manager process by calling the library routine "fsline", wiich
communicates with the local resource manager. This link is used
in subsequent library routine calls: "open" and "create" make new
files or ready old ones for reading or writing, and return links
to be used for manipulaticns of those files. The library rou-
tines "read", "write", and "seek" act much like the Unix file
primitives of the same name to provide random access into the
open file. A file is closed by the 1library routine "close",
which 1is identical to the service call "destroy", which destroys
a link. Finally, the library routine "stat" returns various in-
formation about the open file. Each of these library routines
packages a request in a message that is sent across the file ac-
cess link to the file manager process.

To use the terminal, a process obtains input and output
links by calling the 1library routines "inline" and "outline",
respectively, which communicate with the local resource manager.
An input 1link can be used to discover or change terminal modes
(only the command interpreter uses this feature) and to perform
terminal input. An output link can be used for terminal output.

These links may also be "closcd"; they are closed automatically

il o

S A YT A

when a process dics. The terminal driver allows at most one in-
put link to be open at a time.

Reading is performed by the library routines "read" and
*"readline". Writing is performed by "write"” and, if formatting
is desired, by "print". Each of these routines works equally
well in dcaling with a file instead of the terminal. The service
call "printf" is identical to "print" except that it always uses
the termiral; it is a debugging tool not intended for the typical
uscr.

The user familiar with UNIX is cautioned against assuming
that any particular buffer size is particularly efficient for
reads or writes, because Arachne splits up I/0 into packets of

size MSLEN bytes anyway.

2,6 Miscellaneous Routines

The following routines from the C library also exist in the
Arachne library: atoi, long arithmetic routines, reset, setex-—
it, strcopy, streq, strge, strgt, strle, strlen, strlt, strne,
and substr.

An additional routine supplied by Arachne is "copy".

3.7 Preparing User Programs

User programs for Arachne are written in the C programming
language. They are compiled under UNIX on the PDP-11/40 and
should include the files "user.h™ and "util.h" in directory
/Jugsr/network/roscos/user. Source programs should have filenames

endiny with ",u", To prepare a file named "foo.u", executo

"makcuser foo", which crcates an execcutable file for Arachnce
named "foo". The executable files are always stored in

/usr/network/roscoe/user.

4. ROSCOE PROGRAMMECR'S !MANUAL

The following is an alphabetized list of all the Arachne
service calls and library routines. For each service call error
result, the notation "(*)" indicates that the error causes an ex-

ception to be raised.

4.1 Alias (Library Routine)

int alias(fslink,fnamel,fname2) char *fnamel, *fname2;

The new name "fname2" is associated with file "fnamel". The
argument "fslink" is the caller's link to the file manager. The
0ld name is still valid. Possible errors: The combined 1length
of "fnamel"” and "fname2" must not exceed MSLEN-6. The name
"fname2" must not already be in use. File "fnamel" must exist,

All errors return -1.

4.2 Awaken (Service Call)

awaken ()

Only an interrupt level routine may use this call. It sends
a message to the process that performed the corresponding
"handler" call along the channel specified by that "handler"
call.

Returned values: Success returns a valuc of 0. -2 is re-

¥
5
)
%

turned if the message cannot be sent because no buffcrs are

available; an "awaken" may succeed later.

4.3 Call (Library Routine)

int call(ulink,outmess,inmess,outlen,inlen)
char *outmess,*inmess; int *inlen;

This routine sends a message to another process and receives

a reply. The 1link over which the méssage is sent is "ulink",
which should be. a REQUEST link. The argument "outmess" points to
the message body to be sent, of size "“outlen". (Caution:
"outlen" should include the terminating null, if the message is a
string.) Similarly, "inmess" points to where the reply body will
be put. The length of the reply will be placed in the integer
pointed to by “inlen“; if the user dcesn't need this feature,
"inlen" may be set to 0. If “inmess" is 0, any reply will be
discarded. An error is reported if the reply does not arrive in
five seconds (see "recall"). In normal cases, the return value
is the 1link enclosed in the return message; it is -1 if there
isn't any enclosure. 1Ignoring errors, the user may consider this
routine an abbreviation for:

struct urmesg urmess;

send(ulink,l1ink(0,CHAN16,REPLY) ,outmess,outlen,NODUP) ;

receive(CHAN16,inmess,&urmess,5);

if (inlen) *inlen = urmess.urlength;

return(urmess.urlnenc);

Returned values: Under normal circumstances, the return

value 1is either -1 or a link number. -2 means an error occurred
while sending, -3 means the waiting time expired, -4 means that

the return 1link was destroyed, -5 means that something was re-

ceived with the wrong code, meaniny that the user program is also
using CHAN16 for some other purpose, -6 means that a return link
couldn't be created in the first place, -7 means that the ulink
‘was bad.

NOTE: CHAN16 is implicitly used; for this reason, the user |is
advised to avoid this channel entirely. Several other library

routines also invoke "call", and thus use CHAN1G6.

4.4 Catch (Service Call)

int catch(chans,data,urmess,catcher) char *data, int catcher();
struct urmesg { /* for receiving messages */
int urcode; /* chosen by user, sce "link" */
int urnote; /* filled in by Arachne, see “"receive" */
int urchan; * chosen by user, see "link" */
int urlnenc; /* index of enclosed link */
int urlength; /* length of incoming message */
} *urmess;

The arguments are the same as for the receive service call,
except for the last one. The procedure specified by “"catcher" is
activated as an asynchronous message recipient for messages that
appear on the channels indicated. If a catcher is active on some
channel, then any message that arrives on that channel will cause
the asynchronous invocation of the catcher, which takes no argu-
ments. The message itself is placed in "data" and "urmess" in
the same way as for "receive",

The catcher procedure may inspect the message and modify
global variables; it may not invoke any service calls except

"printf". 1If the catcher returns FALSE, it will be dcactivated

from the channel across which the message came; if it returns

=20 =

b e

TRUE, it remains active.

If a catcher has already been activated for some channels,
and a2 new "catch" call names other channels, then the union of
all the channels active before and now indicated will be activat-
ed for catchers. There 1is only one catcher procedure, one
"data", and one "urmess" at any time; subsequent "catch" calls
can replace these values with new ones.-

If "catcher" is 0, then instead of activating the given

channels, they are deactivated with respect to catching messages.

All channels not mentioned in "chans" are unaffected. The "data"
and "urmess" arguments are ignored in this case.

If the destination of a message is both waiting to receive
it and has a catcher activated to catch it, the message is given
to the catcher, not the receive call. Catching a message
prevents it from also being received.

Messages are caught in the order in which they arrive at the
destination.

Returned values: G0 is returned on success. -1 (*) means
the argument "“catcher" was bad, ~2 (*) mcans "urmess" or "data"
was bad. In this case, the other specified channels may or may

not get catchers.

4.5 Close (Library Routine)

int close(file)
The argument "file" is either a link to an open file, or a
terminal input or output link. The recturned valuc is 0 on suc-

cess, negative on failure (cctually, "close" is synonymous with

G

[

“"destroy"). These links are automatically closed when a process

dies; however, execution of this command gives the caller more

room in its link table. Also, closing the terminal input makes

‘it possible for another process to open it.

4.6 Copy (Service Call)

int copy(link);

This service call returns a copy of the given link. If the
link 1is restricted, copy may fail or cause a notification to be
sent. Returned values: 0 for success, -1 (*), -2 (*) if the ori-
ginal 1link number 1is out of range or not in use, -3 (*) if the
link is protected against duplication, -4 (*) if there is no room

in the user's link table for a new link. (See "link".)

4,7 C(Create (Library Routine)

int create(fslink,fname,mode) char *fname;

I1f the file named "fname" exists, it is opened for writing
and truncated to zero length. If it doesn't exist, it is created
and opened for writing. The argument "fslink" 1is the caller's
link to the file manager. The protection bits for the new file
are specified by "mode"; these bits have the same meaning as for

ONIX files, but all files on Arachne have the same owner. The

returned values are as in "open".

e

4.8 Date (Service Call)

long date();
This service call returns the value of the wall clock, which

is a 1long integer representing the number of seconds since mid-

night, Jan 1, 1973, CDT.

4.9 Datetol (Library Routine)

long datetol{s) char s[12);

This library routine converts a character array with format
"yymmddhhmmss" into a long integer, representing the number of
seconds since midnight (00:00:00) Jan 1, 1973. It accepts dates

up to 991231235959 (end of 1999); -1 is returned on error.

4.10 Destroy (Service Call)

int destroy{ulink)
Link number "ulink" is removed from the caller's link table.
Returned values: 0 is returned on success. -1 (*) means
that the link nuaber is »2ut of range, -2 (*) means that it is an
invalid link, and 3 (*) means the 1link may not be destroyed

(link 0 has this property).

4.11 Die (Service Call)

die(mesg) char *mesqg;
This call terminates the caller. All 1links held by the
caller are dcestroyed. As these links are destroyed, DESTROYED

messages are senl along all links that have the TELLDEST restric-

tion; thecc messages contain “"wes3" as the bedy (always MSLEN
bytes), unless "mes3" is 0. Error messages are sent along all
links that nave the HAYERROR restriction but not TELLDEST.

Various errors can cause & "aie" to be automaticelly gen-

. "W

erated. Here are the possible contents of "mesg":

bad die message

bad trap

exception not caught
killed

fell throuyh

core image damaged

4.12 Disolay (Service Call)

int display(link);

This call returns a number in the range 0 to 100 that
represents the percentage of CPU time used by the owner of the
given link averaged over the last 4 seconds. 0 means that the
process has not run at all; 100 means that the process has been
active the entire time,.

Returned values: -1 (*) if the link points to a different

machine, -2 (*) if the link number is invalid.

4.13 Errhandler (Service Call)

char *errhandler (addr) char *addr;

A new exception handlcr is established to catch exceptions
raised during service calls and receipt of error messages. The
handler is a routine at location "addr". The old handler address
is returned. A 0 value for "addr” disables cxception catching.

If not cauyht, exceptions cause the termination of the of-

EPARpIR-vivye

N S U

W R "7‘,1

fending process. When an exception arises, the handler will be
inveked with these argumcents: the value returned from the failed
service call, the service call number, and all the arguments to
the cervice call. Return from the handler acts like return from
the service call. To ignore exceptions, use a handler that only
returns its first argument.

Returned va}ues: -1 (*) if "addr" is unreasonahle, the ad-

dress of the old handler (possibly 0) otherwise.

4.14 Fork (Library Routine)

int fork(fname,arg,mode) char *fname;

The resource manager starts a new process running the pro-
gram found in the file named "fname", which must be in executable
load format. The function named "main" is called with the in-
teger argument “arg". "Mode" is a combination (logical “or") of
the following flags, defined in "user.h":

one of these: FOREGROUND, BACKGROUND, or DETACHED

and one of these: SHARE, REUSE, EXCLUSIVE, or VIRGIN
I1f FOREGROUND is specified, then the new process can be killed by
entering a control-C on the conscle. FOREGROUND is mainly used
by the command interpreter. If BACKGROUND is specified, then a
"process identifier" is returned that may be used to subsequently
"killoff" the child. DETACHED (i.e., neither FOREGROUND nor
BACKGROUND) is the default. If SHARE is specified, then the
resource manager will be willing to start this new process in the
sanc c¢ode space as another process executing the same file, if

Lhat proced s was acto gpavned in SHARE mode. If REUSE is speci-

-25-

fied, the cade space of an earlier process can be reused. 1f EX-
CLUSIVE is specified, then this process may not be started on a
machine which already has a process usiﬂg the same executeble
file. VIRGIN means that a new copy must be loaded, and 1is the }
default. 1f the call succeeds, a link of type REQUEST and TELLD-
EST is given to the resource manager; the child may obtain this
link by inveking “"parline". The caller may receive messages from
the child over this link, which has crde 0 and channel CHAN14.

A returned value of -1 indicates an error. Success is indi- ¥

cated by a return value of 0, except in the case of BACKGROUND #

mode, when the return value is a "process identifier",

4.15 Fsline (Library Routine)

int fsline();

This routine returns the number of a REQUEST link to be used
for communication with the file manager Process. An error gives

a returned value of -1.

4.16 Handler (Service Call)

handler (vector,func,chan) (*func) ();

The address of a device vector in low core is specified by
"vector". The interrupt wvector is initialized so that when an
interrupt occurs, the specified routine "func" is called at in-
terrupt level. If the interrupt level routine performs an “awak-
en" call, a message will arrive on channel "chan" with urcade 0
and urnote "INTERRUPT" {sce "receive").

Returnsd values: Success roturns a value of 0. -1 {(*)

-26-

R T

g R AT A I O PR 8 2

means that there have been too many handler calls on that machine
(the limit is currently 2). -2 (*) means that the channel is in-
valid. *+ -3 (*) means that the vector address is unreasonablz. -4

(*) means that the vector is already in use.

4,17 1lnline (Library Routine)

int inline();

This routiﬁe returns the number of a REQUEST link to be used
for subsequent terminal input. The terminal driver only allows
one input link to be open at any time. An error returns a value

of -1.

4,18 Kill (Service Call)

kill(lifeline);

The process indicated by "lifeline" (the return value of a
successful "“startup" call) is terminated as if it had performed
“die("killed")". The lifeline is not destroyed.

Returned values: Success returns a value of 0. -1 (*) in-
dicates that the link is invalid or not a "lifeline".

Only the resource manager and terminal driver should wuse

this call.

4.19 Killeff (Library Routine)

int killoff(procid);
This routine acks the resource manager to Kkill a process
that <the calling process previously created as a BACKGROUND pro-

cess with a "fork™ reoguest. The value roturned froam that "fork"

T SN SLTE T ST CHE £ TR

is "procid". The

called

"diell-

effect

on

the dead process is as if it had

0-is returned for success, -1 for failure.

4,20 Link (Service Call)

int link(code,chan,restr)

A new link is created. The caller becomes the new 1link's
owner (foreverj and holder (usually not for very long). The
caller specifies an integer, "code", which is later useful to the
caller to associate incoming messages with that link. The caller
also specifies "chan" as one of sixteen possibilities,
CHANl, ..., CHANl6, which are 1integers containing exactly one
non-zero bit. Channels are used to receive messages selectively.
CHAN16 should be avoided, for reasons explained in "call".
CHAN1S5 should also be avoided, since the kernel uses it for re-
mote 1leoading. The returned value is the link number that the
caller should use to refer to the link. The argument "restr" |is
the sum of various restriction bits that tell what kind of link
it is. The possibilities are:

GIVEALL
DUPALL

TELLGIVE
TELLDUP
TELLDEST
REQUEST
REPLY

MAYERROR

"GIVEALL" means that any holder may give the 1link to someone

else. "DUPALL" means that any holder way duplicate it (i.e.,

give it to somcone with "dup" = DUP; se¢ "send"). "TELLGIVE",

"TELLDUR", and/or "TELLDEST" causc the owner to be notified when-
ever a holder gives away, duplicates, and/or destroys the 1link,
respectively (see "receive"). A process may duplicate, give
away, or destroy a newly created 1link without restriction and
without gencrating notifications; restrictions and notifications
only apply to links received in messages. A link must be either
of type "REQUEST" or "REPLY". A REPLY link cannot be duplicated
and disappears Sftcr one use; a REQUEST link can be used repeat-
edly unless it is destroyed by its holder. An enclosed link must
always be of the opposite typc from the link over which it is be-
ing sent. If “MAYERROR" is specified, then error messages may be
sent aleng this link. (See."send" and "receive".)

Returned values: The normal return value is a non-negative
link number. -1 (*) means that the link was specified as either
both or neithcr of KEPLY and REQUEST; -2 (*) means that the chan-
nel is invalid, -3 (*) meuans there is no room for a new link

(currently 20 links are allowed to each process).

4.21 Linkok (Service Call)

int linkok(link)
The returned value is 0 if the 1link number is currently
valid, -1 if it 1is out of range, and -2 if it is in range but

does not denote a valid 1link.

JE N aLi & catiar. &

4.22 Leoad (Service Call)

int load(prog,fd,plink,arg) char *prog;

This call loads a program. If “"fd" 1is -1, the console
operator 1is requested to load "prog" manually. If "f4" is a
valid link number (it should be a 1link. to an open file) and
"prog" is -1, the file is loaded on the same machine. In either
of these cases, the return value is an "image", to be wused for
subsequent "startup" cr "remove" calls.

If "fd" is a link and "prog" is a machine number, the file
is lcaded remotely on the corresponding machine and started. The
arguments "plink" and "arg" have the same meaning as 1in the
"startup" call. The “plink" is automatically given (not dupli-
cated). The return value is a "lifeline", as for a "startup"
call.

Returned values: A nonnegative image number or lifeline
number is returned on success. -2 (*) and -3 (*) mean that the
link "fd" was out of range or was invalid, respectively. -5
means that there wasn't room for the new image. -6 means that
there are too many images. =-10 (*) means that the caller had no
room for the lifeline. <-11 (*) means that the "plink" was out of
range or had an invalid destination.

Only the resource manager should use this call.

-30=

BV i ¢ e,

gy AT AR PR S

4.23 Ltodate (Library Routine)

ltodate(n,s) long n; char s{30};

This library routine converts a long integer, representing
the number of seconds since Jan 1, 1973, into a readable charac-
ter string telling the time, day of the week, and date,. Dates

later than 1999 are not converted correctly.

4.24 Nice (Service Call)

nice{()

This call allows the Arachne scheduler to run any other
runnable process. (Arachne has a round-robin non-pre-emptive
scheduling discipline; "nice" puts the currently running process

at the bottom.) It is used to avoid busy waits.

4.25 Open (Library Routine)

int open(fslink,fname,mode) char *fname;
The file named "fname" is opened for reading if "mode" is 0,
for writing if "mode" is 1, and for both if "mode" is 2. The ar-

gument "fslink" is the caller's link to the file manager. The

returned value is a 1link number, used for subsequent "read",
"write", and "close" operations. This link may be given to other

processes, but not duplicated. -1 is returned on error.

-31-

TRV TR FARTT Y TR ey

4.26 Qutline (Library gputiqg)

‘int outline();
This routine returns the number of a link to be used for

subsequent terminal output. An error returns a value of -1.

4.27 Parline (Library Routine)

parline();

This routine asks the resource manager for a link ta the
parent of the cealler. It assumes that the parent gave the
resource manager a REQUEST link when it spawned the child. An
error returns a value of -1,

This call is typically used by a program being run by the
command interpreter; the parent link (to the command interpreter)

is used to get the command line arguments.

4.28 Print (Library Routine)

int print(file,format,args...) char *format;

This routine implements a simplified version of UNIX's
"printf", The argument "file" is either a link to an open file
or a terminal output link. The input 1is formatted and then
“write" is called. The "format" is a character string to be
written, except that two-byte sequences beginning with "&" are
treated specially. "td", "$o0", "$c", "sw", and "%$s" stand for
decimal, octal, character, 1long integer, and string format,
respectively. As these condes are encountered in the format, suc-

arca" are writton in the indicated manner. {Unlike

238 Ive

P ey

TS g e

"printf", there are no field widths.) A "%" followed by any
character other than the above possibilities disappears, so "%%"

is written out as "%". Only 6 arguments are allowed.

4.29 Read (Library Routine)

int read(file,buf,size) char *buf;.

The argument "file" is either a link to an open file or a
terminal input link. At most "size" bytes are read into the
buffer “"buf"; fewer are read if end-of-file occurs. For the ter-
minal, control-D 1is interpreted as end-of-file. The returned

value is the number of bytes actually read.

4.30 PReadline (Library Routine)

int readline(file,buf,size) char *buf;

This routine is the same as "read", except that it also
stops at the end of a line. For a file a "newline" character is
interpreted as end-of-line; however, "readline" is very ineffi-
cient for files. For the terminal, a "line-feed" or "carriage
return®” terminates a line; the 1last character placed in the
buffer will be "newline" (octal 12). Control-D or control-w will
also terminate a line, but they will not be included in the bytes

read. The returned value is the number of bytes read.

-33-

G

4.31 Recall (Library Routine)

int recall(inmess,inlen) char *inmess; int *inlen;

If a previous "call" (or "recall") returned a value of -3,
meaning that the message did not arrive in 5 seconds, a process
can invoke the library routine "recall" to continue waiting.
Only the return message buffer and place to store the length are
specified (cf. "call").

Returned vélues: These are the same as for "call", except

that -2 and -6 don't apply.

4.32 Receive (Service Call)

int receive(chans,data,urmess,delay) char *data;
struct urmesg { /* for receiving messages */
int urcode; /* chosen by user, see "link" */
int urnote; /* filled in by Arachne, see "receive" */
int urchan; * chosen by user, see "link" */
int urlnenc; /* index of enclosed link */
int urlength; /* length of incoming message */
} *urmess;

The caller waits until a message arrives on one of several
channels, the sum of which is specified by "chans". All other
messages remain gueued for later receipt. The code and channel
of the link for the incoming message are returned in "urcode" and
"urchan", respectively.

The value of "urnote" is one of six possibilities: DUPPED,
DESTROYED, GIVEN, INTERRUPT, DATA, or ERROR. The first three of
these mean that the link's holder has either duplicated, des-
troyed, or given away the link (see "send" and "link"). In the

case of "DESTROYED", the body of the message may contain data

=34~

e

placed there durinjg teramination of the sender (see "die" and
"kill"). MINTERRUPT" is discusczed under “"handler". "DATA" moans
that the messaje was sent by "send".
"ERRCGR" means either that the mescage was sent by "send",
but the link had "MAYERROR" and the sender specified "ERROR", or
: ' the link had "MAYERROR" but not “"TELLDEST" and the holder tcr-
minated (see "1link"). Receipt of an error message raises an ex-
ception (see "errhandler").
The newly assigned link number for the 1link enclosed with
; the message 1is reported in "urlnenc"; the caller now holds this
link). If no link was enclosed, "urlnenc" is ~1. The length of
the incoming message is reported in "urlength". The argument
"data" must point to a buffer of size MSLEN into which the incom- i
ing message, if any, will be put. The caller may discard the
message by setting "data" to zero. The argument "deiay" gives j
the time in seconds that the caller is willing to wait for a mes- ﬂ
sage on the given channels; a "delay" of 0 means that the call)
will return immediately if no message is already there, and a.
"delay" of -1 means that there is no limit on how long the caller
will wait, A process can sleep for a certain amount of time by

waiting for a message that it knows won't come (e.g., on an

unused channel).

BB b ot

Returned values: 0 is returned on success. -1 (*) means
the caller has no room for the enclosed link (see link; the mes-

sage can be successfully received later), -2 (*) means that the

argument “"urmess" was bad, -3 means that the waiting time ex-

pired. : ;

&
~35=~

B AR PR

e b ks et Lt el o

4.33 Remove (Service Call)

remove (image)

The code segment indicated by "image", the return value of a
successful "load" «call, is removed. Only the process that per-
formed a "load" is allowed to subsequently "remove" that image.

Returned values: Success returns a value of 0, -1 (*)
means that the image either doesn't exist or is in use, or that
the caller didn't originally load the image.

The resource manager uses this call to create space for new

images; no other program should use this call.

4.34 Seek (Library Routine)

int seek(file,offset,mode)

The argument "file" is a link to an open file. The current
position 1in the file is changed as specified by the "offset" and
"mode". A value for "mode" of 0, 1, or 2 refers to the begin-
ning, the current position, or the end of the file, respectively.
The "offiset” is measured from the position indicated by "modé";
it is uncigned if "mode" = 0, otherwise signed. A returned value

of 0 indicates success, -1 indicates failure.

4,35 Send (Service call)

int send(ulink,elink,data,length,dup) char *data;
This call sends a message along link number “ulink". The
message body is "data" and its length is "length". 1If no message

is to be sent, cither "data™ or "length" should be zero. If the

PRV

caller wishes to pass another link that it holds with the mes-

sage, it specifies that link's number in "elink" (the "enclosed
link")., 1If there is no enclosure, "elink" should be -1. The use
of elinks is restricted in various ways; see "link",

The argument "dup" specifies either "DUP" or "NODUP"; in the
first case, the enclosed 1link 1is duplicated so that both the
sender and receiver will hold links to the same owner; in the
second case, the enclosed link is given away so that only the re-
ceiver of the message will hold it.

The "dup" argument also may specify "ERROR" (this bit should
be ored into "DUé" or "NODUP"). 1If "ulink" has the "MAYERROR"
restriction, then an "ERROR"” message will be sent to the reci-
pient. If "MAYERROR" is not set, then "ERROR" has no effect.

Returned values: 0 is returned on success. -1 (*) means
that the ulink number is bad and -2 (*) means that the ulink is
invalid. -3 (*) and -4 (*) have corresponding meanings for the
elink. -5 (*) means that the message was bad, -6 (*) means that
the elink can't be duplicated, -7 (*) means that the elink can't
be given away, and -8 (*) means the message is too long.

No error is r?ported if the destination process has ter-

minated; in this case, the message is discarded.

4.36 Setdate (Service Call)

setdate(n) long n;

This sorvice call sets the wall clock to "n", which is a

long inteyer representing the number of seconds since midnight,

A e

Jan 1, 1973.
Only the command interpreter and resource manager should use

this call.

4.37 Startup (Service Call)

int startup(image,arg,plink,dup,£fd)

This call starts a process whose code segment 1is indicated
by "image", the return value of a successful "load" call. The
child is given "arg" as its argument to "main". The child's link
number 0 is "plink", a link owned by the caller; this link is ei-
ther given to the child or duplicated depending on whether "dup"
is NODUP or DUP, respectively. The child cannot destroy link 0.
For C programs, the data area is part of the image; for Elmer
programs, “startup" causes a new data area to be created. The
"fd" argument should be a link number for an open file that holds
the Elmer program; it is used to load the data segment.

Returned values: Success returns a non-negative 1lifeline
number, which can be used for a subsequent "kill". -1 (*) means
that the caller had no room for the lifeline (see "link"). -2
(*) or =3 (*) means that the "plink" was out of range or had an
invalid destination, respectively. -4 means that there was no
room for the new process' stack (or data area: Elmer only). =5
(*) means that the "image" was invalid, -6 (*) means that "image"
is an Elmer program, and "“fd4" is bad.

Only the resource manager should use this call.

o e e e S e ittt

4.38 Stat (Library Routine)

int stat(fsiink,fname,statbuf) char statbuf[36];

This library routine gives information about the file named
"fname", The argument "fslink" is the caller's link to the file
manager. An error returns a value of -1. After a successful
call, the contents of the 36-byte buffer "statbuf" have the fol-

lowing meaning:

structf{
char minor; minor device of i-node
char major; major device
int inumber;
int flaygs;
char nlinks; number of links to file
char uid; user ID of owner
char gid; group ID of owner
char sizel; high byte of 24-bit size
int sizel; low word of 24-bit size
int addr[8]; block numbers or device number
long actime; time of last access
long modtime; time of last modification
} *buf;

NOTE:

Some of these fields are irrelevant, since all Arachne files
have the same owner.

4,39 Time (Service Call)

long time(); ,

This service call returns a long integer that may be used
for timing studies. The integer is a measure of time in inter-
vals of ten-thousandths of seconds. NOTE: The time wraps around

after a full double word (32 bits).

~39-

e R NG

Dt il A i it s 2

e

4.40 Unlink (Library Routine)

int unlink(fslink,fname) char *fname;

This library routine removes the file named “fname"; it
cleans up after "create" and “alias". The argument "fslink" is
the caller's link to the file manager. Error returns a value of

-10

4.41 Write (Library Routine)

write(file,buf,size) char *buf;
The argument "file" is either a link to an open file or a
terminal output link. Using this link, “"size" bytes are written

from the buffer "buf". There are no return values.

5. CONSOLE COMMANDS

The Command Interpreter is a utility process that reads the
teletype. When the Command Interpreter is awaiting a command, it
types the prompt ".". A command consists of a sequence of “argu-
ments" separated by spaces. Otherwise, spaces and tabs are ig-
nored except when included in gquotation marks (%). Within
quotes, two consecutive quotes denote one quote; otherwise, quo-
tation marks are deleted. The first "argument" is interpreted as
a "command" (see below). Command names may be truncated, provid-
ed the result is unambiguous. It is intended that all commands
will differ in their first three characters.

The "run" command may be followed by from one to MAXCOMS (4)

£
~40- H

o . akicndt sate St

commands separated by the symbol """, The terminal output of the

command to the left of a """ is buffered by a special "pipe" pro-

cess, and fed as though it were terminal input to the command to

the riéht of the """. The output from the last process in a pipe

~

may be redirected to a file by following it with " to out-

filename”., The input to the first process in a pipe may be ob-
tained from a file by preceding it with "from infilename = *.
Although "to" and "from" appear to be the names of processes in
the pipe, they do not count towards the MAXCOMS maximum. Furth-
ermore, "to" and "from" are reserved words to the command inter-

preter, and hence neither may be the name of a user program.

The following is an alphabetized list of console commands.

5.1 alias <filenamel> <filename2>

The second indicated file becomes another name for the first
indicated file., 1If either of these is "deleted", the other (log-

ical) copy still exists; however, changes to either affect both.

5.2 background <filename> <arg>

The indicated file must be executable. It is started as a
BACKGROUND process, with the integer argument "arg". The Command
Interpreter prints out the new process's process identifier,

which may be used for subsequent "killing" and then gives the

next prompt.

5.3 copy <filenamel> <filename2>

The second indicated file is created with a copy of the con-

‘tents bf the first indicated file.

5.4 delete <filename>

The indicated file is deleted.

5.5 dump <address>

Prints a screenful of memory locations in octal for debug-

ging.
5.6 help

A list of available commands is displayed.
5.7 kill <arg>

The indicated argument should be the process identifier re-
turned from a previous "background" command. The process re-

ferred to by the process identifier is killed.

5.8 make <filename>

The named file is created. Subsequent input 1is inserted

into the file; the input is terminated by a control-D.

R s o e

5.9 rename <oldname> <{newnamec>

The name of file "oldname" is changed to "newname".

5.10 run <filename> { <arg> } { * <filename> { <arg> } }

The indicated files should be executable files. The right-
most one is run as a FOREGROUND process. The others are run as
BACKGROUND processes. The Resource Manager is given a REQUEST
link, which the new process may use to ask for the command line
arguments. When the loaded program starts up, the argument ¢to
"main” tells the number of command line arguments. To get the
individual arguments, the loaded program sends a message. to the
Command Interpreter (its parent). The first word of the message
is ARGREQ, and the second is an integer specifying which argument
is desired. The name of the program is argument number 0. The
returned message body is the argument, which is a null-terminated

string of length at most MSLEN.

5.11 set <modelist> or SET <modelist>

This command ¢hanges the console input modes. The mode list
is a sequence of keywords "x" or "-x", where "x" can be any of

the following:

g
f

- mm Ry T

upper (the terminal is upper case)

echo (the terminal echoes input)
hard (the terminal is hard-copy)
tabs . (the terminal has hardware tabs)

Keywords may be abbreviated according to the same rules as com-
mands. The format "x" turns on the corresponding mode, “-x"
turns it off. (UPPER is recognized for upper; "lower" means #-
upper"”.) For more information, see the section "CONSOLE INPUT

PROTOCOLS".

5.12 time <format>

I1f a forrat is given (as "yymmddhhmm"), the wall clock is
set to that time and printed. With no argument, "time" prints

the wall clock time.

5.13 type <filename>

The indicated file is typed.

6. TERMINAL INPUT PROTOCOLS

The terminal driver performs interrupt-driven I/0, which al-
lows for typing ahead. Also, the following characters have spe-

cial meanings:

Control-C kill the running program (but don't kill the
command intcrpreter itself)

control-D end of file (terminates a "read" or "read-
line")

Control-¥ end of line (but no character sent)

line-feed end of line
carriage rcturn end of line

rubout erase last character (unless line empty)

Control-X erasc current line

Control-S center ccroll mode; pause cvery 18 1lines of

e

bia AR et Rk T O LR

e T UV LS ST

output; if paused, allow the next 18 lines to be printed.

Control-Q leave scroll mode; if paused, allow output to
continue.)
escape next character should be sent as is

In "echo” mode, input is echoed, otherwise not. In “hard"
mode, output is designed to be legible on hardcopy devices; oth-
erwise the terminal driver assumes that the cursor can move back-
ward, as on a CRT. In "tabs" mo@e, advantage is taken of
hardware tabs on the terminal. In "upper" mode, the terminal is
assumed to only have upper case. Input is converted to lower
case, unless escaped. Upper case characters are printed and
echoed with a preceding "!". Escaped [,], @, *, and \ are con-
verted to {, }, °, -, and |, respectively, and the latter are

similarly indicated by preceding "!"s.

7. UTILITY PROCESS PROTOCOLS

This section describes the protocols that user programs must
follow to communicate with the utility processes when the library
routines described earlier are inadequate. Four utility
processes are the resource manager, the file manager, the termi-
nal driver, and the command interpreter. The resource manager
keeps track of which programs are loaded and/or running on the
local machine. The kernel and the resource manager reside on
each machine, The terminal driver governs I/O on the coasole;
the command interpreter interprets console input. The file

manager implements a file system by communicating with the PpP-

C e s e am s

11/40. It nced not exist on every machine,

During Arachne initialization, one resource manager is
started, It loads a full complement of utility processes (the
‘terminal driver, command interpreter, and file manager) on its
machine and various wutility processes on the other machines.
When a particular resource manager is not given a local terminal

driver or file manager, it shares the one on the initial machine.

7.1 Input/Output Protocols

This section describes the message formats used for communi-
cating with the file manager and terminal driver processes. A
program that explicitly communicates with the file manager or
terminal driver must include the header files "filesys.h" and
"ttdriver.h", which define the necessary structures.

To open an input or output line to the terminal, to change
the modes on the terminal, or to inform the teletype of whom it
should kill when encountering a control-C, a message is sent over
the terminal link cf the following form:

struct ttinline{

char tticom;
char ttisubcom;

char ttimodes;

}
"tticom" is either OPEN, STTY, MODES, or TOKILL In the case of

OPEN, “ttisubcom"™ is either READ or WRITE, and the return message
has the new link enclosed In the case of STTY, "ttimodes" tells
what the new modes should be (a bit-wise sum of ECHO, TABS, HARD,

and UPPER). In the case of MODES (to find out the curcent

modes), the rcturn message has the modes in "ttimodes". 1In the

R AR gt

case of TOKILL (to inform the terminal driver which process to
kill on receipt of control-C), the message encloses a lifeline.

To open, create, unlink, alias, or get status information on

‘a file, a message is sent over the file manager link in the fol-

lowing form:

struct ocmesg{
int ocaction;
int ocmode;
char fsname[MSLEN-4];

}
"ocaction" is either OPEN, CREATE, UNLINK, ALIAS, or STAT. "oc-
mode" is the mode for OPEN or CREATE; in the case of ALIAS, it
holds the length of the first file name. "ocname" contains the
file name (or, 1in the case of ALIAS, the concatenation of two
file names), null-terminated. 1In the cases of OPEN or CREATE, a
successful return contains a valid enclosed link; for UNLINK,
STAT, or ALIAS, there is no enclosed link. In the case of STAT,
the return niessage has the structure of a "rdmesy" as in the case
of READ below; the response has length 36 or 0, corresponding to
success or failure, respectively. In all other caces, the
response is one word: 0 on success, -1 on failure.
For either the terminal or the file manager, reading or
writing is done by sending a message of the following form:
struct fsmesg{
int fsaction;
int fslength;
}
"fsaction" should be either READ, READLINE, or WRITE. "fslength"

tells how many bytes are intended to be read, or are being sent

to be written. 1In the case of WRITE, the text is sent in subse-

quent messages, and nothing is returned. In the cases of READ or
READLINEy s the response is of the following form:
struct rdmesg{
char rdtext{MSLEN]);
}
The maximum allowable read is size MSLEN., The actual size of the
returned message is contained in the "urlength" field.
To perform .a seek on an open file, send a message to the
file manager of the following form:
struct skmes3/!
int skaction; /* should be SEEK */

int skoffset;
int skmode;

}

The return message is one word: 0 for success, -1 for failure.

7.2 Resource Manager Protocols

Processes that communicate explicitly with the resource
manager must include the header file "resource.h"., The following

structure is declared there:

struct rmmesy { /* messages to resource managers */
int rmreq; /* type of request */
int rmarg; /* various miscellaneous arguments */
int rmmode; /* the mode for STARTs or KILLs */

}

The resource manager Keeps track of which images (code seg-
ments) and processes exist., A separate resource manager runs on
each machine in the network; these programs communicate with cach
other, but are relatively independent.

Each resource manazer holds a terminal link and file manager
link, which are cither for locel utility processes or clse links

received trom the tivst resource wanajor initiatized., Whenover a

48~

N s » i et) " . e R 3 - - o - -
b R 3
NN L e e o

resourcce manajer has a local terminal it also has a local command
interpreter,

. . There are thrce kinds of processes:' FOREGROUND, BACK~-
GROUND, and DETACHED. Wwhen a process is started, its link 0 is
owned by the 1local resource manager, to whom all of this
process's requests are directed.

The first FOREGROUND process for any terminal is always the
command interpréter, wnich initially "has the ball". Each termi-

nal always has one FOREGROUND process that "has the ball". The

process “"with the ball" may create another FOREGROUND process,
which means that the child now "has the ball". The meaning of
"having the ball" is that a control-C entered on the correspond-
ing terminal will terminate the process. When the process "with
the ball" terminates, 1its parent then "recovers the ball", and
will be terminated by the next control-C. If one of the
processes in this FOREGRCUND chain terminates, the chain is re-
linked appropriately. The command interpreter is an exception in
that control-C's have no effect on it.

A process may also create another process as a BACRGROUWD
process, In this case, the child's process identifier is re-
turned to the parent, and later the parent can use this identif-
ier to terminate the child. These identifiers are assigned by
the resource manager, and are distinct from the process identif-

iers used in the kernel.

e

' A DETACHED process cannot be terminated by cither method.
A uscr may make five kinds of 1cquests on its resource

gdanegors:

-49~

1. RMTTREQ Request

The resource manager is requested to give the requestor a
link to the reguestor's terminal. This link will be sent over
the enclosed link in the request, which should therefore be a RE-

PLY link.
2. RMFSREQ Request

The resource manager duplicates its file manager 1link and
sends it back over the enclosed link in the request, which should

therefore be a REPLY link.
3. RMSTART Request

The resource manager will start a process, using the 1link
enclosed with this request for two purposes: 1) to respond to
the reqguest (see conditions for response below), or 2) to save it
and give to the child if the child asks for it (see RMPLINK
below). The caller must be careful, of course, not to give a RE-
PLY 1link if both uses are intended. Also, the caller must make
the enclosed link GIVEALL if the resource manager should try to
load the process on another machine, rather than giving up if it
doesn't fit on the local one. The RMSTART request also specifies
the file name and an integer argument to be given to the child
when it starts,

The caller also specifies a "mode" for starting the child,
which 1is a combination of bits with various meanings. The user

should specify either RACKGROUND, FOREGROUND, or DETACHLD (the

-50-

default 1s DETACHED). FOREGROUND is only allowed if the reques-
tor currently "has the ball" for its terminal. The user may
specify EXCLUSIVE, which causes the resource manager to load it
on a machine only if there is no like-named core image with its
EXCLUSIVE bit set, on that machine. The user should specify ei-
ther SHARE, REUSE, EXCLUSIVE, or VIRGIN.(the default is VIRGIN).
These alternatives are described above (see "fork"). The user
should also speéify either GENTLY or ROUGHLY (the default Iis
GENTLY) . If GENTLY, the resource manager will first try to load
it locally without throwing out any other unused images and then
will try to do the same on other machines. When this fails, or
if ROUGHLY was specified, it tries to make room locally for the
new process, and then tries to do so on other machines. The user
should also specify either ANSWER or NOANSWER (the default is
NOANSWER) . If ANSWER is specified, or if BACKGROUND was speci-
fied, then the resource manager sends a reply over the enclosed
link. The first word of the reply is the return code; -1 always
means failure; 0 means success except in the case of BACKGROUND,
when the value returned is the process identifier of the child.
An existing code segment is reusable if the filename still
refers to an existing publicly executable load format file that
has not been modified since the copy in guestion was loaded. Any
number of processes may share a code segment. The terminal asso-
ciated with a child process is always the samc as the one associ-

ated with 1its parent; the command interpreter is loaded with a

terminal during initialization,

bk o0 aier

4. RMRILL Request

The resource manager kills the process whose process iden-
'tifier. is given as part of the reguest. The request may enclose
a link that is used to give a one-word acknowledgement of success
or failure if the request specifies ANSWER (as in RMSTART,
described above). The process being killed must of course be

BACKGROUND, and only the process that started it is allowed to
kill it.

5. RMPLINK Request

The resource manager returns the link that was originally en-
closed with the request that started this process. It is re-
turned over the link enclosed with the RMPLINK request, which

must therefore be of the proper type, whichever that may be.

8. ACKNGWLEDGEMENTS

The authors would like to acknowledge the assistance of Pro-
fessor Sun Zhong Xiu of Nanking University, Peoples Republic of
China, and the following graduate students who have been involved
in the Arachne project: Jonathan Dreyer, Jack Fishburn, Michael
Horowitz, Will Leland, and Paul Pierce. Their hard work has

helped Arachne to reach its current level of development.

-52-

T W@J!!ﬂ’.l"ﬁ.‘wﬁ‘n"’?" M

FERRCWRN NV NS LT U,

P NN eI i

9. REFERENCES

Baskett, F., Howard, J. H., Montague J. T., "Task Communication
in Dpemos", Proceedings of the Sixth Symposium on Operating
Systems Prlncxolea, PpP. 23-31, November 1977.

Finkel, R. A., Solomon, M. H., The Roscoe Kernel, Version 1
University of wWisconsin--Madison Computer Sciences Techni
Report 4337, September 1978.

og’
cal
Finkel, R. A., Soiomon, M. H., Tischler, R. L., Roscoe Utility

Prcressea, University of Wisconsin--Madison Computer Sci-
ences Technical Report #338, February 1979.

Finkel, R. A., Solomon, M., and Tischler, R., "The Roscoe
Resource Manager", Proceedings of Compcon Spring 1979, pp.
88-91, February, 1979.

Finkel, R. A., Solomon, M. H., Tischler, R., Roscoe Us Guide,
Version 1.1, University of Wisconsin--ltadison Aathenat1c0
Research Center Technical Report #193C, March 1979.

Finkel, R. A., Solomon, M. H., Tischler, R., Arachne User Guide,
Version 1. ?, University of Wisconsin--Madison Computer Sci-
ences Technical Report #379, February 1980.

Finkel, R. A., Solomon, M. H., The Arachne Kernel, Version 1.2,
University of Wisconsin--Madison Computer Sciences Technical
Report #380, February 1980.

Kernighan, B. W., Ritchie, D. M., The C Programming Language,
Prentice-~Hall, 1978.

Ritchie, D. M., Thompscon, K., "The UNIX Time~Sharing System",
Communications of the ACM, Vol. 17, No 7, pp. 365-375, July
197¢4. -

Solomon, M. H., Finkel, R. A., ROSCOE =-- a multiminicomputer
overating systpm, University of Wisconsin--fladison Couputer
Sciences Technical Report #321, September 1978.

Solowon, M., and Finkel, R., "The Roscoe Distributed Opecrating
System", Proceedings of the Seventh Symposiun on Operating
Systems Pxxnvxvlﬂa, pp. 108-1174, 10-12 vecemboer, 1879,

Tischler, R. L., Fink2l, R, A,, Solomon, M. i., Roscoc Ur or

Guide, Version 1.0, Universitv of Wisconsin--Madison Computer
Sciences Technical Report #336, September 1978.

=53~
B P A TN Ry ey -

POV

e h ke e

ST A 26 LR T M S s W B T e e

SECURITY CLASSIFICATION OF THIS PAGE /When Deate Entered)

.

REPORT DOCUMENTATION PAGE

READ (NSTRUCTIONS
BEFORE COMPLETING FORM

T. REPORT NUMBER 2. GOVT ACCESSION NO,

2066 C

/ QH ARACHNE USER GUIDE o
f&; - = =

4)= 4087 Lo

3. RECIPIENT’'S CATALOG NUMBER

4. TITLE (and Subtitie)

iod

= = L
AN

Y /7,/54; ummary ep.:.a:gosf;:;gc
et) s/

Version 1.2'
= o —

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s)

Raphael/Flnkel Marv1n/Solomon_-_m Ron/ﬁ‘lschler

e e PP O

8. CONTRACT OR GRANT NUMBER(s)
_.————"‘——'———"‘-"" A e

/$) DanG2g-75-C-0024,
' DAAG29-8@9-C-0p41

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Mathematics Research Center, University of

610 Walnut Street Wisconsin
Madison, Wisconsin 53706 o

10° EMEN g
AREA & WORK UNIT NUMBERS

Work Unit Number 3 (Numerical
Analysis and Computer Sciencéﬁ

11. CONTROLLING OFFICE NAME AND ADDRESS

12. - REPORT DATS

Apr SIS0

4

U. S. Army Research Office lz 7 ///1

P.O. Box 12211
Research Triangle Park, North Carolina 27709

13. NUNSEROF-PASES

11)/7} ST iRl DL

53
T4, uom‘ronmc AGENCY NAME a ADDRESS(M dllhnnt from Controlling Otfice) 1$. SECURITY CLASS. (of this report)
UNCLASSIFIED

182 DECL ASSIFICATION/ DOWNGRADING
SCHEDULE °

r——-——.——_———;
16. DISTR:BUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, il dilfferent from Report)

18. SUPPLEMENTARY NOTES

Distributed computing
Networks

Operating systems
User interface

19. KEY WORDS (Continue on reverse side il nec y and identity dy block number)

20. ABSTRACT (Continue on reveree side It y and identi{y by bdblock number)

calls and library routines are described in detail.
line interpreter and terminal input conventions are

Arachne is a multi-computer operating system running on a network of LSI-11
computers at the University of Wisconsin. This document describes Arachne from
the viewpoint of a user or a writer of user-level programs.

reports describe the purposes and concepts underlying the Arachne prsrject and
give detailed accounts of the Arachne utility kernel and utility processes.

All system service
In additicn, the command-
discussed. Compauicn

DD , %' 1473

EDITION OF | NOV 6513 OBSOLETE

UNCLASSIFIED J 7 L

s ————p——————
SECURITY CLASSIFICATION OF THIS PA

iy R

7 b

