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ABSTRACT - -...

A class of models for target patterns (concentric circular waves

emanating from a point called the leading center) is constructed in the

context of singularly perturbed reaction-diffusion systems of partial

differential equations. First, the theory of wave fronts is detailed for

scalar equations and systems of equations. A scaling method reduces complex

waves to the consideration of a group of simple wave phenomena. It is shown

that expanding wave fronts can be generated spontaneously at a point. This

process, together with the laws of their subsequent motion, reduces the

problem to an ordinary differential initial value problem, whose solution is

required to have certain properties. A discussion is given of the connection

between these results and experimental observations.

A

AMS(MOS) Subject Classification: 35K55, 80A20, 35B25

Key words: Reaction, Diffusion, Chemical waves, Wave front,
Pattern formation, Sinqular perturbations

Work Unit No. 2 - Physical Mathematics

*This is a revised and expanded version of a paper presented by Fife at a
conference with proceedinqs published as Dynamics of Synergetic Systems, 11.
Haken, ed, Springer-Verl (1980).

Sponsored by.the United States Army under Contract Nos. DAAG29-75-C-0024 and
DAAG2q-8fl-C-004l'and National Science Foundation Grant No. MCs79-04443.

TOO-~



SIGMIFICANCIF AND EXPLANATIO'

Propaqatina chemical waves, particularly those emanating from a "leadina

center" or those forming a spiral, may be seen in laboratory reagents

involvina the Pelousov-7habotinskii reaction. rhemical and phvsico-chemical

w.,aves also occur in biolocical media. Typically, these phenomena exhibit

multiple natural time and space scales. The mathematical treatment of tbesp

waves consists in setting up an appropriate model for them, and then analyzino

it. A natural type of model in the present situation involves a system of

partial differential eauations of reaction-diffusion type; small parameters

may be put into the system to effectuate the multiple scales. This paper

explains the basic steps in modeling chemical waves this way, and applies them

to the case of taraet patterns (concentric circular waves emanatin from a

point). The models constructed here reflect the known cualitative kinetics of

the R7 reaction. The technicues are expected to be of value in reaction-

diffusion-convection problems as well.
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PROPAGATING WAVES AND TARGET PATTERNS IN CHEMICAL SYSTEMS

Paul C. Fife and John Tyson

1. Introduction.

The discovery of propagatinq waves of various types in chemical reagents has orovon'e1

a great deal of research, during the last ten years, into the phenomenology and the

underlying mechanisms for such wavelike activity. The research has been performed by

natural scientists and mathematicians alike. Most of it has been experimental, but much

computer simulation and mathematical analysis has also been done. Chemical wave activity

is believed to be prevalent in biological organisms, but the most readily accessible

reaqgnt for laboratory study is that discovered by Belousov and Zabotinskii (the Z-

reagent). This mixture has oscillatory or excitable kinetics, depending on the

concentrations of the various chemicals in the solution. Poth of these regimes have at

least two natural time scales: During one period of an oscillation or during one excitei

"excursion", most of the variation in the Concentration of the reactants occurs within a

brief interval of time. The time scale asSociated with this brief spurt of activity iq

much shorter than that associated with the slow variation which occurs before and after.

This is well known from experiment and computation, and is evident from scaling analyses

model kinetic equations performed in (1] and elsewhere. Spatial structures are alsc

prevalent in unstirred layers of this reagent ((231; [2], (221, (241, and references

therein). Target natterns (exnaneinq concentric circular waves) are among th -

prevalent of these structures. Here again, disparate space and ti-e scale!s ,r, 'i,.-

from computer simulation of pronagatinq waves f3!.

*This is a revised and epanded version of a narpr 1re -te j. itf I
conference with proceedings pnhlished as Dynamics of rynpernatic Qv-tps, .

Haken, ed, strinqer-Verlag (Iqpn).
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Although patterns in the 7-reagent are the motivation for this work, specifics of the

7-roaqent chemistry are not touched upon here. We have made a detailed study in (27] of

the patterned solutions of a system of equations which realistically models the chemistry

of that reagent.

Other writers ([12,131, and especially Kopell and Howard [14]) have studied target

patterns within the context of X-w systems. An approach via Pade approximants is in

[25]. These apnroaches are entirely different from that discussed here. The reader

interested in the Z-reagent can profit from the books by Zahotinskii [151 and by Tyson

(16]. Some of the material in this paper was presented from a different point of view, and

in more mathematical detail, in [17]. Some of the results announced here represent joint

work with R. Smock. We wish to thank M. Marek for bringing to our attention papers [41 and

[7].
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2 Scalar fronts.

Here we review some hai facts ,ihOlft 'wa;ve- front Solution, I(-n-

* nonlinear diffusion equations

o = u + F(U) I

wbere f has two zeros: f (11 1 f(r 2) 0. Tinder fairly qjen-ral circioestancp!7, ther,

exist fronts satisfyinn

-ll U(. 1' jW

Iwo imprortant cases arise in applications:

(a) fE(U 1 ( 0, f'(U 2 < n,, and f has only one interneliate zero between

:jl and :3.;

(b) f(u) 0 for u in the interval between 77 and U
12*

In case (a), there exists a unique velocity c and a profile Ol(z), uniaue oin tn

shifts in z , satisfyina (2), such that UT(x-ct) satisfies (H) [181. This front is %orv

tal;if it is pertuirbed by any hounded function whose bound dones not surpass a cTertain

'rnown ronstant, then thie resultincy solution of ( 1) evolves;, ac; t - ',bacl toI t1' a

front (ponsibly shifted bNy a certain amount) [19].

Tn caise (b), on the other ',and, there exists A whole ranoc of poss3ible front

volocities [20] . For example, suppose f > 0 and 71 1 * ' Then there is a nosit:.'

miinimal speed c* such that for any value c, c*~ c < ',there exists a unimice

for shifts) wave front solution 1)(z), satisfyinol (2). These fronts are s3t,31]e tto

perttirbationn whiich are zero except in a finite interval, hut t'e\' =Ire nettl

t" tho same extent as thlose of typeF (a.

in rinx. Case, tl~o front T'neo in such i direction tvot- - r oar' Nz

11",) '(x--tl anrrrche tho l'i-c '" o . -~~

~ei,: to fie the constant K ',:s{ *, an-' I' til 1 1 :1 - -

i::''iral 'sual. ~ "Ou , - v' th'fror- ','t .:n



3. Decoupling and free boundary problems.

In typical singular perturbation problems, a complex system may be reduced to several

simpler ones by rescaling and exploiting the smallness of some parameter. The simpler

problems may ?overn the solution in different parts of its domain of definition; thus there

may be boundary layers versus regions of relatively slow variation.

Analoqous situations arise in reaction-diffusion problems [9,10]. To illustrate this,

we consider a system of n = nI + n2  reacting and diffusing components, n I of them

"fast" and the others not fast. Let u - (u1 ,...,un ) be the vector of fast components,

and v the others. The system of RD equations in one space variable is of the form

ut = OD1Uxx + kf(u,v), (3a)

= D2vxx + g(u,v). (3b)

Here D. are (diffusion) matrices; k >> 1 is a parameter expressing the fact that1

reactions affecting the concentration u are fast; and the parameter a << k is inserted

to account for the possibility that the diffusion rate of u may be small or large

(D. = 0(1)) . The lowest order approximation, in regions where ut  and uUxx are not

large, is obtained by setting the coefficient of k equal to zero:

f(u,v) = 0. (4)

We assume that this equation can be solved for u in a nonuniaue manner: there are at

n2  n1
least two functions h+ ,h_ R + R , such that (4) holds when

u = h (v). (5)

In other words, f(h (v),v) f(h_(v),v) = 0.

ue imaoin that the x-t plane is partitioned into two parts Q, in which (5) holls

(approximately) with the corresponding sign. Under certain circumstances, such a

partitionino is possible, with sharp wave fronts forminq the boundaries between the two

domains.

To investigate this further, we scale x an-1 t Aiferentlv in the lavr "et.wcnn

. and '- • The scaling will be chosen so as to eliminate the parameters in '3-).

-s -



T" + f(~l (0)

a. S 1~s'r-e tIt x:< -i *'ri sroot I y' a c ros I-qthe t, .r ir ijn monr hp w^ r

+a -' -hen ;itlin thL-s n1arrow zone, , -av" he, troated as r-onst int Tr thiq a.

it is rpasoa ,Ip to -ir-nse pa (r)), like? (1), has a travelino front solution Connectinu'

the two 'known zeroq of f , namely 1 ( v) a nd !) ( v) (t i n 1, theP tln-eory is anvern-1~

hy the considlerations in Section 2). Le-t us asme thin is true,, and that thiis front is a

hicrher-d imtensional analoque of the sc-alar front of typo. (a) in Section 2. That is, we

assume the velocity c and Profiles are uniouely detprmi ned from the pararretur Vil

(0. hus U 7 (-C (V) T ;,) . This type of reasonino was nsed in '41, ,a'at,-r

papers.

In the original variables, U =u(V (x x 'k ct), revealina thz't tie actuial

velocity is of the order Vrxk , and tle width of the% front is 0.' the, or-mr v' L < 1.

Now let x =y(t) denote the position of one tsucb front. Ynow-ino il-s volorrity, .7e mav.

write

-'xk c( ('yt)) (7)

v-oppose tl'ere is nly one such fro-n*, and ~. lies to the 1- 'r it, withI -+ to

its rioht. Thien o lowest ordor, we hay.' found t-hat wh en v is known, ai o (t e rani

by() in an fhn r
1

-~ !oundiary bePtween - And jo"'rleri j to (7

i'- trre ir -- ' -. '-ro?.- r-?irs tn -o~ ,r v :i-no; .'"' 'r

- -- '. , .--. . . . . . ,*'' n-



In more general situations, the boundary between S4 and 2- could consist of

several wave fronts. And, of course, the extension of this reasoning to higher space

dimensions is clear.
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4 Phase and trigger fronts.

We refer to the setting in Section 3 with n, n 2= 1; corresponding nhenos'-'a

higher dimensions remain to he explored. So now u and v are scalar functions. 'PP!

additional complication we impose is that h tare not defined for all values of v

rather their graphs lie on a nulicline of f as shown:

V
q (

Figure 1

For values of v in the interval v < v < vf(u,v) has the featuires of the function i-

(1) in case (a), provided f u(1h (v)v) *0.

::!e assume~, mainly for simplicity, that D 2 = 0 in (3b), and that

nP' (v) v) - (7(v) < 0, g~b (v),v) IG,(v) > 0. If there is. a sincle front Witi-

trajectory y(t! and v varying continuously across It, then

3v G (v) < fl x < V(t)

at x 5v > ~,x v(t)

if. < ". V , y ( t) is aov-rned 1,N (7), hec.oni t'-e- -iotir,', '",T

,vl r- " coniieoration of the hiqti-hle (-'1P ((a), Fr-tion 7). r!ut!1h.-r'-r,

- ~ -t n'~t' it t ho front ( owe i' mus3t r.'majn !-. .,r



front passes a fixed value of x , v would change discontinuously in time, meaning that

vt would have a 6- function behavior. This is contradicted by (8): the right side,

though discontinuous, is bounded.

Now suppose that c = y' > 0: the front is advancing into the region where

u - h +(v). This will be the case when v is near v, for then h+ is the dominant state,

according to the definition in Section 2. Then the values of v(x,t) ahead of the front

(x > y) determine the motion of the front: y' = c(v(y,t)).

It may happen, however, that v(y(t)t) attains the minimal value v at some time

t 0 . At that point, v is prohibited from any further decrease: there can exist no front

with v < v. We must therefore have, at t = to

d + +
0 = v(y(t),t) = v (y(t) + 0,t)y'(t) + vt = vxY' + G+(v) , where v is the x-

derivative of v at the front evaluated from the right. Hence

ay -G (v)/v " (9)
dt +- x

This relation replaces (7) when v attains the value v, in fact continues to hold as lona

as v(y,t) = v

We may inquire whether a front can exist when v = v , for at this value of v , we

are not in the bistable case (a). However, we are in case (b), as f(u,v) is of one sign

for h_(v) < u < h +(v), and fronts exist in this case as well. In fact, as we have seen,

their velocity is arbitrary, subject only to a minimal value c*. This means that one with

velocity given by (9) is indeed possible.

We therefore have two types of propagation laws for fronts: (7) and (9). These types

correspond to "trigger" and "phase" waves, in the terminology of Winfree [11
1
. To

summarize, trigger fronts occur when v < v < v ; their sneed is determined by (7), w -r,

the function c comes from a law for scalar fronts, and is produced by the com~inati,n

diffusion and reaction. Phase fronts, on the other hand, occur when v = v or v

speeds are totally unaffected by either diffusion or the reaction term f . att'r

(9)) they depend on the distribution of values of v aheal of the front (ee'

+
on v ). In this sense, the motion of phase frontq is htermined by the initi . '

x

of v

&
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branches, say h_. After this happens, a slower process takes place, in which v evolves

accordina to (3b) with u replaced by h_(v). Again for simplicity, assume

S2 = 0, so vt = G_(v) < 0. Eventually, for some x = x0 , v will attain a minimal

value of v . Further decrease of v causes the image to leave the branch u = h_(v)

for x in a neighborhood of x0 . Then by the process described in (i) above, that part

of the imaqe curve is rapidly attracted to the other stable branch u = h (v). This

localized attraction to h+ causes a pair of fronts, facing oppositely, to be formed near

x = x0  For each such front, h+ will be the dominant state, so the fronts will move

apart, increasing the interval on which u h +(v).

-11-



6. Target patterns.

These are a series of concentric circular chemical waves, expanding outward, new ones

regularly being generated at the center (usually called a "leading center" [211). Such

patterns have been observed in various forms of the Z-reagent ([23]; [2], (22], and

references therein). Some of the patterns observed are associated with externally imponseA

heterogeneities at the center. We shall indicate in (i) below how such targets may be

modelled. Self-sustaining target patterns, not dependent upon external stimuli, may also

be modelled by the techniques discussed above; see (ii) below.

All of the models we describe involve the same two basic phenomena: (a) spontaneous

generation of wave fronts at the leading centers as described in Section 5 (ii), and (b)

their subsequent motion, according to the rules brought out in Section 4. The generation

process in 5 (ii) was for pairs of diverging fronts moving in one space dimension; its two-

dimensional analog is the spontaneous appearance of a small circular front which spreals

outward. Since the fronts are very narrow in our analysis, they appear locally as plane

waves. Therefore it suffices to treat the problem in a one-dimensional framework, which w',

shall do. Alternatively, the variable x could be interpreted as distance to the oricin

in a configuration with radial symmetry.

(i) Imposed heterogeneities. We suppose that near the origin there is a substance

with prescribed density distribution w(x); alternately, w could represent an imposel

temperature distribution. lie also suppose that w influences the reaction process, so

that F and y in (3) are functions of u,v, and w. For each value of w , the

nullcurves f = 0 and g 0 have the shape shown in Figure 1 ; but their relativ

positions may vary with w . In particular, h+, v , and v may depend on w

At x = 0, fronts involving an abrupt increase in u (upjump fronts) form, A--" c r

to the description in Section 5, when v has a local minimum at the origin w'i:"

to v . Similarly, downjump fronts form when u = h+(v) and v has .i .nimur, 41,1,-

in.roases to v • The re'uilt is that when x is fixpi at 0 , the trajectorv

(u(n,*),v(n,t)) is that of a relaxation oscillator with tle kinetics o' "iour..

nul lourve q r mst he placed as shown, to onsure th t thie <jtn ic; ir,, ,om,;,1 r 1i .

-12-



The pattern must be periodic in time. The period T is set by the period of the

relaxation oscillatory motion followed by the solution at x = 0, w = w(0). This is

presumed known.

The mathematical analysis of the above conceptual model consists in determining the

trajectories of the expanding fronts, and the function v(x,t), so that all the above

evolutionary laws and constraints are fulfilled. It is convenient to express the fronts'
± +

motion by the functions T (x). Here T (x) is the time at which some specific upjump

front reaches position x, and T-(x)+ is the time for the next succeeding downjump. The

next upjump is then at time T + T . The equations to be satisfied are:

td x) T c C-1 v(x,T (x)),w(x)), (for trigger fronts),
dx

dx T (x) given by (9) (for phase fronts),

+

av = G+(v,w(x)),T (x) < t < T(X)

at G (v,w(x)), t (x) < t < T (x) + T

+ +
(it suffices to determine v in the interval T < t < T + T ). The periodicity

+ +
constraint on v is that V(X,T (v)) = V(X,T (x) + T). In addition, we must require

that v(0,t) be the values of v corresponding to the relaxation oscillator at the

center, and that as x + w , the T (x) approach linear functions (corresponding to a

plane wave train).

If ae insist that all the fronts be trigger, then the ineouality

v(w(x)) < v < v(w(x))

is an additional constraint, and it is a nontrivial matter to determine whether there <:=

functions v , satisfying all the above. However, the prnbiom hecomes somewhit oasl..'-

one allnws every other front (say, all the down jump fronts) t- h- , f 'Iaqn tvre, '

remaininq triqqer. This appears to be the sitliation Iomr.n, erv i in "' ", :'

ta rqets.

1-13-



"3 n '1 1- hi- ile] ve sn ii -- t of naetio-'faisi nn emiations (the
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condlitions. 'This tx'e of no .1 is explored! in so-me detail in [17
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, assumrina all fronts ar-

tannuer * Anain, tIdvna!-irs -i the wave. front and the funct ions vj a nd w i nvolIve

-oi ,i ca t a th1,e r7 It itr5-, IIt s-! reasonable smi ificat ions aro possible.

A c,-rnceptaallv ;imilar niodel for self-astaininq patterns- involving three reactinqi

corponenits had pre,,viously beer: propose I by Z!aikin an-I lawczvnski [28); but its analvsis

was left incomplete anI -.- ,vas~ioni of paeandi tricuaer fronts was not addIressed.



7. Targets in exciable media.

With nullcurves as lepicted in Figure 1, the kinetic eauations

ut = kf(u,v), vt = g(u,v)

have stable relaxation oscillatory solutions. When the q nullcurve is shifted to one of

the positions in Figures 3 and 4, however, the kinetics become excitable or bistable.

Vi V

qi 
0

U

Figure 3 Figure 4

For example in Figure 3, there is one stable rest state (the unioue intersection point);

but when this state is perturbed downward a small amount, the solution makes a laroe

excursion (dotted line) before returning to the rest state.

In modeling target patterns in Section 6, we needed the kinetics to be oscillatorv at

the oriqin; hut away from the origin, the configurations in Fiqures 3 and 4 are not.

excluded. As x . . the target develops into a reoular wave train, so (of courso, the

kinetics must support such a train there. Excitable and bistablP (as well as oscillatory)

kinetics sin support wave trains. For example, the phase plane ima(ie (orbit) -*f a train at

a fixed vali of x is sh,)wn by the dotted loon in Figure 4. Therefore tber in no

contradicti)n involved in ha-,inq a periodic target pattern emerqg in an .. citihh, m',iium.

-1 S-



This is apparently what often happens with the Z-reagent, which can exist in an

excitable, as well aa oscil.latory, regime. The initial formation of a target pattern in

such a medium involves a wave train entering a quiescent region at a stable rest state. it

may be difficult to visualize this process of excitation into a periodic state, but several

mechanisms are available for accomplishing it (24; R. Smock, in preparation).
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