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SIGNIFICANCE AND EXPLANATION

In recent ,,.eirs a vast amounit of literature has been written on

-inqiularit,, arid eiqorimode expansion methods (SEM and EEM). The main practical

;)ros sto rodiice- a the-ory which allows us to identify a flyinq (or

static~nr., '<r t) from the observed transient field scattered by the

tAri r . -rhlcm is discussed in the prcs -ent: report . We describe 1)
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vi iw; 2) the mat, ri -,I whic-h h,is been rlirjrroirs i %, , stabl Iished in the f ield

b~y the writer and ot-her aithors; 3) thec imr .o .it points it n rictice, and

4th11( InnIS' I Ved Mithe(ma1t i Il rI rob emc in thne fi-ld. 'Ihei rsiil Vs ~reserited

mi.- :robi ly save- .ffror ts rv tlior s, 1 s nd enq lii o-rs since-( the

r n adm-1r at ri t( thei( i rid of r-osc; r~h tha4t an be, used in riact-i cc and

* t~j(..i(; .~'irh i of mostl,; thIroti -ol inhtrest . -
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THEORETICAL AND PRACTICAL ASPECTS OF SINGULARITY

AND EIGENMODE EXPANSION METHODS

A. G. Ramnm

§. Introduction.

Vast literatire has been written on singularity ar.d eigen-

mode expansion methods during the last decade. Engincers ard

physicists stimulated interest in the subject (see [1), [2),

[3] and references given in this review). Mathematical analy'sis

of the problems was initiated in [4], [5] and was pushed cor-

siderably further by M. Agranovich (see [l)). Nevertheless

many questions in the theory are open and of considerab]e intore5t

to engineers and mathematicians. The purpose of this paper can

be summarized as follows: We are going to explain in a simple

way the principal features of the singularity and eiq. enmode

expansion methods and to formulate explicitly 1) what has Len

used by engineers with proof, 2) what is important for practLCC,

3) what has been rigorou~sly established and 4) what are th,1

unsolved mathematical problems in this fieli,.

!*
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The main results obtained in scalar wave scattering theory

were generalized to electromagnetic wave scattering without

much difficulty. That is why and also for simplicity we restrict

ourselves by the presentation of the theory for scalar wave

scattering.

§2. What are singularity and eigenmode expansion methods

(SEM and EEM)?

1. What is EEM?

Consider the problem

(V 2 + k2 )u = 0 in 02 = IR3 D, k2 > 0 , (1)

Ur = 0 , (2)

U = u0 + v -expik(i.,x)} + v (3)

and v satisfies the radiation condition

_v - 1kv = o( jxj - ) as Ixi 1 (4)

/{ere r is the smooth surface of a finite obstacle D.

If we look for a solution of (1) - (4) in the form

u u 0  4 r>t f(t)dt, r xt x - ti , (5)
xt

-2-



then

A(k)f H ( rs t  f(t) dt = - u0 (s) , s 6 F. (6)
I st

The EEN method can now be explained as follows. Suppose that

the set of eigenvectors of operator A(k)

A(k) j =  j)j , j = 1,2 ..... (7)

forms a Riesz basis of L2 (r) H. This means that any g e H

can be expanded in the series

g 1 g , (8)
j=l J

and

c 1  . Igil2 < C2 g2 1 > 0 , (9)
j=l

2
where jlgl is the norm in L (I') The inequality (9) substi-

tutes the Parseval equality for orthonormal bases. A complete

system in H does not necessarily form a basis of H (example:

H = L 2[0,11, the system x) = xi, j = 0,1,2,...: Not

every g e L 2[0,1] can be expanded in the series g(x) = J=0 gx

If the assunption made is true, then equation (6) can be

solved by the Picard formula

(0 U
f(s) = - " _ _ j(s) (10)

j=l Xj(k)

-3-



L

where the coefficients are uniquely defined by the equality

0.)

u0 = Uop (11)
j=l jl

This method of solution of the scattering problem (i)-(4)

is called EEM. It was used without mathematical analysis

by on(jineers f1, 131. The questions, which immediately

arise, can be formulated as follows: I) is it true that the

nonselfadjoint operator A(k) has eigenvectors (e.g. Volterra

operator has no eigenvectors); 2) Is it true that the set of

eigenvectors of A(k) forms a Riesz basis of H; 3) suppose

that the set of eigenvectors (= eigensystem) of A(k) does

not form a Riesz basis of H. Is it true that the root system

of A(k) forms a Riesz basis of H ?

Let us explain the root system. Let A be a linear operator

on H Aq = , # 0. Consider equation AI -AIl = q. If

this P,-utis. Is solvable, Oi is called a root vector of A

corresponding to eigenvalue A and eigenvector @. If exists

consider equations Ak -Xlk = k-l', k > 1. It is known [7]

that otily a finite number r of root vectors 1. ' '; r associated

with , exist. The chain(,,,,qlj...,"()r ) is called a Jordan chain

with the length r + 1. The union of all root vectors of a

linear operator A corresponding to all eigenvalues of A is

called the root system of A. It is well known from linear algebra

that the eigensystem of a nonselfadjoint operator may not

form a basis. For example if the operator A is an operator

-4-



2 with the matrix A ( , then A has only one

0 1

eigenvector so that the eigensystem of A does not form a

2
basis of IR . It is also known that the root system of any

linear operator (matrix) in IRn forms a basis of e . Of

course in e any basis is Riesz basis. In a Hilbert space

(infinite dimensional space) this is not true. For practice

it is important to have affirmative answers for questions 1)

and 3). Indeed, if the eigensystem of A(k) does not form a

Riesz basis but its root system forms a Riesz basis of H, then

it is still possible to solve equation (6) using the root

system of A.

2. What is SEM?

In order to explain what SEM is, consider the problem

- Au = 0 in Q ; U r= 0; ujt 0 = 0, utt=0 = f(x), (12)tt

where f e CO (a smooth function which vanishes for large lx1.

If G(x,y,-p 2) is the Green function of the problem

2(-A + p )G = 6(x - y) in 0, Gir = 0, Rep > 0 (13)

then the solution of (12) can be written as

c-U=2JT exp(pt) U(x,p) dp, (14)

~-5-



where

F 2
U(x,p) = j G(x'y'-p )f(y)dy (15)

Suppose that u(x,p) is meromorphic in p on the whole

complx plane p (this is actually true 181-[12]) and suppose

the following estimate is valid

1u(x,p)! < C a > 1/2, c =const.> 0, Rep > -A,
1+ p,~a (16)

jImpj > N ,
A

where A > 0 is arbitrary.

This esti-mate follows from the Lax-Phillips result [12]

and the argumcnts given in [9], [10], [13]. Under the assump-

tions made, the contour of integration in (14) can be moved to

the left and one gets

N b.-i
U I c.t 3  exp(pjt) +o(exp(-Re pNt)) (17)

where pj are the poles of G(x, y, -p 2), b. are the mul-

tiplicity of the pole pj. Expansion (17) is called the SEM

expansion. Actually such expansions were known for a long time

for various concrete problems of mathei;matical physics (especially

in cases when the solution can be represented explicitly in

the fora of series). The main difficulty is to prove estimate

(16) which allo,.:s us to move the contour on intcqratieo. 4 (14).

If only thu incrr'o rphic naztu:e of u(::,p) as a Eufncti .. f p



is established, then no SJ> i:: ,isionr of the type (17) can

be proved in general because there is a possibility that polus

-C + i, with very small c > 0 and very large can

exist. The general Mittag-Lbffler representation can not be

applied for derivation of SEM expansion (17), because this

representation uses special system of expanding contours, while

the derivation of (17) requires the possib:ility to move our

particular contour (c -im., c +iw) to the left. From a prac-

tical point of view, the SEM1 expansion is used at present

according to the following scheme:

Suppose that only a few terms in (17) are essential, e.g.

1-3. This will be true if IRe pj >> Re' 3  for j > 3. Then

in experiments the transient field u(x,t) is iieasured and

each pj, j = 1,2,3 is determined. It is assumedJ that the

location of these complex poles of the Green function G(x,y,-p 2

can give information enough to identify the obstacle (the

scatterer D). This assumption has not been bached theoretically.

Nevertheless, if there i.s a finite set of scatters (say flying

targets) it is possible to believe that a one to one corre-

spondence can be established empirically betwe the scatterers

and the correspoiidc ing cor.plex pole-.

An interesLting in,.,',-sa prob]c..t can be formulated in con-

nection with t>;i  '.-t' ::

Inverse problem: Given a s,t of cf:!-.:: .
-J

Be e . < 0, ic i.t po. - , fivG o LotK . :-, <

Green f unctic -o . r . ;i;,:T us..... .' ". . i

{}1 C' Does tn> s. u . .. .



What restrictions must be imposed on the set {p. , Re . < 0

in order that this set will be the set of comiplex poles of the

Green function of a scatterer?

If the scatterer is a star-like body and the boundary con-

dition is the Dirichlet condition then the set {p.} must

satisfy the condition IRe p91 > a In JIm Pj + b, a > 0 [12].

It seems that no other information on the problem is available.

From a practical point of view this problem may hot be so

important as it seems. First, only a few complex poles are

available. It seems hopeless to make any general conclusions

about the scaterer from this information without severe restric-

tions on the set of scatterers. (For example, if it is apriori

known that the scatterer is a ball, it is possible to determine

its radius from the above information.) That is why this author

thinks that from a practical point of view in order to use the

SEM for identification of scatterers it is more useful to work

out tables of responses of the typical scatterers, then to try

to develop a theory of the posed (which is very interesting

from a theoretical point of view) inverse problem.

3. The foliox.in7 cuestions arise naturally in connection

with the EEM and S . r[..-,thccs:

1) Does the root svste,, of the integral operators in

diffr-action thc,- r-" (o.g. oprator)forn a Riesz basis of Ii?

2) ;. ~ , : " s -o ,- i c : w.ith 1th,-, i e -



3) Do the complex poles of the Green function depend

continuously on the obstacle? In more detail: suppose that

xj x.(tlft 2), 1 < tilt 2 < 1 are parametric equations of

1, yj = xj(tlft 2 ) + Czj(tlft 2 ), 0 < t1 It2 < 1, 0 < c < 1

are parametric equations of the surface of perturbed scatterer.

Let us assume that x.(t), z.(t) e C 2(A), t = tlAt2f A =

fti - tl't2 < 1}. Let us fix an arbitrary number R > 0 and

let pi, 1 < j < r(R) be the complex poles of the unperturbed

Green function which lie in the circle fjpj S R. Let pj(c)

be the complex poles of the perturbed Green function. Our

question can now be formulated as follows: is it true that

p(C) - p., as £ - 0, uniformly in 1 < j S n(R) provided

that the numeration of p.(c) is properly done?

4) How can one calculate the complex poles?

5) What are sufficient conditions for the validity of SEM

expansion (17)?

6) Is it possible to calculate complex poles via calcula-

tion of zeros of some functions?

§3. What has been rigorously established in EEM and SEM methods?

In this section we give answers to questions l)-6) of

Section 2.3. No proofs will be given but the results obtained

will be formulated and references will be given. Proofs are

-9-



omi Lted f thre- r'.cso s: ] ) they are di.f'fi:cil t fo:" e.- i,.'c ):s

2) they are long , and 3) they cart found in the cited papers.

1. In ord'2r to fortulat.e the answer to question 1) of Section

2.3 we must explain what a Riesz basis with brackets is. Let

{fj} be an orthonormal basis of H, {h be a complete and

minimal system in H. (A complete system {hi} is called miniral

if the system {h.} \hk is not completo for any k, k = 1,2,3...

In other vwords jL7 we rei!ove any clement hk of our system, we

obtain an incomplet,- system). Let 1I < M2 < ... be an arbi-

trary increasing sequence of integers; F is the linear space

with the basis {fj_ f i. fm. H. is the linear

space with the basis (h m , ,hm } Suppose that there
i-i-]

exists a linear bounded operator B with bounded B , efCned

on all H, such that Bi F , j =-2.........hen t:c svs'em

{ h. 1 is called a Rie!;z basis of H with brackcts. This defi-

nition is ecluivalent (see [141) to the folloinq. Let P. be

projectors in II onto Ii.. Suppose thvit for any f C H,

Ci If 2  <) 2 f>2 2 0

j= J < c 2  
f  >

then the system [h] is called a Riesz basis oP H wit

brackets.

It is -rov:d thtl thi root system of op,-i-or 1, (k) (see

formula (6)) f;r-- s Pie:-z b ,-is wit h bracket s [61. Tie same

: -10o-



is true for the operator arising in the exterior Neumann

boundary value problem [1], [6]. The same is also true for the

electrodynamics scattering problem [1].

2. If the integral operator of the diffraction problem is

normal then its eigensystem coincides with its root system.

This is the case in the problem (l)-(4) for a spherical surface

r and for a linear antenna. First this was observed in [5].

An operator is called normal if A*A = AA*, where A* is the

adjoint operator. The condition AA* = A*A is the condition on

r provided that the kernel of the integral operator A is given.

(see [5] for details).

3. The answer to question 3 from section 2.3 is affirmative

(see [6] for details).

4. A general method (with the proof of its convergence) for

calculating the complex poles of the Green's functions in dif-

fraction and potential scattering theory was given in [4], [15]

(also see [6]). The method can be explained for the problem

with the impedance boundary condition

(V2 +k 2)u=O inu huIt = 0 (18)(2+ k u = 0 in 2- u(8
aN

where h = const., Re h > 0, N is the outer normal to r

We look for a solution of the problem without sburces in the

form

* 11

a



f exp(ikx-tL) (t) dt (19)

From (19) and (18) it follows that

a Q , (20)

whe re

Q F exp(ikr st) ( exp(ikr st)
Q = rN t  2rst os)ds - h r 2 1frst (s~ds (2)

Let {O.} be a Riesz basis of H L 2(r),Jl

N
oN Ij=l c. j (22)

Substituting (22) in (20) and multiplying by 0 . in H we

obtain:

N
= 1 b. (k)cj = 0, 1 < i < N ; b ij(k) =6i - (Q4j, 1.). (23)

This system has nontrivial solutions if and only if

det b.j (k) = 0. (24)

The left -hand side of (24) is an entire function of k. Let

k(N) be its roots. Then there exist the limits lim k(N) = km N- m rM

and k m  are the polhs o5 the Green function corresponding to

the problem (18). Moreover, all the complex poles can be obtainD5

by this method. Proofs are given in [41, [15], [6]. Prom a

practicri_! j,,t of viov; thurc ire two nontrivial points in per-

°- -12-



forming this method. 1) calculation of b. (k) by forj.-ul,.

(23) and 2) numerical solution of equation (24). For both

steps there are methods available in the literature on

numerical analysis.

5. Sufficient conditions for the validity of SEM expansion

(17) were given in Section 2.

6. The set of the complex poles of the Green function of

the problem (1) - (4) coincides with the set of the complex

zeros of the eigenvalues pn (k) of the operator A(k):

A(k) n = Pn(k)d n, n = 1,2,... (25)

Indeed, let G - R(x,y) + ... , i.e. z is a pole of the Green
(k-z) r

function G, GIr = 0,

exp(ikrxy)

G = g - fg (xtl) p (t,y,k)dt, g = 4Tr (26)
r xy

aG
N -Nt

Multiplying (26) by (k - z)r and taking k , z, we get

g(x,t,z) aR(t y) dt = 0, x e r (27)

The kernel R(t,y) is degenerate. Thus a function ¢ 0 exists

such that

fr g(x,t;z) O(t)dt = 0 (28)

-13-



This me ans that k z is a zero o, some of the nc" i ois

(k) Conversely, if I¢ . 0 is a solution of (28), thcmn

U =  g(>:.t;z) )(t)Cdt( 9

is a solution of t.he probem

2 2( 2 + z2)u = 0 in 2, uii = 0 (30)

with the outgoing asymptotic at infinity. hence u 0 in

2
if z is not a pole of G. Since z is complex, u(x) r 0

in D (as a solution of the homogeneous interior problem).

By the boundary value jump relation F 0. This contradiction

proves th-.t z is a pole of G. A vri ational method for cal-

culation of eigenvalues of nonselfadjoint compact operators

is given in [6].

74. Open problems.

1) The inverse problem foriu-1Iated in Ser'tion 2 is of

interest. It is vary interestino to have partial answers:

vwhal information about Lae geometzry of a scatLcrer can be

obtained from the locat:icr of the corplex polCet.

2) There is a conjectire [3] that. tlie com.-lex poles of

the Green function of the problen' ( 1) - (4) f-or a conve' srmoDoth

compact boundary arc" sirple. It would he interesting to prove

it or to give a countercx;mple.

-14-



3) It',:o,,,ld he intoresL.-xng, to) puirorm numcrically mjt"I'-o3!

descrJb.-.,d .in Sec~bion 3.6 in some- pr~ictical problems.

4) In [16] som-ie properties of the purely real poles Re p~ < 0,

lIfni p. 0 wer.-c established. It would be interesting to tell

what informaLion about the geon;,--ry of an obstacle can be

obtainod from Lho location of the purely real poles. In thE plhysics

literature the come lilx plane k = ip is usuall y used. on th i

plane the purcely real complex po~les are purely imaginary,

Rek. 0, lImk.. < 0.

A -15-
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