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ABSTRACT (continued)

breakpoint superconvergence (of derivatives of order less than M) f'r t.
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orthogonality of the residual to polynomials of order r; the k-r points t--r,

necessarily form a subset of the k Gauss-Legendre points.
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SIGNIFICANCE AND EXPLANATION

In piecewise polynomial collocation, one approximates the solution of an

ordinary differential equation (ODE) by the piecewise polynomial function (on

a given subdivision of the interval of interest and of a given degree) which

satisfies the ODE at a certain set of points, the collocation points (and

satisfies the side conditions). In 1971, the authors discovered that a

careful placing of the collocation points (viz. the choice of the appropriate

Gauss-Legendre points, familiar from Gauss quadrature, in each interval of the

subdivision) would achieve an unusually high order of convergence at the

break-points of the chosen subdivision. This phenomenon, which was

subsequently dubbed (by Douglas and Dupont) "superconvergence", has

contributed much to the present popularity of collocation methods.

In this report, the authors show that such superconvergence is not a

special feature of collocation alone, but can be achieved by a whole class of

local piecewise polynomial approximation methods, with collocation at Gauss

points at one extreme and "essential least squares" at the other. In this

latter method, the residual error is not made to vanish at certain points (as

in collocation), but is made to be orthogonal to a space of piecewise

polynomial functions (of appropriate degree) on the same subdivision.

As part of the discussion, the authors provide an argument which, so they

hope, gives more insight into collocation at Gauss points than the original

one.

The responnihility For the wordin; and views expressed in this descriptive
summary lie- with MP , dn not with the authors of this report.



LOCAL PIECEWISE POLYNOMIAL PROJECTION METHODS FOR AN ODE
WHICH GIVE HIGH-ORDER CONVERGENCE AT KNOTS

Carl de Boor and Blair Swartz

Introduction. This is the last in a triple (see [2], [3]) of papers concerned with high-

order approximation to eigenvalues of an ODE using collocation at Gauss points.

Correspondingly, its two sections are labelled 9 and 10 , but it can be read without

reference to [3], i.e., to Sections 5 - 8 . Items labelled x.y or (x.y) are to be found

in Section x, e.g., in [2] in case x is less than 5

When writing [2], we were forced to go through the arguments in (1] once again and

ended up improving upon them somewhat (see the proof of Theorem 9.2 below). In the process,

we considered more general local piecewise polynomial projection methods in an effort to

discover just what produces the superconvergence at breakpoints in Gauss-point collocation.

This led us to a simple set of conditions on the local projector used which, so we found,

had been formulated much earlier by Pruess [4] in another context. In addition to updating

our earlier results in [1] and [2] to cover this wider class of projection methods, we give

a detailed analysis of these special local projectors and establish a simple link between

the two best known among these, viz. Interpolation at Gauss points and Least-squares

approximation.

9. Some projectors which yield superconvergence. As de Boor and Swartz [1] describe it, AQQ

local projection methods which involve sufficiently rough piecewise polynomials are

basically determined by a bounded linear projector Q which carries C[-1,1] onto TAB

P (polynomials of order k , i.e., of degree < k), hence satisfies . 10
kk (k) t-__

(1) Of - QfI 4 const QD fl , all f C C (-1,11 f--

for some constant const Then, given a partition A := (t of [0,1] with

0 ...o  < t, =1, JAI := max Ati

Q determines a map % projecting ixIC[ti i,ti] onto (the space of D i A

Sponsored by the United States Army under Contract Nos. DAAG29-75-C-0024 and DAAG29-0---  _

C-0041 and by the United States Department of Energy under Contract No. 1q-7405-nT.3r'.



piecewise polynomials of order k with breakpoints in A ) by translating the procedure

for C[-1,1] to each partition interval; i.e., by requiring that, on each [ti,ti+ 1] and for

y C CA,

-1
(2) QAy = Si QS y , with (Sig)(s) := g(t +sAt./2) for s c [-1,1)

Then, from (1),

( lIf - QA fUi) const Qlt ilkD kflli)

with

11go (i) := sup {Ig(t)l : t ix(ti+ 1}

Finally, the projection method for the m-th order differential equation Mx = y, Bx 0

m (in-1)[01 aif

is determined by requiring that x £ Pm := P , [0,1] satisfyAC'm+k,A =Pk,

(3) QaMxA = QAY, §xA = 0

We consider a set of constraints upon Q which permits proof of O(I1Ak+n

breakpoint superconvergence for this projection method. These constraints, constructed by

Pruess in another context [4, pp.553-4, esp. p.
5
54, line 5], can be stated as follows:

For some positive integer n < k (and in terms of L2t-1,1 ),

(4) P1i (1-Q)[Pk 1 , i=....,n.

, +k+n

This condition is equivalent to the following: For some sequence (f)+ with

(5a) P. = span (f ,all j,

we have

(5b) Qfj = 0 for j>k

and

(5c) f f f 0 for i 4 k < j 4 k+n+1 - i-1 i

Indeed, by (5a), (4) is equivalent to having

ffr(1-Q)fj = 0 for r 4 i , j 4 k+n+l - i and i=1,...,n

In fact, since (1-Q)fj 0 for j < , (4) is equivalent to having

ff (I-Q)fj 0 for r < i, k < j < k+n+1 - i and i: ... ,n

-2-
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i.e., for j > k and r 4 k+n+1 - j , and so, by (5b), (4) is equivalent to (5c). This

shows that (Sa-c) implies (4). On the other hand, for any linear projector Q onto Pk

we can find (fk+n satisfying (5a-b) by taking

gi , i4 k
f, with (gi) S.t. . = span(gi all j

(1-Q)g i  ,i > k

hence the argument also shows that (4) implies (5a-c). Finally, this last statement shows

(with gi(t) = ti- 1, all i) that (4) is also equivalent to

(6) tr(1-Q)tS = 0 for r < n, r+s < k+n

Since Pruess was the first to consider projectors satisfying (4) (or (6), see [51), we

call any linear projector Q onto Pk and satisfying (4) a ssuper projector of order

(k,n).

Example 1. Collocation Taking, in particular, fi(t) =Ji (t-P) , with 1 " k

the collocation pattern and pk+1' " ' Pk+n arbitrary, we find, from (5), the condition

I k
f p(t) R (t-p.) dt = 0 for all p c P

-1 j=1 I n

(used in [1]) to imply that Q , given by polynomial interpolation at p,1 ... ' Pk , is a

ssuper projector of order (k,n).

Example 2. Essential least squares (method of moments, or of iterated integrals)

Taking, in particular, fi = Pi-1 := the Legendre polynomial of degree i-i , all i

we find Lhat Q , given as Least squares approximation from Pk , is a ssuper projector, of

order (k,k) . We have called the corresponding process "essential least squares" because

the associated projection method (3) requires that the residual error, MxA - y , be

orthogonal to D [P'k,A r ker (assuming 8 = to be linearly independent

on Pm); while ordinary least squares asks that this residual be orthogonal to

M[P n ker 8 ] . This process has also been called a "local moment method" for an mth
m+k,tA

order equation. In this connection, recall that Wittenbrink [6;Ex.3c] shows this to be

equivalent to asking that the iterated integrals of order j , 1 4 j < k , of the residual

-3-
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error vanish at all the breakpoints. We have chosen, however, to emphasize its coect,-

to least squares.

The validity of (4) suffices for proof of the following result from which we SIll

conclude 0 (1IAIk+
n ) breakpoint superconvergence. The lemma (and its proof) are a variant

of Pruess' result [4; section 31 and 15; Lemma 2).

Lnea 9.1 Let Q be a ssuper projector of order (k,n) . Then

(7) I f f(i-Q)g I 4 constQ E MDflflD gk+n-jl1-I j<n

Proof. Let (Tjf)(t) E D f(O) t /i! . Then
i~j

1 1
f f(1-Q)g = f f(l-Q)Tk 4 g + O(HfNUID gl)
-1 -1

while

I k+n-1 1
f f(1-Q)T k+ng = E Drg(O)/r! f f(t)(1-Q)tr
-1 r=k -1

since Q reproduces Pk . On the other hand, since Q is a ssuper projector of order

(k,n)
1

f (Tk+nr f)(l-Q)tr = 0
-1

(using (6)), and so
1 1

f f(1-Q)tr  = f (f - T f)(1-Q)tr = 0(ir tk+n-r fl,- - k+n-r

Consequently,

1 k+n
f f(1-Q)g = g[ l IDrg,,fk+n-r fil)

-1 rn
and the substitution j k+n-r brings this into the form (7). I11

With the definition (2) of QA, it follows that

1 i-1 1

if f(l-QA)g I = I Z (At /2) f (SJM)(1-,)(Sa) a
0 i=O -1

Z-1

const E (At /2) IlUJfllD - ,
i=O j

while, e.g.,

-4-



RID ifil (At /2)JDJ fIl

Consequently, we have

Corollary 1 If Q is a ssuper projector of order (k,n), then there exists const so

-i £X-1 (k+n)

that for f e xiL (t,t i+ 
2
and g E L tt,t i+ ]

0 0
1 E-1 1+k+n

if l-Q )g 1 4 const E (At i)1+n fn,(i) g k+n,(i)
0 i=0

with

Ifl i := max IDJfP M

j~r

If now f and/or g in Lemma 9.1 are not as smooth as required, say,

(n f) (k+n)
f EL , g E, , with nf, n 9 n , then we are only entitled to consider

Tk+ngg and Tjf for j < nf hence, instead of (7), we get

(8) If f(I-Q~g I 4 const Z ODJiD g 9I ) g .
-1 j4 nf

Correspondingly, we get

Corollary 2 If Q is a asuper projector of order (k,n), then there exists const so

X-i (ni) Z-i (k+n .)fgi
that for f C x 1 Iti +1) and g x . [tilt i+1 with nf, n, n

0 i

all i,
2-7 1+k+minfn *,n .1

(9) f(1-QA)g I 4 const Z (Ati) ,i g1 1lfil nf ,(i) llgUk+ngi
0 i.0 , (i

We now sketch proofs concerning the convergence of xA satisfying (3) to x . From

the proof of Theorem 3.1 in de Boor and Swartz [], we find that x exists uniquely for

AI sufficiently small; that if Mx E CA[0,1] , then

r
RD (x-xA )#. 4 const wA(Mx), 0 < r 4 m

with W6 (f) := sup, sup{If(t)-f(s)I : t i<st<t ; and that if

c(r-i ) (re+k)
x C C ( 0,1] 1- CA (0,1] , then

Dr(x-x A)11. const IAI k x m+k, , 0r~m ; Rx8j,4 := max i xfj,(i)

The proof of Lemma 4.1 in that paper, which uses this converaence of x A RX toqether

-5-



with the Markov inequality for polynomials, yields additionally that

Rx~ A 1r(i const (IAI/At )k 1XII m+k,& r > 0

The proof of superconvergence then goes as follows: for fixed s c [t. , t i and for

fixed r < m

D(x x x)(s) = flv(t)lm(x - x )(t)) dt , where

G :Green's function for M under suitable homogeneous side conditions 0

Since

M(x-x) (1-Q )MX + Q M(x-xA + (Q -1)Mx~

with the second term vanishing by (3), the corollaries to Lemma 9.1 yield (uniformly in s)

ID r(x~x )(sfl 4 const [Z -1(A~t')k+l+niI(i) i ) (OMX11 n R,+MXA 4~~jA

where

min~m-1-r, ni if S E (t.,t.
n(i) 11

n otherwise

Thus we conclude the superconvergence rates of the following theorem which generalizes the

collocation conclusions of [1; Thm.4.1]:

Theorem 9.2 Let Q be a ssuper projector of order (k,n). Then, for sufficiently

small Itfl , there exists x~ C PM satisfying (3), hence then the linear projector

PAgiven by the rule

(9) Q P f E, P~ f C [MZ :z m Z EPM

is well defined. Further, consider x~ C P"k satisfying (3) as an approximate solution

to Mx = y, §x = 0 , where the coefficients of M lie in C(n+k)[0 ,ii and the side

conditions 0 are suitable. Then, uniformly in the maximum mesh size I!,we have the

global estimates

ND r (x-x )I 11 const w(),0 < r

A k+.krminm--rn1}

while, uniformly also over the breakpointS ~ti Z

-41 -



ID r(x - x H)(t )I const lI k+nlxii m+k+n,, 0 4 r < m

Remarks. Isolated solutions in C (m+k+n)[0,1] to nonlinear problems can be handled as

in [1; Thm. 3.11, where the question of superconvergence is reduced to the superconvergence

associated with a linearized problem (which we have just settled).

We have left open so far the question of when the side conditions 6 are "suitable".

Simply put, the side conditions are "suitable" if Green's function resulting from it allows

the earlier argument to be made. If, for example, consists of multipoint conditions,

(0) L
then one fixes a partition A0 = (t of [0,1] whose partition points contain all the

points involved in , and insists that all partitions A under consideration are

refinements of A . Green's function for (M, 0) then satisfies
0

r (n) (n)
(10) (OG/3 s )G(s,

-
) c CA [0,s]XCA [s,1

1

and this is enough to complete the argument for xA correspondingly in

L n (0) (0),x M+k,A i-1, ti I In fact, it is easy to see now how to handle the more general

situation in which we have differential operators of possibly different orders on the

different intervals given by the partition A0 , with appropriate side conditions at the

points of A0  tying the pieces together.

Turning now to the eigenvalue problem, Corollary 1 of Lemma 9.1 is the general version

promised in [2] of Lemma 3.1 there. It therefore permits the following generalization of

Theorem 3.1 there.

Theorem 9.3 Let T = Ml- 1 be the compact map on L [0,1] , 1 4 p , associated-- p

with the sufficiently smooth operators M, N, and 8 of (0.2). Let p be a nonzero

eigenvalue of T with corresponding invariant subspace S , and let J be a matrix

representation for TI . Let T = T , where F is the projector given by (9)
is A PAT A

associated with a ssuper projector Q of order (k,n). Then, for all small JAI , T. has

an invariant subspace S , and TAI has a matrix representation J for which

IIJ - jA 11 const JAI

-7-



10. bouper projectors of order (k,k) associated with point evaluations. We now l):,:

in more detail at the possible ssuper projectors of order (k,k). To begin with, we only

consider their action on P2k , and this we can describe fully by specifying their action

on the elements of some basis for P2k We found it particularly convenient t, work wit>i
r 2k-1

the basis (Pi 0  consisting of the Legendre polynomials. Then, for any linear

projector Q onto Pk

(1) QPj P

k j=0 .... k-1

QPk+j r= ajrP k-r

and different projectors Q correspond to different matrices (aij) Further, two such

projectors agree on Pk+r iff the corresponding matrices agree in rows 0,...,r-1

Let

p .
,- j k

I P j-1 - QPJ-_1 j > 
k

Then (fj) satisfies (9.5a-b), hence, with (9.5c), Q is ssuper of order (k,k) iff
k

L Pi-1 aj-k-lrpk-r = 0 for i 4 k < j 4 2k+I-i

This holds iff aj-k-l,r = 0 for i-1 = k-r and i < k < j 4 2k+1-i , i.e., iff

a = 0 for 0 q 4 r-1qr

We have proved

Lema 10.1 The conditions

j-1
(2) Qf =0 with f P and f :p - 1,rPk-r ' j=2,....k,

k~j - k+1 k - k+J : k+j-1 r= j-,kr

establish a one-to-one correspondence between ssuper projectors Q on P2k and lower

triangular matrices (ai)k-1ii,r=l

Of course, any such ssuper projector Q on P2k can be extended to infinit-', v

such on C[-1,11; and any such can be obtained in the form QP , with P a aritr-.ir,:

linear projector on C[-1,1] onto P2k * We choose to ignore this aspect, thoualh, sin-v

the property of being asuper of order (k,k) depends only on the action on P2k

~-8-



Lemma 10.1 gives rise to several observations.

The first interesting basis function, viz. fk+1 ' is simply the k-th Legendre

polynomial, Pk " Hence, if we think now of Q as being given by the rule

(3) Qf C Pk and q.Qf = q f ,i=,....k

for suitably chosen linear functionals q1, ..I , q , then we must haven

(4) q.P 0 , i=1,.. ,k

Now, in Example 1 (Collocation), we had

q f = f(p.) , i=1,...,k

and so (4) is satisfied (for n - k in Example 1) since then (p ) is simply the sequence

of zeros of P* In Example 2 (Least squares),
1

qf = f P_1
f

, i:,....k-1

and, again, (4) is satisfied since Pk is orthogonal to Pk = span(P 1 k . Suppose no,

that, in an attempt to bridge the gap between these two particular ssuper projectors, we

look for ssuper projectors for which some of the interpolation conditions are point

evaluations, say

q f = f(O) ,i

for some r • Then we conclude from (4) that {o1, ..., a must be a subset of

{Pi' ....'Pk
} =  

zeros of P k " This leads us to consider

Example 3. Seuper projectors using point evaluations Let (pi)k be the zeros of

P k in some order. Then, for r=0,...,k, the conditions

(5) Q
f 

e Pk' f - 1 ' Pr ' Qrf(Pi
) = f(P

) 
for i=r+1 .... k

define a ssuper projector of order (k,k).

This provides us with a sequence of ssuper projectors of order (k,k), with Q0 '

interpolation at the Gauss-Legendre points, at one end and Qk I i.e., Least-souares

approximation, at the other, and so demonstrates a perhaps surprisinqly simple connoc'ti'-'

between the two.

-c)-



We now v.ri Fy Fxample 3. In orIer to confir7 tl'at " ie i; I linear orojoctor 217

we note that the conditions mentioned art, eiuivalent to ,limanliti that

Qrf  C Pk q Ff f , -1 ... K

with

(6) * 1I P -
f 

' i l . .

lP ' 1

Thus it smiffices to show that Hi- matrix

* , k
(7)

is invertible. For this, assume that this matrix maps a 
=  

k to 0 i.e.,

(8) p , i=1.. ,k with p zap 1

Let (w i ) be the weight vector (known to be strictly positive) for the cnrros1-lin 1

quadrature rule

I2 k" : = wfip ) , alt f ,*P
-1 ]=I

]  
2k

Then (6) and (8) imply that
I r

0 = PP -p.) (p) , i1 .,r

-1 j-1 i

which shows that the invertible matrtx p i-1 (P)i i,r maps the vector w P( 1 t,

0 and consequently p not only vanishes at Pr.. 0. . . (by (5) n (Q1) !Wit also

p(p.) = 0 for j=1 .... r . Thus p , and so a 0

Note that the invertibility of (7) j,.at proven imp] io- rho ir,%-rt hi- ,t

(9) P (Pi) -3
j-1 i A r

since q.P3_ 1  , iIP_1 0 for i ' r <

To ve-rify that '2r is tpr (a Fa7t no,)t irO Ii iF'. ., s i< , I I It

that 
2
r c h be obtainel From a"sn I 1 itabl , n r j 11. !'F r t'i s, 4' - ,

-onsi ler thes, projetors ,n Pk+1 (,'n 0)h1i t'', , ,u r -r ,, f r . , ,; r'-

1
c( . e)/n- ien,;ioi Iyp'r: ',Il Tot

r -- 1
1 r > 1 " p' , i •

': i I ' . ' °°



f I r ) k ( a 
r ]  = , , +

k+j = k+j-1 s P k-s j=1. k+l
S=1 -I,s

for some matrix (a. [r jsl
ja1r s]k+1,= With this notation, we get, for r = 0

f[0)
f 1(P) = 0 , i=I,...,k, j=2. k+1
k+j j

and so

a11 • 0 P k-1.(P.k p k- (Pl Pk+1(Pk" Pk+I(Pl
1

(10) L 11. :
klkk k k-k 1 k+k k k+k 1

with (aij ) a lower triangular matrix (by Lemma 10.1) since Q0 is ssuper. Now write
a)

(10) in terms of partitioned matrices as

(10)' AZ :1 B: ::1 B 12: ::J 1
[A21 A221 [B21 B 221 [C21 C221

with Ali, Bil, and C1 1  all of order k-r . Our intent is to replace A2 2  by 0 and to

modify A2 1  correspondingly in such a way that the equality in (10) or (10)' is preserved

at least in the first k-r columns. Explicitly,

C2 1  = A2 1B11 + A22B2 1  = [A2 1 + A22B21B11-I]B11

(and B1 1  is indeed invertible since it is just a permutation of the matrix (9)). Thus

A21 '. 1 B2 [21 C22]

with

A21 := A21 A 22 B2111 , C22 : 21 B12

Now consider the linear projector Q on P2k+1 given by

f. ' i < k

(12) Qf. =
1 0 , i > k

with

~-11-



f p i kPi-1 ', [A 1 1  i

(13) f P and a.
k+1 k 21

fP - Z ,i> 1.fk+ i := k+i-1 j= a i-l,j Pk-j

Then a ) is lower triangular, hence Q is a ssuper projector of orler ,

10.1 . Further, on comparing (10)-(10)' with (11), we see that, for the linear f'-n!

qi of (6),

q fk+i(P.) = 0 for i=2,...,k+1, j=r+1..,k

\:.hile the fact that the last r columns of iaij are zero implies that F - P

i=2,...,k+l, i.e., also

qj fk+i 0 for i=2,...,k+1, j=1,...,r

In addition, trivially, q fk+1 0 , all j . We conclude that

ker panf k+1 is contained in r ker q and thus must oua

both are of dimension k+1 . This shows that Q = Qr (on P2k+1 )' i.e.,

(14) (a [] = 01

SA21+ A22 B21 11

We have established, in particular, that 2r is ssuper of order (k,k). :n a~i: -,

2:-"
comparing again (10)-(10)1 with (11), we see that 0r agrees with Q on spa

We close our discussion of Example 3 with the following Four ohservltio' -.

(i) For r 3 s, 2r differs from Q. somewhere on P,

]:pit noted, tlhe two agree wito Q0 , hence with each o)ther, on P"k,1. ;-, , -

prooF, apoly h th sides of (10) to the matrix

k+1-i k P;k<1-i 1 -1

Th, ;si.lmiq ..it th., Locnire polynonials ha,'' all b1m '

1 2

th-t



kF [0]~ w (ps)Pk~ (ps) 1
(15) aij = p k+i s k-j 5

and, in particular,

k
(16) ai0 = W (P )P (P

ii ~ s k+i s k-i s
= f p p + constD 2k(P p ) 4 0,-k+i k-i k k+i k-i

rhis shows with (14) that rank(ai E) = k-r , all r, and so proves our assertion.
1)

(ii) The agreement of Qr with Q on P2k+1-r is not restricted to the particular

ssuper projector Qr " If Q is any sasper projector of order (k,k) which enforces

agreement at k-r points, then, not only must the k-r points all be zeros of Pk I say

the points Pr+1' -' Pk (in some suitable ordering), but such Q then necessarily

agrees with Q on P2k+l-r " For, by Lemma 10.1, Q satisfies (2) for some lower

triangular matrix. The matching of function values at pr+1' "..' Pk then forces the

equality

la 110 1 - ( k- i ( r+1 pk+1 (Pk Pk+1I( r+1

a k-r, ... -r, k-r ( k
)  

Pk-r (r+1 = P2k-rlPk P 2k-r (r+1
)

In the terms of (10)', this reads

(aj)k-r B

,j=l B1 1  = C11

and the invertibility of B11  used earlier now proves that therefore

(a )i k-r =Al = (at]) k-r
ij ',J= = 1 = i,j=1

(iii) The sequence Q1 ' "..' Q- connecting Q0  to Qk constructed in Example 3

depends on the particular order pI . ' P k in which we have chosen to write down the

k zeros of Pk " If (Q;) is the sequence corresponding to the orderina P',

then o°n P2k+1 iff the two sets {Pr+ ... , p ) 
and 1 ..... o'

thn r =Qr -n ~+ r+1'" k -- r+
coincide. Indeed, from (14), Qr Q' on P2k+1 iff

r 2+

A2 1 + A2 2B2 1B1 1
-  

= A' + A' B' (B' )-A21+ 21 22 21 11

Now, obviously, Ai, = , - (15) makes this quite explicit, hut it is clear anv,wa

since Q0 does not depend on the order in which we write down the itprpolation pM-at, -

and A2 2  is invertible, e.g., by (16) . Thus, Q' 
= 

Q on P iff

r 2k+1

-13-



-1 -1
: 13'( 1) - 13 11 3 0 • Let 1,, t! ,." r- ,

21 11 21 11

Then, on nartitioninq H a T is in (10)', wO -7e !

D' : +3 D , B

211 1111 121 21 12 1 21

-1

( " - B S 13

11 21 21 11 12 1
-I

- B21"11 22 '21 2 1B11(11'11 "12'21

-1
= 2B2 - 21 11B12*[21

")w n)te that n,22 B 21B1 1 B12 is the lower riqht iiainai- halo: obtained ),v ilock .

elinination appliei to B , hence is invertible (sin,', e i'). Ti co'cluio '.at = 0

iff 21= 0 , and that says that If permiates the first i cri-ns of ! ainf-;

themselves.

(iv) Finally, we observed earlier that the collection of ill soner pro ) ectors ,

order (k,k) on P2k+1 forms a linear manifold or hyperplane of inen:ion k'k+) 2 .2

now show that this linear manifold is spanned by the parti,7ular ssuper rroecturs '.

introduced here. Precisely, we show that the collection o ill 3super projectors of orler

(k,k) on P 2k 1 is the affine hull of the 1 + k(k l)/2 particular projQ,7tors

QO' Q11...Q1k'Q22 .... Q2k'Q33 .....

with Q0 collocation at all the zeros (pi) of k , while, for 1 r < k

is given by orthogonality to Pr and matching of function value; .t th, k-r points

' ' -I' Ps+1 .I p Here, (P) are in any pai - ila r 'rler; I; fIct, in the

left ition of 'r.s I thi rl-r could even change with r thh not 'it . To r

the asertion, i
t  

is sf if nt to shnw tht the k(,+1)/1 1 inir m ;-;

map; on P
2
<I an! f )r ton;-, it j; ";:art,' ' ',ihit i t , Pl I

ir i > , r: t I -I s

-' 1-



since this insures that the matrix (p..i (9 Q - 0 )x .j is upper triangular with nonzero

diagonal entries (using the ordering 11,12,. ..,lk,22,. ..,2k,33,...,kk ), hence invertible.

(We are using here the standard argument whereby the sequence (y5 ) in a linear space is

linearly independent iff there exists a corresponding sequence (Vr) of linear

functionals on that space for which the matrix (V y ) is invertible.) First, pick x]i

P2k+l-i' all i,j . Then, since Q rs forces agreement at k-r points, it agrees, by (ii),

with Qoon P2k+1-r and so V j (Qrs-Qo)xij = 0 for 2k+1-i < 2k+1-r , i.e., for i > r

no matter how we pick Pij . Further, pick P..: f '-+ f(P.i) , all i,j .Then, as both

Q0and Qrs match the value at piwhen r 4 j jO s, we conclude that pj(Qrs Q,)x ij

o also for i = r and j > s (>r) . Finally, we claim that 0 i (Qij--Qn)xij if 0 . For,

othewis, Qip~kl-iwould agree with P2k+l-i at p., "". pk as well as at the

linear functionals f - fP 1 f , r=1 ....i-1, i.e., Qjwould agree with Q i_,i at

P2k+l-i and this would contradict Mi.

Finally, up to this paint, this section has been concerned with ssuper projectors of

order (k,k). But we think it worth recording a version of Lemma 10.1 for ssuper

projectors Q of order (k,n) , 1 4 n 4 k , along with a corresponding corollary concerning

the k linear functional$ q*) associated with Q

ZLina 10.2 The conditions

(17) fkj= 0 with f kj:= Pk' 1 - k-n+j-1 a ,
-kj kjr=1 j-1,rpk-r j ... N

establish a one-to-one correspondence betwen ssuper projectors Q of order (k,n) on~ Pk+N

N ;P n, and lower trapezoidal matrices

(ig )aq1) k ,rwith ar = 0 for k-n+g < r 4 k

in terms of linear functionals (q )k~ associated with Q via (3), the ssuper

projector c.riterion (9.4) may be expressed as



rI

an! Te ml 10.2 7ay be re stateI d,

Corollary The linear functionals de-f I

n k+,N ' N;n , iff the two blocks of the -p -

B )( 
*kxk with h. := jPk-i-i'

cNkJ

(whose transpose .ecribes the action of the functiona a " . . .

.... P' Pk ... k+N1
) 

of Pk+N ) satisfy

CB
- !  

= - A ,

where the matrix A = (ai)
N-

1
o  as the lower tr 

1
i

functionals define distinct ssuper projectors precisely t' t t , .p "

corresponding matrices A are distinct.

Proof. Q is a projector onto P. iff T is nonsingulir. . .

(k,n) on "k+N iff the matrix A of (18) is connected wit - - . .

element of the assertion C - AB 0 is found by apply} i: , t r 7'

-1*
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