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STGNTIFICANCE AND EXPLANATION

In recent vears a vast amount of literature has been written on

singqularity and eigenmode expansion methods (SEM and EEM). The main practical

wurpose is to :rodace a theory which allows us to identify a flying (or
staticnary raro t) from the obscrved transient field scattered by the
target,  inis :reblem is discussed in the present report. We describe 1)
the basi- starting telors of the engincering apnroach to the problem, and
the extoent to which they are consistent from the mathematical point of
view; 2) the matorial which has been rigoronsiy stablished in the field

Ly the writer and other anthors; 3) the importunt points in pracrice, and

2Y the unsolved marhematical problems 1n the ficld.  The results presented
ma' probably save offorts by other scicntists and engineers since the
results demonstratre rhe kind of rescarch that can be used in practice and

“ind which i of mastly theorctical interest.
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THEORETICAL AND PRACTICAL ASPECTS OF SINGULARITY
AND EIGENMODE EXPANSION METHODS

*
A. G. Ramm

§l. Introduction. !

Vast literat:re has been writtcen on singularity ard eigen-
mode expansion methods during the last decade. Engincers ard
physicists stimulated interest in the subject (see [1], [2],

[3] and references given in this review). DMathematical analysis
of the problems was initiated in [4], [5] and was pushed copr-
siderably further by M. Agranovich (see [1]). Nevertheless

many questions in the theory are cpen and of considerable interost
to engineers and mathematicians. The purpose of this paper can

be summarized as follows: We are going to explain in a simple

way the principal features of the singularity and eigennmode
expansion methods and to formulate explicitly 1) what has baen
vsed by engineers with proof, 2) what is important for practice,
3) what has bzen rigorously established and 4) what aro the

unsolved mathematical problems in this field.

*
Address: Department of Mathematics, University of Michigan,
Ann Arbor, MI 48109.

Sponsored by the United States Army under Contract No. DAAG29-75~-
C-0024 and the Air Force Office of Scientific Research under
F4962079C0128.




Cious gl o e

The main results obtained in scalar wave scattering thcory y
were gencralized to electromagnetic wave scattering without
much difficulty. That is why and alsc for simplicity we restrict
ourselves by the presentation of the theory for scalar wave

scattering.

w
[\

. What are singularity and eigenmode expansion methods

{SEM and EEM)?

l. What is EEM?

Consider the problem

(v2 + x%u=0 in 9= D, k% >0, (1)
!‘. ulr =0 , (2)
u = ug + v =exp{ik(n;,x}} + v (3)

and v satisfies the radiation condition

av
9x

- ikv = o(lxl-l) as |x] » o, (4)

Here T 1is the smooth surface of a finite obstacle D.

If we look for a solution of (1) - (4) in the form

xt
4wryt Fieyee, Txt i< -t ()

( explikr_ )
{
J
]

i

TS S e T L N N T oy e I




then

)
A(kK) £

1

st 1 = o
T f(t) at = uo(s), s e T. (6)

; ' I exp(ikr
st

I\

The EEM method can now be explained as follows. Suppose that

the set of eigenvectors of operator A(k)

A(k)¢j = lj(k)éj ' (7)

forms a Riesz basis of Lz(r) . This means that any g € H

can be expanded in the series

2 2 2
cy hall® < I 951" < ey llgll®s e >0,

j=1 3|

where ||g|| is the norm in LZ(F). The inequality (9) substi-
tutes the Parscval eguality for orthonormal bases. A complete
system in H does not necessarily form a basis of H (example:

H = L2[0,1], the system ¢j(x) = xJ, j =0,1,2,...: Not

every ¢ € L2[0,l] can be expanded in the series g(x) = 2;=0 gjxj.

If the assumntion made is true, then eguation (6) can be

solvaed by the Picard formula

f(s) = -




where the coefficients are uniquely defined by the eguality

u, = 7 ou ¢ (11)

This method of solution of the scattering problem (1lj-(4!
is called EEM. It was used without mathematical analysis
by en¢ineers 11, [3}. The yuestions, which immediatcely
arisc, can be formulated as follows: 1) 1s it truc that the
nonselfadjoint operator A(k) has eigenvectors (e.g. Volterra
operator has no eigenvectors); 2) Is it true that the set of
eigenvectors of A(k) forms a Riesz basis of H; 3) suppose
that the set of eigenvectors (= eigensystem) of A(k) does
not form a Riesz basis of H. 1Is it true that the root system

of A(k) forms a Riesz basis of H ?

Let us explain the root system. Let A be a linear operator

na

on H ¢ = A, ¢ # 0. Consider equation Apy -Ar¢; = ¢. If
this e~z=zticn 1s solvable, o1 is called a root vector of A
corresponding to eigenvalue ) and eigenvector ¢. If ¢1 exists
consider equations Adp “Adyp = by 14 k > 1. It is known (7]

that onlya finite number r of root vectors ¢pree-0d,. associated
with ¢ exist. The chajn(¢,¢l,...,¢r) is called a Jordan chain
with the length r + 1. The union of al) root vectors of a

linear operator A corresponding to all eigenvalues of A 1is
called the root system of A. It is well known from linear algebra

that the eigensystem of a nonselfadjoint operator may not

form a basis. For example if the operator A is an operator
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in ]R2 with the matrix A = ( ) ., then A hLas only one

0 1
eigenvector so that the eigensystem of A does not form a

basis of IR2. It is also known that the root system of any

linear operator (matrix) in IR" forms a basis of IR". Of
course in IR" any basis is Riesz basis. 1In a Hilbert space
(infinite dimensional space) this is not true. For practice

it is important to have affirmative answors for questions 1)
and 3). 1Indeed, if the eigensystem of A(k) does not form a
Riesz basis but its root system forms a Riesz basis of H, then

it is still possible to solve equation (6) using the root

system of A.
2. What is SEM?

In order to explain what SEM is, consider the problem

0 in Q; uh,= 0; ul,g =0, ul._4= flx)

utt -~ Au

where £ € C; (a smooth function which vanishes for large |x|.

If G(x,y,—pz) is the Green function of the problem
(-A + pz)G = §(x - y) in @, G]r = 0, Rep >0 (13)

then the solution of (12) can be written as

1 C+ jeo _
u = 57 f _ exp(pt)u(x,p) dp, (14)
C =30

Py A P P AN AR ey ey

(12)
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where

T(x,p) = [ Glx,y,-p2) £(y)dy (15)
0

Suppose that G(x,p) is meromorphic in p on the whole
complex plane p (this is actually true [8]-[12])) and suppose

the following estimate is valid

C

[u(x,p)| < ————
R i l+|p|a

, &a >1/2, c=const.> 0, Rep > -3,
(16)
{Inp| > N, .
: where A > 0 1is arbitrary.
This estimate follows from the Lax-Phillips result [12]
and the argumcnts given in [9]), [10], [13}. Under the assump-

tions made, the contour of integration in (14) can ba moved to

the left and one gets

N
! u= ) c.t?3 exp(Pt) +o(exp(-Re pyt)) (17)

where pj are the poles of G(x, vy, -pz), bj are the mul-
tiplicity of the pole pj. Expansion (17) is called the SEM
expansion. Actually such expansions were krown for a long time
for various concrete problems of mathematical physics (especially
in cascs when the solution can be represented explicitly in

the form of series). The main difficulty is to prove estimate
(16) which allows us to move the contour on integration in (14).

Tf only the mermorphic nature of u(x,p) as a functin= of
Y l




is established, then no SEN <ipansionrs of the type (17) can
be proved in general because there is a possipility that poles
e, i”n with very small €, > 0 and very large <, can
exist. The gencral Mittag-L®ffler representation can not be
applied for derivation of SEM expansion (17), beccause this
representation uses special system of expanding contours, wnile
the derivation of (17) requires the possibility to move our
particular contour ({c —ia, € +ix) to the left. From a prac-
tical point of view, the SEiM expansion is used at present
according to the following scheme:

Suppose that only a few terms in (17) are essential, e.qg.

3

in experiments the transient field u(x,t) is wmeasured and

1-3. This will be true if |Re pjl »> Rep for j > 3. Then

each pj, 3 =1,2,3 is determined. It is assumad that the
location of these complex poles of the Green function G(x,y,—pz)
can ¢ive information enough to identify the obstacle (the
scatterer D). This assumption has nct been backed theoretically.
Nevertheless, if there is a finite set of scatters (say flving
targets) it is possible to bheliecve that a one to one corve-
spondence can be established empirically betweea Lthe scattorers
and the corresponding counlex poles.

An interesting invorse preobla.r can ke formulated in con-

t‘.—l J omaunt Ol g

nection witn

Inverse problem: CGiven a sot of conpt-u

Re IJj < 0, is it poosihice Lo fFind o ecotioo

Green functico:

{Pj Y2 poes the




What restrictions must be imposed on the set {pj}, Re ”j < 0
in order that this set will be the set of complex poles of the
Green function of a scattexer?

If the scatterer is a star-like body and the boundary con-
dition is the Dirichlet condition then the set {p.} st
satisfy the condition |Re pjl >a 1ln |Im pjl + b, a>0 [12].

It seems that no other information on the problem is available.

From a practical point of view this problem may not be so
important as it seems. First, only a few complex poles are
available. It seems hopeless to make any general conclusions
about the scaterer from this information without severe restric-

tions on the set of scatterers. (For example, if it is apriori

known that the scatterer is a ball, it is possible to determine ]
its radius from the above information.) That is why this author
thinks that from a practical point of view in order to use the

SEM for identification of scatterers it is more useful to work

out tables of responses of the typical scatterers, then to try g
to develop a theory of the posed (which is very interesting

from a theoretical point of view) inverse problem.

(VS ]
.

The following guestions arise naturally in conuection
with the EEM and Sz motheds:

1) Does the root systen of the integral operators in
raction thosry (o.q. opavatorlform a Riesz basis of H?

2) W 4 oowhn ronr svrber caineide with the eison-
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3) Do the complex poles of the Green function depend
continuously on the obstacle? 1In more detail: suppose that

1<t < 1 are parametric equations of

2) 1752
rv y.= Xj(tl’tZ) + ezj(tl,tz), 0 < tl,t2 <1, 0<g <1
are parametric equations of the surface of perturbed scatterer.
Let us assume that xj(t), zj(t) € CZ(A), t = tl,tz, A=

{t; < t;.,t;, < 1}. Let us fix an arbitrary number R > 0 and

let Py l < j < r(R) be the complex poles of the unperturbed
Green function which lie in the circle |pj| < R. Let pj(e) !
be the complex poles of the perturbed Green function. Our

question can now be formulated as follows: is it true that

p(e) » p., as ¢ » 0, wuniformly in 1 < j < n(R) provided

J
that the numeration of pj(g) is properly done?

4) How can one calculate the complex poles?

5) What are sufficient conditions for the validity of SEM

expansion (17)?

6) 1Is it possible to calculate complex poles via calcula-

tion of zeros of some functions?

§3. What has been rigorously established in EEM and SEM methods?

In this section we give answers to questions 1)-6) of

Section 2.3. ©No proofs will be given but the results obtained

will be formulated and references will be given. Proofs are




omitted for throe rceasons: 1) they are difficolt for enginocers,

2) they are loug, and 3) they can found in the cited papers.

1. In order to formulate the answer to qguestion 1) of Secticon
2.3 we must explain what a Riesz bhasis with brackets is. Let
{fj} be an orthonormal basis of H, {hj} be a couplete and
rinimal system in H. (A complete systom {hj} is called minirmal

if the systenm {hj}\\hk is not complete for any k, k =1,2,3...

In other words i{ we romove any element hk of ocur system, we
obtain an incomplete system). Let ml <M, <. be an arbi-
trary increasing sequence of integers; Fj is the linear space
with the basis {f . £ veoo,f te Ii. 1is the linear
m. me 41 "m,-1"' ]
-1 ) 3
space with the basis {hn ,...,hm _l} . Suppose that thove
"1 3

. . . . =) . -
exists a linear bouncdced operator B  with bounded B 7, delined

on all 1, such that Bﬂj = Fj' 3= 1,2,... . Then tue sysvem
{hj} is called a Riesz basis of H with brackets. ‘fhis defi-
nition is equivalent (scc [141) to the following. Let P. be

projectors in H onto 1.. Suppose that for any f € 1,

2
e; 1£2]]

e~ 8
[

(PO IRPe

then the system [hj] is called a Riesz basis of B wi

s
-
-
—
—_

brackets.
It is provard that thoe root system of opriroator MK see
i <

formula (6)) forms a RWirsz bosis with brackets [6).  The sanme




is true for the operator arising in the exterior Neumann

boundary value problem {1}, [6]. The same is also truec for the

electrodynamics scattering problem [1].

2. If the integral operator of the diffraction problem is
normal then its eigensystem coincides with its root systen.

This is the case in the problem (1)-(4) for a spherical surface

I and for a linear antenna. First this was observed in [5].

An operator is called normal if A*A = AA*, where A* is the
adjoint operator. The condition AA* = A*A is the condition on

I' provided that the kernel of the integral operator A 1is given.

(see [5] for details).

3. The answer to question 3 from section 2.3 is affirmative

(see [6] for details).

4. A general method (with the proof of its convergence) for
calculating the complex poles of the Green's functions in 4if-
fraction and potential scattering theory was given in [4], [15]
(also see [6]). The method can be explained for the problem
with the impedance boundary condition

2 2 _ . u
(V" + k" )u=0 in ¢q, N h\:lr =0 (18)

wvhere h = const.» Re h > 0, N is the outer normal to I .
We look for a solution of the problem without sburces in the

form

PP




_ expik jx-t[)
u ‘r Sl y(t) at . (19)

From (19) and (18) it follows that

c = Qo , (20)
where
exp({ikr ) exp(ikr )
Qo = I = s——>5- o(s)ds - h J ——25 o(sias (21
T t st r st

Let {¢.} be a Riesz basis of H = Lz(r),

= - S 22
o5 Xj=1 g 9y (22)

Substituting (22) in (20) and multiplying by Qi in H we

obtain:

Dy P30y T 0 Lo L SNy by (0 =655 - (Qege 6y (23)

This system has nontrivial solutions if and only if
det bij(k) = 0. (24)

The left -hand side of (24) is an entire function of k. Let

kéN) be its roots. Then there exist the limits lim kéN) = km
N o

and km are the poles of the Green function corresponding to
the problem (18). Morcover, all the complex poles can be obtainzad
by this method. Proofs are given in {41, [13], [6]. From a

practical point of view there are two nontrivial points in per-

-12~
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_forming this method. 1) calculation of bij(k) by foruula
(23) and 2) numerical solution of eguation (24). Ffor both
) steps there are methods available in the literature on

nunerical analysis.

5. Sufficient conditions for the validity of SEM expansion

(17) were given in Section 2.

6. The set of the complex poles of the Green function of
the problem (1) - (4) coincides with the set of the complex

zeros of the eigenvalues pn(k) of the operator A(k):

A(k)¢n = pn(k)¢n, n=1,2,... . (25)

Indced, let G = BLELX% + ..., 1i.e. z 1is a pole of the Green ;

{(k-2) f
function G, G]F = 0,

exp(ier )
r m Xy
_ 36
M = N

’ |

reper>

Multiplying (26) by (k - z)r and taking k » 2z, we get

f glx,t,z) -"’-%Lﬂ at = o, X €T . (27)
r t

The kernel R(t,y) is degenerate. Thus a function ¢ § 0 exists

suiich that

[ e L

' [ glx,t;z) o(t)dt = 0 (28)
T

w}3-
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This means that k = z is a zero of somne of the functions

(). Conversely, if ¢ } 0 is a solution of (28), then

gl(x,t;z) plt)dt {29)

—
—y

is a sclution of the problem

(92 + 22)u =0 in ¢

1l
o

Y, u]r (30)

with the outgoiny asymnprotic at infinity. Hence u sz 0 in Q
. . . 2 .
if =z is not a pole of G. Since =z is complex , u(x) = 0

in D (as a solution of the homogencous interior problem).
By the boundary value jump relation = 0. This contradiction
proves that z is a pole of G. A variational method for cal-
culation of eigenvalucs of nonselfadjoint compact operators

is given in [6].

4. Open problems.

1) The inverse problem foruwlated in Section 2 is of
interest. It is very interesting to have partial answers:
what information about the geometry of a scattorer can bo
obtained from the locaticn of the complex polos.

2) fThere is a conjocture [3] that tue comilex poles of
the Green function of tnc problem (1) -{4) for 2 convex smooth
compact boundary are simple. It would be interesting to prove

it or to give a counteraxampla.

-14-




3) It vould be interesting to perform nvmerically mothod
describoed in Section 3.6 in some proctical problems.

4) In [16] some properties of the purely real poles Re p. < 0,
Im pj = 0 werc established. It would be interesting to tell

wnat information about the geomctry of an obstacle can be

—

obtained from the location of the purely real poles. In the physics

y—
.

literature the complesx plane k = ip is usually used. On this
plane the purcely real complex poles are purely imaginary,

Re k. = 0, Im k. < 0.
J J

-16-
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