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order m+k as approximate solutions of a boundary value problem for an mt”.
order ordinary differential equation are determined by the X 1linear
functionals at which the residual error in each partition interval is requirel
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(b) "essential least-squares” (i.e., local moment methods), is made by asking
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k-r points per interval and simultaneous local orthogonality of the residual
to polynomials of order r; the k-r points then necessarily form a subset

of the k Gauss~Legendre points.
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SIGNIFICANCE AND EXPLANATION

In piecewise polynomial collocation, one approximates the solution of an
ordinary differential equation (ODE) by the piecewise polynomial function (on
a given subdivision of the interval of interest and of a given degree) which
satisfies the ODE at a certain set of points, the collocation points (and
satisfies the side conditions). In 1971, the authors discovered that a
careful placing of the collocation points (viz. the choice of the appropriate
Gauss~Legendre points, familiar from Gauss quadrature, in each interval of the
subdivision) would achieve an unusually high order of convergence at the
break-points of the chosen subdivision. This phenomenon, which was
subsequently dubbed (by Douglas and Dupont) "superconvergence", has

. contributed much to the present popularity of collocation methods.

In this report, the authors show that such superconvergence is not a
special feature of collocation alone, but can be achieved by a whole class of
local piecewise polynomial approximation methods, with collocation at Gauss
points at one extreme and "essential least squares" at the other. In this
latter method, the residual error is not made to vanish at certain points (as
in collocation), but is made to be orthogonal to a space of piecewise
polynomial functinns (of appropriate degree) on the same subdivision.

As part of the discussion, the authors provide an argument which, so they
hope, gives more insight into collocation at Gauss points than the original

one.

The responsibility for the wording and views expressed in this descriptive
v summary lies with MPRC, and not with the authors of this report.




LOCAL PIECEWISE POLYNOMIAL PROJECTION METHODS FOR AN ODE
WHICH GIVE HIGH-ORDER CONVERGENCE AT KNOTS

Carl de Boor and Blair Swartz
Introduction. This is the last in a triple (see [2], [3])) of papers concerned with high-
order approximation to eigenvalues of an ODE using collocation at Gauss points.
Correspondingly, its two sections are labelled 9 and 10 , but it can be read without
reference to [3], i.e., to Sections 5 - 8 , Items labelled x.y or (x.y) are to be found
in Section x, e.g., in [2] in case x is less than 5 .

When writing [2], we were forced to go through the arguments in [1) once again and
ended up improving upon them somewhat (see the proof of Theorem 9.2 below). In the process,
we considered more general local piecewise polynomial projection methods in an effort to
discover just what produces the superconvergence at breakpoints in Gauss-point collocation.
This led us to a simple set of conditions on the local projector used which, so we found,
had been formulated much earlier by Pruess (4] in another context. In addition to updating
our earlier results in [1] and [2] to cover this wider class of projection methods, we give
a detailed analysis of these special local projectors and establish a simple link between
the two best known among these, viz. Interpolation at Gauss points and Least-squares
approximation.

9. Some projectors which yield superconvergence. As de Boor and Swartz [1] describe it,

local projection methods which involve sufficiently rough piecewise polynomials are
basically determined by a bounded linear projector Q which carries C[~1,1] onto

P_ (polynomials of order %k , i.e., of degree < k), hence satisfies

k
k (k)
(v If - QofF < constQHD €A, , all fec "[-1,1]
for some constant const, . Then, given a partition 4 := (ti)g of [0,1] with
0= ty € .o ¢ tl =1, |A] := max Ati ,

i
Q determines a map QA projecting i§1c[ti-1'ti] =: CA onto pk,A (the space of Dist & oy

Sponsored by the United States Army under Contract Nos. DAAG29-75-C-0024 and DAAG29-80-~ -
C-0041 and by the United States Department of Energy under Contract No. W=7405-Tna. 34, RN,




piecewise polynomials of order k with breakpoints in 4 ) by translating the procedure

ﬁ for C{-1,1] to each partition interval; i.e., by requiring that, on each [ti,ti+1] and for
y € CA '
-1 .
(2) QAy = Si Qsiy , with (Sig)(s) := g(ti+1/2+SAti/2) for s e [~1,1] .

Then, from (1),

k, .k
(1, £ QAf"(i) < consthAtil Ip f"(i)
with

gl . L x< .
g sup {lg(t)] t SxSt, }

(i) 1

Finally, the projection method for the m-th order differential equation Mx =y, fx =10

C(m-1)

is determined by requiring that x, € N [0,1] satisfy

m
A € Prex,a *° Prek,A
(3) QAMXA = QAY: QXA =0 .

+
We consider a set of constraints upon Q which permits proof of O(IAIk nJ

breakpoint superconvergence for this projection method. These constraints, constructed by

Pruess in another context [4, pp.553-4, esp. p.554, line 5], can be stated as follows:

For some positive integer n < k {(and in terms of L2[—1,IJ ),

(4) P 1 (1-Q)(P

i k+n+1—i] , i=1,¢4e,n.

k+
This condition is equivalent to the following: For some sequence (f,) " with

i’
= 3 -
(5a) e, span (fi]1 , all i,
we have
(5b) Of; = 0 for 3I>k
and
1
{5¢) ffifj=0 for 1 €k ¢ j € kénél = i .
-1

Indeed, by (5a), (4) is equivalent tn having

[frn-Q)fj 0 for r<4{, j<ktnt! -~ i and i=1,...,n .
B )
In fact, since (1-Q)fj =0 for j <k, t4) is equivalent to having

o

ffr(1-Q)fj = 0 for r€i, k< 3<ktn#l =i and it ,e.e,n

’
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i.e., for j > k and r < k+n+t1 - j , and so, by (5b), (4) is equivalent to (5c). This

shows that (S5a-c) implies (4). On the other hand, for any linear projector Q onto P,

k+n

we can find (fi)1

satisfying (5a-b) by taking

g, , 1€k
£ = b with {gi) s.t. P, = span(gi)
(1Q)g, , i>k ’

3, all § ,

hence the argument also shows that (4) implies (5a-c). Finally, this last statement shows
(with g;(t) = ti-1, all i) that (4) is also equivalent to
(6) [: tr(1-Q)ts = 0 for r <n, r+s < ktn .

Since Pruess was the first to consider prcjectors satisfying (4) (or (6), see [5]1), we
call any linear projector Q onto P, and satisfying (4) a ssuper projector of order

(k,n).

1

Example 1. Collocation Taking, in particular, fi(t) =j§i(t-pj) , With p_, «oo, pk

the collocation pattern and »p cesys P arbitrary, we find, from (5), the condition

k+1’ k+n

1 k

[ plt) M (t-p.) @&t = 0 for all pe P

-1 =1 3 n

A (used in [1]) to imply that Q , given by polynomial interpolation at p1, coey pk , is a

po

ssuper projector of order (k,n).

Example 2. Essential least squares (method of moments, or of iterated integrals)

EN

= the Legendre polynomial of degree i-1, all i ,

H

K Taking, in particular, fi = Pi

we find that Q , given as Least squares approximation from P, , is a ssuper projector, of

order (k,k) . We have called the corresponding process "essential least squares" because

the associated projection method (3) requires that the residual error, MxA -y .+ be
orthogonal to ’k,A = Dm[l’:"‘k,A N ker B 1 (assuming § = [Bi]? to be linearly independent

on pm); while ordinary least squares asks that this residual be orthogonal to

Mp" th

ek & N ker g ] + This process has also been called a "local moment method" for an m
’

order equation. In this connection, recall that Wittenbrink [6;Ex.3c] shows this to be

equivalent to asking that the iterated integrals of order j , 1< j < k , of the residual

SR ca A RIS N e




"y, ¢ ——s,
r
i
3
i
' error vanish at all the breakpoints. We have chosen, however, to emphasize its connectir.-. ' .
f ¢
! to least squares.
[
F The validity of (4) suffices for proof of the following result from which we shall .

+ .
conclude O(IAIk ) breakpoint superconvergence. The lemma (and its proof) are a variant

PP ——

of Pruess' result [4; section 3] and [5; Lemma 2].

;
L
E Lemma 9.1 Let Q be a ssuper projector of order (k,n) . Then
B 1 R .
; 7 | [ £010)g | < const_ I 1plenip** ™Iy
I -1 j<n
; i i,
Proof. Let (ij)(t) = I, DTE(0) £7/ir . Then :
i 1 1 K+n
j J £010Yg = [ EC1-0)T, . g + OCugwID” "qiy =
B -1 - k+n i
|
while ft
1 k+n=-1 1
1 . . .
J fQ-)r g = T pigoi/rt [ £(e)(1-oet
-1 k+n r=k -1

since Q reproduces P, . On the other hand, since Q 1is a ssuper projector of order

{(k,n) ,
{1 Ty B (1=0E° = 0
) (using (6)), and so ]
. ; 1 1 -
| ta-)tf = [ (£ -7 (1=t = oI " Ter)
- 1 k+n-r
Consequently,
1 k+n K+n=
J f0-9yg = 0 £ ip"gnio™ " Fey)
-1 r=k
and the substitution j := k+n-r brings this into the form (7). |||
With the definition (2) of QA , it follows that
1 L=1 1
- (€10 0g | = [ L (8t /2) [ (S £)(1-0)(S a) |
b A . i i i A
0 i=0 -1 :
£-1 , .
< comst, I (at,/2) L HDququD s
i=0 ' 4¢n !
while, e.qg., 4
-4 -
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|IDJSifII = (Ati/Z)JllDJfll

(1)

Consequently, we have

Corollary 1 If Q is a ssuper projector of order (k,n), then there exists const so

L1 i-1
(n) (k+n)
that for f ¢ ; L, [ti'ti+1] and ge ; L, [ti'tiﬁ] '
1 £-1
1+k+n
< [ ]
I £010,)q | const I (it,) (1) I ken, (1)
0 i=0
with
(B4 (i) := max HDjf"(i) .
Ee j&r

If now f and/or g in Lemma 9.1 are not as smooth as required, say,

(nf) (k+n )
f ek, r g€ Lw , with nf, ng <€ n , then we are only entitled to consider
T g and T.f for j < n , hence, instead of (7), we get
kg ) v f k+(n_=3)
n_=j),
(8) If f0-21g 1 € consty I g 9 tar .
-1 j(nf

Correspondingly, we get

Corollary 2 If Q is a ssuper projector of order (k,n), _then there exists const

-1 (nf 1) £~1 (k+n_ )
’ ’ 0
that for f ¢ ;Lan Ici,tiH] and g e x L, [ti,tiHJ with LY nq,1 <£n
all i,
1 £=-1 1+k+min{nf i1 i}
(9) I/ (19,39 | < const I (At,) ’ g gl .
o A i=0 i nf,i'(l) k+ng’i,(1)

We now sketch proofs concerning the convergence of X, satisfying (3) to x . From
the proof of Theorem 3.1 in de Boor and Swartz [1], we find that Xy exists uniquely for
|8] sufficiently small; that if Mx € CA[0,1] , then

r
D (x-xA)ll°° < const wA(Mx), 0<r<m,

with wA(f) = sup, sup{|f(t)-£f(s)| : ti<s't<ti+1} ; and that if
-1 m+
xec™g, N cg %) 10,11 , then
r k
- C i < ; = ! .
D" (x XA)“a < const [A] x"m+k,A' 0<r<m “x"j,A maxiﬂxlj,(i)
The proof of Lemma 4.1 in that paper, which uses this convergence of Xy = RX together

-5 -

so
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with the Markov inequality for polynomials, yields additionally that

X
hxgl 3y € const (18178t )" ixt

The proof of superconvergence then goes as follows: for fixed s € [ti, ti+1

mtk,a ¢ T20 .

] and for

fixed r<m,
r 1
Dtx = x\)(s) = [o v(B)Mix - x)(t)) dt , where

v(t) := (3%/3s%)(s,t) € L™ 17E)

0,1 0 (¢ 0,51 ™15, 1),

G := Green's function for M under suitable homogeneous side conditions B .

Since
M(x-xA) = (1-QA)Mx + QAM(x—xA) + (QA-‘l)MxA

with the second term vanishing by (3), the corollaries to Lemma 9.1 yield (uniformly in s)

k+1+n{i)

|Dr(x-xA)(s)I < const [Zi;;(Ati) vl (umxt +UMx ¥ 1.

n(i), (1) k+n, (i) A'k+n, (i)

where

min{m-1-r, n} if s e (t,,t, )
. i’ i+
n(i) := .

n otherwise
Thus we conclude the superconvergence rates of the following theorem which generalizes the

collocation conclusions of [1; Thm.4.1]:

Theorem 9.2 Let Q be a ssuper projector of order (k,n). Then, for sufficiently

small |A| , there exists X, € P:+k A satisfying (3), hence then the linear projector
’
PA given by the rule
m
(9) QuPpf = Quf, P,fe Mz : 2z ¢ LIV gz = o0}

is well defined. Further, consider x, € P:+k A satisfying (3) as an approximate solution
’

to Mx =y, Bx = 0 , where the coefficients of M lie in C(n+k)[0,1] and the side

conditions B are suitable. Then, uniformly in the maximum mesh size (4| , we have the

global estimates

r -y .
[}s] (x-xA)Hm < const mA(y), 0 €r < 2y

r k+min{m-r,n}
- < i it < :
1D (x xA)!Ien const 4] x mk+min{mer.,n}, A’ 0 r<m;

of b .

2
while, uniformly alsoc over the breakpoints ‘ti’O
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+
Ip%(x = x,)(t )] < const 1A

< .
mk+n,A * 0 r<m

clmtk+n) g 4

Remarks. Isolated solutions in to nonlinear problems can be handled as

in [1; Thm. 3.1), where the question of superconvergence is reduced to the superconvergence
associated with a linearized problem (which we have just settled).

We have left open so far the question of when the side conditions g are "suitable”.
Simply put, the side conditions are "suitable" if Green's function resulting from it allows
the earlier argument to bhe made. 1If, for example, g consists of multipoint conditions,

0
then one fixes a partition AO = (t; )); of [0,1] whose partition points contain all the

points involved in 8 , and insists that all partitions A under consideration are

refinements of A0 . Green's function for (M, B) then satisfies
r n

(10) a6/3sTrats, ) ¢ c!™qo,s1xct™
A A

0 0

and this is enough to complete the argument for xA correspondingly in

L
m (0) t(O)}

f1pm+k,A[ti-1, i

situation in which we have differential operators of possibly different orders on the

[s,1) ,
. In fact, it is easy to see now how to handle the more general

different intervals given by the partition AO ., with appropriate side conditions at the

points of AO tying the pieces together.

Turning now to the eigenvalue problem, Corollary 1 of Lemma 9.1 is the general version
promised in [2] of Lemma 3.1 there. It therefore permits the following generalization of
Theorem 3.1 there.

Theorem 9.3 Llet T = Nr-1-1 be the compact map on Lb[0'1] , 1€ p < =, associated

with the sufficiently smooth operators M, N, and B of (0.2). Let u be a nonzero

eigenvalue of T with corresponding invariant subspace S , and let J be a matrix

representation for T s ° Let 'PA = PAT , where FA is the projector given by (9)

associated with a ssuper projector Q of order (k,n). Then, for all small [A] , T has

has a matrix representation J for which

an invariant subspace S, , and T A

A

A!S

A k+n
- JAII < const |Al .

Lind TRt R e
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10. sauper projectors of order (k,k) associated with point evaluations. We now loon
in more detail at the possible ssuper projectors of order (k,k). To begin with, we only
consider their action on P,  , and this we can describe fully by specifying their action

on the elements of some basis for Py, o We found it particularly convenient tr work with

2k-1
0

the basis (Pi) consisting of the Legendre polynomials. Then, for any linear

projector Q onto Pk ,

P = P !
(N oy 3 4
K $=0, e k=1 :

[e)3) = T a,P

k+3 =1 % k=r

and different projectors Q correspond to different matrices (aij) « Further, two such

projectors agree on Prir iff the corresponding matrices agree in rows 0,...,r-1 .

Let

L .3 €k

i’ - :

. Pj-1 QPj_1 s 3>k

Then (fj) satisfies (9.5a-b), hence, with (9.5¢c), Q is ssuper of order (k,k) iff
k

1 § .

L Pi-1l_i1aj-k-1,rpk—r = 0 for i€k <3j&2k+l-i .

This holds iff a_

j=k-1,r =0 for i-1 =%k-r and i € k < j € 2k+1=-i , i.e., iff

= < - .
aqr 0 for 0 q € r-1

We have proved

Lemma 10.1 The conditions
=1

(2) £ . =0 with f . :=P and f _ := P -
Q it L k+j=1 r=1aj-1,rpk-r

k+j k+1 k ¢ 3200k,

establish a one-to-one correspondence between sSsuper projectors © on PZk and lower
k=1

triangular matrices (air)

i,r=1

Of course, any such ssuper projector Q on sz can be extended to infinitaly =i
such on C[-1,1]; and any such can be obtained in the form QP , with P an arbitrary
linear projector on C{-1,1] onto Py« We choose to ignore this aspect, thouah, sin-e

the property of being ssuper of order (k,k) depends only »n the action on Py, -

-8 -




Lemma 10.1 gives rise to several observations.

The first interesting basis function, viz. fk+1 , is simply the k~th Legendre
polynomial, P - Hence, if we think now of Q as being given by the rule

* *
(3) Qf € Pk and quf = qif , i=1,.04,k

* *
for suitably chosen linear functionals q,, veeys qk , then we must have

*
(4) quk = 0, i=1,¢ee,k .

Now, in Example 1 (Collocation}), we had
* :
qif = f(pi) , i=1,...,k

and so (4) is satisfied (for n = k in Example 1) since then (pi)k is simply the sequence

1
of zeros of Pk . In Example 2 (Least squares),
1

*

qf = {1 Piyf . im0k
and, again, (4) is satisfied since Py is orthogonal to ’k = span[Pi_1)ﬁ . Suppose now

that, in an attempt to bridge the gap between these two particular ssuper projectors, we
look for ssuper projectors for which some of the interpolation conditions are point
evaluations, say

*

qif = f(Oi) , i=1,..4,r

for some r . Then we conclude from (4) that {01, cee, or} must be a subset of

{p1, ...,pk} := zeros of P_ . This leads us to consider

Example 3. Ssuper projectors using point evaluations Let (pi)ﬁ be the zeros of
Pk in some order. Then, for r=0,...,k, the conditions
(5) Qrf € Pk' f - Qrf 1 Pr ' Qrf(pi) = f(pi) for i=r+1,...,%

define a ssuper projector of order (k,k).

This provides us with a sequence of ssuper projectors of order (k,k), with Qp , i.-.,
interpolation at the Gauss-Legendre points, at one end and Q . i.e.,, Least-sauares

approximation, at the other, and so demonstrates a perhaps surprisingly simple connection

between the two.




We now verify Exanple 3.

we note that the conditions mentioned are ejuivalent to Jdemanding that
* *
Qrf € Pk , q_Qrf = ujf s 121, 00.,%
with
2 A1 i
3 (6) N ep Pyogf oo 1,007
xrif
F(pi) , iTr+l,...,k
Thus it siuffices to show that the matrix
* .k
(7) L, o
ST, 9=
is invertible. For this, assume that this matrix maps a = [a.;: to 0
* k '
(8) apr = 0, i=1,...,k with p := .Z aij_1
3=1
g Let (wi) be the weight vector (known to be strictly positive)
quadrature rule
1 %
; £ = Low. flp.) . all f « sz .
-1 =1 *
Then (6) and (8) imply that
1 r
3 - .
= = P P 1,000
0 L1PP1_1 j_1wj p(pj) i-1(nj) PR T R
which shows that the invertible matrix . (0.}, f, maps the wvector
Vi=1t 01, 91
0 and coasequently p not only vanishes at p[+1,..., . {bhy (&) ani

p(pj) =0 for 3=1,.ee,r . Thus p =0, and so a =0 .

Note that the invertibility of (7) just proven implies the jnvertibilisye of

(9)

*
since quJ_1

v
th_1(oi),i’j:r+1

P, P, = 0 for 1 & r < 1 .
4T i-1" 31

To verify that Qr is ssuper (A Fack not immediately Sbeioas Yo

that 2r can be obtaired from 7o hy a saitable nodification, for s,

ronsi ler these projertors on va+1 (o which the soraper oy e

P

X(-+1)/2=Himansional hyoeraslanel. Lot

.

In order to conficm thart 13) defines a linear nrojector

iee.,

for the corresmonding

oy v -
W1th“ 1

(7YY gt also

, W ow 3w

woe ol ot

t

rs af ortor e vy Y e

e by La



[r] K [r]
Bty T Pragor T i R PP S
. +
for some matrix La!r] % 1k « With this notation, we get, for r = 0 ,
j=1,s8"j,s=1
fIOJ(D ) = 0 i=1,.40,k 3=2, ¢4e , k*+1
k*j i ’ ’ ’ r r
and so
alo! 0 P_(p) soe B (p.) P, (p) P, .(p,)
11 k=1""k k-1""1 k+1" "k k+1' 71
TR ER : 2 B :
[0} [o]
a a Pk_k(pk) . Pk_k(p1) Pk+k(pk) Pk+k(o1)

with [aggl) a lower triangular matrix (by Lemma 10.1) since Qo is ssuper. Now write

(10} in terms of partitioned matrices as

A 0 B B c C
(10)° 11 11 12 - 1 12

Bar Pl 1By By, S %

with A11, By, and C11 all of order k-r . Our intent is to replace A22 by 0 and to
modify Ay, correspondingly in such a way that the equality in (10) or {10)' is preserved

at least in the first k-r columns. Explicitly,

- - -1
Ca1 = ByByg * BBy = (Byy + AyyByyByyT 1By,

(and By, is indeed invertible since it is just a permutation of the matrix (9)). Thus

A 0 B B (C [
(1) ~11 1 12 _ 1" ~12
Py 00 By By2 S S22
with
A i= A, + A _B.B. C..:= A..B
21 0 T 227217110 0 S22 ¢ 21712 °

Now consider the linear projector O on 92k+1 given by

(12) in =

with

-11-




£, 1= P, , 1Sk
i i=-1 R L
R P [ RN
‘ ;= P anéd a. ., :=! o !
4 (13) fk+1 K i s o )
] k Lh21 .
1= P L a, P 1i>1
Ervi k+i=1 :1 i=1,3 k=3 '
Then 1a, ., 1is lower triangular, hence Q 1is a ssuper projector of order (%, %) r. e~
‘35

10.1 . Further, on comparing (10)=-(10)' with (11), we see that, for the linear fun-

*
q; of (6),
*
= = i=2, 0., k+ J=r+1, 000,k
quk+i fk+i(pj) 0 for i=2, ,k+1,  j=r+1 ,
vhile the fact that the last r columns of (aij) are zero implies that f, . . P,

i=2,404,k+1, ice., also
*

quk+i 0 for i=2,...,k+1, I=t,..., v .

*
In addition, trivially, q_f

55k =0, all j . We conclude that

3 . K+ * ) ]
: ker Q‘P = spankfk+<J: ! is contained in Mker q, P and thus must 2qual ‘+ = :

‘ 2k+1 J 3 ¥k .

both are of dimension k+1 . This shows that Q =Q (on P, ., VY, iee.,
A 0 ’

k [r] 1
3 1 = .

! (14) (aij ) iy

TP PLR

We have established, in particular, that Qr is ssuper of order (k,k), In add:=: -~
comparing again (10)=(10)' with (11), we see that Q, agrees with Q, on  spa~ -,
H P2k+1-r . Thus we couldn't tell Q4 and Qg apart on sz .

We close our discussion of Example 3 with the follonwing four observations.

i

(i) For r # s, Qr Aiffers from Qs somewhere on

B>
'
"

P .
2k e2-maxir, o

jast noted, the two agree wita Qg . hence with each other, on Pﬂb*’ .
Ba 4 -Tax v, s

proof, apply hoth sides of (10) to the matrix

e

1.

W P ’ ) .
YereiTre  Prarag) e
: Then, assuming t,at the Leaendre polynomials have all hoeon narmal, o oo
SR 2 o
1 = r Dow T T J
=1y I i

W Fial that




0] x
‘ (13) (a;5) = (Sf1wspk+i(°s“’k-j(°s’J

and, in particular,

to} K
(16) a; ;" = Iwp (6P _.(p)
) =1, 2k
= [ {PreiProy * const, DT (R B ) # O

This shows with (14) that rank(aigl) = k-r , all r, and so proves our assertion.

(ii) The agreement of Q. with Qg on P2k+1-r is not restricted to the particular
ssuper proijector Qr « If Q is any ssuper projector of order (k,k) which enforces
agreement at k-r points, then, not only must the k-r points all be zeros of Py . say

the points ¢p y eeey, pk (in some suitable ordering), but such @ then necessarily

r+1

agrees with Q4 on P, ., . . For, by Lemma 10.1, Q satisfies (2) for some lower

triangular matrix. The matching of function values at pr+1, coey pk then forces the
N equality
o, 0 Praq(Pid =t Pl (Pryq) Prar(Pi) 20 Py Py
. L] . - = * . .
. . . . ] Y .
sse P see
er,1 "0 Berkerd P Pi) T Prar Pray) Pok-r Px?""" Pagar Pray?
In the terms of (10)', this reads
k-x
(333)i,5=1 By = ©Sp
and the invertibility of B,;, used earlier now proves that therefore
k-r _ _ [0}y k~-x
(aij)i,j=1 A lag4 )i,j=1

(iii) The sequence Qq, see, Q4 connecting Qp to Qg constructed in Example 3

esesr P in which we have chosen to write down the

depends on the particular order o "

'Y

seay

k zeros of Pk o IF (Q;) is the sequence corresponding to the ordering p;, p; ,
[

then Q = Q' on Py, iff the two sets {p

cees D

[
r e e, pk} Eﬂﬂ (pr‘1:

r r+1 k’
- . .
coincide. Indeed, from (14), Q, =Q! on P, . iff
-1 _ =1
Bat ¥ BpgBaiBry - = By ALENBL .

Now, obviously, Aij = Aij . = (15) makes this quite explicit, but it is clear anvway
¢ since Q, does not depend on the order in which we write down the interpolatinan poiats, -

and A,, is invertible, e.g., by (16} . Thus, Q; = Qr on P2k+1 iff

13-
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St et Wt ahe e w Ee - -

-1 -1 . '
T o= B! al - R = . ‘ " Per e ey Vo e s U S S ot . R .
Z'I( ‘1) P21311 0 Let eothe ta X
Then, on partitioning I as R is in (10)', we “ind
L]
EN = £ o + B , n! = 3 PR : 1
11 R R 12721 21 ARERE! RSS!
)4
oe! B T
11 21 2171711
-1
] = ol o+ B i . = BoR_(uo oo+ o)
g 211 22 21 21 11( 1" 1221
3 = - Nt
. (B = BpBpaByp)iin,
tiow note that 322 - 821511_1812 is the lowaer right iiagonal hlack obtained by block Saaes
elinination applied to B , hence is invertible (since ® i5). W= ecnaclude that o =0
1f€ 321 = 9 , and that says that I permutes the first u-r coluans of B amana
i
themselves. i
(iv) Finally, we cohserved earlier that the conllection of 111 ssuper vrojectors of
1 order (k,k) on Pyt forms a linear manifold or hyperplane of limension k/ku+1}/2 | We 9
now show that this linear manifold is spanned by the particular ssuper projectors Dr
q introduced her=. Precisely, we show that the collection of all ssuper projectors of orler ! j
(k,k) on P, .y is the affine hull of the 1 + k(k+1)/2 particular projectors
QOI Q11}“'IQ‘,kIszl"'IQ2kIQ33I"'l;)k_1'\<l:)|(kl 7
with Q0 collocation at all the zeros (pi): of Pk , while, for 1 < r < 5 < k , Qrs W
e
is given by orthogonality to P, and matching of function values at the k-r poiatsg
L s esey W s P seee, P, . Here, (p.) are in any parti~alar order; i1 fact, in the
r s=1 s+ 4 i
definision »f Ors , this order could even change with r {thouah nok gish 5 Yo Ta nrose
the assertion, i% is sufficient to show that the k(k+1)}/2  liaear mans
o e 1e<oiy P oaras limearly indenendent fas points in Fhe limear inace 9f 11 finear
rs "0 g
“aps on P2,*1 ) an! for this, 1% Qs safficient F oy axlibit coiar s %i N ij'1 1t .3
] T1aear fanittinaals W Pay Sor o whie
.ot = A s fy, 0 (r,
1 2 i3
Nt R S L R A }
. )
L1 - 1y




since this insures that the matrix (uij(Qrs-Qo)xij) is upper triangular with nonzero
diagonal entries (using the ordering 11,12,...,1%,22,...,2k,33,...,kk ), hence invertible.
(We are using here the standard argument whereby the sequence (ys) in a linear space is
linearly independent iff there exists a corresponding sequence (Vr) of linear
functionals on that space for which the matrix (Vrys) is invertible.) First, pick Xi =
Pox+t-is all 1,3 . Then, since Org forces agreement at k-r points, it agrees, by (ii),
with Q4 on Poytler and so uij(Qrs-QO)xij =0 for 2k+1-i < 2k+1-x , i.e., for i > r

no matter how we pick u . Further, pick uij: f — f(pj) , all i,j + Then, as both

i3
QO and Qrs match the value at pj when r € j # s , we conclude that uij(Qrs-Qo)xij =
0 also for i =r and j > s (?r) . Finally, we claim that “ij(Qij-QO’xij # 0 . For,
otherwise, QijP2k+1-i would agree with P, .4_; at Piv sove Py as well as at the

linear functionals f +—+ fPr_1f ¢ =1,0e.i=1, i.e., Qij would agree with Q. at

i-1,i-1
Pokst~i and this would contradict (i).

Finally, up to this point, this section has been concerned with ssuper projectors of
order (k,k). But we think it worth recording a version of Lemma 10.1 for ssuper
projectors Q of order (k,n) , 1 € n € k , along with a corresponding corollary concerning

*
the k linear functionals (qi)ﬁ associated with Q .

Lemma 10.2 The conditions

k-n+j-1

r=1 aj-1,rpk-r + 371,000, N

(17) Ofypy = 0 with £, = By,

establish a one~to-one correspondence betwen ssuper projectors Q of order (k,n) on Pren

, N ? n, and lower trapezoidal matrices

N-1 k
= =-n+ .
(18) (aqr)q=0 pmq ¢ WAEh 3 =0 for k-ntg < r <k

*
In terms of linear functionals [qi)§ associated with Q wvia (3), the ssuper

projector criterion (9.4) may be expressed as

-15-




DRI IR WE NG PN o Kind Ay o Sma e e oo e Y
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i P Veer e , P A
it Pepnet-g N vy ‘
r=1 k
Y E
ant! Temma 10.2 may be restated ds
*
Corollary The linear functionals 71'1 define i ey o
on Pk+N , N°n , 1iff the two blncks of the (w+ijr>
B
K xk . * N
—— - with b, := 7q.P Lo 81CE , ar P
c —_— i) 3 k=1-i - 1 E

- Nxk

{#hose transpose Jecribes the action of the functinnals «:+*

cees Poy Py e, Pronoq) of Piy) satisfy
' cz”' =
N-1 k
where the matrix A = (a_,]. . bas the lower trapezojial T v "¢, w0
ij7i=0 j=1 T e

functionals define distinct ssuper projectors precisely to the axuant +a-

corresponding matrices A are distinct. )

Proof. QO 1is a projector onto P iff B is nonsingular. 7 i3 =: : ‘

!

]

; (x,n) on P . iff the matrix A of (18) is comnected wizh , w33 7175, T ety !

1 *
element of the assertion C - AB = 0 1is found by applyine o tc (17,
3

] ;
.
i .




REFERENCES

1. C. de Boor and B. Swartz, Collocation at Gaussian points, SIAM J.Numer.Anal. 10(1973)
582-606
2. C. de Boor and B. Swartz, Collocation approximation to eigenvalues of an ordinary

3 differential equation: the principle of the thing, Math.Comp., to appear.

3. C. de Boor and B. Swartz, Collocation approximation to eigenvalues of an ordinary
differential equation: Numerical illustrations, Math.Comp., submitted.

4. S.A. Pruess, Solving linear boundary value problems by approximating the coefficients,
Math.Comp. 27(1973) S51-561.

5. S.A. Pruess, High order approximation to Sturm-Liouville eigenvalues Numer.Math.24
(1975) 241-247.

6. K.A. Wittenbrink, High order projection methods of moment and collocation type for

nonlinear boundary value problems, Computing 11(1973) 255-274.

-17-




