
AAA00 609 WISCONSIN WiIV-MAOISON MATHEMATICS RESEARCH CENTER F/6 9/2
ARACHNE USER GUIDE. VERSION 1.2.(U)
APR 80 R FINKEL, N SOLOMON, R TISCHLER OAAG29-75"C-0024

UNCLASSIFIED MRC-TSR-206 NL

7II

1111 1.0 Loo Wl8 11215
122II-°

MICROCOPY RESOLUTION TEST CHART

Raphael Finkel, Marvin, Solomon arid

Mais Ron Wisconsn 570

(Received March 4, 1980)

Appeved few publit release
Distribution unlimited

inSponsored by

U. S. Army Research Office

P. 0. Box 1.2211

Research Trianiqie Park

wNorth Carolina 27709

80 8 11037

UNIVERSITY OF WISCONSIN-MADISON

MATHEMATICS RESEARCH CENTER

ARACHNE USER GUIDE

Version 1.2

Raphael Finkel, Marvin Solomon and Ron Tischler

Technical Summary Report #2066

April 1980

ABSTRACT

Arachne is a multi-computer operating system running on a network of

LSI-11 computers at the University of Wisconsin. This document describes

Arachne from the viewpoint of a user or a writer of user-level programs.

All system service calls and library routines are described in detail.

In addition, the command-line interpreter and terminal input conventions

are discussed. Companion reports describe the purposes and concepts

underlying the Arachne project and give detailed accounts of the Arachne

utility kernel and utility processes.

AMS (MOS) Subject Classifications - 68-00, 68A35, 68A45, 68A55

Key Words - Distributed computing, Networks, Operating systems,
User interface

Work Unit Number 3 (Numerical Analysis and Computer Science)

Appeared as Computer Sciences Technical Report 379, Computer Sciences
Department, University of Wisconsin-Madison. We have been forced to change
the name of the Roscoe distributed operating system, since Roscoe is a
registered trademark of Applied Data Research, Incorporated. The new name
we have chosen is Arachne; the operating system and research continue
unchanged.

Sponsored by the United States Army under Contract Nos. DAAG29-75-C-0024
and DAAG29-80-C-0041.

SIGNIFICANCE AND EXPLANATION

Arachne is an experimental operating system for controlling a network

of microcomputers. It is currently implemented at the University of

Wisconsin on a network of five minicomputers. Some of its essential

features are: All processors are identical, although they may differ in

peripheral units. No memory is shared between processors, and all com-

munication involves messages passed between processes. The way in which

the processors are interconnected is not important. The network appears

to the user to be a single machine.

This report describes Arachne from the viewpoint of a user or a

writer of user-level programs.

Accession For

NTIS GRA&I

DDC TAB

Unannounced
Justification

By__

Distribution!

Avei),,i-,!litY CodeAs
Avail and/or

Dist special

The responsibility for the wording and views expressed in this descriptive

summary lies with MRC, and not with the authors of this report.

V
.

. ----

TABLE OF CONTENTS

1 INrRODUCTION 1

1.1 Purpose of this Document 2
1.2 Caveat 3
1.3 Format of this Guidei 3
1.4 Revisions 4

2. ROSCOE CONCEPTS AND FACILITIES...................... 5

2.1 Processes 6
2.2 Links 7
2.3 Messages 8
2.4 Link restrictions 8
2.5 Service calls 9
2.6 Utility processes.......................... to 9
2.7 Library routines o...... 11

3. SUBJECT-AREA GUIDE 11

3.1 Links and M es 11
*3.2 Processes .o......................... 13

3.3 Timing 14
3.4 Interrupts and Exceptions 153.5 Input/Output * . . .*. . .% * 16
3.6 Miscellaneous Routines 17
3.7 Preparing User Programs................ 17

4. ROSCOE PROGRAMMER'S MANUAL......................... 18

4.1 Alias (Library Routine) 18
4.2 Awaken (Service Call) 18
4.3 Call (Library Routine),. o 19
4.4 Catch (Service Call) 20
4.5 Close (Library Routine) 21
4.6 Copy (Service Call) 22
4.7 Create (Library Routine)to.................. 22
4.8 Date (Service Call) 23
4.9 Datetol (Library Routine) 23
4.10 Destroy (Service Call) 23
4.11 Die (Service Call) .,....... 23
4.12 Display (Service Call) 24
4.13 Errhandler (Service Call) o.....to...... 24
4.14 Fork (Library .Routine) 25
4.15 Fsline (Library Routine) 26
4.16 Handler (Service Call) 26
4.17 Inline (Library Routine)............. 27
4.18 Kill (Service Call) 27
4.19 Killoff (Library Routin e) 27i n

4.20 Link (Service Call) 28
4.21 Linkok (Service Call) 29

4.22 Load (Service Call) 30
4.23 Ltodate (Library Routine) 31
4.24. Nice (Service Ca) 3 1
4.25 Open (Library Routine) 31
4.26 Outline (Library Routine) 32
4.27 Parline (Library Routine) 32
4.28 Print (Library Routine) 32
4.29 Read (Library Routine) 33
4.30 Readline (Library Routine) e.......... 33
4.31 Recall (Library Routine). 34
4.32 Receive (Service Call) 34
4.33 Remove (Service Call) 36
4.34 Seek (Library Routine) 36
4.35 Send (Service call) 36
4.36 Setdate (Service Call) 37
4.37 Startup (Service Call) 0..*.. 38
4.38 Stat (Library Routine) 39
4.39 Time (Service Call) 39
4.40 Unlink (Library Routine) 40
4.41 Write (Library Routine) 40

5. CONSOLE COMMANDS... 40

5.1 alias <filenamel> <filename2> 41
5.2 background <fi ename> <arg> 41
5.3 copy <filenamel> <filename2> 42
5.4 delete <filename> 42
5.5 dump <address> 42
5.6 help .. 42
5.7 kill <arg> .. 42

5.8 make <filename> 42
5.9 rename <oldname> <riewname> 43
5.10 run <filename> { <arg> } { ^ <filename> [<arg> } }. 43
5.11 set <modelist> or SET <modelist> 43
5.12 time <format> 44
5.13 type <filename> 4......................*........ 44

6. TERMINAL INPUT PROTOCOLS 44

7. UTILITY PROCESS PROTOCOLS 45

7.1 Input/Output Protocols 46
7.2 Resource Manager Protocols 48

8. ACKNOWLEDGEMENTS o........ . 52

9. REFE'RENCES *..s... 53

... / ii

ARACHNE USER GUIDEt
Version 1.2

Rdpildel Finkel, Marvin Solomon and Ron Tischler

1. INTRODUCTION

Arachne is an experimental operating system for controlling

a network of microcomputers. It is currently implemented on a

network of five Digital Equipment Corporation LSI-11 computers

connected by medium-speed lines.* The essential features of

Roscoe are:

1. All processors are identical. Similarly, all processors

run the same operating system kernel. However, they may differ

in the peripheral units connected to them.

2. No memory is shared between processors. All communica-

tion involves messages explicitly passed between physically con-

nected processors.

3. No assumptions are made about the topology of intercon-

nection except that the network is connected (that is, there is a

path between each pair of processors). The connecting hardware

is assumed to be sufficiently fast that concurreL.t processes can

cooperate in performing tasks.

tAppeared as Computer Sciences Technical Report 379, Computer

Sciences Department, University of Wisconsin-Madison. We have been
forced to change the name of the Poscoe distributed operating
system, since Roscoe is a registered trademark of Applied Data
Research, Incoroorated. The new name we have chosen is Arachne;
the operating system and research continue unchanged.

This equipment was purchased with funds from National ScienceFoundation Research Grant #.1CS77-O8968.

Sponsored by the United States Army under Contract !Ios. DIAA.29-j 75-C-0024 and DAAG29-80-C-0041.

4. The network appears to the user to be a single powerful

machine. A process runs on one machine, but communicating

processes have no need to know if they are on the same processor

and no way of finding out. (Migration of processes to improve

performance is transparent to the processes involved.)

5. The network is constructed entirely from hardware com-

ponents commercially available at the time of construction (Janu-

ary, 1978).

6. The software is all functional. Although Roscoe has

undergone much revision, it has been working for over a year.

1.1 Pur0ose of this Document

This document describes Arachne from the point of view of a

user or user-programmer. It is both a tutorial and a reference

guide to the facilities provided to the user. All information

necessary to the programmer of applications programs should be

found here.

Further discussion of the concepts and goals of Arachne are

discussed in [Solomon 78, 79]. That document also lists some

research problems that the Arachne project intends to investi-

gate. The operating system kernel that proviees the facilities

listed below is described in considerable detail in [Finkel 78,

80b]. Similar detailed documentation about utility processes

(such as the File System Process, the Teletype Driver, the Com-

mand Interpreter, and the Resource Manager) is contained in

[Finkel 79a, 79bJ.

Arachne has been developed with extensive-use of the UNfX

-2-
N1.

opereting sysLemi [Ritchie 74]. All code (with the exception of a

sma]1 amount of asscmbly language) is written in the C program-

ming language [Kernighan 78]. The reader of this document is as-

sumed to be familiar with both UNIX and C.

A new programming language called Elmer, is being designed

for applications programs under Arachne; it will be described in

a future report. Arachne programs may be written in either Elmer

or C. Currently, the library is available only in C.

1.2 Caveat

Arachne is in a state of rapid flux. Therefore, many of the de-

tails described in this Guide are likely to change. The reader

who intends to write Arachne programs should check with one of

the authors of this report for updates.

1.3 Format of this Guide

Section 2 provides an overview of the concepts and facili-

ties of Arachne. Section 3 describes the facilities by name, ar-

ranged according to general subject areas. Section 4 is a

programmer's reference manual. Each function is listed alphabet-

ically,-its syntax and purpose are described, and it is classi-

fied as a service call (an invocation of an operating system ker-

nel routine) or a library routine (a procedure linked into the

user progjram). Section 5 describes the command line interpreter

and lists che commands that may be entered from the terminal.

Secc:ion 6 describes the conventions governing terminal

inptut/outpi.,. Section 7 presents protocols *for communicating

-3-

with the various utility processes.

1.4 Rev i s ions

The following changes have been made to Arachne since ver-

sion 1.0 of this document:

There is a new service call, "linkok", to determine if a

link number is currently valid. The library routine "call" uses

this service call to avoid se-ding a message across a bad link.

Messages now include length information. The library rou-

tines "call" and "recall" have been modified to reflect this

change. The file and terminal protocols have also been simpli-

fied.

The following changes havp been made since version 1.1 of

this document:

A new utility process, the pipe, is now available. Pipes

allow the output of onr user pLocess to be attached to the input

of anothi r.

The structure "uumcsg" has been abolishcd, and "urmesg" no

longer ccntains the body of the message. Instead, both "send"

and "receive" hi:ve a ne;. argument that specifies the message

body.

A new link restricLion, IAYERROR, is orthogonal to all other

restrictions. The lasL argument to send may have the ERROR bit

on, in which case the message is considered an error report if

the link zecross which it is rent has MAYERRIOR specified. Receipt

of an error report raises an exception.

The "die" seLvice call. o takes a character-string argu-

-,L-..-..I

Tn nt. Th s argument becomes the body of any DESTROYED message

that is generated due to the termination of the calling process.

When a process dies, error reports are sent along any links

that it holds %with restriction MAYERROR but not TELLDEST.

Many errors caused by service calls raise exceptions. An

exception can only occur during a service call. If it is not

caught, the guilty process terminates. Exceptions may be caught

with the "errhandler" service call.

A new facility for asynchronous message receipt, called

"catch", allows a procedure to be specified that will be invoked

as soon as a message arrives on the specified channels.

The "display" kernel call returns timing information about

the owner of any link.

We have been forced to change the name of the Roscoe distri-

buted operating system, since Roscoe is a registered trademark of

Applied Data Research, Incorporated. The new name we have chosen

is Arachne; the operating system and research continue unchanged.

2. ROSCOE CONCEPTS AND FACILITIES

The funda.nental entities in Arachne are: files, programs,

core imae', Q2ocesses, links, and mesc-ies. The first four of

these are roughly equivalent to similar concepts in other operat-

ing systems; the concepts of links and messages are idiomatic to

Arachne. A file is a sequence of characters on disk. Each file

has directoi:y inforimation giving the time of last modification

and restrictions or, reading, writing, and execution. The con-

-5-

tents of a file may contain header information that further iden-

tifies it as an executable program. Version 1 of Arachne uses

the UNIX file system; therefore, the reader familiar with UNIX

should have no problem understanding Arachne files.

Program files contain text (machine instructions), initial-

ized data, and a specification of the size of the uninitialized

global data space (bss) required by the program. Program files

also contain relocation information and an optional symbol table.

2.1 Processes

A proces3 is a locus of activity executing a program. Each

process is associated with a local data area called its stack. A

program that never aodifies its global initialized or bss data

but only its local (stack) data is re-entrant, and may be shared

by several processes without conflict. A main-storage area con-

taining the text of a program, its initialized data, and a bss

data area, but riot including a stack, is called a core image. C

core images m.ay not share text areas unless they are reentrant;

the text and data areas of Elmer programs are loaded separately,

so Elmer progrotfis may share text even if they are not reentrant.

The initiation of a process entails locating or creating (by

loadjng) a core i.ge, allocating a stack, and initializing the

neccssary tables to record its state of execution. Similarly,

when a process dip's, its tables are finalized and its stack space

is reclaimed. If no other processes are executing in its core

imaJe, then t-he fsrlace occupied by the core image is available for

re-uec.

.' ~ -- 6-~1

2.2 Links

All communication is performed by message passing across

links. A link combines the concepts of a communications path and

a "capability." A link represents a logical one-way connection

between two processes, and should not be confused with a line,

which is a physical connection between two processors. The link

concept is central to Arachne. It is inspired and heavily influ-

enced by the concept of the same name in the Demos operating sys-

tem for the Cray-i computer [Baskett 77]. Each link connects two

processes: the holder, which may send messages over the link, and

the owner, which receives them. The holder may duplicate the

link or give it to another process, subject to restrictions asso-

ciated with the link itself. (See "Link restrictions" below.)

The owner of a link, on the other hand, never changes.

Links are created by their owners. When a link is created,

the creator specifies a code and a channel. The kernel automati-

cally tags each incoming message with the code and channel of the

link over which it was sent. Channels are used by a process to

partition the links it owns into subsets: When a process wants to

receive a message, it specifies a set of channels. Only a mes-

sage coming over a link corresponding to one of the specified

channels is eligible for reception. A link is named by its hold-

er by a small positive integer called a link number, which is an

index into a table of currently-held links maintained by the ker-

nel for the holder. All information about a link is stored in

this table. (No information about a link is stored in the tables

-7-

n[the owner.)

2.3 Mc.ssaj -- s

A message may be sent by the holder to the owner of a link.

A message may contain, in addition to MSLEN (currently 40)

characters of text, an enclosed link. The sender of the message

specifies the link number of a link it currently holds. The ker-

nel adds an entry to the link table of the destination process

and gives its link 1iunber to the recipient of the message. In

this way, the recipi.nt becomes the holder of the enclosed link.

If the original lin% is not destroyed, the sender and the reci-

pient hold identical copies of the link.

2.4 Link restrictions

Links may be created with various restrictions. These can

be cheracterized as modes, permissions, and notifications. The

orthogonal modes are REQUEST and REPLY. A reply link is dis-

tinguished by the fact that it can only be used once; it is des-

troyed when a message is sent over it. A reply link may not be

the enclosed link in a message sent over another reply link.

Similarly, a request link cannot be sent over a request link.

These restrictions enforce a communication protocol in which all

communications betwecn two processes connected by a REQUEST link

are initiated by the holder of that link.

Two permissions are GIVEALL and DUPALL, controlling distri-

bution of the affectedi link to other parties. A third permission

is I!AYrRROe, which allows the ioldc:r to send zn error message,

I -8-

whocr: receipt will raise an exception.

The notifications are TELLGIVE, TELLDUP, and TELLDEST. When

these restrictions are in force, unforgeable messages are sent to

the owner of the link when it is given away, duplicated, or des-

troyed. (The last of these messages contains a body provided by

the holder if it dies holding the link.)

2.5 Service calls

The Arachne kernel is a module that resides identically on

all the machines of the network and provides various services for

user programs. The services are requested by means of service

calls, which appear to the caller to be procedure invocations.

The chief function of the kernel is to support link mainte-

nance and message passing by providing service calls to create

and destroy links and send, receive and catch messages. Addi-

tional service calls create and destroy processes, read and set

"wall-clock" and high-resolution interval timers, specify a

handler to catch exceptions, and establish interrupt handlers for

processes that control peripheral devices.

2.6 Utility processes

Arachne has been designed so that as many as possible of the

traditional operating system functions are provided not by the

kernel, but by ordinary processes. These utility jror.osses may

invoke service calls not intended to be used by the casual user,

but otherwise tney behave exactly like user processcs. The ter-

minal driver is an example. One terminal driver resides on each

I -_ _ , , , -9-I

processor that has a terminal. All terminal input/output by oth-

er processes is requested by messages to this process. It under-

stands and responds to most commands accepted by a file (see

below), as well as a few extra ones, such as "set modes" (e.g.,

echo/no echo, hard copy/soft copy).

A file manager process has access to the Arachne file sys-

tem, currently implemented on the supporting PDP-ll/40. A re-

quCst to open a file sent to any file manager process causes a

link to be created representing the open file. To the user of a

file, the open file behaves like a process that understands and

responds to messages requesting read and write operations. The

file is closed by destroying the link. A version of 'the file

manager that uses a floppy disk instead of the PDP-11/40 file

system is also available; it follows the same protocols as the

other file manager.

The most complex utility process is the resource manager

(RM). Resource managers reside on all processors and are con-

nected by a network of links. A process can request an RM to

create a new process. The RM may create the process on its own

machine or relay the request to another RM based on such con-

siderations as location of the process that requested the crea-

tion, availability of free memory, proximity of resources such as

devices and files, and the possibility that the required program

is already in memory.

The new process is started with a link to its RM, over which

it can request links to the process that requested its creation,

to a file manager process, to a terminal driver, or to other

-10-

resources. The RM can kill the process, or it can give a special

link to another process (usually a terminal driver) that may be

used to kill it.

2.7 Library routines

Functions provided by service calls are rather primitive,

and communication with utility processes can involve complicated

protocols. An extensive library of routines has been provided to

simplify writing of programs that use service calls and utility

processes. These routines serve to hide the communication neces-

sary to accomplish various tasks, and make it especially easy to

introduce software not originally designed for the Arachne en-

vironment. These routines can only be used with C programs; the

Elmer library is under construction.

3. SUBJECT-AREA GUIDE

This section lists service calls and library routines by

subject area.

3.1 Links and Messages

A new link is created by a process through the "link" ser-

vice call. Initially, the creator is both holder and owner of

the link. The creator specifies what channel and code to associ-

ate with the link, so that future messages arriving along it can

be selectively received and identified. In addition, the creditor

may place restrictions on the use of the link, "controlling whcth-

I -Ii-

er or not it may be given to third parties, duplicated, or used

repeatedly, and requiring notifications to be sent along it in

the event of link duplication, transferra], or destruction. Fi-

nally, links may specify that they can carry error messages. Re-

ceipt of an error message terminates the recipient.

Messages are sent with the "send" service call, which speci-

fies a link over which the message is to be sent, the message

text and an optional enclosed link. It also indicates if the

message is an error message.

Messages are accepted by "receive," which specifies a set of

channels, a place to put the message, and a maximum time the re-

cipient is willing to wait. "Receive" can also be used to sleep

a specified period of time by waiting for a message that will

never arrive. Asynchronous message receipt is accomplished by

"catch", which has the same arguments as receive, except it has

no wait time, and it specifies a procedure to call when an ap-

propriate message arrives. This catcher procedure is very lidJit-

ed in the kernel calls it can perform.

A simple send-receive protocol is embodied in the library

functions "call" and "recall," which are simpler to use than send

and receive, and should be adequate for most routine communica-

tion. The "call" library routine sends a message along a given

link, enclosing a reply link. It then waits five seconds for a

response, which it returns to the caller. If no answer has ar-

rived in five seconds, it returns failure, and the "recall" rou-

tine can be invoked to continue waiting for the tardy response.

-12-

3.2 Processes

A process may spawn others by communicating with the

resource manager; typical caseF are handled by the library rou-

tine "fork". The requestor indicates whether the child should be

run as a foreground, background, or detached job. Foreground

processes are attached to a terminal and can be terminated by en-

try of a contrQl-C. Background processes may only be terminated

by requesting the resource manager to remove them, which is ac-

complished by the library routine "killoff". Detached processes

cannot be terminated except at their own request. The caller

also indicates whether the child process may share its core image

with other processes, whether an old and inactive core image may

be used, or whether a fresh core image is required.

Every user process is started holding link number 0, whose

destination is the resource manager on that process's machine.

When calling "fork", the parent may indicate a link that it

wishes to give to the child; the child obtains this link with the

library routine "parline", which communicates with the resource

manager along link 0. A process can terminate itself by calling

"die"; it can yield the CPU to another process by the service

call "nice". (Scheduling is not pre-emptive.)

Four low-level process-control service calls are provided

for the use of the resource manager; they are not intended for

the typical user. The service call "load" arranges for bringing

new core images into the processor on which the caller resides.

If there is no roo-i, the call, returns failure, and the resource

- . -13-

manager can try to find a neighboring resource manager that inijht

have better luck. Once a core image is loaded, processes can be

started in it with the service call "startup", which provides the

new pr6cess with an initial link 0 of the caller's choosing. The

"kill" service call removes a process, and "remove" reclaims its

core image. The separation of images and processes allows one

core image to be used simultaneously be several processes, and a

core image may be saved after the last process is gone to speed

up the next invocation of a process that would use it.

3.3 Timing

Arachne has two notions of time. One is the wall clock,

which keeps track of seconds in real time. Messages sent between

resource managers are routinely used to keep the various machines

synchronized. There is also an interval timer, which may be used

to monitor elapsed time in increments of ten-thousandths of

seconds. No process may change the interval timer.

The wall clock is referenced, changed, enciphered, and deci-

phered by "date", setdate", "datetol", and "Itodate", respec-

tively. The interval timer is referenced by "time". The percen-

tage of time used by any process may be discovered with

"disp]ay".

-14-

3.4 1nterrurts and Exceptions

User programs may handle their own interrupts. This fiture

is currently used by the terminal driver. A process may -.. tab-

lish an interrupt-level routine with the "handler" service call.

This call names not only the interrupt handling routine and which

interrupt it is intended to service, but also a channel along

which to receive messages sent by that interrupt routine. The

interrupt-level routine should, of course, be thoroughly dc<-ugged

and fast. Interrupt-level routines may notify the process that

established them by the service call "awaken". This call causes

a special message to be sent to the master routine along the

channel it specified in its "handler" call. Since the master and

interrupt-level routines share code and data, all details of the

communication are embedded in shared variables; the awaken mes-

sage itself is empty.

If a processes arranges for asynchronous receipt of messages

by using a "catch" service call (see "Links and Messages" above),

then arrival of such a caught message will not preempt any other

process. However if the catching process is currently executing,

control will immediately switch to the catcher routine within the

process.

Exceptions are raised by many service all errors (usually

poorly formed service calls) and by receipt of error messages.

Usually, exceptions cause the termination of the offendinq pro-

cess. Exceptions may be caught by establishing a handler with

the "errbanller" service call. When an exception arises, the

-15-

handler will be invo;cd with arguMents indicating the valuc re-

turned fromn the failed service call, the service call number, and

all the arguments to the service call. Return from the handler

acts like return from the service call.

3.5 Input/Outout

To use files, a process first obtains a link to the file

manager process by calling the library routine "fsline", which

communicates with the local resource manager. This link is used

in subsequent library routine calls: "open" and "create" make new

files or ready old ones for reading or writing, and return links

to be used for manipulations of those files. The library rou-

tines "read", "write", and "seek" act much like the Unix file

primitives of the same name to provide random access into the

open file. A file is closed by the library routine "close",

which is identical to the service call "destroy", which destroys

a link. Finally, the library routine "stat" returns various in-

formation about the open file. Each of these library routines

packages a request in a message that is sent across the file ac-

cess link to the file manager process.

To use the terminal, a process obtains input and output

links by calling the library routines "in]ine" and "outline",

respectively, which communicate with the local resource manager.

An input link can be used to discover or change terminal modes

(only the command interpreter uses this feature) and to perform

terminal input. An output link can be used for terminal output.

These links may also be "closcl "; they are closed automatic]ly

[-16

when a process dies. The terminal driver allows at most one in-

put link to be open at a time.

Reading is performed by the library routines "read" and

"readllne". Writing is performed by "write" and, if formatting

is desired, by "print". Each of these routines works equally

well in dealing with a file instead of the terminal. The service

call "printf" is identical to "print" except that it always uses

the terminal; it is a debugging tool not intended for the typical

user.

The user familiar with UNIX is cautioned against assuming

that any particular buffer size is particularly efficient for

reads or writes, because Arachne splits up I/O into packets of

size MSLEN bytes anyway.

3.6 Miscellaneous Routines

The following routines from the C library also exist in the

Arachne library: atoi, long arithmetic routines, reset, setex-

it, strcopy, streq, strge, strgt, strle, strlen, strlt, strne,

and substr.

An additional routine supplied by Arachne is "copy".

3.7 Preparina User Programs

User programs for Arachne are written in the C programming

language. They are compiled under UNIX on the PDP-11/40 and

should include the files "user.h" and "util.h" in directory

/us.r/network/rosco,./user. Source programs should have filenames

e(iiII] with ".u". ro prepare a file named "foo.u", execute

-17-

"makeuser foo", which creates an executable file for Arachne

named "foo". The executable files are always stored in

/usr/network/roscoe/user.

4. ROSCOE PROGRAMMER'S IMANUAL

The following is an alphabetized list of all the Arachne

service calls and library routines. For each service call error

result, the notation "(*)" indicates that the error causes an ex-

ception to be raised.

4.1 Alias (Libary Routine)

int alias(fslink,fnamel,fname2) char *fnamel, *fname2;

The new name "fname2" is associated with file "fnamel". The

argument "fs]ink" is the caller's link to the file manager. The

old name is still valid. Possible errors: The combined length

of "fnamel" and "fname2" must not exceed MSLEN-6. The name

"fname2" must not already be in use. File "fnamel" must exist.

All errors return -1.

4.2 Awaken (Service Call)

awaken ()

Only an interrupt level routine may use this call. It sends

a message to the process that performed the corresponding

"handler" call along the channel specified by that "handler"

call.

Returned values: Success returns a va]luc of 0. -2 is re-

-18-

turned if the message cannot be sent because no buffers are

available; an "awaken" may succeed later.

4.3 Call (Library Routine)

int call(ulink,outmess,inmess,outlen,inlen)
char *outmess,*inmess; int *inlen;

This routine sends a message to another process and receives

a reply. The link over which the message is sent is "ulink",

which should be. a REQUEST link. The argument "outmess" points to

the message body to be sent, of size "outlen". (Caution:

"outlen" should include the terminating null, if the message is a

string.) Similarly, "inmess" points to where the reply body will

be put. The length of the reply will be placed in the integer

pointed to by "inlen"; if the user doesn't need this feature,

"inlen" may be set to 0. If "inmess" is 0, any reply will be

discarded. An error is reported if the reply does not arrive in

five seconds (see "recall"). In normal cases, the return value

is the link enclosed in the return message; it is -1 if there

isn't any enclosure. Ignoring errors, the user may consider this

routine an abbreviation for:

struct urmesg urmess;
send(ulink,link (O,CHANI6,REPLY) ,outmess,out.len,NODUP);
receive(CHANl6,inmess,&urmess,5);
if (inlen) *inlen = urmess.urlength;
return(urmess.urlnenc);

Returned values: Under normal circumstances, the return

value is either -1 or a link number. -2 means an error occurred

while sending, -3 means the waiting time expired, -4 means that

the return link was destroyed, -5 means that something was re-

_ _ _ _-19-

ceived with the wrong code, meaning that the user program is also

Using CHANl6 for som;e other purpose, -6 means that a return link

couldn't be created in the first place, -7 means that the ulink

was bad.

NOTE: CHAN16 is implicitly used; for this reason, the user is

advised to avoid this channel entirely. Several other library

routines also invoke "call", and thus use CHANl6.

4.4 Catch (Service Call)

int catch(chans,data,uriness,catcher) char *data, int catchero;

struct urmesg { /* for receiving messages */
int urcode; /* chosen by user, see "link" */
int urnote; /* filled in by Arachne, see "receive" */
int urchan; /* chosen by user, see "link" */
int urlnenc; /* index of enclosed link */
int urlength; /* length of incoming message */} *urmess;

The arguments are the same as for the receive service call,

except for the last one. The procedure specified by "catcher" is

activated as an asynchronous message recipient for messages that

appear on the channels indicated. If a catcher is active on some

channel, then any message that arrives on that channel will cause

the asynchronous invocation of the catcher, which takes no argu-

ments. The message itself is placed in "data" and "urmess" in

the same way as for "receive".

The catcher procedure may inspect the message and modify

global variables; it may not invoke any service calls except

"printf". If the catcher returns FALSE, it will be deactivated

from the channel across which the massage came; if it returns

-20-

TRUE, it remains active.

If a catcher has already been activated for some channels,

and a new "catch" call names other channels, then the union of

all the channels active before and now indicated will be activat-

ed for catchers. There is only one catcher procedure, one

"data", and one "urmess" at any time; subsequent "catch" calls

can replace these values with new ones.

If "catcher" is 0, then instead of activating the given

channels, they are deactivated with respect to catching messages.

All channels not mentioned in "chans" are unaffected. The "data"

and "urmess" arguments are ignored in this case.

If the destination of a message is both waiting to receive

it and has a catcher activated to catch it, the message is given

to the catcher, not the receive call. Catching a message

prevents it from also being received.

Messages are caught in the order in which they arrive at the

destination.

Returned values: 0 is returned on success. -1 (*) means

the argument "catcher" was bad, -2 (*) means "urmess" or "data"

was bad. In this case, the other specified channels may or may

not get catchers.

4.5 Close (Library Routine)

int close(file)

The argument "file" is either a link to an open file, or a

terminal input or output. l ink. The returned value is 0 on suc--

cess , negat i ve. on failur,: (z'ctua1l1y, "c.oso" is 1,y0 With

-21-

"destroy"). These links are automatically closed when a proceSz,

dies; however, execution of this command gives the caller more

room in its link table. Also, closing the terminal input makes

it possible for another process to open it.

4.6 _CoY (Service Call)

int copy(link);

This service call returns a copy of the given link. If the

link is restricted, copy may fail or cause a notification to be

sent. Returned values: 0 for success, -1 (*), -2 (*) if the ori-

ginal link number is out of range or not in use, -3 (*) if the

link is protected against duplication, -4 (*) if there is no room

in the user's link table for a new link. (See "link".)

4.7 Create (Library Routine)

int create(fslink,fn.me,mode) char *fname;

If the file named "fname" exists, it is opened for writing

and truncated to zero length. If it doesn't exist, it is created

and opened for writing. The argument "fslink" is the caller's

link to the file manager. The protection bits for t'he new file

are specified by "mode"; these bits have the same meaning as for

UNIX files, but all files on Arachne have the same owner. The

returned values are as in "open".

-22- ---.-- ,

...... ? i

4.8 Date (Service Call)

long date();

This service call returns the value of the wall clock, which

is a long integer representing the number of seconds since mid-

night, Jan 1, 1973, CDT.

4.9 Datetol (Library Routine)

long datetol(s) char s[12];

This library routine converts a character array with format

"yymmddhhninss" into a long integer, representing the number of

seconds since midnight (00:00:00) Jan 1, 1973. It accepts dates

up to 991231235959 (end of 1999); -1 is returned on error.

4.10 Destroy (Service Call)

int destroy(ulink)

Link number "ulink" is removed from the caller's link table.

Returned values: 0 is returned on success. -1 (*) means

that the link nul.ber is)ut of range, -2 (*) means that it is an

invalid link, and 73 (*) means the link may not be destroyed

(link 0 has this property).

4.11 Die (Service Call)

die(mesg) char *mesg;

This call terminates the caller. All links held by the

caller are destroyed. As these links are destroyed, DESTROYED

messqes are stjnl: along all links that have the TELLDEST restr ic-

-23-

tion; thee messajges contain "mesg" as the body (always MSLEN

bytes), unless "mes3" is 0. Error messages are sent along all

links that nave the &AYERROR restriction but not TELLDEST.

Various errors can ca-ase a "die" to be automatically gen-

erated. Here are the possible contents of "mesg":

bad die message
bad trap
exception not caught
killed
fell through
core image damaged

4.12 Display (Service Call)

int display(link);

This call returns a number in the range 0 to 100 that

represents the percentage of CPU time used by the owner of the

given link averaged over the last 4 seconds. 0 means that the

process has not run at all; 100 means that the process has been

active the entire time.

Returned values: -1 (*) if the link points to a different

machine, -2 (*) if the link number is invalid.

4.13 Errhandler (Service Call)

char *errhandler(addr) char *addr;

A new exception handler is established to catch exceptions

raised during service calls and receipt of error messages. The

handler is a routine at location "addr". The old handler address

is returned. A 0 value for "aJdr" disables exception catching.

If not cau. ,iht, excerptions c;use , he tormina ion of the of-

fond irj -irocess. 'Whan an exception arises, the handler will be

invoked with these arguments: the value returned from the failed

service call, the service call number, and all the arguments to

the service call. Return from the handler acts like return from

the service call. To ignore exceptions, use a handler that only

returns its first argument.

Returned values: -1 (*) if "addr" is unreasonahle, the ad-

dress of the old handler (possibly 0) otherwise.

4.14 Fork (Library Routine)

int fork(fname,arg,mode) char *fname;

The resource manager starts a new process running the pro-

gram found in the file named "fname", which must be in executable

load format. The function named "main" is called with the in-

teger argument "arg". "Mode" is a combination (logical "or") of

the following flags, defined in "user.h":

one of these: FOREGROUND, BACKGROUND, or DETACHED

and one of these: SHARE, REUSE, EXCLUSIVE, or VIRGIN

If FOREGROUND is specified, then the new process can be killed by

entering a control-C on the console. FOREGROUND is mainly used

by the command interpreter. If BACKGROUND is specified, then a

"process identifier" is returned that may be used to subsequently

"killoff" the child. DETACHED (i.e., neither FOREGROUND nor

BACKGROUND) is the default. If SHARE is specified, then the

resource manager will be willing to start this new process in the

sa;n code space as another procee;s executing the same file, if

L , r ,',cc. . 2, 4 L .17rpiwn ,1 in ;i ,i E mode. If T Ei.USI; i, spvc i -

-25-

fied, the code space of an earlier process can be reused. If EX-

CLUSIVE is specified, then this process may not be started on a

machine which already has a process using the same executable

file. VIRGIN means that a new copy must be loaded, and is the

default. If the call succeeds, a link of type REQUEST and TELLD-

EST is given to the resource manager; the child may obtain this

link by invoking "parline". The caller may receive messages from

the child over this link, which has code 0 and channel CHANl4.

A returned value of -1 indicates an error. Success is indi-

cated by a return value of 0, except in the case of BACKGROUND

mode, when the return value is a "process identifier".

4.15 Fsline (Library Routine)

int fsline);

This routine returns the number of a REQUEST link to be used

for communication with the file manager Process. An error gives

a returned value of -1.

4.16 Handler (Service Call)

hand]er(vector,func,chan) (*func) ();

The address of a device vector in low core is specified by

"vector". The interrupt vector is initialized so that when an

interrupt occurs, the specified routine "func" is called at in-

terrupt level. If the interrupt level routine performs an "awak-

en" call, a message will arrive on channel "chan" with urcode 0

and urnote "INTERRUPT" (sec "receive").

IR, tIrzv:' a ,', uc : Success rcturns a vulueo of 0. -] ()

-26-

r77

means that there have been too many handler calls on that machine

(the limit is currently 2). -2 (*) means that the channel is in-

valid. •-3 (*) means that the vector address is unreasonable. -4

(*) means that the vector is already in use.

4.17 Inline (Library Routine)

int inlineo;

This routine returns the number of a REQUEST link to be used

for subsequent terminal input. The terminal driver only allows

one input link to be open at any time. An error returns a value

of -I.

4.18 Kill (Service Call)

kill(lifeline);

The process indicated by "lifeline" (the return value of a

successful "startup" call) is terminated as if it had performed

"die("killed")". The lifeline is not destroyed.

Returned values: Success returns a value of 0. -1 (*) in-

dicates that the link is invalid or not a "lifeline".

Only the resource manager and terminal driver should use

this call.

4.19 Kil]off (Libr.ary Routine)

int killoff(procid);

This routine acks the resource manager to kill a process

that the calling process previously created as a BACKGROUND pro-

ccrs; with a "fork" r,,quc': t. '1ic value returned from that "fork"

-27-

is "procid". The effect on the dead process is as if it had

called "die".

O"is returned for success, -1 for failure.

4.20 Link (Service Call)

int link(code,chan,restr)

A new link is created. The caller becomes the new link's

owner (forever) and holder (usually not for very long). The

caller specifies an integer, "code", which is later useful to the

caller to associate incoming messages with that link. The caller

also specifies "chan" as one of sixteen possibilities,

CHANI, ..., CHANI6, which are integers containing exactly one

non-zero bit. Channels are used to receive messages selectively.

CHAN16 should be avoided, for reasons explained in "call".

CHAN15 should also be avoided, since the kernel uses it for re-

mote loading. The returned value is the link number that the

caller should use to refer to the link. The argument "restr" is

the sum of various restriction bits that tell what kind of link

it is. The possibilities are:

GIVEALL
DUPALL
TELLGIVE
TELLDUP
TELLDEST
REQUEST
REPLY
MAYERROR

"GIVEALL" means that any holder may give the link to someone

else. "IDUPALL" means that any holder may duplicate it (i.e.,

give it to someone with "dup" - DUP; 6ee "send"). "TELLGIVE",

-28-

"TELLDUP", and/or "TLLLEST" cause the owner to be notified when-

ever a holder gives away, duplicates, and/or destroys the link,

respectiiely (see "receive"). A process may duplicate, give

away, or destroy a newly created link without restriction and

without generating notifications; restrictions and notifications

only apply to links received in messages. A link must be either

of type "REQUEST" or "REPLY". A REPLY link cannot be duplicated

and disappears after one use; a REQUEST link can be used repeat-

edly unless it is destroyed by its holder. An enclosed link must

always be of the opposite type from the link over which it is be-

ing sent. If "MAYE.ROR" is specified, then error messages may be

sent along this link. (See."send" and "receive".)

Returned values: The normal return value is a non-negative

link number. -1 (*-) means that the link was specified as either

both or neither of KEPLY and REQUEST; -2 (*) means that the chan-

nel is invalid, -3 (*) means there is no room for a new link

(currently 20 links are allowed to each process).

4.21 Linkok (Service Call)

int linkok(link)

The returned value is 0 if the link number is currently

valid, -1 if it is out of range, and -2 if it is in range but

does not denote a valid link.

-29-

4.22 Load (Service Call)

int load(prog,fd,plirnk,arg) char *prog;

This call loads a program. If "fd" is -1, the console

operator is requested to load "prog" manually. If "fd" is a

valid link number (it should be a link, to an open file) and

"prog" is -1, the file is loaded on the same machine. In either

of these cases, the return value is an "image", to be used for

subsequent "startup" or "remove" calls.

If "fd" is a link and "prog" is a machine number, the file

is loaded remotely on the corresponding machine and started. The

arguments "plink" and "arg" have the same meaning as in the

"startup" call. The "plink" is automatically given (not dupli-

cated). The return value is a "lifeline", as for a "startup"

call.

Returned values: A nonnegative image number or lifeline

number is returned on success. -2 (*) and -3 (*) mean that the

link "fd" was out of range or was invalid, respectively. -5

means that there wasn't room for the new image. -6 means that

there are too many images. -10 (*) means that the caller had no

room for the lifeline. -11 (*) means that the "plink" was out of

range or had an invalid destination.

Only the resource manager should use this call.

-30-

4.23 Ltodate (Library Routine)

Itodate(n,s) long n; char s[30];

This library routine converts a long integer, representing

the number of seconds since Jan 1, 1973, into a readable charac-

ter string telling the time, day of the.week, and date. Dates

later than 1999 are not converted correctly.

4.24 Nice (Service Call)

nice()

This call allows the Arachne scheduler to run any other

runnable process. (Arachne has a round-robin non-pre-emptive

scheduling discipline; "nice" puts the currently running process

at the bottom.) It is used to avoid busy waits.

4.25 Open (Library Routine)

int open(fslink,fname,mode) char *fname;

The file named "fname" is opened for reading if "mode" is 0,

for writing if "mode" is 1, and for both if "mode" is 2. The ar-

gument "fslink" is the caller's link to the file manager. The

returned value is a link number, used for subsequent "read",

"write", and "close" operations. This link may be given to other

processes, but not duplicated. -1 is returned on error.

-31-

4.26 Outline (Library Routine)

int outline();

This routine returns the number of a link to be used for

subsequent terminal output. An error returns a value of -1.

4.27 Parline (Library Routine)

parline();

This routine asks the resource manager for a link to the

parent of the caller. It assumes that the parent gave the

resource manager a REQUEST link when it spawned the child. An

error returns a value of -1.

This call is typically used by a program being run by the

command interpreter; the parent link (to the command interpreter)

is used to get the command line arguments.

4.28 Print (LibrarR utine)

int print(file,format,args...) char *format;

This routine implements a simplified version of UNIX's

"printf". The argument "file" is either a link to an open file

or a terminal output link. The input is formatted and then

"write" is called. The "format" is a character string to be

written, except that two-byte sequences beginning with "%" are

treated specially. "%d" "%o", "%c", "%w", and "%s" stand for

decimal, octal, character, long integer, and string format,

respectively. As these cndes are encountered in the format, suc-

..:..; : " ,r:'" Q. w itt _ i.n the indicatod m.nner. (Unlike

-32-

"printf", there are no field widths.) A "%" followed by any

character other than the above possibilities disappears, so "%%"

ir written out as "%". Only 6 arguments are allowed.

4.29 Read (Library Routine)

int read(file,buf,size) char *buf;

The argument "file" is either a link to an open file or a

terminal input link. At most "size" bytes are read into the

buffer "buf"; fewer are read if end-of-file occurs. For the ter-

minal, control-D is interpreted as end-of-file. The returned

value is the number of bytes actually read.

4.30 Readline (Library Routine)

int readline(file,buf,size) char *buf;

This routine is the same as "read", except that it also

stops at the end of a line. For a file a "newline" character is

interpreted as end-of-line; however, "readline" is very ineffi-

cient for files. For the terminal, a "line-feed" or "carriage

return" terminates a line; the last character placed in the

buffer will be "newline" (octal 12). Control-D or control-W will

also terminate a line, but they will not be included in the bytes

read. The returned value is the number of bytes read.

-33-

4.31 Recall (Library Routine)

int recall(inmess,inlen) char *inmess; int *inlen;

If a previous "call" (or "recall") returned a value of -3,

meaning that the message did not arrive in 5 seconds, a process

can invoke the library routine "recall" to continue waiting.

Only the return message buffer and place to store the length are

specified (cf. "call").

Returned values: These are the same as for "call", except

that -2 and -6 don't apply.

4.32 Receive (Service Call)

int receive(chans,data,urmess,delay) char *data;

struct urmesg [/* for receiving messages */
int urcode; /* chosen by user, see "link" */
int urnote; /* filled in by Arachne, see "receive"*
int urchan; /* chosen by user, see "link" */
int urlnenc; /* index of enclosed link */
int urlength; /* length of incoming message */

I *urmess;

The caller waits until a message arrives on one of several

channels, the sum of which is specified by "chans". All other

messages remain queued for later receipt. The code and channel

of the link for the incoming message are returned in "urcode" and

"urchan", respectively.

The value of "urnote" is one of six possibilities: DUPPED,

DESTROYED, GIVEN, INTERRUPT, DATA, or ERROR. The first three of

these mean that the link's holder has either duplicated, des-

troyed, or given away the link (see "send" and "link"). In the

case of "DESTROYE'D", the body of tne message may contain data

-34-

placed there durinj term ina!ion of the sender (see "die" and

"kill"). "INTERRUPT" is discussed undr:r "handler". "DATA" means

that the message was sent by "send".

"ERROR" means either that the message was sent by "send",

but the link had "MAYERROR" and the sender specified "ERROR", or

the link had "MAYERROR" but not "TELLDEST" and the holder ter-

minated (see "link"). Receipt of an error message raises an ex-

ception (see "errhandler").

The newly assigned link number for the link enclosed with

the message is reported in "urlnenc"; the caller now holds this

link). If no link was enclosed, "urlnenc" is -1. The length of

the incoming message is reported in "urlength". The argument

"data" must point to a buffer of size MSLEN into which the incom-

ing message, if any, will be put. The caller may discard the

message by setting "data" to zero. The argument "delay" gives

the time in seconds that the caller is willing to wait for a mes-

sage on the given channels; a "delay" of 0 means that the call

will return immediately if no message is already there, and a

"delay" of -1 means that there is no limit on how long the caller

will wait. A process can sleep for a certain amount of time by

waiting for a message that it knows won't come (e.g., on an

unused channel).

Returned values: 0 is returned on success. -l (*) means

the caller has no room for the enclosed link (see link; the mes-

sage can be successfully received later), -2 (*) means that the

argument "urmess" was bad, -3 means that the waiting time ex-

pired.

S" -35-

4.33 Remove (Service Call)

remove (image)

The code segment indicated by "image", the return value of a

successful "load" call, is removed. Only the process that per-

formed a "load" is allowed to subsequently "remove" that image.

Returned values: Success returns a value of 0. -1 (*)

means that the image either doesn't exist or is in use, or that

the caller didn't originally load the image.

The resource manager uses this call to create space for new

images; no other program should use this call.

4.34 Seek (Library Routine)

int seek(file,offset,mode)

The argument "file" is a link to an open file. The current

position in the file is changed as specified by the "offset" and

"mode". A value for "mode" of 0, 1, or 2 refers to the begin-

ning, the current position, or the end of the file, respectively.

The "offset" is measured from the position indicated by "mode";

it is unsigned if "mode" = 0, otherwise signed. A returned value

of 0 indicates success, -1 indicates failure.

4.35 Send (Service call)

Sint send(ulink,elink,data,length,dup) char *data;

This call sends a message along link number "ulink". The

message body is "data" and its length is "length". If no message

is to be bent, either "data" or "length" should be zero. If the

-36-

caller wishes to pass another link that it holds with the mes-

sage, it specifies that link's number in "clink" (the "enclosed

link"). If there is no enclosure, "elink" should be -1. The use

of elinks is restricted in various ways; see "link".

The argument "dup" specifies either "DUP" or "NODUP"; in the

first case, the enclosed link is duplicated so that both the

sender and receiver will hold links to the same owner; in the

second case, the enclosed link is given away so that only the re-

ceiver of the message will hold it.

The "dup" argument also may specify "ERROR" (this bit should

be ored into "DUP" or "NODUP"). If "ulink" has the "MAYERROR"

restriction, then an "ERROR" message will be sent to the reci-

pient. If "MAYERROR" is not set, then "ERROR" has no effect.

Returned values: 0 is returned on success. -1 (*) means

that the ulink number is bad and -2 (*) means that the ulink is

invalid. -3 (*) and -4 (*) have corresponding meanings for the

elink. -5 (*) means that the message was bad, -6 (*) means that

the elink can't be duplicated, -7 (*) means that the elink can't

be given away, and -8 (*) means the message is too long.

No error is reported if the destination process has ter-

minated; in this case, the message is discarded.

4.36 Setdate (Service Call)

setdate(n) long n;

This service call sets the wall clock to "n", which is a

long integer representing the number of seconds since midnight,

-37-

Jan 1, 1973.

Only the command interpreter and resource manager should use

this call.

4.37 Start2p (Service Call)

int startup(imagearg,plink,dup,fd)

This call starts a process whose code segment is indicated

by "image", the return value of a successful "load" call. The

child is given "arg" as its argument to "main". The child's link

number 0 is "plink", a link owned by the caller; this link is ei-

ther given to the child or duplicated depending on whether "dup"

is NODUP or DUP, respectively. The child cannot destr6y link 0.

For C programs, the data area is part of the image; for Elmer

programs, "startup" causes a new data area to be created. The

"fd" argument should be a link number for an open file that holds

the Elmer program; it is used to load the data segment.

Returned values: Success returns a non-negative lifeline

number, which can be used for a subsequent "kill". -1 (*) means

that the caller had no room for the lifeline (see "link"). -2

(*) or -3 (*) meons that the "plink" was out of range or had an

invalid destination, respectively. -4 means that there was no

room for the new process' stack (or data area: Elmer only). -5

(*) means that the "image" was invalid, -6 (*) means that "image"

is an Elmer program, and "fd" is bad.

Only the resource manager should use this call.

-38-

4.38 Stat (Library Routine)

int stat(fslink,fnamne,statbuf) char statbuf[36];

This library routine gives information about the file named

"fname". The argument "fslink" is the caller's link to the file

manager. An error returns a value of -1. After a successful

call, the contents of the 36-byte buffer "statbuf" have the fol-

lowing meaning:

struct{
char minor; minor device of i-node
char major; major device
int inumber;
int flags;
char nlinks; number of links to file
char uid; user ID of owner
char gid; group ID of owner
char sizeO; high byte of 24-bit size
int sizel; low word of 24-bit size
int addr[8]; block numbers or device number
long actime; time of last access
long modtime; time of last modification
I *buf;

NOTE:
Some of these fields are irrelevant, since all Arachne files
have the same owner.

4.39 Time (Service Call)

long timeo;

This service call returns a long integer that may be used

for timing studies. The integer is a measure of time in inter-

vals of ten-thousandths of seconds. NOTE: The time wraps around

after a full double word (32 bits)

-39-

4.40 Unlink (Library Routine)

int unlink(fslink,fname) char *fname;

This library routine removes the file named "fname"; it

cleans up after "create" and "alias". The argument "fslink" is

the caller's link to the file manager. Error returns a value of

-1.

4.41 Write (Librara Routine)

write(file,buf,size) char *buf;

The argument "file" is either a link to an open file or a

terminal output link. Using this link, "size" bytes are written

from the buffer "buf". There are no return values.

5. CONSOLE COMMANDS

The Command Interpreter is a utility process that reads the

teletype. When the Command Interpreter is awaiting a command, it

types the prompt ".". A command consists of a sequence of "argu-

ments" separated by spaces. Otherwise, spaces and tabs are ig-

nored except when included in quotation marks ("). Within

quotes, two consecutive quotes denote one quote; otherwise, quo-

tation marks are deleted. The first "argument" is interpreted as

a "command" (see below). Command names may be truncated, provid-

ed the result is unambiguous. It is intended that all commands

will differ in their first three characters.

The "run" command may be followud by from one to MAXCOMS (4)

-40-

commands separated by the symbol "a". The terminal output of the

command to the left of a "^" is buffered by a special "pipe" pro-

cess, and fed as though it were terminal input to the command to

the ri ht of the "". The output from the last process in a pipe

may be redirected to a file by following it with " to out-

filename". The input to the first process in a pipe may be ob-

tained from a file by preceding it with "from infilename

Although "to" and "from" appear to be the names of processes in

the pipe, they do not count towards the MAXCOMS maximum. Furth-

ermore, "to" and "from" are reserved words to the command inter-

preter, and hence neither may be the name of a user program.

The following is an alphabetized list of console commands.

5.1 alias <filenamel> <filename2>

The second indicated file becomes another name for the first

indicated file. If either of these is "deleted", the other (log-

ical) copy still exists; however, changes to either affect both.

5.2 backoround <filename> <aq>

The indicated file must be executable. It is started as a

BACKGROUND process, with the integer argument "arg". The Command

Interpreter prints out the new process's process identifier,

which may be used for subsequent "killing" and then gives the

next prompt.

-41-

5.3 cojy <filenamnl> <filenanie2>

The second indicated file is created with a copy of the con-

tents bf the first indicated file.

5.4 delete <filename>

The indicated file is deleted.

5.5 dump <address>

Prints a screenful of memory locations in octal for debug-

ging.

5.6 help

A list of available commands is displayed.

5.7 kill <arq>

The indicated argument should be the process identifier re-

turned from a previous "background" command. The process re-

ferred to by the process identifier is killed.

5.8 make <filename>

The named file is created. Subsequent input is inserted

into the file; the input is terminated by a control-D.

-42-

5.9 rename <oldname> <newname>

The name of file "oldname" is changed to "newname".

5.10 run <filename> { <arg> I (<filename> [<arg> I }

The indicated files should be executable files. The right-

most one is run as a FOREGROUND process. The others are run as

BACKGROUND processes. The Resource Manager is given a REQUEST

link, which the new process may use to ask for the command line

arguments. When the loaded program starts up, the argument to

"main" tells the number of command line arguments. To get the

individual arguments, the loaded program sends a message to the

Command Interpreter (its parent). The first word of the message

is ARGREQ, and the second is an integer specifying which argument

is desired. The name of the program is argument number 0. The

returned message body is the argument, which is a null-terminated

string of length at most MSLEN.

5.11 set <modelist> or SET <modelist>

This command dhanges the console input modes. The mode list

is a sequence of keywords "x" or "-x", where "x" can be any of

the following:

-43-

- " . . . -/ , • '- ",''0 1 '.' ' :;
,
E,'

upper (the terminal is upper case)
echo (the terminal echoes input)
hard (the terminal is hard-copy)
tabs (the terminal has hardware tabs)

Keywords may be abbreviated according to the same rules as com-

mands. The format "x"1 turns on the corresponding mode, "-x"

turns it off. (UPPER is recognized for upper; "lower" means -

upper".) For more information, see the section "CONSOLE INPUT

PROTOCOLS".

5.12 time <format>

If a forreat is given (as "yymmddhhmm"), the wall clock is

set to that time and printed. With no argument, "time" prints

the wall clock time.

5.13 type <filename>

The indicated file is typed.

6. TERMINAL INPUT PROTOCOLS

The terminal driver performs interrupt-driven I/O, which al-

lows for typing alead. Also, the following characters have spe-

cial meanings:

Control-C kill the running program (but don't kill the
command interpreter itself)

Control-) end of file (terminates a "read" or "read-
line")

Control-W end of line (but no character sent)
line-feed end of line

carriage rcturn end of line
rubout erase]ast character (unless line empty)
Control-X erase current line
Control-S enter 2croll mode; pause every 18 lines of

-44-

OUtput; if paused, allow the next 18 lines to be printed.
Control-Q leave scroll mode; if paused, allow output to

continue.
escape next character should be sent as is

In "echo" mode, input is echoed, otherwise not. In "hard"

mode, output is designed to be legible on hardcopy devices; oth-

erwise the terminal driver assumes that the cursor can move back-

ward, as on a CRT. In "tabs" mode, advantage is taken of

hardware tabs on the terminal. In "upper" mode, the terminal is

assumed to only have upper case. Input is converted to lower

case, unless escaped. Upper case characters are printed and

echoed with a preceding "!". Escaped [, I, @, , and \ are con-

verted to {, }, , , and I, respectively, and the latter are

similarly indicated by preceding "!"s.

7. UTILITY PROCESS PROTOCOLS

This section describes the protocols that user programs must

follow to communicate with the utility processes when the library

routines described earlier are inadequate. Four utility

processes are the resource manager, the file manager, the termi-

nal driver, and the command interpreter. The resource manager

keeps track of which programs are loaded and/or running on the

local machine. The kernel and the resource manager reside on

each machine. The terminal driver governs I/O on the coasole;

the command interpreter interprets console input. The file

manager implements a file system by communicating with the PDP-

]]/40. It need not exist on every machine.

During Arachne initialization, one resource manager is

started. It loads a full complement of utility processes (the

terminal driver, command interpreter, and file manager) on its

machine and various utility processes on the other machines.

When a particular resource manager is not given a local terminal

driver or file manager, it shares the one on the initial machine.

7.1 i n__t/Outu2t Protocols

This section describes the message formats used for communi-

cating with the file manager and terminal driver processes. A

program that explicitly communicates with the file manager or

terminal driver must include the header files "filesys.h" and

"ttdriver.h", which define the necessary structures.

To open an input or output line to the terminal, to change

the modes on the terminal, or to inform the teletype of whom it

should kill when encountering a control-C, a message is sent over

the terminal link of the following form:

struct ttinline[
char tticom;
char ttisubcom;
char ttimodes;)

"tticom" is either OPEN, STTY, MODES, or TOKILL In the case of

OPEN, 'ttisubcom" is either READ or WRITE, and the return message

has the new link enclosed In the case of STTY, "ttimodes" tells

what the new modes should be (a bit-wise sum of ECHO, TABS, HARD,

and UPPER). In the case of MODES (to find out the current

modes) , the retuL muscage has the modes in "ttimodes". In the

case of TOKILL (to inform the terminal driver which process to

kill on receipt of control-C), the message encloses a lifeline.

To open, create, unlink, alias, or get status information on

a file, a message is sent over the file manager link in the fol-

lowing form:

struct ocmesg{
int ocaction;
int ocmode;
char fsname[MSLEN-4];}

"ocaction" is either OPEN, CREATE, UNLINK, ALIAS, or STAT. "oC-

mode" is the mode for OPEN or CREATE; in the case of ALIAS, it

holds the length of the first file name. "ocname" contains the

file name (or, in the case of ALIAS, the concatenation of two

file names), null-terminated. In the cases of OPEN or CREATE, a

successful return contains a valid enclosed link; for UNLINK,

STAT, or ALIAS, there is no enclosed link. In the case of STAT,

the return message has the structure of a "rdmesg" as in the case

of READ below; the response has length 36 or 0, corresponding to

success or failure, respectively. In all other cases, the

response is one word: 0 on success, -1 on failure.

For either the terminal or the file manager, reading or

writing is done by sending a message of the following form:

struct fsmesg{
int fsaction;
int fslength;}

"fsaction" should be either READ, READLINE, or WRITE. "fslength"

tells how many bytes are intended to be read, oi are being sent

to be written. In the case of WRITE, the text is sent in subse-

-47-

quent messages, and nothing is returned. In the cases of READ or

READLINEy s the response is of the following form:

struct rdmesgi

char rdtext[MSLEN];}

The maximum allowable read is size MSLEN. The actual size of the

returned message is contained in the "urlength" field.

To perform .a seek on an open file, send a message to the

file manager of the following form:

struct skmesgf{
int skaction; /* should be SEEK */
int skoffset;
int skmode;}

The return message is one word: 0 for success, -1 for failure.

7.2 Resource Manager Protocols

Processes that communicate explicitly with the resource

manager must include the header file "resource.h". The following

structure is declared there:

struct rmmesg { /* messages to resource managers *1
int rmreq; /* type of request */
int rmarg; /* various miscellaneous arguments */
int rmmode; /* the mode for STARTS or KILLs */

The resource manager keeps track of which images (code seg-

ments) and processes exist. A separate resource manager runs on

each machine in the network; these programs communicate with each

other, but are relatively independent.

Each resource mana ,cr holds a terminal link and file manager

link, which are either for local utility proccr]ses or else links

received I 'om the I i :t rcsourco, ,,'anajcr initi 1 izel . 0hcn, v r Ia

-48-

resource ,anager has a local terminal it also has a local command

interpreter.

* There are three kinds of processes: FOREGROUND, BACK-

GROUND, and DETACHED. When a process is started, its link 0 is

owned by the local resource manager, to whom all of this

process's requests are directed.

The first FOREGROUND process for any terminal is always the

command interpreter, which initially "has the ball". Each termi-

nal always has one FOREGROUND process that "has the ball". The

process "with the ball" may create another FOREGROUND process,

which means that the child now "has the ball". The meaning of

"having the ball" is that a control-C entered on the correspond-

ing terminal will terminate the process. When the process "with

the ball" terminates, its parent then "recovers the ball", and

will be terminated by the next control-C. If one of the

processes in this FOREGROUND chain terminates, the chain is re-

linkad appropriately. The command interpreter is an exception in

that control-C's have no effect on it.

A process may also create another process as a BACKGROUND

process. In this case, the child's process identifier is re-

turned to the parent, and later the parent can use this identif-

ier to terminate the child. These identifiers are assigned by

the resource manager, and are distinct from the process identif-

iers used in the kernel.

A DEITACHED process cannot be terminated by either method.

A user may make five kinds of icquests on its resource

-49-

...........

I. RMTTREQ Request

The resource manager is requested to give the requestor a

link to the requestor's terminal. This link will be sent over

the enclosed link in the request, which should therefore be a RE-

PLY link.

2. RMFSREQ Request

The resource manager duplicates its file manager link and

sends it back over the enclosed link in the request, which should

therefore be a REPLY link.

3. RMSTART Request

The resource manager will start a process, using the link

enclosed with this request for two purposes: 1) to respond to

the request (see conditions for response below), or 2) to save it

and give to the child if the child asks for it (see RMPLINK

below). The caller must be careful, of course, not to give a RE-

PLY link if both uses are intended. Also, the caller must make

the enclosed link GIVEALL if the resource manager should try to

load the process on another machine, rather than giving up if it

doesn't fit on the local one. The RMSTART request also specifies

the file name and an integer argument to be given to the child

when it starts.

The caller also specifies a "mode" for starting the child,

which is a combination of bits with various meanings. The use

should specify either BACKGROUND, FOREGROUND, or DITACIIID (thc

-50-

default is DETACHED). FOREGROUND is only allowed if the reques-

tor currently "has the ball" for its terminal. The user may

specify EXCLUSIVE, which causes the resource manager to load it

on a machine only if there is no like-named core image with its

EXCLUSIVE bit set, on that machine. The user should specify ei-

ther SHARE, REUSE, EXCLUSIVE, or VIRGIN.(the default is VIRGIN).

These alternatives are described above (see "fork"). The user

should also specify either GENTLY or ROUGHLY (the default is

GENTLY). If GENTLY, the resource manager will first try to load

it locally without throwing out any other unused images and then

will try to do the same on other machines. When this fails, or

if ROUGHLY was specified, it tries to make room locally for the

new process, and then tries to do so on other machines. The user

should also specify either ANSWER or NOANSWER (the default is

NOANSWER). If ANSWER is specified, or if BACKGROUND was speci-

fied, then the resource manager sends a reply over the enclosed

link. The first word of the reply is the return code; -1 always

means failure; 0 means success except in the case of BACKGROUND,

when the value returned is the process identifier of the child.

An existing code segment is reusable if the filename still

refers to an existing publicly executable load format file that

has not been modified since the copy in question was loaded. Any

number of processes may share a code segment. The terminal asso-

ciated with a child process is always the same as the one associ-

ated with its parent; the command interpreter is loaded with a

terminal durin.1 initial ization.

7-51-

4. RHKILL Request

The resource manager kills the process whose process iden-

tifier is given as part of the request. The request may enclose

a link that is used to give a one-word acknowledgement of success

or failure if the request specifies ANSWER (as in RMSTART,

described above). The process being killed must of course be

BACKGROUND, and only the process that started it is allowed to

kill it.

5. RMPLINK Request

The resource manager returns the link that was originally en-

closed with the request that started this process. It is re-

turned over the link enclosed with the RMPLINK request, which

must therefore be of the proper type, whichever that may be.

8. ACKNOWLEDGEMENTS

The authors would like to acknowledge the assistance of Pro-

fessor Sun Zhong Xiu of Nanking University, Peoples Republic of

China, and the following graduate students who have been involved

in the Arachne project: Jonathan Dreyer, Jack Fishburn, Michael

Horowitz, Will Leland, and Paul Pierce. Their hard work has

helped A:,nchne to reach its current level of development.

-52-

9. REFER'i'CES

Baskett, F., Howard, J. H., Montague J. T., "Task Communication
in Demos", Proceedings of the Sixth S'mposium on Operating
Systems Principles, pp. 23-31, November 1977.

Finkel, R. A., Solomon, M. H., The Roscoe Kernel, Version 1.0,
University of Wisconsin--Madison Computer Sciences Technical
Report #337, September 1978.

Finkel,. R. A., Soiomon, M. H., Tischler, R. L., Roscoe Utility
Processes, University of Wisconsin--Madison Computer Sci-
ences Technical Report #338, February 1979.

Finkel, R. A., Solomon, M., and Tischler, R., "The Roscoe
Resource Manager", Proceedings of Compcon Spring 1979, pp.
88-91, February, 1979.

Finkel, R. A., Solomon, M. H., Tischler, R., Roscoe User Guide,
Version 1.1, University of Wisconsin--Madison Mathematics
Research Center Technical Report #1930, March 1979.

Finkel, R. A., Solomon, M. H., Tischler, R., Arachne User Guide,
Version 1.2, University of Wisconsin--Madison Computer Sci-
ences TechnTcal Report #379, February 1980.

Finkel, R. A., Solomon, M. H., The Arachne Kernel, Version 1.2,
University of Wisconsin--Madison Computer Sciences Technical
Report #380, February 1980.

Kernighan, B. W., Ritchie, D. M., The C Programming Language,
Prentice-Hall, 1978.

Ritchie, D. M., Thompson, K., "The UNIX Time-Sharing System",

Communications of the ACM, Vol. 17, No 7, pp. 365-375, July

Solomon, M. H., Finkel, R. A., ROSCOE -- a multiminicomputer
o0erating system, University of Wiscoristn--'adison Computer
Sciences Technical Report #321, September 1978.

Soloion, M., and Firkcl, R., "The Roscoe Distributed Oporating
System", Proceedings of the Seventh S)mno2siuiLn on Operating
Systems Princiles', pp. 108-114, 10-12 Docembtr, 1979.

Tischler, R. L., Fink:.I, R. A., Solovon, m. if., Rosco-- Il:r
Guide, Version 1.0, University of Wisconsin--Madison Computer
Sciences Technical Report #1336, September 1978.

-S3-

SECURITY CLASSIFICATION OF T1S PAGE fthen Data Entoredj

REPORT DOCUMENTATION PAGE B RED CNSTRUCTIONS
I. REPORT NUMmaR 2 GOVT ACCESUSION NO 3. RECIPIENT'$ CATALOG NUMBER

2066 6o
A. TITLE (Tnd

v ' XCRIOO COVERED

ARACHNE USER GUIDES 7 { , ma,/ ummary e no specific9 Version 1.2Version 1.2 •S. PERFORMING ORG. REPORT NUMBER

7. AUTNOR(e 4. CONTRACT OR GRANT NUMBER(s)

Raphae /Finkel, Marvin/Solomonma Ron/ischler DAAG29-75-C-0024
..... DAAG29-80-C- 41

9. PERFORMING ORGANIZATION NAME AND ADDRESS ARE 4 £MWO U 0:ET TA
Mathematics Research Center, University of AREA ORK UNT NUmBErS610 Walnut Street Wisconsin Work Unit Number 3 (Numnerical
610Malnut WScons Wi370n Analysis and Computer ScienceMadison, Wisconsin 53706

I. CONTROLLING OFFICE NAME AND AODRSO& .1 &

U. S. Army Research Office /) ZE /1 Apr4nJS/
P.O. Box 12211 ' - s 3..;eR-e -A,,S
Research Triangle Park. North Carlina 27709 53
14. MONITORING AGENCY NAME & ADDRESS(if different trom Controlling Oflic) IS. SECURITY CLASS. (at 18 report)

" ISo. DErCL ASSI FI C ATI ON/ DOWNGRADI NG

SCHEDULE

IS. DISTR:BUTION STATEMENT (of thil Reort)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (at the ebstrect entered in Jlock 20. II different how Repot)

10. SUPPLEMENTARY NOTES

II. KEY WORDS (Continue on reveree *#de it necessry end identify by block nmbor)

Distributed computing

Networks
Operating systems

User interface

20. AISTRACT (Cuuttnue an feer e side If necessary and Identify by block ntmber)

Arachne is a multi-computer operating system running on a network of LSI-11
computers at the University of Wisconsin. This document describes Arachne from
the viewpoint of a user or a writer of user-level proqrams. All system service
calls and library routines are described in detail. In addition, the command-
line interpreter and terminal input conventions are discussed. Compaiion
reports describe the purposes and concepts underlying the Arachne project and
give detailed accounts of the Arachne utility kernel and utility processes.

! ~ ~ ORM, .DO AN 1473 EDITION OF I NOVS,. OS.T5 0U LSS,

SE6CUIRITY CLASIPICAION OF THIS PA ...

