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FOREWORD

This final report covers work conducted by Coordinated Science

Laboratory, University of Illinois. The work was performed under Contract

F33615-78-C-1559, Project 2003, Task 03, Work Unit 41 for the U. S. Al;

Force Avionics Laboratory, Wright-Patterson AFB, Ohio 45433. The Air

Force technical monitor was Dieter J. Schiller (AFAL/AAT-2).

The research covered by this report was conducted during the period

1 February 1979 tp 30 September 1979. The report was released on 10

December 1979.
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SECTION I

INTRODUCTION AND SUMMARY

In February 1979, the Avionics Laboratory of the U.S. Air Force at the

Wright-Patterson Air force Base contracted the Coordinated Science Laboratory,

University of Illinois, to do a study in "Optimized Computer Systems for

Avionics Applications." The main purpose of this project is to investigate the

ccmmonalities aong the four subareas of signal processing, namely, radar,

ccmunications, imae processing, and electronic warfare; and to establish

possible common functional descriptions as the basis for a common

architecture.

An extensive search was made to list all important kernels and algorithms

in radar, communications, and imae processing. These kernels and algorithms

ware carefully analyzed with respect to their computational complexity and

identification of commonality for architectural purposes. It was discovered

that significant ccmmonalities do exist in many areas, nanely:

data compression
convolutional transform
spectral transformation
linear filtering
vector operations
2D operations
table look up and entry
cross correlation

These common areas represent significant overlap and commonality which can be

utilized in a common architecture. The details of these analyses are

presented in Section II.

We recommend the following actions to fbllow up the promising avenues we

have Identified. Efforts should be made:t



1. to carry out an in-depth study of current avionics digital

signal processing;

2. to identify and characterize avionics signal processing kernels;

3. to investigate adaptive processing techniques;

4. to evaluate and analyze image processing techniques; and

5. to investigate ccmmon ccmputer architectures for avionics signal
processing.

Details of these tasks are given in Section II.

Other interesting work done on the project is reported in Sections III

through VI. In Section III we present results on computer architecture for

finite elements. In Section IV results are given on the evaluation of signal

processing architectures. The results of a ccmparative study of avionics

processors is given in Section V. Finally, the design of a hardware system

for analyzing image processing kernels is given in Section VI.
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SECTION II

INVESTIGATIONS INTO THE COMMONALITY OF SIGNAL PROCESSING FUNCTIONS IN
RADAR, ELECTRONIC WARFARE, COMMUNICATION AND IMAGE PROCESSING SYSTEMS

During the last several years there has been a growing interest in the

use of digital signal processing in airborne radar, communication and

electronic warfare (EW) systems. More recently, interest has developed in the

use of visual image processing systems in the avionics environment. Avionics

systems are often centered around a general purpose ccmputer that performs

high level signal processing functions and coordinates the many components of

the system. In an aircraft, numerous avionics systems are operating

simultaneously and in close proximity. In the past, the trend has been to

supply a specialized digital processor, complete with its unique software

system, for each of these individual systems. This procedure has resulted in

a proliferation of dedicated processors, accompanied by very high software and

hardware development and maintenance costs. It appears that there would be a

considerable cost savings if all the specialized processors could be replaced

by one (or more) specially developed standardized processor that is capable of

perfoming all the generic signal processing functions required in the

avionics systems on board. The advantage of a comnon processor in multiple

avionics systems on an aircraft results from the uniformity in both software

and hardware development and maintenance costs. If several identical

processors were present to accommodate peak processing loads, it is likely

that overall reliability would be increased because of failure in one

*processor could be compensated by another functioning processor when all

systems are not in simultaneous use.

-3-



2.1 Generic Sig nal Processing Functions for Radar, Electronic
Warfare, Communication and Image Processing Systems

The objective of this research is to identify and characterize generic

signal processing requirements that are ccmmon in radar, electronic warfare,

communication and image processing systems. These results can be used in

future work as a basis for developing a processor architecture that can

operate efficiently in any one of the avionics signal processing environments.

2.1.1 Radar Systems

The fundamental structure of all radar systems is described by the block

diagran of Figure 1 [1]. The matched filter, the detection processor and the

post processor are usually custom built digital hardware units that are

designed to process large quantities of data at very high rates. A typical

saupling rate would be 25MHz. To achieve these high rates ECL circuitry is

often required with an accompanying high power consumption. Fortunately, the

wordlength is usually in the modest range of 8 to 12 bits, so in practice, the

high sanpling rate can be accommodated in the processors. Essentially these

units act as preprocessors for the data processing computer, which maintains

control of the entire system. It also implements high level signal processing

functions that extract further information from the recorded data files. The

high level functions include signature analysis, map matching, target

tracking, data compression, or signal enhancement through digital processing

techniques.

The digital matched filter is the heart of the entire system. It is a

baseband correlator that correlates the returned signal with a stored replica

of the transnitted waveform. Since it operates in the baseband with I and Q

channels, it is most easily characterized as a complex, programmable, FIR

-4-
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filter described by Equation (1), where h(k) is the impulse response of the

matched filter, x(n) is the input signal, and y(n) is the output signal from

the matched filter.

N-i
y(n) = h(k)x(n-k) (1)

k-O

Normally the value of N is large (on the order of 1024) so that a direct

computation of (1) is not possible at the required sampling rates. In this

case the data is buffered and the finite convolution is implemented by fast

Fourier transform (FFT) block processing. This approach brings into effect

the N log 2 N computational savings of the FFT, which makes it possible to

achieve the desired sampling rates. Since h(k) and x(n) are both complex

baseband signals, the ccmplex arithmetic of the FFT is very convenient for

this problem. Since the filter function h(k) is programmable in a digital

system, the central ccmputer can make an on line selection of the specific

waveforms that will be transmitted. The computer simply instructs the

waveform control unit to load the matched filter with a replica so the proper

correlation is performed.

An important class of airborne radars is referred to generically as

synthetic aperture radar (SAR). SAR is a technique that is used to produce

terrain images from data collected with a side-looking radar carried on an

airplane or space vehicle. The coordinate perpendicular to the flight path

(as projected on the earth's surface) is called the range. Resolution along

the range dimension is controlled by conventional methods, i.e., by

controlling the pulse length and by modulating the pulse with a two-sided

linear FM reference waveform (chirping). The problem is that a satisfactory

resolution along the flight path (azimuthal coordinate) cannot be obtained

because a small physical antenna cannot provide the narrow beamwidth necessary

-6-



for good resolution along this dimension. The synthetic array principle

overcomes this difficulty through signal processing techniques.

At regularly spaced positions along the flight path the radar transmits a

coherent burst of radiation. The echo returns are demodulated into in-phase

and quadrature (90 out of phase) video components, sampled with A/D

converters if necessary, and then stored in a recording medium. The recording

may be photographic (film) or electronic (tape, disk, or digital memory).

After the recording has been completed at N distinct positions in space, the

stored signals are combined by signal processing to create the equivalence of

a long physical array that produces a narrow beau pattern. The synthetic

array principle provides the desired azimuthal resolution at the cost of

extensive signal processing.

An important class of digital processing algorithms for synthetic

aperture radar (SAR) is based on the computational efficiency of the FFT

algorithm. The combination of linear FM modulation and spectral analysis

results in a processing algorithm that is sometimes called the "stretch"

technique. The radar transmits a linear FM modulated pulse (chirped pulse).

Wh en the return signal is mixed with a linear FM reference waveform that has

the same FM rate as the transmitted pulse, the difference frequencies that

result from targets at different ranges will be distinct constant frequency

components in the returns. If the spectrum of the mixed signal is computed,

the targets at different ranges can be resolved as distinct spectral

components. If the data is processed digitally, the spectrum can be computed

with the FFr algorithm, resulting in a highly efficient processing technique.

When radar flies past a point target in the ground patch, the return from

this point target at the N distinct pulse positions along the synthetic

aperture represents samples of an FM wavefom uhich is FM modulated by the

-7-



Doppler effect due to the relative motion between the radar and the target.

Since the frequency modulation is approximately linear FM, there is a "natural

stretchO in the recorded spls in the azimuthal coordinate. The operations

of msiing Ath a 1near FM reference waveforn and computing the spectrum of

Ue res"t can. threbre, also be used as the processing algorithti in the

aatmMlha, zoornat. systm. Since a FFT must be computed in both the range

ar WZUNLa.. x100rdin"tV, the Processing is efficiently executed with a

sUrale D FT airiUs. Iwever, since the along track modulation due to the

Dbppler *ffect is only appoximately linear FM,the 2D stretch technique is an

apprcxlmate or "miboptimalO algorithm.

s a specific eample consider the block diagrams of a synthetic aperture

radar system shonm in Figures 2 and 3. Figure 2 illustrates the analog

functions that are normally implemented in the transmitter and receiver. The

receiver output, consisting of baseband I and Q channels, is sampled and

stored in memory at each position along the synthetic aperture. Figure 3

illustrates the digital functions that follow the receiver. The 2D

interpolation, 2D FFT, and the amplitude detector are signal processors that

are usually specialized hardware units. After the basic image is formed, the

data is sent to the data processing computer for high level processing such as

pattern recognition, image enhancement, or data compression. The final image

is then displayed, rec6rded, or transmitted as required in the specific

application.

2.1.2 Electronic Warfare Systems

The basic function of many EW systems is to collect inputs from many

different RF sources, to analyze the signals in order to extract important

parameters and classify the signals into an emitter file. It is important for
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the analyzing system to extract parameters that cannot be easily varied by the

sender. For example, carrier frequency, pulse repetition rate and pulsewidth

are easily changed. But the pulse shape is more difficult to change, since it

is often controlled by the hardware parameters fixed in the transmitter.

A generic EW system is shown in Figure 4 [2]. The system consists of N

receivers, each of which has its own antenna and can be tuned independently of

the other receivers. The system discriminates among numerous sources and

attempts to acquire data from each "emitter", which is then stored in a data

bank and referred to as the emitter files. After demodulation, filtering and

amplification the baseband signals are sent to a pulse -haracterization unit.

The parameters extracted by the pulse characterization unit are used to excite

a threat detector, which then updates the information in the emitter files and

activates remaining portions of the EW system. The pulse characterization

unit and the threat detector are under control of the central 61 system

computer. The central processor also controls an energy manaement subsystem

that Implements Janming if offensive response is needed.

An imp~rtant computational task in the signal analysis processor is the

calculation of error metrics for sorting and classifying incoming signals.

Matched filtering, noise suppression filtering, spectral analysis and

correlation also play imprtant roles in preparing the raw da.a for error

metric measurement. Three commonly used metrics are the least ujaolute, least

squares and least infinite (Chebychev) metrics. These metric: are defined by

the following equations, where xi(n) is referred to as the i-th template and

w(n) is a weighting function.

-11-



0

w) 2

-4 4 .

c4 
0

.4 0 0 U

'I 0 ~ 44

-4 z~. co4 4)

'Cal4



-I

eLA(i) w(n)Ix(n)-xi(n)I (Least absolute)
n-O

eLs( - [ w(n)[x(n)-xi(n)]2]l/2 (Least squares)

n=O

eLI(i) - max[w(n)Ix(n)-xi(n)IJ (Least infinite)
n

The weighting sequence, w(n), is selected in such a Way as to give certain

data samples more or less influence on the value of the norm. For exanple,

the window may be uniform (w(n) =1 , for n = O,...,N-1 and w(n) = 0 for n

otherwise) so that all points in the observation window are given equal

importance. Or the window may be exponential (w(n) = aN- n+ 1, for

n = 0,...,N- and w(n) - 0 for n otherwise) so that the data points that occur

later in the observation window are given more influence in the value of the

norm. The choice of metric depends on the characteristics of the noise on the

incmirg signals. The least infinite metric is best for uniform noise, while

the least absolute metric is best if the noise distribution is characterized

by long tails. For example, the least infinite metric is often used when the

noise is Gaussian wite noise whose power spectral density is uniformly spread

across the bandwidth of the system. The least squares metric is appropriate

for narrow band colored noise whose energy is- highly concentrated around

preferred frequencies and tapers off rapidly at other frequencies. These

metrics can be characterized matheatically as p-nonMs that are familiar from

the theory of normed vector spaces.

The major function of the pulse %haracterization unit is to determine the

pulse shape. This can be done by detecting pulse amplitude, pulsewidth, rise

time, and fall time. Rise time and fall time can be estimated by digital

differentiators constructed as linear phase finite impulse resoonse digital

filters. Alternately, the spectrum could be computed by means of a FFT

-13-



hardware unit in order to determine the spectral content of the pulse. Since

the soectral content and the pulse shape have a unique correspondence, FFT

analysis is a viable pulse characterization technique if high speed hardware

FFT units are available. Other parameters, such as time of arrival, are not

effective for presorting and classification, but they may be important in

threat analysis. Careful analysis of pulse strength and Doppler history may

indicate the approach of hostile transmitters.

2.1.3 Communication Systems

In cmmunication systems there are many different functions that might be

implemented digitally. These include digital filtering, mixing, multiplexing,

error correction coding, and data compression (for both image and speech

signals). In general the RF sections of receivers and transmitters must be

analog because digital hardware cannot operate at high enough sample rates to

accomodate RF frequencies. After the signals have been translated to IF

frequencies or to baseband frequencies by means of analog mixers, the signals

can then be converted to digital form and processed digitally from that point

on.

Data ccmpression is one of the important functions that might be used to

reduce bandwidth requirements on a communication channel. Data compression

techniques can be classified into time domain and transform domain compression

methods. Differential pulse code modulation (DPCM) is a time domain

compression scheme that is effective for tranamitting both image and voice

signals. The basic elements of the system are shown in Figure 5. Both the

compression and decompression functions require digitally implemented linear

Predictors that function to remove the correlated signal components in the

data [31. This results in a transmission of the uncorrelated differences that

-14-
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occupy a significantly compressed dynamic range. The signal processing at

each end of the channel requires an efficient implementation of a N-th order

digital filter. It is found in practice that N=3 is normally adequate in this

application. If the data can be accurately modeled as a stationary stochastic

process, the optimal filter coefficients (ai's) can be calculated offline and

the filtering can be accomplished with time invariant filters. DPCM has been

used successfully'in time domain compression of images, although the quality

of the reconstruction is highly dependent on the exact nature of the image.

Recently, Motorola Inc. has been investigating the use of DPCM for lowering

the bandwidth requirements in hand-held two-way radios.

Transform domain ccmpression techniques are among the best known data

compression techniques because of their widespread usage in image compression

for the space programs'of the 1960's. One way to envision these techniques is

to describe then as a coordinate axis transformation which translates the data

into a domain where the signal components become decorrelated. Another

popular intepretation is that the transformation is a mechanism for localizing

the energy content of the signal, so that only the significant components are

selected for transmission. The discrete Fourier transform (OFT) is one

effective compression technique.

N-1i kjf2!n
X(k) = Z x(n)e k:O,...,N-1.

n-O

The N values of X(k) are usually computed by means of an FFT algorithm. A

typical image will have most of the energy concentrated in the low frequency

portion of the spectrum. Therefore, only a subset of the X(k)'s need to be

transmitted. At the receiving end of the channel, the inverse OFT is

calculated,

-16-



1N-1 2r2 k

1 X (n) e
x n k--O X(n)e-- n:O,...,N-1.

where X(k) is an approximation to X(k) obtained by inserting zeros into the

positions that correspond to components that were not transmitted.

The Walsh-Hadanard transform (WHT) is another well known data compression

algorithm. It functions in much the sane way as the EFT described above,

although it is a very cconputationally efficient transform because the

weighting coefficients in the Hadaard matrix contain only 1 and -1 values.

The Hadamard matrix is generated recursively from "direct matrix products,"

HN = H2 x H , N = 4, 8, 16,...

For example, H H2 2x A2 ^2

The WHT has been used in image processing primarily for 1) feature extraction,

2) bandwidth (data) reduction, and 3) dimensionality reduction.

Both the EFT and the WHT, when applied to 2D data processing, are menbers
of a class of linear operators called unitary transfoms. For most kinds of

processing, the well known Karhunen-Louve transform is optimal because it

results in a set of data in a coordinate system where the components are

uncorrelated. Unfortunately, it is computationally unviable, requiring

recomputation of the transform matrix for each new set of data. Also it does

not possess a fast algorithm. In practice the FFT and the WHT are widely used

because they are near optimal transforms that are computationally attractive.
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Two areas of extreme importance for digital communication systems are

error-correction coding and spread spectrum modulation. In essence, these two

areas are closely related through the use of specially designed PN codes in

both direct sequencing and frequency hopped spread spectrum systems. Error

correcting encoders and decoders are characterized as computationally simple

devices that consist largely of logic gates and shift registers. These

devices are usually (but not always) located toward the front end of the

system, where they are required to operate at very high real-time data rates.

Therefore, for the most part, encoding and decoding is not implemented in

programmed signal processors, but rather is implemented by high speed custom

made circuits that are becoming more and more highly integrated. In some

systems these high speed circuits may be under the control of a

microprocessor, although the microprocessor is too slow to do the actual

processing. The situation is much the sane in direct sequenced spread

spectrum systems, where primary signal processing involved in despreading is a

high speed correlation of the incoming data with the known PN modulation

function. Once phase lock is obtained, the correlation behaves essentially as

a binary demodulator. Once these issues are understood, it becomes apparent

that the functions of error-correction and spread spectrum modulation do not,

in general, belong in the system block that we have previously identified as

the digital signal processor or the data processing computer. Rather they

should be considered as integral parts of the transmitter and receiver that

are best implemented in LSI technology.

2.1.4 Image Processing Operations

Standard image processing systems input TV images, digitize the images,

and store the images in arrays, typically of 250 rows, 250 columns and with

six to eight bits of intensity for each point. In real time with a raster
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IW

rate of 30 frames per second, this is a significant number of bits per second

on which to do detailed processing. Image processing systems therefore are

designed to separate the important, significant features of an image from its

random or insignificant features. The ideal image processing systen would

describe the images in terms of objects and relationships between objects, and

in terms of the relationships between objects and the viewer (e.g., position

or location of objects, identity of type of object, velocity, size, etc.).

In order to determine a set of kernels for image processing operations, a

study was made of the functions developed for image processing tasks. At this

time it is not known what specific tasks would be required of an image

processing system in the avionics environment. It is anticipated, however,

that such tasks as landmark and target recognition, target tracking, and map

matching would be among the set of avionics image processing tasks. The

functions described in this section include many of those which are suitable

for these tasks.

2.1.4.1 Ede Detection Algorithms

Edge detection algorithms operate directly on the stored image array and

generally attempt to find significant differences between neighboring picture

elements (pixels). If enough of these differences occur locally, the

interpretation is that there is a local edge element in that part of the image

array.

-19-



The Roberts Cross Operator

The simplest of the gradient operators is the Roberts cross operator (4].

The gradient at each point is approximated from intensity levels at four

pixels in a 2 by 2 square centered at that point. The difference between the

grayscale values at the upper left and lower right of the square is an

estimate of the directional derivative along a line turned 45 degrees

clockwise from the horizontal. Likewise, the difference between the upper

right and lower left is an estimate of the directional derivative along a line

perpendicular to the first line. The square root of the sum of the squares of

these two differences is an estimate of the steepest gradient at that point,

regardless of its direction. In this computation, both differences that are

calculated are convolutions of the image array with the following two

matrices:

The most striking feature of this operator is its extreme simplicity. It

uses the grayscale values over a window containing only four pixels. Once

these have been fetched, two subtractions, two multiplications, an addition

and a square root are performed. If the gradient is being thresholded, then

the square root operation can be eliminated by using the square of the

threshold. Another application which eliminates the squaring operation simply

sums the absolute values of the results of the two convolution operations and

then thresholds the result. The simplicity of the cross operator is offset by

its extreme susceptibility to noise in the image. The small area used enables

a single noisy point to drastically change the gradient estimate at that point

resulting in a noisy gradient picture. Hence, the use of this operator is
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limited to fairly clean images.

The basic operations used with this operator are convolution and a norm

operation.

The Sobel Gradient Estimator

Sobel's [5] method for finding the gradient uses the following two

convolutions to find the x and y directional derivatives, respectively:

-1 0 1-2 -1.

The approximate gradient is then obtained by taking the square root of the suM

the squares of the x and y directional derivatives.

This gradient estimator has essentially the same advantages and

disadvantages as the Roberts cross operator. Nmely, the number of arithmetic

operations to be perfomed is small, but owing to the 3mall size of the

window, a noisy image results in a noisy estimate of the gradient. Note that

the vector of weights (1,2,1) used in the two convolution masks need only be

applied to each row and each column of three pixels only once over the whole

image. These results can then be used to evaluate the x and y directional

derivatives more efficiently. In particular, each application of Sobel's

operator can be perfbmed with seven additions, two subtractions, two

multiplications, and one square root, on the average.
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The basic operations used with this operator are convolution and a norm

operation.

The Burr Edge Detection and Following Operator

The Burr method performs gradient detection and edge tracking over a

gray-scale image in a single application [6]. It does not require

intermediate storage and subsequent thinning as in most two pass procedures.

(edge detection followed by edge correlation) Each pixel in the input image is

examined in a raster-scan fashion. There, a gradient and its orientation is

conputed based on orthogonal differences:

DX = [F(i,j+1 )+F(i,J+2)+F(i,J 3)] - [F(i,j-3)+F(i,J-2)+F(iJ-1)3
DY = [F(i+1,j)+F(i+2,J)+Fi+3,J)] - [F(i-l,j)+F(i-2,j)+F(i-3,j)]

Gradient = (DX2 + DY2 )1 / 2

Edge Angle = arctan(DY/X)

Local edge maxima are found by parabolic interpolation on three successive

gradient values using the following formula:

(g3 - g1)/(4g 2 - 2g1 - 2g3 )"

vhere the gi are the gradient values of three points in either the x or the x

direction. The coordinate of the maximum value is then found and ccmpared

with the end point coordinates. If it falls between the end points, it is

chosen as a potential edge point. If no intermediate maximum exists, no edge

point is flagged. Note that the calculation of the discrete differences is

effectively an averaging operation and smoothes the effects of spikes. If the

gradient exceeds some threshold and it is at a local maxima in the X or Y

direction, that pixel is termed an edge point. Discovery of edge points
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initiates examination of nearest-neigtorhood pixels for more edge points.

The searching terminates vhen no further edge candidates are found beyond

three neigtoring pixels. The edge points' gradients and positions are stored

in the sequence they are found.

The algorithm constrains the direction in idich to search for edge points

in the direction of the last edge found according to the computed gradient

angle at that point. Only neighborhood pixels within a fan bea in this

direction are examined. The beam width is chosen large enough to maintain

continuity of edge following in noisy images.

From a computational standpoint, this edge finder has the desirable

feature that no area convolutions are required, thus avoiding double indexing.

Instead, both the x and y gradients are evaluated using points along a single

row or column of pixels. In the most efficient implementation (applying the

operator over the whole mage), an average of ten arithmetic operations are

required per pixel plus about twenty more for every one that becomes an edge

point.

The basic operations used include table entry, thresholding, convolution,

norm and interpolation.

Compass Gradient Operators

A two-dimensional discrete differentiation can be performed by the

convolution of a 3 by 3 Compass Gradient mask over an image [7,8]. A new

pixel is computed as a function of pixels in a 3 by 3 neighborhood centered

about the pixel under consideration. The function is linear since the masks

contain integer elements. They are chosen such that their sum is typically 0

or 1, to prevent overly large gradients from being computed. The 3 by 3 masks
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given below give maximum response in eight principal (compass) directions:

1 1. T -1 1 :P, "- 1 -1 -1 -1 -7 1-1 1 1

1 1 -2 1; -2 1 1-2 1 1-2 -1 -2 -1 1 -2 -1 1-2 -1
-1 -1 -IJ -1 1 1 1 I I I-_ L -1-

NORTH NORTH- EAST SOUTH- SOUTH SOUTH- WEST NORTH-
EAST EAST WEST WEST

A similar set of masks known as 5-level simple masks more closely

approximates the partial derivatives in each of the eight directions. (see

below)

F 2 2 1 0 F 0-1 0 -1 -2 -1 -2 0_1- 1 o0 17

ol0 01 0 1i2 0 -2 10-1 0 0 -1 0 1 -2 0 2 1 0 11

Ml-2 -1L -1 -2 1L 0 -1 21 Q i2 11L L1 0 iiL2-10Pi

NORTH NORTH- WEST SOUTH- SOUTH SOUTH- EAST NORTH-
WEST WEST EAST EAST

Here, zero weighting at the center of the masks suppresses jitter along

the line near the occurrence of an edge. Computation requires only eight

multiplications and seven additions per pixel during the convolution. Usually

an edge direction map is also desired, in which case all eight directional

gradients are computed. A computational advantage is that only four out of

the eight masks need be computed. This is because the masks for opposite

directions are symmetric, and thus their gradients are opposite in sign. So

computing, say mask EAST, one can decide on an edge direction of EAST or WEST,

depending on whether the gradient is positive or negative. Another advantage

of 5-level directional masks is a characteristically higher gradient amplitude

in the diagonal directions.
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The Kirsch operator provides a further exanple of the use of a 5-level

convolution mask [9]. All eight gradients are computed for a pixel

neighorhood and the gradient of highest absolute value is chosen as the

gradient at that point. Shown below are the compass masks for this operator.

5- - - - 5-31
o--3P--3o- 5 -3-3 5 -3

-3- -3 -3 - 5 A 15 0 3' 5 0 -3- 5 -3-3

NORTH NORTH- EAST SOUTH- SOUTH SOUTH- WEST NORTH-
EAST EAST WEST WEST

If the chosen gradient is greater than some threshold, the gradient and

its orientation are saved in the gradient map. Thus a two-dimensional feature

vector can be utilized, which leads to more flexibility and reliability. For

example, edge linking using the orientation parameter can reinfbrce an edge

candidate based on the gradient. The algorithm requires eight times the

computation of a convolution using a 3 by 3 operator.

The basic operations used are convolution and thresholding.

The Wallis Operator

Based on homnorphic image processing, this method attempts to solve the

problem of detecting edges in different regions of illumination [10). The

relative manitude between the logarithm of a pixel's luminance and that of

the average of its fbur nearest neighbors (above, below, left, right) is

computed. An edge is said to exist if it is greater than some threshold.
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GKG(j,k) =log[F(J,k)]-.25*og[F(J,k-1 )]-.25*og[F(J,k 1 )]

-. 25*log[F(j-1 ,k)]-.25*log[F(j+1 ,k)1

- .25*log[F(J,k) 4 /(F(J,k-1 )*F(j,k+1 )*F(J-I ,k)*F(J+1 ,k)).

Here F(j,k) is the value of the pixel in position (j,k) of the image array.

This operation is essentially the application of a Laplacian operator to

the logarithms of the pixel values. About the sane amount of ccmputation is

required for this algorithm (8 multiplications + 1 division per pixel) and a 3

by 3 linear operator convolution. (8 multiplications + 7 additions per

pixel). In performance, it picks up detail in both shadowed and illuminated

regions. However, the edges are grainy and appear weaker due to the Laplacian

operation.

The basic operations of the algorithn are the logarithn operation,

convolution, and thresholding.

The Yakimovsky Edge Finder

In an attempt to find boundaries between areas of not only differing

brightness but also differing texture, the Yakimovsky algorithm computes both

the mean and the variance of adjacent neighborhoods [11]. In order to obtain

a statistically significant estimation of these.parameters, neighborhoods of

suitable sizes are used. Among the shapes of the neighborhood pairs used are

the fbllowing which are applied in the x direction:

L R
LLLL RRRR LL RR

111LL1 RRRRR LLLRRR
LUX RRRR L. RR

L R

khere L stands for points in the left neighborhood, R for points in the right
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neighborhood. These neighborhood shapes are rotated for application in the y

direction. A maximum liklihood estimate is computed from the sta,ard

deviations of the two neighborhoods and from the combined neighborhood. This

estimate is then compared against a threshold value for determining whether an

edge exists between the neighborhood pair.

The basic operations used in this algorithm include histogram

computation, mean computation, probability computation, and thresholding.

The Hueckel Operator

The Reckel operator identifies edge fragments in a digitized image

[12,13]. It examines a sequence of disks of pixels in the image array and

returns the parameters c,s,p,d,b which describe the best fit line in each

disk. The parameters c,s,p describe the line through the disk which separates

the region into two areas of greatest intensity difference. The line defines

a step function, F, which has intensity b on one side of the line and b+d on

the other side of the line according to the following relation.

F(x,y,c,s,p,d,b) x b if cx + sy <.p
F(xy,c,s,pd,b) = b + d if cx + sy > p

The parameters contain the slope information and step size of the line. In

addition the confidence of the line parameters can also be ascertained. The

Hueckel technique is widely used in line following strategies because it

returns line direction infomation. The large disks which are used in the

Hueckel operators make them relatively insensitive to noise in the Image.

This makes then useful on poorly quantized Images, like the 16 level pictures

that Hueclel used in his original work.
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The Hueckel operator consist of linear and a nonlinear part. In the

linear part a disk shaped window W(x,y) in the image E(ij) is multiplied by a

set of eight discrete mask functions H(p,x,y). For a window centered at ij

the multiplication is defined by:

a(n) = r H(n,x,y)E(x+i,y+j) n = 0,1,2...7

W

The disks used by the first Hueckel algorithn is quite large. The areas of

reasonable disks are 32, 52, 69, 88, and 137 pixels on a square grid. The

mask functions are the first eight functions of an orthonormal basis which

spans the space of all image functions in the window W(x,y). The masks are

weighted by the function w(x,y):

w(x,y) = sqrt(1 - r 2 ) fbr 0 r< 1
w(x,y) = 0 for 1 < r

where r2 = x 2 + y2

This function gives less weight to pixels on the perimeter of the disk W(x,y)

and thus reduces edge aliasing effects. The mask functions used in the

algorithm are given by:

H(O,x,y) = c(O) * w(x,y) * (2r + 1)
H(1,x,y) c(1) * w(x,y) * (Sr - 2)
H(2,x,y) = c(2) * w(x,y) * 3x
H(3,x,y) = c(3) * w(x,y) * 3Y2
H(Q,x,y) = c(4) * w(xy) * (x - y2)
H(5,x,y) = c(5) * w(x,y) * 2xy
H(6,x,y) = c(6) ' w(x,y) 4 4x * (2r2 _ 1)
H(7,x,y) = c(7) * w(x,y) 4y * (2r- 1)

where c(O) through c(7) are constants of normality.

The nonlinear part of the Hueckel operator determines the line parameters

<c,s,p,d,b> from the eight coefficients a(n). First the extrema of A(c,s)

must be determined.
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e0 (c,s) aa(2)c +. a(3)s
el (C,3) za(4)c +. a(5)s 2 2e 2 (c 3) =a~i ) +. a(6)(c 3 + a(7)2sc

A(c,3) z e0 +0 3ign(eo0) 0 sqrt(e, 2 + e2)2

For the c,s whiich are extrena of A(c,s), and

p a e2 /l*J41*(el + 31gn(eb) * (612 + 62 2)

d = A/3.aT'(1 - p2)2 (1 +o 2P2)

b =a(0) - d(4 + P(3 + p(2 +. p)))(1 _ P)2/8

From the c,s ,p,d ,b whkich are determined the confidence of the line is founid,

and if it is within boun~ds then the line paraneters C,3,p,d,b are returned by

the operator.

An extension of this operator provides an enhanced version of the above

algorithm. In this algoritha, lines are now specified by the seven paraneters

<CjsP 1 ,pP2j,d d2 b>.

F(x,y,c,3,pl fP2 ,dj,d2 ,b) z b if CX. +sY . P1

F(xpyvc~sp 1 9PjP2 ,dl,d 2 b) zb + d, if p1 < cx. sy 3Y. P2

F(xpyqcq3 P1 ,'P2,dl,d 2 b) zb+ d 2  if P2 < OX. s Y

This operator also consists of a linear and a nonlinear part. The linear part

is almo~st Identical to the above algorithu except that nine mask fuctions are

Used instead of eight. They have the fbllowing definition:

a(n) z E H(n,x,y)E(x~i,y~j) n z 0,1,2 ... 8

W

where

H(O,x,y) a c(O) * w(x,y) 0 ( 3r2 2r + 1
H(8,x,y) z a(8) 0 w(x,y) * (-21r + 17r - 2)
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and

H(1,x,y) through H(7,x,y) are the sane as before

In addition to being able to recognize a wider class of lines the extended

Hueckel operator also has all the advantages of its predecessor, namely, good

noise immunity, line direction information, and a line confidence measure.

The basic operations in this algorithm include convolution, thresholding

and norm operations.

2.1.4.2 Edge Following Algorithms

The edge following algorithms are ordinarily applied to edge point arrays

created by the edge detection algorithms. Edge followers link together

neighboring edges as part of the process of locating the boundaries of

objects.

Edge Linking U Position/Orientation Constraints

This algorithm is used to find groups of edges that link into approximate

straight lines (14]. It achieves this in highly textured scenes and without a

priori knowledge about the objects in the scene. The procedure is as follows:

1. Edge elements produced by the edge detector are given an x,y
position and an orientation angle.

2. The 360 degree direction range is divided into equiangular
intervals. For each interval, a list of edges is made whose
edge orientations are within a given angular tolerance of the
interval's mean angle.

3. For each interval, the coordinate system is rotated so that the
new x-axis is along the direction of the interval's mean angle.

4. The plane is divided into vertical strips or buckets, typically
three pixels wide. A list of edges is made for each bucket,
sorted by y-ooordinate.
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5. Edges within a bucket are linked if their separation is less
than a given threshold TX.

6. Edges in different buckets are linked if their orientations
agree within a given tolerance, and if their x,y separations are
below thresholds TX,TY.

7. Only those resulting segments with more than a specified number
of linked edges are retained.

The proximity thresholds TX,TY are a function of the geometry of the

initial edge detecting scheme and also of the bucket resolution. They can be

further increased to link distant edges. From this, it might be expected that

the algorithm would be very sensitive to slight variations in threshold

selection. Experiments indicate that it is able to handle a wide variety of

imges, and can be used in a general purpose boundary detection system.

The computation involves processing of isolated edges or feature

comparison with its neighbors. The computing costs are proportional to the

number of edges processed. With the small number of bucket edges to be sorted

and their raster ordering, the sorting computation is proportional to the

number of pixels.

The basic operations used are convolution (spatial transformation), table

lookup (or linked lists), and thresholding.

Bug Following Algorittu

This algorithm locates boundaries of objects in binary images. The

procedure is sequential and utilizes a single demon ("bug") to track along a

region's boundary [10]. The path taken is the desired boundary map. First, a

candidate boundary point is located and the bug is started in one of its

neighborhood pixels. It moves in the direction toward the located boundary

point and into the adjoining pixel. The bug makes a left-hand turn if the
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crossing lands the bug into an interior boundary point (black pixel). If

white, (boundary exterior), a right-hand turn is made. This causes the bug to

move in an oscillatory fashion along the boundary edge. In both cases, the

x,y location of the crossings are saved. The algorithm terminates when the

initial point is reached. The boundary crossing points form the boundary

contour.

However, there are difficulties with such a simple algorithn. Regions

with "spr" pixels (a single pixel which is diagonally adjacent to the

region's interior) are sometimes missed. This is a consequence of the

dependency of the resultant boundary map on the initial starting point. Also,

in noisier images, the bug can easily become lost. A provision to allow

backtracking and memory of preceding steps can overcme this problem. In

addition, the algorithm can be extended to gray scale images in which boundary

crossings are defined as sufficiently large differences in luminance between

neighboring pixels.

The computation required for this algorithm is a function of the

boundary' s length. The algorithm is fast due to relatively small storage

requirements and a dependency on logical operations.

The basic operations involved are indexing and thresholding.

Boundary Tracking from a Gradient Map

This algorithm is a sequential, deon-like procedure which is applied to

a non-thresholded gradient map (15]. The pixel with the largest gradient in

the image is chosen as the initial edge point. In its 3 by 3 neighborhood,

another edge point with the highest gradient value is picked. If two or more

pixels have the same maximum gradients, then an arbitrary choice is made. The
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pixel with the maximum gradient in the neighborhood of the initial point is

chosen as the second point. Then the following process is iterated. In its 3

by 3 neighborhood, the three pixels "closest" to a line formed by the previous

two edge points are inspected. The one with the highest gradient is chosen as

the next boundary point. Again, if two adjoining pixels have the same

maximum, an arbitrary choice is made. If they are adjacent, the pixel in line

with the previous points is chosen. This last constraint biases the following

to locate straight lines. As edge points are found they are added to a list.

The procedure works well for noise-free images. However, noise usually

sends the tracking way off the boundary. This can be alleviated by smoothing

the input image before tracking. A second alternative is to use averge

gradient values. Averege gradients are computed over an angular region about

the line along the previous 2 edge points. The new direction is the direction

of the largest gradient computed. The size of the bug increases and

effectively implements a smoothing operation. In general, either method is

useful in only low-noise images.

The 3 by 3 neighbJorhood bug algorithm does not require any arithmetic

computation. Its operations are limited to finding maxima and to storing edge

locations. The averaging enhancement does require the computation of

averages.

The operations used here are thresholding, indexing and averaging.

2.1.4.3 Curve Fitting Algorithms

The curve fitting algorithms attempt to find concise representations of

the edge string infbrmation, found by curve following algorithms, using

various curve fitting algorithms. The end result is a significant compression
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of the original data.

Line-Fitting by Ramer's Method

Raner [16) developed the following technique for approximating a contour

with a piecewise continuous chain of line segments. First, the endpoints of

the contour are Joined by a single line segment. Next, that point on the

contour which is most distant from the line is found. If the distance is less

than a specified value, then the line fit is satisfactory; otherwise, the

contour is approximated by two line segments from the farthest deviation to

the original end points of the contour. The routine is then called

recursively on each of the two new segments until a sequence of line segments

is generated which are everywhere within the specified distance from the data

points.

The algorithm calculates the parameters of the line passing through the

beginning and end points of the section of curve being approximated. Then for

each point of the curve, the y distance to the approximating line is computed.

This distance is simply the absolute difference between the value of y of the

line computed from the x value of the point on the curve, and the y value of

the point on the curve. The maximum y difference, ym' yields the maximum

distance, dm between the curve section and the approximating line from:

de --ycosQ
dm Z MC3

where 0 is the angle of the approximating line. for Q larger than 450, the

difference in x is caputed to yield dm. The value of dm is compared with a

threshold, and if it is less than the threshold, the line segment is used to

approximate the section of curve. Otherwise the process is repeated on the
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new line segments obtained from the point at maximum distance.

The computation involved includes a simple slope and intercept

calculation for each approximating line, and a simple difference for each

point on the curve segment. The maximum value of y is found by comparison of

these differences, and the maximum distance between the curve and the line is

calculate using a cosine function which is computed using a norm function.

The basic operators used are table entry, table lookup, the norm operator

and simple distance computation.

The Hough Line-Fitting Method

The Hough transform maps edge points in cartesean space into o -9 space

by the mapping [5]:

) Z xicoO + Y13inQ

This mapping maps each (xi,y i ) onto a sinusoidal curve in 0 -0 space. Through

this mapping every colinear point in cartesean space is mapped onto a single

point in p-4 space. This single point is the intersection of all the curves

corresponding to the points un that line. The process is done digitally by

forming a two dimensional histogram Vose coordinates are discrete values of

and 0. For each point (xiyi) 0 is varied full scale and the corresponding

bins for p are incremented. When all the points have been transfbmed, the

histogram is analyzed. Those p-0 pairs with more entries than a specified

threshold are tagged as corresponding to lines in the original image.
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Since any line can be represented as:

y = ax + b,

the parameters (a,b) can be determined directly from P-0 values from the

relations:

a = tan(G-900 ) and b = p/sinG.

One problem this algorithm has is that it does not distinguish colinear

line segments. Instead it finds a single line through all colinear line

segments. In application, additional heuristics are added to the algorithm to

tog the line segments.

The basic operations used are table lookup for the sin, cos and tan

functions, histogramming and thresholding.

Contour Approximation by Circular Arcs

Mckee and Aggarwal [17] approximate long digitized contours by a sequence

of circular arcs. The points on the contour are plotted on a graph of tangent

angle versus arc length, where the tangent angle is found from the line

segments connecting successive points along the contour, and arc length is the

sumation of the lengths of these line segments. Because of the grid

structure of the digitized images, and thus of the contour, the tangent angles

are quantized to multiples of 45 degrees, and the ensuing plot is smoothed.

This is accamplished by replacing each data point with the average of itself

and four data points on either side. If the plotted tangent angle varies

linearly with the arc length, then the contour must be following a circular
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trajectory. Hence, circular arcs in the contour can be found by locating

straight lines in the plot of tangent angles versus arc length.

The problem is thus reduced to that of fitting line segments to a

one-dimensional waveform, typically by the method of least squares. The slope

and length of each fitted line segment, Which correspond to the curvature and

the length of the arcs in the original contour, are then used as the final

representation for the contour.

The basic operations used in this algorithm include table lookup and

table entry, least squares computation and mean value computation.

2.1.4.4 Region Growing Algorithms

Region growing algorithms attempt to segment the image array by applying

a similarity measure locally to the pixels. If a given pixel is similar to

the second, it is added to the region list of the second pixel. More global

region growing is done through a series of region merging and splitting

operations Wich depend on other criteria.

Ohlander's Method for Image Segmentation

Through a series of linear transformations on the red, blue and green

images of digitized color images, Ohlander's method produces six additional

Images corresponding to hue, saturation, grey level intensity, and the

television industry standard parameters "Y", "I", and "Q" [18]. Regions are

formed by generating a histogram of intensity values for each of the nine

images, and Wherever a pronounced narrow peak occurs in one of the images, it

is supposed that all pixels contributing to that peak belonged to the same

region. One advantage of this method is that all pixels belonging to a large
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region of the picture but split into several parts by occluding objects can

still be identified as a single region. Successive histogram partitioning on

fragments of the whole picture could yield successively smaller regions when

necessary.

The main kernel used for this method of region growing is that for

compiling histograMs, as it is utilized at least nine times per scene. In

addition to this the basic operations are the computation of vector inner

products in producing the transformations, and the thresholding operation.

A Region Merging Algorithm

One method for partitioning an image into regions is to initially assume

that each pixel is an isolated region. Then, in successive stages, regions

can be merged forming larger and larger regions until all adjacent regions are

sufficiently different that no further merging is needed. An algorithm which

was developed at the Coordinated Science Laboratory efficiently determines

which pair of adjacent regions among all pairs are most nearly alike and

merges them.

Before region merging in the above manner can be carried out, the number

of regions must first be reduced from 60000, the number of pixels in the

image, to about 1000. Hence, a first pass of non-optimal region merging is

employed by a simple scanning operation. During this initial phase, every

pair of adjacent pixels are examined and merged if their intensity values

differ by less than a threshold. This threshold is increased slightly through

the course of several scans of the image until the total number of distinct

regions is snail enough to be handled by the more optimal region merging

algorithm.
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Optimal region merging is Implemented by computing a Measure of

similarity between every pair of adjacent regions and by inserting these pairs

into a queue. The more nearly alike the interior properties of the two

regions are, the nearer to the front of the queue they lie. Hence, the pair

of regions which are most similar is always at the front of the queue. When

the two regions in this pair are merged, the queue is updated by deleting all

other pairs involving the two regions just merged, typically about twelve, and

inserting the pairs formed using the new enlarged region. Hence, the number

of pairs in the queue is reduced by three or more each time a merging takes

place. The process of successive merging can be programmed to stop either

when a specified number of regions remain or when the pair of regions at the

front of the queue are sufficiently dissimilar.

The operations used here are thresholding, table entry and table look up.

The Brice and Fennema Region Grower

This method uses a pre-partitioned region map and attempts to merge the

regions so that ultimately the region boundaries confom to the natural lines

of the scene [5]. The algorithm attempts to produce a result wbich is void of

any "false" partitions caused by image quantization and noise. The use of

regions as the data type arlows global constraints to be applied.

An initial partition is constructed frcm a normal gray scale Image by

grouping pixels with uniform gray levels into regions. There are usually

boundaries due to optical effects, shadows, non-uniformities of object

surfaces, etc. The strategy of the algorithm is to merge regions according to

global criteria using the so" called Phagocyte heuristic. Then a localized

boundary strength criterion (Weakness heuristic) merges similar adjoining

regions. The Phagocyte heuristic guides the merging by smoothing and
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shortening the resulting boundary. It joins regions that are separated by a

weak boundary and if it does not grow too fast. Given two regions to be

merged the following operations are perfbmed:

1. Differences in gray scale between the two regions are computed
along their common boundary. Those with values less than a
pre-designated threshold form the "weak" boundary.

2. The length of the weak boundary in 1) is compared with the
minimum of the perimeters of the two regions. If this ratio is
greater than some threshold, the regions are merged. This is
related to how the boundary changes in length as the regions are
,merged. If it is greater than .5, the boundary must shrink; if
it is less than .5, it must lengthen.

The Weakness heuristic joins regions solely on the basis of the boundary

strength separating them. The percentge of weak points in the intersecting

boundary is computed. If it exceeds some threshold, the regions are merged.

The basic operations used are thresholding and table lookup.

2.1.4.5 Texture Handling Algorithms

Normal region growing and edge finding algorithms cannot effectively

segment a scene with high occurances of intensity changes, as would be

apparent, fbr instance, in a picture of a field of grain. Special algorithms

have been developed to deal with texture information in order to perfbrm

meaningful scene segmentation.

Autocorrelation

Almost all textures consist of an alternation between bright areas and

dark areas. Hence, one useful measure of the texture of an area would be the

periodicity of these alternations at various orientations. This can be tbund
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by computing the autocorrelation function of the grayscale values in that area

(19]. If g(x,y) is the grayscale value at coordinate (x,y) in the image, and

if N is the neigtborhood over which the autocorrelation is to be integrated,

then fbr each (ij) in N:

r(ij) x .E ,(x,y)og(x~i,y j) / E g(X,y) 2

xy xy

The values of i and j fbr which r(ij) is high indicate the approximate values

of periodicity present in the texture.

This process can be visualized as shifting a copy of the nelghborhood i

pixels horizontally and j pixels vertically and multiplying point by point

with the unshifted version. Haralick added a further refinement that only

points where the neighborhood and its shifted version overlapped would be

included, wence it became necessary to normalize the result by dividing

r(i,j) by the fraction of the area occupied by the shifted copy of the

neighborhood, i.e., the overlap.

The basic operation used here is cross correlation.

Run Length Statistics

Galloway [20] used the lengths of runs of different grayscale values to

classify textures. Four different orientations of runs were used, 0, 45, 90,

and 135 degrees. For this, each line of the specified orientation has to be

scanned, and every unbroken sequence of j pixels of intensity i is recorded by

incrementing p(ij). This histogram of various run lengths of various

intensity values was condensed down into five parameters as follows. Scaling

each p(ij) by the inverse square of the run length j and by the square of j

mphasized short and long runs, respectively. Variation in intensity values
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and in run lengths was obtained by squaring the sum over all run lengths and

intensities, respectively, before summing over the other parameter. The fifth

parameter was obtained by dividing the total volume under the histogram by the

suM of J*p(i,j) over the whole histogram. These five parameters were ccmputed

for each of the four orientations yielding a total of twenty conponents in a

vector describing the texture.

The operations used here are vector inner product and histogramming.

2.1.4.6 Image Registration Algorithms

Image registration algorithms are used to locate corresponding points in

a sequence of images. These images may be pairs of images from binocular

cameras, or successive fraes of images from a motion picture camera. The

aligment of the image pairs allows the computation of depth for the surfaces

of objects in the pairs, and allows the computation of motion information.

Image Registration (Nevatia)

The Nevatia method uses motion stereo to make a more reliable depth

measurement of a region in an image (21). There is less computational effort,

even though more than two stereo views are analyzed. The main problem is that

of correspondence, i.e. locating corresponding points in stereo views. The

depth calculation (triangulation) is more accurate for larger stereo angles.

However, the disparity, or the displacenent of the point of interest,

increases. Thus a larger area of the image has to be searched for to find the

corresponding object. This problem can be alleviated by using successive

intermediate stereo views, which do correspondence over a smaller area.
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The procedure is as follows:

1. Given a stereo angle, determine the number of intermediate
viee (K).

2. Project the monocular ray of the first stereo view onto the
second stereo view. Searching is done along this line in a
rectangle of dimension N by M using correlation by mean square
differencing.

3. In each intermediate stereo view search for the object within a
Nt./(K-1 ) neighborhood of integer displacements, but with the
last ccmputation being done in real arithmetic.

4. Use triangulation to create a depth map.

Experiments show that using a 333 by 256 digitizer, an accuracy of 2.54

mm at an object distance of 1 m can be achieved. A typical coaputation time

for this method is 10 seconds on a PDP-10, although it varies greatly on the

number of stereo views taken.

The basic operations are correlation and triangulation.

Image Registration by Template Matching

Template matching to locate objects in an image is used in landmark

registration of weather photos [22]. The eirth's disk in an image can be

aligned with that of a previous image:

1. by locating a pair of edges at the earth-space boundary,

2. by defining a slope of a chord connecting the edge pair, and

3. by making vertical adjustments to match the chords of both
mages.

This can be extended to general pictures with circular, well defined

boundaries. The idea is to minimize the difference between two features, in

this case, chord slope.
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Template matching is applied in conventional raster scan fashion. Doing

this for each pixel is too costly in computation and time, so an initial pass

is performed in "coarse" mode. Rectangular windows are convolved in such a

way that they overlap the previous one by one-half their horizontal/vertical

dimensions. A measure of correlation between this window and the template is

canputed as a "distance". It hopes to find a perfect match (zero distance)

and terminates after finding its goal. However, such a case rarely occurs and

the best candidate (one with the smallest distance) does not always correspond

to the true position. The distance values for all windows are ranked, and are

inspected starting with the best candidate. A local cross operator is applied

as a "fine" mode correlator. It computes correlations at its current position

and four non-diagonally adjacent neighbors. Its new position is the one with

the smallest distance ccmputed. The process terminates when it does not

change in position. The next highest window is analyzed in the sane way.

Registration by template used in earth-satellite photos have shown to be

very reliable, locating a physical landmark "perfectly" each time. It can be

extended generally to images with unique objects on a uniform background. Its
performance is overwhelmingly better than a brute force template match.

The basic operation used is correlation.

2.1.4.7 Image Compression Algoritms

Image ccmpression algorithms are applied to raw data to reduce

transmission bandwidths and to provide data reduction for storage in digital

form.
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Transform Coding

When taking the Fourier or Hadamard transform of an image, most of the

energy in the transformed image will almost always be concentrated at the

lower spatial frequencies. One can take advantae of this by allocating fewer

bits to transmit the high spatial frequencies, since there is less information

there. Results using both Fourier and Hadanard transforms indicate nearly

identical performance, but the Hadanard transform is significantly easier to

ccapute [23): Hence, only the Hadanard transfom will be considered here.

The image is usually broken up into small blocks, each of Which will be

separately encoded. To simplify the calculations, the block size is

restricted to powers of two, e.g., eight by eight is used below. Then each

row, consisting of the eight samples go, g1 g2, ... g7' is transformed as

follows.

first pass second pass third pass

ho go + g "0 2  h :o +g 4h , o- 0g = 0 +g 94
12go -9 1 2. 9- -9

h 2 . g9 g 2  h, -, 3  h 2 = g -g 5
h 3 : 2 92 g 3 zhi Nh 'h g-
h 4 9 +95  9 5 4 -4 6  45  g2 + - 6

g6 = 96 5

After each row has been transformed, exactly the sane is done to each column

in the block. This particular algorithm, which yields the transform

coefficients in order of increasing sequence (analogous to frequency in the

Fourier transform), Was given in [241.

After the matrix of transform coefficients is obtained, the coefficients

containing most of the energy are encoded, while the rest are either thrown

away or encoded with just a few bits. The simplest approach is to pick a
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standard set of coefficients to always encode which experience has shown to

work well. A more sophisticated approach which selects which coefficients to

encode can also be used but has the disadvantage of requiring extra bits in

the encoding to specify which coefficient is being conveyed.

The basic operation here is the FFT.

Differential Pulse Code Modulation

Since the changes in intensity from one pixel to the next are usually

quite small compared to the total number of gray levels, significant data

compression can be achieved by encoding the differences between successive

pixels. The simplest scheme only allows a fixed set of differences to be

L-ransmitted using a fixed block length 123]. For example, if four bits are

allowed per pixel, then only differences ranging from -8 to +7 can be

transmitted. A more sophisticated scheme uses a variable length code. Here,

the differences which occur most frequently are encoded using the shortest

code words, while the longer code words encode the differences which occur

only occasionally. Such a code might look like the following:

difference codeword difference codeword

0 00
1 010 -1 011
2 100 -2 101
3 1100 -3 1101
4 11100 -4 11101

etc. etc.

Such codes must always have the property that no code word be identical to the

beginning of some other code word, or else the decoder might incorrectly

determine the boundaries between code words. Transmission of such a code is

generally done using a lookup table to convert the differences into their
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corresponding code words, so execution is very fast.

The operations used here are differencing and table lookup.

2.2 IM rtant Signal Processing Kernels in Radar Electronic
arare, omuncation and Image Pro-ssi-MgSystems

This section summarizes work that was done in identifying and

mathematically characterizing important signal processing kernels that became

apparent during the system studies described in Section 2.1. Of particular

interest is the summary list given in Section 2.2.9. Although at this time

the list is not exhaustive, we believe that the most important kernels are

represented there.

2.2.1 Unitary Transformations

This class of transformations includes most (if not all) of the important

transforms used in digital filtering and image compression. A unitary

transformation is characterized by a unitary matrix Vose rows (columns) are

orthogonal vectors. The class is described as the multiplication of a matrix

and a vector. The Karhunen-Loeve, Hadamard, discrete Fourier, Haar, slant,

and number theoretic transforms are familiar members of this class.

Unfortunately, it is not sufficient simply to have a machine that can

execute fast matrix multiplication, because efficient transform computation

often requires an algorithm that takes advantage of the special structure of

the A matrix. For example, the FFT algorithm is actually a sequence of

matrix multiplications, vhere the matrix that characterizes each stage has a

sMple sparse form. Similarly, the fast iadaard transform takes advantage of

the fact that all entries in the Hadamard matrix are +1. In structure, a
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Fermat numiber transform~ is identical to the FFT. Hoevr the arithmietic is

modular integer arithmnetic rather than complex arithmnetic. In this case the

control of the data flow is identical to the FFT, althoug~h the hardware

details in the ALIJ are significantly different.

N-1I
A. General Formulation: Y(k) -E a k y(n), k-a,..., N-1.

n-0
Let

Y -A y (tpicto of a(aNx ie- vco.

B. Special Cases
N-1l wn

1. DFT F(k)a E e f (U)

2. NTT F(k) E oEflk~~

3. WET (refer to section 2.1.3)

2.2.2 Convolution/Correlation/Interpolation

Convolution and correlation are members of the sante generic class because

they each involve forming the inner product of a system vector and the data

vector. For convolution the system vector is often a finite length impulse

response of a digital filter. For correlation, the system vector is a stored

reference wavefonu. Interpolation differs somnewhat in that the system vector

is time varying. However, high speed comnputation of inner products is the
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basic operation required of this class.

A. Finite Convolution

N-1
y(n) - E h(k) x(n-k)

k-O

B. Correlation (finite length)

N-1
r(n) E x(n)y(n+k)

h(O) 1i k)

i~~ y (n)-

y- 
I 

k-

. -(n) -
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C. Interpolation (FIR filter)

y(ti)k E f(k) x(n-k) £ - 0,..., M-i

This equation can be interpreted to be M time invariant filters, or as a
single time varying filter.

f(ti,k) - interpolation functions (filters).

f (ti) f (i) [x(n - -1

y(tin) - f (t) * X(n) i-0...,M-l

2.2.3 Recursive Difference Equations

This class includes both time invariant and time-varying IR digital

filters and algorithms for updating the coefficient values of adaptive

filters. A difference equation can be characterized as the difference of two

inner product operations. A recursive operation has fundamental differences

as compared to a nonrecursive operation because quantization error, noise, or

range overflow errors are fed back and compounded. Wordlength and number

representation are very important in a machine that must implement recursive

equations in a real time environment.
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A. General Formulation

N-1 N-1
y(n) - E ak u(n-k) - E bky(n-k) { aian

k-O k-l

or
N-1 N-I Time

y(n) - E ak(n) u(n-k) - E bk(n)y(n-k) Vryin
k O k-i

a no(n) bI(n)

;()() •

S(n) b (n)
SN-I. .N-i

u(n) (n- )

;i(n) -[ ~ -)-[~-4i

u!(n-N+ljyiN 1

Iy(n) a-T (n) " ;(n) -b' (n)-y(n 'l) I
(Difference of two Inner products)

B. Features

1. Adaptive filters are an important class of time varying filters.

2. A multiplexed filter is a periodically time varying filter.

2.2.4I Combinatorial Vector Inner Product

This algorithm, which has widespread usage in many types of signal

processing, takes advantage of the fact that the system vector is often a

fixed constant vector. A precomputed table of all linear combinations of the

elements of the system vector is stored, so that an inner product can be
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formed by successive shifting, memory fetching, and adding. This basic

machine cycle must be computed n times, where n is the number of bits in the

signal samples.

A. General Formulation

Assum that the system vector a is time invariant, or a "constant"
parameter.

N-1
y(n) - £ ak x(n-k)

N-1 A 'Binary Integer
Let x(n-k) - E 2 xA(n-k) RepresentationJ

L1-O

x(n-k) s xNL . . . xo(n-k)

binary word

Then
y(n) E F(A (a)) 2A

where AA(n) - xA(n-N+l) . . . x,(n) (address)

N-i
and F(AW(n)) E 0 ak x(n-k) (stored function)

k-0

B. Features

1. The inner product is computed without multiplication.

2. A precomputed stored function F(.) is required.

3. The amount of memory required for F(.) is 2 N words.

4. The amount of cmputation needed to compute F(.) is hat is

necessary to compute all possible linear combinations of the N

aN', or all possible linear combinations of elements of the

system vector.

5. The basic operator cycle is:

2 Yl-'(a) + F(AA(n))
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2.2.5 Vector orm

The calculation of a vector norm is important in many digital processing

applications. The most general fomulation of the norm is in terms of the p

norms from complex analysis. The p : 2 norm is essentially the energy content

of a signal; the p - is the maximum value of the sequence. Norm

calculations differ from the other generic classes because they are operations

on a single vector and they often require taking roots. In many situations

the norm calculations are not done in real time, but rather are done on stored

data during an analysis phase.

N-1
Ix(n)lI C [ E Ix(k)IP] 11 P (p-norm)

ksO

<llx(n)llp> = 1 -1 x(k)UP] 1/ p  (average p-norm)
ksO

The average p-norm, denoted <Ilx(n) lip>, is similar in computational form to

the p-norm, differing only in the 1/N factor inside the root-p operation. For

pc2, <lIx(n)I p> corresponds to the WMS value of x(n). For a zero mean

process, <I Ix(n) Ip> corresponds to the variance. Therefore, it appears that

the operations of first and second order statistics are characterized

analytically by the p-norm representation.

By referring baok to the discussion of EN systems in Section 2.1.2, it

can be seen that the error metrics (least absolute, least squares, least

infinite) can also be described as modified forms of the p-norm calculation.

The error metrics normally have a weighting function w(n) that is applied

prior to the calculation of the the norm, but this represents a minor

modification in the basic algorithm.
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2.2.6 Threshold Operations

The outcome of an operation often depends on how a computed value relates

to some prescribed value, called a threshold value. Typically the threshold

value is chosen based on some a priori information about the data on which the

operation is performed. Although it is such a simple operation, it is a

fundamental operation in image processing and in the other signal processing

operations. It has the following general form:

h(x) if h(x) > Q
g(x) =

k otherwise

where G is the threshold value and h(x) is the value computed by some

operation on x. k is a fixed constant, typically 0.

2.2.7 Histogram Operations

The compilation of histograms is another operation which occurs

frequently in signal processing. In image processing it is used to

consolidate intensity information to be used for determining frequency

distributions and for deciding threshold values. Histograms can be generated

as data is coming into the system. For instance, in image processing the

intensity level can be used to index the histogram table at the same time it

is being stored in an image array. The general form of the operation is:

H(v) a H(v) + 1

where v is the intensity value and H is a vector of length n.
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?.2.8 Two-Dimensional Kernels

All of the previous kernels have 2D (or multidimensional) counterparts

that are often direct extensions of the 1D concepts. Work is currently

proceeding to investigate important nonseparable 2) kernels that may present

Unusual computational difficulties. It was found previously that with respect

to 1D sequence processing, many of the fundamental operations can be

characterized as matrix-vector multiplication or as inner product

computations. However, with respect to 2D sequence processing, this simple

characterization is simply not possible. The classic problem of transposing a

2) matrix that is stored in secondary memory is an example of how an operation

can be completely dominated by the complexities of addresingidata blocks that

are too large to fit into memory. In 2D, a separable unitary transformation

becomes a sequence of 1D transformations along the rows, a matrix

transposition, and a second sequence of ID row transformations. For the

computation of a 2) FFT, often the matrix transposition will require 90% or

more of the total execution time. This suggests that 2) problems should be

placed in one of two categories: 1) those that use data blocks that fit

entirely into primary memory, and 2) those that require secondary memory

(disk, tape, drum, etc.). The first class of Toblems will have many

similarities with ID signal processing. The second will have special problems

that will be addressed during the course of future research studies.
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2.2.9 Summary of Kernels for Signal Processing and Image Processing

2.2.9.1 Sumary of Signal Processing Kernels

I. Unitary Transformations
A. Data Compression Kernels

1. discrete Fourier (FFT)
2. Walsh-Hadamard transform
3. Haar Transform
4. Slant transform
5. sine-cosine transform

B. Convolution Transforms
1. discrete Fourier transform (FFT)
2. Number theoretic transforms

C. Spectral Transformations
1. discrete Fourier transform (FFT Cooley-Tukey)
2. chirp-z transformation
3. Winograd FFT
4. Cordic FFT

II. Linear Filtering
A. Finite Convolution

1. FIR digital filters
2. Sliding window integrators
3. Matched filters

B. Finite Correlation
C. Interpolation
D. Adaptive Recursion.
E. Non-Adaptive Recursion
F. Combinatorial Vector Inner Product
G. Linear predictive coding
H. Residue number arithmetic
I. Decimation filtering

III. Single Vector Operations
A. Windowing
B. Mean
C. Variance
D. Power spectrum
E. Autocorrelation
F. p-norm metrics
G. Maximum element search
H. Minimum element search

IV. 2D Operations
A. 2D Finite Convolutions
B. 2D Finite Correlations
C. 2D Unitary Transformations (2D FFT, 2D WHT, etc.)
D. 2D Linear Recursion
E. Coordinate transformations
F. Matrix Transposition
G. 2D Interpolation I

-56- L i



2.2.9.2 Summary of Image Processing Kernels

I. Convolutions
A. Edge Finding Algorithms

1. Compss Gradient
2. Roberts
3. Sobel
4. Burr
5. Kirsch
6. Wallis
7. Hueckel

B. Edge Linking
C. Transform Coding (FFT)

II. Nom Operations
A. Distance Ccmputations

1. Roberts
2. Sobel
3. Burr
4. Hueckel

B. Mean Square Difference (Yakimoviky)
C. Edge. Linking

1. Ramer
2. McKee and Agarwal

D. Image Registration
E. Image Compession (DPCti)

I1. Table Lookup and Entry
A. Edge Finding
B. Edge Linking

1. Ramer
2. Hough
3. McKee and Aggarwal

C. Region Growing (Brice and Fennama)
D. Image Ccspression (DPCM)

IV. Threshold Operation
A. Edge Finding
B. Region Growing
C. Edge Linking

V. Interpolation (Burr)

VI. Histogram Generation
A. Edge Finding

1. Yakimov sky
2. Hough

B. Region Growing (Ohluader)
C. Run Length Coding

VII. Cross Correlation Operations
A. Texture Analysis
S. I W e Registration
C. Tnplate Matching
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2.3 Comonality of Signal Processing Functions

The results of studies conducted in the analysis of generic avionics

signal processing and image processing systems suggest that there are many

common requirements that can be used to influence processor architecture. The

following discussion first points out the commonality among the signal

processing functions in radar, communications and electronic warfare. Then

the commonality between the image processing functions and the signal

processing functions is discussed. Finally, the commonality among all four

areas is summarized in tabular form.

Probably the most easily identified common kernel among the signal

processing functions is the discrete Fourier transform (DFT) as can be seen in

Section 2.2.9.1. In radar systems the DFT is used in Doppler processing and

in 2D stretch processing for synthetic aperture radars. In communications the

DFT is used for data compression, noise suppression filtering and detection

filtering. In electronic warfare systems the DFT is used for pulse (object)

identification and for digital filtering. A common digital processor would be

required to efficiently calculate DFT's by means of one of the many FFT

algorithms. The processor should be n-line programmable for different block

lengths. It should execute high speed complex arithmetic, and probably would

incorporate specialized addressing schemes to accomodate the "decimation"

indexing of the popular FFT algorithms. In high speed applications (radar and

EM) the processor could operate more efficiently 4th stored sine and cosine

tables, so that the exponential reference functions could be read from

read-only memories, rather than being computed on-line.

A second important kernel required in all avionics signal processing

systems is finite convolution (correlation). Presuming filters, roughing

filters and noise suppression filters in synthetic aperture radars are often
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linear phase FIR filters. For long finite length convolutions, the FFT

algorithm can be applied by transforming the data, block at a time,

multiplying the transforms point by point, and then inverse transforming the

resulting spectrum. When this type of FFT-implemented convolution is applied

to real time processing, considerable overhead cost is involved in buffering

the data blocks and in applying the overlap-save or overlap-add algorithms

required to use the circular convolution of the FFT for implementing the

desired linear convolution. For short convolutions, a more direct computation

may be useful since it eliminates the overhead associated with block

processing. For direct convolution a high speed real-time multiplier is

required (at minimum). Since radar and communication signal processing is

often done in the baseband with complex (I and Q) data, high speed complex

multiply also appears to be important.

Generic kernels associated with decimation and interpolation are

important in all of the systems studied. Decimation and interpolation are

used abundantly in communications systems as bandwidth varies, in order to

maintain the minimum data rates necessary to characterize the waveforms.

Two-dimensional interpolation is very important in generating high resolution

imagery with spotlight mode synthetic aperture radar. Since these kernels can

be expressed as linear filtering and sample rate alteration operations, they

are very similar in nature to convolutional FIR digital filters. However, as

pointed out in Section 2.2.2, interpolation filters are really time varying

systems. Also, they may be realized by recursive filter structures. For

these reasons, decimation and interpolation should be considered as distinct

kernels that have widespread usage in avionics systems.

The combinatorial vector inner product (CYIP) operation represents one of

the most important kernels that appear to have widespread utility. It is a

very efficient technique for computing vector inner products klen one of the
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vectors is a fixed (time-invariant) system parameter. The CVIP has

applications in radar, communications and EW systems as a generic technique

for computing weighted summations of signal samples. It has even been applied

(in the literature) for the implementation of a Cooley-Tukey pipelined FFT

unit.

Another frequently encountered kernel is the p-norm operator, as well as

the various modifications of the p-norm operator that are discussed in more

detail in Section 2.2.5. The p-norm kernel is an essential ingredient in the

computation of first and second order statistics, in the calculation of

metrics in EN signal classification and in the calculation of metrics for

target identification and map matching in radar systems. The p=1, p=2, and

p: norms are the most commonly encountered forms. Each requires a distinct

sequence of arithmetic operations. Therefore, it appears the computational

efficiency of these different norms is dependent on more specific hardware

structure of the processor.

Many other signal processing kernels have been identified as needed in

the various systems that were studied. These include sliding window

integration (a simple form of finite convolution), threshold detection, table

look-up functions, matrix-vector multiply, matrix inverse, and 2D matrix

transposition with secondary storage. It is important to note that the

objective of this present work is to identify common basic (generic) signal

processing functions, rather than to analyze specific algorithms for computing

these kernels. For example, the DFT is undoubtedly a generic kernel;

probably the most important one. But the DFT can be computed by the

Cooley-Tukey FFT, the CORDIC FFT, the Winograd FFT, or the chirp-z transform.

Identifying generic kernels is clearly only a first step. Further efforts

will be needed to analyze alternative algorithms for implementing the kernels

to determine the most advantageous forms or avionics system requirements.
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The summary of image processing kernels, shown in Section 2.2.9.2,

indicates several areas of commonality with the signal processing kernels that

were identified in the study of radar, communication and electronic warfare

systems. It is apparent that convolution, norm operations, interpolation and

cross correlation operations are basic to each of the four areas. In

addition, the threshold operation, histogram and table lookup operations, all

of which are used extensively in Image processing systems, also have

application in the other signal processing areas. Table 1 summarizes the

kernels which are common to the areas studied.

I. Convolution

II. Correlation

III. Nom Operation

IV. Interpolation

V. Unitary Transformations (FFT)

VI. Table Look-up and Entry

VII. Thresholding

Table 1. Condensed summary of common kernels from all areas studied.

Computationally, thresholding and histogrmming are quite simple.

Thresholding simply compares a value with a reference value and stores a third

value which is either the first value or some prescribed fourth value, usually

zero. Histogramming simply increments an accumulator which is indexed by the

input value being counted. Table lookup operations are very applications

oriented and may include such schemes as hash addressing, linear searching, or

linked lists. The basic operation is to compute the address for a data
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transfer.

The results of this study are extremely encouraging because so many

instances of commonality were found among radar, communications, EW and image

processing functions. We feel that architectures with suitable realizations

of these common kernels would greatly enhance signal processing in the

avionics environment and recommend that further study should be devoted to

identifying such architectures.

It should be pointed out that the functions studied in this effort are

mainly those functions which operate on raw data. Second and higher order

functions, which operate on the results of the operations considered, more

than likely also have commonalities in the four fields. Signature analysis in

EW, target identification in SAR, and object identification in image

processing all have similar objectives, and hence, we feel, commonality of

function. Further studies should be conducted to investigate the data

structures and recognition schemes in these areas in order to isolate

commonalities at that level of processing. In addition, the impact of these

commonalities on signal processing architectures should be studied.

2.4 Computer Architectures for Signal Processing

As the previous sections have demonstrated, signal processing functions,

though diverse in their objectives, have substantial commonality in their

computation. Consequently, a well-designed architecture can perform these

functions in a cost-effective manner. Ideally, all computations would be

performed on a single, sufficiently flexible processor and we feel that this

goal should be pursued to the extent possible. Nevertheless, our

investigations to date lead us to believe that even within the same

application area, the requirements of high data rate, diverse functionality
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and flexibility may be mutually contradictory in a cost-effective design. Our

conclusion, therefore, is that a common architecture is advantageous and

probably achievable but that the design of such an architecture requires a

significant research effort.

Due to the complexity of the problem, this preliminary research effort

has not attempted to produce a final design for the signal processing

architecture. However, we have identified certain important requirements for,

and promising architectural features of this signal processing architecture.

From the point of view of data transfer rates and computation rates, avionics

processing has the following general characteristics: raw data is obtained

from input transducers (e.g., radar antennae) at extremely high data rates,

and in a series of processing steps, is transformed and compressed into a

meaningful and useable form. This data is operated on by high level signal

processing algorithms to achieve the signal processing objectives. Finally,

this information must be converted to a form easily assimilated by a human

operator (e.g., video graphics) or into the real-time I/O signals wich

control the input transducers (e.g., antenna rotation for target tracking).

Certain information may be stored away in a database for subsequent use in

operations such as target identification. This last step will often involve

the expansion of data into a format suitable for the output devices.

Thus, a signal processing architecture must include both the capability

for high data rate, primitive but structured computations as well as complex

decision-making procedures which are invoked with a relatively lower

frequency. At all levels of signal processing there is substantial diversity

in the functions being performed. For instance, the low end includes

operations such as inner products and FFT while the high end is exemplified by

graphics operations such as scene rotation, hidden line generation, shading,

etc., on the one hand and searching, sorting, and information retrieval in
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databases on the other hand. Although the objective should be to integrate as

many of these functions as possible into one processor, it is likely that they

will have to be partitioned into classes that are compatible in terms of

functionality and data rate. This would permit the design of cost-effective

processing elements specialized to the particular needs of each of these

classes. It should be emphasized that this partitioning does not interfere

with the exploitation of commonality; any given processing eleaent will

perform those functions best suited to it from across all signal processing

applications.

A successful signal processing architecture will result from a design

strategy that matches the structure and performance of the architecture to the

nature and requirements of the signal processing task. In general, this

architecture will consist of a heterogeneous collection of processing

elements, memories of various speeds and capacities and buses of differing

data rates. The selection of processing elements and memories with respect to

their functionality and performance as well as the topology of their

interconnectivity must reflect the structure of the signal processing task.

Higher speed memory must be allocated to the more frequently used data sets;

often executed functions must be supported by high performance processing

units; high data rate computations must be facilitated by (possibly)

dedicated buses between the corresponding memories and functional units.

The use of such a design strategy requires that a careful analysis be

made of the signal processing task. For these purposes, the task must be

represented as a network of nodes (subtasks) with data flowing along the arcs

between the nodes. The nodes should be characterized by the amount and nature

of computation that they represent and any other statistics that are relevant

in the design strategy described above.
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One approach would be to cluster nodes with common functionality and to

provide, for that cluster, a processing unit with a computation capacity

adequate to the needs of that cluster. On the other hand, such a clustering

might lead to excessive data transfer requirements. Ideally, the clustering

should be such that high bandwidth arcs lie within a cluster and only arcs of

relatively low data rates cross the cluster boundaries, thereby minimizing the

number of high bandwidth buses needed. Due to the asynchronous parallelism

within the system, buffering is needed on the arcs between nodes. The

clustering specifies the interconnectivity between the buffers (memories) and

the processors, viz., processors and memories in the same cluster must be

tightly coupled with short access times while the inter-cluster arcs would

correspond to low bandwidth buses with low priority memory ports.

In the context of cost-effective design, a trade-off exists between

functional flexibility and performance. The highest performance processing

elements cannot tolerate the overhead of instruction fetching, thus requiring

that control be hardwired (or microprogrammed). This, along with the high

performance requirements implies that the structure of the hardware be closely

patterned upon the function being performed. This allows the use of

parallelism to achieve the high performance requirements for specific

functions but precludes flexibility in functionality. However, limited

flexibility may be achieved by incorporating residual control which allows for

a certain degree of modification of both the control as well as the

configuration of the hardware.

Signal processing also includes a number of subtasks (typically at a high

level) which are less regularly structured. Furthermore, effective procedures

for such subtasks are evolving relatively rapidly. It would, therefore, be

unwise to attempt to design specialized processing elements for the currently

used procedures for these s"btasks. A general purpose processing unit is
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essential as one component of this signal processing architecture. This

processing unit can prolong the lifetime of the architecture by being flexible

enough to adapt to new developments.

2.5 Suggestions for Future Research in Avionics Signal Processing

It would be productive to continue research in several distinct

categories of avionics signal processing. These areas are described below.

2.5.1 Study of Current Avionics Digital Signal Processing

The purpose of further work in this area is to establish a clear

understanding of avionics signal processing requirements and to document how

these needs are currently being met. The project should include an

investigation of both "digital signal processors" and "data processing

computers". Bandwidth and wordlength requirements should be analyzed, and

special issues in the selection of current and future IC technologies should

be addressed. During the study, particular attention would be devoted to

methods used for achieving fault tolerance and for providing automated testing

capability (if any). This project would result in a definitive evaluation of

the state-of-the-art.

2.5.2 Identify and Characterize Avionics Signal Processing Kernels

Sections 2.1, 2.2 and 2.3 presented preliminary results in identifying

and characterizing low-level generic signal processing functions. This

research project would extend results in this area to a point where kernels

could be related to machine architecture. For example, it is important to

evaluate alternate FFT algorithmas such as the conventional Cooley-Tukey
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algorithm, the CORDIC algorithm, and the Winograd algorithm. Although each

produoes the same spectrum, intermediate details are considerably different.

Further work in the area would serve to evaluate alternative

computational algorithms for the kernels and to identify commonality among

radar, EW, communication, and image processing. Particular emphasis should be

placed on Bi systems, since there now appears to be a sizable body of

unclassified EW literature to support the work. A synthetic aperture radar is

a good model for a generic system that includes most functions of interest,

i.e., data compression, data transmission, real time processing (weighting,

interpolation, filtering, spectral analysis), and post processing. Post

processing, which involves target detection, image enhancement, edge

detection, and image compression, is closely related to image processing. In

general, the SAR system if representative of signal processing functions that

may be required in other systems within the avionics environment.

2.5.3 Investigate Adaptive Processing Techniques

From one point of view, it can be argued that a useful processor

architecture would be one that can adapt to incoming data to "configure the

machine" for an optimal solution of the assigned problem. This is the concept

behind a machine structured with banks of configurable polynomial arrays

(CPA's) as proposed by Adaptronics [25]. However, an adaptable machine with

extensive capabilities may not perform as well as a simpler machine on simple

problems. This is true because the adaption process is never ideal, and the

residual full-machine capability may cause poor performance when the

full-mchine capability is not required. An example of this phenomena was

observed [26] when a nonlinear CPA filter was compared to a linear LMS

adaptive filter for cancelling additive noise. The nonlinear terms in the CPA

-67-



filter were not set exactly to zero by the adaption algorithm, and they

introduced noise into the gradient approximation.

Future work in adaptive signal processing techniques is needed to

evaluate the properties of a CPA architecture and to illustrate its

performance on several problems (to be defined). Hardware structures for

realizing a CPA architecture should be investigated, and techniques for

achieving reliability in CPA architectures should be proposed and evaluated.

2.5.4 Investigate the Utility of Number Theory
Techniques in Avionics Signal Proessing

During the last few years there have been significant results reported in

the literature indicating that certain concepts from number theory can be

applied to simplify hardware and achieve high data rates in digital filters

(27,28). These include residue number arithmetic, number theoretic

transforms, and the Winograd FFT algorithm. The combinatorial vector inner

product algorithm can be included in this general category.

Future efforts should be devoted to investigating the applicability of

these new concepts to avionics signal processing problems. The techniques are

very promising because they reduce hardware complexity and improve speed.

However, the number theory concepts seem to produce efficiency when applied to

dedicated tasks, and as such, seem to be more useful in the signal processors,

rather than in the data processing computer. The results of this work would

establish whether the ideal avionics signal processor is too general for
number theoretic techniques, or whether the techniques can be used to

advantage.
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2.5.5 Investigate Avionics Visual Image Processing

Current serial computers are poorly matched to image processing problems

and algorithms. At the early stages of processing especially, most operations

(e.g. gradient finding) are local and independent, ideal candidates for

parallel implementations, but serial computers cannot take advantage of this

inherent parallelism. Architectures designed with image processing in mind

could provide dramatic improvements in the performance (one or more orders of

magnitude) and could make real-time high resolution image processing feasible.

At present we often must choose to either look only at small windows of an

image in detail in order to obtain real-time performance, or else we must

accept very long processing times for each image.

The approach we suggest to this problem is to find and verify good

matches between problems, algorithms and architectures. We already know a

good deal about matches between problems and algorithms for image processing,

but we know much less about algorithm/architecture matches. Furthermore, much

more effort has gone into investigating algorithms well suited to several

computers than has gone into parallel algorithms, however appropriate they are

to specific image processing problems. We believe that the best overall

system performance can only come from the consideration of problems,

algorithms and architectures together.

Research in this area should proceed in several stages. The first two

stages should be performed concurrently and should be followed by the

remaining stages which should be performed in succession. Throughout this

effort, close communication should be maintained with the architecture group

and the group studying radar, communication and electronic warfare.
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2.5.5.1 Task Definition for the Avionics Domain

We feel that it is important to have overall goals for the eventual

systems we are aiming toward. To this end, a set of scenarios should be

constructed which indicate how image processing systems will be utilized in

the avionics environment. From these scenarios the overall image processing

tasks should be defined as specifically as possible. This includes the

projected input data rates, the types of information to be obtained from the

data and the time constraints in which this information is to be obtained.

Several of the tasks which should be considered include the matching of a map

with an aerial image, the detection of target objects in an image, and the

tracking and identification of objects in an image.

2.5.5.2 Identification of the Computational Tasks

For the scenarios proposed in the previous task, the computational tasks

should be determined. These tasks should be analyzed and the functions

necessary to carry out the tasks identified. Data structures for the task

domains should be analyzed and the computational times necessary to keep up

with the data rates determined.

2.5.5.3 Analysis of Image Processing Algorithms

A more in depth study should be made of all the algorithms used in visual

image processing. These algorithms should be catalogued according to the

functions they perform. For instance, the Fast Fourier Transform has many

algorithmic realizations. Both basic (low-level) image processing algorithms

and algorithms for image analysis and decision-making (high-level should be

analyzed since the low-level algorithms must provide suitable outputs for
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convenient higher-level analysis. The analysis performed on each of the

algorithms will determine their efficiency with respect to memory

requirements, pixel accesses and computational complexity.

The low-level image processing algorithms to be analyzed include 1) the

detection of shapes such as lines, corners, curvatures, surface normals,

symaetry axes, closed contours, etc. and 2) the analysis and representation

of features such as color, texture, texture gradients, parallax and depth,

motion direction and velocity, spatial frequency, etc.

The high-level algorithms to be examined include ones to analyze 1)

object groups and relations between objects, 2) lighting type, shading,

shadows and highlights, 3) object models and the recognition and description

of objects, 4) precise location or tracking of objects, etc.

2.5.5.4 Identification of Kernels

A subset of algorithms should be selected and analyzed in detail.

Algorithms catalogued in the preceding step should be analyzed for performance

on the selected tasks, and a subset of the operations which are found to be

the most important and representative selected. This subset of algorithms

should be further analyzed to find ways in which the algorithms can be broken

up into separate processes, and to identify kernels which can be shared by

several algorithms, and generalizations of kernels which may merit special

consideration within the architecture. Results available at that time from

the architecture study will help determine appropriate ways to break up

algorithms, and May suggest some additional algorithms which should be added

to the subset to be considered in detail.
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2.5.6 Investigate Computer Architectures for Signal Processing

The application-oriented design effort for communications, radar and

image processing should be based on a characterization of the workload which

will be supplied by the research groups active in those areas. This

characterization will be in the form of kernels, i.e., well defined

computations that are representative of their application areas. A kernel

qualifies as such if it tends to be one of the most frequent, time-consuming

or expensive computations involved in that application. Taken together they

should be typical of, and identify the worst-case of, a class of computations

which, together, constitute most of the workload. The significance of these

kernels lies in the fact that an architecture which is geared towards these

kernels and executes them efficiently, is guaranteed to perform well on the

workload as a whole.

Kernels that are canon across multiple application areas should be given

special emphasis since a maximum payoff for a given outlay can be realized by

optimizing with respect to them. However, evaluation in a broader context is

also necessary in order to guarantee that resulting architectures will not be

so specialized to the camnon kernels that they become ineffective for the

total workload. Therefore, while emphasizing the commonalities, consideration

should be given to the dissimilarities between the various applications to

ensure that the resulting design is effective and complete with respect to

each application area. Ensuring sufficient generality provides the further

advantage that the architecture is likely to remain effective in the face of

unanticipated developments in signal processing techniques.

The kernels should be analyzed to determine certain important

characteristics. The size of the data structure operated upon by a kernel has

a direct impact upon the size of main memory and the mount of paging activity
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required. The computational and data rate estimates will be indicative of the

processing and memory bandwidths that will be needed. The desired precision

and its range should also be investigated. Finally, an effort should be made

to ascertain whether kernel algorithms can be restructured to perform better

on novel candidate architectures, which were not adequately considered when

the algorithms were initially developed.

The kernels should be analyzed to ascertain the nature and amount of

parallelism present. The nature of the parallelism can be measured by the

extent to which the kernels are matched to each of a set of "distilled"

architectures, i.e., fictitious machines, each of which embodies the essential

features of a class of architectures. The distilled architectures to be

studied include single stream instruction pipeline machines, vector

processors, array processors and multi-processors. In order to focus on the

nature of the parallelism inherent in the kernels, it can initially be assumed

that distilled architectures have unlimited parallelism. Thus, a distilled

array processor can process an array of arbitrary size in one pass. However,

all operations performed concurrently must be identical. Furthermore, each

distilled architecture is an extreme architecture particularly suited to

exploiting specific types of parallelism in the kernels. For each type of

parallelism, the extent of parallelism can be measured by observing the number

of resources that could be kept busy in the corresponding distilled

architecture.

A realistic architecture must consist of a judicious mixture of these

distilled architectures with limited parallelism. The performance of the

kernels on each of the distilled architectures will indicate the types and

extent of parallelism that should be provided by the recommended signal

processing architecture. This information can be used to derive from the

class of distilled architectures a characterization of candidate architectures
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for further study.

A means of describing the benchmark kernels should be developed. The

kernel descriptions will permit rapid identification of the types of

parallelism present and the amounts of each type. Transformations between

alternative types of parallelism will also be readily apparent. To this end,

distinctions should be made between implicit and explicit parallelism, low

level and high level parallelism, alternative structured data types, sustained

parallelism vs. burst parallelism, and funntional, memory and bus

requirements which must be explicitly provided or emulated by a candidate

architecture.

Various organizations and management strategies should be studied for the

four types of components that make up a parallel computer: functional units,

memory, control units and buses. Each organization has its particular

strengths and weaknesses and tends to be attractive under certain conditions

which must be well understood in order to achieve a cost-effective computing

structure. In certain cases, organizations with very high performance

potential may turn out to be self-defeating in practice. For instance, a

lookahead processor which attempts to achieve dramatic levels of concurrency

by very complex lookahead schemes may not be cost-effective.

Often, a particular objective may be realized in a number of ways each of

which is appropriate in a particular context. For example, if mutually

exclusive acces3 to a shared bus is desired, two strategies suggest

themselves. An asynchronous, handshaking protocol is powerful in the sense

that the bus may be acquired and released at arbitrary instants in time. This

may be contrasted with the simpler time-division-multiplexed bus which may

only be used during pre-defined time-slots by each potential user. When bus

trwisactions tend to be relatively long and variable in length, the former
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strategy is indicated. However, when the transactions become shorter and less

variable in length, the handshaking overhead becomes disproportionately large

and generality must be sacrificed in favor of the latter scheme.

Such trade-offs between cost, generality, flexibility and speed exist at

all levels of detail and in every design decision. A cost-effective parallel

processor design must take these into account and match the capabilities and

cost of each subsystem to the requirements of the computation. -4s a

consequence, the parallel processor might consist of a variety of processing

elements possessing different organizations and functional capabilities, some

of which are designed to operate upon data, others to transfer data between

these processing elements and yet others to perform control, synchronization

and scheduling functions. Memory of varying speeds and capacities will, in

general, be distributed throughout the system to provide data and program

storage capability as well as to serve as a medium of communication between

processing elements. Perhaps most important, is the choice of interconnection

mechanisms which will determine the access proximity between each pair of

processing elements and memory units. This general design will take on a

particular form based upon the signal processing wrkload statistics. Tn one

case, an array structure might be indicated, while in another instance a

system of autonomous processors with shared memory, might be more desirable.

To make intelligent choices between the various alternatives requires that the

conditions be identified for which each alternative is most effective.

For the later. stages of detailed architecture evaluation, extensive

simulation should be carried out using the kernel descriptions developed and

an evolving set of candidate architectures tracked through interactive

improvement and successively more detailed evaluation. Of the simulation

languages available, SD4LA [29] is perhaps the most elegant and powerful.

However, SIMULA has relatively poor bit manipulation capabilities The hardware
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description languages possess adequate bit manipulation capabilities (30) and

are basically parallel, but in a restrictive way and with awkward syntax.

The simulation studies will require some enhancement of these

capabilities to provide for rapid tracking of changes in the simulated system

by guaranteeing that modifications to one portion of a system be reflected in

a change to the simulation in one, and only one place. Characterization of

kernel parallelism, their primitive data types and operations, will be

straightforward. A variety of levels of simulation detail should be fully

supported for efficient execution. These enhancements can be developed by

augmenting a standard simulation facility.

This research effort would perform a thorough analysis of the signal

processing kernels with an appropriate range of distilled architectures and a

reduced range of explicit candidate architectures. Analytic techniques should

be developed and used as far as possible, following which extensive simulation

will be required. The evaluation results obtained will yield a highly

cost-effective recommended signal processing computer architecture.
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SECTION III

COMPUTER ARCHITECTURES FOR FINITE ELEMENT METHODS

Finite element methods are used for computer evaluation of the behavior

of complex structures. They often reduce or eliminate the need for complex

prototype evaluation and permit a much broader range of potential designs to

be evaluated. The potential gains from using finite element methods, however,

are compromised by the inefficiency of present state of the art computers when

applied to finite element method computation. Individual runs are long on

medium sized computers and costly on large scale computers, leading not only

to a high cost for using the method, but often limiting the number of runs for

an evaluation to few runs on subproblems.

Nevertheless, finite element method computation is highly structured and

many of its tasks can be performed in parallel, which gives rise to the

expectation that efficient new computer systems can be developed which are

specialized fbr performing finite element method computation in a highly

efficient manner. The primary objective of this research is to develop such

computer structures. Intermediate objectives include the development and

evaluation of algorithms for use in the finite element method, assessing their

utility for alternative computer structures, developing and assessing

specialized structures, evaluating total systems, and making final

recommendations concerning the most effective architectures and the

appropriate algorithms for them to exploit their capabilities to the fullest.

Final recommendations will be accompanied by an evaluation of performance and

cost-effectiveness.

In addition to the principle objective described above, this research

will have broad impact on the more general problem of discovering appropriate

methodologies for developing and evaluating problem-dependent architectures.
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Of particular relevance for achieving this objective, are the problems of

evolving appropriate techniques for tailoring architectures to problems,

developing algorithms for architectures, and establishing means by which the

effective algorilthm-architecture pairs can be compared with one another

despite their widely different approaches to solving the problem.

Thus, the emphasis on finite element method conputation in this research

can be viewed both as an important objective in itself as well as providing a

necessary, coplete and important example for the development of appropriate

tools for meeting the more general objective.

A pilot study on this subject has been in progress since February 1979

under the sponsorship of the Wright-Patterson, Flight Dynamics Laboratory.

The performance of existing finite element code has been measured and

evaluated. The critical caputations in this code perform multiplication of

large matrices and solving large sets of linear equations. These kernels of

code involve significant computation time which becomes dominant for large

nonlinear problems. They also cause substantial paging traffic. Known

algorithms for performing these kernels and existing architectural studies

have been collected. Both analytical and experimental studies of the speedups

achievable through parallel processing of these kernels have been initiated.

Preliminary results indicate that some parallel architectures may be very

attractive.

Plans for the continuation of this research include performance

measurement of dynamic (time-varying) problems; further analysis of existing

architectures and algorithms; direct consideration of sparse matrix,

symetric matrix, and blocked matrix approaches; and evaluation of memory

organization and management strategies. Algorithms will be selected and

adapted for particular architectures in light of their properties with respect
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to the above considerations. Alternative strategies for running these

algorithms will be evaluated. Essential primitive operations will be defined

for performing such matrix-oriented computations efficiently. These will lead

to recommended instruction set architectures and dedicated specialized

function units. Finally, recommended architectures will be selected in the

light of these analytical and experimental results. The scope of

consideration will include existing large computers, moderately or extensively

modified small to medium sized computers with enhanced memory and function

capability, as well as special-purpose highly parallel computer or

multicomputer systems.

3. 1 Computer Needs in Finite Element Analysis

The finite element method can be characterized as a tool requiring large

volumes of topologic and geometric data, well defined operations on large

numbers of small and large matrices, many of which are sparse, large volumes

of data being manipulated during the solution process, and significant

problems associated with reducing and displaying the results in a meaningful

way.

These characteristics translate into a need for

1. geometric modeling systems for generating problems, combined
with techniques for mapping problem descriptions onto finite
element meshes;

2. significant data handling capabilities capable of operating
efficiently on sparse matrices;

3. facilities for handling large volumes of data efficiently;

4. extremely fast scalar and parallel processing power;

5. intelligent graphics systems for displaying both the problem and
the results in a meaningful manner.
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Today almost all of the sophistication needed to do large scale finite

element analysis is handled at the software level. Basically, engineers are

using the computer as a very primitive fast calculating device. This is due

primarily to the fact that computer manufacturers have not provided engineers

with anything beyond a very basic computing environment. There are no

computers today which automatically handle sparse matrices. Many of the

largest computers do not even have virtual memory. Graphics utilization by

engineers often reduce to drawing simple pictures on a storage tube or refresh

type devices. Consequently, all of the work must be done at the software

level.

In some instances, in order to circumvent the lack of hardware, engineers

have developed software virtual computing systems in wkiich they then program

the finite element systems. In effect, the use of these virtual software

systems implies a lack of sophisticated operating systems and hardware from

the manufacturer. These software systems come in many sizes and shapes.

Examples are DMAP, ICES, CRS, NORSAM, POLO, etc. Basically these systems have

been used to provide various levels of dynamic memory allocation and data

mappings such as the sparse matrices mentioned earlier. Through these

systems, various levels of sophisticated finite element software can and have

been written.

Virtual systems represent a tool for software development. They make it

somewhat easier to develop large coaplex systems.. However, these tools cannot

increase the throughput of a finite element program. If anything, they must

slow it down. In general the tradeoff has been speed for flexibility. It

would appear then that a significant increase in productivity would occur if

a) a fast floating point capability were available, and b) some of the aspects

of virtual software systems, such as sparse matrix operations, were available

at the hardware level.
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In order to determine the exact needs in the hardware, an initial study

has been undertaken to determine the level of computing resources utilized in

the various aspects of the finite element problem. The results of this study

are presented in the following paragraphs.

3.2 Evaluation of the Finite Element Problem

The purpose of this phase of the research project is to determine how

computer resources are utilized for solution of finite element problems. This

approach has some serious drawbacks. In particular, in order to derive the

statistics it is necessary to depend on a particular finite element code.

These statistics may vary somewhat from code to code. At the same time, since

the basic algorithms being used today do not vary significantly, it would seem

that the trends would not change significantly between codes.

The computer code used is called FINITE, wiich is a general purpose

structural mechanics system based on a virtual software system called POLO.

Each of these software systems has been reported in the literature. FINITE is

based on the availability of POLO's data base management and virtual data base

facility. It operates on sparse matrices in a relatively intelligent manner;

it is quite flexible relative to structural modeling. It is the level of

general purpose code that one would expect to find operating on computers in

the future. Thus, the statistics derived from it should be of value in

developing the concepts of a new machine. POLO, which drives the FINITE

system, is an interpreter, thus it presents an ideal working environment for

this project. Through POLO the authors were able to determine the levels of

resources used for data base management, paging, and solution of the problem.
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The solution procedure was broken down into processes such as assembly,

triangulation, residual load computation, etc.; individual sub'routine

resource utilization was also determined. In this way we were able to

determine, for example, not only how much CPU time and paging was associated

with assembly of the stiffness matrix of a structure, but also how much of the

assembly time was associated with the generation of individual stiffness

matrices and the re-orientation of the matrices in the global space, as well

as the operations associated with various- topological considerations that are

performed during the stiffness assembly.

For the purposes of the discussion herein, the finite element method was

characterized as a nonlinear problem. Linear problems are a subset of the

nonlinear case. The method was then divided into the following ten

subprocesses.

1. Data generation and creation of data bases.

2. Processing of material models.

3. Generating element stiffness matrices.

4. Miscellaneous items associated with stiffness assembly.

5. Assembly of the structure stiffness matrix.

6. Decomposition of the stiffness matrix.

7. Calculation of equivalent nodal loads from loads applied as
internal pressures, etc.

01
8. Displacement recovery for given set of loads.

9. Stress recovery for a set of displacements.

10. Calculation of residual loads for nonlinear iterations.

In the above, steps 3, 4, and 5 are associated with the calculation of the

stiffness matrix. Step 4 is always assigned to the processing Which is not

directly assigned to either structural assembly or element stiffness

generation.
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3.3 Exale Problems

Two example problems were solved using both linear and nonlinear

analysis. The first problem is a nonlinear pressure vessel as shown in

Figures 6 and 7. This problem is relatively simple and is small. It is

axisymmetric and has 288 nodes, 15 elements (8 node quads), and a very narrow

band. The elements are isoparametric, and thus numerical integrations must be

done in order to generate the stiffness matrix. This is typical of most

problems being solved today. The problem was solved for both a linear and a

nonlinear response. In addition, a second nonlinear solution was obtained

using substructuring. In the latter case those portions of the structure

Wiich were known to remain elastic were condensed out of the problem, and thus

the iterations associated with the nonlinear process needed to operate on only

a small portion of the elements in the problem. The purpose of using the

substructuring was to determine if more advanced solution techniques of

analysis would drastically change the statistics. If the latter were the

case, it would of course be improper to base any machine architecture on

statistics which were so sensitive. The results of the analyses are shown in

Figures 8, 9 and 10. The lower histogram in each figure shows, for a

particular problem, the percentage of CPU time spent in each of the individual

processes of the analysis. Each bar of the lower histogram consists of a

crosshatch region and a clear region. The crosshatch region represents CPU

time used in doing "useful work," i.e., computations associated with the

finite element method. The clear portions of each bar represents CPU time

spent in data base management, i.e., the time required to do the mapping of

the data onto the virtual space and for dynamic memory allocation. The upper

histogram of each figure shows the level of paging for each process. Both the

CPU utilization and the paging are expressed as percentages and therefore

relatively machine independent. At the top of the figure, the pages turned
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Figure 6. Axisymetrtc pressure vessel.
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-85-



L5. PSGE5 TU9NED 420.
PSSIGNSBLE 215.

T -
30.

LU1

15.

I r F7

45.,

0,

L
I30. Vi

4r

15.

0EE

-j-
C,, 0 1

cn >0 m m LC
wLn -

4n86-



LIS. PGES5 FUMNED 7524~.
ASSIGNABLE 4~524L.

30.

LU

LUL

-

CLL

LU -1

(n P-4 P--

15.0

a- *LJ LWc Cf

-87-



0DA89 570 ILLINOIS UNIV AT UPRBANA-CHAMPAIGN COORDINATED SCIENCE LAB F/6 915
OPTIMIZED COMPUTER SYSTEMS FOR AVIONICS APPLICATIONS. (U)
FEB0 8S0 R I CHIEN. L J PETERSON F33615-78.C-1559

UONCLASSIFIED AFAL-TR-791235 NL7.22ffffffffffff



4L5. FPCES TURNEO 5981.
RSSIGNABLE 3295.

30.J

Lu

15.
Lu

30.3

CLI

L.

w IM

15.1



and the pages assignable are indicated. Pages turned are the total number of

pages turned during the solution. Pages assignable are those pages turned

wlich were directly related to the movement of data associated with the finite

element problem as opposed to paging associated with operating the FINITE

system itself. The difference between these two figures drops considerably as

the size of the problem increases. Given the percentage of paging and total

number of pages turned, etc., one can calculate real clock time associated

with paging. These combined with the total CPU utilization permits one to

determine the real or clock time required to solve a particular problem. As

shown in Figures 8, 9, and 10, CPU utilization is spread through all of the

processes associated with finite element analysis, with the element stiffness

generation and triangulation standing out as significant.

The second problem solved is the penetrated plate, shown in Figure 11.

This problem required a three-dimensional stress analysis. This is a

relatively large nonlinear problem. It consists of 664 nodes, 80 elements (20

node cube with five integration points throughout the thickness). The plate

has a very broad band with 450 terms. The results are shown in Figures 12 and

13, where it is very clear that element stiffness generation and triangulation

of the equations represent the primary utilization of CPU resource. Paging is

assignable primarily to the triangulation procedure.

3.4 Analysis of Results

The preceding figures show that for large problems, a significant amount

of CPU resource is used for generating the element stiffness, i.e., doing

numerical integration and fbr triangulating the stiffness equations.

Certainly an FE4 machine must has specialized hardware to aid in these two

areas.
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These figures, however, do not tell the entire story. Engineering

productivity is not governed by the amount of CPU utilization but rather by

the real clock time required to obtain the solution to a problem. CPU

utilization reflects only the cost of cmputation. In order to look at the

problem from the point of view of engineerIng productivity, it is necessary

therefore to calculate the well-clock time required to solve each of these

problems. In order to do this it was necessary to assign some figures to the

paging speed of the machines to be considered. In this case we used the CDC

Cyber/175 and the Burroughs B6700. It was determined that the Cyber/175 can

turn approximately 20 pages per second of wall-clock time. Similarly, the

Burroughs B6700 can turn approximately twelve pages per wall-clock second.

The difference between the two is due to the fact that Burroughs is a virtual

computer and does double faulting vhen the POLO paging system operates within

the Burroughs virtual environment. In reality the Burroughs and CDC hardware

operate at approximately the same speed. Figures 14 and 15 show the results

for the nonlinear vessel and the nonlinear penetrated plate. Note that each

bar on the histogram now has three sections. The bottom shows the CPU time,

the middle or clear section shows the data management time, and the top

crosshatched section shows the paging time. Note that on the Cyber/175, Wniich

has a very fast CPU, a large percentage of t.he time associated with the

nonlinear pressure vessel problem is associated with paging wait time. The

Burroughs is somewhat more balanced and spends a significant portion of its

time utilizing the CPU, the remainder to paging wait time. For the nonlinear

penetrated plate, the Cyber does spend a significant amount of time utilizing

the CPU. At the same time, the wait time associated with paging during

triangulation is significant and does govern the total clock time of the job.

That is not true of the Burroughs v*here most of the time is spent utilizing

the very slow CPU. Only a small portion of the time is spent in paging.
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It is interesting now to speculate on the increase in engineering

productivity (decrease in clock time required to solve a problem), if the

speed of certain functional units within these computers were radically

changed. For example, it is possible to either increase the memory of the

computers in question significantly, or, as a more cost effective alternative,

to increase the speed of the I/0 subsystem so that the paging time is reduced

significantly. The figures chosen for this example are to increase the speed

of the 1/O time by a factor of 60. This would correspond roughly to the speed

of CCD today. Similarly, one can break the CPU resource utilization into two

parts, the data management time, which can be considered scalar CPU

utilization, and "number crunching time" such as the times required to solve

simultaneous equations or to integrate the stiffness of the individual

elements, and which can probably be done in parallel. The parallel operations

can be done easily 20 times faster than the current Cyber/175. This number

corresponds roughly to the lower bound on the CRAYl and BSP. Results of these

speculative changes are shown in Figures 16 and 17 for both the nonlinear

pressure vessel and the nonlinear penetrated plate, for both the Burroughs

B6700 and the CDC Cyber/175. As might be expected, changing the speed of the

I/0 device significantly improves the performance of the Cyber/175, while

changing the speed of the processor significantly improves the Burroughs

B6700. Changing both cuts the real time between 87 and 90 percent on the

penetrated plate and between 62 and 95 percent on the nonlinear pressure

vessel. Cne might note that changing from a Burroughs B6700 to a VAX 11/780,

a machine with a more realistic "slow" processing speed for today's standards,

would make the figures on the slower machine significantly better. The

authors did not have access to a VAX, and the FINITE system was not running on

one. Therefore, these figures were not generated.
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The conclusions to be reached from the histograms and tra

generated through speculative changes in hardware, are that

improvements in engineering productivity can be achieved by t

hardware toward the finite element process. Finding a fast CPU tt

type of parallelism, array processor, multi-processor, lock step

step parallel processor, etc., will solve part of the problem. Par

it will reduce the times required to obtain a solution on small ma

permit possibly the introduction of a so-called finite element ma

the average office. Additional and significant increases in real

are also to be obtained through some type of extended memory, n

memory, or fast paging device. The actual levels of improvemen,

will, of course, depend on the speed of the base machine.

3.5 Data Mapping Hardware

One characteristic of the finite element method is that it re

to handle large numbers of small matrices, if one writes the softwaz

the logica? form of the direct stiffness method. For example, the

matrix of the 20-node isoparametric element used in the soluti

nonlinear penetrated plate is logically represented by 192 3 X 3

The maintenance of these matrices via DBMS can be quite slow. J

some systems today generate the stiffness of the entire element mal

large block; in effect, the software operates on a non-logical bas

to gain speed. It would seem that machines of the future would nol

engineering system designer into this unnatural mode of operation

this has not been done in the FINITE system. The result is ti

processes have a significant amount of overhead associated with the

apparent when one examines the histogram associated with the line

vessel. This problem had a large number of elements. The time
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generate the stiffness of each element is small. The amount of data

management time is then quite large during element stiffness generation and

during assembly due to the fact that the system must handle these large

volumes of small matrices. This problem is aggravated When one solves

aerospace type problems Which consist of large numbers of frame and beam

elements. These are very simple elements requiring virtually no CPU

utilization to generate the stiffness matrix. Therefore, all of the time

associated with stiffness generation and assembly is really attributable to

manipulation of the large numbers of elements (these problems often have one

to 2000 components). Thus it would appear in considering an architecture for

the finite element analysis, that it is necessary to consider not only a fast

CPU and a fast "paging" system, but also a system Which can very rapidly

handle large numbers of small sparse matrices. A machine which Possesses

these attributes would definitely be a significant improvement over what is

available today, especially if it would be in the $200,000 - $300,000 range,

since that would permit it to be used in a large number of engineering

installations.

The preceding sections have been used to show the character of the finite

element problem and how machine resources are utilized during the solution of

some of today's simpler problems. The team at CSL has been studying the

kernels of the algorithms for solving the simultaneous equations associated

with the finite element method. Various machine architectures are being

studied for problems such as memory conflict and speed of computation. The

integration kernels are also being examined with preliminary emphasis on the

dominant matrix multiplication subkernel. Hopefully, these studies will lead

to some conclusions concerning necessary computer architecture.
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When these studies have been completed, the problems of data mapping and

paging will be studied to form a complete finite element machine architecture.

3.6 Computer Sy3t Evaluation

Preliminary evaluation has focused on the two critical kernels of code

for finite element methods: matrix multiplication and solving linear

equations. Known algorithms for linear equation solving have been collected.

Some existing evaluations of these two kernels are available in the literature

as well. EBisting evaluative studies are concerned with medium scale

computers, specialized array processors, and large scale vector-oriented

computers. Little if any work has been done by other groups on multiple

processor approaches to solving these kernels. Furthermore, existing studies

exhibit a noticeable lack of information regarding comparison of the

effectiveness of widely varying alternative computer architectures and

algorithms. We therefore felt that our pilot study should focus primarily on

a preliminary evaluation of alternative algorithms for a multiple processor

approach to the kernels. We further felt that a serious comparative

evaluation of alternative computer architectures should be postponed until

more is known about multiple processor approaches. Likewise, the evaluation

of alternative memory hierarchy organizations was not emphasized as yet since

that work could best be done in the light of known requirements of preferred

architectures for the computation aspects of the problem.

The primary vehicle used for experimental multiple processor studies was

the AMP-I multiple microprocessor system located at the Coordinated Science

Laboratory. This system was constructed, partially with the support of the

Joint Services Electronics Program, for the purpose of evaluating a variety of

multiple microprocessor configurations with shared memory, studying job
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multitasking for parallel execution, and evaluating effective organizations

for achieving high concurrency of computation and reducing memory access

contention. A block diagram of the AMP-i system appears in Figtre 18.

This system employs eight Motorola 6800 microprocessors Which access

memory over a shared bus system using a strict round-robin bus window access

discipline. The memory is organized as 64 modules of 1K bytes each. Software

for this system is written in Motorola assembly language. Concurrent Pascal

is also available and is executed by an interpreter. None of the software

written for this system depends on a specific number of processors. Rather,

it is subdivided into a large number of independent tasks placed in a common

job queue. Scheduling is accaplished simply by having an idle processor

interrogate the queue for its next job. The memory mapper allows each

processor to have a small amount of logically local memory. Local memory is

used as temporary working storage and to store enough of the processor state

to permit convenient reentrant programing so that the processors can share

the same code. The BBX interface connects this system to a DEC System 10

computer. The System 10 can read and write any location in memory and can

start, stop, and reset arbitrary combinations of processors. It can also be

interrupted for message passing from the processors. The special locations

are designed to provide certain functions not otherwise obtainable in the

Motorola 6800 processor such as: support for critical sections, interrupting

and transmitting status to the DEC 10, and interacting with the memory

protection subsystem (not shown). These locations are accessed as if they

were memory locations. hen operating at full speed, the memory modules have

a cycle time of 5, i.e. when a processor accesses a memory module the next 4

processors in sequence are fbrbidden from accessing that memory module. The

busy checker determines Whether a memory access request is attempting to

access a busy module and if so, disables the clock for that processor for one
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complete cycle. The design of the Motorola 6800 processor and the clock

disable logic permit a rejected memory access request to be resubmitted on the

next cycle. Special logic has been constructed to guarantee that each

processor can get access to the memory within 10 microseconds. This guarantee

is necessary due to the fact that the Motorola 6800 processor is implemented

with dynamic logic.

Several design decisions for this system wre made to permit the system

to be used for serious experimental study of the memory access conflict

problem of multiple processor shared memory systems. The Motorola 6800 was

selected as the processor in part due to its intensive use of memory. Several

alternative processors access memory far less frequently and sporadically.

Arbitrary combinations of processors can be used in a particular experiment.

No software modification is required to select a different canbination of

processors. A memory interleaving plug is provided to allow an arbitrary

selection of the address bits as the memory module number. This feature

allows the study of uninterleaved address, by selecting the top 6 bits, up to

fully interleaved memory by selecting the low order 6 bits. Other plugs can

select 2-way, 4-way, 8-way, 16-way, and 32-way, interleaving. The busy

checker permits an extension of the memory cycle time beyond 5 clock times to

6, 7, or 8 clock times. Furthermore, it also allows a reduction in the number

of memory modules below the 64 implemented in the system. Thirty-two module

operation is provided by forming pairs of the 64 modules and assuming that

both module 0 and module 1 are busy %fienever either is busy. Similarly, 16,

8, 4, 2, and 1 module systems can be emulated.

The AMP-1 multiple microprocessor system has a potential performance of 8

times that of a single Motorola 6800 processor. Experimental studies with

this system should be oriented toward discovering how nearly the actual

performance obtained from this system approximates the performance capability
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of the system and What effects are responsible for the degradations from ideal

performance. Used in this fashion, the AMP-I system can be an important

experimental tool for exploring the fundamental properties of multiple

processor systems and a means for evolving effective multiple processor

systems of the future. Preliminary experimental studies of matrix

multiplication and Gaussian elimination (a classical technique for solving

linear equations) were performed using the AMP-I system. A special hardware

monitor was constructed to measure the performance of the system. Details of

these studies are presented in the following subsections.

3.7 Matrix Multiplication Results

A series of experiments were performed for evaluating matrix

multiplication performance on the AMP-i system. A program for matrix

multiplication was written in Motorola 6800 assembly language. Memory banks 0

and 1 were used as private memory for the processors, the main program is

stored in bank 2, the code for the dot product routine is stored in bank 3,

the floating point multiply routine is stored in bank 4, and normalization and

add routines are stored in bank 5. For the matrices themselves, a 5 byte

floating point format is used for each matrix element. This format provides

for an 8 bit exponent and a 32 bit mantissa which allows numerical precision

comparable to most large computers. The matrices used are 32 X 32 in size.

Thus each matrix requires 1024 5 byte locations in memory. The matrices thus

occupy logical banks 6 through 20, i.e. 15K storage locations. The

computation to be performed is A X B 2 C, where A, 8, and C are 32 X 32

matrices. The system itself uses some special locations in logical bank 63.

The logical bank numbers used in this discussion are simply a reflection of

the address space as seen by the programmer, i.e. the logical bank number may

be decoded from the high order 6 bits of an address used in the program.
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Logical banks correspond to actual memory modules vhen 64 memory modules are

used and no interleaving is used. Use of an interleaving plug to provide 2 to

64-way interleaving will alter the placement of logical addresses among the

memory modules in a way i4hich is transparent to the programmer. In these

preliminary experiments, the number of banks was always 64, regardless of the

degree of interleaving. Thus the perfomance for no interleaving or a low

degree of interleaving as indicated is higher than one would expect if the

number of banks were equal to the degree of interleaving. The matrix

multiplication is divided into 1024 separate Dot Product jobs uhich are

independent and separately scheduled.

The time required for a floating point addition, with the format used,

averages 305 cycles. Some variance in the add time occurs due to the variable

number of shifts required fbr normalization. The multiplication routine

requires an average of 4,669 cycles. A Booth algorithm is used vbich performs

an add followed by a shift for a 1 bit in the multiplier and a shift only for

a 0 bit. The Dot Product requires 159,436 cycles. The Dot Product job

requires 32 adds and 32 multiplies uhich accounts for 159,168 of these cycles.

Thus 99.83% of the time spent in a Dot Product job occurs within the floating

point add and multiply routines. The times above were measured in actual

performance with one processor executing the program. Thus, no memory

conflict cycles were present. The entire matrix multiplication job as coded

in our program, M4XC, with one processor requires 163,309,473 cycles. The

1024 Dot Product jobs account for 163,262,464 of these cycles. Thus 99.97% of

the time is spent in the Dot Product routine. This indicates an extremely low

period of time required for processor scheduling. The 32,768 additions and

32,768 multiplications require 162,988,032 cycles. Thus 99.80% of the time

for the MMC program is spent in the floating point addition and

multiplication routines. Real time for the Motorola 6800 microprocessors is
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one microsecond per cycle. These results indicate that the Motorola 6800

microprocessor is not suitable for high precision floating point operation.

One or two orders of magnitude in performance of these floating point routines

could be achieved by using a faster microprocessor, such as the AMD2900 series

microprocessor with a wider word. Times can also be improved by using

specialized pipelined floating point units. Further speedups could be

obtained by using more processors or function units in the configuration of

the system.

Nevertheless, performance data taken as a function of the number of

processors used, p, and the degree of interleaving, I, indicates the

effectiveness of such a multiprocessor approach with shared code and shared

memory. These data are shown in Figure 19. When p processors are used, each

time a processor accesses memory, the following 1 processors are locked

out from that module on the average. The original program and data are spread

over 22 logical banks of memory, resulting in the use of 22 modules hen

I = 1, 44 modules when I = 2, and the full set of 64 modules when I is greater

than or equal to 4. It is interesting to note that even though so many

modules of memory are used with respect to the number of processors a high

degree of memory address interleaving among these modules is also required for

high performance. Also shown on the curves of Figure 19 is the ideal

performance, namely a speedup of a factor of p when p processors are used,

relative to the performance fbr a single processor. High degrees of

interleaving result in a performance vhich canes remarkably close to the

ideal, despite the memory access contention due to shared coae as well as

shared data space for the matrices A and B. Further experiments will be

performed to determine performance wnen the number of memory banks is equal to

the degree of interleaving. Also performance as a function of the relative

speed of the memory vs. that of the processors will be determined by running
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future experiments with slower memory.

To aid in the interpretation of these results, a memory access conflict

model has been developed for shared memory multiprocessor systems. An outline

of this model is shown in Figure 20. The model assumes that each memory

access request has an equal probability of referencing any module in the

memory. Furthermore, for each processor cycle, that cycle is assigned to be

one of three kinds: an internal cycle making no memory reference at all, a

cycle involving a memory access request which is accepted, or a cycle

involving a memory access request which is rejected. It is assumed that once

a rejected memory request cycle occurs for a particular processor, successive

cycles for that processor will be rejected memory request cycles until an

accepted memory request cycle occurs. Rejected memory request cycles are

referred to as conflict cycles. Cycles which are either internal or accepted

memory request cycles are referred to as non-conflict cycles. Thus, can be

measured for an actual program as the number of accepted memory request cycles

divided by the total number of non-conflict cycles. This was measured as

79.175 for the program MXMC. Given knowledge of Y , the number of memory

banks, M, and the effective memory cycle time, ce, the model predicts the

probability that a request will be accepted and determines the number of

rejected memory request cycles to be added. A Markov modeling approach is

used to derive the formula for the probability of -acceptance. Internal cycles

are assumed to be independently distributed with respect to memory reference

cycles. 'While I is the request rate to memory from a processor in a

non-conflict situation, Y M is that probability for referencing a particular

bank. Thus IM is equal to I divided by the number of banks. Furthermore,

is the actual request rate seen by the memory in a conflict situation, i.e.

reflects the memory access requests which are rejected by the memory.

Finally, T is the averqe total number of cycles of actual run time required
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MEMORY ACCESS CONFLICT MODEL

(FOR BANKS - DEGREE OF INTEEAVING M)

" Probability that non-conflict cycle

references memory - .7917 for MMC

* for one bank - .7917/64 for MMC

c- I - average number of successive processors

locked out of a bank (if requested)

once access granted - (p-l)/2 for AMP

P Probability that an actual memory access
A

request is accepted

- 1 1

.c +(* -1) +((ce - * -M 2 +4( M- I
-z ( M l))

2(1-1)

- run time for I processor
Speedup -run time for p processors with conflict

Speedup (modeled) - p/p, where p - (l-)+ ' (1/P )

Figure 20. Memory access conflict model for MHXC.
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for each cycle of the program if no conflicts were present. Thus T is

computed by counting one cycle for each internal cycle and I/PA cycles for

each accepted memory reference cycle, whmere PA is the probability that an

actual memory access request is accepted.

Figure 21 shows the extremely close correspondence between the modeled

probability of acceptance and an actually measured probability of acceptance

as well as the similarly close correspondence between the modeled speedup and

the measured speedup as a function of the number of processors with 64-way

interleaving. While further experiments are yet to be done, these preliminary

results justify some confidence that the model is fairly accurate at

predicting the amount of memory access conflict for the M)SC program and that

at least for a high degree of interleaving the difference between the actual

speedup obtained and the ideal is accounted for by memory access conflict. We

may infer from such differences as do exist between the model and actual

performance measurements that the measurements show slightly higher

performance for low p due to the sequential access effects of real programs

wich increase performance relative to the uniform access assumption of the

model. These effects becane insignificant when a larger number of processors

are run due to the interleaving of their access request streams which has a

randmizing effect. For larger numbers of processors, the measured

performance is somehat lower than that predicted by the model due to

performance degradation effects other than memory access conflict, e.g., the

presence of critical sections of code such as job scheduling for MXMC and job

precedence constraints in general which cause some processors to wait while

other processors continue with their computations. While these differences

are insignificant for the particular experiments run for matrix multiplication

they should be expected to become more significant for other cases and other

problems.
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(64 - WAY INTERLEAVING)

MODEL MEASURED

P P P
A A

2 .9938 .9955

3 .9876 .9877

4 .9814 .9813

5 .9753 .9795

6 .9691 .9706

7 .9629

8 .9527

MODEL MEASURED

P SPEEDU P S PEEDUP

1 1 1

2 1.9902 1.9913

3 2.9705 2.9657

4 3.9409 3.9355

5 4.9017 4.8927

6 5.8523 5.8183

7 6.7928 6.7435

8 7.7233

Figure 21. Model for MXMC.



Preliminary conclusions reached from this study are that sha

multiprocessors can achieve low access conflict and efficient job :

Further evaluation is needed for other architectures and the effect

matrices which require paging from secondary memory. Several algc

known for matrix multiplication which have been tailored to speci

oriented machines and the paging problem. These algorithms will

useful starting point for the continuation of this research. Fi

success of our memory access conflict model in the case studied just

further work on this model be done to extend it to modeling conf

general resources including not only memory but shared function

critical sections of code. Such a generalization will prove to be

for quick evaluation of wide ranging alternative architectures exec

cmplicated jobs.

3.8 Analsis of Gaussian Elimination

A program Was developed for the AMP-i system to perfon

elimination for a 14 variable problem. This program uses the s

floating point format described previously for matrix multipli4

solves the equations Ax = B, where A is a 14 X 14 matrix and B i

column. The program itself was adapted from a FORTRAN coded progra

extensive evaluation had been done on various IBM System/360

particularly a broad class of machines similar in nature to t

pipelined Model 91. The version coded for the AMP-i uses logical bi

for private memory, banks 2 and 3 for program memory, bank 4 for tt,

point multiply and divide routines, banks 5 and 6 for the A and

which total 1050 bytes, and bank 63 for reserved locations for t

Flags used for insuring that proper precedence among jobs is guar

stored in bank 62 for the original version of the program (GAUSB) a
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57 and 58 for two other versions of the program (GAUSY and GALSZ).

The program is divided into three kinds of jobs: normalize, Ni, row

reduction, R1j, and back substitution, Bj as described in Figure 22. Each

normalize job sets a diagonal element of the A matrix to 1. It assumes that

the elements before the diagonal element are all 0 and divides the elements

after the diagonal including the B column element by the prior value of the

diagonal element. A row reduction Job, R1j, sets one element to the left of

the diagonal in row I to 0 by replacing row I with an appropriate linear

combination of row I and row J. It assumes that the diagonal element of row J

has already been normalized to 1. After all normalization and row reduction

jobs have been completed, the A matrix contains 's along the diagonal and O's

below the diagonal. At this point the back substitution jobs may begin. A

back substitution job, Bj, adjusts the B column elements above row J to values

they would attain if the elements above the diagonal of matrix A in column J

were reduced to 0 by replacing row with linear combinations of the

corresponding row and row J. A great deal of dependency thus exists between

the various back substitution jobs. Job precedence flags must guarantee that

before an element of the B colmm is adjusted by job Bj it has been adjusted

by all back substitution jobs hose subscripts are greater than J. The

precedence between these jobs is show graphically in Figure 23. There are a
n2total of n normalized jobs, n2  no euto os n -Ibc

substitution jobs. The number of jobs hich can be performed in parallel on a

multiprocessor system thus varies anywhere ftm 1 to n - 1. Job scheduling

can thus be a critical component in determining the performance of a

multiprocessor system. The actual numbers of floating point operations

performed by each job of the Gaussian elimination program are show in Figure

24.
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N Normalize row i set A li

(divide row i by ALi)

(assume A J - 0, i.e. Rij completed,Vj < i).

Rij :Reduce row i by row j 2j set Aij 
= 0

(J<i) (replace row £ with row L - A j X row j)

(assumes Ajj , 1, i.e. N completed).

Bj : Back s-bstitute Colum j - Aij = 0 Yi < j

(replace B i with B - Aij x B Vi < J)

(assumes all Ni, Rij jobs completed

and Bi adjusted for Bk ,

i.e. 3k completed througlh row L, V k > J.

Figure 22. Gaussian elimination jobs.
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JOB COMPLEXITY (A is n x n)

: - i + I divides (1 :9i S a)

R ij : n - k + I multiplies (I I J < t. C )

u - j + 1 subtracts

Bj - . ultiplies (2 £ j f a)

j - 1 subtracts

TOTILL OPERATONS:

I.M2 + n divides
2 2

1 n 3  2 + az . i .tiplies

1U3 + 12 -  U subtracts

2. -- n flops

2 6

Figtre 24I. Job Complexity wh~en A is ni X n.
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The performance of two extreme computer architectures executing a

Gaussian elimination program can be expressed in terms of these figures. For

illustration the number of floating point operations (flops) which must be

performed in series is used as an indication of run time. For a serial

machine, floating point operations are performed one at a time. Thus the run

time is approximately proportional to the total number of floating point
opertios rquiednanly n3  n2 - n. At the opposite extreme, aoperations required, namely23 2

data flow machine may be envisioned which has sufficient parallelism so that

any greater degree of parallelism would result in no performance improvement

at all. For such a machine the row reduction jobs shown on a single row in

Figure 23 can all be performed in parallel. It is convenient to refer to this

combination as a single job, R . Similarly, to simplify the analysis, it is

convenient to recombine the back substitution jobs shown in Figure 23 so that

each row of Figure 23 forms a new back substitution job. Thus the task of the

new back substitution job is to perform all adjustments on a particular

element of the B column. The job precedence then requires alternating N and R

jobs until they are all complete and then performing the B jobs one at a time.

One floating point operation (flop time) is required for each normalize job.

The number of actual operations performed in parallel in a particular one of

these jobs varies from 1 to n. For each of the n - 1 row reduction jobs two

flop times are required. The number of floating point operations performed in

parallel by these jobs varies from 4 to 2n2 - 2. Likewise for each of the

n - 1 back substitution jobs 2 flop times are required. The number of

floating point operations which can be done in parallel for these jobs varies

from 2 to 2n - 2. The total time required for Gaussian elimination on this

data flow machine is thus 5n - 4 flop times. Note however, that up to n

divisions, or 2n2 - 2 multiplications or 2n2 - 2 subtractions must be

performed in parallel. Thus, although the performance of such a data flow

machine would be very high,its resource utilization is extremely poor, namely
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2 3 32 7

(4n2 +n-.4 )(5n-I)

Thus for a large n the resource utilization is approximately 2 / 20, i.e.

3%. Thus it would be extremely expensive to construct a data flow machine

which would exploit the full parallelism of the Gaussian elimination program.

Intermediate between the serial computer which is unattractive in

performance and the maximally parallel data flow machine which is unattractive

in cost are many practical realizations including instruction pipelining,

specialized array or vector oriented pipelined floating point units embedded

in a conventional architecture, as well as vector oriented, array oriented,

and multiple processor organizations. All of these machines should be

intermediate in hardware cost, performance level, and resource utilization

when compared with the extreme machines. Further evaluation is required to

determine precisely which of these computer organizations will cone closest to

the performance of the data flow machine with a cost more like that of the

serial machine. The correct choice of machine will surely depend on the range

of the expected values for n, the number of simultaneous linear equations to

be solved. To be efficient, a preferred architecture must adapt efficiently

to the variable vector size and the irregular degree of parallelism caused by

the nature of the jobs and their precedence relationships in the Gaussian

elimination problem. These requirements would tend to give preference to

vector or pipelined architectures and multiprocessors over the relatively more

rigid array machines. Finally, the memory hierarchy organization must be

carefully constructed to preserve the high resource utilization expected of

the selected architecture. Paging traffic could easily be of order n3 for

this problem. Intuitively, one could explain this amount of page traffic by

considering that the data of the problem would contain of the order of n2

pages each revisited on the order of n times.
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3.9 Gaussian Elimination Experiments on the AHP-1 Systm

Three versions of a basic Gaussian elimination program were implemented

for the AMP-1 multiprocessor system. The first of these is GAUSB which

conforms to the description previously given. The second is GALSY which is

similar to CALSB except that many precedence flags were used to reduce

semaphore lockout. In the GAUSB version, all critical sections used a single

semaphore. Thus no job could proceed in any critical section of code while

any other job was in any other critical section of code. The GALSY version

used approximately 200 separate flags associated one-to-one with all possible

critical sections. GAUSY is used to see if there is any significant

performance degradation in CAUSB caused by access congestion at the single

semaphore. Finally, GALSZ is similar to GAUSY except that no normalize jobs

are present. This change was made since the normalize jobs as shown in Figure

23 severely restrict the amount of parallelism in the Gaussian elimination

program. The row reduction and back substitution jobs are then recoded to

permit working with an A matrix diagonal that does not contain 1's.

1 2 1Elimination of the normalize jobs saves 2 n2+ 2n divisions. Each row

reduction job then contains 1 division and each back substitution job contains

1 division. A final division is required to compute the value of the last

variable. Thus there is no change in the total number of divisions required

by the Gaussian elimination program. ibwever, there is now a much less

restrictive job precedence relationship which results in more parallelism

which can potentially be exploited in a multiprocessor. It must be remembered

that GAUSB and GAUSZ would have the same execution time on a system with a

single serial processor. This type of change reflects the kind of

considerations which became important for multiple processor systems.
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Figure 25. Gaussian elimination performance.



The data graphed in Figure 25 shows the differences in performance level

between these three versions of the Gaussian elimination program for maximum

and minimum degrees of interleaving as a function of the number of processors.

It is apparent that little semaphore congestion exists in the GAISB program

since GAUSY has virtually identical performance to GAUSB. GAUSZ, however, is

slightly higher in performance with no interleaving of the memory and is

clearly superior when a sufficient degree of memory interleaving is present,

particularly as the number of processors grows to a point where the additional

parallelism of the GAUSZ program can be exploited. Figure 26 shows in detail

the performance of CAUSZ for various degrees of interleaving as a function of

the number of processors. Despite the job precedence restrictions which cause

processor wait time, the critical sections of code which can be executed by

only 1 processor at a time, and the memory access contention in the shared

memory, a performance speedup of over 6 exists for 8 processors relative to

the performance of 1 processor when the memory is fully interleaved, I = 64.

Specific data was collected to determine the extent of performance

degradation due to memory access conflict. These data were compared against

performance levels predicted by the memory access conflict model used

previously for matrix multiplication. The GALSZ program references metory

slightly more often than the matrix multiply program. Modeled and measured

probabilities of acceptance for an access request to memory are shown in

Figure 27. The model conforms fairly closely to the measured levels, but not

as closely as for matrix multiplication. The model tends to be somewhat lower

than measured values for probability of acceptance indicating that memory

contention is actual slightly less than the model predicts. This is at least

partly due to the fact that the memory request rate actually decreases

slightly as the number of processors increases, Y z .7961 for 7 processors.

This decrease is due to the effect of specialized program codes executed while
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-. 8316 for GAUSZ (vs.- .7917 for %=0C)

MO0DEL MEASURED

2 .9936 .9950

3 .9873 .9897

4 .9809 .9844

5 .9746 .9823

6 .9682 .9827

7 .9619 .9769

8 .9555

Figure 27. Memory access conflict model for GAUSZ.
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a processor is waiting to enter a critical section or waiting for job

precedence to become satisfied. The performance degradation from ideal

speedup caused by memory access contention is shown in the curve labeled Model

in Figure 26. Thus one may conclude that the performance degradation of the

GAUSZ program for fully interleaved memory is not primarily due to memory

access conflict. Further research is required to accurately model and measure

perfomance degradations due to the execution of critical sections which can

be executed only by one processor at a time and those due to waiting for a

prior job to be completed. This research is somewhat complicated by the fact

that while a processor waits, it is actually executing code in a tight loop

and making memory access requests as well while in this loop.

3.10 Conclusions and Recommendations

A preliminary characterization of finite element methods has been

completed by measuring performance of actual state-of-the-art code for the

finite element method on conventional medium scale and large scale computers.

These results indicate that numerical integration, and specifically matrix

multiplication performed in the numerical integration routines, and solving of

linear equations are most significant in determining performance. As problems

become larger and nonlinear, the proportion of time spent executing these two

kernels of code becomes increasingly dominant. Paging traffic is also severe

for these larger problems.

Known algorithms and studies on existing computers have been collected

for matrix multiplication and solving of linear equations. The studies for

matrix multiplication indicate that the side effects of certain vector and

array oriented computers are severe and minor modifications of programs which

would make no difference for a serial processor with matrices resident in
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primary memory, make a great deal of difference in the performance of more

highly concurrent architectures and paged systems. For the solution of linear

equations, the Choleski and LU decomposition type algorithms are preferred for

banded, symmetric matrices in linear equation solving. To be truly effective,

these algorithms must be further tailored to the particular canputer

architecture being considered and must be amenable to dealing with large

problems by accessing the matrices involved in blocks, so as to reduce the

amount of paging required. Iteration and retriangulation effects for

nonlinear equations must be considered as well.

Pilot multiprocessor experiments show that a high degree of parallelism

is possible in these kernels of code. Appropriately structured shared memory

can achieve low access conflict. Effective access conflict models exist.

However, further research is required to extend the memory access conflict

model to a general shared resource model wiich can effectively deal with

memory access requests as well as shared function units, critical sections of

code, and job precedence wait. This research has been initiated.

Also initiated is research oriented toward modeling alternative

structures for high performance multi-access cache memories within a general

memory hierarchy model. Such a model is essential for discovering effective

organizations for the memory hierarchies of multiprocessor systems as well as

for a single processor systems with high performance dedicated function units

having direct memory access capability.

A general approach to characterizing alternative architectures and

alternative algorithms is in the formative stages. Such a model will allow a

single characterization fbr each algorithm regardless of the architecture on

which it is to be run. This characterization will include direct measures of

the types of parallelism inherent in the algorithms which can be exploited by

-126-



appropriate architectures. Such a model is extremely useful

identifying the most effective algorithm-architecture pairs

evaluation in detail.

Appropriate machine primitives are being identified for the

matrix computations. These will include embedded vector operati

address generation constructs, etc. Primitives to be develop

canpatible with memory overlays, sparse matrix cmputations

precedence relationships. Once such primitives are identified, t

instrumental in determining the effective instruction sets fo

tailored to matrix computation as well as appropriate function unil

computers.

The research described above can be completed within a thre

frame with a funding level sufficient to support 3 faculty witl

assistants including funds for computer time and the development

subsystems. A detailed budget along these lines would amount to a

$150,000 per year for the 3 years.

The research emphasis for years 1 and 2 will be to complete

and experimental studies for alternative architectures and algorit

range of concurrent processing architectures, memory organiz

function units will be considered. The cost effectivenes

architectures and algorithms will be identified with respea

application to the finite element method. Primary considerat

evaluation will be given to large nonlinear and dynamic probl

matrix approaches leading to low paging rates, and exploitable pa

efficient canputation. Year 2 will also include further measure

complex finite element problems with conventional archi

state-of-the-art code. These results will provide a base
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evaluation of more effective architectures and algorithms.

In year 3 the emphasis will be on deriving recamended preferred

architectures and the algorithms appropriate for them considering existing

large scale camputers, mediu scale canputers with enhanced memory and

function capability, and highly concurrent processor and multiprocessor

systems.
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SECTION IV

EVALUATION CF SIGNAL PROCESSING ARCHITECTURES

'4.1 Simulation Studies

In order to accurately select cost effective candidate architectures for

signal processing applications, a number of simulation studies have been

performed. Studies like these are an effective approach toward gaining a

better understanding of computer system performance. Two simulators have been

mplemented; the first describes a shared resource multiprocessor, while the

second describes a high speed vector processor. Each of these architectures

uses parallel processing techniques to enhance the computational rate.

'4.1.1 A Simulator for a Shared-Resource Multiprocessor

We have completed the design and construction of a simulator for a

shared-resource ,multiprocessor (SRM). An SRM is logically similar to a

tightly-coupled multiprocessor and contains multiple virtual processors that

can simultaneously execute multiple, independent instruction streams

(programs). These programs may, however, interact via explicit

synchronization instructions. In actual fact, there is only one physical

processor that is organized in a manner similar to a high performance

uniprocessor such as a System/360 Model 91, i.e., it is overlapped and

pipelined. Each virtual processor has, dedicated to it, a set of registers

which are Imown as a skeleton processor. The skeleton processor holds the

state of the corresponding virtual processor. The rest of the resources,

including the instruction pipeline, the functional units, the buses and memory

are shared by the virtual processors in a time-multiplexed fashion.
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At no point in time does any one stream have more than a single

instruction in any stage of execution. Thus, the problems associated with

instruction lookahead, such as guaranteeing logical independence between

concurrently executing instructions from the sane stream, are eliminated.

This contributes to simplicity in the hardware. On the other hand, it is

ossible to have multiple instructions from distinct streams (independent by

definition) being executed simultaneously, thereby achieving concurrency. The

SRM organization could potentially be very attractive from a cost-performance

viewpoint for signal processing purposes. It is with this in mind that we

initiated work on the simulator.

The simulator has been written in a high-level simulation language called

SIMULA. SIMULA is based on ALGOL 60 but has been enhanced to facilitate

simulation. The two most important features involve the addition of a

co-routine capability and a limited language extension capability. The former

supports the simulation of simultaneously existent objects in a natural way

and the latter provides the ability to construct a simulation environment that

is well matched to the application at hand. In SIMULA, both features are

provided via the CLASS construct. We have found it to be extremely useful in

developing our simulator.

One of the initial problems that we encountered in the design of the

simulator arises from the fact that the system being simulated is essentially

a parallel structure whereas programuing languages are generally sequential.

The existence of co-routines in SIMULA provides a form of parallelism that is

termed quasi-parallelism. This reduces, but does not eliminate the problem of

describing parallel structures and camputations. We, therefore, developed a

rather general programing construct, a raph hich consists of a set of nodes

with arbitrary precedence relationships between them. A node (currently)

contains conventional sequential code within it. This code will be executed
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only ihen the specified precedence conditions have been satisfied, viz., all

predecessor nodes in the graph have campleted execution. This graph construct

has been incorporated into the simulator using the language extension feature

of SIMULA. Although this construct is not the last word on this issue, it has

greatly facilitated the construction of the simulator by providing the

illusion of a more parallel language.

A second problem, Which points out a serious deficiency in SIMULA for our

purposes, is the lack of a rich variety of data types and operations upon

them. SI4ULA ha& the data types integer decimal, floating point decimal,

boolean, etc., but not integer binary, integer hex, etc. This leads to

significant problems in representing the contents of memory. If represented

as a bit string (the most natural and desirable representation), arithmetic is

difficult and must be simulated in detail in a bit-by-bit manner. If this is

not done, instruction interpretation, field extraction and bit string

manipulation are complicated. There is no direct solution to this problem in

SIMULA. We plan to solve it by interfacing machine language subroutines to

the simulator to support bit string manipulation.

We have developed a novel simulator organization which permits for great

flexibility in conparing different computer structures with the same

instruction set architecture, or different instruction set architectures using

the same hardware organization. This has been achieved by implementing the

simulator as two almost independent parts; one part corresponds to the

instruction set interpreter and all information regarding the nature of the

instruction set is localized here; the second part is concerned with the

organization of the hardware and encapsulates all the details of the structure

of the machine. We have been able to define a partition such that there is a

very limited amount of interaction between the two partitions. As a

consequence, it is easy, for instance, to replace the interpreter part by code

-131-



for another instruction set architecture, thereby obtaining the simulator for

a machine with the same organization but a different instruction set.

For purposes of this investigation, we have developed a simple, register

oriented architecture with powerful (PDP-1 1-like) addressing modes. Data and

instructions are 32 bits wide each. The simulator for a shared resource

multiprocessor with such an instruction set has been designed, implemented and

debugged. It is highly parameterized to allow a number of variations to be

studied. Included in the set of design parameters that we wish to examine are

the number of instruction streams, the number of memory modules, the number of

buses between the processor and the memory, the speed of the pipelined

multiply unit, the memory cycle time and the number of slots per buffer. In

addition, we intend to study various priority schemes to be used in selecting

from a number of contending requests. The workload used will be a matrix

multiplication algorithm since computations of this type are common in signal

processing applications. As a result of these studies, we shall have gained

valuable insight into the design and performance of an architecture that we

feel is a good cost performance candidate for signal processing.

4.1.2 A Simulator for a Vector Processor

A simulator for an existing high speed vector processor was constructed

in order to evaluate the effectiveness of existing vector processing

methodologies. The architectures simulated consist of a class of computers

closely patterned after the highly successful CRAY-i processor. ibwever, the

simulation was constructed so as to allow the alteration of architectural

parameters such as: the number of vector registers, the vector register

length, the memory cycle time, the number of memory banks, the number of

vector functional units and the instruction buffer size. By varying these
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parameters, we can explore the performance of a class of processors related to

the CRAY-i for the execution of selected benchmarks fr~om the application area.

The actual simulation program was constructed in FORTRAN for lack of a better

simulation tool. Rather than explicitly simulating actual logic, the

simulator models reservations placed on the use of functional units and memory

banks and tests instruction issue conditions to determine the readiness of the

next instruction for execution. While the simulator accurately predicts the

performance of memory resident CRAY assembly language progrems, no attempt was

made to simulate I/O. The accurate simulation of I/ was considered too

difficult, especially in a serial programing language such as FORTRAN.

A matrix multiplication program was selected as a simple benchmark

program for the investigation of this class of vector processor3. It should

be noted that this is a highly camputation intensive program stressing demands

on the vector floating point functional units of the CRAY-i. The benchmark

program had to be reprogrammed when certain of the architectural parameters

were varied in order to exploit added capability. For example, if the number

of vector registers is increased, the benchmark program has to be reprogrammed

to exploit this additional hardware. The use of additional vector registers

may lead to higher performance since a vector fetch operation could be more

efficiently overlapped with vector multiply operations. The first simulation

experiment performed measured the the effects of the number of vector

registers on benchmark performance. The standard ,CRAY-I processor has 8

vector registers each 64 elements long. The innermost loop frcm the benchmark

program was simulated on machines having 4,8, and 16 vector registers to

estimate performance. The table below illustrates the results of this study.

Number of vect. reg's. MFLOPS %Change

4 135.33 -8.7
8 148.23 -
16 150.36 1.4
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Note that for this benchmark, the execution rate in million floating point

operations per second is rather insensitive to the addition of new vector

registers. This is partially due to the fact that the increased length

innermost loop program for 16 registers will no longer fit within the

instruction buffer and requires the instruction buffer to be repeatedly

reloaded increasing memory traffic.

The second experiment explored the effects of vector length on processor

performance. As the vector length is increased, the vector startup cost is

averaged over a larger number of elemental operations leading to more

efficient operation. The results of this experiment are shown below.

Vector length MFLOPS %Change

8 78.77 -38.8
16 105.13 -18.3
32 119.77 -7.0
64 128.72 -
128 133.73 +3.9

This experiment was performed using the conplete matrix multiply program

instead of the innermost loop used above. Thus, the simulated performance is

somewhat lower than that shown in the experiment on the number of vector

registers described above. From these studies, it became clear that this

computationally intensive beichmark is largely limited by functional unit

performance, and memory bandwidth.

The following experiment was completed to measure the dependence of

performance on vector functional unit capability. The simulation was

constructed to allow the vector functional units to operate on more than one

element at a time. Thus, w&hile the startup time for a vector instruction is

cons t .ant, the execution rate of elemental operations is proportional to the

number of parallel operations performed at a time (NPAROP).
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NPAROP I.LOPS %Change

1 128.72 -
2 162.80 +26.5
4 189.28 447.0
8 203.98 +58.5

16 206.45 ,60.4
32 206.45 +60.4

Note that the performance of this computationally intensive benctmark program

is highly sensitive to functional unit parallelism. However, when 16 or more

floating point operations are performed simultaneously, the performance

increases level off due to memory bandwidth saturation.

4.2 Architectural Issues for Fast Fourier Transform Processing

This project was the. result of exploration of methods of Fast Fourier

Transform (FFT) implementation and of machines that had been conceived to

perform these operations. It is useful to consider FFT operations, because

many signal processing algorithms and manipulations are FFr-like. These

include the Discrete Fourier Transform (DFT), the inverse DFT, convolution,

and correlation.

The basic form of the Cooley-Tukey algoritm resulted in savings of

several orders of magnitude in cmputation of the FFT for moderate and long

sequence lengths. Many methods of honing the time to compute FFT's have been

proposed. Most of these methods capitalize on bottlenecks in hardware such as

long multiply time with respect to add time, or on special cases related to

applications, such as all real input data.

The methods for increasing computational speed through specialized signal

processing hardware can result in a performance gain of perhaps two orders of

magnitude over general purpose computers. This is as significant as the

savings realized from the FFT algorithm, and should receive careful attention.
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Implementation of special FFT processing hardware results in not only a

computational savings, but often an economic savings as well. Many of the

early considerations of hardware implementation have been discussed by

Bergland (31]. One example of design implementation is given by Pomerleau, et

al [32], for the realization of an MFr processor, based on real time, real

valued input sequences, and an attempt to maximize the precision of the

result.

The heart of all F-r signal processors is some form of FFT unit, or

specialized ALU to efficiently perform the sums-of-products operations

inherent in FFT computation. Parallelism and pipelining can be introduced at

all levels of camputation to enhance performance. The "butterfly", the basic

primitive of Radix-2 FFT's, can be highly parallel-pipelined. To produce each

of the Log 2N butterflies sequentially at a very fast rate. Also, if many

"butterfly units" are replicated, as many as N/2 butterflies can be executed

in parallel. By combining many parallel Units that are each

parallel-pipelined, the maximum speed can be achieved. Economic constraints,

however, will limit this maximally parallel, pipelined structure to those

cases where application dictates the absolute necessity of handling a large

amount of data very quickly.

Today's technology allows a single butterfly to be computed in less than

100 nanoseconds. With this speed available, the general trend is to provide a

single, very fast butterfly unit, and sequentially compute each butterfly.

This speed is sufficient for many real-time applications. 4

Since the late 1960's, many specialized signal processors have been

constructed. Two basic categories exist: First, the dedicated processor that

operates as a stand-alone processor, and second, the distributed system that

takes the florm of a specialized peripheral controlled by a host computer. The
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dedicated processors tend to be more flexible in their operations, often

providing for data processing other than FFT's such as windowing, buffering,

smoothing, interpolating, and automatic gain control. The distributed

processors take advantage of the widely varying speeds between the FFT

computation and the handling of the data sequence. The "number crunching" is

handled by a special high-speed butterfly unit, vhile the slower host

initiates tasks, and performs operations that require decision-making

capabilities.

Several of the representative machines have been compared by Allen (33],

and numerous articles relating to this can be found in the collection [31].

Current work includes implementation of machines to take advantage of numerous

specialized algorithms and machines that take advantage of ECL, LSI, VLSI, and

the advanced state-of-the-art technology.

The need to compute a 2 dimensional discrete Fourier Transform (2D DFT)

of a large array (say 1024 x 1024 or larger) arises in many different

practical problems. Unfortunately, to take a 2) DFT, even using a FFT

algorithm, requires a large amount of computer resources (i.e., memory and CPU

time). This research has been concerned with how such a DFT can be calculated

most efficiently.

There is very little that can be done to minimize memory as almost all of

the memory typically used is required to store the data array. An

insignificant amount of the required memory is needed to store the program

itself. One possible tradeoff between memory and speed is vbether or not to

store a table of constants need in the FFT butterfly operations. Since the

time penalty of calculating rather than storing the needed constants is so

great, we assume the needed constants are stored.
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The procedure for computing a 2D DFT of an N X N array is as follows.

N-N point 1-dimensional DFT's are calculated along rows or columns. The array

is then transposed and the process is repeated. Thus, the number of

operations required fbr a straightforward EFT implementation will be

proportional to N3 . If a FFT algorithm is used, the complexity is reduced to

N2 1og 2 N.

When working with large arrays, the entire array may not fit into main

memory. In most cases it will be stored in row major or column major order on

some sort of sequential access memory device such as a disk. In the process

of calculating the EFT, each row or sequence of rows will be read from disk

into main memory where the 1-dimensional DFT's will be calculated. The result

will then be returned to the disk and the process will continue. The penalty

of doing this will be relatively small since each 1-dimensional DFT represents

a large amount of computation.

The problem arises vhen transposing the array. It is obvious that

transposing an array stored on a disk in a straightforward manner would be

very time consuming as the number of read and write operations would be

approximately equal to the number of elements in the array.

On the other hand, methods such as the one proposed by Eklundh can reduce

the required number of I/O operations significantly (35). For instance, if an

array contains 2n X 2n samples, the array can be transposed without reading in

and writing out the array more than n times, assuming that at least 2 rows of

the array fit in main memory at once. If a larger number of rows will fit

into main memory at once, the number of times the array will have to be read

and written can be reduced to as little as two.
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Another problem is that of reducing paging faults to a minimum.

Unfortunately, because of the sequence of operations, there is very little

that can be done to reduce page faults. Ideally, all the pages that hold a

given row should remain in main memory until the DFT on that row has been

completed. Otherwise, an excessive number of disk swaps will be necessary.

Another related area investigated is the calculation of a 2D DFT where

the input data is in polar rather than rectangular coordinates. This is a

problem that often arises in synthetic aperture radar, tomography, and

crystalography. The traditional approach has been to use some method of

interpolating the data into rectangular coordinates and then calculate the

transform in a conventional manner. This, however, is very time consuming and

results in large nzerical errors. Another procedure is to manipulate the

transform into a finite integral which can be evaluated numerically. This can

also be very time consuming. We have begun a research study to derive a

discrete form of the polar Fourier Transform. The polar Fourier Transform

pair is

P(p ) ~ f f(r,B)exp[-J2Ttrpcos(.-0)]rd8dr
0 0

and

f(r,8) = f0fo F(p ,0).xp j2rrrpcos(-0)])pdp.

The presence of the cosine term in the experimentation makes the polar Fourier

Transform much more difficult to evaluate than the rectangular form. In the

process of deriving a DFT from a continuous form, it is necessary to Icow

several transform pairs from the continuous transform. No such tabulation for

polar Fourier Transforms is now known to us. We are hopeful that we can

develop this tabulation, that the polar Fourier Transform will lend itself to

a discrete form and that a "fast" implementation will be possible.
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SECTION V

AVIONICS PROCESSOR ARCHITECTURES EVALUATION

In real time computer applications that require the concurrent handling

of many tasks, computational efficiency is very important. Specifically, in

the avionics environment, where navigation, system monitoring and weapons

delivery are included among the ongoing tasks of the avionics computer,

efficiency of computation is the foremost requirement for handling the

voluminous data entering the computer. Computational efficiency results from

a combination of the system architecture and the software used to control the

many processes. A given task domain has inherent processes which can give

rise design possibilities for tuning both hardware and software in order to

optimize the overall efficiency of a processing system. In particular,

expected types of data flow, operations, and computation sequences that recur

frequently can lead to the specification of data paths and instruction types,

which if added to an existing architecture can considerably improve its

throughput. In addition to this, compilers that are optimized with respect to

the architectural features can greatly improve the processing efficiency.

We have begun an investigation of the processor efficiency of the Air

Force AYK/15A computer with respect to avionics processing requirements. The

intention is to find areas which can be improved and to investigate the

consequences of proposed improvements. This investigation is being done in

two steps. The first step is to compare the architectural features of the

AYK/15A with those of the Raytheon fault tolerant space borne computer (FTSC)

and with those of the Delco Magic 362F. Simulators which run on the DEC

System-10 have been constructed for these machines as tools on which

benchmarks of representative avionics processes can be run. The second step

is to code the benchmarks on each machine and evaluate the runs with respect

to instruction and address mode usage, memory reads and writes, storage
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requirements, and register usage.

5.1 The Avionics Processors

5.1.1 The Air Force AYK/15A

The AYK/15A is an extension of the AYK/15 prototype

Westinghouse in conjunction with AFAL. The AYK/15A ha

instruction set of the AYK/15 [36,37]. It has up to 65,536

core memory. In addition it has 16 user accessible 16-bit ri

khich can be used as accumulators, stack pointers, index

registers, and temporary storage. It has 207 Implemented

length 16 bits and 32 bits. It has the following address mode

Register EA = Reg
Direct EA = Address
Direct-Indexed EA = Address + (Rx)
Indirect EA = (Address)
Pre-Index Indirect EA = (Address + (Rx))
Immediate Long (EA)= Address
Immediate Short with (EA)= sign-extended 4-b

Positive or Negative operand
IC-Relative EA = (IC) + Displaceme
Base Relative EA = (BR) + Displaceme
Base Relative-Indexed EA = (BR) + (Rx)
Special modes

(Rx : RI-R;5; BR : R4-R7; IC-Instruction Counter)

Subroutine Linkage

The AYK15A provides several ways for calling subroutines.

1. JS Ra, Label return by JC 15,0,Ra

The return address is stored in Ra and subroutine par
be passed through STM and [2M which stores and lo
registers respectively.
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LU n,O,Ra will bring in all parameters and

STM m,O,Ra will return the results.

2. SJS Ra,Label return by LIS Ra

The return address is stored in the stack location pointed to by
Ra. This saves one address word for the return instruction.
Subroutine parameters may be passed by PSHI* and POPM khich
pushes and pops multiple registers respectively onto the stack.
pointed by R15. P511 and POPM can act on individual register
too. Thus, it frees the registers to be used in subroutines.

Unusual but Useful Features

The CBL instruction tests if (Ra) is less than, in between, or greater

than an integer-interval defined by (Addr) and (Addr+1). Base-Relative

Addressing Mode allows single word instructions (e.g. ADD, SUB, AND, OR,

etc.) fbr record structuring in high level programming languages with the base

register pointing at the record. This decreases the program size and speeds

up the execution as well. It is to be noted that this address mode is

available for certain registers only.

General Comments

The AYK15A is a general purpose processor and it has very well designed

instructions. Most of the short instructions (e.g. Immediate-Short, Base

Relative, ADD LOAD) are the most commonly used instructions. Thus it results

in less memory fetches and faster execution as well as smaller program size.

The instructions PSHM and FOPM can free any number of consecutive

registers for use in subroutine linking. There are 16 registers available for

users and even though they are 16 bits long, they are sufficient for

addressing all of memory.

-142-



The AYK15A lacks some rather important function instructions such as

square-root, vector-manipulations which are common in aviation formulae.

Since the machine is 16-bits but floating point data are in 32-bits, this

means that a floating point array indexing have to be doubled. This can be

done just by a logical left shift. This may be the reason that AYK15A has no

post-inerement index address mode. The processor has the one-word instruction

to add two to an indexing register and this may be the replacement the

designer put up for the lack of post-increment index mode.

5.1.2 The Raytheon Fault Tolerant Spaceborne Computer

The Raytheon Fault Tolerant Spaceborne Computer (FTSC) has the generality

of a conventional computer, with many added features for hardware and software

fault detection and recovery. It has an instruction space of 128 instructions

with 112 implemented (38). Of these, 18 are operational in executive mode

only. The word size is 32 bits and the arithmetic is two's complement.

The FTSC has eight 32-bit general purpose registers that are programmer

accessible and eight 32-bit working rpisters. Four of the working registers

have special assignments, namely, the memory data register, the memory address

register, the status register, and the extension register. The status

register contains the following information: bit 8 is the carry-out flag, bit

9 is the invalid arithmetic operation flag, bit 10 contains the overflow

status, bit 11 contains the executive mode status, bit 12 is the interrupt

disable, bits 13-15 contain the interrupt level if an interrupt is running,

bits 16-31 are the program counter. The extension register is used with

double word operations such as long shifts and floating point instructions to

accoodate the least significant bits. The other four registers have no

special designation and are used as scratch registers by the more complex
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instructions.

Data Formats

Logical data are stored in one word and each bit is treated identically.

Integer data is stored in one word and has two's complement

representation.

Single precision floating point data takes one word. Bits 0-23 are used

for the two's cauplement normalized mantissa and bits 24 - 31 are used for the

two's complement exponent. All floating point instructions expect normalized

operands. Floating point zero is represented by all zeros in the mantissa and

an 80 (hex) ecponent.

Double-Precision Floating Point data takes two words. The high-order

word has the exact format as the floating point data. The low-order word is a

32-bit continuation of the high-order mantissa. Double precision instructions

expect normalized operands. Normalized double precision zero is a normalized

floating point zero in the high-order word and all zeros in the low-order

word.

Immediate numbers are treated as 16-bit integers. The sign bit occupies

bit 16 and is extended by immediate mode instructions to the upper 16 bits of

the word before the value is used in the computation. Immediate numbers may

be used as logical or integer data.

Upper immediate numbers are treated as 16-bit two's complement integers.

The value of the instruction address field is multiplied by 216 before the

value is used in the computation. Upper immediate data may be used in

logical, integer, or floating point instructions.
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The Instruction Set

Addressing modes:

AM Name Effect

0 Register EA = Register
1 Immediate (EA) = Constant 16
1 Upper Immediate (EA) Constant*21 6

2 Direct EA Address
3 Indirect EA = (Address)
4 Indexed Postincrement Reg = Reg + 1;

EA = (Reg) + Address
5 Indexed Predecrement EA = (Reg) + Address;

Reg = Reg - 1
6 Indexed EA z Address + (Index Reg)
7 Index Indirect EA = (Address + (Index Reg))

Addressing mode 1 is used only in the load type instructions (opeode
00-3F hex).

Instruction Format:

The FTSC machine has only one instruction format. Each instruction

occupies exactly one word. Bits 0-6 contain the op-code. Bits 7-9 and bits

10-12 contain the RB and RA fields, respectively. The register fields, RB and

RA, each specify one of the eight general purpose registers. For certain

instructions, either one, or both, of these fields may be unused. Bits 13-15

contain the addressing mode. Addressing mode I is not used for store type

instructions. Thus, when decoding an instruction, if the addressing mode is

1, the op-code is interpreted as if bit 0 were zero, thus forcing a load type

instruction. Then wien the effective address is being computed, bit 0

specifies vhether the addressing mode is Immediate or Upper Immediate.

Finally, bits 16-31 contain the address. Again, not all the instructions use

the address field.
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Useful unusual instructions:

SQUARE ROOT FLOATING
VECTOR ADDITION FLOATING
VECTOR SUBTRACTION FLOATING
VECTOR MULTIPLY FLOATING
VECTOR INNER PRODUCT FLOATING
VECTOR-SCALAR MULTIPLY FLOATING

Subroutine Linkage

The only way to save the program counter is by the JuMp to subroutine

instruction. The effect of this instruction is to store the PC in the

specified register and jump to the specified effective address. Once arriving

at the subroutine the return address could be stored, stacked, or left in the

register. The subroutine could then return through any of the several jump

instructions used in any of seven addressing modes. It should be noted that

there is no instruction to explicitly stack the PC or dynamic link when

executing a JuMp to a subroutine. This scheme demands that the programmer

take care in keeping track of his calling points if he wants his program to

return properly from subroutines.

Interrupts

The priority interrupt network recognizes 10 levels of interrupts. In

order of increasing priority these interrupts are: Direct memory access no.

2 (end-of-block), Direct Memory Access no. 1 (end-of-block), Serial Interface

Unit (end-of-block), Direct Memory Access no. 2 (general), Direct Memory

Access no. 1 (general), Serial Interface Unit (general), Real Time Interrupt,

Arithmetic Error, Illegal Operation Code, and Fault.
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The lower priority interrupts are honored during the instruction fetch

cycle. The Illegal Operation Code interrupt and the Fault interrupt are

honored at the end of every micro-code instruction. Interrupts 1-8 (the lower

priority interrupts) are individually maskable under program control. Also it

is possible to enable or disable the lower priority interrupts under program

control. An interrupt is serviced if, and only if, it is not disabled or

masked. When an interrupt is serviced, the program status register is stored

in a preassigned memory location corresponding tc. the interrupt. Then the

machine vectors to a location in memory according to the value stored at

another preassigned memory location. Also the request flip-flop for the level
D

serviced is reset and the "in-process" flip-flop for the same level is set.

While an interrupt is being serviced, all 8-lowar priority interrupts are

disabled. Only illegal operation codes and faults can interrupt. The

in-process flip-flop can be reset by the return from interrupt instruction.

General Comments

The main strength of the FTSC is its ability to detect and correct

errors, both in hardware and software. This is an advantage to the avionics

programmer, since much effort is devoted to these problems in an avionics

computer. Another strength lies in the speed gained from the inclusion of

hardware vector arithmeti= instructions. The FTSC Was designed to calculate

three dimensional vector algorithms. Another strength is the wide variety and

uniformity of addressing modes; each load instruction has nine addressing

modes, and each store instruction has seven.

The main wakness of the FTSC is the way it Implements Upper Immediate

addressing. Since the store instructions can never use Immediate data,

addressing mode I implies a load type instruction. The FTSC used this fact in
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coding Upper Immediate by placing a 1 in the most significant bit of the

opcode. Hence, hardware must recognize the address mode 1 concurrently with

the 1 in the first opcode bit in order to distinguish the instruction from a

store instruction, which also has a 1 in the first opcode bit.

5.1.3 The Delco Magic 362F

The Delco M362F is a modular, flexible, high performance digital cmputer

139,40). It is a microprogrammed, high speed, general purpose, parallel

camputer with a 16 bit basic word length. It employs 16 and 32 bit

instruction words and 8, 16, 32 and 64 bit data words. Multiple memory words

are used for extended instructions and floating point and double precision

data words. N1o 8 bit bytes are stored in each memory location. Mainframe

memory options include core and semiconductor. The arithmetic operations are

binary, with negative numbers in the two's complement form. The processor is

mechanized with standard and medium scale integration (MSI) and TM integrated

circuits. The MSI includes a 64 bit randcm access memory, a 2,048 bit read

only memory, and a programmable arithmetic unit. The M362F addressing modes

include direct (512 words), indirect, relative (index registers and

instruction counter), and stack processing. The maximum memory size for the

M362F is 65,536 words. The M362F processor has 16 user accessible registers

that are used as accumulators, index registers, stack pointers and temporary

storge.

Addressing modes

Direct EA = Address
Indexed EA a Address + (Index Reg)
Deferred EA a (Address)
Index Deferred EA z (Address + (Index Reg))
Post Indexing EA 2 (Address) + (Post-Index Reg)
Index Deferred EA z (Address + (Index Reg)) +
with Post Indexing (Post-Index Reg)



Data Formats

FIXED POINT

Single precision 16 bit two's complement.
Double precision 32 bit two's complement.

FLOATING POINT

Single precision 32 bit (23 bit mantissa, 8 bit exponent)
Double precision 64 bit (48 bit mantissa, 8 bit exponent)

(Note: Both mantissa and exponent are also represented in two's complement.)

Subroutine Linkage

Subroutine linkage on the M362F is accomplished via a stack mechanism.

To call a subroutine, the current Instruction Counter (IC) is pushed onto a

stack located in memory via any register designated as the stack pointer. A

transfer is then made to the specified routine. To return from the subroutine

the M is loaded form the stack area, which effects a transfer back to the

calling routine. There are also instructions in the M362F repertoire which

facilitate register stacking in memory, thus allowing registers to be used

freely by the subroutine and then restored to their previous values before

returning to the calling routine. It should be noted, however, that there is

no instruction that pushes or pops multiple registers. Registers must either

be pushed and popped individually (which requires tedious and inefficient

coding) or stored and loaded en masse via the store and load multiple register

instructions (which lacks some of the conveniences of a general recursive

push-pop multiple facility).
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The Instruction Set

The M362F instruction set is composed of 92 basic machine instructions,

with 30 additional special purpose input/output and control instructions.

There is direct addressing to 512 words, with relative, stack, indirect, and

indirect/post-indexed addressing to 65,536 words. There are five instruction

types. These include two 16 bit formats to operate on register and memory

contents. One of these types is indexable, whereas the other is not. A third

16 bit instruction type is used to manipulate register data or to perform

operations on register pairs. Finally, there are two 32 bit instruction

types, both of %hich are indexable. The first is used to operate on memory

and register contents and to process single bits in memory. The second is

used to perform program transfers, compare immediate, load immediate, and to

operate on register and memory contents. The M362F has some

macro-instructions vhich are useful for avionics coputations. These include:

PEX polynomial expansion
PEN odd polynomial expansion
SSQ sum of square
SQR square root

Interrupt Processing

The occurrence of a specific M362F interrupt forces the processor to

execute a unique transfer-to-subroutine instruction (TRSI). This method

automatically transfers the program to the required interrupt servicing

routine. The rules of interrupt operation are as follows:

1. An interrupt signal is not acknowledged until execution of the
current instruction is capleted. If that instruction is an IND
or IPX instruction, the interrupt signal will not be
acknowledged until execution of both that instruction and the
next sequential instruction is cmpleted.
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2. Simultaneous interrupts are recognized in order of priority.

3. An interrupt routine may be interrupted by one of higher
pr iority.

4. The responsibility of saving and restoring pertinent register
data (except for the instruction counter contents) lies with the
interrupt servicing routine.

5. Each interrupt servicing routine shall be terminated with a
return-from-interrupt instruction (RFI).

6. At power-on, all interrupts except the power-off interrupt are
disabled.

General Comments

The weaknesses of the M362F start in the complex layout of the opcodes.

Many commonly used instructions are two words instead of one (a normal

instruction size). A key example are the LRM and SRM instructions (load

register from memory and load register to memory). These useful instructions

need twice the size of less needed instructions like FSDP (double precision

subtract).

Another problem is the lack of orthogonal design. The AND instruction

ANDs the AREG to memory. The OR instruction will OR any register to memory.

A programmer may, without thinking, assume that because the OR instruction

will OR any register, the AND instruction will also. This means that the

programmer must generally do an accumulator save, do a register transfer to

accumulator, do ths AND operation, transfer the result back to the register

and then load the accumulator again. There are several instances of this

inconvenient design feature.

The last major difficulty is khen you went to do indexing or post

indexing. Befbre any instruction wishing to index or post index you must

precede that instruction with a ID or IPX. Other than just being annoying,
~-151-"
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it can cause programmer errors if the program is modified. In haste the

programmer may delete some assembler code and accidently leave in the IND or

IPX. This would then effect the code immediately after the deletion and cause

unknown behavior.

5.2 The Avionics Processor Simulators

In an attempt to make comparisons of the memory requirements, memory and

register transfers, and speeds of execution for several benchmarks on the

AYK/15A, the FTSC and the M362F, simulators were produced for these machines.

A running version of the AYK/15A, which was generated from the ISP compiler

developed at the Coordinated Science Laboratory, was obtained from AFAL. In

addition, ISPS, which is a more powerful simulation construction facility,

that allows easy gathering of statistical information about a simulator, was

obtained from Carnegie-Mellon University. Along with this facility we

obtained the ISPS version of the AYK/15A from CMU. ISPS descriptions were

generated for the FTSC and the M362F. Debugging of these simulators and

attempting to get support software to run with these simulators consumed the

bulk of the effort for this part of the project.

The AFAL cross assembler was copied to the DC-10 at CSL along with a

loader for the AYK/15A and a lookup table for the M362F. Math packages were

obtained for each of the machines. A FORTRAN version of the FISC was obtained

from SAMSO. It turned out to be unusable as it was written for a CYBER, and

the conversion effort required to get it running on the DEC-10 was beyond our

means. Instead we constructed a lookup table for the FTSC to be used with the

the ALAP cross assembler.
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A benchmark Ws written in FTSC assembly. This benchmark decomposes a

square matrix into a lower and upper triangular matrix using Gaussian

elimination. It is based on the algorithm suggested by CMU to exercise the

floating point instructions and test the array addressing and nested iteration

capabilities. Attempting to assemble the program brought to light several

deficiencies in the ALAP cross assembler. ALAP is currently insensitive to

word sizes larger then 16 bits. It allows the specification of larger word

sizes, but attempts to either ignore this face, or to treat a 32 bit word as

two consecutive 16 bit words. Conversations with personnel at AFAL and TRW at

AFAL resulted in a new ALAP cross assembler being generated. However, this

still did not properly generate values indicated by the DATA statement when

the value ws 216 or larcer. As a result, these values had to be hand coded

into the simulated memory for the FTSC. Preliminary execution time, program

size, and number of memory accesses were obtained.

This same benchmark was then coded for the AFAL simulator for the

AYK/15A. Running the benchmark was inconclusive as the timings were not

available for several of the instructions. However, some comparisons can be

made between the FTSC and the AYK/15A. The FTSC used about the same number of

words as the AYK/15A (78 vs. 80, respectively). However, since the FMC is-

32 bit machine, it requires twice the number of bytes as the AYK. Examination

of the FTSC machine code revealed that about 35% of the instructions had

wasted lower bytes and were of no use to the program. Furthermore, the AYK

accessed memory about 2/3 as many times as the FTSC. This may be due to the

fact that the FTSC has only eight user accessible registers as opposed to 16

for the AYK/15A.

There is still some effort needed to complete the evaluation of these

machines. A working version of ALAP must be constructed to allow cross

assembly to 32 bit machines. It would be useful if the cross assembler
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capabilities were extended to allow conditional coding based on the testing of

a value in the address fields, as for instance, the address mode field. This

would allow proper coding of the upper immediate mode for the FTSC instruction

set. When the support software for the simulators is functional then the

benchnarking should be performed.

-5
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SECTION VI

A HARDWARE SYSTEM FOR ANALYZING IMAGE PROCESSING KE

In order to adequately investigate the performance of

for image processing, it is necessary to work with read

resolutions comparable to those used in real applications.

development of the CCD (charge-coupled devices) industry, it

the very near future, CCD imaging devices will all t

conventional vidicon camera. The advantages of CCD cameras a

1. accuracy and stability in the positions of the pixel

2. insensitivity to surrounding electric and magnetic f1

3. virtual nonexistence of image bloom and lag, and

4. extreme ruggedness due to all solid-state constructi

Since CCD cameras with large arrays of pixels have recently

from General Electric and RCA, it was decided to obtain th:

for research. Because it was more suitable for computer

TN-2500 CCD camera from GE was selected. The camera feati

array of pixels with the video signal quantized to 256 lev

rate of 30 frames per second. Two of these cameras were

experimental algorithms for stereoscopic vision could be inv4

Next, the problem of interfacing the cameras to

PDP-11/40, was considered. The problem was considerably

choice of camera; nevertheless, with the pair of camer

kilobytes of data at a rate of 4.5 megawords per second, it

output could not just be dumped into the computer's memory

both the capacity and the bandwidth of the memory. For

decided to place an image buffer between the cameras and

further advantage of having an Image buffer is that it a
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memory bank for several processors. This requires a rather special design for

the image buffer, but the possibilities for lproved throughput make it well

worth the effort.

An attempt was made to find a commercially available buffer memory

meeting the above requirements, namely, a 4.5 megaword/second input bandwidth

and an output port which could be easily multiplexed anong several PDP-11 's.

However, nothing could be found satisfying both requirements, 30 it was

decided to use a general purpose memory system to which we would add our own

input and output ports. Even at that, the rather high input bandwidth

narrowed the search for such a memory system down to just one, the Intel

IN-7000 series. Each IN-7000 memory board contains 16 kilowords of static

random access memory with a 250 nanosecond cycle time. Four boards would be

required to store one pair of images from the stereo camera system; however,

to further improve the system performance, eight boards were purchased so that

a new image could be loaded into one part of the image buffer while the

previous image was still being processed. In essence, two image buffers would

be constructed and connected to common input and output ports via two

electronic switches as shown in Figure 28.

The next consideration was how to allow several processors to

simultaneously access the image buffer. Immediate concern was given only to

the problem of access by three PDP-11's (one model 11/40 and two model

11/04's) which are presently available at CSL. However, the design was

required to be flexible in the actual number that could be connected. It was

further assumed that moat requests for accessing the image buffer would come

in short high speed bursts, i.e., a processor would fetch, say, 72 pixel

values from the buffer at a time, then not request anything at all for a

couple hundred machine cycles. With such an operating environment, a simple

polling bcheme would be suitable for arbitrating the memory requests from the
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Figure 28. Interconnection of cameras, image buffer and processors.
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several processors. Each processor, in its turn, would be polled to see if it

required access to the image buffer, and if so, it would be granted a 250

nanosecond memory cycle. With individual requests from a single computer

coming at a maximum rate of about one per microsecond, four computers could be

simultaneously reading from the buffer at their maximum rates.

The input side of the image buffer consists of four 16-bit registers to

hold four successive cells of pictorial data before being loaded into the

memory array. Each register corresponds to one of the four memory boards used

to store an image, and when all four registers are filled, their contents are

transfered en masse into the memory array. It was later decided to route the

second stage of this transfer through an arithmetic logic unit (ALU) so as to

enable integration and differencing between successive image frames.

The purpose of the ALU is to modify the data coming from the cameras as

it is being loaded into the buffer. The ALU operates on two operands labelled

A and B. Input A is the data coming from the cameras, and input B is the data

from the image buffer that is being overwritten. Of special interest was the

operation in which the image coming from the cameras would be subtracted from

the image already stored in the image buffer. It was desired that this be

performed on either the left image or the right image or on both of them

simultaneously. Thus the ALU would have to consist of two independent halves,

each operating on a pair of 8-bit operands. Another desirable function was to

add a series of successive frames together in order to obtain more bits of

grayscale. For this, the two halves of the ALU would have to operate as a

single 16-bit accumulator with the input from the left hand camera being

ignored.
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The primary consideration in the design of the ALU was speed. Whatever

was going to be done had to take place in about 110 nanoseconds per pixel for

the following reason. A new word of data comes from the cameras at the rate

of one every 220 nanoseconds, thus filling the four registers at the input of

the image buffer once every 880 nanoseconds. During those 880 nanoseconds,

four pixels would have to be read from the image buffer, modified by the new

data in the four registers, and stored back in the buffer. The only way this

can be accomplished is to use two additional features of the Intel memory

system:

1. the read-modify-write cycle which takes 60 nanoseconds less than
a separate read cycle and write cycle, and

2. the ability to overlap the cycles of different memory boards on
the same bus.

The manner in which the cycles overlap is shown in the following diagram:

BD 1 RRRRRRRRRRR ?MM t WWWWWW ****
BD 2 RRRRRRRRRRR MMMMM WWWWWW m
BD 3 RRRRRRRRRRR ?4tt WWWWWW 'w'

BD 4 RRRRRRRRRRR MMt4 WWWWW WW

TIME 0 10 20* 300 '460* 500 *60* 70* 80* 90

where R represents the time it takes the data to reach the output of the

memory board after initiation of the read-modify-write cycle; ?M represents

the time this data is transmitted on the read-data bus; and W represents the

time when the board smples the data on the write-data bus. The asterisks

denote the remainder of the cycle to allow the write-data to completely sink

into the memory chips. The inputs to the ALU become valid about 30

nanoseconds after the the beginning of the "modify" part of each cycle, but

due to propagation delay, the output does not become valid until about 50

nanoseconds later. Finally, it takes about 20 nanoseconds to latch the output
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of the ALU to hold it steady for the subsequent "write" part of the cycle.

Thus, the modified data to be written back into the memory board does not

become available until 110 nanoseconds after the data first appeared at the

beginning of the "modify" part of the cycle. No other board can use the

read-data bus during this time, so the completion of each board's cycle is

delayed 110 nanoseconds from the preceding board. For four boards, this just

barely fits within the allotted 880 nanosecond period.

Hence, the basic ALU could have a total propagation delay of at most 60

nanoseconds. To achieve such performance, the design made exclusive use of

Schottky TrL. The completed design, shown in Figures 29 and 30, has a

calculated worst-case delay of 54 nanoseconds.

The ALU Consists of two halves operating on 8-bit operands, though, upon

c -4ind, they can also be connected to operate as a 16-bit AU. Each half of

the ALU is further divided into two stages, the first consisting of a pair of

-bit ALU chips (the 74S181) which perform addition, subtraction, and Boolean

logic, and the second consisting of discrete logic to compress the results

from the previous stage into eight bits. Both halves of the first stage are

shown together in Figure 29, while only one of the halves of the second stage

(since both are identical) is shown in Figure 30.

A total of 20 bits are used to control the ALU, i.e., to specify what

function the ALU is to perform. These are equally divided between the left

Ond right halves of the unit, each half being controlled by ten bits labelled

CO, Cl, C2, ..., C9. The functions controlled by these bits are as follows:

Co the value of the carry input to the least significant bit
of the ALU chips (when enabled by Cl & C2):

Cl selects between CO (above) and the carry output of the
right half of the ALU for the carry input (only for the
left half).

C2 selects the mode of the ALU chips, arithmetic or Boolean
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logic. (The Boolean mode effectively disables CO & C1.)

C3-C6 selects one of 16 arithmetic functions or one of 16
Boolean logic operations, depending on the mode. Among
the arithmetic functions are addition, subtraction, and
shift left by one bit. Among the Boolean logic operations
are the bitwise NOT, AND, OR, and EXCLUSIVE-OR.

C7 selects whether or not to invert the sign bit.

C8 selects whether to (a) - wmp the 9-bit result from the ALU
chips to fit within an it field, or (b) simply select
the high-order eight bi._ of the 9-bit result.

C9 enables C7 & C8, otherwise all second-stage circuitry
is bypassed.

The above descriptions should be self-explanatory with the exception of

C8. Ordinarily, adding or subtracting two 8-bit operands yields a 9-bit

result. However, there are only eight bits available for storing the result,

so one bit has to go. If two 8-bit numbers were added, then it would normally

be best to simply eliminate the least significant bit. This would also be a

suitable alternative for subtraction, but when the difference is most likely

to be small, as it will since two successive images are usually quite similar,

then it would be better to retain the full resolution of the difference so

long as it fits in an 8-bit field. This would include all results from -128

to +127. However, it is possible for the difference of two 8-bit operands to

lie anywhere from -255 to +255, so something will have to be done with those

differences below -128 or above +127. Changing these out-of-range values to

-128 and +127, respectively, is known as clamping and is the other choice

offered by control bit C8. If neither clamping nor selecting the high-order

eight bits is desired, as would be the case if no modification to the camera

data were desired, then bit C9 can be used to disable C8.
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