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SUMMARY

The geopotential is usually expressed as an infinite series of spherial\
harmonics, and the odd zonal harmonics are the terms independent of longitude a d
antisymmetric a ut the e uator: they define the 'pear-shape' effect. The
coefficients J3  .. of these harmonics have been evaluated by analys
ing the variations in eccentricity of 28 satellite orbits from near-equat rial t
polar. Most of the orbits from our previous determination in 1973 are usod agai
but three new orbits are added, including two at inclinations between 62 and 63
which have been specially observed for more than five years by the Hewitt cameras.
With the help of the new orbits and revised theory, we have obtained sets of
J-coefficients with standard deviations about 40% lower than before.A
9-coefficient set is chosen as representative, and is as follows:

109J3  - -2530 ± 4 109J9  = -90 ± 7 I09J15 = -20 ± 15

J - -245± 5 J - 159± 9 3J7 m -236± 14

7 -336 ± 6 13 - -158 ± 15 = -27 ± 19

With this set of values, the pear-shape asymetry of the geoid (north polar minus
south polar radius) amounts to 45.1 m instead of the previous 44.7 m. The accuracy
of the longitude-averaged geoid profile is estimated as 50 cm, except at latitudes
above 86 . The geoid profile and predicted amplitude of the oscillation in eccen-
tricity are compared with those from other sources.
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I INTRODUCTION

The accepted form of expression for the Earth's gravitational potential is

in terms of a double infinite series of spherical harmonics dependent on latitude

and longitude. The terms of order zero in this expansion, which are independent

of longitude, are called zonal harmonics. The even zonal harmonics, those of

degree 2, 4, 6, ..., are symetric about the equator; the odd zonal harmonics,

those of degree 3, 5, 7, ..., which are the subject of this paper, are anti-

symmetric about the equator and define the pear-shape tendency of the Earth.

The odd zonal harmonics give rise to various perturbations in satellite

orbits, usually sinusoidal oscillations with the same period as the argument of

perigee w . The most accurately measurable of these perturbations is the

oscillation in eccentricity, e , as a result of which the perigee distance

a( - e), where a is the semi major axis, undergoes an oscillation which has an

amplitude of order 10 km. The amplitude of this oscillation varies greatly with

the orbital inclination i , and if accurate orbits could be determined for

satellites at orbital inclinations of, say, 10, 20, 30, ..., 900, their observed

amplitudes could be analysed to produce reliable values of the odd zonal

coefficients J3' J5' J7' ... up to high degree. In practice, satellite

launches tend to be confined to particular bands of inclination, and there are

still wide gaps in the coverage.

In the past 12 years, one of the main aims of the British programme for

optical tracking of satellites, using the Hewitt cameras (particularly that at

Malvern), has been to obtain accurate orbits of the satellites which would be

most useful in improving the values of odd zonal harmonics. The first results of

this work I emerged in 1974, when the previous determination of odd zonal
2harmonics made in 1968 was improved by the addition of eight new orbits, includ-

ing two determined at RAE from Hewitt camera and other observations, those of
443 4 0Cosmos 44 at inclination 650 and Cosmos 248 at inclination 62 . These

orbits were both at inclinations close to the critical inclination of 63.4 ° where

the most serious gap existed. Results from three satellites at low inclinations

(30, 50 and 150) were also included, to help fill the gap in this region.

Even after the addition of these satellites, however, the lack of orbits at

inclinations very close to 63.40 remained a major limitation on the accuracy of

the values of the odd zonal harmonics, because the amplitude of the oscillation

in eccentricity becomes extremely large near this inclination. Also the motion

* The international designations of all the satellites used are given in Table I
on page 11.
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of perigee is very slow, and the observations have to be made over an interval of

several years before the orbit can be determined over a half-cycle of the argu-

ment of perigee. So the observation of satellites at inclinations near 63.40

with the Hewitt cameras has continued, and orbits have been determined at the

University of Aston from Hewitt camera and other observations on two satellites,
5

Cosmos 373 at 62.90 inclination and Cosmos 248 over a longer time interval than
6

before

The present paper takes advantage of the results from these two satellites

and also utilizes NASA orbits on one further satellite at a previously

unrepresented inclination, Explorer 46 at inclination 380. The basic methods

used are unchanged; but there are some significant improvements in the theory,

and the method of solution has been modified by including an optional number of

constraint equations. The new sets of values of odd zonal harmonics obtained

should be considerably better than the previous set, and should give better

values for high-degree coefficients than solutions which do not utilize

satellites so near the critical inclination.

2 THEORY

2.1 The geopotential

The Earth's gravitational potential may be expressed as the sum of (i) an

infinite series of zonal harmonics, independent of longitude, and (ii) a double

infinite series of tesseral harmonics dependent on both latitude and longitude.

In the absence of resonance effects , the tesseral harmonics do not contribute to

the long-period variations in eccentricity which we are analysing, so we are only

concerned with the longitude-averaged potential, U . At an exterior point

distant r from the Earth's centre and having geocentric latitude * , the

standard form for U is8

= - ! - z Jt(1 P (sin 4 (I),

1-2

9 3 2where u is the gravitational constant for the Earth9 , 398600 km Is , R is the

equatorial radius o , 6378.14 km, and P (sin *) is the Legendre polynomial of
degree Z and argument sin* . The J are constant coefficients and we seek

to determine J3V J5, J7  ....

0



5

2.2 Perturbations of low-eccentricity orbits

Since many of the orbits utilized are of low eccentricity, the perturba-

tions caused by odd zonal harmonics may most usefully be expressed in terms of

- e cos w and n - e sin w , rather than in terms of e and w . The varia-

tions in t and n are given by 1 :

S- kn + C (2)

kE (3)I

where C is a function of the odd zonal harmonics J3, J5, J7  "' , k is a

function of the even zonal harmonics J2, J4 J6  ... and both C and k are

assumed constant*.

We may write C explicitly in the form'1

2a' n=2

where f = sin i , and the E 2n+ are functions of e and f specified by

recurrence relations given as equations (6) to (9) of Ref 12. The first two
13

E-functions are

E 5  ( + l-e) ( f + F f) (5)
5 +4 2 !.

35( 2 +5 4 (2 1 f+992l 429f3~
E + I~ e -e _.-Lf -- f -- (6)
7 4 2 X 4 8 64/

2 4

and subsequent E-functions are of a similar form but lengthier. The e and e

terms in (5) and (6) would be dropped for a near-circular orbit but are included

* here to show the proper forms of E5  and E7  for use with orbits of higher

eccentricity. In equation (4), p=a(J-e ); and p would be taken equal to a

for a near-circular orbit.

Both are functions of a, e and i , but these elements do not usually change

enough to cause significant changes in C or k during the time when the
0 eorbit is being analysed.
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The parameter k depends on J2' J4, 56, "'" ; and, since J2 = I.1 x I0 3

while J4, J6' "'" are all of order 10
-6 or less, the J2-term is usually domin-

1,2,11
ant. In previous papers , only the J2 contribution to k has been taken

into account. But at inclinations near 63.40 the terms in J49 J6' "'" contri-

bute significantly: their contribution amounts to 2% of the main term for one of

the new satellites, 1970-87A at inclination 62.9 . It is therefore necessary to

evaluate further terms in k .

If t is even, equation (7) of Ref II gives the J term in U as

U - J (:)e) tP (cos i)P (O)X0 (i+1)'0

( 1 -2).! P (C s  O)p (O )X ( + i),2 cos 2 w, + O (e4 )  (7) .
(I + 2)! z~o 1£

where the Hansen coefficient X (£'+),s is of order es , so that only terms

with s < 4 need be considered: of these terms, those with s = I and s = 3

do not arise for I even because the associated Legendre function P5 (0) 0 ifI
I + s is odd; thus only the s = 2 term appears in (7). When e is small

X- (1+1),0 =i+ 14t + 1) e 2 + e4
4 + 0(e 4)

and (8).

X (t+),2 , (k- ) -2) e2 }O(e8
From equation (3) of Ref 11,

" cot 3 U e cos w] [I O(e2 (9)

On inserting the partial differentials of Ut using (7) and (8), and writing

cos i - u , equation (9) becomes

- ( " ) (- )a [Pt(O)[tt2+ i pt(u) + u L P (u)

-(t 2)g 2 2 2[+

+ P (u)P(0) sin 2w 0(e 2 )] (10).2t(t + I)(t + 2) I
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For 1 - 2 , the term in (10) vanishes. For L - 4 , the term has a
I 15

numerical factorr, while the main n term has a numerical factor-L, and is

therefore 60 times larger. Thus, for I - 4 , the C term is much smaller than

the n term, which is itself much smaller than the main J2 term. So the E

term in equation (10) may be ignored for Z - 4 , and, for similar reasons, for

I - 6, 8, 10, ..... On inserting the explicit forms for P2, P4' P6 ' P8 and PI0
(given, for example, in Ref 14), we find the contribution of even harmonics to

, the term - kn in equation (2), is defined by

where J which may be regarded as a value of J2  adjusted for the effects of

higher even harmonics, is given by

J 2(5X - I)J2  IJ.4 a 6

128aJ J8(786501 - 343 + 770O2 - 1330 + 35)

- 2--(1)6j 10 (54587X - 125307A4 + 99918A - 32214A2 + 3591A - 63)

...................................(12),

2.

where X - I - f - cos i , and terms beyond J10  have not been evaluated

because they are likely to be negligible.

The general solution of equations (2) and (3), with C given by (4) and k

by (11) and both being assumed constant, is

SA cos(kt + a) (13)

- A sin(kt + a) + 8 (14),

where A and a are constants of integration, dependent on the initial

conditions, and

;C R sin io + ( 2 n- 2]

k * 
=  2ai J + . Z E2n+lJ2n+ I (15)

kri 2n-2

o from equations (4) and (11).



Equations (13) and (14) show that the variation of e and w takes the

form of a circle in the (, n) plane. The circle has the centre (0, 8) and

radius A , and is swept out at a constant angular rate k . If the observa-

tional values of t and n , after removal of other perturbations, are plotted

in the (&, n) plane and fitted with a circle, the centre of the circle will give

a value of B and hence, via equation (15), one linear equation between the

coefficients J3, J5 J7  ... which it is convenient to rewrite in the form

FJ +FJ +FJ + ... x (16),

where F -I and F 2  2 -E2n+ for n . 2 (17),

2aJ'a 06

Yi2 .1 6 (18)Y=R sin i xI(8

and a is the standard deviation in Y

1,2
In our previous determinations of odd zonal harmonics 1 , the values of Y

were calculated using J2 rather than J2 in equation (18). The use of J2
changes the value of Y by an amount which is significant for inclinations near

630, but negligible at other inclinations (see section 3).

2.3 Orbits of higher eccentricity (e r 8)

Equations (13) and (14) may be written

e cos w - A cos(kt + a) 1
e sin w -8 = A sin(kt + a)

On squaring and adding equations (19), we have

(e 8in 2 A2 82 2

(e - sin w) 2 A - cos W (20).

Thus if 04 A,

e = B sin w + A - - -cos 2w + O (21).

0

2)... .. . .. 4Ai 3
-

)
, -

,li 
. ,



9

If the cos 2w term is small enough, it is most convenient to evaluate B by

fitting a sinusoidal curve to the observed variation of e and determining its

amplitude. Such a fitting would be acceptable if B/4A was less than about a

quarter of the fractional error in B : a typical value of B is (500± 5) x 10- 6

and this suggests that the sinusoidal fitting should not be used unless A > 0.05.

In practice, however, comparison with the circle-fitting method shows that the

sinusoidal fitting may be used successfully for values of A down to 0.03, pre-
2sumably because the error term, (B /4A) cos 2w , has a different frequency.

Another possible method of evaluating 8 would be to utilize the equation

2 2 2e =A + + 2BA sin(kt + a) (22)

obtained by squaring and adding (13) and (14). This equation has the advantage

of being exact, in the absence of perturbations. With a real orbit, however,

perturbed by drag, the parameter k is not constant and the fitting of a sinu-
2

soidal variation to the observed values of e , assuming constant k , would be

subject to an error which is very difficult to estimate. It is better to fit a

circle in the (e, w) plane, or to fit equation (21), so that k only arises

subsequently, in expressing B in terms of the J coefficients through

equation (15): a mean value of k can then be used, with an error which is

easily assessed and usually negligible.

2.4 Treatment of the effect of even harmonics

When e > 0.03 and the sinusoidal fitting is used, the perturbation due to

even harmonics, given as equation (9) of Ref 1, may be appreciable. This pertur-

bation varies as cos 2w , and a term of this form has been included in the

fitting when necessary, as explained in Ref 1.

In the fitting of the low-eccentricity orbits, the effects of even zonal

harmonics are not separated out, and the appropriate expression for B is

equation (15), which includes a contribution from even zonal harmonics within

J2 . For orbits of higher eccentricity, when the even harmonic contribution is

fitted separately by including a cos 2w term, the proper expression for B is

equation (15) with J' replaced by J2 that is

S Ra 2  -J +4-5f E 2n+lJ2n+ (23).
2a32  ~ ~ n-2OI
I
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The difference between (15) and (23) is negligible except at inclinations near

63.40; but, strictly, equation (23) should be regarded as the 'correct'

expression for the amplitude of the oscillation in eccentricity caused by odd

zonal harmonics only; it would be identical with (15) if J4 ' J6, J8, ... were

zero.

3 THE ORBITS USED

3.1 General

If a reliable set of odd zonal harmonic coefficients J3' J5, J7 ... is

to be derived from equations of the form (16), the complete range of inclinations

from 00 to 900 should be covered, and, since the E and F functions depend i
primarily on f - sin i , the ideal would be a large number of orbits with values

of f uniformly distributed between 0 and 1, except for the region near f = 0.8,

where a greater density of data is needed, because Y becomes very large.

Although the inclinations of the orbits actually available have gaps, the distri-

bution of the 27 orbits previously used was fairly uniform: there were, however,

too many orbits with values of f near 1.0, and none with values between 0.1

and 0.2, or between 0.3 and 0.4 (see Fig 10 of Ref 1). Three new orbits have now

been added, one of which is Cosmos 248, and supersedes the orbit of that

satellite previously used. Also, one of the previous orbits, that of Explorer 20

at inclination 79.9°, has been dropped because there are three other orbits with

similar inclinations which are more accurate and fitted better. So we are left

with 28 orbits, which are listed in Table I in order of increasing f . The Table

gives the relevant orbital parameters, and the values of Y with their nominal

standard deviations, a . In the course of the computations it proved advan-

tageous to increase some of the values of a (see section 4.3): these values of

a are marked with an asterisk in Table I and the amended values a' are given

in the final column.

For most of the satellites in Table 1, the values of Y are the same as

before; for some, however, the values of a were re-determined by fitting a

circle to the values of C and n instead of the previous sinusoidal fitting

of e (see section 3.3).

For the orbits with inclinations outside the range 590 to 660, the values

of Y were calculated using equation (18) with J rather than J' : a change
2 2

from J to J ' would not have altered any of the values of Y by more than
2

0.Ia . For the five orbits with inclinations between 590 and 660, the values

of Y were calculated by using equation (18) with J' rather than J2 The o
22
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Table I

Mean values of a, e, and i, and values of f, Y and a for the 28 orbits

Satellite a e i f Y a a'

km deg (= sin2 i)

Explorer 42 1970-107A 6900.0 0.0025 3.03 0.0027 0.49 0.62

Dial 1970-17A 7339.0 0.0880 5.41 0.0089 1.19 0.22

Peole 1970-I09A 7007.7 0.0166 15.00 0.0670 2.51 0.05

Explorer 11 1961v 7512.6 0.0862 28.80 0.2321 2.424 0.02

LCS I 1965-34C 9165.5 0.0013 32.14 0.2830 2.351 0.1* 0.2

OSO 3 1967-20A 6931.9 0.0022 32.86 0.2945 2.292 0.05

Vanguard 2 1959ai 8300.0 0.1641 32.88 0.2947 2.304 0.05* 0.2

Explorer 46 1972-61A 7028.0 0.0225 37.69 0.3738 2.166 0.05

Explorer 27 1965-32A 7507.2 0.0251 41.19 0.4336 2.272 0.03

Telstar I 1962aeI 9672.1 0.2423 44.80 0.4965 2.460 0.02

Echo I rocket 1960t2 7971.5 0.0114 47.23 0.5389 2.407 0.05* 0.1

Anna IB 1962vIl 7507.8 0.0070 50.13 0.5890 2.561 0.03

Ariel 2 1964-15A 7192.4 0.0730 51.65 0.6150 2.721 0.05

Tiros 5 1962wim 7158.7 0.0263 58.10 0.7208 4.177 0.05

Explorer 29 1965-89A 8073.1 0.0717 59.38 0.7406 4.038 0.1

Cosmos 248 1968-90A 6841.9 0.0060 62.238 0.7830 11.25 0.03* 0.3

Cosmos 373 1970-87A 6875.9 0.0170 62.910 0.7926 21.83 0.08* 0.5

Explorer 32 1966-44A 7709.0 0.1372 64.66 0.8168 -2.917 0.03

Cosmos 44 1964-53A 7109.5 0.0174 65.07 0.8223 -2.092 0.03* 0.1

Transit 4A 1961o] 7318.2 0.0080 66.80 0.8448 0.811 0.08* 0.1

Secor 5 1965-63A 8159.0 0.0791 69.23 0.8743 1.857 0.05

Geos 2 1968-02A 7705.2 0.0320 105.79 0.9260 2.359 0.02

FR-I 1965-IOIA 7128.6 0.0010 75.88 0.9405 2.371 0.05

Alouette 2 1965-98A 8120.0 0.1528 79.82 0.9688 2.736 0.05* 0.2

Prospero 1971-93A 7441.9 0.0692 82.06 0.9809 2.910 0.03* 0.2

Essa I 1966-08A 7147.3 0.0097 97.91 0.9810 2.903 0.1* 0.2

Midas 4 1961a6 10005.0 0.0121 95.86 0.9896 2.697 0.02

Transit 1963-49B 7473.1 0.0036 89.96 1.0000 3.070 0.02

These values of a are increased in the course of the computations, to the

value a' shown in the last column.

N

.. ... . . . . . . .. . .. .. . ..0. . . . . . . . . . ./ . . . . / l [ . . . .I 1 1 . . . . . . . . . . . . . . . . " = '



values of J2'/J2 on each of these five orbits were: 0.997 for Explorer 29;
0.990 for Cosmos 248; 0.976 for Cosmos 373; 1.009 for Explorer 32; and 1.007 for

Cosmos 44. In retrospect it appears that it would have been more logical to have

used J2 rather than J' for Explorer 32, because the even zonal harmonic

effect had already been allowed for: the change is small, but worth making in a

future analysis.
3.2 The three new orbits

3.2.1 Cosmos 373, 1970-87A

The orbit of Cosmos 373, at inclination 62.90, has been determined by

Brookes5 at 25 epochs between February 1971 and July 1975, from more than 1500

optical and radar observations, including Hewitt camera observations for all 25

orbits. The orbit determination covered nearly half a cycle of the argument of

perigee, and the values of eccentricity had standard deviations corresponding to

accuracies between 30 and 120 m in perigee height.

The values of eccentricity were cleared of lunisolar perturbations and the

effects of air drag; a circle was then fitted to the resulting values of E and

n , giving 8 = (8.53 ± 0.03) x O- 3 . This value is of excellent accuracy, and

it is also the largest observational value of 8 obtained from any orbit of high

accuracy: it corresponds to an amplitude of 58.7 km for the oscillation in peri-

gee height. On using equation (18), Cosmos 373 gives Y = 21.83 ± 0.08 ,

although the sd has to be increased when computing the solutions for the J

coefficients, because of the errors incurred by neglecting odd harmonics of high

degree (see section 4.3).

3.2.2 Cosmos 248, 1968-90A

The orbit of Cosmos 248, at inclination 62.20, has been determined by

Brookes and Holland6 at 57 epochs over nearly 11 cycles of the argument of peri-

gee, from January 1972 to December 1975. The orbit was computed from about 3000

optical and US Navy observations, using the RAE orbit refinement program PROP,

and the accuracies achieved in eccentricity correspond to between 30 and 120 m in

perigee height.

The values of eccentricity were cleared of lunisolar perturbations and the

effects of air drag, and a circle was fitted to the resulting values of t and

n . The fitting was excellent and the value of 8 obtained was

(4.33 ± 0.01) x 1073  This was a satisfactory improvement on, and.confirmation

of, the value 4.30 ± 0.02 obtained previously from the orbit determination in 0
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the years 1969 to 1971. On using equation (18), we find Y f 11.25 ± 0.03 , but,

as with Cosmos 373, the sd has to be increased to allow for neglected odd

harmonics of high degree (see section 4.3).

3.2.3 Explorer 46, 1972-61A

In our previous evaluation of odd zonal harmonics, there was no orbit with

an inclination between 33 and 41 . This serious gap has now been filled by
0using Explorer 46 at inclination 37.7 , for which NASA orbits were kindly supplied

by S.M. Klosko.

Explorer 46, 1972-61A, also known as Meteoroid Technology Satellite, was

launched on 13 August 1972 into an orbit with perigee height 500 km and apogee

820 km. The satellite was a cylinder of mass 175 kg, 3.2 m long and about 50 cm
15 2in diameter . The mass/area ratio exceeds 100 kg/m and the orbit is nearly

circular, so the effects of solar radiation pressure should not be significant.

The effect of air drag is however quite considerable, and consequently it is

better to work with the perigee height than with the eccentricity.

There were 27 orbits of Explorer 46 available, running from MJD 41543

(1972 August 14) to MJD 41817 (1973 May 15), and covering 6 cycles of the argu-

ment of perigee. In Fig I selected values of semi major axis a are shown by

triangles joined by a broken line. For this satellite it was expected that the

oscillation in perigee height due to odd zonal harmonics would be about

4.1 sin w km, and the circles in Fig I show the values of {a(I - e) + 4.1 sin W1,
which should be almost free of the odd harmonic oscillation. This is confirmed
by Fig 1, which also shows that the variation of {a(l - e) + 4.1"sin w) is of the

same form as the variation in semi major axis, as it should be. The amount

(Arp)AD to be added to a(l - e) to compensate for the decrease due to air drag

is taken to be as given by the unbroken curve in Fig 1: the curve has a slope

proportional to da/dt . If a(] - e) + (Arp)AD is written as a0(0 - e') , the

values of e' provide a set of values of e cleared of air drag perturbations,

and this set can be fitted either by a circle or a sine curve, to obtain a value

of B • Lunisolar perturbations to the perigee height were calculated, but were

ignored because they were always less than 80 m.

The 27 values of e' are plotted against w in Fig 2: it can be seen that

the drag effects have been successfully removed, and that the points on all 6

cycles of w lie close to a sine curve with an amplitude 8 of 0.555 x 10-3

The points have been numbered chronologically, so that the successive cycles can

ON be followed.

0 .. ..
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The values of e' cos w and e' sin w have been fitted with a circle by

least-squares, as shown in Fig 3, with a representative selection of the points.

The fitting gives the centre of the circle at the point (-0.007, 0.555) x I0- .

The mean value of eccentricity, given by the radius of the circle, is 0.022501.

Although the fitting of a circle is necessary on theoretical grounds, the form of

presentation in Fig 2 is visually preferable, because its wider scale gives an

impression of the residual errors, which are scarcely perceptible in Fig 3. The
-3

value of B obtained from the fitting of the circle is (0.555 ± 0.003) x 10 3,

from which Y = 2.166 ± 0.012. The sd of 0.012 is increased to 0.05 in

conformity with the treatment of the other satellites in Ref 1.

3.3 Orbits with B re-determined by fitting a circle

Three orbits with eccentricity less than 0.02, for which $ was previously

determined by fitting a sine curve, have been fitted with a circle in the (&, q) I
plane. As explained in section 2, this procedure is theoretically preferable for

eccentricities less than about 0.03, although in practice the changes proved to

be quite small. For these three orbits the effect of air drag is negligible.

The first of the three satellites is Echo I rocket at 460 inclination, for

which the fitted circle is shown in Fig 4, with a small selection of the 61 points

fitted. The centre C of the circle is at the point (0.003, 0.652) x 10-3 , and

the value of 103B obtained is 0.652 ± 0.004 as compared with 0.650 ± 0.002

from the original fitting of a sine curve (Fig 4 of Ref 13), and 0.653 ± 0.002

in the revised fitting of Ref 2. The new value of B gives Y = 2.404 ± 0.015 ,
and the sd is increased to 0.05 in accordance with the procedures of Ref 1. (The

old value of Y was 2.707 and the change is thus only 0.06o: the old value was

retained in the calculations.) The radius of the circle in Fig 4, giving the

mean value of eccentricity, is 0.01147.

The second of the three satellites is Cosmos 44 at inclination 65.10, for

which the fitted circle is shown in Fig 5, with a selection of the 28 points

fitted. The mean value of eccentricity is 0.01730, the centre C of the circle

is at the point (-0.025, -0.781) x 10- 3 , and the value of 8 obtained from the

fitting is (-0.781 ± 0.003) x 10- 3 , giving Y = -2.092 ± 0.008 , as compared

with -2.106 ± 0.024 previously. The sd is increased to 0.03 in accordance with

the procedures of Ref 1.

The third satellite is Transit 4A at inclination 66.80, for which the

fitted circle is shown in Fig 6, with a small selection of the 137 points fitted.

The mean value of eccentricity is 0.00805, the centre C of the circle is at
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(-0.02, 0.30) x 10- 3 and the value of 1038 derived from the fitting is

0.30 ± 0.03 , as compared with 0.297 ± 0.003 from the sine curve. It is rather

surprising that the fitting of the circle gives an sd so much larger, but it is

of little consequence since the value of 8 is the same, and the sd is increased

in the course of the computations. The new value of 8 gives Y = 0.811 ± 0.08

4 RESULTS

4.1 The equations to be fitted

We have 28 equations of the form (16), one for each of the 28 satellites.

The 28 values of Y are given in Table 1; the values of F 3, F5, ... , F33 for

all the satellites previously used are given in Table 3 of Ref 2 and Table 3 of

Ref 1, and will not be repeated here. The values of the F coefficients for

the three new orbits are given in Table 2 below. The values for Cosmos 248 are

very slightly larger than before, because of the decrease in semi major axis.

Table 2

Values of F3, F5, ... , F33 for the three new orbits

Satellite F3  FS F7 F9 F1 1 FO F15 F17

Explorer 46 -I 0.2264 0.8056 -0.5524 -0.3465 0.5486 0.0082 -0.3890

Cosmos 248 -I -13.4313 -13.0732 -1.7304 8.9327 10.3108 3.2719 -4.7544

Cosmos 373 -1 -29.1780 -30.4216 -7.0630 17.1225 23.0910 10.3971 -7.0499

Satellite FI9 F2 1  F23 F25 F27 F29 F31 F33

Explorer 46 0.1603 0.2029 -0.1976 -0.0573 0.1614 -0.0284 -0.0999 0.0619

Comos 248 -7.2384 -3.5129 2.0714 4.7330 3.0944 -0.5524 -2.9014 -2.4427

Cosmos 373 -15.0760 -9.9842 1.2485 8.7969 7.9864 1.4818 -4.5044 -5.6835

In recent determinations of geopotential coefficients from analysis of

orbital resonances (for example, Ref 16), it has been found useful to apply con-

straints when solving for the values of the coefficients, by adding constraint
17equations based on Kaula's rule of thumb , that the normalized coefficients of

degree X are likely to have values of order 0-5 A2 . The first evaluation18

of harmonics up to order and degree 180 has provided a test of this rule, and

o the general indications are that the actual values of the coefficients are
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-5 2 -5 2
smaller than 10 /2 for 10 < k < 40. The value 10 /2 therefore seems to

provide a reasonable upper limit, though it should be emphasized that the value

represents an average over all orders, whereas the zonal harmonics are of a

specific order (zero) and may not always conform. Since the J coefficients are

not normalized, the normalization factor .'22. + I must be inserted and, writing

= 2n + I , the appropriate constraint equations are

n1 = 0 ± /4n+ 3 x 10-  (24).
(2n + 1)

These equations are included among those to be fitted for all values of n grea-

ter than or equal to a chosen minimum value n0 . The value of nO  is chosen

after testing the effects of various choices (see section 4.2).

So the equations to be fitted are 28 equations of the form (16), with

values of Y given in Table 1, and (n - n + 1) equations of the form (24),
m 0

where nm is the value of n for the highest-degree coefficient evaluated and

is also a matter of choice, like n0 . Thus the number of equations is

(29 + n - no) and they are solved for up to n coefficients.

4.2 The number of constraint equations

The effect of the constraints was tested by re-calculating the solutions of

the equations of Ref I for 4, 5, 6, ... , 12 coefficients, first with con-

straints on the coefficients of degree 21, 23 and 25; then with constraints on

degrees 15, 17, 19, ..., 25; and then on degrees 9, 11, 13, ..., 25 . The

presence of the constraints slightly improved the fitting (as was inevitable,

because the previous values of the high-degree coefficients were on average less

than half the values specified by the constraints); but the values of the

coefficients were not significantly altered. Since neither extreme offered

advantage, the middle choice was adopted initially, with no = 7 , ie with

constraints for degree 15 and above.

Most of the solutions were calculated with n0 = 7 ; but since J17

remained large whether or not it was constrained, there was no point in keeping

this constraint, and the final solutions all have nO - 9 , so that there are

constraints on the coefficients J 19 ' J2 1' **' J2n +1" With no - 9 ,the
m

number of equations being solved is 28 for nm 8 , and 20 + nm  for n m o 8.

~0



17

4.3 Progress of the solutions

The solutions were obtained by least-squares fitting, the measure of fit

being assessed by the value of e , where e 2 is the sum of the squares of the

weighted residuals, divided by tne number of degrees of freedom - the weighted

residual being the observational value of Y minus the value given by the left-

hand side of equation (16), divided by a (or a' ). In all, 572 solutions were

computed.

First, as already mentioned, Explorer 20 was omitted because its fitted

sine curve (Fig 13 of Ref 2) is unsatisfactory, and because there is a better

satellite (Alouette 2) at the same inclination. The omission of Explorer 20

reduced c , and the standard deviations of the values obtained in the solutions,

by 1IZ on average.

In the previous solutions, Cosmos 44 and Transit 4A had been in conflict,

so a was increased to 0.1 for both: this led to an improvement of nearly 15% in

the standard deviations. Then the new values of Y for these two satellites

(section 3.3) were inserted: the resulting change was not significant.

Of the three new satellites, Explorer 46 fits well and offers no problems,

but the values for Cosmos 248 and 373 cannot be used as they stand because the F

coefficients remain large up to beyond degree 33 (see Table 2), and our final

solutions do not go beyond J So a must be increased to take account of

the neglect of high-degree coefficients. The numerical values of the coefficients

F3 1, F33, ... , F49 for Cosmos 373 are: -4.5, -5.7, -2.4, 1.9, 3.7, 2.3, -0.4,

-2.2, -1.9, -0.3; while the corresponding values of /2 + I 1075/Z2 are

(83, 75, 69, ..., 41) x 10- 9 . The arithmetic mean of the ten values of

IFg 2i + o 0-5/A2 1 is 165 x 10- 9 , so the expected order of magnitude of the

sum of these neglected terms is 4I0 x 165 x 10- a 0.5 x 10- 6. If the J

coefficients are smaller than given by Kaula's rule, this value could be reduced;

on the other hand, it needs to be increased to allow for the neglected harmonics

of degree greater than 50. Thus a - 0.5 seems a reasonable figure and in fact

turns out to be a practical value. For Cosmos 248, the values of the F

coefficients are about half as large as for Cosmos 373, giving a a 0.3 for

Cosmos 248; again this value proved satisfactory in practice and was adopted.

The other increases in a , indicated by the asterisks in Table 1, were

made because the values appeared to be ill-fitting, and increases in a led to

lower values of c . For LCS 1, a was increased from 0.1 to 0.2; this improved

c and the standard deviations of the coefficients by about 22. For Vanguard 2,
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a was first relaxed to 0. , which reduced e by 2%; and then to 0.2, which

reduced e by another 2%. For Echo 1 rocket, a was increased from 0.05 to

0.1; this reduced e by 5%. In the previous solution, the three satellites with
00

i , or (180 - i), near 800 were persistently ill-fitting, so the values of a

for these satellites were further increased: for Prospero, a was increased from

0.1 to 0.2, which reduced c by 3%; for Alouette 2 and Essa 1, a was also

increased to 0.2, and this reduced e by another 3%. The effect of omitting

individual satellites was also tested, but no advantage was gained: for example,

the omission of Prospero increased c by 1%.

All the percentages given in this section are averages over the solutions

for 4, 5, 6, ..., 16 coefficients, but the effect is usually similar whatever

the number of coefficients evaluated: a change tends to improve (or worsen) all

solutions.

4.4 The final solutions

After the alterations specil-ed in section 4.3, the solutions for

n - 4, 5, 6, ..., 16 coefficients gave the following values of em

n 4 5 6 7 8 9 10 11 12 13 14 15 16

3.17 2.79 2.14 2.06 0.571 0.543 0.537 0.526 0.518 0.518 0.495 0.494 0.494

For n < 7 , the value of e is too large to be acceptable: the inclusion of
m

17 is essential and greatly reduces e . As n increases from 8 to 16, c

steadily decreases, with a larger decrease whenever the new J-value is relatively

large.

Three of the solutions are selected for presentation here (Table 3).

The 8-coefficient solution is chosen because (a) it represents the field

well with a minimal number of coefficients, (b) it serves as a basis for compari-

son with solutions having more coefficients, and (c) it provides a comparison

with the recommended 8-coefficient solution of Ref 1.

The 9-coefficient solution is chosen because (a) it provides a signific-

antly better fit than the 8-coefficient solution, with c reduced by 5%, and

(b) the standard deviations of the values are the lowest of any solution.

The 14-coefficient solution is chosen as the representative solution having

a large number of coefficients, because there is a decrease in e of 4.4% between

the 13- and 14-coefficient solutions, but no further significant decrease on going

to 15 or 16 coefficients.
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Table 3

Selected solutions for J coefficients

Previous New New New
8-coefficient 8-coefficient 9-coefficient 14-coefficient

9
10 33 -2531 ± 7 -2529 ± 5 -2530 ± 4 -2528 ± 6

35 -246± 9 -247± 5 -245± 5 -250± 7

J7 -326± 11 -334± 7 -336± 6 -329± 9

39 -94± 12 -92± 7 -90± 7 -93± 7

ill 159 ± 16 161 ± 10 159 ± 9 158 ± 12

JI3 -131 ± 22 -147 ± 14 -158 ± 15 -157 ± 20

15 -26± 24 -25± 15 -20± 15 -24± 27

J17 -258 ± 19 -238 ± 15 -236 ± 14 -232 ± 24

J19 -27 ± 19 -12 ± 23

J21 -12 ± 33

J23 31 ± 39

J25 29 ±39

J27 -6 ±35

J29 54 ±38

It will be seen from Table 3 that, for a particular X , the values of any

pair of J differ by less than the sum of their standard deviations. So the

solutions are self-consistent, and immune from instability as higher harmonics

are evaluated. In the new 9-coefficient solution the standard deviations are

about 402 lover than in the previous (8-coefficient) solution.

We select the 9-coefficient solution as our reconended set of harmonics,

because it has the lowest sd; but there is little to choose between the three

solutions, and the 8- or 14-coefficient solutions may be preferred for some

purposes.

The weighted residuals for each orbit, as defined in section 4.3, are

listed in Table 4.
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Table 4

Weighted residuals in the three solutions of Table 3

Weighted residual
Satellite

8-coefficient 9-coefficient 14-coefficient

Explorer 42 0.682 0.515 0.395

Dial -0.263 -0.442 -0.294

Peole -0.004 0.178 0.078

Explorer 11 0.147 0.053 0.011

LCS 1 -0.288 -0.288 -0.276

OSO 3 0.062 0.439 0.167

Vanguard 2 -0.281 -0.260 -0.265

Explorer 46 -0.904 -0.652 -0.522

Explorer 27 0.529 0.511 0.418

Telstar 1 0.778 0.734 0.605

Echo I rocket -0.438 -0.461 -0.510

Anna IB -0.243 -0.305 -0.519

Ariel 2 0.381 0.473 0.314

Tiros 5 -0.210 0.013 0.127

Explorer 29 0.582 0.646 0.630

Cosmos 248 -0.309 -0.556 -0.650

Cosmos 373 1.010 0.700 0.513

Explorer 32 0.207 0.135 0.162

Cosmos 44 -0.571 -0.567 -0.657

Transit 4A 0.828 0.719 0.594

Secor 5 0.025 -0.057 -0.072

Geos 2 -0.406 -0.403 -0.217

FR-I -0.635 -0.561 -0.235

Alouette 2 0.275 0.298 0.293

Prospero 0.471 0.500 0.460

Essa 1 0.377 0.418 0.352

Midas 4 -0.342 -0.318 -0.313

Transit -0.145 -0.327 -0. 100

Table 4 shows that there are no startling changes in the fit as the number

of coefficients increases, and when one residual in a conflicting pair fits

better, it is usually at the expense of the other, eg Cosmos 248/Cosmos 373 and o

Cosmos 44/Transit 4A. Wj
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The weighted residuals for Cosmos 373 are rather large with the 8- and

9-coefficient solutions: this is to be expected, because the value of a' for

Cosmos 373 was taken as 0.5, which was the expected error due to neglecting

J31' J33 .... J49 whereas the errors due to neglecting J21, J23 "

ought also to be included, giving a value of a' about twice as large. A re-run

of the 8- and 9-coefficient solutions with a' = 1.0 for Cosmos 373 and 0.5

for Cosmos 248 gave nearly identical solutions, with standard deviations about 5Z

less for the 8-coefficient solution, and almost the same for the 9-coefficient

solution. Although these solutions will not be used, the 9-coefficient solution
9is recorded here for reference (all x 109): J3 = -2529; J5 . -246; J7 -- 336;

J9 -90; 3ll = 159; J|3 = -157; J -22; Jl7 = -234; Jl , -22.

4.5 The variation of B with inclination

Fig 7 shows the values of 0 given by the 9-coefficient solution, as

obtained from equation (23) with R/a = R/p = 0.9 (which corresponds to a near-

circular orbit at a mean height of just over 700 km). The right-hand scales on

Fig 7 show the values of aS , the amplitude of the oscillation in perigee

distance, which is less sensitive to variations in a than is 8 itself.

Usually S is positive, and perigee is then closest to the Earth's centre at

northern apex (w = 900); when 8 is negative, perigee is closest at southern

apex (w = 2700).

Fig 7 shows that the amplitude of the oscillation in perigee height

increases from zero for an equatorial orbit to 5.7 km at an inclination of 500,

and then increases rapidly: for inclinations between 550 and 700, see the diagram

on the right, which has a semi-logarithmic scale for B . At inclinations

between 63.40 and 66.10, B is negative, ie the perigee is closest to the Earth

at southern apex, and the amplitude reduces to zero at 66.10. For inclinations

between 66.10 and 900 the situation reverts to normal, with perigee closest in

the northern hemisphere, and the amplitude of the oscillation increases from zero

at 66.10 to 9.5 km at 900 inclination.

Fig 8 shows how B and aB vary when R/a - R/p - 0.8 , which corresponds

to a near-circular orbit at a mean height of 1600 km. The amplitude of the

oscillation in perigee height, a , is generally slightly smaller: for example,

at inclinations of 300, 600 and 900, the values are 3.5, 10.9 and 8.7 km

respectively for R/a - 0.8 , as compared with 3.5, 13.6 and 9.5 km respectively

for K/a - 0.9 . Another significant difference is that, when R/a - 0.8 , B

is negative over a smaller range of inclination, from 63.40 to 65.70 (instead of

0 from 63.40 to 66.10 for R/a -0.9). This is because the higher harmonics have
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less effect on a more distant orbit, and cannot cancel out the positive effect of

J3 over such a wide range of values of inclination.

Fig 9 gives an alternative version of Figs 7 and 8, avoiding the

infinities. The quantity plotted is 0(4 - 5f) , which remains within reasonable
2.

limits. The value of 8 can be obtained on dividing by (5 cos 1 - 1).

4.6 Geoid height

The zonal harmonics serve to define the profile of the equipotential sur-

face of the Earth's meridional section, averaged over all longitudes. If V(r,)

is the external potential at latitude 4 , including the rotational acceleration,

we have

V(r,O) I - Jn n(sin )} + jr2w2 cos2 o (25),

n-2

where w is the Earth's angular velocity (72.92115 x 10-6 rad/s) and N is the

degree of the highest-degree harmonic in the set. (The atmosphere is assumed to

be internal.) The equipotential surface is found by setting V(r,o) - V(R,0)

and solving for r iteratively at each value of 4 , giving a value rG say.

The value of r on a spheroid of flattening F is

R(i - F) (26),
{( - F cos2 )2 + F2 cos2 sin2 0(

and we define the geoid height above the spheroid, h , as

h = rG - r (27).

The values of geoid height h are, of course, affected by the even

harmonics as well as the odd harmonics at most latitudes. Here our aim is to

display and compare odd zonal harmonic values, so we choose a standard set of

even zonal harmonics, that of GEM IOB 10 (given in Table 5), and indicate later

the effect of changes in the even zonal harmonics.

Fig 10 shows the variation of geoid height with latitude given by our

9-coefficient set of odd harmonics and the GEM 1OB even harmonics, with

7 - 1/298.25 . This value of the flattening has been retained to allow comparison

with Ref 1, but the change produced by altering F to 1/298.257, in conformity
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with GEM lOB, is very small: the maximum change is at the poles, and is only

50 cm, as indicated by the arrows.

In Fig 10 the south polar depression of the geoid is 27.23 m and the north

polar hump is 17.84 m, so that the north polar radius RN of the geoid exceeds

the south polar radius RS by 45.1 m: in other words, sea level at the north

pole is 45.1 m further from the equator than is sea level at the south pole. This

'pear-shape asymmetry', (RN - RS), depends solely on the odd zonal harmonics, and

is not affected by the particular choice of flattening or of even zonal harmonics.

5 COMPARISONS

5.1 Comparisons between our three solutions

5.1.1 Values of 0

Fig II shows the variation of U8 , the value of 8 given by our

14-coefficient solution minus the value given by the standard 9-coefficient

solution. The broken curve in Fig 11 gives the variation of Aa for the

8-coefficient solution. Both solutions have R/a = 0.9 . The maximum difference

aAB is only 60 m, except at inclinations near 63.40 (where A$ inevitably tends

to infinity). Since few of the orbits are determined to an accuracy better than

100 m, agreement to within 60 m implies that we have exploited the available data

as fully as possible, and that all three solutions give essentially the same

results.

5.1.2 Geoid height

Geoid heights have been computed for the 8- and 14-coefficient solutions

and are found to differ from those of Fig 10 by less than 30 cm for latitudes up
0to 860: so the three profiles are virtually the same, and it seems reasonable to

assess the errors in the longitude-averaged profile of Fig 10 due to errors in

odd zonal harmonics as about 40 cm, at latitudes up to 860 - ie over more than

99% of the Earth.

Very close to the poles, however, the 14-coefficient solution diverges

significantly, and Fig 12 shows the difference Ah between the geoid height

given by the 14-coefficient solution and that given by the 9-coefficient

solution, for latitudes greater than 800 The (much smaller) differences for the

8-coefficient solution are shown by a broken line. The changes at the pole do

significantly alter the pear-shape asymmetry: it is 43.5 m for the

14-coefficient solution and 44.6 m for the 8-coefficient solution, as compared

with 45.1 m for the 9-coefficient solution. Thus the difference between theco

0
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north polar and south polar radius of the geoid proves to be a sensitive para-

meter for assessing sets of odd zonal harmonics; conversely, it is a difficult

parameter to estimate accurately, so that it is quite likely that the largest

errors in many geoid maps will occur at the poles.

5.2 Effect of even zonal harmonics-on geoid height

As already mentioned, the geoid height profile depends on the values of the

even zonal harmonics as well as the odd, and Fig 13 shows the change when, instead

of the GEM IOB even harmonics , we use a set of even harmonics determined at the

Smithsonian Astrophical Observatory in 1974 (E.M. Gaposchkin and Y. Kozai, private

communication), which will be called 'SAO 74', and is a revised version of the set

used in the Smithsonian Standard Earth IV.3 In Fig 13 the average numerical

difference between the geoid heights is only 20 cm, so a change to the SAO 74 even

harmonics would have little effect on Fig 10. From the evidence of Fig 13, it

seems reasonable to assign an error of about 30 cm due to even zonal harmonics,

giving an overall rms error of 50 cm in the geoid profile of Fig 10, for latitudes

up to 86°.

The GEM lOB and SAO 74 even zonal harmonics are listed in Table 5.

Table 5

Values of even zonal harmonic coefficients from GEM lOB and SAO 74

GEM JOB SAO 74 GEM 1OB SAO 74

9 9
10 92 1082627 1082639 10 920 -157 -135

4 -1623 -1609 3 26 92
34 22

S 543 535 24 9 173

J8 -208 -183 126 -14

O -242 -258 128 109

J12 -196 -179 J30 12

1 125 110 J32 58

J16 36 16 334 62

18 -63 -77 J36 3

L _ 18 36
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5.3 Comparison with other sets of odd harmonics (GEM JOB, SAO 74, GRIM 2,
WGS 72)

5.3.1 Values of 8

The value of the amplitude 8 of the oscillation in eccentricity due to

odd zonal harmonics has also been calculated for the sets of odd zonal harmonics

of GEM 1OB and SAO 74, which are listed in Table 6.

Table 6

Values of odd zonal harmonic coefficients from GEM JOB and SAO 74
(with our 9-coefficient set for comparison)

GEM JOB SAO 74 9-coefficient GEM JOB SAO 74

109J3  -2536 -2553 -2530 109J2 1  6 -56

35 -226 -207 -245 323 140 153

7  -363 -395 -336 2 -3 -219

9 -117 -97 -90 2 -48
9 27

1 229 246 159 129
11 2

-223 -267 -158 331 6

'15 -14 32 -20 333 31

7 -93 -141 -236 3 -78
17 35

-11 55 -27

Fig 14 shows the variation of A8 , the value of 8 given by GEM JOB minus

the value given by our 9-coefficient solution, with the corresponding value of

AO from SAO 74 as a broken line. The differences are an order of magnitude

greater than the differences between our three solutions, so it is quite accept-

able to make the comparisons only with the 9-coefficient solution. Fig 14 shows

that, away from 63.40, the values of 8 predicted by GEM lOB differ from ours by

up to about 350 m, while the SAO 74 values differ from ours by up to about 600 m.

At inclinations up to 230 our values agree well with GEM IOB, while SAO 74

diverges from both (partly because it gives negative values of 8 for inclina-

tions less than 5°). For inclinations between 250 and 320, and again from 350 to

430, GEM JOB and SAO 74 agree with each other better than with our values.

Between 440 and 580, our values and GEM lOB agree extremely well. As the inclin-
ation approaches 63.40, the solutions diverge, at 63.00, for example, the values

a
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of a$ from GEM JOB and SAO 74 fall short of ours by 2.0 and 4.4 km respectively.
0

At inclinations greater than 64 the three solutions scarcely ever agree, and the

divergences near 690 are the worst of all (apart from the infinities at 63.40).

Fig 15 shows U1  for the European geopotential model GRIM 2 (full line)
2 0

21and for the World Geodetic System 1972 (WGS 72, broken line) . For GRIM 2, the

values are fairly close to those of SAO 74 for inclinations up to 600, and fairly

close to those of GEM JOB for 650 to 90° . The maximum divergence from our values

is 600 m at an inclination of 7° . The WGS 72 model is rather an old one, and has

only three coefficients, J3, J5 and J7 P but it is still used quite widely. The

agreement with WGS 72 with our values is surprisingly good at inclinations

between 160 and 530, the difference being less than 250 m; but at other inclina-

tions there are large discrepancies, and WGS 72 could not be recommended for

inclinations between 560 and 710 , where aA8 exceeds 700 m (apart from a chancy

zero near 63.70 en route to infinity at 63.40).

5.3.2 Discussion

It may seem surprising that GEM JOB, which utilizes thousands of laser

observations accurate to better than I m, should predict values of R which

reveal discrepancies of order 200 m when compared with our solution. However, it

appears likely that, although GEM JOB incorporates a million observations on 30

satellites, only a few of these satellites were tracked by laser, and not all

were observed over a complete cycle of the argument of perigee, as is necessary

for a strong determination of odd zonal harmonics. Furthermore, the absence of
0.satellites with inclinations near 63.4 in GEM JOB (the nearest is 115.00,

equivalent to 65.00) removes the most powerful determinant of high-degree zonal

harmonics. The SAO 74 solution, like ours, relied mainly on orbits determined

from photographic observations; but again the absence of orbits with inclinations

near 63.40 (590 and 670 are the nearest) weakens the solution for high-degree

coefficients.

The inquiring reader may ask, "which of the three solutions is the best?".

To hope for an unbiassed answer from us is, perhaps, expecting too much, but we

shall try to be impartial. The following points seem relevant:

(1) Our solutions include two satellites at inclinations considerably

closer to 63.40 than the other two solutions. Our solutions fit the results from

-these two satellites; the other solutions do not, and give amplitudes which fall

short of the observational value of 57.1 km for Cosmos 373 by 2 km (for GEM JOB)

and 4 km (for SAO 74).
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(2) Our inclusion of these 'difficult' satellites near 63.40 may have

affected the results at other inclinations. Our set of harmonics does not fit

the orbits at inclinations near 800 as well as was hoped, and for these orbits

(see Table 2) we had to increase a' to 0.2.

Whatever the answer to the question posed, it is obvious that further

determinations of odd zonal harmonics, utilizing more accurate orbits more

closely spaced in inclination, are essential if the centimetric accuracy hoped

for in the late 1980s is ever to be achieved. Odd zonal harmonics form an impor-

tant part of the geopotential, and errors of order 200 m or more in their

predicted effects will not be acceptable in future orbital models.

In the course of our solutions, the two most potent satellites, Cosmos 248

and Cosmos 373, had to be degraded in accuracy because cf the influence of

neglected high-degree harmonics. Thus the primary need is not for orbits of

better accuracy, but for orbits of 100-m accuracy which cover the range of

inclination more thoroughly. The higher harmonics (degree 31 and above) can then

justifiably be included, and the full accuracy of the existing orbits can be

exploited.

5.3.3 Geoid height

Fig 16 shows the difference Ah between the geoid heights given by the odd

harmonics of GEM lOB, and those given by our 9-coefficient solution, with the

corresponding values from SAO 74 shown by the broken line. The even harmonics

are kept the same for all three. At latitudes up to 850 the GEM 1OB geoid

differs from ours by less than 80 cm, the average difference being about 25 cm,

but there is greater divergence at the poles (1.6 m), and GEM JOB gives a pear-

shape' asymmetry of 41.9 m as compared with values between 43.5 and 45.1 m from

our three solutions. The SAO 74 geoid agrees with ours better than does GEM JOB,

the maximum difference (including the poles) being 70 cm, and the average about

25 cm. The pear-shape asymmetry given by SAO 74 is 44.6 m.

These comparisons substantiate the estimate made in section 5.1.2, that the

geoid shape from our 9-coefficient solution should be accurate to 40 cm, except

possibly in a small region near the poles. The difference of 1.6 m between

GEM lOB and our solution at the poles confirms that further improvement of the

odd harmonic values is needed.

6 CONCLUSIONS

We have analysed 28 satellite orbits, including several close to the
('0 c

0 critical inclination of 63.4 , to determine improved sets of values of odd zonal
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harmonic coefficients. The three sets obtained, with 8, 9 and 14 coefficients,

do not differ significantly, and the 9-coefficient solution is chosen as

representative. It is as follows:

I09 3 -2530± 4 10 9J = -158 ± 15

5 = -245± 5 i = -20± 15

7 = -336± 6 -17 -236 ± 14

9 -90 7 9= -27± 19

1 = 159± 911

The inclusion of higher-degree coefficients does not appreciably alter these

values (see Table 3). This set of harmonics is considerably better than our

previous set derived in 1973, the standard deviations being about 40% smaller.

The predicted amplitude of the oscillation in eccentricity (B) and in

perigee distance (aB) experienced by satellites at any inclination between 00 and

900 is shown in Figs 7 to 9. The geoid height profile from pole to pole,

averaged over all longitudes, is shown in linear form in Fig 10, and in radial

form in Fig 17. The pear-shape asymmetry, the north polar radius minus the

south polar radius of the geoid, is a sensitive measure of the effect of odd

zonal harmonics, and has a value of 45.1 m with our 9-coefficient solution.

Comparisons with the sets of odd zonal harmonics of GEM 1OB and SAO 74 show

significant differences in the predicted values of the amplitude of the oscilla-

tion in perigee distance: see Fig 14. At inclinations near 63.40, the

differences inevitably tend to infinity; away from 63.40, the maximum differences

are about 350 a for GEM JOB (at inclination 70 ) and about 600 m for SAO 74 (at

inclination 69 0). The implications are discussed in section 5.3.2: the main

point worth emphasizing here is that much better sets of odd zonal harmonic

values, utilizing satellites in chosen orbits specially observed, will be needed

if orbital models are ever to be developed which are capable of giving orbits

accurate to a few centimetres.

Comparison of our geoid profile with those given by GEM 1OB and SAO 74

shows an average difference of 25 cm, with a maximum of 80 cm at latitudes up to

850. Changes in even harmonics change the profile by an average of 20 cm. On

this basis the rms error of our profile is assessed as 50 cm, except very near

the poles, where errors up to 1.5 m are possible.

AcknowledtamentrWe thank Mr M.D. Palmer for valuable help with the computer programs.



29

REFERENCES

No. Author Title, etc

I D.G. King-Hele Analysis of 27 satellite orbits to determine odd zonal

G.E. Cook harmonics in the geopotential.

Plant. Space Sci., 22, 645-672 (1974)

RAE Technical Report 73153 (1973)

2 D.G. King-Hele Evaluation of odd zonal harmonics in the geopotential,

G.E. Cook of degree less than 33, from the analysis of 22

Diana W. Scott satellite orbits.

PZanet. Space Sci., 17, 629-664 (1969)

RAE Technical Report 68202 (1968)

3 D.M.C. Walker The orbit of Cosmos 44, 1964-53A, from March 1968 to

November 1970.

RAE Technical Report 71161 (1971)

4 A.N. Winterbottom The orbit of Cosmos 248 (1968-90A) from 1969 to 1971.

RAE Technical Report 72055 (1972)

5 C.J. Brookes Analysis of the orbit of 1970-87A (Cosmos 373).

Planet. Space Sci., 24, 711-715 (1976)

6 C.J. Brookes Analysis of the orbit of 1968-90A (Cosmos 248).

D. Holland Planet. Space Sci., 26, 611-618 (1978)

7 R.R. Allan Resonant effect on inclination for close satellites.

RAE Technical Report 71245 (1971)

[Published in part Planet. Space Sci., 21, 205-225

(1973)]

8 R.H. Merson Use of artificial satellites to explore the Earth's

D.G. King-Hele gravitational field: results from Sputnik 2 (1957S).

Nature, 182, 640-641 (1958)

9 F.J. Lerch Determination of the geocentric gravitational constant
R.E. Laubscher from laser ranging on near-Earth satellites.
S.M. Klosko
D.E. Smith Geophys. Res. Letters, 5, 1031-1034 (1978)
R. Kolenkiewicz
B.H. Putney
J.G. Marsh
J.E. Brownd

0



30

REFERENCES (continued)

No. Author Title, etc

10 F.J. Lerch Gravity model improvement using Geos 3 altimetry
C.A. Wagner (GEM 10A and JOB).
S.M. Klosko
R.P. Belott Paper presented at Spring Annual Meeting of the
R.E. Laubscher American Geophysical Union, Miami Beach, Florida (1978)
W.A. Taylor

11 G.E. Cook Perturbations of near-circular orbits by the Earth's

gravitational potential.

Planet. Space Sci., 14, 433-444 (1966)

RAE Technical Report 65252 (1965)

12 D.G. King-Hele Odd zonal harmonics in the geopotential, determined

G.E. Cook from 14 well-distributed orbits.

Diana W. Scott Planet. Space Sci., 15, 741-769 (1967)

RAE Technical Report 66317 (1966)

13 D.G. King-Hele The odd zonal harmonics in the Earth's gravitational

G.E. Cook potential.

Diana W. Scott Planet. Space Sci., 13, 1213-1232 (1965)

RAE Technical Report 65123 (1965)

14 D.G. King-Hele Determination of the even harmonics in the Earth's

G.E. Cook gravitational potential.

J.M. Rees Geophys. Journ. Roy. Ast. Soc., 8, 119-145 (1963)

RAE Technical Note Space 25 (1963)

15 J.A. Pilkington Revised Table of Earth satellites, volume 2: 1969-1973.
D.G. King-Hele RAE Technical Report 79001 (1979)
H. Hiller
D.M.C. Walker

16 D.G. King-Hele Evaluation of 14th-order harmonics in the geopotential.

D.M.C. Walker Planet. Space Sci., 27, 1-18 (1979)

R.H. Gooding RAE Technical Report 78015 (1978)

17 W.M. Kaula Theory of aatellite geodesy, p 98.

Blaisdell; Waltham, Mass. (1966)

18 F.J. Lerch Goddard Earth model development for oceanographic

C.A. Wagner applications (GEM IOC)

S.M. Klosko Paper presented at Marine Geodesy Symposium, Miami,

R.P. Belott Florida (October 1978) 0



31

REFERENCES (concluded)

No. Author Title, etc

19 E.M. Gaposchkin Gravity-field determination from laser observations.

Phi . Trans. Roy'. Soc., A 284, 515-527 (1977)

20 G. Balmino The GRIM 2 gravity field model.
C. Reigber Deutsche Geodatische Komm. Reihe A86 (1976)
B. Moynot

21 T.O. Seppelin The Department of Defense World Geodetic System 1972.

Canadian Surveyor, 28, 496-506 (1974)

EPC:'"S Qt' T"rT_ AP - ,

pR TO COM-/r.w:cVA c: : A; s.S ,- ' CN S

* TO



Fig I

E. co w
fm f" C4 N4 N

"0 4V 0 0 0 0

I-L

Ca 0

S2-e

0* 0

0 / c

I C

S

en o

t-t. 0v

aa

r- CD

4C



Fig 2

Lnn

* d"

ec

U
0 C4

* c

I- I
.CE

in-

in C
0 W

N N

gn N 

0 00 94 N
cItoC

m 4C r



Fig 3

1020ecsw2

1-1

21g Exlrr,174A 3iceitdoh2vluufeowad@i
with1 4u1cu value



Fig 4

5

2-5

with~10 seecedvaue



Fig 5

10
a. s 12

-20 -15 -10 -5 & 5 10 1s 20
10 ecosw

5 .16

- 20

22
-1S

26 
24

Fig5 Cma44,1964-63A: cirde fitted to 28 values of aecos and esinw,
with leuted values



Fig 6

70 
so

60

6 - -906
so

4, 103e sin w

sin (a go

100
r2 -

So 'o

40 
oc

-10 -6 -4 -2 2 4. 6 10

103 0 COS W 110

-2
'03 

0 

c4

30
120-4 - 120

10 Os w 6)

10 
130

0 
136

Fig 6 Transit 4A, 1961ol: circle fitted to 137 values of 9 oos w and 9 sin w ,
with selected values



Fig 7

on0 4

.2 40

ao Qn 0 4-

InI

00

.4

400
in5

C,

44 UL 4 4C

cs,



Fig 8

0L N 4

40

40d

400

C2

0

CL q0

dI



r Fi9 B

. .: .a /
-, /c

.- D gg I

= i/

4,ja.. IIG

'.

/( , ,

ifi

-ton CD

Q.

I',

.400

in C!M

oc



Fig 10

40.

C

c 1 4

.000

a E -

'.4 - I IL



Fig 11

JII

.Ile

d of

C2 36 -



Fig 12

h- 8 h coef f) h 9 coef)f

- h(14coeff-h(9 coef f

For southern tatitudes the
sign of Ah is reversed

cm

20

o
so 62 -. 4 86 Be 90

- Latitude -degrees N

-20 -=-

-60

0

Fig 12 The diffeenc Ah between the geoid heights given by the 14-coefficient and
9-coefficient soution (and between 8- and 9-coefficient solutions) at
latitude 80-900



Fig 13

fa

IMI

C44.v

V)
LL



Fig 14

I
_____ I

i
.1

.c ia

P4oj

w~.

II
4

~ 0
- --

I.

V 03ii
U.

= = = - - - S

4 4 4 0
C a a a

C



Fig 15

T- --

#4 C

c

ClC

-)-

tn h

~~20

ID V-



Fig 16

VI

4D0

000--

i-.- -Dw
aC



Fig 17

~ 0

30, 30

10 -140 .q20 -2 10-1
0 0

30~ '30

Fig 17 NuOW, of tde meriionl geOWd macon 18olid line) relative to a spheoid of
fl~teIng 1/29.215, a give by our B-oofflci net of odd harmonics and
GEM 10B eve armonies



As fal pmibb bP t0d1e0bal u* usdea btinoruaton Iftit i normy to ot damid nf'mation, the bo
Am O emuKed to bidunw th demaifhwow e. Reorit Conft daetd or Secret.

I. D eusMs 1. OOwddsonahr ors Rul e 3. Agme 4. Report se rity aaodfcto l a

- ~RAE T& 8003 N/
S.M C6.frOviao Orlstor (Corporat Audio) Nuas ad Lacatd=

7673000W Royal Aircraft Istablishment, Faruborough, Hants. UK

Se. Spoaworin Apocys Code 6L. Spomolu Apacy (Contract Auhority) Name and Loa~tion

N/A N/A

7. Tftl Odd zonal harmonics in the geopotential, from analysis of 28 satellite
orbits

7.. (For TnMtions) Title In Foreien LanguP

7b. (For Confenc Paper) Title, Pace and Date of Coneremce

S.AuthorI.Surnamelals 9a. Author2 9b. Aut4r%3,4... 10. Date Pages Re&
King-Belo, D.C. Brookes, C. J. Cook, G. E, Februayj 4  21

11i. Contract Number 12. Period 13. P"ect 14. Other Reference No.
N/A t N/A Space 576

15. Mtiution statement
(a) Coetolsdby - Head of Space Department, RAE (RAL)

Mb *peia lUNt"Io (if any) -
16. Deenlo (Keword (Deaedptom maked a we reated frm TEST)

Geopotential. Geodesy. Satellite orbits. Earth's gravity field.

Abstrat The geopotential is usually expressed as an infinite series of spherical
cs, aud the odd zonal hurasnics are the terms independent of lonitude and

ttsy'motric about the equator: they define the 'pear-shape' effect. The coefficient
, 3, . , ... of these harmonics have been evaluated by inalysing the variations
n tdricty of 28 satellite orbits from near-equatorial to polar. Post of the orbit

oNr previous determination in 1973 are uoe again,obut three new orbits are
, Lluding two at inclinations between 62 snd 63 , which have been specially

for son then five years by the newitt camra. With the help of the new
bte -W revised theory, we bove obtained sets of .1-coefficients with standard

4s. abobt AN lower than before. A 9-coeffi ient set it chosen as
r~e~ f , 0d is as followst

103 * -2530 4 I09JV -- 90* 7 109.J, a -20*t1US
-24 5491 9 1j a -236*1t4

- -33 . J13 * -18It 13 JI9 1 4 7* it
rb n n.. v.. aman nY?43


