
ISIIRR-80-87
Juy 1980

Richard Bisbey II
Dennis Hollingworth

* ~c: A Distributable, Display-Device-Independent Vector
Graphics System for Command and Contro/

.,.

W INF mORMATION SCIENCES INSTITUTE

SSITY OF SOUTHERN CALIFORNIA fT 7(213)822-1311

0 2

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whm Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

ISI/RR8 -87E [2. GOVT ACCESSION NO: S. RECIPIENT'S CATALOG NUMMER

4. TI T E (nd Sbtl f*)5. TYPE Of. RKgPql! #i PERIOD COVERED

Distributable, Display-Device-Independent > eearch #epSt.
. Vector Graphics System for Command and Control,! (-

S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(*) 6. CONTRACT OR GRANT NUMBER(&)

10: Richard isbey 3II i Dennis °llingworth /3. DA~dI5-72.-3 J p-1

9. PERFoRMING ORGANIZATION NAME AND ADDRESS AREA & WORK UNTNUBR
USC/Information Sciences Institute VA . WORK UNT.NU,.ERS

4676 Admiralty Way
Marina del Rey, CA 90291

I1. CONTROLLING OFFICE NAME AND ADDRESS /" t 2. RO

Defense Advanced Research Projects Agency Jui
1400 Wilson Boulevard
Arlington, VA 22209 40

I4. MONITORING AGENCY NAME & ADDRESS(i dlflerent from Controlling Office) IS. SECURITY CLASS. (of this report)

Unclassified

IS. DECL ASSI PIC ATION/ DOWN GRADING
SCHEDULE

I. DISTRIBUTION STATEMENT (of this Report)

This document is approved for public release and sale;

distribution is unlimited.

t7. DISTRIBUTION STATEMENT (of the abetract entered In Block 20, it different 1ro Repet)

II. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on revers* side If necessary and identitfy by blook number)

application program, command and control graphics, communications protocol,
computer graphics, high-level graphics language, on-line map display,

system architecture

20. AISTRACT (Continue an reversee sde If necesay ad #&itlty bp Mek nwoter)

(Over)

D OAN" 1473 EDTO ppINVg Is OUOLE16TRIR o01o2-014-*64o1 UNCLASSIFIED
SECUITlY CL.ASSIFICATION OF' TIi PAGE (llM i w

0 s Z, .

Unclassified

$I9CUNITY CLAUIICAYION OP THIS PAGS[EIh DW& 8atm

\I

20. ABSTRACT

This report documents a distributable, device-independent vector graphics
system developed by I5I for the Defense Advanced Research Projects Agency. It
describes the system architecture, communications elements, and a phased
implementation strategy. The system supports graphlcs-based command and
control applications in distributed computational environments such as the
ARPANET. The system has been in use at ISI and at the Naval Ocean Systems
Center (NO3C) in the Advanced Command and Control Architectural Testbed
(ACCAT) since January 1977. The principal aim of the development effort is
the device-independence of the vector graphics. "Device-independence" means
that graphic application programs can be written without regard to the
particular display-device on which the output will ultimately be displayed.
This system achieves display-device independence by providing the application
program with a set of generic, two-dimensional vector graphic primitives by
which pictures can be described and interacted with at the application-level.
The particular graphics model used structures pictures as sets of subplotures
that are absolute-transformed-segments, as defined by Newman and Sproull.

Unclasstfted

*gCuOITY CLASSIUICATION of tVI PaU4e 10 e sbe
p

ISIIRR-80-87
J1d4 1980

Richard Bisbey 11

Dennis Hollingworth

A Distributable, Display-Deviclndependent Vector
Graphics System for Command and Control

/D

INFORMATION SCIENCES INSTITUTE

46 76 Admir-alty W'ay/Alarita del Reyf Cafif ormia 90291

UNIVERSITY OF SOT HERN CALIFORNIA (213) 822-1511

THIS RESEARCH 1S SUPPORTED BY THE DEFENSE ADVANCED RESEARCH PROJECTS AGENCY UNDER CONTRACT NO. DAHCIS
?7? C 0309, ARPA ORDER NO. 2223.
VIEWS AND CONCLUSIONS CONTAINED IN THIS REPORT ARE THE AUTHORS' AN4D SHOULD NOT BE INTERPRETED A
REPRESENTING THE OFFICIAL OPINION OR POLICY OP DARPA, THE U.S. OVERNMENT, d~ANY PERPO ot AGENCY
CONNECTED WITH THEM.

CONTENTS

Overview a,

1.- Graphics Requirements for Command and Control 1

2. The Graphics System Architecture 4

3. File 1/O Extension to the System Architecture 12

4. Additional Functional Extensions to the System Architecture 14

5. Communications 18

S. Implementation Strategy 22

7. Example Configurations and Scenarios 25

S. Conclusion 31

References 34

V

OVERVIEW

This report documents a distributable, device-independent vector graphics system
developed by ISI for the Defense Advanced Research Projects Agency. it describes the
system architecture, communications elements, and a phased implementation strategy.
The system supports graphics-based command and control applications in distributed
computational environments such as the ARPANET. The system has been in use at IS and
at the Naval Ocean Systems Center (NOSC) in the Advanced Command and Control
Architectural Testbed (ACCAT) since January 1977.

The principal aim of the development effort Is the device-independence of the
vector graphics. "Device-independence" means that graphic application programs can
be written without regard to the particular display-device on which the output will
ultimately be displayed. This system achieves display-device independence by providing
the application program with a set of generic, two-dimensional vector graphic primitives
(Graphics Language E2]) by which pictures can be described and interacted with at the
application-level.

The particular graphics model used structures pictures as sets of subplctures that are
absolute-transformed-segments, as defined by Newman and Sproull [3]. At the most
general level, the application program deals with graphics in terms of named picture
elements, called segments. Segments can be created, destroyed, merged, made visible
or invisible, made touch-sensitive, and highlighted. Segments themselves are specified
In terms of generic graphic primitives including vectors, arcs, dots, text, and filled
sectors and polygons, which may vary according to color, intensity, and font.

Graphics Language (GL) defines the set of application-independent functions for
performing the above operations. Since several programming languages are expected to
be used in the Command and Control environment (mainly Ada and FORTRAN, but also LISP,
BLISS, MACRO and other languages), 0L is defined (and implemented) In such a way that
It can be easily used by application programs written in any of them.

The binding of the application program to a particular display device Is deferred until
program execution time, when the generic graphics primitives are mapped by the system
into specific operations and display modes appropriate to the device selected. The
quality of the resulting picture is limited only by the capability of the display device.

The second significant aim is that the graphics system be distributable across multiple
host computers interconnected by a communications network (such as the ARPANET).
This allows the graphics display device to be located away from the graphics application
program and the computational load Introduced by the graphics system to be distributed
across multiple processors, balanced to the computational resources and communications
bandwidth available. The graphics system achieves distrlbutabity by virtue of Its
modular design and Implementation, L.e., the system consists of a series of Isolable
functions that communicate via a common communications mechanism.

1*

LI

vI

The design separates the issue of system functionality from communications; the
functionality of the system does not depend on the physical processor on which a given
function resides during a graphics session. The physical location of graphic functions (as
well as the display device) only affects performance issues; they have no effect whatsoeTr on the
application program. Moreover, any Intraprocesslinterprocessor communications
mechanism might be used for communications between functions of the graphics system
(including telephone, radio, or digital network/internetwork links). As suggested by R. F.
Sproull In "Network Graphics Isn't Networking" [4], a graphics system used on a network
does not have to address networking issues, but only device independence.

Modular organization of the graphics system has several benefits in addition to
distributablity. It allows the system to be easily extended to support other application
languages and display device types. The former Is accomplished by replacing the
language interface component with one that interfaces to the new language, the latter
by replacing the component that generates device orders. Such replacement has no effect
whatsoever on the application programs or the fashion in which application programs use the
graphics system and graphics language.

Modularity also allows new graphic functions to be easily added to the capabilities of
the basic system. The architecture supports a single-terminal-to-single-application
graphics environment. Additional graphic functions may be added to support more
complicated configurations, Including multiple programs concurrently connected to a
single terminal and a single application program simultaneously generating graphics
output for and accepting Input from multiple (possibly dissimilar) display devices.

ISI has implemented the graphics system on the TENEX and TOPS-20 operating
systems. Application languages supported by this Implementation include Fortran-i0,
Macro-1O, Bliss-1O, and Interlisp-lO; display devices include the Tektronix 4010, 4012,
4014 series, Tektronix 4027, Advanced Electronic Design 512, Genisco GCT-3000, and
Hewlett-Packard 2648A and 9872A.

This report describes some of the perceived goals and requirements that motivated
the graphics system architecture, then describes the graphics system architecture
Itself: its functional components, their relationship to one another, and the intrafunction
communication mechanism. Extensions to the graphics system that support saving and
reincorporating previously generated graphics output, as well as multidevice and
multiapplication configurations, are presented. This is followed by a short description of
the communications protocol between the application program and the graphics system
(Graphics Language), and the external communications protocol (Graphics Protocol), used
for communicating over external communications links and for storing graphics in external
files. Finally, the document discusses 181's current and planned Implementation of the
graphics system, presents possible configurations of the graphics system, and suggests
various usage scenarios that can be supported.

I. GRAPHICS REQUIREMENTS FOR COMMAND AND CONTROL

Effective command and control depends upon accurate and timely exchange of
information between command levels and effective presentation of relevant data.
Communication both up and down the command chain is required, as well as
communication with databases, either static or dynamically updated. Advanced
Information processing technology can and should be exploited to manage and augment
information exchange and enhance the quality of C2 communications, thereby making It
easier for military personnel to interpret and respond to events.

Effective communication is crucial for real-time operation in crises, as the 55 hours of
voice' conferencing during the Mayaguez Incident testify. Simultaneous graphic
communication, typically two-dimensional information like maps and charts, can greatly
enhance both the quality and the efficiency of communications, and provide depth to the
Information exchange. Furthermore, graphics Is probably the most effective and
universal way of communicating spatial information.

Computer graphics Is not new to the military. Immediate or anticipated military
requirements have quite often been the basis for technology development and
deployment; this has been true in various areas of computer graphics. The military has
employed computer graphics In a variety of special-purpose applications. However, the
utility of graphics as a communications vehicle suggests that graphics should be made
available to the military In a more generalized way, much as voice communication is made
available via the AUTOVON system. This has become both attractive and economically
feasible with the advent of both low-cost graphics terminals and digital computer
communications networks such as the ARPANET and its planned military counterpart,
AUTODIN-II, now under construction.

Crises like the Mayaguez incident are generally unpredicted and may require quick
response to a rapidly changing situation. Because the nature and amount of the
resources available to meet the crisis may vary, the C2 graphics system must be
adaptable to the resources at hand, including processing, communications bandwidth, and
display equipment. Furthermore, It should be extensible so that It can evolve to
accommodate (for example) new display devices or new communications technologies.
The graphics system must evolve In a way that Is not traumatic to Its users.

These general observations suggest a more specific set of requirements for the
graphics system designed to accommodate a command and control environment.

1. The development and use of graphics application programs should be independent
of the display device type, with the graphics system adapting to and supporting
terminals of varying capability. The developer of an application should be
able to produce the application unmindful of the specific display device(s)
that will ultimately be used. Furthermore, the developer should be able to
test and debug the application program on whatever display device is at
hand or Is otherwise accessible and reasonably convenient to the teat
environment. It Is quite likely that the equipment available for applcation

2 A DISTRIBUTABLE, DISPLAY-DEVICE-INDEPENDENT VECTOR

development and testing will differ from that planned for use with the
application. This situation is often solved by the developer's making
repeated trips between the development site (where tools for program
development and testing are readily available) and the application site
(where the application hardware exists). Such need not be the case.
Finally, the application program should be able to exploit the features
available with the particular device to which It is connected without being
limited to the greatest common subset of features of the terminals used;
the graphics system should perform the requisite mapping of the requested
capability to the features available.

2. The graphics system should be adaptable to the processing and communications
resources available when the application program display device connection is
established. The unpredictability of the communications bandwidth available
and the location of and accessibility to computational resources during a
crisis situation, together with the need to optimize use of available
resources to meet the situation, suggest that the graphics system be
tailorable to a wide variety of processor/communication combinations. The
choice of a particular configuration should be deferred until program
execution. For example, suppose a display device is connected to a small
local processor that is in turn connected via a very low bandwidth channel
to a larger remote processor containing a graphics application. The
graphics system should be tailorable so as to minimize the communications
bandwidth required between the application and the display device. This
might be done by distributing the graphics system across the two
processors, i.e., performing some graphics functions on the small processor
local to the display device, and by optimizing date transmission formats
used. Alternatively, if the communications topology or bandwidth was
different or processors with different capabilities were Involved, the
graphics system should be tailorable to optimally use those resources.

3. The graphics application should be oblivious to the placement of graphics system
components and the requisite communications established to support their
placement. Whether the graphics system is distributed across several
computers to take advantage of processing or communications resources,
or whether the entire system resides within a single processor, should be
invisible to the application program. Any special machinations necessary to
establish and support a particular configuration should be handled by and
within the graphics system itself with any side effects constrained to the
graphics system, with the possible exception of system performance.
Thus, the fact that the display terminal Is on a ship and the application Is
running at a land-based WWMCCS site should not be any more apparent to
the application program than If the terminal Is directly connected to the
application computer.

4. rTe graphics system shotd support the incorporation of possibly indp*ndtly
generated graphics pictures into an application program as wll as the creation of

GRAPHICS SYSTEM FOR COMMAND AND CONTROL

picture descriptions for use outside the immediate application environment. In
conventional data processing environments, files are a communications
mechanism that allow results calculated by one program to be shared with
other programs. Thus, files permit a large computational task to be divided
Into separate subtasks that Individually prepare their respective results
without regard to the existence and definition of the other subtasks. In
addition, files permit temporal discontinuities to exist between subtasks.
Results may be calculated in advance of their use, and need not be
calculated each and every time they are needed. An equivalent mechanism
should be provided for sharing graphic Information. Since the display
device available to the application that creates a "graphic file" will likely
be different from those available to programs using the resulting pictures,
the files must be created and stored In a display-device-independent
format.

5. Te graphics functions avaitaue to an application should be sufficiently general
to support a variety of application domains. This generality should include
system configurability, communications adaptability, and device-
independent multiterminal usage. The user interface itself should provide a
sufficiently rich set of graphics primitives such that highly tailored,
application-specific graphics environments can be constructed on top of
the Interface without requiring alteration of the functionality of the
graphics system itself.

The remaining sections describe a graphics system designed and implemented to meet
the above requirements. Section 2 describes the overall system architecture: the
functional units, their placement, and the Intrafunction communications mechanism.
Section 3 presents a graphics file extension to the architecture that permits the
Incorporation of independently generated graphic results in an application program.
Section 4 describes extensions to the architecture that allow both multiterminal and
multlappllcatlon usages. Section 5 describes the communications forms used between
various functional units within the system. Section 8 describes Implementations of the
system architecture, both planned and completed. Section 7 describes example
Configurations and provides examples of possible scenarios of use to Illustrate the
vlability of the architecture.

4/

4 A DISTRIBUTABLE, DISPLAY-DEVICE-INDEPENDENT VECTOR

2. THE GRAPHICS SYSTEM ARCHITECTURE

This section describes the overall graphics system architecture: the functional
components, their placement, and the mechanism by which they communicate. This
section is not an implementation description, it does not specify algorithms that might or
should be employed by specific functional components; it does not specify how storage
requirements should be realized in actual physical storage devices. Such specifics are
implementation issues, and their resolution Is left to the individual implementer. ISI'S
particular implementation strategy is discussed in Section 6.

ARCHITECTURE

The architecture of the C2 graphics system is conceptually simple. It is a series of
major graphic functions serially connected on a single bidirectional data channel. The
architecture is shown in Figure 2.1. The six functions are:

1. The Application interface performs parameter checking and data channel
interfacing. It contains as a replaceable subcomponent a Language
Interface, which interfaces the application programming language to the
graphics system.

2. The Model performs segment validation.

3. The Clipper removes nonviewable graphics.

4. The Normalizer converts number modes and ranges.

S. The Storage Manager queues display output and graphic input.

6. The Device Order Generator interfaces the graphics system to the display
device.

These functions transform high-level, device-independent application program
requests for graphic services into display device order codes for a particular device.
They perform the reverse transformation for graphic input originating at a display device.
The following describes the architecture in more detail: the intrafunction communications
mechanism, then the individual graphics functions and their placement relative to one
another.

Intrafunction Communications/The Data Channel

The data channel is the logical mechanism by which graphics functions communicate.
it spans the system, from the application interface to the display device. The data
channel Isolates functions from each other; functions can communicate with each other
only by using the data channel. Architecturally, the data channel provides a uniform

GRAPHICS SYSTEM FOR COMMAND AND CONTROL 5

Figure 2.1 Basic system architecture

communication mechanism to which graphics functions interface. Because of this
inherent isolation of functions and uniformity of communication between functions, the
architecture permits new functions to be inserted between any pair of existing
functions, and the system readily extended. The data channel also allows flexible
distribution of the functions over various hardware configurations without disturbing the
application program or the overall functionality of the system.

Data passes through (is read by and possibly acted on by) each function on the data
channel until it is removed by Its ultimate recipient. Functions perform four basic
operations on data on the data channel. They can add a data element to the data
channel, remove a data element from the data channel, modify a data element, or pass a
data element unchanged to the next sequential function on the data channel.

The Graphic Functions

Application Interface

The Application Interface is responsible for interfacing the graphics system and the
data channel to the application program and the runtime environment of the particular
programming language in which the application Is written. It contains a replaceable,
functionally separate language Interface that performs all programming specific tasks
Involved with interfacing to the application program. The Application Interface
represents one end of the data channel.

When Invoked (via subroutine call, messages, Interprocess communication, etc.) by an
application program for graphic services, the Application Interface performs three tasks.
First, the language interface retrieves the graphics command and the associated
arguments from the programming language environment. Next, the mainline application
Interface code validates the command and arguments: it checks that the command is
legitimate and that it Is supported by the system; it also checks that the arguments are
within the appropriate argument domains of the specified command (although It does not
shook that a given data value Is otherwise valid). Finally, it translates the command and

6 A DISTRIBUTABLE, DISPLAY-DEVICE-INDEPENDENT VECTOR

arguments Into Internal data channel values, and forwards the values to the next
function on the data channel.

The Application Interface also returns data from the graphics system to the
application and signals the application program that data values are available.

Model

The Model is responsible for validating the legitimacy of graphic operations on
segments. It ensures that user-specified segments exist and are In the proper state
before permitting the requested operations to take place. Additionally, It eliminates
segment-idiosyncratic aspects of the user Interface, such as deleting an old segment
when a new segment Is created with the same name, from the communications protocol.

Clipper

The Clipper function is responsible for eliminating those portions of vectors, arcs, filled
areas, and text that are outside an application-specified window. The Clipper removes,
modifies, or passes unchanged these graphics requests depending on whether the
graphics are outside, partially inside, or totally inside the display window. The Clipper
relieves the application of the responsibility for determining that portion of the
application's graphics that will be visible on the display device. In doing so, It shields
the application from display device Idiosyncrasies regarding treatment of Information
outside the device coordinate range (e.g., address wrap-around).

Normalizer

The Normalizer function is responsible for transforming application data values Into an
Internal data mode and normalized value range. Normalizing graphic data values insulates
the application from the device and simplifies writing of the application program by
providing the application with the ability to specify values in number ranges appropriate
to the application. It also simplifies subsequent functions by standardizing modes and
value ranges and reduces subsequent communication and storage requirements by
removing excessive precision. Arbitrary number ranges established by the application
for specifying graphic coordinates are transformed and mapped by the Normalizer Into a
standard internal mode and range. This permits an application to be written with
coordinate values that are totally Independent of the actual physical coordinates of the
particular display device being used. The Normalizer performs a similar operation for
other data values such as those for specifying color. The Normalizer performs the
reverse transformation for data originating at the display device destined for the
application, I.e., it transforms Internal device-Independent values Into application
coordinate and value ranges.

GRAPHICS SYSTEM FOR COMMAND AND CONTROL 7

Storage Manager

The Storage Manager is responsible for all processing involving the storage and
management of both graphical input and output data. The Storage Manager allows

applications to specify pictures as a series of named sub-picture elements (called

segments) and to change sub-picture elements without having to respecify the entire

picture. it is also responsible for supporting the logical Input functions In the system

including the segment-touching facility. The Storage Manager contains storage (a

segment pool) Into which information associated with each active segment Is retained. It

maintains the status of named segments and performs any associated action, such as
destroying the segment and freeing the associated storage (redrawing the picture If

necessary), adding a new segment to the segment pool, or changing the state of an
existing segment.

Device Order Generator

The Device Order Generator is responsible for interfacing the data channel to the

physical display device. It represents the other end of the data channel. For display
device output, It translates data channel command and data representations into

device-specific order codes and associated data values. For device Input, It performs
the reverse translation. In the event that a generic graphics function Is being simulated
by a physical device capability, the device order generator performs all associated
physical device mappings.

The Device Order Generator maintains all device-specific information In the system,
making such Information available to other graphic functions via data channel requests.

It also supports special-purpose facilities that are unique to the display device and that

are not otherwise supported by the graphic system.

Function Placement on the Data Channel

The sequential ordering of functions on the data channel is in some cases dictated by

the requisite order in which operations must be performed. In others, It Is motivated by
performance issues associated with the distributability of the graphics system.

Two functions whose placement Is dictated by their functionality are the Application

interface and the Device Order Generator. The Application Interface is directly

associated with the application program, while the Order Generator Is associated with

the display device; these two functions represent the two ends of the data channel.
Their placement on the data channel is shown in Figure 2.2.

Location of the Model on the data channel is motivated partially by efficiency Issues

and partially by design objective considerations. Since the model eliminates erroneous

segment operations, it Is desirable for it to detect and discard these calls as early as

possible in the execution sequence. Additionally, placement of the model immediately

after the applietion interface means that segment-idiosyncratic aspects of the user

a A DISTRIBUTABLE. DISPLAY-DEVICE-INDEPENDENT VECTOR

language are handled early In the execution sequence, thereby shielding the bulk of the
graphics system from many of the more Idiosyncratic aspects of a particular form of the
user language. The next functions for consideration are the Clipper and the Normalizer.
The Clipper functionally precedes the Normalizer, since the Clipper bounds coordinate
values to a fixed range (the application window). Adding the Clipper and Normalizer to
the Model yields Figure 2.3.

I ApplictieniDa
Applicotion ;iItaon C oh()nnlo

Figure 2.2 Application interface and device order generator placement

Inter Devi
Application< Data Moerder Nrmli

Figure 2.3 Clipper and normalizer placement

The final function for consideration is the Storage Manager. This function could be
placed In one of three positions: between the Model and Clipper, between the Clipper
and the Normalizer, or between the Normalizer and Order Generator. Placing It between
the Normalizer and Order Generator offers the following advantages over the other
possible placements:

1. It minimizes the space requirements for the segment pool, since only
graphics that might actually appear on the display need be stored; graphics
outside the application-specified window would have previously been
discarded.

2. It minimizes data channel usage required for redrawing the picture, since
only one link of the data channel must be used as opposed to two or more

GRAPHICS SVSTEM FOR COMMAND AND CONTROL

in the other cases. Furthermore, It minimizes data channel usage required
for input processing, since it eliminates the transmission of
non-requested/non-sampled Input data, particularly important for
high-bandwidth, high-data-rate input devices.

8. It minimizes function application, since lines and text do not have to be
clipped and/or normalized each time the picture Is redrawn. instead, lines
and text are clipped and/or normalized only once, when first specified by
the application.

Placement of the Storage Manager on the data channel results In Figure 2.1, the basic
system architecture.

IMPLICATIONS OF THE ARCHITECTURE

The architecture defined above has several significant implications with regard to
functional extendibility, separability, and external communications placement.

1. The architecture allows new functions to be easily added to extend the
system functionality (see Section 3 and 4). This is the result of functional
Isolation and modularity provided by the data channel. Functions interface
to a uniform, well-defined communications mechanism, I.e., the data channel.
Moreover, since the data channel separates the Issues of communication
and functionality, new functions can be developed for a given data channel
implementation without regard to the eventual interface point.

2. Because of 1, external communications links (e.g., a network link, internetting)
can be added antuhere in the system. Such a link can be regarded as merely a
new functional element, each side of which Is connected to a data channel.
As an example, consider an ARPANET Communications Function inserted
between the Normalizer and Storage Manager, Figure 2.4. This function
would connect each half of the data channel using the ARPANET, making the
two halves appear as one logical data channel. Such a link can be placed
anywhere along the data channel. (Note that the data channel Is assumed
by the graphics system to be a 100 percent reliable communication
mechanism: data Is never lost and is always correctly communicated from
one functional component to the next. Any error recovery or retransmission
required as a consequence of some failure of the specific external
communication mechanism(s) must be handled by that communication
mechanism and be invisible to the graphics system itself.)

8. The data bandwidth will generally be lowest after the Clipper and
Normalizer (because superfluous lines, text, and precision have been
removed) and before the Storage Manager (responsible for redrawing
pictures). This point represents the optimum point (in terms of
communication bandwidth required) for Introducing, an external
communications function (see #2 above).

10 A DISTRIBUTABLE, DISPLAY-DIVICE-INDEPEiMoNT VICTOn

4. All of the above functions can be implemented in a device-independent
manner with the exception of the Device Order Generator. Whether or not
they are depends on the objectives of the implementation effort. In
particular, the Storage Manager (and its associated storage pools) might be
implemented in a device-dependent fashion tailoring stored values to the
display device, minimizing the amount of storage required for individual data
types, and reducing the amount of work involved In redrawing the display.

5. Display devices may include one or more of the graphic functions within the
physical device itself, e.g., clipping, segment storage. For these devices
the corresponding graphic functional element can be disabled.

6. The architecture supports a variety of upward-compatible implementation
levels exploiting more and more functionality. Three such levels are
discussed In Section 6, which describes 181's implementation of the
graphics system architecture.

1. New applications languages can be supported by replacing only the
Language Interface component of the Application Interface. All other
functional elements remain unchanged. Furthermore, the device-independent
graphics functions provided by the system remain the same, regardless of
the application language.

8. New display devices can be supported by replacing only the Device Order
Generator. All other functional elements remain unchanged. Existing application
programs need not be recoded to use new displs devices unless they contain
device-dependent escape sequences that bypass the standard graphics system.

: ,.

SAPH=C SYSTEM MRA COMMAND AND CONTRAOL 1

>C
a0

LUU

00
oC

C4

LU0

ll0zi

U, R.t u 01 z E

12 A DISTRIBUTABLE, DISPLAY-DEVICE-INDEPENDENT VECTOR

. FILE I/O EXTENSION TO THE SYSTEM ARCHITECTURE

The overview Identified a requirement for the support of a graphics tile mechanism,
permitting independently generated graphic pictures to be Incorporated Into an
application program as well as such results to be created for use outside the immediate
application environment. This requirement can be supported by Introducing into the
graphics system two additional components- a File Input Manager and a File Output
Manager.

FILE INPUT MANAGER

The File Input Manager is responsible for incorporating externally stored graphics into
the system. It processes application requests for file Input, establishes a connection to
the desired file, and injects the requested information into the data channel stream. In
performing this function, the File Input Manager translates external file commands and
arguments into modes and ranges that are compatible with the data channel values. The
external Input Is Introduced into the standard graphics environment and can be
subsequently manipulated using standard graphic functions (i.e., the normal graphics
constructs used to control visibillty/invisibility, hlgi',ghtlng, sensitivity to touching,
destruction, etc.).

FILE OUTPUT MANAGER

The File Output Manager Is responsible for generating external files of graphics data.
It processes application requests for file output, establishes a connection to the desired
file. and copies Information from the data channel stream Into the file. The File Output
Manager also translates internal commands and arguments Into modes and ranges
compatible with external dat- storage.

FILE FUNCTION PLACEMENT

The file I/0 functional components can be located at several places along the data
channel depending upon whether the system architect wants to minimize external
storage requirements or retain the file data in unclipped form. The File Input Manager
must precede the File Output Manager to allow file input to be automatically collected in
the file output stream. The File Output Manager should logically precede the Storage
Manager and segment pools since files represent collections of picture definitions, not a
series of picture redraws. Placement of the pair after the Normalizer avoids redundant
function application and communication and minimizes file storage requirements. The
addition of the file managers yields Figure 3.1, the architecture with file I/O extension.

* *RAP"gCS SYSTEM FOR COMMAND AND CONTROL 13

In put Output
File File

-- - Normal izer Input outputMagr

Figure 3.1 File input/output extension

14 A OISTMIOUTALE, D5.PLAV-DEVICE-NO111PEUENT VECTOR

4. ADDITIONAL FUNCTIONAL EXTENSIONS TO TIlE

SYSTEM ARCHITECTURE

The system architecture described in Section 2 consists of a single data channel
connecting a single application program to a single display device. This section
describes four new functional units that can be added to the system allowing a single
data channel to be split Into two or more data channels, and two or more data channels
to be spliced Into a single data channel. These extensions support simultaneous
connection of multiple dissimilar display devices to a single application program and
simultaneous connection of multiple application programs to a single display device.

DATA CHANNEL SPLITTER

The ability to provide duplicate graphic output on two or more display devices (I.e., to
slave multiple, possibly dissimilar, graphics display devices to a single application) can be
achieved by adding a Data Channel Splitter function to the data channel. The Data
Channel Splitter creates one or more new data channels, copying graphic output from the
original data channel onto the new data channels. Graphic output appearing on the
display device connected to the original data channel Is duplicated on the display device
connected to each of the secondary date channels, Figure 4.1.

One or more
secondary data

channels

Data Original- -- Channel Oi~a

data channelSplitter

Figure 4.1 Data channel splitter

MULTIPLE DISPLAY DEVICE CONTROLLER

it is sometimes necessary for a single application to support multiple terminals
simultaneously. Multiple terminal configurations can be realized using the architecture
described in Section 2. This would be achieved by physically partitioning the application
Into separate components (one per display device). Each component would manage Its
own device as well as communications with other components of the application. An

GAPWIc5 SYSTEM FOR COMMAND AND CONTROL 15

example of a multiterminal application structured In this manner is the Warfare
Effectiveness Simulator program at the Naval Oceans Systems Center.

The addition of a Muitidevice Controller function provides the multitorminal capability
within the graphics system, eliminating the need to restructure the application. it allows
a single application program to be simultaneously connected to and interact with multiple
(possibly dissimilar) graphics display devices. The application program can display the
same or different pictures on each terminal. It also allows the application to retrieve
graphic input from any of the display devices.

The Multidevice Controller demultiplexes a single data channel containing Information
for two or more devices into separate data channels, one per device. The reverse
operation Is performed for graphic Input data, i.e., it multiplexes graphic input data from
two or more data channels onto a single date channel.

The Multidevice Controller can be Introduced at one of several possible places on the
data channel, the placement having significant implications with regard to the
functionality of the graphics system. To maximize functionality, the Multiple Display
Device Controller Is placed between the Application interface and the Clipper, Figure 4.2.

This allows the application to use each device Independently of the others In terms of
the Information displayed. Since clipping has not yet been performed, each device can
potentially display data under the control of different windows and coordinate ranges.
Placement of the Multiple Display Device Controller after the Clipper would mean that
each device would have to be treated in terms of the same coordinate range and
viewing parameters.

, Data channel I

1Program Interface t i Device Controller Dtchnen

Data channel n

Figure 4.2 Multiple display device controller

DISPLAY DEVICE MULTIPLEXOR

The graphics system architecture allows a display device to be connected to and
display the output from only one application program at a time. In some situations, a user
may desire to interact concurrently with two or more programs. The Display Device
Multiplexor Is a functional extension to the graphics system that provides this capability.
Two different modes of concurrent use are possible.

1 6 A DISTRIBUTABLE, DISPLAY-DEVICE-INDEPENDENT VECTOR

The first mode allows the display surface of a terminal to be subdivided by the user at
execution time into two or more nonoverlapping areas, each of which appears to be an
Independent terminal that can be allocated to an application program. Thus, a user at a
single terminal might simultaneously view and interact with the graphics of two or more
programs. Currently, considerable research Js being conducted using this technique
(often called multiple windows) for textual presentation. The work, to date, has been
limited to nonscaled, nonpositionable text. Two-dimensional textual displays such as
tables and charts that require more than the allocated screen area cannot be viewed in
their entirety without their representation and formatting being destroyed (since they
cannot be scaled or adjusted to small display areas). The Display Device Multiplexor
extends this initial concept by allowing both scalable text and graphics to be displayed
as originally prepared by the application programs in Individually allocated areas of the
display surface.

The second mode allows the display device (including Its associated Input devices) to
be simultaneously connected to and switched, under user control, between two or more
application programs (much like a television is switched between channels). Examples of
this second technique are found in many contemporary systems where, for example, a
user types some particular control key to regain control of the terminal from an
application program, permitting him to subsequently redirect control to some other
application.

Functionally, the Display Multiplexor either spatially or temporally Integrates two or
more data channel streams Into a single stream. For the former, it suballocates the
display surface into two or more subsurfaces, associates a particular channel with a
subsurface, and scales and relocates pictures for their particular subsurface. For the
latter, it maintains and switches the graphic context for each application. Upon user
Input, It routes the Input data to the correct data channel and application. The Display
Multiplexor is positioned between two or more Storage Managers and the Device Order
Generator, Figure 4.3.

Data channel Storage

Data channel Storage

Manager

nr

Figure 4.3 Display device multiplexor

DevicOrde

GRAPHICS SYSTEM FOR COMMAND AND CONTROL 17

MULTI-WAY DATA CHANNEL SWITCH

The Multi-Way Switch provides a multi-way data channel routing capability to the
graphics system. The switch accepts one or more data channels as input and provides
one or more data channels as output, Figure 4.4. It allows any of the output data
channels to be connected to any of the input channels. The switch is under the control
of a switch operator who independently determines the Input-data-channel-to-
output-data-channel connection (and hence the picture displayed). The switch operator
can change input to output connections at will and has total control over the switching
mechanism.

This function provides the capability necessary for a controllable graphics distribution
system and might be used to control output selection for a large screen display or a
hierarchical picture distribution system.

Data channel 1 Data channel

Multi-way I

Switch

Data channel i Data channel n

Switch

control

Figure 4.4 Multi-way switch

Is A DISTRIBUTABLE, DISPLAY-DEVICE-INDEPINDENT VECTOR

. COMMUNICATIONS

Sections 2, 3, and 4 described the architecture of the Graphics System and functional
extensions. For any two functions to communicate, a mutually agreed upon set of
communications conventions must exist. This section briefly summarizes communications
at two points within the system, between the Application Program and the Application
Interface and between the Normalizer and the Storage Manager. The section also
summarizes the external data format used for graphic files.

APPLICATION PROGRAMIAPPLICATION INTERFACE COMMUNICATIONS

This Is the point at which an application program makes requests of the graphics
system for graphic services. The program communicates with an Application Interface
using Graphics Language [2]. Graphics Language provides a set of device-independent
two-dimensional vector graphic primitives upon which more complex systems (e.g.,
three-dimensional) can be built. Device independence Is achieved by virtue of the fact
that the graphic primitives are generic capabilities and their arguments are specified In a
universal value range.

Graphics Language Includes device-independent, generic constructs for

1. Specifying the aspect ratio of the virtual display surface used, a viewport
within that display surface, and a coordinate range to be mapped onto that
viewport.

2. Grouping graphics primitives In named segments that can be created,
destroyed, merged, made visible or Invisible, highlighted, or made sensitive
to touching.

8. Specifying graphics entities such as lines, dots, text, and arcs (both In
relative and absolute form).

4. Specifying the display characteristics of graphic entities (e.g., font,
Intensity, color).

5. Accepting display Input from function keys, analog devices, or pointing

devices (including segment touching).

6. Retrieving graphics system status Information.

Graphics Language Is rich enough to make use of the majority of functions provided In
contemporary display devices. However, some display devices have special-purpose
features that Graphics Language cannot use. For example, Plato plasma terminals may
have built-in 35mm slide projectors allowing simultaneous rear projection of a
transparency on the graphics display surface. Raster scan displays may have video
disks, video drums, video tapes, or live video images mixable at the display device. To
control these special features or other device-ldlosyncratic functions, constructs are

GRAPHICS SYSTEM FOR COMMAND AND CONTROL 19

provided in Graphics Language for sending and receiving display-device-specific
Information (e.g., "does this Plato terminal have a built-in 35mm slide projector" or "turn
on the rear projection slide projector and cycle the carrousel to the 11st slide").
However, use of device-specific features by an application program may render the
program device-dependent.

NORMALIZER/STORAGE MANAGER

The graphics system must be distributable across two or more possibly dissimilar
hosts. Distributability makes it possible for the system to adapt to a variety of
computational and communications resource configurations. To achieve distributability,
however, requires that the data channel be divided into two or more subpleces, with
each subplece potentially residing in a different host. The best point for dividing the
data channel Is between the Normalizer and the Storage Manager, the location on the
data channel at which bandwidth requirements are typically lowest, and, hence, an
optimal point for a minimum bandwidth communications link.

The two physical subportions of the data channel are connected by a Communications
Function (Fig. 5.1). A Communications Function embodies all the communications and data
transformation routines necessary to make two physically separate subportions of a data
channel function as one logical data channel. in particular, the Communications Function
Is responsible for mapping data between the two hosts, a mapping that may involve
changes in data formats (e.g., converting one's complement integers to two's
complement integers or EBCDIC text to ASCII text or BCD text). It is also responsible for
insuring reliable communications over the external communications link; hence, It must
Include error detection and correction.

Graphics Protocol (1] is the data communications form used by the Communication
Function. It Is Intended specifically for communications between the two halves of a
communications function (hence, two portions of a data channel). It and the
communications function are transparent to both the application program and the terminal
user; neither the application programmer nor the user need have any knowledge of Its
characteristics or even its existence, since it Is inaccessible to both. The following
briefly summarizes Its two most important properties.

Grai hics protocol optimizes vector specification. It contains multiple formats for vectors.
Both absolute and relative vector formats are provided, with multiple precisions available
for the latter. Precisions are settable by other protocol constructs. This allows the
system to achieve better communication performance for pictures containing large
numbers of short vectors. Graphics Protocol also contains vector streaming. Two or
more vectors, regardless of format, can be sent using a single protocol element. This
allows better communications performance for batches of two or more vectors, since
each vector does not have to be placed In a separate protocol element.

Graphics protocol allows the size of the logical containers in which protocol elements are placed
to be determined at extcution time. Each protocol element has a corresponding logical
container. The size of the container, Its alignment within the data stream, and the

20 A DISTRIBUTABLE, DISPLAY-DEVICE-INDEPENDENT VECTOR

CL*C
X0

U

u

LL.)

CL

U -0

I-o

0z

vU,,

I

GRAPHICS SYSTEM FOR COMMAND AND CONTROL 21

position of data within a container are specified by other protocol elements. This permits
a single device-independent protocol to be dynamically configured to meet a variety of
communication bandwidth and computer processing/display device requirements.
Examples of container selection for three different communications/processing
requirements are provided.

1. Minimum Bandwidth. To minimize bandwidth, the system would choose for
each protocol element the smallest container that holds the maximum
precision of the corresponding protocol element. The containers would be
unaligned, producing a "bumper-to-bumper" stream of bits. For example,
the protocol element <segment.name) can be an integer between 0 and
65535. A 16-bit container would be the minimum size required for sending
(segment.name)s. On the other hand, (highlight.state), an Integer, either
0 or 1, would require a 1-bit container.

2. Maximum Throughput. To maximize throughput, the system would choose for
each protocol element a container whose size and alignment were integral
machine boundaries. For example, for maximum throughput between two
PDP-IOs, (segment.name> could be placed right-Justified In an 18- or
36-bit container corresponding to either a PDP-I0 halfword or fuflword.
The container could be aligned on an 18- or 36-bit boundary within the
protocol stream.

3. Minimum Computation. One of the host computers may have a limited
computational capability. In this case, container sizes, alignments, and data
Justification can be chosen to minimize computational requirements in that
host, i.e., shifting and masking operations needed to transform data
between Graphics Protocol and the data format within a host. (This may
lead to containers whose sizes, alignments, and Justifications are similar to
those derived for maximum throughput.) An example would be the
transmission of (highlight.state> to a small 16-bit machine such as a
LSI- 11. To minimize processing, the single bit could be sent left-Justified in
a 16 -bit container aligned on a 16-bit boundary. This would allow the bit to
be tested by simply loading the word into a register and branching on the
sign.

GRAPHIC FILES

Graphic Files provide the mechanism for saving and reincorporating previously
generated graphics output Into the same or a different application. Since flies must be
usable by potentially different applications connected to different devices on different
hosts, the content of the file must be application, host, and device-independent. The
Graphics Protocol defined above meets these requirements. it Is both
appfcatlon-independent and display-device-independent. In addition, since It Is a
sequential stream of bits, It can be easily represented on any sequential file storage
mechanism.

22 A DISTRIBUTABLE, DISPLAY-DEVICE-INDEPENDENT VECTOR

6. IMPLEMENTATION STRATEGY

The preceding sections discussed the design requirements for a Command and Control
oriented graphics system and the architecture developed to meet those requirements.
The following section describes three upward compatible Implementations of that
architecture. The implementations are denoted by level numbers corresponding to the
graphic functions Included in the system. This multilevel Implementation strategy
provides an orderly stepwise development, testing, and refinement of graphic system
functions. The section concludes with a discussion of how the system can be supported
on other processor types.

LEVEL I SYSTEM

A Level I system provides a single-device-to-single-appication interactive graphics
environment. It consists of a data channel and the five basic graphic functions
described in Section 2, I.e., Application Interface, Clipper, Normalizer, Storage Manager,
and Device Order Generator.

A Level I system was Implemented by ISI In January of 1977. It ran on the POP-10
under the TENEX/TOPS-20 operating systems and supported the following application
languages and display devices:

Languages: FORTRAN- 10
Bliss- 10
Macro- 10
Interlisp- 10

Display Devices: Tektronix 4000 series
Genisco GCT-3000
Hewett-Packard 2648A

The system was structured with all functions under a single process. Data channel
communications as well as communications between the application program and the
Application Interface was via procedure call. Device type selection took place at
Ulnkedit time. A particular application program was linkedited with an appropriate
Application Interface for the required language, an Order Generator for the desired
display device type, and the remainder of the graphics system forming a single load
module. Selection of the specific display device to be used for a particular session was
performed at execution time.

A display device can be connected to the graphics system by any communloatlono
Interface supported by the host operating system. In the case of TENEXITOPS-20 these
Incolude:

1. HardwIred Connection of the display device to the host.

GRAPHICS SYSTEM FOR COMMAND AND CONTROL 23

2. ARPANET TIP connection. (This looks just like a hardwired connection since
the TIP merely provides communications between the graphics system and
the display device.)

3. ARPANET socket-to-socket connection to another processor.

LEVEL 2 SYSTEM

The Level 2 system, like the Level I system, provides a single-device-
to-single-application interactive graphics environment. The Level 2 system also provides
an External Communications Function between the Normalizer and Storage Manager
functions, the point of lowest bandwidth on the data channel (see Section 2). For
purposes of discussion, the Application Interface, Model, Clipper, Normalizer, and half of
an External Communications Function are collectively referred to as a "Frontend"; the
other half of the External Communication Function, Storage Manager and Order Generator
are collectively referred to as a "Backend". A Frontend is device-independent, since it
contains only device-independent functions. A Backend Is device-dependent since it
contains a device-specific Device Order Generator.

The Level 2 system was implemented by ISI in June 1979. It runs on the PDP-I0
under the TENEX/TOPS-20 operating system and supports the same languages and
devices supported by the Level 1 System. Data channel communications within the
Frontend and Backend Is via procedure call. Communications between the two halves of
the External Communications Function (i.e., between the Frontend and Backend) is by
ARPANET socket-to-socket connections. Use of the ARPANET is motivated by the fact
that it is a solid, well-proven, widely used digital computer communications mechanism
with guaranteed delivery of messages (required by the graphics system) and is
representative of the type of communications mechanism that might ultimately be
involved, AUTODIN-Il. Data transmission Is according to Graphics Protocol, highlighted
briefly in Section 5. Container size, container alignment, and data justification are
negotiated between the Frontend and Backend during the connection sequence, allowing
communico tions/processing optimization.

Selection of the type and location of the display device and the location of the
Backend to be used for a particular session are done at execution time. A particular
application program Is linkedited with the appropriate Application Interface and the
remainder of the Frontend forming a single load module. At runtime, the Frontend starts up
and establishes a socket-to-socket communications channel with an appropriate Backend
on the same or another processor. Separate Bhckends are required for each
host-type/display-device-type supported. 1SI has produced POP-10 TENEX/TOPS-20
Bsackends for the Tektronix 4010, 4012, 4014 series, Tektronix 4027, Hewlett-Packard
2648A, Hewlett-Packard 0872A, Genisco GCT-8000, and Advanced Electronic 512.

As with the Level 1 System, the display device Is connected to the graphics system
by any communications Interface supported by the host operating system. For
TENEXWTOPS-20, this Includes hardwired, ARPANET TIP, or ARPANET socket-to-sooket
connections.

,; \

24 A DISTRIBUTABLE, DISPLAY-DEVICE-INDEPENDENT VECTOR

In April 1980, the Level 2 system was upgraded to support device-independent

graphic files. The file Input and file output functions are contained In the Backend.
Graphic flies store Graphics Protocol,

LEVEL S SYSTEM

The Level 3 system provides a multiple-device-to-multiple-application interactive
graphics environment. It will allow the simultaneous connection of multiple dissimilar
display devices to the same application program as well as concurrent connection of the
same display device to different application programs. It includes all the features
described in the Level 2 Implementation as well as the architectural extensions
described In Section 4. Implementation of a Level 8 system Is being planned for FY81
and beyond.

IMPLEMENTING THE (RAPHICS SYSTEM ON ADDITIONAL PROCESSOR
TYPES

IS1's Level 2 implementation of the graphics system supports a graphics application
environment distributed across two POP-lOs running the TENEX/TOPS-20 operating
systems. Others may produce Level 2 compatible Frontends and/or Backends to run on
different machines. The following provides a guide for such implementations.

Supporting a Frontend or Backend on another type of computer requires that the
Frontend or Backend be rewritten for that processor type. For a Frontend, the Input
specifications are defined by the Graphics Language and the output specifications by
the Graphics Protocol. For a Backend, the input specifications are defined by the
Graphics Protocol, and the output specifications by the order codes for the device type
being supported.

Different Backends might be written for the same processor type to support
processors with substantially different resources (e.g., shipboard processors with limited
storage). For example, one might be written to fully optimize the host processor's
capabilities and another one written to preserve device independence up to the Order
Generator.

A new Frontend is made available to the graphics users by incorporating It In one or
more graphics directories on participating machines, thereby permitting users to link It
with their application program. New Backends are made available by Incorporating
Information about the Backend's location, a generic name by which It can be Invoked
(corresponding to the type of Backend and the processor type on which It runs), and
other appropriate information In the data file that will be accessed by the connection
mechanism. A direct ARPANET socket-to-socket connection is used for communications

between the two components.

OmA~Ffi SYSTEM FOR COMMAND AND CONTROL 25

7. EXAMPLE CONFIGURATIONS AND SCENARIOS

This section provides the reader with examples of the various ways the graphics
system can be configured and with scenarios of use. It begins by describing important
configurations provided for by the graphics system, then provides specific examples of
possible system usage. The section concludes with a short discussion of issues relevant
to runtime selection and placement of a backend and communications optmization. All of
the configurations and scenarios apply to 161's Level 2 or Level 3 implementation and
their use on the ARPANET.

SINGLE DEVICE, SINGLE APPLICATION

Probably the simplest configuration Is that shown in Figure 7.1, a single user
application interacting with a single display device. The user's application program is
linkedited with a Level 2 Frontend. An ARPANET socket connects the Frontend with a
Level 2 Backend. Communication between the Frontend and Backend is by Stream
Graphics Protocol. The Backend is in turn connected to the display device. The display
may be either local to the host or remote, e.g., connected to an ARPANET TIP or another
host. Communications between the Backend and the display Is by the order codes
interpreted by the device. In Figure 7.1, the Frontend and Backend are on different host
processors. Both the Frontend and Backend can reside In the same host processor,
giving rise to Figure 7.2. The selection of the Backend host, as well as the type and
location of the device, Is performed at execution time.

HOST A HOST B DEVICE
(Local or remote)

Figure 7. Frontend and bockend running on different hosts

Figure 7.2 Frontend and bckend running on same host
A

26 A DISTRIBUTABLE, DISPLAY.DEVICE-INDEPENDENT VECTOR

MULTIPLE DEVICES. SINGLE APPLICATION

Figure 7.3 shows a configuration available If a Multiple Display Device Controller is
added to the system. This allows a single application to simultaneously generate output
for and accept input from multiple display devices. An application can display either the
same or different graphics on each of the display devices. Thus, the configuration
allows for multiple people interacting Individually or collectively with the same picture, or
multiple people interacting Individually with Individual pictures. Any combination of
display devices Is allowed, e.g., some could be Tektronix, others Hewlett-Packards. As
with the single-device, single-application configuration, the display devices, their
location, and the location of the respective Backends are determined at execution time.

HOST B

HOST C

HOST A =B

Figure 7.3 Single application with multiple device

SINGLE DEVICE. MULTIPLE APPLICATIONS

F/gwe 7.4 shows a configuration available If a Display Device Multiplexor is added to
the system. This allows a sigle display device to sdmttneouely display graphics from
and supply input to multiple Independent applioatns. The various apploatkmns and their

" i5sa -" " "-.11 II~

gRAPWICS SYSTEM FOR COMMAND AND CONTROL 27

associated Frontends can reside either on the same host as the Backend, or on different
hosts. As with the single-device, single-application configuration, the location of the
display device and the Backend Is determined at execution time.

HOST A

HOST C HOST B

Figure 7.4 Single device with multiple applications

MULTIPLE DEVICES. MULTIPLE APPLICATIONS

The capabilities described In the previous two configurations can be combined to
produce configurations such as Figure 7.5. The figure depicts both applications
generating graphics for one or more devices and devices displaying graphics from one or
more applications.

EXAMPLE SCENARIOS

The above configurations form a family around which a variety of scenarios of usage
can be constructed. The following are three possible scenarios.

Scenaro I

A user In the field has a hand-held graphics teminal. The teminal supports
secure radio communications to a base station that In In turn connected to a
digital communications netwo similar to the ARPANET. The user needs to

28 A DWS'RISUTABLE, DOPLAY-DEVICE-INDEPENDENT VECTOR

Interact with end display the graphical output of a program available on a
computer on the network. The configuration In either Figure 7.1 or 7.2 would
meet the user's display requirements. In this configuration, the Backend to
display device link would be a combination of the communications network and
the radio link.

HOST A

HOST B HOST D

Figure 7.5 Multiple applications and multiple devices

Scenario 2

A user is on board ship. The ship has, in addition to a display device, a small
host processor capable of supporting limited computation. The ship Is
connected to a shore-based digital communications network similar to the
ARPANET via a low-bandwidth ship-to-shore link. The user needs to interact
with and display the graphic output of a program that runs on a computer on
the network, but cannot run the entire application on the local ship-board
processor due to resource constraints. The configuration In Figure 7.1 would
meet both the user's display and the bandwidth requirements. The Seckend
for the display device would run on the ship's local processor, with
Frontend/Backend communication appearing at the ship-to-shore link.

GRAPHICS SYSTEM FOR COMMAND AND CONTROL 29

Scenario 3

Two or more users, each with his own graphic display device, desire to
communicate with each other. The users could be located In the field, on
board ship, and/or in command centers. The communications Include the
exchange of and Interaction with shared graphics information. The
configuration in Figure 7.3 would meet the requirements for the above
scenario as well as others Involving graphic conferencing. As noted In the
description of this configuration, the application can supply an Individual
display with the same Image as displayed on all other displays, or one or more
Individual Images.

Up to this point, the discussion of configurations and scenarios has been limited to
direct communication between one or more applications and one or more display devices.
A second form of communication Is available through the graphic file capability, which
allows a graphic picture to be stored and reincorporated into the same or another
application at some later time. The following Is a scenario Illustrating one use of graphic
files.

Scenario 4

A particular graphics system user is requested to make available to another
user a copy of a particular chart generated by the application program the
first user is running. He does this by making a graphics file of the chart, and
sending It via ordinary file communication means to the second user. The
second user subsequently displays the contents of the file on his display
device, possibly Incorporating It into a more complex display. An example of
this is shown In Figure 7.6.

While the file capability for sending and receiving static pictures can be used
with any of the previously described configurations, its usage takes on new
Interpretation when used with configurations similar to Figure 7.3: The
combination of files and multiple users forms the basis for a graphics-based
briefing system. One or more briefers control the order and presentation of
graphic Information to the other participants. The "briefing slides" are merely
contents of graphic files.

The ability of the graphics system to allow display devices to be located
anywhere Is an important aspect of such a briefing system. It makes possible
a briefing in which neither preparers, presenters, nor participants need be
collocated. They can all be geographically separated, connected only by
suitable communications.

The final scenario addresses the real-time selection and distribution of graphic
pictures. It Is Included to demonstrate both the flexibility of the system and possible
extensions.

so A DITWSUT3LlE, DISPLAY-DEVICI-INDEPUWDENT VIECTOR

C-

0

CLL

LL

<
In

0.

*RAPNCS SYSTEM FOR COMMAND AND CONTROL 31

Scenario

Consider a hierarchically structured organization such as the command
structure within the military. Each level within the hierarchy Is responsible for
receiving Information from Its Immediate subordinates, possibly integrating It
with additional information, and supplying this information to its Immediate
superior. The graphics system, with the addition of the Data Channel Splitter
and Multi-Way Video Switch, can be configured to support this structure. A
typical configuration Is shown In Figure 7.7. In order to simplify the figure,
host computer information has been removed.

As with other configurations, the location of the display device, application,
etc., can vary and Is determined at execution time. At the extreme left, two
or more graphics applications are being run. Their output, In addition to going
to the display device, is simultaneously feeding a Multi-Way Video Switch.
The current video output from each of the applications can be viewed by a
Video Switch operator and selected for forwarding to the next higher level in
the hierarchy, which in the figure Is another Video Switch. The next Switch
receives input from both subordinate Video Switches and local applications,
and In turn forwards a picture to Its superior. This hierarchical structure
continues, with final graphic output appearing on a display at the highest level
within the hierarchy.

Note that the problem is not unlike that found In commercial television
networks. At the lowest level of the hierarchy, camera men supply pictures to
a director, who chooses one and forwards it to the next higher level In the
hierarchy, perhaps a network director. The network director chooses a
picture from remotely and locally generated pictures and forwards one to local
stations. An analogous function Is performed by the local station director.

Ultimately each viewer sitting in front of a television performs the same type
of function, selecting from the stations In his community or locally generated
pictures (e.g., a good book).

32 A DISTRIBUTABLE, DISPLAY-OEVICE-INDEPENDENT VECTOR

*0

..., c

*

' U,

U

I S

eoo'
T

doN

GRAPHICS SYSTEM FOR COMMAND AND CONTROL 88

& CONCLUSION

The graphics system architecture described In this document has been designed to
meet the display requirements for vector graphics command and control applications. Its
three outstanding attributes are:

1. It is device-independent. Graphics application programs can be written
without regard to the particular display device on which the output will
ultimately be displayed.

2. It is distributable. The graphics system can be distributed across multiplehost computers connected by a communications network.

3. It Is extensible. The architecture allows new functions to be easily added
to the basic system by extending its capabilities.

The system will satisfy command and control graphics requirements through 1981. Its
extensibility will allow It to grow to meet future requirements beyond 1981.

I,

34

REFERENCES

1. Blsbey, Richard, II, and Dennis Hollingworth, Graphics Protocol (forthcoming).

2. Bisbey, Richard, II. Dennis Hollingworth, and Benjamin Britt, Graphics Languag,
USC/lnformation Sciences Institute, TM-80-18, 1980.

3. Newman, W. M., and R. F. Sproull, Principles of Interactive Computer Graphics,
McGraw-Hill, New York, 1979, second edition.

4. Sprouli. R., "Network Graphics Isn't Networking," In Proceedings of the Betkele,
Workshop on Distributed Data Management and Computer Networks, pp. 38-40,
University of California, Lawrence Berkeley Laboratory, May 1976.

