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A class of models for target patterns (concentric circular waves
emanating from a point called the leading center) is constructed in the
context of singularly perturbed reaction~diffusion systems of partial
differential equations. First, the theory of wave fronts is detailed for
scalar equations and systems of equations. A scaling method reduces complex
waves to the consideration of a grouprof simple wave phenomena. It is shown
that expanding wave fronts can be generated spontaneously at a point. This
process, together with the laws of their subsequent motion, reduces the

problem to an ordinary differential initial value problem, whose solution is

required to have certain properties. A discussion is given of the connection

between these results and experimental observations.
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SIGMIFICANCE AND E¥PLANATION

Propagatina chemical waves, particularly those emanating from a "leadina
center” or those forming a spiral, may he seen in laboratory reagents
involvina the Relousov-7habotinskil reaction. Chemical and physico=-chemical
waves also occur in biological media. Typically, these phenomena exhibit

multiple natural time and space scales. The mathematical treatment of these

waves consists in setting up an appropriate model for them, aﬁd then analyzinco
its A natural tyre of model in the present situation involves a system of
partial Aifferential ecguations of reaction-diffusion type; small parameters
mav bhe nput into the system to effectuate the multiple scales. This paper
explains the bhasic steps in modelinag chemical waves this way, and applies them
to the case of taraet patterns (concentric circular waves emanating from a

i point). The models constructed here reflect the known qualitative kinetics of
the R” reaction. The technicques are expected to be of value in reaction-

diffusion~convectinn problems as well.
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PROPAGATING WAVES AND TARGET PATTERNS IN CHEMICAL SYSTEMS
Paul C. Fife and John Tyson

1. Introduction.

The discovery of propagating waves of various types in chemical reagents has nrovoke?!
a qreat deal of research, during the last ten years, into the phenomenology and the
underlying mechanisms for such wavelike activity. The research has been performed by
natural scientists and mathematicians alike. Most of it has been experimental, but much
computer simulation and mathematical analysis has also been done. Chemical wave activitv
is helieved to be prevalent in biological organisms, but the most readily accessible
reaa«nt for laboratory study is that discovered by Belousov and Zabotingkii (the 2z~
reaqent). This mixture has oscillatory or excitable kinetics, depending on the
concentrations of the various chemicals in the solution. Poth of these regimes have at
least two natural time scales: During one period of an oscillation or during one excited
"excursion”, most of the variation in the concentration of the reactants occurs within a
hrief interval of time. The time scale associated with this brief gpurt of activitv is
much shorter than that associated with the slow variation which occurs before and after.
This is well known from experiment and computation, and is evident from scaling analvses »*
model kinetic equations performed in {1] and elsewhere. Spatial structures are alan
prevalent in unstirred layers of this reagent ((231;[2), [221, (24}, arnd references
therein). Tarnet patterns (expanding concentric circular waves) are amona the mnes
prevalent of these structures. Here again, disparate space and time scales are avident

from computer simulation of pronagatina waves (3!,

*This is a revised and evpanded versinn of a paner nreasnted hv Tjifa At 3
conference with proceedings pnhlished as Dvnamics of Synergetic Svatema,
Haken, ed, Swrinqger-Verlaa (19R0},

i3}
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although patterns in the Z-reagent are the motivation for this work, specifics of the
7-reaqent chemistry are not touched upon here. We have made a detailed study in [27] of
the patterned solutions of a system of equations which realistically models the chemistry

of that reagent.

Other writers ([12,13), and especially Kopell and Howard [14]) have studied tarqget

patterns within the context of \-w systems. An approach via Pade approximants is in

[25]. These approaches are entirely different from that discussed here. The reader
interested in the Z-reagent can profit from the books by Zabotinskii [15) and by Tyson
{16]1. Some of the material in this paper was presented from a different point of view, and
in more mathematical detail, in [17]. Some of the results announced here represent jnint

work with R. Smock. We wish to thank M. Marek for bringing to our attention papers [4] and

[73.
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} 2 Secalar fronts.

Here we review some basic facts ahont wave front solutions 1 = "(x=ue)  oF gralary

nonlinear diffusion equations

u =y + flu) (1)
t XX

where f has two zeros: F(U]) = f(Uz) = 0. 'Inder fairly qgeneral circumstances, threr-

exist fronts satisfying

3 U(=) = U1, ul=) =7, (el
3
u T™wn important cases arise in applications:
i (a) f'(U1) <0, f'(Uz) < 0, , and f has only one intermediate zero hetween
-
r . d .y
]1 ar \)2, E:
3z {b} f(u) # 0 for u in the interval hetween ”1 and U2.
|
2 In case (a), there exists a unique velocity ¢ and a profile U(z), uniaue un tn k
\
shifts in =z , satisfyinag (2), such that U(x~-ct) satisfies (1) [18]. This front is verwv
: stable; if it is perturhed by any hounded function whose bound does not surpass a certain .
Ynown constant, then the resultina solution of (1) evolves, as t +» © , bhack to the sare 4
front (pnssibly shifted bv a certain amount) [19]. .
In case (b}, on the other hand, there exists a whole ranae nf possible €ront
velocities {20]. For example, suppose f >0 and U1 > " . Then there is a positive
b minimal speed c* such that for any value ¢, ¢* < c < =, there exists a unigue !(oxcoo* ’
) for shifts) wave front solution U(z), satisfying (2). These fronts are stable to <3l
§ nert:irbations which are zero except in a finite interval, bur thev are certainls nmos et 3t e K
to the same extent as those of type (al.,
In anv case, the front moves in such A directionn that €or eact X,
!
% ufv,t) = "Tx~ed annroachas the “dominant ~baea qe o+ s 0 Thye domieges e
N H‘
f definen to he the constant . 1 f J,tie)de <, and T 4T tias qatea oy T 0o b
i 1
i 1nrearal eaquals 2ero, then o = 0 and the frort 1o cravinnays,
4
§
J 3
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g
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3, Decoupling and free boundary problems.

In typical singular perturbation problems, a complex system may be reduced to several
simpler ones by rescaling and exploiting the smallness of some parameter. The simpler
problems mav qovern the solution in different parts of its domain of definition; thus there
may be boundary layers versus regions of relatively slow variation.

Analogous situations arise in reaction-diffusion problems [9,10]. To illustrate this,

we consider a system of n = n1 + n2 reacting and diffusing components, n1 of them

"fast” and the others not fast. Let u = (u1,...,un ) be the vector of fast components,
1
and v the others. The system of RD equations in one space variable is of the form

u, = olD1uxx + kf(u,v), (3a)

v + g(u,v). (3b)

= D, v
t 2 xx
Here Di are (diffusion) matrices; k >»> 1 is a parameter expressing the fact that
reactions affecting the concentration u are fast; and the parameter «a << X 1is inserted

to account for the possibility that the diffusion rate of u may be small or large

(Di = 0(1l)) . The lowest order approximation, in regions where u, and au are not

large, is obtained by setting the coefficient of k equal to zero:
f(u,v) = 0. (4)

We assume that this equation can be solved for u in a nonunicue manner: there are at
n n

least two functions h+,h : R 2 + R 1, such that (4) holds when

u = ht(V)' (5)

0.

In other words, f(h+(v),v) 2 £f(h_(v),v)

e imaains that the x-t plane is partitioned into two parts £ in which (%) holds

"
(approximately) with the corresponding sign. Under certain circumstances, such a
partitionina is possible, with sharp wave fronts forming the houndaries bhetween the two
domains.

To investigate this further, we scale x anil t differentlv in the laver “etwecon

R and i, The scaling will be chosen so as to eliminate the parameters in {3a).
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we reduca [3a) te
v = n1"CC + flu,v). (R)
I e assure that vix,*)  varisg sroothly across the transition zonn hestween
L+ an? L, “+ren within this narrow zone, v mav he treated as constant. Tn this case

it is reasonable to supmase that (A), like (1), has a travelina front solution connectina

the two kxnown zeros of f , namely b (v) and h+!v) (it ny o= 1, the theory is anverned

bv the considerations in Section 2). Let us assuame this is true, and that this front is a
higher~dimensional analogue of the scalar front of type (a) in Section 2, That is, we
assume the velocity « and profile are unicuely Aetermined from the parametor vooin

(5). Thus u = U(r=-c(v)T;v). This tvpe of reasonina was used in (4], [?7, and later

papers.

In the original variables, u = U(Y (x - vak ct)), revealino thet the actnal

;Irl

velocity is of the order Yak , and the width of the front is of the order % << 1,

Now let x = y(t) denote the pnsition nf one such front, ¥nowina its velocity, we mav

write
Sy e
ﬁ = Jak c(vly.t)]). (7)

Supnnge there is onlv nne such froar+, and lies to the 1efe AFf jt, with -, to

its riaht, Then *+n lnowest order, we have found that when v is known,

1 i3 determined

ke (5) in S and *har the bounidary hetween l* AnAd - roves aeenrling to (7).
Thag, it oarpeares thac owe have ancounle ! a froe v o,
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In more general situations, the boundary between ﬂ+ and 9_ could consist of
several wave fronts. And, of course, the extension of this reasoning to higher space J

dimensions is clear.
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4 Phase and trigger fronts.

1

We refer to the setting in Section 3 with n, o= n,= 1; corresponding phenomena
higher dimensions remain to be explored. So now u and v are scalar functions. The
additional complication we impose is that ht are not defined for all values nof v ;

rather their graphs lie on a nullcline of f as shown:

v
v
v
Figure 1
k. For values of v in the interval v < v < v . f(u,v) has the features of the function i~

(1) in case (a), provided fu(ht(V)’V) # 0.

e assume, mainly for simplicity, that 02 =0 in (3b), and that

n(h_(v\,v) B G_(v) <0, g(h*(v),v) = G,(v) > 0. If there is a sinale front with

trajectory y(t} and v varying continuously across it, then

G_(v) <0, x< y(t),

Jt G+(v) >0, x> vit) .

17 v < v <v, vit) is coverned hy (7)), hecanse the Sanctinn  ~lod 4q rhqe oo

camos fram consideration of the histahle ease ((3), Tection 2). Parther-ore, € - .

irit il ly continuous at the front (a5 we assame), it mist recain <o, Foar orhorwise,
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front passes a fixed value of x , Vv would change discontinuously in time, meaning that

v would have a - function behavior. This is contradicted by (8): the right side,

t

though discontinuous, is bounded.

Now suppose that ¢ = y' > 0: the front is advancing into the region where

u ~ h+(v). This will be the case when v is near v, for then h+ is the dominant state,

according to the definition in Section 2. Then the values of v(x,t) ahead of the front
(x > y) determine the motion of the front: y' = c{vly,t)).
It may happen, however, that v(y(t)t) attains the minimal value v at some time
to. At that point, v is prohibited from any further decrease: there can exist no front
with v < v We must therefore have, at t = t0 R
0= a (y(t),t) = (y(t) + 0,8)y'(t) + v_ = v+ '+ G, (v) h g th
at VY ‘ = Vx b4 A4 e T VY () s where v is e x
derivative of v at the front evaluated from the right. Hence
gy _ + 9
ar G+(z)/vx . (9)

This relation replaces (7) when v attains the value Vv, in fact continues to hold as lona

as viy,t) = v.
We may inquire whether a front can exist when v = v , for at this value of v , we
are not in the bistable case (a). However, we are in case (b), as f(u,v) is of one sign

for h_(g) <u < h+(g), and fronts exist in this case as well. 1In fact, as we have seen,

their velocity is arbitrary, subject only to a minimal value c¢*. This means that one with

velocity given by (9) is indeed possible.

We therefore have two types of propagation laws for fronts: (7) and (2). These tvres

correspond to "trigger" and “phase" waves, in the terminology of Winfree [11!. To

summarize, trigger fronts occur when v ¢ v <V ; their sveed is Adetermined hv (7Y, w-

the function ¢ comes from a law for scalar fronts, and is produced by the comtinatin~n

diffusion and reaction. Phase fronts, on the other hand, occur when v = v or v
speeds are totally unaffected by either Aiffusion or the reaction term ¢ ., Ratbver

(9)) they depend on the distribution of values of v aheadl of the front (ere~ifi~

on vx )+ In this sense, the motion of phase fronts is .dcetermined by the initial

of v .
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branches, say h_. After this happens, a slower process takes place, in which v evolves
accordina to (3b) with u replaced by h_(v). Again for simplicity, assume
D, =0, so N = G_(v) < 0. Eventually, for some x = xol v will attain a minimal

value of v . Further decrease of v causes the image to leave the branch u = h_{(v)

for x in a neighborhood of Xge Then by the process described in (i) above, that part

of the image curve is rapidly attracted to the other stable branch u = h+(v). This
localized attraction to h+ causes a pair of fronts, facing oppositely, to be formed near
X = %y . For each such front, h+ will bhe the dominant state, so the fronts will move

apart, increasing the interval on which u ~ h+(v).
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6., Target patterns.

These are a series of concentric circular chemical waves, expanding outward, new ones
regularly being generated at the center (usually called a "leading center" ([21])}. Suck
patterns have been observed in various forms of the Z-reagent ([(23]): (2], (22}, and
references therein). Some of the patterns observed are associated with externally imposed
heterogeneities at the center. We shall indicate in (i) below how such targets may be
modelled. Self-sustaining target patterns, not dependent upon external stimuli, may also
be modelled by the techniques discussed above; see (ii) below.

All of the models we describe involve the same two basic phenomena: (a) spontaneous
generation of wave fronts at the leading centers as described in Section 5 (ii), and (b)
their subsequent motion, according to the rules brought out in Section 4. The generation
process in 5 (ii) was for pairs of diverging fronts moving in one space dimension; its two-

dimensional analog is the spontaneous appearance of a small circular front which spreads

nutward. Since the fronts are very narrow in our analysis, they appear locally as plane .

waves. Therefore it suffices to treat the problem in a one-dimensicnal framework, which we
shall do. Alternatively, the variable x could be interpreted as distance to the oricin
in a configuration with radial symmetry.

(i) Imposed heterogeneities. We suppose that near the origin there is a substance
with prescribed density distribution w(x); alternately, w could represent an imposed
temperature distribution. We also suppose that w influences the reaction process, so
that f and y in (3) are functions of u,v, and w. For each value of w , the
nullecurves f = 0 and g = 0 have the shape shown in Figure 1 ; but their relative

positions may vary with w . 1In particular, h ; , and v may depend on w .

4!
At x = 0, fronts involving an abrupt increase in u (upjump fronts) form, =~ ri.r-
to the description in Section 5, when v has a local minimum at the origin which decraass

to v . Similarly, downjump fronts form whem wu = h+(v) and v has a maximue wiaoh

increases to v . The result is that when x is fixed at 0 , the trajectore
(a(n,+),v(nN,x)) is that nf a relaxation oscillator with the kinetics o Tiaur. i, T~ s
nillearve g = N mist be placed as shown, to ensure that the Kinatics are ogejllar vy

-1 -




The pattern must be periodic in time. The period T is set by the period of the
relaxation oscillatory motion followed by the solution at x = 0, w = w(0). This is
presumed known.

The mathematical analysis of the above conceptual model consists in determining the
trajectories of the expanding fronts, and the function v(x,t), so that all the above
evolutionary laws and constraints are fulfilled. It is convenient to express the fronts'
motion by the functions rt(x). Here T+(x) is the time at which some specific upjump
front reaches position x, and T-(x)+ is the time for the next succeeding downjump. The
next upjump is then at time T + T . The eguations to be satisfied are:

4 rt(x) =t c-l(v(x,Tt(x)),w(x)), (for trigger fronts),

dx

4 Tt(x) given by (9) (for phase fronts),

dx
+ -
av _ (’G+(v,w(x)).r-(x) <t < 1+(x) '
3t Y G (v,w(x)), T (X)) <t <T(x)+ T
2 G_

(it suffices to determine v in the interval T+ <t < T+ + T ). The periodicity
constraint on v is that v(x,r+(v)) = v(x,1+(x) + T). In addition, we must require
that v{(0,t) be the values of v corresponding to the relaxation oscillator at the
center, and that as x +© , the rt(x) approach linear functions (corresponding to a
plane wave train).

If we insist that all the fronts be trigger, then the ineauality

viw{x)) < v ¢ Ww(x))

is an additional congtraint, and it is a nontrivial matter to determine whether there oxist
functions v , satisfying all the above. However, the prohlem becomes somewhat easi-> s
ane allows every other front (say, all the down jump fronts) to he of nhase tvne, *he
remaining trigger. This appears to he the situation commonle ebaarvel in *ho Tereiaen

tarqets.
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Tegan 1 baw v adneed 3 oacaled version of 3 30t of reaction=di “fusion enquations

. » - . : 'y
"Oregonater”t realistically modeling the Belousov=-tabotinskil reactinn. We [27] have
1nvest {tated taraers with alseraatinag phase and triager fronts usina this system,

The third concentaal possaibility is when all fronts are of phase type. Then tha

exist, would therafore ast aceount far the ohserved circular fronts.

fii) Felf-sustainina taraer patterns may be modelled by retainina the function

but supposinz i+ to ohev a thiri reaction-diffusion egnation coupled to the first two.

Thus the distribution »f w 1% obtained as part of the model, nnt imposed by external

{the

configqurition of fie froants, ac they develnp in the reaaent, will depend completely - the

initial concentratio=s, and will nn% in general be circles. Such patterns, if they do

w(x),

conditions. This ktype of mnlel is explored in some detail in (17}, assuminag all fronts are

trigaer. Again, the dvaamics of the wave front and the functions v and w invelwve

complicate ! mathematice, but some reasnnable simplifications are possible.

A conceptually similar model for self-sustaining patterns involving three reacting

-

cormponents hal previonsly been proposed by Zaikin and Kawczynski {28); but its anal

was lef* incomplete and **w ques*ion nf phase and triquer fronts was not adiressed.

ysis
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7. Targets in exci-able media.

With nullcurves as depicted in Fiqure 1, the kinetic eauations
u, = kf(u,v), v, = glu,v)

have stable relaxation oscillatory solutions. When the g nullcurve is shifted to one of

the positions in Figures 3 and 4, however, the kinetics become excitable or bistable.

Figure 3 Figure 4

For example in Figure 3, there is one stable rest state (the unigue intersection point);
but when this state is perturbed downward a small amount, the solution makes a larae
excursion (dotted line) before returning to the rest state.

In modeling target patterns in Section 6, we needed the kinetics to be oscillatery at
the origin; but away from the nrigin, the configurations in Figures 3 and 4 are not
excluded. As x * ® the target develops into a regular wave train, so of course the
kinetins must support such a train there. Excitable and bistable (as well as oscillatory)
kinetics do support wave trains. For example, the phase plane imaage (orbit) of a train at
a fixed value of x is shown by the dotted loon in Fiqure 4. Therefore there is an

contradiztinn invonlved in havinag a pariodic target pattern emerqe in an excitiblo medium,
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This is apparently what often happens with the Z-reagent, which can exist in an
excitable, as well as oscillatory, regime, The initial formation of a target pattern in
such a medium involves a wave train entering a guiescant region at a stable rest state, 1t
may be difficult to visualize this process of excitation into a periodic state, but several

mechanisms are available for accomplishing it (24; R. Smock, in preparation].
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