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SUMMARY I

The geopotential is usually expressed as an infinite series of spherlcal\ k
harmonics, and the odd zonal harmonics are the terms independent of longitude apnd A
antisymmetric apout the ,equator: they define the 'pear-shape' effect. Thé
coefficients J3, ng J;]ﬂ... of these harmonics have been evaluated by ahalys ]
ing the variations in eccentricity of 28 satellite orbits from near-equato¢rial t ’
polar. Most of the orbits from our previous determination in 1973 are usg d again,
but three new orbits are added, including two at inclinations between 62  and 63,
which have been specially observed for more than five years by the Hewitt cameras. 1
With the help of the new orbits and revised theory, we have obtained sets of
J-coefficients with standard deviations about 407 lower than before.. A i
9~coefficient set is chosen as representative, and is as follows: ¢$§§;

10%7, = -2530 ¢ 4 0%, = -90% 7 1027, = -20% 15
3 9 15
3 25 % S 3, 159 9 3, 236 £ 14
= - + - - + = -
3, 336 t 6 3\ 158 % 15 31 27 % 19

With this set of values, the pear-shape asymmetry of the geoid (north polar minus
south polar radius) amounts to 45.1 m instead of the previous 44.7 m. The accuracy
of the longitude-averaged geoid profile is estimated as 50 cm, except at latitudes
above 86 . The geoid profile and predicted amplitude of the oscillation in eccen-
tricity are compared with those from other sources.
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1 INTRODUCTION

The accepted form of expression for the Earth's gravitational potential is
in terms of a double infinite series of spherical harmonics dependent on latitude
and longitude. The terms of order zero in this expansion, which are independent
of longitude, are called zonal harmonics. The even zonal harmonics, those of
degree 2, 4, 6, ..., are symmetric about the equator; the odd zonal harmonics,
those of degree 3, 5, 7, ..., which are the subject of this paper, are anti-

symmetric about the equator and define the pear-shape tendency of the Earth.

The odd zonal harmonics give rise to various perturbations in satellite
orbits, usually sinusoidal oscillations with the same period as the argument of
perigee w . The most accurately measurable of these perturbations is the
oscillation in eccentricity, e , as a result of which the perigee distance
a(l-¢e), where a 1is the semi major axis, undergoes an oscillation which has an
amplitude of order 10 km. The amplitude of this oscillation varies greatly with
the orbital inclination i , and if accurate orbits could be determined for
satellites at orbital inclinations of, say, l°, 20, 3°, cens 900, their observed
amplitudes could be analysed to produce reliable values of the odd zonal
coefficients J3, JS’ J7, ... up to high degree. In practice, satellite
launches tend to be confined to particular bands of inclination, and there are

still wide gaps in the coverage.

In the past 12 years, one of the main aims of the British programme for
optical tracking of satellites, using the Hewitt cameras (particularly that at
Malvern), has been to obtain accurate orbits of the satellites which would be
most useful in improving the values of odd zonal harmonics. The first results of
this work] emerged in 1974, when the previous determination of odd zonal
harmonics2 made in 1968 was improved by the addition of eight new orbits, includ-
ing two determined at RAE from Hewitt camera and other observations, those of

3 at inclination 65° and Cosmos 2484 at inclination 62°. These

Cosmos 44*
orbits were both at inclinations close to the critical inclination of 63.4° where
the most serious gap existed. Results from three satellites at low inclinations

(30, 5% and 150) were also included, to help fill the gap in this region,.

Even after the addition of these satellites, however, the lack of orbits at
inclinations very close to 63.4° remained a major limitation on the accuracy of
the values of the odd zonal harmonics, because the amplitude of the oscillation

in eccentricity becomes extremely large near this inclination. Also the motion

* The international designations of all the satellites used are given in Table 1
on page 11.




of perigee is very slow, and the observations have to be made over an interval of
several years before the orbit can be determined over a half-cycle of the argu-
ment of perigee. So the observation of satellites at inclinations near 63.4°
with the Hewitt cameras has continued, and orbits have been determined at the
University of Aston from Hewitt camera and other observations on two satellites,
Cosmos 373 at 62.9° inclination5 and Cosmos 248 over a longer time interval than

before6.

The present paper takes advantage of the results from these two satellites

and also utilizes NASA orbits on one further satellite at a previously
unrepresented inclination, Explorer 46 at inclination 38°. The basic methods
used are unchanged; but there are some significant improvements in the theory,
and the method of solution has been modified by including an optional number of
constraint equations. The new sets of values of odd zonal harmonics obtained
should be considerably better than the previous set, and should give better
values for high-degree coefficients than solutions which do not utilize

satellites so near the critical inclination.
2 THEORY

2.1 The geopotential

The Earth's gravitational potential may be expressed as the sum of (i) an
infinite series of zonal harmonics, independent of longitude, and (ii) a double

infinite series of tesseral harmonics dependent on both latitude and longitude. g |

In the absence of resdnance effects7, the tesseral harmonics do not contribute to
the long-period variations in eccentricity which we are analysing, so we are only
concerned with the longitude-averaged potential, U . At an exterior point :
distant r from the Earth's centre and having geocentric latitude ¢ , the

standard form for U is8

-
]
Rie

= L
[1 - z Jz(%) P, (sin ¢)} m,

2=2

where u 1is the gravitational constant for the Earthg, 398600 km3/32, R is the

10

equatorial radius ~, 6378.14 km, and Pz(hin ¢) 1is the Legendre polynomial of

degree £ and argument sin ¢ . The J, are constant coefficients and we seek

L

to determine J3, JS' J7, e o
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2.2 Perturbations of low-eccentricity orbits

Since many of the orbits utilized are of low eccentricity, the perturba-
tions caused by odd zonal harmonics may most usefully be expressed in terms of

E=ecosw and n = e sin w , rather than in terms of e and w . The varia-

tions in & and n are given byl]:

= =kn+C (2)

e

= k& (3)»

S

where C 1is a function of the odd zonal harmonics J3, J5, J7, eee s k is a
function of the even zonal harmonics JZ’ JA’ J6’ ... and both C and k are

assumed constant¥*,

We may write C explicitly in the formll

4 3 = 2n-2
_ 3 (¥ (RY .o oo -5\ 2 R
c = _2.(—3) (;) sin 1(1 4f)| Iy + T =5F E EznﬂJznﬂ(p) l (4),

a n=2

where f = sinzi , and the E2n+l are functions of e and f specified by

recurrence relations given as equations (6) to (9) of Ref 12. The first two

. 1
E-functions are

Eg = 51 +%e2) (1 - It +-281f7) ' 5)
E7 = - % (l + -;-ez + %e4) (l - %;Zf 4--9-82f2 - l—‘6279f3) (6)

; and subsequent E-functions are of a similar form but lengthier. The e2 and ea
terms in (5) and (6) would be dropped for a near-circular orbit but are included
here to show the proper forms of E5 and E7 for use with orbits of higher
eccentricity. In equation (4), p=a(l-e”); and p would be taken equal to a

for a near-circular orbit.

* Both are functions of a, e and i , but these elements do not usually change
enough to cause significant changes in C or k during the time when the
orbit is being analysed.
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The parameter k depends on J2, JA’ J6’ +++ ; and, since J2 = 1,1 x 10'3

while JA’ J6’ «s. are all of order lO-6 or less, the J _~-term is usually domin-

1,2,11 2

ant. In previous papers , only the J_  contribution to k has been taken

2
into account. But at inclinations near 63.4° the terms in J4, J6’ .e. contri-
bute significantly: their contribution amounts to 22 of the main term for one of
the new satellites, 1970-87A at inclination 62.9°. It is therefore necessary to

evaluate further terms in k .

If 2 1is even, equation (7) of Ref 11 gives the J, term in U as

2
L+1
v = - Jz(§)(§) [P (cos i)P, (0)X ~(341),0
- 2E = p2(cos 102200341002 cos 20 + O(e")] ™,

where the Hansen coefficient x(-)(!t*-l),s

with 8 < 4 need be cons1dered of these terms, those with s =1 and s =3

is of order e°® , so that only terms

do not arise for £ even because the associated Legendre function ps (0) if

2 + s is odd; thus only the s = 2 term appears in (7). When e is small

(2] h
Xo(“l)’o 1+ —'——-——2“’: D e2 + O(el')

and 3 (8).
x(-)(2+|),2 . - 1)8(2, - 2) e " O(e )J

From equation (3) of Ref 11,

U U U
E = = (va) i[{_l:a_l cot i Fl—l-}n + -;--5“)—2 cos w] [l + O(ez)] 9).

On inserting the partial differentials of U, wusing (7) and (8), and writing

L
cos i = u , equation (9) becomes

2
v\ /R 2(2 + 1) 9
12(?y (_a_) Pl(o)[-—'i— Pz(“) +u {Pz(u)}]n

29.(9. + 1)(2 +2)

(4 = 2)¢ Pi(u)Pi(O) gin 2«.,][1 + 0(e2)] (10),

€20
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For 2 =2, the £ term in (10) vanishes. For % =4 , the £ term has a
numerical factor 1% , while the main n term has a numerical factor 12, and is
therefore 60 times larger. Thus, for £ = 4 , the £ term is much smaller than
the n term, which is itself much smaller than the main J2 term. So the ¢

term in equation (10) may be ignored for £ = 4 , and, for similar reasomns, for

;
£
!
#

2 =6, 8 10, ... . On inserting the explicit forms for P2, Pa, P6, P8 and PIO
(given, for example, in Ref 14), we find the contribution of even harmonics to

£ , the term - kn in equation (2), is defined by

- (el av.

where J; s which may be regarded as a value of J2 adjusted for the effects of
higher even harmonics, is given by

3 2

2 5(R/a)

B N 1.7 ) . 2 7{R\2 3 2
T, ' - TG - NI, [J‘(49x - 361 + 3) - 3(;) 3629727 = 3752° + 1151 - 5)

21 (R)é 4 3 2
+ 775(;) J8(786SA = 1401427 + 770007 = 13301 + 35)

- %(%)63' 0(545872% - 12530m% + 9991833 - 3221602 + 3501 - 63)]
e...12),
where A =] - f = coszi , and terms beyond J have not been evaluated

10
because they are likely to be negligible.

The general solution of equations (2) and (3), with C given by (4) and k
by (11) and both being assumed constant, is

£ = A cos(kt + a) (13)
n = A sin(kt +a) + B (14),

where A and a are constants of integration, dependent on the initial

conditions, and

i 2n-2
C . Rsinij_ 2 R
B = k 2aJ5 J3 *Tot z Eznn"znﬂ(p) (15)
n=2

from equations (4) and (11).




Equations (13) and (14) show that the variation of e and w takes the
form of a circle in the (£, n) plane. The circle has the centre (0, 8) and
radius A , and is swept out at a constant angular rate k . If the observa-
tional values of & and n , after removal of other perturbations, are plotted
in the (£, n) plane and fitted with a circle, the centre of the circle will give
a value of B8 and hence, via equation (15), one linear equation between the

coefficients J3, JS’ J7, ... which it is convenient to rewrite in the form

-6
= +
F3J3 + F5J5 + F7J7 + ... (Y 0) x10 (16),
' \

2 R2n-2

where F3 = =1 and F2n+l = Z—:-gf(s) E2n+l for n 2 2 (17),
2aJ'8

2 6

Y = g5 1 (18)

and o 1is the standard deviation in Y .

1,

In our previous determinations of odd zonal harmonics *“, the values of Y

were calculated using J2 rather than J; in equation (18). The use of Jé
changes the value of Y by an amount which is significant for inclinations near

630, but negligible at other inclinations (see section 3).

2.3 Orbits of higher eccentricity (e » 8)

Equations (13) and (14) may be written

e cos w = A cos(kt + a)

(19),
e sinw=-8 = A sin(kt + a)
On squaring and adding equations (19), we have
(e - B 8in w)2 = A2 - Bz coszw (20),
Thus if B« A,
2 2 4
e = Bsinm+A(l --E-?)-%—A-cos 2w+0(§-3—) (21),
4A A




If the cos 2w term is small enough, it is most convenient to evaluate B8 by
fitting a sinusoidal curve to the observed variation of e and determining its
amplitude. Such a fitting would be acceptable if B/4A was less than about a
quarter of the fractional error in B : a typical value of B 1is (500% 5) x 10—6,
and this suggests that the sinusoidal fitting should not be used unless A > 0.05,
In practice, however, comparison with the circle~fitting method shows that the
sinusoidal fitting may be used successfully for values of A down to 0.03, pre-

sumably because the error term, (82/4A) cos 2w , has a different frequency.

Another possible method of evaluating B8 would be to utilize the equation

e? = a2+ g2 + 28 sin(kt + a) (22)

obtained by squaring and adding (13) and (14). This equation has the advantage
of being exact, in the absence of perturbations. With a real orbit, however,
perturbed by drag, the parameter k 1is not constant and the fitting of a sinu-
soidal variation to the observed values of e2 , assuming constant k , would be
subject to an error which is very difficult to estimate. It is better to fit a
circle in the (e, w) plane, or to fit equation (21), so that k only arises
subsequently, in expressing B in terms of the J coefficients through
equation (15): a mean value of k can then be used, with an error which is

easily assessed and usually negligible.

2.4 Treatment of the effect of even harmonics

When e > 0.03 and the sinusoidal fitting is used, the perturbation due to
even harmonics, given as equation (9) of Ref 1, may be appreciable. This pertur-
bation varies as cos 2w , and a term of this form has been included in the

fitting when necessary, as explained in Ref 1.

In the fitting of the low-eccentricity orbits, the effects of even zonal
harmonics are not separated out, and the appropriate expression for B is
equation (15), which includes a contribution from even zonal harmonics within
Jé . For orbits of higher eccentricity, when the even harmonic contribution is
fitted separately by including a cos 2w term, the proper expression for B is

equation (15) with J2 replaced by Jz , that is

R n=-2
E J -—
2n+! 2n+|(p)

n=2




10

The difference between (15) and (23) is negligible except at inclinations near |

63.40; but, strictly, equation (23) should be regarded as the 'correct'
expression for the amplitude of the oscillation in eccentricity caused by odd |
zonal harmonics only; it would be identical with (15) if J4, J6’ JB’ ees Were

zZero.

3 THE ORBITS USED

3.1 General

If a reliable set of odd zonal harmonic coefficients J3, Js, J7, ve. 1is
to be derived from equations of the form (16), the complete range of inclinations

from 0° to 90° should be covered, and, since the E and F functions depend

i
|

primarily on f = sinzi , the ideal would be a large number of orbits with values \

of f uniformly distributed between 0 and 1, except for the region near f = 0.8,

where a greater density of data is needed, because Y becomes very large.

Although the inclinations of the orbits actually available have gaps, the distri-

bution of the 27 orbits previously used was fairly uniform: there were, however,

too many orbits with values of f near 1.0, and none with values between 0.1

and 0.2, or between 0.3 and 0.4 (see Fig 10 of Ref 1), Three new orbits have now !

been added, one of which is Cosmos 248, and supersedes the orbit of that .

satellite previously used. Also, one of the previous orbits, that of Explorer 20

at inclination 79.90, has been dropped because there are three other orbits with

similar inclinations which are more accurate and fitted better. So we are left

with 28 orbits, which are listed in Table ! in order of increasing f . The Table

gives the relevant orbital parameters, and the values of Y with their nominal
standard deviations, o . In the course of the computations it proved advan-
tageous to increase some of the values of o (see section 4.3): these values of

o are marked with an asterisk in Table ! and the amended values o' are given

in the final column.

For most of the satellites in Table 1, the values of Y are the same as b
before; for some, however, the values of 8 were re-determined by fitting a
circle to the values of £ and n instead of the previous sinuscidal fitting

of e (see section 3.3).

For the orbits with inclinations outside the range 59° to 66°, the values

of Y were calculated using equation (18) with J, rather than J; : a change

2
£from J2 to Jé would not have altered any of the values of Y by more than
0.10 . For the five orbits with inclinations between 59° and 66°,'the values

of Y were calculated by using equation (18) with Jé rather than J, . The

<
N
w




Table !

Mean values of a, e, and i, and values of £, Y and o for the 28 orbits

Satellite a e i £ 2 Y o o'
km deg (= sin"i)

Explorer 42 1970-107A| 6900.0| 0.0025 3.03 0.0027 0.49 | 0.62
Dial 1970-17A 7339.0| 0.0880 5.41 0.0089 1.19 | 0.22
Peole 1970~-109A | 7007.7| 0.0166| 15.00 0.0670 2.51 0.05
Explorer 11 1961vl 7512.6) 0.0862| 28.80 0.2321 2,4241 0.02
LCS 1 1965-34C 9165.5| 0.0013| 32.14 0.2830 2.3511 0.1*% | 0.2
0S0O 3 1967-20A 6931.9] 0.0022] 32.86 0.2945 2,2921 0.05
Vanguard 2 1959al 8300.0) 0.1641 ] 32.88 0.2947 2.304 | 0.05*%1 0.2
Explorer 46 1972-61A 7028.0] 0.0225]| 37.69 0.3738 2.166 | 0.05
Explorer 27 1965-32A 7507.2] 0.0251 ) 41.19 0.4336 2,272} 0.03
Telstar | 1962ael 9672.1| 0.2423 | 44.80 0.4965 2.46G1) 0.02
Echo 1 rocket 1960t2 7971.5] 0.0114 | 47.23 0.5389 2.407 | 0.05*% | 0.1
Anna 1B 1962Rul 7507.8| 0.0070| 50.13 0.5890 2.5611] 0.03
Ariel 2 1964-15A 7192.4) 0.0730} 51.65 0.6150 2.72110.05
Tiros 5 1962001 7158.7] 0.0263 | 58.10 0.7208 4,177 ]| 0.05
Explorer 29 1965-89A 8073.1| 0.0717 | 59.38 0.7406 4.038 | 0.1
Cosmos 248 1968-90A 6841.9] 0.0060 | 62.238 0.7830 11.25 | 0.03*% | 0.3
Cosmos 373 1970-87A 6875.9] 0.0170 | 62.910 0.7926 21.83 [ 0.08*%10.5
Explorer 32 1966-44A 7709.0] 0.1372 ( 64.66 0.8168 | -2.917 ] 0.03
Cosmos 44 1964-53A 7109.5| 0.0174 | 65.07 0.8223 -2:092 0.03* | 0.1
Transit 4A 196101 7318.2{ 0.0080 | 66.80 0.8448 0.811 ] 0.08*% | 0.1
Secor 5 1965-63A 8159.0) 0.0791 | 69.23 0.8743 1.857 ] 0.05
Geos 2 1968-02A 7705.2| 0.0320 |105.79 0.9260 2.35910.02
FR-1 1965-101A | 7128.6 | 0.0010 | 75.88 0.9405 2,371 0.05
Alouette 2 1965-98A 8120.0| 0.1528 79.82 0.9688 2,736 | 0.05*% | 0.2
Prospero 1971-93A 7441.9] 0.0692 | 82.06 0.9809 2,910 0.03*% | 0.2
Essa | 1966-08A 7147.3 | 0.0097 | 97.91 0.9810 2,903 |0.1* 0.2
Midas 4 1961aé1 10005.0 | 0.0121 95.86 0.9896 2.697 | 0.02
Transit 1963-49B 7473.1] 0.0036 | 89.96 1.0000 3.070 | 0.02

* These values of 0 are increased in the course of the computations, to the
value o' shown in the last column.
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values of Jé/J2 on each of these five orbits were: 0.997 for Explorer 29;
0.990 for Cosmos 248; 0.976 for Cosmos 373; 1.009 for Explorer 32; and 1.007 for
Cosmos 44. In retrospect it appears that it would have been more logical to have

used J, rather than J! for Explorer 32, because the even zonal harmonic

2 2
effect had already been allowed for: the change is small, but worth making in a

future analysis.

3.2 The three new orbits

3.2.1 Cosmos 373, 1970-87A

The orbit of Cosmos 373, at inclination 62.9°, has been determined by
Brookes5 at 25 epochs between February 197! and July 1975, from more than 1500
optical and radar observations, including Hewitt camera observations for all 25
orbits. The orbit determination covered nearly half a cycle of the argument of
perigee, and the values of eccentricity had standard deviations corresponding to

accuracies between 30 and 120 m in perigee height.

The values of eccentricity were cleared of lunisolar perturbations and the
effects of air drag; a circle was then fitted to the resulting values of £ and
n, giving B8 = (8.53 £ 0.03) x IO-3 . This value is of excellent accuracy, and
it is also the largest observational value of £ obtained from any orbit of high
accuracy: it corresponds to an amplitude of 58.7 km for the oscillation in peri-
gee height. On using equation (18), Cosmos 373 gives Y = 21.83 * 0.08 ,
although the sd has to be increased when computing the solutions for the J
coefficients, because of the errors incurred by neglecting odd harmonics of high

degree (see section 4.3).

3.2.2 Cosmos 248, 1968-90A

The orbit of Cosmos 248, at inclination 62.20, has been determined by
Brookes and Holland6 at 57 epochs over nearly 1} cycles of the argument of peri-
gee, from January 1972 to December 1975, The orbit was computed from about 3000
optical and US Navy observations, using the RAE orbit refinement program PROP,
and the accuracies achieved in eccentricity correspond to between 30 and 120 m in

perigee height.

The values of eccentricity were cleared of lunisolar perturbations and the
effects of air drag, and a circle was fitted to the resulting values of £ and
n . The fitting was excellent and the value of B obtained was
.(4-33 t 0.01) x 1073, This was a satisfactory improvement on, and.confirmation

of, the value 4.30 £ 0.02 obtained previouslyI from the orbit determination in

(=]
N
W
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the years 1969 to 1971. On using equation (18), we find Y = 11.25 £ 0.03 , but,
as with Cosmos 373, the sd has to be increased to allow for neglected odd

harmonics of high degree (see section 4.3).

3.2.3 Explorer 46, 1972-61A

In our previocus evaluation of odd zonal harmonics, there was no orbit with
an inclination between 33° and 41°. This serious gap has now been filled by
using Explorer 46 at inclination 37.7°, for which NASA orbits were kindly supplied
by S.M. Klosko.

Explorer 46, 1972-61A, also known as Meteoroid Technology Satellite, was
launched on 13 August 1972 into an orbit with perigee height 500 km and apogee
820 km. The satellite was a cylinder of mass 175 kg, 3.2 m long and about 50 cm
in diameterls. The mass/area ratio exceeds 100 kg/m2 and the orbit is nearly
circular, so the effects of solar radiation pressure should not be significant.
The effect of air drag is however quite considerable, and consequently it is

better to work with the perigee height than with the eccentricity.

There were 27 orbits of Explorer 46 available, running from MJD 41543
(1972 August 14) to MJD 41817 (1973 May 15), and covering 6 cycles of the argu-
ment of perigee. 1In Fig | selected values of semi major axis a are shown by
triangles joined by a broken line. For this satellite it was expected that the
oscillation in perigee height due to odd zonal harmonics would be about
4.1 sin w km, and the circles in Fig 1 show the values of {a(l - e) + 4.1 sin w},
which should be almost free of the odd harmonic oscillation. This is confirmed
by Fig 1, which also shows that the variation of {a(l - e) + 4.1 'sin w} is of the
same form as the variation in semi major axis, as it should be. The amount
(Arp)AD to be added to a(l -~ e) to compensate for the decrease due to air drag
is taken to be as given by the unbroken curve in Fig 1: the curve has a slope
proportional to da/dt . If a(l - e) + (Arp)AD is written as ao(l - e') , the
values of e' provide a set of values of e cleared of air drag perturbations,
and this set can be fitted either by a circle or a sine curve, to obtain a value
of B . Lunisolar perturbations to the perigee height were calculated, but were

ignored because they were always less than 80 m.

The 27 values of e' are plotted against w in Fig 2: it can be seen that
the drag effects have been successfully removed, and that the points on all 6
cycles of w lie close to a sine curve with an amplitude B of 0.555 x IO-3 .
The points have been numbered chronologically, so that the successive cycles can
be followed.
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The values of e' cos w and e' sin w have been fitted with a circle by

least-squares, as shown in Fig 3, with a representative selection of the points.
The fitting gives the centre of the circle at the point (~0.007, 0.555) x 10-3.
The mean value of eccentricity, given by the radius of the circle, is 0.022501.
Although the fitting of a circle is necessary on theoretical grounds, the form of
presentation in Fig 2 is visually preferable, because its wider scale gives an
impression of the residual errors, which are scarcely perceptible in Fig 3. The
value of B obtained from the fitting of the circle is (0.555 * 0.003) x 10-3,
from which Y = 2,166 * 0.012. The sd of 0.012 is increased to 0.05 in

conformity with the treatment of the other satellites in Ref 1.

3.3 Orbits with B re-determined by fitting a circle

Three orbits with eccentricity less than 0.02, for which B was previously
determined by fitting a sine curve, have been fitted with a circle in the (&, n)
plane. As explained in section 2, this procedure is theoretically preferable for
eccentricities less than about 0.03, although in practice the changes proved to

be quite small. For these three orbits the effect of air drag is negligible.

The first of the three satellites is Echo 1 rocket at 46° inclination, for
which the fitted circle is shown in Fig 4, with a small selection of the 61 points
fitted. The centre C of the circle is at the point (0.003, 0.652) x ]0-3, and
the value of 1036 obtained is 0.652 * 0.004 as compared with 0.650 * 0.002
from the original fitting of a sine curve (Fig 4 of Ref 13), and 0.653 * 0.002

in the revised fitting of Ref 2. The new value of £ gives Y = 2.404 % 0.015 ,
and the sd is increased to 0.05 in accordance with the procedures of Ref 1. (The
old value of Y was 2.707 and the change is thus only 0.060: the old value was
retained in the calculations.) The radius of the circle in Fig 4, giving the

mean value of eccentricity,is 0.01147.

The second of the three satellites is Cosmos 44 at inclination 65.l°, for
which the fitted circle is shown in Fig 5, with a selection of the 28 points
fitted. The mean value of eccentricity is 0.01730, the centre C of the circle
is at the point (=0.025, -0.781) x 10>
fitting is (-0.781 * 0.003) x 10-3 , giving Y = -2,092 * 0.008 , as compared

with =2,106 * 0.024 previously. The sd is increased to 0.03 in accordance with

, and the value of B obtained from the

the procedures of Ref 1,

The third satellite is Transit 4A at inclination 66.80, for which the

fitted circle is shown in Fig 6, with a small selection of the 137 points fitted.

The mean value of eccentricity is 0.00805, the centre C of the circle is at

t20
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and the value of 1038 derived from the fitting is

(-0.02, 0.30) x 10
0.30 * 0.03 , as compared with 0.297 £ 0.003 from the sine curve. It is rather
surprising that the fitting of the circle gives an sd so much larger, but it is

of little consequence since the value of B is the same, and the sd is increased

in the course of the computations. The new value of B gives Y = 0.811%0.08 .
4 RESULTS

4,1 The equations to be fitted

We have 28 equations of the form (16), one for each of the 28 satellites.
The 28 values of Y are given in Table 1; the values of F3, FS’ ey F33 for

all the satellites previously used are given in Table 3 of Ref 2 and Table 3 of

Ref 1, and will not be repeated here. The values of the F coefficients for
the three new orbits are given in Table 2 below. The values for Cosmos 248 are

very slightly larger than before, because of the decrease in semi major axis.

Iable 2

Values of F for the three new orbtits

g2 Fgo eees Fog

Satellite F3 Ps F7 F9 F,, Fl3 FIS Fl7
Explorer 46 =1 0.2264 0.8056 | -0.5524 | -0.3465 0.5486 0.0082 | -0.3890
Cosmos 248 =1 -13.4313 | -13,0732 | -1.7304 8.9327 | 10.3108 3.2719 | -4.75344
Cosmos 373 -1 =29.1780 | -30.4216 | -7.0630 | 17.1225 | 23.09!10 | 10.3971 |-7.0499
Satellite Fl9 FZl PZJ FZS F27 F29 F3| F33

Explorer 46 0.1603 0.2029 -0.1976 | -0.0573 0.1614 | -0.0284 | -0.0999 0.0619
Cosmos 248 -7.2384 -3.5129 2.0714 4.7330 3.0944 } -0.5524 | -2.9014 | -2.4427

Cosmos 373 -15.0760 =-9.9842 1.2485 8.7969 7.9864 1.4818 | -4.5044 |-5.6835

In recent determinations of geopotential coefficients from analysis of
orbital resonances (for example, Ref 16), it has been found useful to apply con~
straints when solving for the values of the coefficients, by adding constraint
equations based on Kaula's rule of thumbl7, that the normalized coefficients of
degree % are likely to have values of order 10-5/22 . The first evaluation18

of harmonics up to order and degree 180 has provided a test of this rule, and
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the general indications are that the actual values of the coefficients are
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smaller than 10-5/2.2 for 10 < 2 < 40. The value 10-5/12 therefore seems to
provide a reasonable upper limit, though it should be emphasized that the value
represents an average over all orders, whereas the zonal harmonics are of a
specific order (zero) and may not always conform., Since the J coefficients are
not normalized, the normalization factor v2% + 1 must be inserted and, writing

2 = 2n + 1 , the appropriate constraint equations are

Jin + 3 x 107°
(2n + l)2

J = 0%

2n+l (24).

These equations are included among those to be fitted for all values of n grea-

0 The value of n, is chosen
after testing the effects of various choices (see section 4.2).

ter than or equal to a chosen minimum value n

So the equations to be fitted are 28 equations of the form (16), with
values of Y given in Table 1, and (nm -n, ¢+ 1) equations of the form (24),
where oo is the value of n for the highest-degree coefficient evaluated and
is also a matter of choice, like n, . Thus the number of equations is

(29 + n - no) and they are solved for up to n coefficients.

4.2 The number of constraint equations

The effect of the constraints was tested by re-calculating the solutions of
the equations of Ref 1 for 4, 5, 6, ..., 12 coefficients, first with con-
straints on the coefficients of degree 21, 23 and 25; then with constraints on
degrees 15, 17, 19, ..., 25; and then on degrees 9, 11, 13, ..., 25 . The
presence of the constraints slightly improved the fitting (as was inevitable,
because the previous values of the high-degree coefficients were on average less
than half the values specified by the constraints); but the values of the
coefficients were not significantly altered. Since neither extreme offered

advantage, the middle choice was adopted initially, with n, = 7 , Ze with

0
constraints for degree 15 and above.

Most of the solutions were calculated with n, = 7 ; but since Jl7
remained large whether or not it was constrained, there was no point in keeping
this constraint, and the final solutions all have n, = 9 , so that there are

J19’ JZl’ ey J . With n, = 9 , the

number of eqﬁations being solved is 28 for n < 8 , and 20 + n for o > 8 .

constraints on the coefficients on +1
m




4.3 Progress of the solutions

The solutions were obtained by least-squares fitting, the measure of fit

being assessed by the value of ¢ , where ez is the sum of the squares of the

weighted residuals, divided by the number of degrees of freedom - the weighted
residual being the observational value of Y minus the value given by the left-
hand side of equation (16), divided by ¢ (or o' ). In all, 572 solutions were

computed.

First, as already mentioned, Explorer 20 was omitted because its fitted
sine curve (Fig 13 of Ref 2) is unsatisfactory, and because there is a better
satellite (Alouette 2) at the same inclination. The omission of Explorer 20
reduced ¢ , and the standard deviations of the values obtained in the solutions,

by 14Z on average.

In the previous solutions, Cosmos 44 and Transit 4A had been in conflict,
s0 o0 was increased to 0.1 for both: this led to an improvement of nearly 157 in
the standard deviations. Then the new values of Y for these two satellites

(section 3.3) were inserted: the resulting change was not significant.

Of the three new satellites, Explorer 46 fits well and offers no problems,
but the values for Cosmos 248 and 373 cannot be used as they stand because the F
coefficients remain large up to beyond degree 33 (see Table 2), and our final

solutions do not go beyond J So ¢ must be increased to take account of

29 °
the neglect of high-degree coefficients. The numerical values of the coefficients
F31’ F33, cens F49 for Cosmos 373 are: -4.5, -5.7, -2.4, 1.9, 3.7, 2.3, ~-0.4,
-2,2, =1.9, -0.3; while the corresponding values of V22 + 1| 1075/22 are
(83, 75, 69, ..., 41) x 10-9 . The arithmetic mean of the ten values of

ST 1073721 -9 .
IFl 22 + 110 °/2°] is 165 x 10 ° , so the expected order of magnitude of the
%2 0.5%x107% . If the J

coefficients are smaller than given by Kaula's rule, this value could be reduced;

sum of these neglected terms is 10 x 165 x 10

on the other hand, it needs to be increased to allow for the neglected harmonics
of degree greater than 50. Thus o = 0.5 seems a reasonable figure and in fact
turns out to be a practical value. For Cosmos 248, the values of the F
coefficients are about half as large as for Cosmos 373, giving o = 0.3 for

Cosmos 248; again this value proved satisfactory in practice and was adopted.

The other increases in o , indicated by the asterisks in Table 1, were
made because the values appeared to be ill-fitting, and increases in ¢ led to
lower values of ¢ . For LCS 1, o was increased from 0.1 to 0.2; this improved

¢ and the standard deviations of the coefficients by about 2%. For Vanguard 2,
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o was first relaxed to 0.1, which reduced € by 27%; and then to 0.2, which
reduced € by another 2%. For Echo ! rocket, o was increased from 0.05 to
0.1; this reduced e by 52. In the previous solution, the three satellites with
i, or (180° - i), near 80° were persistently ill-fitting, so the values of o
for these satellites were further increased: for Prospero, ¢ was increased from
0.1 to 0.2, which reduced € by 3%Z; for Alouette 2 and Essa |1, ¢ was also
increased to 0.2, and this reduced & by another 3%, The effect of omitting
individual satellites was also tested, but no advantage was gained: for example,

the omission of Prospero increased ¢ by 1Z.

All the percentages given in this section are averages over the solutions
for 4, 5, 6, ..., 16 coefficients, but the effect is usually similar whatever
the number of coefficients evaluated: a change tends to improve (or worsen) all

solutions.

4.4 The final solutions

After the alterations speciried in section 4.3, the solutions for

n = 4, 5, 6, ..., 16 coefficients gave the following values of ¢ :

10 1 12 13 14 15 16

3.1712.79] 2.14/ 2.06/0.571/0.543]0.537] 0.526|0.518]0.518} 0.495]0.494|0.494

For n € 7 , the value of & 1is too large to be acceptable: the inclusion of
Jl7 is essential and greatly reduces € . As n increases from 8 to 16, ¢
steadily decreases, with a larger decrease whenever the new J-value is relatively

large.
Three of the solutions are selected for presentation here (Table 3).

The 8-coefficient solution is chosen because (a) it represents the field

well with a minimal number of coefficients, (b) it serves as a basis for compari-
son with solutions having more coefficients, and (c¢) it provides a comparison

with the recommended 8-coefficient solution of Ref 1.

The 9-coefficient solution is chosen because (a) it provides a signific-

antly better fit than the 8-coefficient solution, with € reduced by 5%, and

(b) the standard deviations of the values are the lowest of any solutionm.

The l4-coefficient solution is chosen as the representative solution having

a large number of coefficients, because there is a decrease in ¢ of 4.47 between
the 13- and l4-coefficient solutions, but no further significant decrease on going

to 15 or 16 coefficients.
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Table 3
] Selected solutions for J coefficients
: Previous New New New
‘ 8-coefficient 8-coefficient 9-coefficient l4=-coefficient
109 I, -2531 ¢ 7 -2529 ¢+ 5 -2530 + 4 -2528 * 6
Js =246 9 -247 ¢ 5 -245 % 5 -250 * 7
Jq -326 % 11 =334t 7 -336 + 6 -329 ¢ 9
é Jg =94 £ 12 ~92 %+ 7 =90 7 -93 = 7
Jll 159 £ 16 161 £ 10 159 £ 9 158 £ 12
I3 -131 £ 22 -147 £ 14 -158 * 15 -157 £ 20
Iis =26 t 24 -25 % 15 =20t 15 =24 £ 27
Ji7 -258 * 19 -238 £ 15 -236 * 14 -232 t 24
Jig -27 * 19 -12 £ 23
Io1 -12 £ 33
Jog 31 £ 39
Jog 29 £ 39
Jo7 -6t 35
Jaog . 54 + 38

It will be seen from Table 3 that, for a particular £ , the values of any
pair of Jz differ by less than the sum of their standard deviations. So the f
solutions are self-~consistent, and immune from instability as higher harmonics
are evaluated. In the new 9-coefficient solution the standard deviations are

about 407 lower than in the previous (8-coefficient) solution.

We select the 9-coefficient solution as our recommended set of harmonics,
because it has the lowest sd; but there is little to choose between the three
solutions, and the 8- or l4~coefficient solutions may be preferred for some

purposes.

The weighted residuals for each orbit, as defined in section 4.3, are
listed in Table 4.

023
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Table 4

Weighted residuals in the three solutions of Table 3

Weighted residual
Satellite
8~coefficient | 9-coefficient | l4~coefficient

Explorer 42 0.682 0.515 0.395

Dial -0.263 -0.442 -0.294 i
Peole -0.004 0.178 0.078 .
Explorer 11 0.147 0.053 0.011

1CS 1 -0.288 -0,288 =0.276

0s0 3 0.062 0.439 0.167

Vanguard 2 -0.281 -0.260 -0.265

Explorer 46 -0.904 -0.652 -0.522

Explorer 27 0.529 0.511 0.418

Telstar | 0.778 0.734 0.605

Echo 1 rocket | =-0.438 -0.461 -0.510

Anna 1B -0.243 -0.305 -0.519 ?'
Ariel 2 0.381 0.473 0.314 ;
Tiros 5 . =0.210 0.013 0.127 i
Explorer 29 0.582 0.646 0.630 i
Cosmos 248 -0.309 -0.556 -0.650 !
Cosmos 373 1.010 | 0.700 0.513 i
Explorer 32 0.207 0.135 0.162 |
Cosmos 44 -0.571 ~0.567 -0.657 !
Transit 4A 0.828 0.719 0.594 i
Secor 5 0.025 -0.057 -0.072 '
Geos 2 =-0.406 -0.403 =0.217 j
FR-1 -0.635 =0.561 =-0.235 I
Alouette 2 0.275 0.298 0.293 i
Prospero 0.471 0.500 0.460

Essa | 0.377 0.418 0.352 i
Midas 4 =0.342 -0.318 =0.313 |
Transit =0.145 -0.327 -0.100

Table 4 shows that there are no startling changes in the fit as the number
of coefficients increases, and when one residual in a conflicting éair fits
better, it is usually at the expense of the other, eég Cosmos 248/Cosmos 373 and
Cosmos 44/Transit 4A.
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The weighted residuals for Cosmos 373 are rather large with the 8- and
9-coefficient solutions: this is to be expected, because the value of o¢' for
Cosmos 373 was taken as 0.5, which was the expected error due to neglecting
J3], J33, ooy J49 , whereas the errors due to neglecting JZl’ J23, ooy J29
ought also to be included, giving a value of o' about twice as large. A re-run
of the 8~ and 9-coefficient solutions with o¢' = 1.0 for Cosmos 373 and 0.5
for Cosmos 248 gave nearly identical solutions, with standard deviations about 5%
less for the 8-coefficient solution, and almost the same for the 9-coefficient
solution. Although these solutions will not be used, the 9-coefficient solution
5 = =246; J, = -336;

13 = -157; Jls = -22; Jl7 = =234; Jl9 = =22,

4.5 The variation of B with inclination

is recorded here for reference (all x 109): J3 = =2529; J
J9 = -90; Jll =159; J

7

Fig 7 shows the values of B given by the 9-coefficient solution, as
obtained from equation (23) with R/a = R/p = 0.9 (which corresponds to a near-
circular orbit at a mean height of just over 700 km). The right-hand scales on
Fig 7 show the values of aB , the amplitude of the oscillation in perigee
distance, which is less sensitive to variations in a than is B itself.
Usually B 1is positive, and perigee is then closest to the Earth's centre at
northern apex (w = 900); when B 1is negative, perigee is closest at southern
apex (w = 270°).

Fig 7 shows that the amplitude of the oscillation in perigee height
increases from zero for an equatorial orbit to 5.7 km at an inclination of 50°,
and then increases rapidly: for inclinations between 55° and 70°, see the diagram
on the right, which has a semi-logarithmic scale for B . At inclinations
between 63.4° and 66.1°, B8 is negative, 7¢ the perigee is closest to the Earth
at southern apex, and the amplitude reduces to zero at 66.1°, For inclinations
between 66.1° and 90° the situation reverts to normal, with perigee closest in
the northern hemisphere, and the amplitude of the oscillation increases from zero
at 66.1° to 9.5 km at 90° inclination.

Fig 8 shows how B and af vary when R/a = R/p = 0.8 , which corresponds
to a near-circular orbit at a mean height of 1600 km. The amplitude of the
oscillation in perigee height, aB , is generally slightly smaller: for example,
at inclinations of 30°, 60° and 900, the values are 3.5, 10.9 and 8.7 km
respectively for R/a = 0,8 , as compared with 3.5, 13.6 and 9.5 km respectively
for R/a = 0.9 . Another significant difference is that, when R/a = 0.8 , B
is negative over a smaller range of inclination, from 63.4° to 65.7° (instead of

from 63.4° to 66.1° for R/a = 0.9 ). This is because the higher harmonics have
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less effect on a more distant orbit, and cannot cancel out the positive effect of

J3 over such a wide range of values of inclination.

Fig 9 gives an alternative version of Figs 7 and 8, avoiding the
infinities. The quantity plotted is B8(4 - 5f) , which remains within reasonable

limits. The value of £ can be obtained on dividing by (5 coszi - 1.

4.6 Geoid height

The zonal harmonics serve to define the profile of the equipotential sur-
face of the Earth's meridional section, averaged over all longitudes. 1If V(r,¢)
is the external potential at latitude ¢ , including the rotational accelerationm,

we have

N
n
V(r,9) = 241 - Z Jn(%-) P (sin 6)} + 4w’ cos’s (25),

n=2

where w is the Earth's angular velocity (72.92115 x 10-6 rad/s) and N is the
degree of the highest—deéree harmonic in the set. (The atmosphere is assumed to
be internal.) The equipotential surface is found by setting V(r,¢) = V(R,0)
and solving for r itera;ively at each value of ¢ , giving a value r, say.

The value of r on a spheroid of flattening F is

R(l - F)

r = (26)
8 {1 -F cosz¢)2 + F2 cosz¢ sin2¢i{ ’

and we define the geoid height above the spheroid, h , as
h = r.~-r (27).

The values of geoid height h are, of course, affected by the even
harmonics as well as the odd harmonics at most latitudes. Here our aim is to
display and compare odd zonal harmonic values, so we choose a standard set of
even zonal harmonics, that of GEM lOBlo(given in Table 5), and indicate later

the effect of changes in the even zonal harmonics.

Fig 10 shows the variation of geoid height with latitude given by our
9-coefficient set of odd harmonics and the GEM 10B even harmonics, with
F = 1/298.25 . This value of the flattening has been retained to allow comparison
with Ref 1, but the change produced by altering F to 1/298.257, in conformity
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with GEM 10B, is very small: the maximum change is at the poles, and is only

50 cm, as indicated by the arrows.

In Fig 10 the south polar depression of the geoid is 27.23 m and the north
polar hump is 17.84 m, so that the north polar radius RN of the geoid exceeds
the south polar radius Rs by 45.1 m: in other words, sea level at the north
pole is 45.1 m further from the equator than is sea level at the south pole. This
'pear-shape asymmetry', (RN - RS), depends solely on the odd zonal harmonics, and

is not affected by the particular choice of flattening or of even zonal harmonics.
5 COMPARISONS

5.1 Comparisons between our three solutions

5.1.1 Values of B

Fig 11 shows the variation of A8 , the value of B8 given by our
l4~coefficient solution minus the value given by the standard 9-coefficient
solution. The broken curve in Fig 11 gives the variation of AR for the
8-coefficient solution. Both solutions have R/a = 0.9 . The maximum difference
aAB is only 60 m, except at inclinations near 63.4° (where A8 inevitably tends
to infinity). Since few of the orbits are determined to an accuracy better than
100 m, agreement to within 60 m implies that we have exploited the available data
as fully as possible, and that all three solutions give essentially the same

results.

5.1.2 Geoid height

Geoid heights have been computed for the 8- and l4-coefficient solutions
and are found to differ from those of Fig 10 by less than 30 cm for latitudes up
to 86°: so the three profiles are virtually the same, and it seems reasonable to
assess the errors in the longitude-averaged profile of Fig 10 due to errors in
odd zonal harmonics as about 40 cm, at latitudes up to 86° - Ze over more than
99% of the Earth.

Very close to the poles, however, the l4-coefficient solution diverges
significantly, and Fig 12 shows the difference Ah between the geoid height
given by the l4-coefficient solution and that given by the 9-coefficient
solution, for latitudes greater than 80°. The (much smaller) differences for the
8-coefficient solution are shown by a broken line. The changes at the pole do
significantly alter the pear-shape asymmetry: it is 43.5 m for the
l4-coefficient solution and 44.6 m for the 8-coefficient solution, as compared

with 45.1 m for the 9-coefficient solution. Thus the difference between the
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north polar and south polar radius of the geoid proves to be a sensitive para-
meter for assessing sets of odd zonal harmonics; conversely, it is a difficult
parameter to estimate accurately, so that it is quite likely that the largest

errors in many geoid maps will occur at the poles.

5.2 Effect of even zonal harmonics on geoid height

As already mentioned, the geoid height profile depends on the values of the
even zonal harmonics as well as the odd, and Fig 13 shows the change when, instead
of the GEM 10B even harmonicslo, we use a set of even harmonics determined at the
Smithsonian Astrophical Observatory in 1974 (E.M. Gaposchkin and Y. Kozai, private
communication), which will be called 'SAO 74', and is a revised version of the set
used in the Smithsonian Standard Earth IV.319. In Fig 13 the average numerical
difference between the geoid heights is only 20 cm, so a change to the SAO 74 even
harmonics would have little effect on Fig 10. From the evidence of Fig 13, it
seems reasonable to assign an error of about 30 cm due to even zonal harmonics,
giving an overall rms error of 50 cm in the geoid profile of Fig 10, for latitudes

up to 86°.
The GEM 10B and SAO 74 even zonal harmonics are listed in Table 5.
Table 5

Values of even zonal harmonic coefficients from GEM 10B and SAQ 74

GEM 10B | SAO 74 GEM 10B | SAO 74

109J2 1082627 | 1082639 109J20 -157 -135

3, -1623 -1609 Jsg 26 92

Je 543 535 Jo4 9 173
Jg -208 -183 Joe -14
Ji0 ~242 -258 Jog 109
Ji9 -196 ~-179 Ja0 12
I4 125 110 s, 58
P 36 16 Ja4 62
J_18 =63 | =77 J36 3
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5.3 Comparison with other sets of odd harmonics (GEM 10B, SAO 74, GRIM 2,
WGS 72)

5.3.1 Values of B8

The value of the amplitude B of the oscillation in eccentricity due to
odd zonal harmonics has also been calculated for the sets of odd zonal harmonics
of GEM 10B and SAO 74, which are listed in Table 6.

Table 6

Values of odd zonal harmonic coefficients from GEM 10B and SAO 74
(with our 9-coefficient set for comparison)

GEM 10B | SAO 74 | 9-coefficient GEM 10B | SAO 74

10%3, | -253 | -2553 -2530 10°3,, 6 -56

3 -226 -207 -245 3y | 140 153

3, -363 ~395 -336 Ty -3 -219

3 -117 -97 -90 3,, | -8

3, 229 246 159 3y 51

35| -223 | -287 -158 3, 6

3 -14 32 ~20 Iy 31

L. -93 | -141 -236 g | -78

3 -11 55 -27

Fig 14 shows the variation of AR , the value of B given by GEM 10B minus
the value given by our 9-coefficient solution, with the corresponding value of
AB from SAO 74 as a broken line. The differences are an order of magnitude
greater than the differences between our three solutions, so it is quite accept-
able to make the comparisons only with the 9-coefficient solution. Fig 14 shows
that, away from 63.40, the values of B predicted by GEM 10B differ from ours by
up to about 350 m, while the SAO 74 values differ from ours by up to about 600 m.
At inclinations up to 23° our values agree well with GEM 10B, while SAO 74
diverges from both (partly because it gives negative values of B for inclina-
tions less than 5°). For inclinations between 25° and 32°, and again from 35° to
430, GEM 10B and SAO 74 agree with each other better than with our values.
Between 44° and 58°, our values and GEM 10B agree extremely well. As the inclin-

ation approaches 63.40, the solutions diverge: at 63.00, for example, the values
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of aB from GEM 10B and SAO 74 fall short of ours by 2.0 and 4.4 km respectively.
At inclinations greater than 64° the three solutions scarcely ever agree, and the

divergences near 69° are the worst of all (apart from the infinities at 63.40).

Fig 15 shows AR for the European geopotential model GRIM 2 (full line)20
and for the World Geodetic System 1972 (WGS 72, broken line)21. For GRIM 2, the
values are fairly close to those of SAO 74 for inclinations up to 600, and fairly
close to those of GEM 10B for 65° to 90°. The maximum divergence from our values
is 600 m at an inclination of 7°. The WGS 72 model is rather an old one, and has
only three coefficients, J,, J. and J

3* 75 7°
agreement with WGS 72 with our values is surprisingly good at inclinations

but it is still used quite widely. The

between 16° and 530, the difference being less than 250 m; but at other inclina-
tions there are large discrepancies, and WGS 72 could not be recommended for
inclinations between 56° and 71°, where aAB exceeds 700 m (apart from a chancy

zero near 63.7° en route to infinity at 63.40).
5.3.2 Discussion

It may seem surprising that GEM 10B, which utilizes thousands of laser
observations accurate to better than | m, should predict values of B8 which
reveal discrepancies of order 200 m when compared with our solution. However, it
appears likely that, although GEM 10B incorporates a million observations on 30
satellites, only a few of these satellites were tracked by laser, and not all
were observed over a complete cycle of the argument of perigee, as is necessary
for a strong determination of odd zonal harmonics. Furthermore, the absence of
satellites with inclinations near 63.4° in GEM 10B (the nearest is 115.00,
equivalent to 65.00) removes the most powerful determinant of high-degree zonal
harmonics. The SAO 74 solution, like ours, relied mainly on orbits determined
from photographic observations; but again the absence of orbits with inclinations
near 63.4° (59o and 67° are the nearest) weakens the solution for high-degree

coefficients.

The inquiring reader may ask, "which of the three solutions is the best?",
To hope for an unbiassed answer from us is, perhaps, expecting too much, but we

shall try to be impartial. The following points seem relevant:

(1)  Our solutions include two satellites at inclinations considerably

closer to 63.4° than the other two solutions. Our solutions fit the results from

‘these two satellites; the other solutions do not, and give amplitudes which fall

short of the observational value of 57.1 km for Cosmos 373 by 2 km'(for GEM 10B)
and 4 km (for SAO 74).
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(2) Our inclusion of these 'difficult' satellites near 63.4° may have
affected the results at other inclinations. Our set of harmonics does not fit
the orbits at inclinations near 80° as well as was hoped, and for these orbits

(see Table 2) we had to increase o' to 0.2.

Whatever the answer to the question posed, it is obvious that further
determinations of odd zonal harmonics, utilizing more accurate orbits more
closely spaced in inclination, are essential if the centimetric accuracy hoped
for in the late 1980s is ever to be achieved. 0dd zonal harmonics form an impor-
tant part of the geopotential, and errors of order 200 m or more in their

predicted effects will not be acceptable in future orbital models.

In the course of our solutions, the two most potent satellites, Cosmos 248
and Cosmos 373, had to be degraded in accuracy because c¢f the influence of
neglected high~degree harmonics. Thus the primary need is not for orbits of
better accuracy, but for orbits of 100~m accuracy which cover the range of
inclination more thoroughly. The higher harmonics (degree 31 and above) can then
justifiably be included, and the full accuracy of the existing orbits can be

exploited.

5.3.3 Geoid height

Fig 16 shows the difference Ah between the geoid heights given by the odd
harmonics of GEM 10B, and those given by our 9-coefficient solution, with the
corresponding values from SAO 74 shown by the broken line. The even harmonics
are kept the same for all three. At latitudes up to 85° the GEM 10B geoid
differs from ours by less than 80 cm, the average difference being about 25 cm,
but there is greater divergence at the poles (1.6 m), and GEM 10B gives a pear-
shape' asymmetry of 4!1.9 m as compared with values between 43.5 and 45.1 m from
our three solutions. The SAO 74 geoid agrees with ours better than does GEM 10B,
the maximum difference (including the poles) being 70 cm, and the average about

25 cm. The pear-shape asymmetry given by SAO 74 is 44.6 m.

These comparisons substantiate the estimate made in section 5.1.2, that the
geoid shape from our 9-coefficient solution should be accurate to 40 cm, except
possibly in a small region near the poles. The difference of 1.6 m between
GEM 10B and our solution at the poles confirms that further improvement of the

odd harmonic values is needed.
6 CONCLUSIONS

We have analysed 28 satellite orbits, including several close to the

critical inclination of 63.60, to determine improved sets of values of odd zonal

-
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harmonic coefficients. The three sets obtained, with 8, 9 and 14 coefficients,
do not differ significantly, and the 9-coefficient solution is chosen as

representative. It is as follows:

10%7, = -2530 £ 4 107 = -158 ¢ 15
3 13 L
= - + = - +
3 245 % 5 I 20 £ 15
1, 336 % 6 3, 236 £ 14
J. = =90t 7 J. = =27%19 )

JII = 159+ 9

The inclusion of higher-degree coefficients does not appreciably alter these 1
values (see Table 3). This set of harmonics is considerably better than our : E

previous set derived in 1973, the standard deviations being about 407 smaller.

The predicted amplitude of the oscillation in eccentricity (B) and in
perigee distance (aB) experienced by sateilites at any inclination between 0° and
90° is shown in Figs 7 to 9. The geoid height profile from pole to pole,
averaged over all longifudes, is shown in linear form in Fig 10, and in radial
form in Fig 17. The pear-shape asymmetry, the north polar radius minus the
south polar radius of the geoid, is a sensitive measure of the effect of odd

zonal harmonics, and has a value of 45.1 m with our 9-coefficient solution.

Comparisons with the sets of odd zonal harmonics of GEM 10B and SAO 74 show
significant differences in the predicted values of the amplitude of the oscilla-
tion in perigee distance: see Fig 14. At inclinations near 63.4°, the
differences inevitably tend to infinity; away from 63.40, the maximum differences
are about 350 m for GEM 10B (at inclination 70°) and about 600 m for SAO 74 (at
inclination 69°). The implications are discussed in section 5.3.2: the main
point worth emphasizing here is that much better sets of odd zonal harmonic
values, utilizing satellites in chosen orbits specially observed, will be needed
if orbital models are ever to be developed which are capable of giving orbits

accurate to a few centimetres.

Comparison of our geoid profile with those given by GEM 10B and SAO 74
shows an average difference of 25 cm, with a maximum of 80 cm at latitudes up to
85°. Changes in even harmonics change the profile by an average of 20 cm. On
‘this basis the rms error of our profile is assessed as 50 cm, except very near

the poles, where errors up to 1.5 m are possible.

€20

Acknowledgment

We thank Mr M.D. Palmer for valuable help with the computer programs.




29

REFERENCES
No. Author Title, etc
1 D.G. King-Hele Analysis of 27 satellite orbits to determine odd zonal
G.E. Cook harmonics in the geopotential.

Planet. Space Set., 22, 645-672 (1974)
RAE Technical Report 73153 (1973)

2 D.G. King-Hele Evaluation of odd zonal harmonics in the geopotential,
G.E. Cook of degree less than 33, from the analysis of 22
Diana W. Scott satellite orbits.

Planet. Space Sci., 17, 629-664 (1969)
RAE Technical Report 68202 (1968) !

3 D.M.C. Walker The orbit of Cosmos 44, 1964-53A, from March 1968 to o
November 1970. o
RAE Technical Report 71161 (1971)

4 A.N. Winterbottom The orbit of Cosmos 248 (1968-90A) from 1969 to 1971.
' RAE Technical Report 72055 (1972) :

5 C.J. Brookes Analysis of the orbit of 1970-87A (Cosmos 373). v
Planet. Space Set., 24, 711-715 (1976) oo

6 C.J. Brookes Analysis of the orbit of 1968~90A (Cosmos 248). i

D. Holland Planet. Space Sei., 26, 611-618 (1978) ;

, i
9 7 R.R. Allan Resonant effect on inclination for close satellites. ;

RAE Technical Report 71245 (1971)
[Published in part Planet. Space Sei., 21, 205-225 ]

(1973) ]
8 R.H. Merson Use of artificial satellites to explore the Earth's
D.G. King-Hele gravitational field: results from Sputnik 2 (19578).

[ S P S SR T UNPU T ST

Nature, 182, 640-641 (1958)

9 F.J. Lerch Determination of the geocentric gravitational constant
R.E. Laubscher
S.M. Klosko
D.E. Smith Geophys. Res. Letters, 5, 1031-1034 (1978)
R. Kolenkiewicz
B.H. Putney
J.G. Marsh
J.E. Brownd

from laser ranging on near-Earth satellites.

S AR GRS v e

023




12

13

14

15

16

17

18

Author

F.J. Lerch
C.A. Wagner
S.M. Klosko
R.P. Belott
R.E. Laubscher
W.A. Taylor

G.E. Cook

D.G. King-Hele
G.E. Cook

Diana W. Scott

D.G. King-Hele
G.E. Cook

Diana W. Scott

D.G. King-Hele
G.E. Cook
J.M. Rees

J.A. Pilkington
D.G. King-Hele
H. Hiller
D.M.C. Walker
D.G. King-Hele
D.M.C. Walker

R.H. Gooding

W.M. Kaula

F.J. Lerch
C.A. Wagner
S.M. Klosko
R.P. Belott

REFERENCES (continued)

Title, etc

Gravity model improvement using Geos 3 altimetry

(GEM 10A and 10B).

Paper presented at Spring Annual Meeting of the
American Geophysical Union, Miami Beach, Florida (1978)

Perturbations of near-circular orbits by the Earth's
gravitational potential.

Planet. Space Sct., 14, 433-444 (1966)

RAE Technical Report 65252 (1965)

0dd zonal harmonics in the geopotential, determined
from 14 well-distributed orbits.

Planet. Space Set., 15, 741-769 (1967)

RAE Technical Report 66317 (1966)

The odd zonal harmonics in the Earth's gravitational
potential.
Planet. Space Sct., 13, 1213-1232 (1965)

.RAE Technical Report 65123 (1965)

Determination of the even harmonics in the Earth's
gravitational potential.

Geophys. Journ. Roy. Ast. Soc., 8, 119-145 (1963)
RAE Technical Note Space 25 (1963)

Revised Table of Earth satellites, volume 2: 1969-1973,
RAE Technical Report 79001 (1979)

Evaluation of l4th-order harmonics in the geopotential,
Planet. Space Set., 21, 1-18 (1979)
RAE Technical Report 78015 (1978)

Theory of eatellite geodesy, p 98.
Blaisdell; Waltham, Ma;s. (1966)

Goddard Earth model development for oceanographic
applications (GEM 10C)

Paper presented at Marine Geodesy Symposium, Miami,
Florida (October 1978)

€20

Aadie i




No. Author

19 E.M. Gaposchkin

20 G. Balmino
C. Reigber
B. Moynot

21 T.O0. Seppelin

31

REFERENCES (concluded)

Title! etc

Gravity-field determination from laser observations.
Phil. Trans. Roy. Soc., A 284, 515-527 (1977)

The GRIM 2 gravity field model.
Deutsche Geodatische Komm. Reihe A86 (1976)

The Department of Defense World Geodetic System 1972,
Canadian Surveyor, 28, 496-506 (1974)

REPCR™S QUOT™D ARPT Nt - LAy

S8 PUBLIC
‘SATIONS

AR/ rULALLE T nrtargree
OR TO COMMELCIAL TRGAL




QV(9Ly) Jojeaino yum ‘e pue ™ uis L'y + (8 — )8 JO SONRA 1V1G-ZL6L ‘O JI0idx3 | Big

Aep ueinr payipow - aeg

0061Y 0081y 00LLY 0091y 0051y
9 6ny ' gz idy ' giuer ' 01120 _ znr
€461 L6l
m —
oLt e 4 2L89 1
s av(d,g) 10} AN —— 1
szoL | IR 1)
wy muIsS| y+(d-|)e @
1 Aoy w
[ "
8zoL | av ) - ne9
muis ["y +(9-|)e
u et 105 syesg
ocoL | {89
e
1o} ajeds ik
zeoL | JoLes
(o]
° _p Il [ .
ssos b 0081y 0041y 0091y g Jies
arn %
‘v
>
[T




™ jsusebe peysoyd
‘ @ ‘Beip 418 10} UONDGLIOD JNje AYDIQUEIDS JO SBNBA (\7LO-ZL6L ‘9P Jes0idx3  Z Big

Fig2

sovibop - eabuad jo juewnbiy

0st 00¢ 0s?Z 002 0s1 00t 0s 0

T T T T T LI L !

A

1

41

0€Z0°0

d

Japio jeaibojoucsys 4 oom
Ul paJequnu aie sanjep i n
1 — [ 1 1 1 | 1

€TO08 WL




Fig3
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107 ¢’ sinw

Fig3 Explorer 46, 1972-61A: circle fitted to the 27 values of ¢’ cos w and e'sin w,
with selected values
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Fig4 Echo 1 rocket, 1960.2: circle fitted to 61 values of e cos w and esin w,
with selected values
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Figh Cosmos 44, 1964-63A: circle fitted to 28 values of e cos w and 'osinw,
with selected values

___ Tmso023




Fig6

L 103 e sinw
100

ol

2 &

103 ¢ cosw

TR 80023

Fig8 Transit 4A, 196101: circle fitted to 137 values of e cos w and e sin w ,
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For southern latitudes the
sign of Ah is reversed
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Fig 12 The difference Ah between the geoid heights given by the 14-coefficient and
9-coefficient solutions (and between 8- and 9-coefficient solutions) at
latitude 80-90°

Fig 12

PP PR I S




Fig 13

G o o

sojuowiey ueae goL W3O Aq ueass 1yBiey proeb
o3 Jo uonoesgNs Ja3e ‘soluouLIeY UBAS 7/ OVS AQ uanB YV Jybiey ploab ey) £} Biy

syabap — spmnye]
0L 09 0S 07 7\ (114 ol
_< _ _ < "\




“

Fig 14

i i B S o s

(6°0 = ¥/Y) UORN|OS JUBINLIE0-G O WICH IV BOLBIBKIP HBY: 58 Pessasdxe
‘sojUoWIRY [RUOZ PPO JO RS Y2 OVS PUS GOL WID S Aq uanB ¢ jo seniea oy g1 Big

9z~

92-

-

{35902 614 - L YL OVS)g - ——-
(13902 6)¢~(80t W39)g ——

v
)
!
t
1
!
]
\
!
1
}
i
!
]
(
1
)
!
'
1
\
\

jous oo on wm - e G O WD A Wy S e S - S me . m— m A e e - -

<08~

09~

oy -

oz

gv,0
0y

SPANO ¢

PRI SR IR --




Fig 156

(6°0 = B/4) uonNjos Jue1131809- Bt WOy gy souaseyp Aoy se pessaidxe
SIUOLLIRY JBUOZ PPO 4O 5385 2/ SOM PUE Z WIHD s Aq uemB g Jo someaayy gy Biy

- T T T A_ T T 1 L T T v
0l7t-1 ,
A \ 4002~
| \
,,. (4902 6)g- (2L som)g —-— 1
2901- | _ (430361 ~(Z WIND) § —— 4osi-
- I
ﬁ o
OiL~ ! i \ 4001~
' |
. / _ \ J
ose~ P \ | /
,,/ / [ \ s33,639p ~ 108
F “ / uoryeuldu)
o6\\ o8 // oo \I o \ 08 0Y _ ”
1/ L 1\ T ‘—,] 1 /(—\ T \‘ °
. / _ N
/ \ _ N
\
ose N n 0s
w /\ _
i L . S B 001




UORNIOS JUBI9Y4000-G AP
PUR (Y OV'S 40) G0L W3ID Aq ueatB JyBley pi0eb oyl UsesIsq Yy ousIelIP 84y  9i Biy

Fig 16

(44902 6)Y - (9L OVS) 4 — ——
(33903 6)4 - (BOL W39) N

0st-

00L-




Fig 17

Fig17 Height of the meridional geoid section (solid line) relative to a spheroid of |
fisttening 1/288.25, as given by our 9-coefficient set of odd harmonics and
GEM 108 even harmonics ,
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