AD=~A089 S70 ILLINOIS UNIV AT URBANA=CHAMPAIGN COORDINATED SCIENCE LAB F/¢ 9/5
OPTIMIZED COIPU‘IER SYSTEMS FOR AVIONICS APPLICATIONS.(U)
FEB 80 R T CHIEN» L J PETERSON 33615-70'6-1559
UNCLASSIFIED AFAL=TR=79-1235

e 2
|

mmm SCIENCE unoum
' UNIVERSITY OF ILLINOIS B

_URBANA, ILLINOTS 61801

l'cbm:y 198,0

TRCHNICAL REPORT un-m“n-ua
FINAL wmmnum 1mmt 1979 - 30 smmn 1979

MR Purite. s

n au:mu to an g.mr&lpubuc, includ!na‘ ,¢aruga mhm

.) Sy

mge-cmm report m b«n reviewed and ‘i:‘ appM for .pu,buaum,

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

7'/] REPORT DOCUMENTATION PAGE BEFOBE COMPLETING, FORM

R GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMSER

78| Jararfjre-79-1235 / v l[\b-ﬁO??b Ve

4 TiITLE(snd Subtitie) .

(]).geTmMrzen
°¥| For AVIONI S gru 'nons_

7. AuTH AUTHOR(s e 9. CONTRACY OR GRANT NUMBEN(s)
Lg/ . 70‘:;:. /PETERSON/ et al. ~ 0} , F33615-78-C—-1559/

&

N -
| AN [
‘ 9 PERFORMING ORGANIZATION NAME AND ADDRESS/ 0. PROGRAM m
COORDINATED SCIENCE LABORATORY AREA & WORK UNIT NUMBERS 1
- UNIVERSITY OF ILLINOIS PE~-61101F
URBANA, ILLINOIS 61801 AFAL 2003-03-41 ‘
- 11. CONTROLLING OFFICE NAME AND ADDRESS : ORI.DATS ,
AFWAL/AAAT

AF WRIGHT AERONAUTICAL LABORATORIES, AFSC I NUWBER OF PAGES

WRIGHT-PATTERSON AFB, OHIO 45433 184

[3 “ONIEQiING AGEN_C»YANAH! & ADDRESS(if difterent from Controlling Oftice) 18. SECURITY CLASS. (of lM- report,

P A L A UNCLASSIFIED .

AN S !

[15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

6. DISTRIBUTION STATEMENT (of this Report) 1

~

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

7. DISTRIBUTION STATEMENT (of the sbstract entered in Block 20, If different from Report)

8. SUPPLEMENTARY NOTES

- 19. KEY WORDS (Continue on reveras side I y and identily dy block numbder)

SIGNAL PROCESSING, RADAR, ELECTRONIC WARFARE, COMMUNICATIONS, IMAGE
PROCESSING, COMPUTER ARCHITECTURE

20. ABSTRACT (Continue on reverse side if necessary and Identily by dlook number)

The main purpose of this project is to investigate the commonalities
among the four subareas of signal processing, namely, radar, communicationms,
image processing and electronic warfare; and to establish possible common
functional descriptions as the basis for a common architecture.

An extensive search was made to list all important kernels and algorithms -
in radar, communications, and image processing. —(continued-omreverse) _ — 1

9],[-)0

DD ,5n'ys 1473 zoimon oF 1 nov 6815 OBsOLETE UNCLASSIFIED \)»\/ 2
s eninddli —5
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)]

U
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

BLOCK #20 CONTINUED - ABSTRACT:

- 2These kernels and algorithms were carefully analyzed with respect to their
— computational complexity and identification of commonality for architectural

] purposes. It was discovered that significant commonalities do exist in many

areas. These common areas represent significant overlap and commonality

3 which can be utilized in a common architectute3§J

/

/
7

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

T e T T

) AT g
i

FOREWORD .

This final report covers work conducted by Coordinated Science

Laboratory, University of Illinois. The work was performed under Contract

F33615-78-C-1559, Project 2003, Task 03, Work Unit 41 for the U. S. Alx

Force Avionics Laboratory, Wright-Patterson AFB, Ohio 45433, The Air

A s prte e

Force technical monitor was Dieter J. Schiller (AFAL/AAT-2).
The research covered by this report was conducted during the period

1 February 1979 to 30 September 1979. The report was released on 10

December 1979.

T A T T Y e

Accession For

Justifisation

ik

By
Distributjon/

Ml\i‘l’.{_c-r‘!os

Availend/or
Dist. special

111

TABLE OF CONTENTS

Section

I
II

INTROMTION AND MRY ® & & & o s s o o a2 s 6 2 B8 e & ¢ * o @ 0+ o

INVESTIGATIONS INTO THE COMMONALITY OF SIGNAL PROCESSING

FUNCTIONS IN RADAR, ELECTRONIC WARFARE, COMMUNICATION
AND]HACEPR(I:ESSINGSYSTNS 6 ¢ o 5 s o 8 s 6 s s 8 s s s e e o o

2.1 Generic Signal Processing Functions for Radar, Electronic
Warfare, Conmnication and Image Processing Systems
2.1 1 Rﬁa‘ systms L L) L] * L] . L] L] L) L] . . L] L] . - L] L] L

2.1.2 Electronic Warfare Systems

2.1.3 Commnication Systems

2.1.4 Image Processing Operations . . .
2.1.4.1 Edge Detection Algorithns
Edge Following Algoritims .
Curve Fitting Algoritms
Region Growing Algorithms . . .
Texture Handling Algoritims . .
Image Registration Algoritrms .
Image Compression Algoritms .

ﬂO\U’lJ'-'WN

2.2 Important Signal Processing Kernels in Radar, Electronic
Warfare, Commnication and Image Processing Systens e e e e
2.2.1 Unitary Transformations e s s s s u e
2.2.2 COnvolution/Correlation/Interpolation e e e e e e
2.2.3 Recursive Difference Equations . . .
2.2.4 Combinatorial Vector Inner Product
2.2.5 Vector Norms
2.2.6 Threshold Operations
2.2,7 Histogram Operaticns
2.2.8 Two-Dimensional Kernels
2.2.9 Summary of Kernels for Signal Processing
- and Image Processing . . . ¢ ¢ ¢ ¢ ¢ o v o 0 o o o
2.2.9.1 Summary of Signal Processing Kernels . .
2.2.9.2 Summary of Image Processing Kernels . . .

e o o o
e o o o o o

2.3 Commonality of Signal Processing Functions
2.4 Computer Architectures for Signal Processing
2.5 Suggestions for Future Research in Avionics Signal Processing
2.5.1 Study of Current Avionics Digital Signal Processing
2.5.2 Identify and Characterize Avionics Signal
Processing Kernels ¢« ¢ ¢« ¢ ¢ ¢ ¢ o o s & &«
2.5.3 Investigate Adaptive Processing Techniques
2.5.4 Investigate the Utility of Number Theory
Techniques in Avionics Signal Processing
2.5.5 Investigate Avionics Visual Image Processing . . .
2.5.5.1 Task Definition for the Avionics Domain .
2.5.5.2 Identification of the Computational Tasks
2.5.5.3 Analysis of Image Processing Algorithms .
2.5.5.4 Identification of Kernels

2.5.6 Investigate Computer Architectures for
Signal Processing . . . ¢« ¢« ¢ ¢ v 0o e 0 0 0 b e b e

53

REE

SERE JAA

A&

&

TG A R B R IR VT T e me s a s -

Bl st e a4

N R TR W T TR TS Y AR T T

TABLE OF CONTENTS (Cont'd)

Section Page
III COMPUTER ARCHITECTURES FOR FINITE ELEMENT METHODS . . . + » « . . . TT
3.1 Computer Needs in Finite Element Analysis T9

3.2 Evaluation of the Finite Element Problem 8

303 ExanplePPOblenS a8 & & 6 & ¢ 8 e & o o & ¢ @ & & ° b s 0w 83

3.4 Analysis Of ReSULLS & « ¢« v ¢ & ¢ o ¢ ¢ ¢ o s o o o« o & . 89

3.5 DataMapping Hardware . . « + « ¢ ¢« ¢ ¢ ¢ o« ¢ ¢ o o o s o o o 9

3.6 Computer System Evaluation « ¢« v v o ¢ o o o & & . . 101

3.7 Matrix Multiplication Results ¢« ¢ ¢« ¢« 105

3.8 Analysis of Gaussian Elimination P R K

3.9 Gaussian Elimination Experiments on the AMP-1 System . . 120

3.10 Conclusions and Recommendations . . . + « « « « « . . e v e 125

IV EVALUATION CF SIGNAL PROCESSING ARCHITECTURES . « v o ¢ o o = « & o 129
4,1 Simulation Studies . . 129

5.1.1 A Simulator for a Shared-Resource MJltipr‘ocessor . 129

4,1,2 A Simulator for a Vector Processor 132

4.2 Architectural Issues for Fast Fourier Transform Processing 135

V AVIONICS PROCESSOR ARCHITECTURES EVALUATION ¢ ¢ ¢ « &« « « &« 140
5.1 The Avionics Processors « . . . e LY

5.1.1 The Air Force AYK/158 . . . + v ¢ ¢ o ¢ o« « & .. 1

5.1.2 The Raytheon Fault Tolerant Spaceborne Computer . . 143

5.1.3 The Delco Magic 36F . . & v v ¢ ¢ ¢ ¢ ¢ o o o o 18

5.2 The Avionics Processor Simulators . . . « v o« ¢ « ¢ o o « & 152

VI A HARDWARE SYSTEM FOR ANALYZING IMAGE PROCESSING KERNELS 155
REEREMES . L] * L] L] L] . L] * . L]] L] L] []] L] - . Ll L L] . * @& & 2 & e o 3 16"

vi

. ke

it

LIST OF ILLUSTRATIONS

i 1. Fundamental components of a typical radar system5

2. Transmitter-receiver functions in the front end of a SAR system . . . 9

f 3. Block diagram of a spotlight mode SARrsignal processing system . . 10
‘ 4, Block diagram of a typiéal electror’lic warfare system 12
f 5. Data compression in coomnication channels with DPCM 15
} 6. Axisymmetric pressure vessel ¢ + 4 . e s e e o B8O
T. Axisymmetric pressure vessel finite element model 8
t 8.Linearprésswevesse1............;.........86

9. Nonlinear pressure veSSEl . . « « ¢« « ¢ « ¢ « « o o ¢ o o « o o o . 87

; 10. Nonlinear pressure vessel (substructure) 88

11. Thick penetrated plate ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ s o o oo .. 90

12. Linear penetrated plate . . . « « « & o v ¢ ¢ o o o o o o o o . . . 9
f ; 13. NLPP six load steps (6tr + 20it) . . . ¢ ¢« v ¢ ¢ v ¢ ¢ ¢ e v o o o R
lz W, NPV current machines . . . « ¢ « ¢ ¢ o ¢ ¢ ¢ o o6 o o o o o o o o 9
r{? 15. NLPP current machines v ¢ v ¢ v v v 0 o 0 o o o o o oW . %5
; 16. NLPV fast array and I/0 . . ¢ ¢ ¢ ¢ ¢ ¢ o ¢ ¢ o o o ¢ o o o o o o« 97
“' 17. NLPP fast array and I/0 . . & &« &+ ¢ ¢« s+ o o ¢ o o o o s o o o ¢« 0+« 98

18. The AMP<1 SyStem . . « . ¢ ¢ ¢ ¢« ¢ ¢ o ¢ o o ¢ o ¢ o o s o o « « o« 103
19. MXMC PErformance . . . « « « s+ o« o s o o « o s o o o« s o 0 o o+« 108
20. Memory access conflict model for MXMC . . . + + « ¢ ¢« ¢ ¢« o « s « » 110
21, Model for MXMC . . ¢ . o v ¢ ¢ s ¢ e o s s o s s s 0 s 0o s e 0. N2

22. Gaussian elimination jJobs & ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢t s e o o o . . 1158

23. Gaussian elimination job precedence ¢ v 116

vii

{

T,

Figure

24,
25.
26.
27.
28.
29.
30.

LIST OF ILLUSTRATIONS (Cont'd)

Job complexity when AisnXn
Gaussian elimination performance
GAUSZ performance v v ¢ ¢ o o ¢ v o 0 o o o v s
Memory access conflict model for GAUSZ
Interconnection of cameras, image buffer and processors
ALU circuit schematic

One half of the ALU section . « « « + v v v o o o v .+ .

viii

Page

n7
121
123
124

. 157

160

. 161

pm—e

R .

SECTION I
INTRODUCTION AND SUMMARY

In February 1979, the Avionics Laboratory of the U.S. Air Force at the
Wright.-Pattekvson Air force Base contracted the Coordinated Science Laboratory,
University of Illinois, to do a study in "Optimized Computer Systems for
Avionics Applications." The main purpose of this project is to investigate the
commonalities among the four subareas of signal processing, namely, radar,
coonmnications, image processing, and electronic warfare; and to establish
possible common functional desc.;riptions as the basis for a common

architecture.

An extensive search was made to list all important kernels and algorithms
in radar, communications, and image processing. These kernels and algorithms
were carefully analyzed with respect to their computational complexity and
identification of commonality for architectural purposes. It was discovered

that significant commonalities do exist in many areas, namely:

data compression
convolutional transform
spectral transformation
linear filtering
vector operations

2 operations

table look up and entry
cross correlation

These common areas represent significant overlap and commonality which can be
utilized in a common architecture. The details of these analyses are
presented in Section II.

We recommend the following actions to follow up the promising avenues we

have identified. Efforts should be made:

1. to carry out an in-depth study of current avionies digital
signal processing;

2. to identify and characterize avionics signal processing kernels;
3. to investigate adaptive processing techniques;

] 4. to evaluate and analyze image processing techniques; and

5. to investigate ccmmon computer architectures for avionics signal

processing.

Details of these tasks are given in Section II.

3 Other interesting work done on the project is reported in Sections III
through VI. In Section III we present results on computer architecture for
E finite elements. In Section IV results are given on the evaluation of signal
] processing architectures. The results of a comparative study of avionics

processor3 is given in Section V. Finally, the design of a hardware system

for analyzing image processing kernels is given in Section VI.

SECTION II
INVESTIGATIONS INTO THE COMMONALITY OF SIGNAL PROCESSING FUNCTIONS IN
RADAR, ELECTRONIC WARFARE, COMMUNICATION AND IMAGE PROCESSING SYSTEMS
During the last several years there has been a growing interest in the
use of digital signal processing in airborne radar, communication and

electronic warfare (EW) systems. More recently, interest has developed in the

use of visual image processing systems in the avionics enviromment. Avionics

systems are often centered around a general purpose computer that performs
high level signal processing functions and coordinates the many components of
the system. In an aircraft, numerous avionics systems are operating
simultaneously and in c¢lose proximity. 1In the past, the trend has been to
supply a specialized digital processor, complete with its unique software
system, for each of these individual systems. This procedure has resulted in
a proliferation of dedicated processors, accompanied by very high software and
hardware development and maintenance costs. It appears that there would be a
considerable cost savings if all the specialized processors could be replaced
by one (or more) specially developed standardized processor that is capable of
performing all the generic signal processing functions required in the
avionics systems on board. The advantage of a common processor in multiple
avionics systems on an aircraft results from the uniformity in both software
and hardware development and maintenance costs., If several identical
processors were present to accommodate peak processing loads, it is likely
that overall reliability would be increased because of failure in one
processor could be compensated by another functioning processor when all

systems are not in simultaneous use.

2.1 Generjc Signal Processing Functions for Radar, Electronic
Warfare, Communication and Image Processing Systems

The objective of this research is to identify and characterize generic

sighal processing requirements that are ccmmon in radar, electronic warfare,

communication and image processing systems. These results can be used in

future work as a basis for developing a processor architecture that can

operate efficiently in any one of the avionics signal processing enviromments.

2.1.1 Radar Systems

The fundamental structure of all radar systems is described by the block
The matched filter, the detection processor and the

diagram of Figwe 1 [1].

post processor are usually custom built digital hardware units that are

dgsigned to process large quantities of data at very high rates. A typical
To achieve these high rates ECL circuitry is

sampling rate would be 25MHz.

often required with an accompanying high power consumption. Fortunately, the
wordlength is usually in the modest range of 8 to 12 bits, 0 in practice, the

Essentially these

high sampling rate can be accommodated in the processors.

wmits act as preprocessors for the data processing computer, which maintains

It also implements high level signal processing
The

control of the entire system.

functions that extract further information from the recorded data files.

map matching, target

high 1level functions include signature analysis,

tracking, data compression, or signal enhancement through digital processing

techniques.

The digital matched filter is the heart of the entire system. It is a
baseband correlator that correlates the returned signal with a stored replica

of the transmitted waveform. Since it operates in the baseband with I and Q

channels, it is most easily characterized as a complex, programmable, FIR

an e

*wRqsis Jeped TeoldA3 e Jo sjusucduwoo jejuSWepUN

‘L 2.3y

0£49-d3 q-"""'l'lll“l"l‘l'J
| si08s9%013 eusys 1¥3187d |
“ ,
§ X0883901d J0889%01d 2931Fd] ¢
" Isod ; uoy39932d _m, pPaydzen 1- v
' A A A
x93ndwo) L e o oo m oo nlnul:l+1!lntnlnlnul
Suyssadsoad
103vI9UH
eled _ > jeuBys >
ﬂl U TOIIUOD >

a9A7 999y

a933JwBURIYL

TI-'"".L

= p—

e PP Y IE WAL 8 I TR S S A

filter described by Equation (1), where h(k) is the impulse response of the
matched filter, x(n) is the input signal, and y(n) is the output signal from
the matched filter.

y(m = T B0k x(nk) (1)
Normally the value of N is large (on the order of 1024) so that a direct
computation of (1) is not possible at the required sampling rates. 1In this
case the data is buffered and the finite convolution is implemented by fast
Fourier transform (FFT) block processing. This approach brings into effect
the N logzN computational savings of the FFT, which makes it possible to
achieve the desired sampling rates. Since h(k) and x(n) are both complex
baseband signals, the complex arithmetic of the FFT is very convenient for
this problem. Since the filter function h(k) is programmable in a digital
system, the central computer can make an on line selection of the specific
waveforms that will be transmitted. The computer simply instructs the
waveform control unit to load the matched filter with a replica so the proper

correlation is performed.

An important class of airborne radars is referred to generically as
synthetic aperture radar (SAR). SAR is a technique that is used to produce
terrain images from data collected with a side-looking radar carried on an
airplane or space vehicle. The coordinate perpendicular to the flight path
(as projected on the earth's surface) is called the range. Resolution along
the range dimension is controlled by conventional methods, i.e., by
controlling the pulse length and by modulating the pulse with a two-sided
linear FM reference waveform (chirping). The problem is that a satisfactory
resolution along the flight path (azimuthal coordinate) cannot be obtained

because a small physical antenna cannot provide the narrow beamwidth necessary

-6~

B R T bt 3

for good resolution along this dimension. The synthetic array principle
overcomes this difficulty through signal processing techniques.

L’ At regularly spaced positions along the flight path the radar transmits a
coherent burst of radiation. The echo returns are demodulated into in-phase
and quadrature (90° out of phase) video components, sampled with A/D

converters if necessary, and then stored in a recording medium. The recording
may be photographic (film) or electronic (tape, disk, or digital memory).
After the recording has been completed at N distinct positions in space, the

stored signals are combined by signal processing to create the equivalence of
a long physical array that produces a narrow beam pattern. The synthetic
array principle provides the desired azimuthal resolution at the cost of
extensive signal processing.

An important class of digital processing algoritims for synthetic
apertwre radar (SAR) is based on the computational efficiency of the FFT
algoritim. The combination of linear FM modulation and spectral analysis
results in a processing algorithm that is sometimes called the "stretch"
technique. The radar transmits a linear FM modulated pulse (chirped pulse).
When the return signal is mixed with a linear FM reference waveform that has
the same FM rate as the transmitted pulse, the difference freguencies that
result from targets at different ranges will be distinct constant frequency
components in the returns. If the spectrum of the mi.xed signal is computed,
the targets at different ranges can be resolved as distinct spectral
cemponents, If the data is processed digitally, the spectrum can be computed
with the FFT algorithm, resulting in a highly efficient processing technique.

When radar flies past a point target in the ground patch, the return from
this point target at the N distinct pulse positions along the synthetic
aperture represents samples of an FM waveform which is FM modulated by the

7=

Doppler effect dus to the relative motion between the radar and the target.
Since the frequency modulation is approximately linear FM, there is a "natural
stretch™ in the recorded samples in the azimuthal coordinate. The operations
of mixing &th a linear FM reference waveforn and computing the spectrum of
the result can, therefore, also be used as the processing algoritim in the
azisuths. coordinate system. Since a FFT must be computed in both the range
and azia . oordinates, the processing is efficiently executed with a
single & FFT algoritim. Howsver, since the along track modulation due to the
Joppler effect i3 only approximately linear FM,the 2D stretch technique is an
apprcimate ¢r "sboptimal® algorithm.

As a specific example consider the block diagrams of a synthetic aperture
radar system shown in Figures 2 and 3. Figue 2 illustrates the analog
functions that are normally implemented in the transmitter and receiver. The
receiver output, consisting of baseband I and Q channels, is sampled and
stored in memory at each position along the synthetic aperture. Figure 3
illustrates the digital functions that follow the receiver. The 2
interpolation, 2D FFT, and the amplitude detector are signal processors that
are usually specialized hardware units. After the basic image is formed, the
data is sent to the data processing computer for high level processing such as
pattern recognition, image enhancement, or data compression. The final image
is then displayed, recérded, or transmitted as required in the specific
application.

2.1.2 Electronic Warfare Systems

The basic function of many EW systems is to collect inputs from many
different RF sources, to analyze the signals in order to extract important

parameters and classify the signals into an emitter file. It is important for

-wo3sAs YYS € JO PUS UOJJ BU3 UT SUOTIOUNJ JOATAOII-JBJJTWBUR]L °C o3

621944

281038 }

a/v

| a/V

‘01

393114
s8ed=-mM0']

y3lomia3Ing

T/u

X

1euueyd-1

193714
s8gd=m0"1

yjaomia3gng

13uueyd-d

yazomialang

1931¢d

&dh

2937wl

AIXTH

A82Td
I9A3299Y

INdin0 feg

2937114
ssed-pueg
A9YoLqay)

-

(1euo33do)
Buraysyom
apn3yduy

naE

2038111980
Kouanbaa g

adeng

e

‘woqsAs Buisseooud TeuBis Yyys opow 3y3i13cds e Jo uedPeip Yoolg ke anBry

1€49-4dJ

|v_

l
|
D

144
a-¢

x23andwo)
uoy3IoNId
.“U 3°d wﬁﬁmﬂﬂoo.ﬂm hﬂﬁ&mﬁn
apn3Tiduy eaed

1 -—— D A D D
(s238UTpPI0O)
aen3uelo9y)

a8ex038
auuﬁL

3

«10-

aegn8ue3zoay
-03~x8104d

|

i UOTSIAAUOY)
|

am

(uotaerodaazur) ¢ (s938UIPI00)

aejod)

a8e103S

=l e3ed

o

13uusy)-d

0O
19uueyd-1

e dmann 8w ma s

the analyzing system to extract parameters that cannot be easily varied by the
sender. For example, carrier frequency, pulse repetition rate and pulsewidth
are easily changed. But the pulse shape is more difficult to change, since it

is often controlled by the hardware parameters fixed in the transmitter.

A generic EN system is shown in Figure 4 [2]. The system consists of N
receivers, each of which has its own antenna and can be tuned independently of
the other receivers. The system discriminates among numerous sources and
attempts to acquire data from each "emitter", which is then stored in a data
bank and referred to as the emitter files. After demodulation, filtering and
amplification the baseband signals are sent to a pulse ~haracterization unit.
The parameters extracted by the pulse characterization unit are used to excite
a threat detector, which then updates the information in the emitter files and
activates remaining portions of the EN system. The pulse characterization
wmit and the threat detector are under control of the central B4 system
computer, The central processor also contreols an energy management subsystem

that implements jamming if ot‘fepsive response is needed.

An important computational task in the signal analysis processor is the
calculation of error metrics for sorting and classifying incoming signals.,
;4atched filtering, noise suppression filtering, spectral analysis and
correlation also play important roles in preparing the raw da:ia for error
metric measwrement. Three commonly used metrics are the least 2bsolute, least
squares and least infinite (Chebychev) metrics. These metrics are defined by
the following equations, where xi(n) is referred to as the i-th template and

w(n) is a weighting function.

CXL ST

‘weyshs dJejuaeM OTUOU309TS TeoTdA] B Jo ueaBerp Noolg

4229-dI

parooay
~—— “eiu
Leydsq Ul

193ndwo)

M3
1BI13Ud)

waysksg

JuawaBdeuel a19MO4g

1

1]

UOTIBOTITSSBTD

vled

i

Y

(31un

uoy3lezIIajoeary)d
asind) 10s8a201d

stsA1euy 1eUB1S

*h a.nBrg

fee © D 3D
l—————————] saoumer
S uE— . EIN ETEY |
— o0 . . :

[] L J "
«—— 1 z9A7909Y

seuuajuy

43, ’ " T ; Dt

N-1

i) = 2 w(n)lx(n)—xi(n)l (Least absolute)
n=0
N-1 2,172

(i) = [z w(n)[x(n)-xi(n)]] (Least squares)
n=0

e (i) = mﬁﬂw(n)lx(n)-xi(n)l] (Least infinite)

The weighting sequence, w(n), is selected in such a way as to give certain
data samples more or less influence on the value of the norm. For example,
the window may be wniform (w(n) =1 , for n=0,...,N=1 and w(n) = 0 for n
otherwise) s that all points in the observation window are given equal
importance. Or the window may be exponential (w(n) = aN'"”, for
n=0,...,N-1 and w(n) = O for n otherwise) s that the data points that occur
later in the observation window are given more influence in the value of the
norm. The choice of metric depends on the characteristics of the noise on the
incoming signals. The least infinite metric is best for wniform noise, while
the least absolute metric is best if the noise distribution is characterized
by long tails. For example, the least infinite metric is often used when the
noise is Gaussian white noise whose power spectral density is uniformly spread
across the bandwidth of the system. The least squares metric 1s appropriate
for narrow band colored noise whose energy is highly concentrated around
preferred frequencies and tapers off rapidly at other frequencies. These
metrics can be characterized mathematically as p-norms that are familiar from

the theory of normed vector spaces.

The major function of the pulse ~haracterization unit is to determine the
pulse shape. This can be done by detecting pulse amplitude, pulsewidth, rise
time, and fall time. Rise time and fall time can be estimated by digital
differentiators constructed as linear phase finite impulse resvonse digital
filters. Alternately, the spectrum could be computed by means of a FFT

-13-

e,

A2 Mkt oA

hardware wnit in order to determine the spectral content of the pulse. Since
the spectral content and the pulse shape have a unique correspondence, FFT
analysis is a viable pulse characterization technique if high speed hardware
FFT units are available. Other parameters, such as time of arrival, are not
effective for presorting and classification, but they may be important in
threat analysis. Careful analysis of pulse strength and Doppler history may

indicate the approach of hostile transmitters.

2.1.3 Communication Systems

In coomunication systems there are many different functions that might be
implemented digitally. These include digital filtering, mixing, multiplexing,
error correction coding, and data compression (for both image and speech
signals). In general the RF sections of receivers and transmitters must be
analog because digital hardware cannot operate at high enough sanple rates to
accomodate RF frequencies. After the signals have been translated to IF
frequencies or to baseband frequencies by means of analog mixers, the signals
can then be converted to digital form and processed digitally from that point

on.

Data compression is one of the important functions that might be used to
reduce bandwidth requirements on a commmnication channel. Data compression
techniques can be classified into time domain and transform domain compression
methods., Differential pulse code modulation (DPCM) is a time domain
compression scheme that is effective for transmitting both image and voice
signals. The basic elements of the system are shown in Figure 5. Both the
compression and decompression functions require digitally implemented linear
predictors that function to remove the correlated signal components in the

data (3]. This results in a transmission of the uncorrelated differences that

~14-

*WOdd U3TM STduUBYD uoTjedTunumoo uy uoysseudwoo ezeq g 9.nBry

2249~dJ
=7
B Aﬂlﬁvﬂﬂﬂ “w
u
10397poad 1apao yiu :
-~ + 29p003d jg——— I9ATIDIY f—0o
(u)x . ,
x0321paad a3pao yju
h
-t
+ 1=¥ !
Q-&B«a N
+
u
v||l_ 3233jwsuel] 13p0) pd—& a9zyjUuEN) (u)x
v (w)p

EPEpTTR TE RgRe = =T

occupy a significantly compressed dynamic range. . The signal processing at

each end of the channel requires an efficient implementation of a N-th order
digital filter. It is found in practice that N=3 is normally adequate in this
application. If the data can be accurately modeled as a stationary stochastic
process, the optimal filter coefficients (ai's) can be calculated offline and
the filtering can be accomplished with time invariant filters. DPCM has been
used successfully in time domain compression of images, although the quality
of the reconstruction is highly dependent on the exact nature of the image.
Recently, Motorola Inc. has been investigating the use of DPCM for lowering

the bandwidth requirements in hand-held two-way radios.

Transform domain compression techniques are among the best known data
compression techniques because of their widespread usage in image compression
for the space programs of the 1960's. One way to envision these techniques is
to describe them as a coordinate axis transformation which translates the data
into a domain where the signal components become decorrelated. Another
popular intepretation is that the transformation is a mechanism for localizing
the energy content of the signal, so that only the significant components are
selected for transmission. The discrete Fourier transform (DFT) is one

effective compression technique.

N-1 -5 nk
X(k) = £ x(n)e jﬁ-—n
n=0

k:o,..-,N-1.

The N values of X(k) are usually computed by means of an FFT algoritim. A
typical image will have most of the energy concentrated in the low frequency
portion of the spectrum. Therefore, only a subset of the X(k)'s need to be
transmitted. At the receiving end of the channel, the inverse IFT is
calculated,

- N1 & e
1 20k
x(n) = LAARIEIN n20,...,N-1.

where x(k) is an approximation to X(k) obtained by inserting zeros into the

positions that correspond to components that were not transmitted.

The Walsh-Hadamard transform (WHT) is another well known data compression
algoritim. It functions in much the same way as the IFT described above,
although it is a very computationally efficient transform because the
weighting coefficients in the Hadamard matrix contain only 1 and -1 values.

The Hadamard matrix is generated recursively from "direct matrix products,"

e 3]
=
"

HszN/z, N:u, 8' 16,-4-

L

. H
H XH = -
2 2 f

= o8 3
"

where
2 “;I
2 ‘“2_]

The WHT has been used in image processing primarily for 1) feature extraction,

-

For example, Hy

2) bandwidth (data) reduction, and 3) dimensionality reduction.

Both the IFT and the WHT, when applied to 2D data processing, are members
of a class of linear operators called unitary transforms. For most kinds of
processing, the well known Karhunen-Louve transform is optimal because it
results in a set of data in a coordinate system where the components are
wncorrelated. Unfortunately, it 1is computationally unviable, requiring
recomputation of the transform matrix for each new set of data. Also it does
not possess a fast algoritim. In practice the FFT and the WHT are widely used
because they are near optimal transforms that are ccmputationally attractive.

-17-

R g% et <

Two areas of extreme importance for digital communication systems are

error-correction coding and spread spectrum modulation. In essence, these two

areas are closely related through the use of specially designed PN codes in

both direct sequencing and frequency hopped spread spectrum systems. Error

correcting encoders and decoders are characterized as computationally simple

devices that consist largely of logic gates and shift registers. These
devices are usually (but not always) located toward the front end of the

system, where they are required to operate at very high real-time data rates.

Therefore, for the most part, encoding and decoding is not implemented in

progranmed signal processors, but rather is implemented by high speed custom

made circuits that are becoming more and more highly integrated. In some

systems these high speed circuits may be wnder the control of a

microprocessor, although the microprocessor is teo slow to do the actual

The situation is much the same in direct sequenced spread

processing.

spectrum systems, where primary signal processing involved in despreading is a

high speed correlation of the incoming data with the known PN modulation

function. Once phase lock is obtained, the correlation behaves essentially as

a binary demodulator. Once these issues are understood, it becomes apparent

that the functions of error-correction and spread spectrum modulation do not,

in general, belong in the system block that we have previously identified as

the digital signal processor or the data processing computer. Rather they

should be considered as integral parts of the tranamitter and receiver that

are best implemented in LSI technology.

2.1.4 Image Processing Operations

Standard image processing systems input TV images, digitize the images,

and store the images in arrays, typically of 250 rows, 250 columns and with

six to eight bits of intensity for each point. In real time with a raster

-18-

rate of 30 frames per second, this is a significant number of bits per second
on which to do detailed processing. Image processing systems therefore are
designed to separate the important, significant features of an image from its
random or insignificant features. The ideal image processing system would
describe the images in terms of objects and relationships between objects, and
in terms of the relationships between objects and the viewer (e.g., position

or location of objects, identity of type of object, velocity, size, etc.).

In order to determine a set of kernels for image processing operations, a
study was made of the functions developed for image processing tasks. At this
time it is not known uhat specific tasks would be required of an image
processing system in the avionics enviromment. It is anticipated, however,
that such tasks as landmark and target recognition, target tracking, and map
matching would be among the set of avionics image processing tasks. The
functions described in this section include many of those which are suitable

for these tasks.

2.1.4.1 Edge Detection Algorithms

Edg; detection algoritms operate directly on the stored image array and
generally attempt to find significant differences between neighboring picture
elements (pixels). If enough of these differences ocewr locally, the
interpretation is that there is a local edge element in that part of the image

array.

3 PNV ST WS SV |

e oA bt A A AR AR inin e 50817 b N AT A1 . et

The Roberts Cross Operator

The simplest of t;he gradient operators is the Roberts cross operator [4].
Tne gradient at each point is approximated from intensity levels at four
pixels in a 2 by 2 square centered at that point. The difference between the
grayscale values at the upper left and lower right of the square is an
estimate of the directional derivative along a 1line turned 45 degrees
clockwise from the horizontal. Likewise, the difference between the upper
right and lower left is an estimate of the directional derivative along a line
perpendicular to the first line. The square root of the sum of the squares of
these two differences is an estimate of the steepest gradient at that point,
regardless of its direction. In this computation, both differences that are
calculated are convolutions of the image array with the fcllowing two

matrices:

" o

t
Lo -1

The most striking feature of this operator is its extreme simplicity. It
uses the grayscale values over a window containing only four pixels. Once
these have been fetched, two subtractions, two multiplications, an addition
and a square root are performed. If the gradient is being thresholded, then
the sqi:are root operation can be eliminated by using the square of the
threshold. Another application which eliminates the squaring operation simply
sums the absolute values of the results of the two convolution operations and
then thresholds the result. The simplicity of the cross operator is offset by
its extreme susceptibility to noise in the image. The small area used enables
a single noisy point to drastically change the gradient estimate at that point
resulting in a noisy gradient picture. Hence, the use of this operator is

-20-

limited to fairly clean images.

The basic operations used with this operator are convolution and a norm

operation.

The Sobel Gradient Estimator

Sobel's [5] method for finding the gradient uses the following two

convolutions to find the x and y directional derivatives, respectively:

,-10'1'1 1 2 1

‘-2 0o 2 0o 0 0

-1 0o 1 1 2 =1

The approximate gradient is then obtained by taking the square root of the sum
the squares of the x and y directional derivatives.

This gradient estimator has essentially the same advantages and
disadvantages as the Roberts cross operator. Namely, the number of arithmetic
operations to be performed is small, but owing to the small size of the
window, a noisy image results in a noisy estimate of the gradient. Note that
the vector of weights (1,2,1) used in the two convolution masks need only be
applied to each row and each column of three pixels only once over the whole
image. These results can then be used to evaluate the x and y directional
derivatives more efficiently. 1In particular, each application of Sobel's
operator can be performed with seven additions, two subtractions, two

multiplications, and one square root, on the average.

The basic operations used with this operator are convolution and a norm

operation,

The Burr Edge Detection and Following Operator

The Burr method performs gradient detection and edge tracking over a
gray-scale image in a single application ([6]. It does not require
intermediate storage and subsequent thinning as in most two pass procedures.
(edge detection followed by edge correlation) Each pixel in the input image is
examined in a raster-scan fashion. There, a gradient and its orientation is

computed based on orthogonal differences:

DX
DY

[F(1,3+1 +F(i,J+2 +F(1,3+3)]) - [F(1,3=3)+F(1,J-2)+F(i,3=1)]
(F(1+1,3)+F(142,3)+F(1+3,3)] - [F(i-1,3)+F(i-2,)+F(i-3,)]

Gradient = (DX2 + DY2)'/2 |
Edge Angle = arctan(DY/DX) E

Local edge maxima are found by parabolic interpolation on three successive
gradient values using the following formula: :

(83 - 31)/(1432 - 2g, - 2g3).

where the g, are the gradient values of three points in either the x or the x

direction. The coordinate of the maximum value is then found and compared

[S

with the end point coordinates. If it falls between the end points, it is
chosen as a potential edge point. If no intermediate maximum exists, no edge
point is flagged. Note that the calculation of the discrete differences is
effectively an averaging operation and smoothes the effects of spikes. If the
gradient exceeds some threshold and it is at a local maxima in the X or Y

direction, that pixel is termed an edge point. Discovery of edge points

-22=

initiates examination of nearest-neighborhood pixels for more edge points.
The searching terminates when no further edge candidates are found beyond
three neighboring pixels. The edge points' gradients and positions are stored

in the sequence they are found.

The algorithm constrains the direction in which to search for edge points
in the direction of the last edge found according to the computed gradient
angle at that point. Only neighborhood pixels within a fan beam in this
direction are examined. The beam width is chosen large enough to maintain

continuity of edge following in noisy images.

From a computational standpoint, this edge finder has the desirable
feature that no area convolutions are required, thus avoiding double indexing.
Instead, both the x and y gradients are evaluated using points along a single
row or column of pixels. In the most efficient implementation (applying the
operator over the whole image), an average of ten arithmetic operations are
required per pixel plus about twenty more for every one that becomes an edge

point.

The basic operations used include table entry, thresholding, convolution,

norm and interpolation.

Compass Gradient Operators

A two-dimensional discrete differentiation can be performed by the

convolution of a 3 by 3 Compass Gradient mask over an image [7,8]. A new

pixel is computed as a function of pixels in a 3 by 3 neighborhood centered
about the pixel under consideration. The function is linear since the masks
contain integer elements. They are chosen such that their sum is typically 0
or 1, to prevent overly large gradients from being computed. The 3 by 3 masks

=23-

given below give maximum response in eight principal (compass) directions:

-t
-
=

Moy = ﬂ’:ﬁ-1 TE -1 1-1-1‘1 T 11
12 1[1-2 1l 2 1"_1-2 tlr2al (12 h2a 124

L1 =1 =1 =1 =1 1J -1 U g1y oo 1=y -1
NORTH NORTH- EAST SOUTH- SOUTH SOUTH- WEST NORTH-
EAST EAST WEST WEST

A similar set of masks known as 5-level simple masks more closely

approximates the partial derivatives in each of the eight directions. (see

below)
"'121";2 1011 0 0-1 2|21~ o0 01(015!
| ol |1 o- !2 1 0-1|l0 0 ofl<t o 1{[=2 0 2{|-1 0 1
i /
{_1-2-__’0-1-2‘10-121 12 Lo 1 2 o Y2 -1 of
NORTH NORTH- WEST SOUTH- SOUTH SOUTH- EAST NORTH-
WEST WEST EAST EAST

Here, zero weighting at the center of the masks suppresses jitter along
the line near the occurrence of an edge. Computation requires only eight
multiplications and seven additions per pikel during the convolution. Usually
an edge direction map is also desired, in which case all eight directional
gradients are computed. A computational advantage is that only four out of
the eight masks need be computed. ihis is because the masks for opposite
directions are symmetric, and thus their gradients are opposite in sign. So
computing, say mask EAST, one can decide on an edge direction of EAST or WEST,
depending on whether the gradient is positive or negative. Another advantage
of S5-level directional masks is a characteristically higher gradient amplitude
in the diagonal directions.

The Kirsch operator provides a further example of the use of a 5-level

convolution mask [9]. All eight gradients are computed for a pixel
neighborhood and the gradient of highest absolute value is chosen as the

gradient at that point. Shown below are the compass masks for this operator.

55 53533 R 3]B 33 i-’3-3-3‘g 5-3-3"['5 5 <31
) 1
3 03[|3 0 5/}]3 0 5“:3 0 53 0315 0-3j [5 035 0=3

333333133 5/|3 5 5 _5 5 5| !_s 53 533|333

NORTH NORTH=- EAST SOUTH- SOUTH SOUTH- WEST NORTH-
EAST EAST WEST WEST

If the chosen gradient is greater than some threshold, the gradient and
its orientation are saved in the gradient map. Thus a two-dimensional feature
vector can be utilized, which leads to more flexibility and reliability. For
example, edge linking using the orientation parameter can reinforce an edge
candidate based on the gradient. The algoritim requires eight times the
computation of a convolution using a 3 by 3 operator.

The basic operations used are convolution and thresholding.

The Wallis Operator

Based on homemorphic image processing, this method attempts to solve the
problen of detecting edges in different regions'of illumination [10]. The
relative magnitude between the logaritim of a pixel's luminance and that of
the average of its four nearest neighbors (above, below, left, right) is

computed. An edge is said to exist if it is greater than some threshold.

«25-

Sy m—— L A = o

e e e sl

G(J,k) = loglF(j,k))-.5*1log(F(j,k-1)]-.25%10g(F(],k+1)]

=. 5" 0g[F(j=1,k)]-. 25" 0g(F(j+1,k)]
. 25%108LF (§,K) ¥/ (F(§ k=1 Y#F(J ko1 HF(J=1,K)*F(J+1,k))]

Here F(j,k) is the value of the pixel in position (j,k) of the image array.

This operation is essentially the application of a Laplacian operator to
the logarithms of the pixel values. About the same amount of ccmputation is
required for this algorithm (8 multiplications + 1 division per pixel) and a 3
by 3 linear operator convolution. (8 multiplications + 7 additions per
pixel). In performance, it picks up detail in both shadowed and illuminated

regions. However, the edges are grainy and appear weaker due to the Laplacian

operation.

The basic operations of the algorithm are the logaritim operation,
convolution, and thresholding.

The Yakimovsky Edge Finder

In an attempt to find boundaries between areas of not only differing
brightness but also differing texture, the Yakimovsky algorithm computes both
the mean and the variance of ad jacent neighborhoods [11]. In order to obtain
a statistically significant estimation of these parameters, neighborhoods of
suitable sizes are used. Among the shapes of the neighborhood pairs used are
the following which are applied in the x direction:

L R
LLLL RRRR LL RR
LLLLLLRRRRRR LLLRRR
LLLL RRRR LL RR
L R

where L stands for points in the left neighborhood, R for points in the right

26~

e, T TR == my C Tt~ =

neighborhood. These neighborhood shapes are rotated for application in the y

direction. A maximum liklihood estimate is computed from the stac-ard
deviations of the two neighborhoods and from the combined neighborhood. This
estimate is then compared against a threshold value for determining whether an
edge exists between the neighborhood pair.

The basic operations used in this algoritim include histogram

computation, mean computation, probability computation, and thresholding.

The Hueckel Operator

The Hueckel operator identifies edge fragments in a digitized image
[12,13]. It examines a sequence of disks of pixels in the image array and
returns the parameters c,s,p,d,b which describe the best fit line in each
disk. The parameters c,s,p describe the line through the disk which separates
the region into two areas of greatest intensity difference. The line defines
a step function, F, which has intensity b on one side of the line and b+d on
the other side of the line according to the following relation.

F(x,y,c,s,p,d,b)
F(x,y,c,s,p,d,b)

b if cx+ sy <p
b+ d ifex+8y>0p

The parameters contain the slope information and step size of the line. In
addition the confidence of the line parameters can also be ascertained. The
Hueckel technique is widely used in line following strategles because it
returns line direction information. The large disks which are used in the
Huecksl operators make them relatively insensitive to noise in the image.
This makes them useful on poorly quantized images, like the 16 level pictures
that Hueckel used in his original work.

«27-

The Hueckel operator consist of linear and a nonlinear part. In the

linear part a disk shaped window W(x,y) in the image E(i,j) is multiplied by a
set of eight discrete mask functions H(p,x,y). For a window centered at 1i,j
the multiplication is defined by:

a(n) = 3 H(n,x,y)E(x+i,y+]) n=0,12...7

The disks used by the first Hueckel algoritim is quite large. The areas of
reasonable disks are 32, 52, 69, 88, and 137 pixels on a square grid. The
mask functions are the first eight functions of an orthonormal basis which
spans the space of all image functions in the window W(x,y). The masks are
weighted by the function w(x,y):

w(x,y)
w(x,y)

sqrt(1 - 2) fo
0 fo

where r z x2 + y2

This function gives less weight to pixels on the perimeter of the disk W(x,y)

and thus reduces edge aliasing effects. The mask functions used in the
algorithm are given by:

H(O,x,y) = c(0) * w(x,y) * (2r + 1)
H(1,x,y) = c(1) * w(x,y) * (5r - 2)
H(2,x,y) = c(2) * w(x,y) * 3x
H(3,x,y) = c(3) * w(x,y) * 3y2 >
H(4,x,y) = c(4) * w(x,y) ® (x° - y°)
H(5,x,y) = c(5) * w(x,y) * 2xy >
(6,x,y) = c(6) * w(x,y) # yx # (21"2 - 1)
H(T,x,y) = o(T) * w(x,y) * 4y # (2r< - 1)

where c(0) through c(7) are constants of normality.

The nonlinear part of the Hueckel operator determines the line parameters

<¢,s,p,d,b> from the eight coefficients a(n). First the extrema of A(ec,s)
must be determined.

LA T A

Ribhc =t st e tno s oo sas aa el g A

e

B T PN T

ey(c,s) = a(2)e + a(3)s

e (e,s) = a(d)e + a(5)s s 2

ey(c,s) = a(1) + a(6)(c® - s%) + a(7)2sc
A(e,s) = ey + sign(e,) * sqr‘t(e12 + e22)

For the c¢,s which are extrema of A(c,s), and

P = ey/1.41%e, + sign(ey) * (e,2 + &)
d = BA/3.07%1 - pD2(1 + 22)
b= a(0) - d(¥ + p(3 + p(2 + P)(1 - p)2/8

From the ¢,s,p,d,b which are determined the confidence of the line is found,
and if it is within bounds then the line péraneters ¢,s,p,d,b are returned by
the operator.

An extension of this operator provides an enhanced version of the above

algoritm. In this algorithm, lines are now specified by the seven parameters

<c ’s ,p1 ,p2 ,d1 ,d2 'b>.
F(X,¥,¢,3,P1/P5,d1,d5,0) = b if ex + sy < p,
F(X.y,c.S,p1,p2,d1,d2,b) = b+ d, if py < cx + sy < p,
F(x,y,¢,8,P,P5,d,d5,0) = b + d, if p, < ox + sy

This operator also consists of a linear and a nonlinear part. The linear part
is almost identical to the above algoritim except that nine mask functions are
used instead of eight. They have the following definition:

a(n) = : H(n,x,y)E(x+i,y+}) n=0,1,2...8

H(0,x,y) = c(0) * w(x,y) * (3rd 5T+ 1)
H(8,x,y) = o(8) * wix.y) * (=21r2 + 17r = 2)

and

H(1,x,y) through H(7,x,y) are the same as before

In addition to being able to recognize a wider class of lines the extended
Hueckel operator also has all the advantages of its predecessor, namely, good

noise immunity, line direction information, and a line confidence measure.

The basic operations in this algorithm include convolution, thresholding

and norm operations.

2.1.4.2 Edge Following Algorithms

The edge following algorithms are ordinarily applied to edge point arrays
created by the edge detection algoritims. Edge followers link togetier

neighboring edges as part of the process of locating the boundaries of
objects.

Edge Linking Using Position/Orientation Constraints

This algorithm is used to find groups of edges that link into approximate
straight lines [14]. It achieves this in highly textured scenes and without a
priori knowledge about the objects in the scene. The procedure is as follows:

1. Edge elements produced by the edge detector are given an x,y
position and an orientation angle.

2. The 360 degree direction range is divided into equiangular
intervals, For each interval, a list of edges is made whose
edge orientations are within a given angular tolerance of the
interval's mean angle.

3. For each interval, the coordinate system is rotated so that the
new x-axis is along the direction of the interval's mean angle.

4, The plane is divided into vertical strips or buckets, typically
three pixels wide. A list of edges is made for each bucket,
sorted by y-coordinate.

-30-

5. Edges within a bucket are linked if their separation is less
than a given threshold TX.

6. Edges in different buckets are linked if their orientations
agree within a given tolerance, and if their x,y separations are
below thresholds TX,TY.

7. Only those resulting segments with more than a specified number
of linked edges are retained.

The proximity thresholds TX,TY are a function of the geometry of the
initial edge detecting scheme and also of the bucket resolution. They can be
further increased to link distant edges. From this, it might be expected that
the algorithm would be very sensitive to slight variations in threshold
selection. Experiments indicate that it is able to handle a wide variety of

images, and can be used in a general purpose boundary detection system.

The computation involves processing of isolated edges or feature
camparison with its neighbors. The computing costs are proportional to the
number of edges processed. With the small number of bucket edges to be sorted
and their raster ordering, the sorting computation is proportional to the
number of pixels.

The basic operations used are convolution (spatial transformation), table
lookup (or linked 1ists), and thresholding.

Bug Following Algorithm

This algorithm locates boundaries of objects in binary images. The
procedure is sequential and utilizes a single demon ("bug") to track along a
region's boundary [10]. The path taken is the desired boundary map. First, a
candidate boundary point is located and the bug is started in one of its
neighborhood pixels. It moves in the direction toward the located boundary
point and into the adjoining pixel. The bug makes a left-hand turn if the

-31-

R A

crossing lands the bug into an interior boundary point ,(blaék pixel). 1If
white, (boundary exterior), a right-hand turn is made. This causes the bug to
move in an oscillatory fashion along the boundary edge. In both cases, the
X,y location of the crossings are saved. The algoritim terminates when the
initial point is reached. The boundary crossing points form the boundary

contouwr .

However , there are difficulties with such a simple algoritim. Regions
with "spur™ pixels (a single pixel which 1is diagonally adjacent to the
region's interior) are sometimes missed. This is a consequence of the
dependency of the resultant boundary map on the initial starting point. Also,
in noisier images, the bug can easily become lost. A provision to allow
backtracking and memory of preceding steps can overcome this problem. In
addition, the algorithm can be extended to gray scale images in which bowundary
crossings are defined as sufficiently large differences in luminance between

neighboring pixels.

The computation required for this algorithm is a function of the
boundary's length. The algorithm is fast due to relatively small storage

requirements and a dependency on logical operations.

The basic operations involved are indexing and thresholding.

Boundary Tracking from a Gradient Map

This algorithm is a sequential, demon-like procedure which is applied to
a non-thresholded gradient map [15]. The pixel with the largest gradient in
the image is chosen as the initial edge point. In its 3 by 3 neighborhood,

another edge point with the highest gradient value is picked. If two or more

pixels have the same maximum gradients, then an arbitrary choice is made. The

-32-

Lol 8 oA e e o w o e o - . - .- L de e TSR e ¢ < T 0 RN <

pixel with the maximum gradient in the neighborhood of the initial point is
chosen as the second point. Then the following process is iterated. In its 3
by 3 neighborhood, the three pixels "closest" to a line formed by the previous
two edge points are inspected. The one with the highest gradient is chosen as
the next boundary point. Again, if two adjoining pixels have the same

maximum, an arbitrary choice is made. If they are adjacent, the pixel in line
with the previous points is chosen. This last constraint biases the following
to locate straight lines. As edge points are found they are added to a list.

The procedure works well for noise-free images. However, noise usually
sends the tracking way oft_the boundary. This can be alleviated by smoothing
the input image before tracking. A second alternative is to use average
gradient values. Average gradients are computed over an angular region about
the line along the previous 2 edge points. The new direction is the direction
of the largest gradient computed. The size of the bug increases and
effectively implements a smoothing operation. In general, either method is

useful in only low-noise images.

The 3 by 3 neighborhood bug algoritim does not require any aritmmetic
computation. Its operations are limited to finding maxima and to storing edge
locations. The averaging enhancement does require the computation of

averages.

The operations used here are thresholding, indexing and averaging.

2.1.4.3 Curve Fitting Algorithms

The curve fitting algoritims attempt to find concise representations of
the edge string information, found by curve following algoritims, using
various curve fitting algoritims. The end result is a significant compression

-33-

of the original data.

Line-Fitting by Ramer's Method

Ramer [16] developed the following technique for approximating a contour
with a piecewise continwus chain of line segments. First, the endpoints of
the contowr are joined by a single line segment. Next, that point on the
contowr which is most distant from the line is found. If the distance is less
than a specified value, then the line fit is satisfactory; otherwise, the
contowr is approximated by two line segments from the farthest deviation to
the original end points of the contow. The routine is then called
recursively on each of the two new segments until a sequence of line segments
is generated which are everywhere within the specified distance from the data

points.

The algorithm calculates the parameters of the line passing through the
beginning and end points of the section of curve being approximated. Then for
each point of the curve, the y distance to the approximating line is computed.
This distance is simply the absolute difference between the value of y of the
line ccmput.éd from the x value of the point on the curve, and the y value of
the point on the curve. The maximum y difference, Yo yields the maximum

distance, d, between the curve section and the approximating line from:

dm = ymcoso
where 0 is the angle of the approximating line. for 6 larger than 145°, the
difference in x is computed to yield dm. The value of dm is compared with a
threshold, and if it is less than the threshold, the line segment is used to
approximate the section of curve. Otherwise the process is repeated on the

-34-

new line segments obtained from the point at maximum distance.

The computation involved includes a simple slope and intercept
calculation for each approximating line, and a simple difference for each
point on the curve segment. The maximum value of y is found by comparison of
these differences, and the maximum distance between the curve and the line is

calculate using a cosine function which is computed using a norm function.

The basic operators used are table entry, table lookup, the norm operator
and simple distance computation.

The Hough Line-Fitting Method

The Hough transform maps edge points in cartesean space into p -8 space
by the mapping [S5]:

p = xieoso + yisino

This mapping maps each (xi,yi) onto a sinusoidal curve in p -8 space. Through
this mapping every colinear point in cartesean space is mapped onto a single
point in p-Q space. This single point is the intersection of all the curves
corresponding to the points un that line. The process is done digitally by
forming a two dimensional histogram whose coordinates are discrete values of
and ¢. For each point (xi,yi) 6 1s varied full scale and the corresponding
bins for p are incremented. When all the points have been transformed, the
histogram is analyzed. Those p-@ pairs with more entries than a specified
threshold are tagged as corresponding to lines in the original imsge.

el

Since any line can be represented as:

y=a + b,

the parameters (a,b) can be determined directly from ¢ -8 values from the

relations:

a = tan(6-90°) and b = o/sing.

One problem this algoritlm has is that it does not distinguish colinear
line segments. 1Instead it finds a single line through all colinear line
segments. In application, additional heuristics are added to the algoritim to
tag the line segments.

The basic operations used are table lookup for the sin, cos and tan
functions, histogramming and thresholding.

Contour Approximation by Circular Arcs

Mckee and Aggarwal [17] approximate long digitized contours by a sequence
of circular arcs. The points on the contowr are plotted on a graph of tangent
angle versus arc length, where the tangent angle is found from the line
segments connecting successive points along the contowr, and arc length is the
summation of the lengths of these line segments. Because of the grid
structure of the digitized images, and thus of the contour, the tangent angles
are quantized to multiples of U5 degrees, and the ensuing plot is smoothed.
This is accomplished by replacing each data point with the average of itself
and four data points on either side. If the plotted tangent angle varies
linearly with the arc length, then the contow must be following a circular

=36~

trajectory. Hence, circular arcs in the contowr can be found by locating
straight lines in the plot of tangent angles versus arc length.

The problem is thus reduced to that of fitting line segments to a
one-dimensional waveform, typically by the method of least squares. The slope
and length of each fitted line segment, which correspond to the curvature and
the length of the ares in the original contowr, are then used as the final

representation for the contowr.

The basic operations used in this algorithm include table lookup and

table entry, least squares computation and mean value computation.

2.1.4.4 Region Growing Algorithms

Region growing algorithms attempt to segment the image array by applying
a similarity measure locally to the pixels. If a given pixel is similar to
the second, it 15 added to the region list of the second pixel. More global
region growing is done through a series of region merging and splitting
operations which depend on other eriteria.

Ohlander's Method for Image Segmentation

Through a series of linear transformations on the red, blue and green
images of digitized color images, Ohlander's method produces six additional
images correspdnding to hue, ssturation, grey level intensity, and the
television industry standard parameters "Y", "I", and "Q" [18). Regions are
formed by generating a histogram of intensity values for each of the nine
images, and vwherever a pronounced narrow peak occurs in one of the images, it
is supposed that all pixels contributing to that peak belonged to the same

region. One advantage of this method is that all pixels belonging to a large
=37-

s ’“‘"F‘W\u"mqu o g

e B sttt

region of the picture but split into several parts by occluding objects can
still be identified as a single region. Successive histogram partitioning on
fragments of the whole picture could yield successively smaller regions when

necessary.

The main kernel used for this method of region growing is that for
canpiling histograms, as it is utilized at least nine times per scene. In
addition to this the basic operations are the computation of vector inner
products in producing the transformations, and the thresholding operation.

A Region Merging Algorithm

One method for partitioning an image into regions is to initially assume
that each pixel is an isolated region. Then, in successive stages, regions
can be merged forming larger and larger regions until all ad jacent regions are
sufficiently different that no further merging is needed. An algoritim which
was developed at the Coordinated Science Laboratory efficiently determines
which pair of adjacent regions among all pairs are most nearly alike and

merges them.

Before region merging in the above manner can be carried out, the number
of regions must first be reduced from 60000, the number of pixels in the
image, to about 1000. Hence, a first pass of non-optimal region merging is
employed by a simple scanning operation. During this initial phase, every
pair of adjacent pixels are examined and merged if their intensity values
differ by less than a threshoid. This threshold is increased slightly through

the course of several scans of the image until the total number of distinct

regions is small enough to be handled by the more optimal region merging
algoritim.

Optimal region merging is implemented by computing a measure of
similarity between every pair of adjacent regions and by inserting these pairs
into a queue. The more nearly alike the interior properties of the two
regions are, the nearer to the front of the queue they lie. Hence, the pair
of regions which are most similar is always at the front of the queue. When

the two regions in this pair are merged, the queue is updated by deleting all

other pairs involving the two regions just merged, typically about twelve, and
inserting the pairs formed using the new enlarged region. Hence, the number
of pairs in the queue is reduced by three or more each time a merging takes
place. The process of successive merging can be programmed to stop either
when a specified number of regions remain o; when the pair of regions at the
front of the queue are sufficiently dissimilar.

The operations used here are thresholding, table entry and table look up.

The Brice and Fennema Region Grower

This method uses a pre-partitioned region map and attempts to merge the
regions so that ultimately the region boundaries conform to the natural lines
of the scene [5]. The algorithm attempts to produce a result which is void of
any "false" partitions caused by image quantization and noise. The use of
regions as the data type alliows global constraints to be applied.

An initial partition is constructed from a normal gray scale image by
grouping pixels with uniform gray levels into regions. There are usually
boundaries dus to optical effects, shadows, non-uniformities of object
surfaces, etc. The strategy of the algoritim is to merge regions according to
global criteria using the so called Phagocyte heuristic. Then a localized
boundary strength criterion (Wealness heuristic) merges similar adjoining
regions. The Phagocyte heuristic guides the merging by smoothing and

-39~

> EAL TR T . 1 e (T TR S TIPS T 1 e

g

g

T - s T O T TR Y IR Y

shortening the resulting boundary. It joins regions that are separated by a
weak boundary and if it does not grow too fast. Given two regions to be
merged the following operations are performed:

1. Differences in gray scale between the two regions are computed
along their common bowundary. Those with values less than a
pre-designated threshold form the "weak" boundary.

2. The length of the weak boundary in 1) is compared with the
minimun of the perimeters of the two regions. If this ratio is
greater than some threshold, the regions are merged. This is
related to how the boundary changes in length as the regions are

.merged. If it is greater than .5, the boundary must shrink; if
it is less than .5, it must lengthen.

The Wealness hewristic joins regions solely on the basis of the boundary
strength separating them. The percentage of weak points in the intersecting
boundary is computed. If it exceeds some threshold, the regions are merged.

The basic operations used are thresholding and table lookup.

2.1.4.5 Texture Handling Algorithms

Normmal region growing and edge finding algorithms cannot effectively
segment a sScene with high occurances of intensity changes, as would be
apparent, for instance, in a picture of a field of grain. Special algorithms
have been developed to deal with texture information in order to perform

meaningful scene segmentation.

Autocorrelation

Almost all textures consist of an alternation between bright areas and
dark areas. Hence, one useful measure of the texture of an area would be the

periodicity of these alternations at various orientations. This can be found

-40-

by computing the autocorrelation function of the grayscale values in that area
(19]. If g(x,y) is the grayscale value at coordinate (x,y) in the image, and

if N is the neigtborhwod over which the autocorrelation is to be integrated,
then for each (i,J) in N:

r(1,9) = I2 g(x,y)%(xel, ¥+ / IZ glx,p2 .
Xy Xy
The values of {1 and j for which r(1i,J) is high indicate the approximate values
of periodicity present in the texture.

This process can be visualized as shifting a copy of the neighborhood i
pixels horizontally and j pixels vertically and multiplying point by point
with the unshifted version. Haralick added a further rgf‘inenent that only
points where the neighborhood and its shifted version overlapped would be
included, whence it became necessary to normalize the result by dividing
r(i,j) by the fraction of the area occupied by the shifted copy of the
neighborhood, i.e., the overlap.

The basic operation used here is cross correlation.

Run Length Statistics

Galloway [20] used the lengths of runs of different grayscale values to
cla.','sit‘y textures. Fowr different orientations of runs were used, 0, 45, 90,
and 135 degrees, For this, each line of the specified orientation has to be
scanned, and every unbroken sequence of j pixels of intensity i is recorded by
incrementing p(1,jJ). This histogram of various run lengths of various
intensity values was condensed down into five parameters as follows. Scaling
each p(1,J) by the inverse square of the run length j and by the square of J
enphasized short and long runs, respectively. Variation in intensity values

41~

e AL b st i e Ml b A 2V b i vl

and in run lengths was obtained by squaring the sum over all run lengths and
intensities, respectively, before summing over the other parameter. The fifth
parameter was obtained by dividing the total volume under the histogram by the
sum of j*p(i,j) over the whole histogram. These five parameters were computed
for each of the fowr orientations yielding a total of twenty components in a

vector describing the texture.

The operations used here are vector inner product and histogramming.

2.1.4.6 Image Registration Algorithms

Image registration algorithms are used to locate corresponding points in
a sequence of images. These images may be pairs of images from binocular
cameras, or successive frames of images from a motion picture camera. The
aligment of the image pairs allows the computation of depth for the surfaces

of objects in the pairs, and allows the computation of motion information.

Image Registration (Nevatia)

The Nevatia method uses motion stereo to make a more reliable depth
measurement of a region in an image (21]. There is less computational effort,
even though more than two stereo views are analyzed. The main problem is that
of correspondence, i.e. locating corresponding points in stereo views. The
depth calculation (triangulation) is more accurate for larger stereo angles.
However, the disparity, or the displacement of the point of interest,
increases. Thus a larger area of the image has to be searched for to find the
corresponding object. This problem can be alleviated by using successive

intermediate stereo views, which do correspondence over a smaller area.

-42-

The procedure is as follows:
1. Given a stereo angle, determine the number of intermediate
views (K).
2. Project the monocular ray of the first stereo view onto the

second stereo view. Searching is done along this line in a

rectangle of dimension N by M using correlation by mean square
differencing.

3. In each intermediate stereo view search for the object within a

N®W (K-1) neighborhood of integer displacements, but with the
last computation being done in real arithmetic.

4, Use triangulation to create a depth map.

Experiments show that using a 333 by 256 digitizer, an accuracy of 2.54
mm at an object distance of 1 m can be achieved. A typical computation time

for this method is 10 seconds on a PDP-10, although it varies greatly on the

number of stereo views taken.

% The basic operations are correlation and triangulation.

Image Registration by Template Matching

Template matching to locate objects in an image is used in landmark

registration of weather photos ([22]. The esrth's disk in an image can be
aligned with that of a previous image:

1. by locating a pair of édges at the earth-space boundary,
2. by defining a slope of a chord connecting the edge pair, and

3. by making vertical adjustments to match the chords of both
images.

This can be extended to general pictures with circular, well defined.

boundaries. The idea is to minimize the difference between two features, in
this case, chord slope.

-43-

P P e a2

Template matching is applied in conventional raster scan fashion. Doing
this for each pixel is too costly in computation and time, so an initial pass
is performed in "coarse" mode. Rectangular windows are convolved in such a
way that they overlap the previous one by one-half their horizontal/vertical
dimensions. A measure of correlation between this window and the template is
camputed as a "distance". It hopes to find a perfect match (zero distance)
and terminates after finding its goal. However, such a case rarely occurs and
the best candidate (one with the smallest distance) does not always correspond
to the true position. The distance values for all windows are ranked, and are
inspected starting with the best candidate. A local cross operator is applied
as a "fine" mode correlator. It computes correlations at its current position
and four non-diagonally ad jacent neighbors. Its new position is the one with
the smallest distance computed. The process terminates when it does not

change in position. The next highest window is analyzed in the same way.

Registration by template used in earth-satellite photos have shown to be
very reliable, locating a physical landmark "perfectly" each time. It can be
extended generally to images with unique objects on a uniform background. 1Its

performance is overwhelmingly better than a brute force template match.

The basic operation used is correlation.

2.1.4.7 Image Compression Algorithms

Image compression algorithms are applied to raw data to reduce
transmission bandwidths and to provide data reduction for storage in digital

form.

~bbh=

Transform Coding

Wnen taking the Fourier or Hadamard transform of an image, most of the
energy in the t,ransfor;ned image will almost always be concentrated at the

lower spatial frequencies. One can take advantage of this by allocating fewer

bits to transmit the high spatial frequencies, since there is less information

there, Results using both Fourier and Hadamard transforms indicate nearly

identical performance, but the Hadamard transform is significantly easier to

campute (23], Hence, only the Hadamard transform will be considered here.

The image is usually broken up into small blocks, each of which will be
the block size is

separately encoded. To simplify the calculations,

restricted to powers of two, e.g., eight by eight is used below. Then each

row, consisting of the eight samples Bgs B1s Bpr covs &y is transformed as

follows.

first pass second pass third pass

RIRE Il il

hy = & + &3 82 = hy - hy hy=8 -g

h3=gz-g3 g3=h1+h3 h3=g1‘+gs

hy = g, + g, =h, +h h; = +

pi 8t 5 T I NI

Bigce gomo® RIElE

Meg-g memen Migeg ;

After each row has been transformed, exactly the sane is done to each column
in the block. This particular algorithim, which yields the transform
coefficients in order of increasing sequence (analogous to frequency in the

Fourier transform), was given in [24].

After the matrix of transform coefficients is obtained, the coefficients
containing most of the energy are encoded, while the rest are either thrown

away or encoded with just a few bits. The simplest approach is to pick a

B e TR

standard set of coefficients to always encode which experience has shown to
work well. A more sophisticated approach which selects which coefficients to
encode can also be used but has the disadvantage of requiring extra bits in
the encoding to specify which coefficient is being conveyed.

The basic operation here is the FFT.

Differential Pulse Code Modulation

Since the changes in intensity from one pixel to the next are usually
quite small compared to the total number of gray levels, significant data
campression can be achieved by encoding the differences between successive
pixels. The simplest scheme only allows a fixed set of differences to be
vransmitted using a fixed block length [23]. For example, if four bits are
allowed per pixel, then only differences ranging from -8 to +7 can be
transmitted. A more sophisticated scheme uses a variable length code. Here,
the differences which occur most frequently are encoded using the shortest
code words, while the longer code words encode the differences which oceur

only occasionally. Such a code might look like the following:

difference codeword difference codeword

00

010 o1

100 101

1100 1101

11100 11101
ete. ete.

Such codes must always have the property that no code word be identical to the

beginning of some other code word, or else the decoder might incorrectly
determine the boundaries between code words. Transmission of such a code is

generally done using a lookup table to convert the differences into their

46~

corresponding code words, so execution is very fast: {"

The operations used here are differencing and table lookup.]

2.2 Ig%rtant Signal Processing Kernels in Radar Electronic
arfare, Commnication and Image Processing Systems

This section summarizes work that was done in identifying and :
mathematically characterizing important signal processing kernels that became
apparent during the system studies described in Section 2.1. Of particular
interest is the summary list given in Section 2.2.9. Although at this time 4

the list is not exhaustive, we believe that the most important kernels are b

remresented there.

2.2.1 Unitary Transformations

This class of transformations includes most (if not ail) of the important ‘]
transforms used in digi_.tal filtering and image compression. A unitary ‘]
transformation is characterized by a unitary matrix whose rows (columns) are i
orthogonal vectors. The class is described as the multiplication of a matrix
and a vector. The Karhunen-Loeve, Hadamard, discrete Fowrier, Haar, slant,

and number theoretic transforms are familiar members of this class.

i

Unfortunately, it is not sufficient simply to‘ have a machine that can
execute fast matrix multiplication, because efficient transform computation]
often requires an algorithm that takes advantage of the special structure of }
the A matrix. For example, the FFT algorittm is actually a sequence of |
matrix multiplications, where the matrix that characterizes each stage has a
simple sparse form. Similarly, the fast Hadamard transform takes advantage of

the fact that all entries in the Hadamard matrix are +1. In structure, a

~47=-

Fermat number transform is identical to the FFT. However, the arithmetic is
modular integer arittmetic rather than complex arithmetic. In this case the
control of the data flow is identical to the FFT, although the hardware
details in the ALU are significantly different.

N-1
A. General Formulation: Y(k) = T akn y(n), k=0,..., N-l.
n=0
Let —
Y (o) y(o)
-Y- = .] ; = .
E(N-l y (N-1)
-
. all [] . . alN
A= .

N1 ... %W

=Y =4 ; (Multiplication of a matrix times a vector.)

B. Special Cases 2

N-1 jN nk
1. DFT F(k) = L e £(n)
n=0
, N-1
2. NIT FK) = | £ «™gm)
n=0 mod M
3. WHT (refer to section 2.1.3)

2.2.2 Convolution/Correlation/Interpolation

Convolution and correlation are members of the same generic class because
they each involve forming the inner product of a system vector and the data
vector., For convolution the system vector is often a finite length impulse
response of a digital filter. For correlation, the system vector is a stored
reference waveform. Interpolation differs somewhat in that the system vector

is time varying. However, high speed computation of inner products is the

~48-

e e

ren i alaA b, T . eaab

basic operation required of this class.

A. Finite Coavolution

N-1
y(a) = T h(k)x(n-k)

k=0

h(0) x(n)

h = . , X(n) = |,

hZN-l) x(Q-u+1)

y(n) = b T %(a)

B. Correlation (finite length)

N-1l
r(n) = I x(n)y(n+k)
n=0
x(0) y(k)
;-' o;(n)- :
x(n-N+1) v (N+k-1)

r(a) = x'T ;(n)

-49-

C. Interpolation (FIR filter)

N=-1
"’[2]
y(e) = T f£(t, ,k) x(a-k) L =0,..., M~1
i
k = [N1

2

This equation can be interpreted to be M time invariant filters, or as a
single time varying filter.

f(ti,k) = interpolation functions (filters).

ey - e, {51 o - [52)]
. , X(n) =)
Lf(‘i:"[%i])_ |x(n + [N_;l'.:l

y(t,m) = £7 (¢,) - X(a) 1=0,...,M-1

2.2.3 Recursive Difference Equations

This class includes both time invariant and time-varying IIR digital
filters and algorithms for updating the coefficient values of adaptive
filters. A difference equation can be characterized as the difference of two
inner product operations. A recur‘sive operation has fundamental differences
as compared to a nonrecursive operation because quantization error, noise, or
range overflow errors are fed back and compounded. Wordlength and number

representation are very important in a machine that must implement recursive

equations in a real time enviromment.

o

A. General Formulation

N-1l N-1 ime
y(n) = % L u(n~k) - ¢ bky(n-k) Invariant :
k=0 ksl
or
N-1l N-1 Time
y(n) = T a,(n) u(a-k) - T b (n)y(a-k) WVarying
k=0 k=1
- = r -
ao(n) bl(n)
:(n) - : , -b-(n) - :
u.(n) b.(n)
. N-1_ L N-1_
u(n) y(n-1)
sm) = | . , Fael) = | &
uZn-N+1) yin-N+1)

y(n) = a"T(n) * u(a) - b T (a)y(a-1)
(Difference of two inner products)

B. Features
1. Adaptive filters are an important class of time varying filters.

2. A multiplexed filter is a periodically time varying filter.

2.2.4 Combinatorial Vector Inner Product

This algorithm, which has widespread usage in many types of signal
processing, takes advantage of the fact that the system vector is often a
fixed constant vector. A precomputed table of all linear combinations of the
elaments of the system vector is stored, so that an inner product can be

=31-

| . ‘ P mdl

formed by successive shifting, memory fetching, and adding. This basic

machine cycle must be computed n times, where n is the number of bits in the

signal samples.

A. General Formulation

Assume that the system vector a is time invariant, or a "constant”
parameter.

N-1

y(n) = £ a x(n-k)
k=0

N-1 Binary Integer
Let x(n=k) = £ 2 xz(n-k) Representation
1=0

x(n-k) ~ X1 ¢ o xo(n-k)

binary word

Then

N-1 .
y(n) = T F(A,())2
4=0

where Az(n) = xz(n-N+1) .« v e xl(n) (address)

N-1
and F(A‘(n)) = 3 ak xz(n-k) (stored function)
k=0

B. Features

1. The inner product is computed without multiplication.

2. A precomputed stored function F(.) is required.

3. The amount of memory required for F(.) is 2 words.

4. The amount of computation needed to compute F(.) is what is

necessary to compute all possible linear combinations of the N

ab's, or all possible linear combinations of elements of the
system vector.

5. The basic operator cycle is:
"'(n) -2 yl'l'(n) + F(A“(ﬂ))

2.2.5 Vector Norms

The calculation of a vector norm is important in many digital processing
applications. The most general formulation of the norm is in terms of the p
norms from complex analysis. The p = 2 norm is essentially the energy content
of a signal; the p== is the maximum value of the sequence. Nom
calculations differ from the other generic classes because they are operations
on a single vector and they often require taking roots. In many situations
the norm calculations are not done in real time, but rather are done on stored

data during an analysis phase.

N-1
Nx(wil, « Z ix(k) {P11/P (penorm)
=0

N-1
dixilp = g I 1xGIPIYP (average p-norm)

The average p-norm, denoted <l|x(n)|lp>, is similar in computational form to
the p-norm, differing only in the 1/N factor inside the root-p operation. For
p=2, <|lx(n)llp> corresponds to the RMS value of x(n). For a zero mean
process, <le(n)|lp> corresponds to the variance. Therefore, it appears that
the operations of first and second order statistics are characterized
analytically by the p-norm representation.

By referring back to the discussion of EW systems in Section 2.1.2, it
can be seen that the error metrics (least absolute, least squares, least
infinite) can also be described as modified forms of the p-norm calculation.

The error metrics normally have a weighting function w(n) that is applied

prior to the calculation of the the norm, but this represents a minor
modification in the basic algorithm.

-53. ‘ E

2.2.6 Threshold Operations

The outcome of an operation often depends on how a computed value relates
to some prescribed value, called a threshold value. Typically the threshold
value is chosen based on some a priori information about the data on which the
operation is performed. Although it 1is such a simple operation, it is a
fundamental operation in image processing and in the other signal processing
operations. It has the following general form:

h(x) if h(x) > ¢
g(x) =
Kk otherwise

where 8 is the threshold value and h(x) is the value computed by some
operation on x. k is a fixed constant, typically O.

2.2.7 Histogram Operations

The compilation of histograms 1is another operation which ocecurs
frequently in signal processing. In image processing it is wused to
consolidate intensity information to be used for determining frequency
distributions and for deciding threshold values. Histograms can be generated
as data is coming into the system. For instance, in image processing the
intensity level can be used to index the histogram table at the same time it
is being stored in an image array. 'l'.he general form of the operation is:

H(v) = H(v) + 1

where v is the intensity value and H is a vector of length n.

T A

2.2.8 Two-Dimensional Kernels

All of the previous kernels have 20 (or multidimensional) c'omterparts
that are often direct extensions of the 1D concepts. Work is currently
proceeding to investigate important nonseparable 2D kernels that may present
unusual computational difficulties. It was found previously that with respect
to 1D sequence processing, many of the fundamental operations can be
characterized as matrix-vector multiplication or as inner product
computations. However, with respect to 2D sequence processing, this simple
characterization is simply not possible. The classic problem of transposing a
2D matrix that is stored in secondary memory is an example of how an operation
can be completely daminated by the complexities of addressing/,d’a‘i".a blocks that
are too large to fit into memory. In 2D, a separable unitary transformation
becomes a Ssequence of 1D transformations along the rows, a matrix
transposition, and a second sequence of 1D row transformations. For the
computation of a 20 FFT, often the matrix transposition will require 90% or
more of the total execution time. This suggests that 2D problems should be
placed in one of two categories: 1) those that use data blocks that fit
entirely into primary memory, and 2) those that require Ssecondary memory
(disk, tape, drum, etc.). The first class of mroblems will have many
similarities with 1D signal processing. The second will have special problems
that will be addressed during the course of future research studies.

-55-

2.2.9 Summary of Kernels for Signal Processing and Image Processing

2.2.9.1 Summary of Signal Processing Kernels

I. Unitary Transformations !
A. Data Conpression Kernels
1. discrete Fourier (FFT)
2. Walsh-Hadamard transform
3. Haar Transform .
4, Slant transform .
5. sine-cosine transform
B. Convolution Transforms
l 1. discrete Fourier transform (FFT)
) 2. Number theoretic transforms
: C. Spectral Transformations
1. discrete Fourier transform (FFT Cooley-Tukey)
: 2. chirp-z transformation
? 3. Winograd FFT
f 4, Cordic FFT

II. Linear Filtering

A. Finite Convolution
1. FIR digital filters
2. Sliding window integrators
3. Matched filters

B. Finite Correlation

C. Interpolation

D. Adaptive Recursion

E. Non-Adaptive Recursion

F. Combinatorial Vector Inner Product

G. Linear predictive coding

H. Residue number arithmetic

I. Decimation filtering

o~

II1. Single Vector Operations
A. Windowing
B. Mean
C. Variance
D. Power spectrum . 4
E. Autocorrelation
F. p-nom metrics
G. Maximun element search
H. Minimum element search

. i’ Samka kT -

IV. 2D Operations
A. D Finite Convolutions i
B. 2D Finite Correlations i
C. 2 Unitary Transformations (2D FFT, 20 WHT, etc.) 1
D. 2 Linear Recursion T
E. Coordinate transformations ;
F. Matrix Transposition]
G. 2 Interpolation i

-

2.2.9.2 Summary of Image Processing Kernels

I.

II.

I1I.

VII.

Convolutions

A. Edge Finding Algorithms
1. Compass Gradient
2. Roberts
3. Sobel
4, Burr
5. Kirsch
6. Wallis
7. Hueckel

B. Edge Linking

C. Transform Coding (FFT)

Norm Operations
A. Distance Computations
1. Roberts
2. Sobel
30 Burr
4, Hueckel
B. Mean Square Difference (Yakimovsky)
C. Edge. Linking
- 1. Ramer
2. McKee and Aggarwal
D. Image Registration
E. Image Compression (DPCM)

Table Lookup and Entry
A. Edge Finding
B. Edge Linking
1. Ramer
2. Hough
3. McKee and Aggarwal
C. Region Growing (Brice and Fennema)
D. Image Compression (DPCM)

Threshold Operation
A. Edge Finding
B. Region Growing
C. Edge Linking

Interpolation (Burr)

Histogram Generation
A. Edge Finding
1. Yakimovsky
2. Hough
B. Region Growing (Ohlander)
C. Run Length Coding

Cross Correlation Operations
A. Texture Analysis
B. Image Registration
C. Template Matching

e s 0 T

2.3 Commonality of Signal Processing Functions

The results of studies conducted in the analysis of generic avionies
signal processing and image processing systems suggest that there are many
common requirements that can be used to influence processor architecture. The
following discussion first points out the commonality among the signal
processing functions in radar, communications and electronic warfare. Then
the commonality between the image processing functions and the signal
processing functions is discussed. Finally, the commonality among all four

areas is smmarized in tabular form.

Probably the most easily identified common kernel among the signal

processing functions is the discrete Fourier transform (DFT) as can be seen in

Section 2.2.9.1. In radar systems the DFT is used in Doppler processing and
in 2D stretch processing for synthetic aperture radars. In communications the
DFT is used for data compression, noise suppression filtering and detection
filtering. In electronic warfare systems the DFT is used for pulse (object)
identification and for digital filtering. A common digital processor would be
required to efficiently calculate DFT's by means of one of the many FFT
algorithms. The processor should be in-line programmable for different block
lengths. It should execute high speed complex arithmetic, and probably would
incorporate specialized addressing schemes to accomodate the "decimation"
indexing of the popular FFT algorithms. In high speed applications (radar and
EW) the processor could operate more efficiently with stored sine and cosine
tables, so that the exponential reference functions could be read from

read-only memories, rather than Being computed on-line.

A second important kernel required in all avionics signal processing

systems is finite convolution (correlation). Presuming filters, roughing

filters and noise suppression filters in synthetic aperture radars are often

-58-

linear phase FIR filters. For long finite length convolutions, the FFT
alsorit.m_ can be applied by ¢transforming the data, block at a time,
multiplying the transforms point by point, and then inverse transforming the
resulting spectrum. When this type of FFT-implemented convolution is applied
to real time processing, considerable overhead cost is involved in buffering
the data blocks and in applying the overlap-save or overlap-add algorithms
required to use the circular convolution of the FFT for implementing the
desired linear convolution. For short convolutions, a more direct computation
may be useful since it eliminates the overhead associated with block
processing. For direct convolution a high speed real-time multiplier is
required (at minimum). Since radar and communication signal .p'ocessing is
often done in the baseband with complex (I and Q) data, high speed complex
multiply also appears to be important.

Generic kernels associated with decimation and interpolation are

important in all of the systems studied. Decimation and interpolation are

used abundantly in communications systems as bandwidth varies, in order tob

maintain the minimum data rates necessary to characterize the waveforms.
Two-dimensional interpolation is very important in generating high resolution
imagery with spotlight mode synthetic aperture radar. Since these kernels can
be expressed as linear filtering and sample rate alteration operations, they
are very similar in nature to convolutional FIR digital filters. However, as
pointed out in Section 2.2.2, interpolation filters are really time varying
-systems. Also, they may be realized by recursive filter structures. For
these reasons, decimation and interpolation should be considered as distinct
kernels that have widespread usage in avionics systems.

The combinatorial vector inner product (CVIP) operation represents one of

the most important kernels that appear to have widespread utility. It is a
very efficient technique for computing vector inner products when one of the

59«

1

T T oY1 T T

vectors is a fixed (time-invariant) system parameter. The CVIP has
applications in rédar, commnications and EW systems as a generic' technique
for computing weighted summations of signal samples. It has even been applied
(in the literature) for the implementation of a Cooley-Tukey pipelined FFT

unit.

Another frequently encountered kernel is the p-norm operator, as well as

the various modifications of the p-norm operator that are discussed in more
detail in Section 2.2.5. The p-norm kernel is an essential ingredient in the
computation of first and second order statisties, in the calculation of
metrics in EW signal classification and in the calculation of metrics for
target identification and map matching in radar systems. The p=1, p=2, and
p== norms are the most commonly encountered forms. Each requires a distinct
sequence of arithmetic operations. Therefore, it appears the computational
efficiency of these different norms is dependent on more specific hardware

structure of the processor.

Many other signal processing kernels have been identified as needed in
the various systems that were studied. These include sliding window
integration (a simple form of finite convolution), threshold detection, table
look-up functions, matrix-vector multiply, matrix inverse, and 2D matrix
transposition with secondary storage. It 1is important to note that the
objective of this present work is to identify common basic (generic) signal
processing functions, rather than to analyze specific algorithms for computing
these kernels. For example, the DFT is undoubtedly a generic kernel;
probably the most important one. But the DFT can be computed by the
Cooley-Tukey FFT, the CORDIC FFT, the Winograd FFT, or the chirp-z transform.
Identifying generic kernels is clearly only a first step. Further efforts
will be needed to analyze alternative algorithms for implementing the kernels

to determine the most advantageous forms or avionics system requirements.

o paaiio e b bl S o

it aadiidaus co L

il L e

The summary of image processing kernels, shown in Section 2.2.9.2,

indicates several areas of commonality with the signal processing kernels that
were identified in the study of radar, communication and electronic warfare
systems. It is apparent that convolution, norm operations, interpolation and
cross correlation operations are basic to each of the four areas. In
addition, the threshold operation, histogram and table lookup operations, all
of which are used extensively in image processing systems, also have
application in the other signal processing areas. Table 1 summarizes the

kernels which are common to the areas studied.

I. Convolution
II. Correlation
III. Norm Operation
IV. Interpolation
V. Unitary Transformations (FFT)
VI. Table Look-up and Entry
VII. Thresholding

Table 1. Condensed summary of common kernels from all areas studied.

Computationally, thresholding and histogramming are quite simple.
Thresholding simply compares a value with a reference value and stores a third
value which is either the first value or some prescribed fourth value, usually
Zero. Histogramming simply increments an accumulator which is indexed by the
input value being counted. Table lookup operations are very applications
oriented and may include such schemes as hash addressing, linear searching, or

linked 1lists. The basic operation is to compute the address for a data

-6 1-

transfer.

The results of this study are extremely encouraging because so many
instances of commonality were found among radar, communications, EW and image
processing functions. We feel that architectures with suitable realizations
of these common kernels would greatly enhance signal processing in the
avionics enviromment and recommend that further study should be devoted to

identifying such architectures.

It should be pointed out that the functions studied in this effort are
mainly those functions which operate on raw data. Second and higher order
functions, which operate on the results of the operations considered, more
than likely also have commonalities in the four fields. Signature analysis in
EW, target identification in SAR, and object identification in image
processing all have similar objectives, and hence, we feel, commonality of
function. Further studies should be conducted to investigate the data
structures and recognition schemes in these areas in order to isolate
commonalities at that level of processing. In addition, the impact of these

commonalities on signal processing architectures should be studied.

2.4 Computer Architectures for Signal Processing

As the previous sections have demonstrated, signal processing functions,
though diverse in their objectives, have substantial commonality in their
computation. Consequently, a well-designed architecture can perform tt;ese
functions in a cost-effective manner. Ideally, all computations would be
performed on a single, sufficiently flexible processor and we feel that this
goal should be pursued to the extent possible. Nevertheless, our
investigations to date lead us to believe that even within the same

application area, the requirements of high data rate, diverse functionality

-2~

Ll i,

and flexibility may be mutually contradictory in a cost-effective design. Our

conclusion, thei‘efore, is that a common architecture is advantageous and

probably achievable but that the design of such an architecture requires a

significant research effort.

Due to the complexity of the problem, this preliminary research effort
has not attempted to produce a final design for the signal processing
architecture. However, we have identified certain important requirements for,
and promising architectural features of this signal processing architecture.
From the point of view of data transfer rates and computation rates, avionics
processing has the following general characteristics: raw data is obtained
from input transducers (e.g., radar antennae) at extremely high data rates,
and in a series of processing steps, is transformed and compressed into a
meaningful and useable form. This data is operated on by high level signal
processing algorithms to achieve the signal processing objectives. Finally,
this information must be converted to a form easily assimilated by a human
operator (e.g., video graphics) or into the real-time I/O signals which
control the input transducers (e.g., antenna rotation for target tracking).
Certain information may be stored away in a database for subsequent use in
operations such as target identification. This last step will often involve
the expansion of data into a format suitable for the output devices.

Thus, a signal processing architecture must include both the capability
for high data rate, primitive but structured computations as well as complex
decision-making procedures which are invoked with a relatively lower
frequency. At all levels of signal processing there is substantial diversity
in the functions being performed. For instance, the low end includes
operations such as inner products and FFT while the high end is exemplified by
graphics operations such as scene rotation, hidden line generation, shading,

etc., on the one hand and searching, sorting, and information retrieval in

-63-

databases on the other hand. Although the objective should be to integrate as
many of these functions as possible into one processor, it is likely that they
will have to be partitioned into classes that are compatible in terms of
functionality and data rate. This would permit the design of cost-effective
processing elements specialized to the particular needs of each of these
classes. It should be emphasized that this partitioning does not interfere
with the exploitation of commonality; any given processing element will
perform those functions best suited to it from across all signal processing

applications.

A successful signal processing architecture will result from a design
strategy that matches the structure and performance of the architecture to the
nature and requirements of the signal processing task. In general, this
architecture will consist of a heterogeneous collection of processing
elements, memories of various speeds and capacities and buses of differing
data rates. The selection of processing elements and memories with respect to
their functionality and performance as well as the topology of their
interconnectivity must reflect the structure of the signal processing task.
Higher speed memory must be allocated to the more frequently used data sets;
often executed functions must be supported by high performance processing
wnits; high data rate computations must be facilitated by (possibly)

dedicated buses between the corresponding memories and functional units.

The use of such a design strategy requires that a careful amalysis be
made of the signal processing task. For these purposes, the task must be
represented as a network of nodes (subtasks) with data flowing along the arcs
between the nodes. The nodes should be characterized by the amount and nature
of camputation that they represent and any other statistics that are relevant
in the design strategy described above.

64

B e St

One approach would be to cluster nodes with common functionality and to
provide, for that cluster, a processing unit with a computation capacity
adequate to the needs of that cluster. On the other hand, such a clustering
might lead to excessive data transfer requirements. Ideally, the clustering
should be such that high bandwidth arcs lie within a cluster and only arcs of
relatively low data rates cross the cluster boundaries, thereby minimizing the
number of high bandwidth buses needed. Due to the asynchronous parallelism
within the system, buffering is needed on the arcs between nodes. The
clustering specifies the interconnectivity between the buffers (memories) and
the processors, viz., processors and memories in the same cluster must be
tightly coupled with short access times while the inter-cluster arcs would
correspond to low bandwidth buses with low priority memory ports.

In the context of cost-effective design, a trade-off exists between
functional flexibility and performance. The highest performance processing
elements cannot tolerate the overhead of instruction fetching, thus requiring
that control be hardwired (or microprogrammed). This, along with the high
performance requirements implies that the structure of the hardware be closely
patterned upon the function being performed. This allows the use of
parallelism to achieve the high performance requirements for specific
functions but precludes flexibility in functionality. However, limited
flexibility may be achieved by incorporating residual control which allows for

a certain degree of modification of both the control as well as the
configuration of the hardware.

Signal processing also includes a number of subtasks (typically at a high
level) uwhich are less regularly structured. Furthermore, effective procedures

for suwch subtasks are evolving relatively rapidly. It would, therefore, de

mnwise to attempt to design specialized processing elements for the currently .

used procedures for these subtasks., A general purpose processing unit is

-65-

essential as one component of this signal processing architecture. This

processing wnit can prolong the lifetime of the architecture by being flexible

enough to adapt to new developments.

2.5 Suggestions for Future Research in Avionics Signal Processing

It would be productive to continue research in several distinct

categories of avionics signal processing. These areas are described below.

2.5.1 Study of Current Avionics Digital Signal Processing

The purpose of further work in this area is to establish a clear

understanding of avionics signal processing requirements and to document how

these needs are currently being met. The project should include an

investigation of both "digital signal processors" and "data processing

computers". Bandwidth and wordlength requirements should be analyzed, and

special issues in the selection of current and future IC technologies should
be addressed. During the study, particular attention would be devoted to

methods used for achieving fault tolerance and for providing automated testing

capability (if any).

This project would result in a definitive evaluation of

the state-of-the-art.

2.5.2 Identify and Characterize Avionics Signal Processing Kernels

Sections 2.1, 2.2 and 2.3 presented preliminary results in identifying

and characterizing low-level generic signal processing functions. This

research project would extend results in this area to a point where kernels

could be related to machine architecture. For example, it is important to

evaluate alternate FFT algorithms such as the conventional Cooley~Tukey

. i

- Oy

algorithm, the CORDIC algorithm, and the Winograd algorithm. Although each
produces the same spectrum, intermediate details are considerably different.

Further work in the area would serve to evaluate aiternative
computational algorithms for the kernels and to identify commonality among
radar, EW, conmunication, and image processing. Particular emphasis should be
placed on E4 systems, since there now appears to be a sizable body of
unclassified EW literature to support the work. A synthetic aperture radar is
a good‘ model for a generic system that includes most functions of interest,
i.e., data compression, data transmission, real time processing (weighting,
interpolation, filtering, spectral analysis), and post processing. Post
processing, which involves target detection, image enhancement, edge
detection, and image compression, is closely related to image processing. 1In
general, the SAR system if representative of signal processing functions that
may be required in other systems within the avionics environment.

2.5.3 Investigate Adaptive Processing Techniques

From one point of view, it can be argued that a useful processor
architecture would be one that can adapt to incoming data to "configure the
machine" for an optimal solution of the assigned problem. This is the concept
behind a machine structured with banks of configurable polynomial arrays
(CPA's) as proposed by Adaptronics [25]. However, an adaptable machine with
extensive capabilities may not perform as well as a simpler machine on simple
problems. This is true because the adaption process is never ideal, and the
residual full-mechine cipubuity may cause poor performance when the
full-machine ocapebility is not required. An example of this phenomena was
observed ([26] when a nonlinear CPA filter was compared to a linear LMS
sdsptive filter for cancelling additive noise. The nonlinear terms in the CPA

.67-

filter were not set exactly to zero by the adaption algorithm, and they

introduced noise into the gradient approximation.

Future work in adaptive signal processing techniques 1is needed to
evaluate the properties of a CPA architecture and to illustrate its
performance on Several problems (to be defined). Hardware structures for
realizing a CPA architecture should be investigated, and techniques for
achieving reliability in CPA architectures should be proposed and evaluated.

2.5.4 Investigate the Utility of Number Theory
Techniques in Avionics Signal Processing

During the last few years there have been significant results reported in
the literature indicating that certain concepts from number theory can be
applied to simplify hardware and achieve high data rates in digital filters
[27,28]. These include residue number arithmetic, number theoretic
transforms, and the Winograd FFT algorithm. The combinatorial vector inner

product algorithm can be included in this general category.

Future efforts should be devoted to investigating the applicability of
these new concepts to avionics signal processing problems. The techniques are
very promising because they reduce hardware complexity and improve speed.
However, the number theory concepts seem to produce efficiency when applied to
dedicated tasks, and as siach, seem to be more useful in the signal processors,
rather than in the data processing computer. The results of this work would

establish whether the ideal avionics signal processor is too general for

number theoretic techniques, or whether the techniques can be used to
advantage.

e

2.5.5 Investigate Avionics Visual Image Processing

Current serial computers are poorly matched to image processing problems
and algorithms. At the early stages of processing especially, most operations
(e.g. gradient finding) are local and independent, ideal candidates for
parallel implementations, but serial computers cannot take advantage of this
inherent parallelism. Architectures designed with image processing in mind
could provide dramatic improvements in the performance (one or ﬁxore orders of
magnitude) and could make real-time high resolution image processing feasible.
At present we often must choose to either loock only at small windows of an
image in detail in order to obtain real-time performance, or else we must
accept very long processing times for each image.

The approach we suggest to this problem is to find and verify good
matches between problems, algorithms and architectures. We already know a
good deal about matches between problems and algorithms for image processing,
but we know much less about algorithm/architecture matches. Furthermore, much
more effort has gone into investigating algorithms well suited to several
computers than has gone into parallel algorithms, however appropriate they are
to specific image processing problems. We believe that the best overall
system performance can only come from the consideration of problems,

algoritims and architectures together.

Research in this area should proceed in several stages. The first two
stages should be performed concurrently and should be followed by the
remaining stages which should be performed in succession. Throughout this
effort, close canmunication should be maintained with the architecture group

and the group studying radar, communication and electronic warfare.

-69-

IR AT ¢

2.5.5.1 Task Definition for the Avionics Domain

We feel that it 1is important to have overall goals for the eventual
systems we are aiming toward. To this end, a set of scenarios should be
constructed which indicate how image processing systems will be utilized in
the avionics enviromment. From these scenarios the overall image processing
tasks should be defined as specifically as possible. This includes the
projected input data rates, the types of information to be obtained from the
data and the time constraints in which this information is to be obtained.
Several of the tasks which should be considered include the matching of a map
with an aerial image, the detection of target objects in an image, and the
tracking and identification of objects in an image.

2.5.5.2 Identification of the Computational Tasks

For the scenarios proposed in the previous task, the computational tasks
should be determin'ed. These tasks should be analyzed and the functions
necessary to carry out the tasks identified. Data structures for the task
domains should be analyzed and the computational times necessary to keep up
with the data rates determined. |

2.5.5.3 Analysis of Image Processing Algorithms

A more in depth study should be made of all the algorithms used in visual
image processing. These algorithms should be catalogued according to the
functions they perform. For instance, the Fast Fourier Transform has many
algorithmic realizations. Both basic (low-level) image processing algorithms
and algorithms for image analysis and decision-making (high-level should be
analyzed since the low-level algorithms must provide suitable outputs for

convenient higher-level analysis. The analysis performed on each of the
algorithms will determine their efficiency with respect to memory

requirements, pixel accesses and computational complexity.

The low-level image processing algorithms to be analyzed include 1) the
detection of shapes such as lines, corners, curvatures, swrface normals,
symmetry axes, closed contours, etc. and 2) the analysis and representation
of features such as color, texture, texture gradients, parallax and depth,

motion direction and velocity, spatial frequency, etc.

The high-level algorithms to be examined include ones to analyze 1)
object groups and relations between objects, 2) 1lighting type, shading,
shadows and highlights, 3) object models and the recognition and description

of objects, 4) precise location or tracking of objects, ete.

2.5.5.4 Identification of Kernels

A subset of algorithms should be selected and analyzed in detail.
Algorithms catalogued in the preceding step should be analyzed for performance
on the selected tasks, and a subset of the operations which are found to be
the most important and representative selected. This subset of algorithms
should be further analyzed to find ways in which the algorithms can be broken

up into separaté processes, and to identify kernels which can be shared by

Several algorithms, and generalizations of kernels which may merit special
consideration within the architecture. Results available at that time from
the architecture study will help determine appropriate ways to break up

algorithms, and may suggest some additional algorithms which should be added
to the subset to be considered in detail.

2.5.6 Investigate Computer Architectures for Signal Processing

The application-oriented design effort for communications, radar and
image processing should be based on a characterization of the workload which
will be supplied by the research groups active in those areas. This
characterization will be in the form of kernels, i.e., well defined
computations that are representative of their application areas. A kernel
qualifies as such if it tends to be one of the most frequent, time-consuming
or expensive computations involved in that application. Taken together they
should be typical of, and identify the worst-case of, a class of computations
which, together, constitute most of the workload. The significance of these
kernels lies in the fact that an architecture which is geared towards these
kernels and executes them efficiently, is guaranteed to perform well on the

] workload as a whole.

Kernels that are common across multiple application areas should be given
special emphasis since a maximum payoff for a given outlay can be realized by
optimizing with respect to them. However, evaluation in a broader context is
also necessary in order to guarantee that resulting architectures will not be

so specialized to the common kernels that they become ineffective for the

Sake

total workload. Therefore, while emphasizing the commonalities, consideration
should be given to the dissimilarities between the various applications to
ensure that the resulting design is effective and complete with respect to
each application area. Ensuring sufficient generality provides the further
advantage that the architecture is likely to remain effective in the face of
unanticipated developments in signal processing techniques.

The kernels should be analyzed to determine certain important
characteristics. The size of the data structure operated upon by a kernel has
a direct impact upon the size of main memory and the amount of paging activity

-72- N

required. The computational and data rate estimates will be indicative of the
processing and memory bandwidths that will be needed. Tﬁe desired precision
and its range should also be investigated. Finally, an effort should be mzde
{E to ascertain whether kernel algorithms can be restructured to perform better

on novel candidate architectures, which were not adequately considered when

the algorithms were initially developed.

W —

oA

The kernels should be analyzed to ascertain the nature and amount of
parallelism present. The nature of the parallelism can be measured by the
extent to which the kernels are matched to each of a set of "distilled"
architectures, i.e., fictitious machines, each of which embodies the essential

features of a class of architectures. The distilled architectures to be

ek e

studied include single stream instruction pipeline machines, vector

processors, array processors and multi-processors. In order to focus on the
nature of the parallelism inherent in the kernels, it can initially be assumed ‘
that distilled architectures have wunlimited parallelism. Thus, a distilled |
array processor can process an array of arbitrary size in one pass. However,

all operations performed concurrentily must be identical. Furthermore, each

distilled architecture is an extreme architecture particularly suited to
exploiting specific types of parallelism in the kernels. For each type of
parallelism, the extent of paralleiism can be measured by observing the number

of resources that could be kept busy in the corresponding distilled
architecture.

A realistic architecture must consist of a judicious mixture of these
distilled architectures with limited parallelism. The performance of the
kernels on each of the distilled architectures will indicate the types and
extent of parallelism that should be provided by the recommended signal

- processing architecture. This information can be used to derive from the
: class of distilled architectures a characterization of candidate architectures

-73-

for further study.

A means of describing the benchmark kernels should be developed. The
kernel descriptions will permit rapid identification of the types of
parallelism present and the amounts of each type. Transformations between
alternative types of parallelism will also be readily apparent. To this end,
distinctions should be made between implicit and explicit parallelism, low
level and high level parallelism, alternative structured data types, sustained
parallelism vs. burst parallelism, and funetional, memory and bus
requirements which must be explicitly provided or emulated by a candidate

architecture.

Various organizations and management strategies should be studied for the
four types of components that make up a parallel computer: functional units,
memory, control units and buses., Each organization has 1its particular
strengths and weaknesses and tends to be attractive under certain conditions
vwnhich must be well understood in order to achieve a cost-effective computing
structure. In certain cases, organizations with very high performanca
potential may turn out to be self-defeating in practice. For instance, a
lookahead processor which attempts to achieve dramatic levels of concurrency

by very complex lookahead schemes may not be cost-effective.

Often, a particular objective may be realized in a number of ways each of
which 1is appropriate in a particular context. For example, if mutually
exclusive accesz to a shared bus 1is desired, two strategies suggest
themselves. An asynchrorious, handshaking protocol is powerful in the sense
that the bus may be acjuired and released at arbitrary instants in time. This
may be contrasted with the simpler time-division-multiplexed bus which may
only be used during pre-defined time-slots by each potential user. When bus

wransactions tend to be relatively long and variable in length, the former

-Tim

W

strategy is indicated. However, when the transactions become shorter and less
variable in length, the handshaking overhead becomes disproportionately large

and generality must be sacrificed in favor of the latter scheme.

Such trade-offs between cost, generality, flexibility and speed exist at
all levels of detall and in every design decision. A cost-effective parallel
processor design must take these into account and match the capabilities and
cost of each subsystem to the requirements of the computation. As a
consequence, the parallel processor might consist of a variety of processing
elements possessing different organizations and functional capabilities, some
of which are designed to operate upon data, others to transfer data between
these processing elements and yet others to perform control, synchronization
and scheduling functions. Memory of varying speeds and capacities will, in
general, be distributed throughout the system to provide data and program
storage capability as well as to serve as a medium of communication between
processing elements. Perhaps most important, is the choice of interconnection
mechanisms which will determine the access proximity between each pair of
processing elements and memory units. This general design will take on a
particular form based upon the signal processing workload statistics. 1In one
case, an array structure n;ight be indicated, while in another instance a
system of autonomous processors with shared memory, might be more desirable.
To make intelligent choices between the various alternatives requires that the
conditions be identified for which each alternative is most effective.

For the later . stages of detailed architecture evaluation, extensive
simulation should be carried out using the kernel descriptions developed and
an evolving set of candidate architectures tracked through interactive
improvement and successively more detailed evaluation. Of the simulation
languages available, SIMULA [29] is perhaps the most elegant and powerful.
However, SIMULA has relatively poor bit manipulation capabilities The hardware

description languages possess adequate bit manipulation capabilities [30] and

are basically parallel, but in a restrictive way and with awkward syntax.

The simulation studies will require some enhancement of these
capabilities to provide for rapid tracking of changes in the simulated system '
by guaranteeing that modifications to one portion of a system be reflected in
a change to the simulation in one, and only one place. Characterization of
kernel parallelism, their primitive data types and operations, will be
straightforward. A variety of levels of simulation detail should be fully
supported for efficient execution. These enhancements can be developed by

augmenting a standard simulation facility.

This research effort would perform a thorough analysis of the signal
processing kernels with an appropriate range of distilled architectures and a
reduced range of explicit candidate architectures. Analytic techniques should
be developed and used as far as possible, following which extensive simulation
will be required. The evaluation results obtained will yield a highly

cost-effective recommended signal processing computer architecture.

i+ e ADE M Srecean

SECTION III
COMPUTER ARCHITECTURES FOR FINITE ELEMENT METHODS

Finite element methods are used for computer evaluation of the behavior
of coamplex structures. They often reduce or eliminate the need for complex
prototype evaluation and permit a mueh broader range of potential designs to
be evaluated. The potential gains from using finite element methods, however,
are compromised by the inefficiency of present state of the art camputers when
applied to finite element method computation. 1Individual runs are long on
medium sized computers and costly on large scale computers, leading not only
to a high cost for using the method, but often limiting the number of runs for

an evaluation to few runs on subproblems.

Nevertheless, finite element method computation is highly structured and
many of its tasks can be performed in parallel, which gives rise to the
expectation that efficient new computer systems can be developed which are
specialized for performing finite element method computation in a highly
efficient manner. The primary objective of this research is to develop such
computer structures. Intermediate objectives include the development and
evaluation of algorithms for use in the finite element method, assessing their
utility for alternative camputer structures, developing and assessing
specialized structures, evaluating total systems, and making final
recanmendations concerning the most effective architectures and the
appropriate algorithms for them to exploit their capabilities to the fullest.
Final recommendations will be accampanied by an evaluation of performance and

cost-effectiveness.

In addition to the principle objective described above, this research
will have broad impact on the more general problem of discovering appropriate
methodologies for developing and evaluating problem-dependent architectures.

.77-

o i et

Of particular relevance for achieving this objective, are the problems of
evolving appropriate techniques for tailoring architectures to problems,
developing algorithms for architectures, and establishing means by which the
effective algorithm-architecture pairs can be compared with one another

despite their widely different approaches to solving the problem.

Thus, the emphasis on finite element method computation in this research
can be viewed both as an important objective in itself as well as providing a
necessary, camplete and important example for the development of appropriate

tools for meeting the more general objective.

A pilot study on this subject has been in progress since February 1979
under the sponsorship of the Wright-Patterson, Flight Dynamics Laboratory.
The performance of existing finite element code has been measured and
evaluated. The critical camputations in this code perform multiplication of
large matrices and solving large sets of linear equations. These kernels of
code involve significant computation time which becomes dominant for 1large
nonlinear problems. They also cause substantial paging traffic. Known
algorithms for performing these kernels and existing architectural studies
have been collected. Both analytical and experimental studies of the speedups
achievable through parallel processing of these kernels have been initiated.
Preliminary results indicate that some parallel architectures may be very

attractive.

Plans for the continuation of this research include performance
measurement of dynamic (time-varying) problems; further analjsis of existing
architectures and algorithms; direct consideration of sparse matrix,
symmetric matrix, and blocked matrix approaches; and evaluation of memory
organization and management strategies. Algorithms will be selected and
adapted for particular architectures in light of their properties with respect

-78-

PIRLE ATy i . e i

bt

to the above considerations. Alternative strategies for running these

algorithms will be evaluated. Essential primitive operations wili be defined
for performing such matrix-oriented camputations efficiently. These will lead
to recommended instruction set architectures and dedicated specialized
funetion wnits. Finally, recommended architectures will be selected in the
light of these analytical and experimental results. The scope of
consideration will include existing large computers, moderately or extensively
modified small to medium sized computers with enhanced memory and function
capability, as well as special-purpose highly parallel computer or
multicamputer systems.

3.1 Computer Needs in Finite Element Analysis

The finite element method can be characterized as a tool requiring large
volumes of topologic and geometric data, well defined operations on large
numbers of small and large matrices, many of which are sparse, large volumes
of data being manipulated during the solution process, and significant
problems associated with reducing and displaying the results in a meaningful

way.
These characteristics translate into a need for

1. geometric modeling systems for generating problems, combined
with techniques for mapping problem descriptions onto finite
element meshes;

2. significant data handling capabilities capable of operating
efficiently on sparse matrices;

3. facilities for handling large volumes of data efficiently;
4, etremely fast scalar and parallel processing power;

5. 1intelligent graphics systems for displaying both the problem and
the results in a meaningful manner.

-79-

Today almost all of the sophistication needed to do large scale finite
element analysis is handled at the software level. Basically, engineers are
using the computer as a very primitive fast calculating device. This is due
primarily to the fact that computer manufacturers have not provided engineers
with anything beyond a very basic computing enviromment. There are no
canputers today which automatically handle sparse matrices. Many of the
largest computers do not even have virtual memory. Graphics utilization by
engineers often reduce to drawing simple pictures on a storage tube or refresh
type devices. Consequently, all of the work must be done at the software

level.

In some instances, in order to circumvent the lack of hardware, engineers
have developed software virtual computing systems in which they then program
the finite element systems. In effect, the use of these virtual software
systems implies a lack of sophisticated operating systems and hardware from
the manufacturer. These software systems come in many sizes and shapes.
Examples are DMAP, ICES, DRS, NORSAM, POLO, etc. Basically these systems have
been used to provide various levels of dynamic memory allocation and data
mappings such as the sparse matrices mentioned earlier. Through these
systems, various levels of sophisticated finite element software can and have

been written.

Virtual systems represent a tool for software development. They make it
somewhat easier to develop large camplex systems. However, these tools cannot
increase the throughput of a finite element program.. If anything, they must
slow it down. In general the tradeoff has been speed for flexibility. It
would appear then that a significant increase in productivity would occur if
a) a fast floating point capability were available, and b) some of the aspects

of virtual software systems, such as sparse matrix operations, were available

at the hardware level.

e e el I R ad o el LA T RIS

¢ aalan mmto

In order to determine the exact needs in the hardware, an initial study
has been undertaken to determine the level of computing resources utilized in
the various aspects of the finite element problem. The results of this study
are presented in the following paragraphs.

3.2 Evaluation of the Finite Element Problem

The purpose of this phase of the research project is to determine how

canputer resowrces are utilized for solution of finite element problems. This

approach has some serious drawbacks. In particular, in order to derive the

statistics it is necessary to depend on a particular finite element code.

These statistics may vary somewhat from code to code. At the same time, since

the basic algorithms being used today do not vary significantly, it would seem
that the trends would not change significantly between codes.

The computer code used is called FINITE, which is a general purpose
structural mechanics system based on a virtual software system called POLO.
Each of these software systems has been reported in the literature. FINITE is
based on the availability of FOLO's data base management and virtual data base
facility. It operates on sparse matrices in a relatively intelligent manner;
it is quite flexible relative to structural modelingl It is the level of
general purpose code that one would expect to find operating on camputers in
the future. Thus, the statistics derived from it should be of value in
developing the concepts of a new machine. POLO, which drives the FINITE
system, is an interpreter, thus it presents an ideal working enviromment for
this project. Through FOLO the authors were able to determine the levels of

resources used for data base management, paging, and solution of the problem.

AP NP TR, Y AW N s e

The solution procéedure was broken down into processes such as assembly,
triangulation, residual load camputation, etc.; individual sub-routine
resouwrce utilization was also determined. In this way we were able to
determine, for example, not only how much CPU time and paging was associated
with assembly of the stiffness matrix of a structure, but also how much of the
assembly time was associated with the generation of individual stiffness
matrices and the re-orientation of the matrices in the global space, as well
as the operations associated with various. topological considerations that are

performed during the stiffness assembly.

For the purposes of the discussion herein, the finite element method was
characterized as a nonlinear problem. Linear problems are a subset of the
nonlinear case. The method was then divided into the following ten

subprocesses.

Data generation and creation of data bases.

Processing of material models.

Generating element s-t‘:ift‘ness matrices.
Miscellaneous items associated with stiffne;s
Assembly of the structure stiffness matrix.
Decomposition of the stiffness matrix.

Calculation of equivalent nodal loads fram loads applied as
internal pressures, etc.
v
Displacement recovery for given set of loads.
Stress recovery for a set of displacements.

Calculation of residual loads for nonlinear iterations.

In the above, steps 3, 4, and 5 are associated with the calculation of the
stiffness matrix. Step U is always assigned to the processing which is not
directly assigned to either structural assembly or element stiffness

generation.
«82-

3.3 Exaimle Problems

Two example problems were solved using both 1linear and nonlinear
analysis. The first problem is a nonlinear pressure vessel as shown in
Figures 6 and 7. This problem is relatively simple and is small. It is
axisymmetric and has 288 nodes, U5 elements (8 node quads), and a very narrow
band. The elements are isoparametric, and thus numerical integrations must be
done in order to generate the stiffness matrix. This is typical of most
problems being solved today. The problem was solved for both a linear and a
nonlinear response. In addition, a second nonlinear solution was obtained
using substructuring. In the latter case those portions of the structure
vhich were known to remain elastic were condensed out of the problem, and thus
the iterations associated with the nonlinear process needed to operate on only
a small portion of the elements in the problem. The purpose of using the
substructuring was to determine if more advanced solution techniques of
analysis would drastically change the statistics. If the latter were the
case, it would of couwrse be improper to base any machine architecture on
statistics which were 30 sensitive. The results of the analys;es are shown in
Figures 8, 9 and 10. The lower histogram in each figure shows, for a
particular problem, the pércentage of CPU time spent in each of the individual
processes of the analysis. Each bar of the lower histogram consitsts of a
crosshatch region and a clear region. The crosshatch region represents CPY
time used in doing "useful work," i.e., canputations associated with the
finite element method. The clear portions of each bar represents CPU time
spent in data base management, i.e., the time required to do the mapping of
the data onto the virtual space and for dynamic memory allocation. The upper
histogram of each figure shows the level of paging for each process, Both the
CPU utilization and the paging are expressed as percentages and therefore
relatively machine independent. At the top of the figure, the pages turned

-83-

- Materigl Properties
3 € 29,120 ksi
=2 v 0.3
HREN) 7, 40.54 ksi
-]
—fp— 0.125"
| |R/s2.828”
S [mooes
g| [Rg29375
3
P -
b |3
o Nonlinear Region
bl
& 1

8.4829"

- i
Figure 6. Axisymmetric pressure vessel,

=84«

RS 3 2.8125" Q128"

’ { 6 Nod — Condensed Cylinder
i 599 E?er::nrs | L Substructyre
1 .
'f/- 8 Node Cuadratic

Element (Typ.)

; {222 Integration)
! 139 Nodes
3 L"} 36 Elements
1 8 Node Quadratic
1) ,/Element (Typld
i (3x3 integration)
: "q Weld
t 6Q°
(a) Substructure
CYL_AND_PLUG
4
Nade (siargdensed
phere
83 Nodes -ﬁ_——\ Substructure
iQ Elements /8.9\./
8 Node Quadratic /‘:’
Element (Typ.) Y, &
(222 Integration) Q
A
)

(b) Substructure SPHERE! K

(e¢) Structure JUNCT ION

Figure 7. Axisymmetric pressure vessel finite element model.

-85.

’ "*"’"J““m?“-“’“’ AL AN OURR 0 b s 5

*1essoA aJunssoxd Jeauy] g 'aunByy

SO QIS
m ﬁ GSIS
S5Hd 0401
H 507 “AIND3
. "ONUIHL
O wn
by
JIENISSY .
Q u { 44115 ISIN
Z 0
(1
52 m “411S 13
0o
oa TYIHIIUH
.
b — dnL3s
1 1 1 1 1 1

4s.

3Q.

13.
us.
3C.
1S.

(INIJH3d) INI3II4d UN3M3ID NdI

oo 2

e

R g

e T U

7524,
ASSIGNRBLE usSay

PAGES TURNED

p

*1o8s9A 2unssaud JeauyTUON

4s.

30.

1S.

(IN3JU3Id) ONI3IJHd

6 8314

e

L1t

i

1 7T

LI

qs.

30.

15,

(IN3H3d Ndd

507 "0IS3Y
G5IUIS
56Hd U
5071 "AINO3
"ONUIYL
IEHISSY

44118 JSIN

"44118 *T13
THIHIIUH
dn13S

-87-

: .AD-AO89 S70 ILLINOIS UNIV AT URBANA=CHAMPAIGN COORDINATED SCIENCE LAB F/6 9/5

OPTIMIZED COMPUTER SYSTEMS FOR AVIONICS APPLICATIONS.(U)
FEB 80 R T CHIENe L J PETERSON 3615-1”-1559
UNCLASSIFIED AFAL-TR-19-123S

2.2
-

* (9Jn30nJ2IsQns) TossaA aunssaud JeauyTuoN

- i)

o 0

0O N

n o m

0w

w_J

Z 0

C a

5 Z

i~ 0
[]

0N 0

w ¢

Oa

@

i HU
1 L A

w0 o n

= ® —

(INIOYId) ONI398d

‘0L @a.nByy

et {TTT

ys.

30.
1S

(IN3OH3D NdI

507 "0IS3Y
Se3uiS
S5ud QUo1
507 “AInD3
"ONJIYL
318W3SSY
3311S JSIN
*44148 °13
THIH3LUR
dNi3S

TRy

and the pages assignable are indicated. Pages turned are the total number of
pages turned during the solution. Pages assignable are those pages turned
which were directly related to the movement of data associated with the finite
element problem as opposed to paging associated with operating the FINITE
system itself. The difference between these two figures drops considerably as
the size of the problem increases. Given the percentage of paging and total
number of pages turned, etc., one can calculate real clock time associated
with paging. These combined with the total CPU utilization permits one to
determine the real or clock time required to solve a particular problem. As
showr in Figures 8, 9, and 10, CPU utilization is spread through all of the
processes associated with finite element analysis, with the element stiffness
generation and triangulation standing out as significant.

The second problem solved is the penetrated plate, shown in Figure 11.
This problem required a three-dimensional stress analysis. This is a
relatively large nonlinear problem. It consists of 664 nodes, 80 elements (20
node cube with five integration points throughout the thickness). The plate
has a very broad band with 450 terms. The results are shown.in Figures 12 and
13, where it is very clear that element stiffness generation and triangulation
of the equations represent the primary utilization of CPU resource. Paging is
assignable primarily to the triangulation procedure.

3.4 Analysis of Results

The preceding figures show that for large problems, a significant amount
of CPU resource is used for ;enerating the element stiffness, i.e., doing
numerical integration and for triangulating the stiffness equations.
Certainly an FEM machine must has specialized hardware to aid in these two

areas.

-89-

T Magaterigl Constants
E * 10"psi
v-* Q33
665 Nodes .
80 Elements oy 3 350CQ ast

No Strain Nardening

Symmaetric
Abaout X-Axis

(@) Plan View, Element Mesh
2

R '} [10N N W [YOO WO W S " L ¥ 1 LF'-jr

i
<
(b) Elevation, Loading and Support Conditions

Figure 11. Thick penetrated plate,

-90-

*aje1d pejeajauad Jeauyq

‘2l aunBry

I

e ¢
= o,
—_— e
& &
L)
0 ul
w
Z @
o a
D Z
-0
—t
" n
w0
oa
a
a
1 1 1
N (o] n
o m -—

(INJOH3d) ONI3IOHd

§s.

30.

1S,

(INIM3D NdI

507 "aIs34
SORIS
S6Ud OUO
801 “AINO3

"ONUIYL

| 3855y

3411S JSIN
"4411S 13
TUIYI1UH
dNi3S

.91.

g7
888S5|

PRGES TURNED
ASSIGNABLE

(INIO43d) ONIIIUd

*(3102 + 139) sda3s peoy XI§ JddIN ‘€L °o.nBy4

507 OIS

GSULS

554 aHO

5071 °AIND3

"ONJIYL

"4411S 13

THIHAIUH

dni3sS

3EA3SSY
4411S JSIN

(ININH3ID NdI

Y

e

These figures, however, do not tell the entire story. Engineering
productivity is not governed by the amount of CPU utilization but rather by
the real clock time required to obtain the solution to a problem. CPU
utilization reflects only the cost of computation. In order to look at the
problem from the point of view of engineering productivity, it is necessary
therefore to calculate the wall-clock time required to solve each of these
problems. In order to do this it was necessary to assign some figures to the
paging speed of the machines to be considered. In this case we used the CDC
Cyber/175 and the Burroughs B6700. It was determined that the Cyber/175 can
turn approximately 20 pages per ;econd of wall-clock time. Similarly, the
Burroughs B6700 can turn approximately twelve pages per wall-clock second.
The difference between the two is due to the fact that Burroughs is a virtual
computer and does double faulting when the POLO paging system operates within
the Burroughs virtual enviromment. In reality the Burroughs and CDC hardware
operate at approximately the same speed. Figures 14 and 15 show the results
for the nonlinear vessel and the nonlinear penetrated plate. Note that each
bar on the histogram now has three sections. The bottom shows the CPU time,
the middle or c':lear section shows the data management time, and the top
crosshatched section shows the paging time. Note that on the Cyber/175, which
has a very fast CPU, a large percentage of the time associated with the
nonlinear pressure vessel problem is associated with paging wait time. The
Burroughs is somewhat more balanced and spends a significant portion of its
time utilizing the CPU, the remainder to paging wait time. For the nonlinear
penetrated plate, the Cyber does spend a significant amount of time utilizing
the CPU. At the smme time, the wait time associated with pa_ging during
triangulation is significant and does govern the total clock time of the job.
That is not true of the Burroughs where most of the time is spent utilizing
the very slow CPU. Only a small portion of the time is spent in paging.

«93-

*SIUTYORW UALMND AJIN “hl auanBry

ﬁ SR
o \ ¥ A_ S5
o v Py
= | ssud ouon
y ¢ S0 *A1ND3
+ - "9volHL
= TIISSY
| — HUS B
H -4 1
] : = MOUEIL
}
= N1
1 [L] [] [] A
nm nu. nm [} d .
a R 9 B e 2
JUIL "W 00090 WL U 436)7

i, e maket a4 s - L

bz
(0
8 E
r~
)]
-4 -
n
1
w
X R
-
- H
-
--‘
Q a9 o
Q
8 B 8
m o
> o

K11 UM 00L98

*gauTyYORW quUIJIJND 44 IN °GL 2.8yl

(Tp)

'3V

w

r~
H
4

w

b

[anl

+—

) I A |
o ()
8 8 8

= o
m N

W11 U Y3842

5071 "0IS3d
S53IS
5Sdd Ouo"

507 “AInD3.

"ONUIUL
3784355y
4411S JSIN
“4411S °'N3
Y1431 bH
dN13S

T TR .

e —

\ ———

e .~

It is interesting now to speculate on the increase in engineering
productivity (decrease in clock time required to solve a problem), if the
speed of certain finctional wnits within these computers were radically
changed. For example, it is possible to either increase the memory of the
computers in question significantly, or, as a more cost effective alternative,
to increase the speed of the I/0 subsystem 30 that the paging time is reduced
significantly. The figures chosen for this example are to increase the speed
of the I/0 time by a factor of 60. This would correspond roughly to the speed
of CCD today. Similarly, one can break the CPU resource utilization into two
parts, the data management time, which can be considered scalar CPU
utilization, and "number crunching time™ such as the times required to solve
simultaneous equations or to integrate the stiffness of the individual
elements, and which can probably be done in parallel. The parallel operations
can be done easily 20 times faster than the current Cyber/175. This number
corresponds roughly to the lower bound on the CRAY1 and BSP. Results of these
speculative changes are shown in Figures 16 and 17 for both the nonlinear
pressure vessel and the nonlinear penetrated plate, for both the Burroughs
B6700 and the CDC Cyber/175. As might be expected, changing the sSpeed of the
1/0 device significantly improves the performance of the Cyber/175, while
changing the speed of the processor significantly improves the Burroughs
B6700. Changing both cuts the real time between 87 and 90 percent on the
penetrated plate and between 62 and 95 percent on the nonlinear pressure
vessel. One might note that changing from a Burroughs B6700 to a VAX 11/780,
a machine with a more realistic "slow" processing speed for today's standards,
would make the figures on the slower machine significantly better. The
authors did not have access to a VAX, and the FINITE system was not running on

one. Therefore, these figures were not generated.

¢ e ¥ sl

-

*0/1 bue Aedde 3sej AJIN 9L 3.NBLd

_ | = 507 “01S3Y
. = GEIIG
n .
™ ™
_ SSUd OHOT
w w _J SO “AIND3
Z =
- = | -owius
m IIaHISSY \
ﬁ | 4411 ISIH
| -aa11s 13
HU WIYILUN
dNLIS
I N { 1 |] 1
O o o . . .
) Q O O O O
" (aV] - (V8] = ()
WL WM 00298 WML U YIELD

A AR s e, oy . .

(oh)
Q
Q)
v
«

WL HEY 00499

*0/1 pue Aeuue 3sey 44N °Ll °.nByy
—
™ .
()] 3
w —| 9]
- _4 W _H
= 3
- -
— q t—
ﬁ —m
SSUSSUR RSSO, S, L] |
nu. O' » - L]
O o O o Q
o O O o O
O o w poe |y Qa
3 A ™ N 1

W11 H3Y YLD

SO "0IS3Y

654d (U0
Sa1 “AlNN3
"ONUIYL
JIGW3SSU
44116 JSIW
REE) TR
HIYIIUW

dN13S

“98.

g BN . B Tt 4TIl 2N T 2 10 A D N st 5. St ORI o ietaics 4

The conclusions to be reached from the histograms and from
generated through speculative changes in hardware, are that ¢
improvements in engineering productivity can be achieved by ¢t
hardware toward the finite element process. Finding a fast CPU tt
type of parallelism, array processor, multi-processor, lock step
step parallel processor, etc., will solve part of the problem. Par
it will reduce the times required to obtain a solution on small me
permit possibly the introduction of a so-called finite element ma
the average office. Additional and significant increases in real
are also to be obtained through some type of extended memory, n
memory, or fast paging device. The actual levels of improvemen'
will, of course, depend on the speed of the base machine.

3.5 Data Mapping Hardware

One characteristic of the finite element method is that it re
to handle large numbers of small matrices, if one writes the softwar
the logica! form of the direct stiffness method. For example, the
matrix of the 20-node isoparametric element used in the soluti
nonlinear penetrated plate is logically represented by 192 3 X 3
The maintenance of these matrices via DBMS can be quite slow. !
some sys.tens today generate the stiffness of the entire element mal
large block; in effect, the software operates on a non-logical bas
to gain speed. It would seem that machines of the future would no!
engineering system designer into this unnatural mode of operation
this has not been done in the FINITE system. The result is ti
processes have a significant amount of overhead associated with the
apparent when one examines the histogram associated with the line

vessel. This problem had a large number of elements. The time

-99-

generate the stiffness of each element is small. The amount of data
management time is then quite large during element stiffness generation and
during assembly due to the fact that the system must handle these large
volumes of small matrices. This problem is aggravated when one solves
aerospace type problems which consist of large numbers of frame and beam
elements, These are very simple elements requiring virtually no CPU
utilization to generate the stiffhess matrix. Therefore, all of the time
associated with stiffness generation and assembly is really attributable to
manipulation of the large numbers of elements (these problems often have one

to 2000 components). Thus it would appear in considering an architecture for

the finite element analysis, that it is necessary to consider not only a fast
CPU and a fast "paging" system, but also a system which can very rapidly
handle large numbers of small sparse matrices. A machine which possesses _
these attributes would definitely be a significant improvement over what is
available today, especially if it would be in the $200,000 - $300,000 range, i
since that would permit it to be used in a large number of engineering

installations.

The preceding sections have been used to show the character of the finite
element problem and how machine resources are utilized during the solution of
some of today's simpler problems. The team at CSL has been studying the)
kernels of the algorithms for solving the simultaneous equations associated : T
with the finite element method. Various machine architectures are being . i
studied for problems such as memory conflict and speed of computation. The
integration kernels are also being examined with preliminary emphasis on the
dominant matrix multiplication subkernel. Hopefully, these studies will lead

to some conclusions concerning necessary camputer architecture.

9
B -
4
g

When these studies have been completed, the problems of data mapping and

paging will be studied to form a complete finite element machine architecture.

3.6 Computer System Evaluation

Preliminary evaluation has focused on the two critical kernels of code
for finite element methods: matrix multiplication and solving 1linear
equations. Known algorithms for linear equation solving have been collected.
Some existing evaluations of these two kernels are available in the literature
as well. [Existing evaluative studies are concerned with medium scale
computers, specialized array mrocessors, and large scale vector-oriented
camputers. Little if any work has been done by other groups on multiple
processor approaches to solving these kernels. Furthermore, existing studies
exhibit a noticeable 1lack of information regarding comparison of the
effectiveness of widely varying alternative computer architectures and
algoritms. We therefore felt that our pilot study should focus primérily on
a preliminary evaluation of alternative algorithms for a multiple processor
approach to the kernels. We further felt that a serious comparative
evaluation of alternative camputer architectures should be postponed until
more is known about multiple processor approaches. Likewise, the evaluation
of alternative memory hierarchy organizations was not emphasized as yet since
that work could best be done in the light of known requirements of preferred
architectures for the computation aspects of the problem.

The primary vehicle used for experimental multiple processor studies was
the AMP-1 multiple microprocessor system located at the Coordinated Science
Laboratory. This system was constructed, partially with the support of the
Joint Services Electronics Program, for the purpose of evaluating a variety of
multiple microprocessor configurations with shared memory, studying Job

-101-

R A U O K g 4, | e e

L

e ki ad

ST PSPPI IP Mrsmaeeess ot et comm e aos v -

multitasking for parallel execution, and evaluating effective organizations
for achieving high concurrency of computation and reducing memory access

contention. A block diagram of the AMP-1 system appears in Figure 18.

This system employs eight Motorola 6800 microprocessors which access
memory over a shared bus system using a strict round-robin bus window access
discipline. The memory is organized.as 64 modules of 1K bytes each. Software
for this system is written in Motorola assembly language. Concurrent Pascal
is also available and is executed by an interpreter. None of the software

written for this system depends on a specific number of processors. Rather,

it is subdivided into a large number of independent tasks placed in a common
Job queue. Scheduling is accomplished simply by having an idle processor
interrogate the queue for its next job. The memory mapper allows each

processor to have a small amount of logically local memory. Local memory is

used as temporary working storage and to store enough of the procéssor state |
to permit convenient reentrant programming so that the processors can share
the same code. The BBX interface connects this system to a DEC System 10
canputer. The System 10 can read and write any location in memory and can % ;
start, stop, and reset arbitrary combinations of processors. It can also be 5
interrupted for message passing from the processors. The special locations

are designed to provide certain functions not otherwise obtainable‘ in the

Motorola 6800 processor such as: support for critical sections, interrupting

and . transmitting status to the DEC 10, and interacting with the memory 1
protection subsystem (not shown). These locations are accessed as if they
were memory locations. When operating at full speed, the memory modules have
a cycle time of 5, i.e. when a processor accesses a memory module the next 4
processors in sequence are forbidden from accessing that memory module. The

busy checker determines whether a memory access request is attempting to

access a busy module and if so, disables the clock frr that processor for one

=102~

e, g e .

‘WRISAS (=dWY Yl ‘gl anfry
- ’ R T - -l...ﬂ...r..<..ml..1 {swnnorn |
+-) - T T . Thvae ..”....u“m...u..
) — Ay
emmmimm f g womeme e} . —_ / Mﬂ!
TNV B 1 l_ " !..wln...d 1M -/ 0Mm) sng mng u:._s
ym o e e = =8 .
2 A+ | l 21 12d)- 10N 2au) g oy gv3y
orw L.l] 2popn 1o ol ,] opowm
_Avmuy BN Krowyy Asnuoyy Aoy
.i-.tl.l.l, -.:Ill Call wﬂ.e.:a.s. Vo Aﬁ

W:Imwﬂ -lu [__ . !

e

—-~ ! (rraq)

Awllll.v Asnguo)

- ”...-.x.!wwu - Ampaq) ..nﬂ.u:)sma

N» / i (L) 30V
v "vi | Pvw Svm §

Al
— — "2 _.;E
ASIW - V9 3
YND

(I ot | S
QII» m«m..«l.i ‘.naav...nn.. M L [C2arre ov 1| s

oy

L vy |- woie0) T 61_ 4= : ===
fang) 013G X0 Fyoio Fwd ?...: | ..?.._
W'zd) asng , :] L4 . 11
1) vy ‘] ' o
. MOSS 100t HO5S TN HSSTON
' zvmA
L4 —llll. |—
iTod) 0 V0N
- (waishs oy bwwny sasep) | . WALSAS
NI TIDRINGD BOSS D0

1-dHV
i)

o

complete cycle. The design of the Motorola 6800 processor and the clock
disable logic permit a rejected memory access request to be resubmitted on the
next cycle. Special logic has been constructed to guarantee that each
processor can get access to the memory within 10 microseconds. This guarantee
is necessary due to the fact that the Motorola 6800 processor is implemented
with dynamic logic.

Several design decisions for this system were made to permit the system
to be used for serious experimental study of the memory access conflict
problem of multiple processor shared memory systems. The Motorola 6800 was
selected as the processor in part due to its intensive use of memory. Several
alternative processors access memory far less frequently and sporadically.
Arbitrary combinations of processors can be used in a particular experiment.
No software modification 1s required to select a different combination of
processors. A memory interleaving plug is provided to allow an arbitrary
selection of the address bits as the memory module number. This feature
allows the study of uninterleaved address, by selecting the top 6 bits, up to
fully interleaved memory by selecting the low order 6 bits. Other plugs can
select 2-way, U-way, 8-way, 16-way, and 32-way, interleaving. The busy
checker permits an extension of tﬁe memory cycle time beyond 5 clock times to
6, 7, or 8 clock times. Furthermore, it also allows a reduction in the number
of memory modules below the 64 implemented in the system. Thirty-two module
operation is provided by forming pairs of the 64 modules and assuming that
both module 0 and module 1 are busy whenever either is busy. Similarly, 16,
8, 4, 2, and 1 module systems can be emulated.

The AMP-1 multiple microprocessor system has a potential performance of 8
times that of a single Motorola 6800 processor. Experimental studies with
this system should be oriented toward discovering how nearly the actual
performance obtained from this system approximates the performance capability

=104~

T NI A Fi otk ssceres 3.

of the system and what effects are responsible for the degradations from ideal
performance. Used in this fashion, the AMP-1 system can be an important
experimental tool for exploring the fundamental properties of multiple
processor systems and a means for evolving effective multiple processor

systems of the future. Preliminary experimental studies of matrix

e vk e - - :

multiplication and Gaussian elimination (a classical technique for solving
linear equations) were performed using the AMP-1 system. A special hardware

monitor was constructed to measure the performance of the system. Details of

these studies are presented in the following subsections.

3.7 Matrix Multiplication Results

A series of experiments were performed for evaluating matrix
multiplication performance on the AMP-1 system. A program for matrix
multiplication was written in Motorola 6800 assembly language. Memory banks 0
and 1 were used as private memory for the processors, the main program is
stored in bank 2, the code for the dot product routine is stored in bank 3,
the floating point multiply routine is stored in bank 4, and normalization and
add routines are stored in bank 5. For the matrices themselves, a 5 byte
floating point format is used for each matrix element. This format provides
for an 8 bit exponent and a 32 bit mantissa which allows numerical precision
camparable to most large computers. The matrices used are 32 X 32 in size.
Thus each matrix requires 1024 5 byte locations in memory. The matrices thus
occupy logical banks 6 through 20, i.e. 15K storage locations. The
camputation to be performed is A XB =C, where A, B, and C are 32 X 3
matrices. The system itself uses some special locations' in logical bank 63.
The logical bank numbers used in this discussion are simply a reflection of
the address space as seen by the programmer, i.e. the logical bank number may
be decoded from the high order 6 bits of an address used in the program.

-105-

X
{

logical banks correspond to actual memory modules when 64 memory modules are
used and no interleaving is used. Use of an interleaving plug to provide 2 to
64-way interleaving will alter the placement of logical addresses among the

- memory modules in a way which is transparent to the programmer. In these

preliminary experiments, the number of banks was always 64, regardless of the
degree of int;erleaving. Thus the performance for no interleaving or a low
degree of interleaving as indicated is higher than one would expect if the
number of banks were equal to the degree of interleaving. The matrix
multiplication is divided into 1024 separate Dot Product jobs which are
independent and separately scheduled.

The time required for a floating point addition, with the format used,
averages 305 cycles. Some variance in the add time occurs due to the variable
number of shifts required for normalization. The multiplication routine
requires an average of 4,669 cycles. A Booth algorithm is used which performs
an add followed by a shift for a 1 bit in the multiplier and a shift only for
a 0 bit. The Dot Product requires 159,436 cycles. The Dot Product job
requires 32 adds and 32 multiplies which accounts for 159,168 of these cycles.
Thus 99.83% of the time spent in a Dot Product job occurs within the floating
point add and multiply routines. The times above were measured in actual
performance with one processor executing the program. Thus, no memory
conflict cycles were present. The entire matrix multiplication job as coded
in our program, MXMC, with one processor requires 163,309,473 cycles. The
1024 Dot Product jobs account for 163,262,464 of these cycles. Thus 99.97% of
the time is spent in the Dot Product routine. This indicates an extremely low
period of time required for processor scheduling. The 32,768 additions and
32,768 multiplications require 162,988,032 cycles. Thus 99.80% of the time
for the MMMC program {s spent in the floating point addition and
multiplication routines. Real time for the Motorola 6800 microprocessors is

- 1“-

one microsecond per cycle. These results indicate that the Motorola 6800
microprocessor is not suitable .for high précision floating point operation.
One or two orders of magnitude in performance of these floating point routines
could be achieved by using a faster microprocessor, such as the AMD2900 series
microprocessor with a wider word. Times can also be improved by using
specialized pipelined floating point uwunits. Further speedups could be
obtained by using more processors or finction units in the configuration of

the system.

Nevertheless, performance data taken as a function of the number of
processors used, p, and the degree of interleaving, I, indicates the
effectiveness of such a multiprocessor approach with shared code and shared
memory. These data are shown in Figure 19, Wuhen p processors are used, each
time a processor accesses memory, the following 22'-1- processors are locked
out from that module on the average. The original program and data are spread
over 22 logical banks of memory, resulting in the use of 22 modules when
I=1, 44 modulgs when I = 2, and the full set of 64 modules when I is greater
than or equal to 4. It is interesting to note that even though so many
modules of memory are used with respect to the number of processors a high
degree of memory address interleaving among these modules is also required for
high performance. Also shown on the curves of Figure 19 is the ideal
performance, namely a speedup of a factor of p when p processors are used,
relative to the performance for a single processor. High degrees of
interleaving result in a performance which comes remarkably close to the
ideal, despite the memory access contention due to shared coae as well as
shared data space for the matrices A and B. Further experiments will be
performed to determine performance waen the number of memory banks is equal to
the degree of interleaving. Also performance as a finction of the relative
speed of the memory vs. that of the processors will be determined by running

=107~

—— -

8 [| 1 i’* 1
I=Degree of Interleaving
(Program and Data Spread
7 Over222 Banks) /."j
(Averoge Bank Lockout .
=next % Processors) "
6 N - -
- o e Idwl . o oo “f
——-I=64 o 7, -~ // w
R —1=32 ST
g° 1216 7 .
‘g ——1s8 : -
4 A ".‘. - -’n’a B
3 ="
et
2 -
1 : | L
1l 2 3 . 4 5 6 7
Processors

Figure 19. MXMC performance.

-108-

ideattbilinaitonl s ol

future experiments with slower memory.

To aid in the interpretation of these results, a memory access conflict
model has been developed for shared memory multiprocessor systems. An outline
of this model is shown in Figure 20. The model assumes that each memory
access request has an equal probability of referencing any module in the
memory. Furthermore, for each processor cycle, that cycle is assigned to be
one of three kinds: an internal cycle making no memory reference at all, a
cycle involving a memory access request which is accepted, or a cycle
involving a memory access request which is rejected. It is assumed that once
a rejected memory request cycle occurs for a particular processor, successive
cycles for that processor will be rejected memory request cycles wntil an
accepted memory request cycle occurs. Rejected memory request cycles are
referred to as conflict cycles. Cycles which are either internal or accepted
memory request cycles are referred to as non-conflict cycles. Thus, can be
measured for an actual program as the number of accepted memory request cycles
divided by the total number of non-conflict cycles. This was measured as
79.17% for the program MXMC. Given lknowledge of ¥, the number of memory
banks, M, and the effective memory cycle time, Cas the model predicts the
probability that a request will be accepted and determines the number of
rejected memory request cycles to be added. A Markov modeling approach is
used to derive the formula for the probability of .acceptance. Internal cycles
are assumed to be independently distributed with respect to memory reference
cycles. While Y is the request rate to memory from a processor in a
non-conflict situation, ¥, is that probability for referencing a particular
bank. ThusY M is equal to Y divided by the number of banks. Furthermore,
is the actual request rate seen by the memory in a conflict situation, i.e.
reflects the memory access requests which are rejected by the memory.

Finally, Y is the average total number of cycles of actual run time required

nlw-

At

MEMORY ACCESS CONFLICT MODEL

(FOR BANKS = DEGREE OF INTERLEAVING = M)

% = Probability that non-conflict cycle
raferences memory = .7917 for MXMC

*M = § for omne bank = .7917/64 for MXMC.

¢ - 1 = average number of successive processors

locked out of a bank (if requested)
once access granted = (p-1)/2 for AMP
P = Probability that an actual memory access

A
request is accepted

'_._]_'__— =
1+a(c‘-1) , where « - (l-l)-i-l
A'Y
M 4
: e+ - -d 212 st -1t
ce-i-(*M 1) +((e, (*M 1)) +4(*M)
1.

- g,

o« fun _time for 1 processor
Speedup run time for p processors with conflict

Speedup (modeled) = p/p, where p = (l-¥) + ¥ (-]'/PA)

1
; Figure 20. Memory access conflict model for MXMC.

T

for each cycle of the program if no conflicts were present. Thus Y is

camputed by counting one cycle for each internal cycle and 1/!’A cycles for

each accepted memory reference cycle, where PA is the probability that an

actual memory access request is accepted.

Figure 21 shows the extremely close correspondence between the modeled
probability of acceptance and an actually measured probability of acceptance
as well as the similarly close correspondence between the modeled speedup and
the measured speedup as a function of the number of processors with 64-way
interleaving. While further experiments are yet to be done, these preliminary
results Jjustify some confidence that the model is fairly accurate at
predicting the amount of memory access conflict for the MMC program and that
at least for a high degree of interleaving the difference between the actual
speedup obtained and the ideal is accounted for by memory access conflict. We
may infer from such differences as do exist between the model and actual
performance measurements that the measurements show slightly higher
performance for low p due to the sequential access effects of real programs
which increase performance relative to the wuniform access assumption of the
model. These effects became insignificant when a larger number of processors
are run due to the interleaving of their access reguest streams which has a
randomizing effect. For 1larger numbers of processors, the measured
performance is somewhal. 1lower than that predicted by the model due ¢to
performance degradation effects other than memory access conflict, e.g., the
presence of critical sections of code such as job scheduling for MMC and job
precedence constraints in general which cause some processors to wait while
other processors continue with their computations. While these differences
are insignificant for the particular experiments run for matrix multiplication
they should be expected to became more significant for other cases and other

problems.

«1lll-

[Sy

(64 - WAY INTERLEAVING)

MODEL MEASURED
P P P
, A A ;
i 1 1 1 i'
2 .9938 .9955 i
3 .9876 .9877
4 .9814 .9813
5 .9753 .9795
6 .9691 .9706
7 .9629 -
8 .9527 -
MODEL MEASURED
¢ P SPEEDUP SPEEDUP
1 1 1
2 1.9902 1.9913
3 2.9705 2.9657 |
IA 3.9409 3.9355 - 5;
] 4.9017 4.8927
6 5.8523 $.8183
7 6.7928 6.7435
8 7.7233 -

Figure 21. Model for MXQMC.

-112-

Preliminary conclusions reached from this study are that she
multiprocessors can achieve low access conflict and efficient job !
Further evaluation is needed for other architectures and the effect:
matrices which require paging from secondary memory. Several algc
known for matrix multiplication which have been tailored to speci
oriented machines and the paging problem. These algorithms will
useful starting point for the continuation of this research. Fi
success of our memory access conflict model in the case studied just
further work on this model be done to extend it to modeling conf
general resources including not only memory but shared function
critical sections of code. Such a generalization will prove to be
for quick evaluation of wide ranging alternative architectures exec
camplicated jobs.

3.8 Analysis of Gaussian Elimination

A program was developed for the AMP-1 system to perfom
elimination for a 14 variable problem. This program uses the s
floating point format described previously for matrix multiplic
solves the equations Ax = B, where A is a 14 X 14 matrix and B i
colum. The program itself was adapted from a FORTRAN coded progra
extensive evaluation had been done on various IBM System/360
particularly a broad class of machines similar in nature to tl
pipelined Model 91. The version coded for the AMP-1 uses logical b:
for private memory, banks 2 and 3 for program memory, bank 4 for th
point multiply and divide routines, banks 5 and 6 for the A and
vhich total 1050 bytes, and bank 63 for reserved locations for ¢t
Flags used for insuring that proper precedence among jobs is guar

stored in bank 62 for the original version of the program (GAUSB) =x
-113-

57 and 58 for two other versions of the program (GAUSY and GAUSZ).

The program is divided into three kinds of jobs: normalize, NI, row

reduction, Ry;, and back substitution, B; as described in Figure 22. Each
normalize job sets a diagonal element of the A matrix to 1. It assumes that
the elements before the diagonal element are all 0 and divides the elements
after the diagonal including the B column element by the prior value of the
diagonal element. A row reduction job, RI g0 sets one element to the left of
the diagonal in row I to O by replacing row I with an appropriate linear
combination of row I and row J. It assumes that the diagonal element of row J
has already been normalized to 1. After all normalization and row reduction
jobs have been completed, the A matrix contains 1's along the diagonal and O's
below the diagonal. At this point the back substitution jobs may begin. A
back substitution job, B,, adjusts the B column elements above row J to values
they would attain if the elements above the diagonal of matrix A in column J
were reduced to 0 by replacing rows with linear combinations of the
corresponding row and row J. A great deal of dependency thus exists between
the various back substitution jobs. Job precedence flags must guarantee that
before an element of the B column is adjusted by job BJ it has been adjusted
by all back substitution jobs whose subscripts are greater than J. Tﬁe
precedence between these jobs is shown graphically in Figure 23. There are a
total of n normalized jobs, n° -5 row reduction jobs, and n - 1 back
substitution jobs. The number of jobs which can be performed in parallel on a
multiprocessor system thus varies anywhere from 1 to n - 1. Job scheduling
can thus be a critical component in determining the performance of a
multiprocessor system. The actual numbers of floating point operations
performed by each job of the Gaussian elimination program are show in Figure
24,

=114~

(J<b)

1y °

Normalize row i ® set Aii =]

(divide row i by Au)

(assume A,, = 0, L.e. R, completed,Vj < L.

ij 1]

Reduce row i by row] = set Aij =0
(replace row i with row i -~ Aij X row §)

i3 =1, i.e. Nj completed).

(assumes A

Back substitute Columm j = Aij =0 Vvic<]
- <

(zeplace Bi with B, Aij X BjVi b))

(assumes all Ni’ Rij jobs completed

and B, adjusted for B,

i.e. Bk completed through row L, v k > §.

Figure 22, Gaussian elimination jobs.

R it J e v e T - - e e '-vulﬁg—-»—-:,‘—l'ﬂfm_

Figuwe 23. Gaussian elimination job precedence.

JOB COMPLEXITY (A is n x 2)

-1 +1 divides (141 £nq)
~k+1 multiplies (1€£j<4i%a)
-3 +1 subtracts
-1 maltiplies (2 %) Sn)
-1 subtracts
TOTAL OPERATIONS:
12,1
3 1" + 5 -} divides
1.3 1 .2 S
- +_- = - =
3 -3 e i multiplies
1.3 1.2 5
3 n” + 5 n g 0 subtracts
2.3, 3.2.1
3 n” + 2 -3 5 a flops

Figure 24. Job complexity when A is n X n.

-117-

The performance of two extreme computer architectures executing a
Gaussian elimination program can be expressed in terms of these figures. For
illustration the number of floating point operations (flops) which must be
performed in series is used as an indication of run time. For a serial
machine, floating point operations are performed one at a time. Thus the rum
time is approximately proportional to the total number of floating point
operations required, namely §n3 + anz - gn. At the opposite extreme, a
data flow machine may be envisioned which has sufficient parallelism so that
any greater degree of parallelism would result in no performance improvement
at all. For such a machine the row reduction jobs shown on a single row in
Figure 23 can all be performed in parallel. It is convenient to refer to this
cambination as a single job, RJ. Similarly, to simplify the analysis, it is
convenient to recambine the back substitution jobs shown in Figure 23 so that
each row of Figure 23 forms a new back substitution job. Thus the task of the
new back substitution job is to perform all adjustments on a particular
element of the B colum. The job precedence then requires alternating N and R
Jobs wntil they are all complete and then performing the B jobs one at a time.
One floating point operation (flop time) is required for each normalize job.
The number of actual operations performed in parallel in a particular one of
these jobs varies from 1 to n. For each of the n - 1 row reduction jobs two
flop times are required. The number of floating point operations performed in
parallel by these jobs varies from 4 to 2n? - 2. Likewise for each of the
n - 1 back sustitution jobs 2 flop times are required. The number of
floating point operations which can be done in parallel for these jobs varies
frar 2 to 2n ~ 2, The total time required for Gaussian elimination on this
data flow machine is thus 5n - 4 flop times. Note however, that up to n
divisions, or 2n2 - 2 multiplications or 2n2 = 2 subtractions must be
performed in parallel. Thus, although the performance of such a data flow

machine would be very high,its resource utilization is extremely poor, namely

~118-

= e - T

(4n2+n-l)(Sn-4)

Thus for a large n the resource utilization is approximately -23/ 20, i.e.

1
3 3%. Thus it would be extremely expensive to construct a data flow machine
which would exploit the full parallelism of the Gaussian elimination program.

Intermediate between the serial camputer which is uwnattractive in
performance and the maximally parallel data flow machine which is unattractive
in cost are many practical realizations including instruction pipelining,
specialized array or vector oriented pipelined floating point units embedded
in a conventional architecture, as well as vector oriented, array oriented,
and multiple processor organizations. All of these machines should be
intermediate in hardware cost, performance level, and resource utilization
when compared with the extreme machines. Further evaluation is required to
determine precisely which of these camputer organizations will come closest to
the performance of the data flow machine with a cost more like that of the
serial machine. The correct choice of machine will surely depend on the range
of the expected values for n, the number of simultaneous linear equations to
be solved. To be efficient, a preferred architecture must adapt efficiently
to the variable vector size and the irregular degree of parallelism caused by
the nature of the jobs and their precedence relationships in the Gaussian
elimination .problem. These requirements would tend to give preference to
vector or pipelined architectures and multiprocessors over the relatively more
rigid array machines. Finally, the memory hierarchy organization must be
carefully constructed to preserve the high resource utilization expected of
the selected architecture. Paging traffic could easily be of order n3 for
this problem. Intuitively, one could explain this amount of page traffic by
considering that the data of the problem would contain of the order of n2

peges each revisited on the order of n times.
-119-

3.9 Gaussian Elimination Experiments on the AMP-1 System

Three versions of a basic Gaussian elimination program were implemented
for the AMP-1 multiprocessor system. The first of these is GAUSB which
conforms to the description previously given. The second is GAUSY which is
similar to GAUSB except that many precedence flags were used to reduce
semaphore lockout. In the GAUSB version, all critical sections used a single
semaphore. Thus no job could proceed in any critical section of code while
any other job was in any other critical section of code. The GAUSY version
used approximately 200 separate flags associated one-to-one with all possible
critical sections. GAUSY is used to see if there Is any significant
performance degradation in ‘GAUSB caused by access congestion at the single
Semaphore. Finally, GAUSZ is similar to GAUSY except that no normalize jobs
are present. This change was made since the normalize jobs as shown in Figure
23 severely restrict the amount of parallelism in the Gaussian elimination
program. The row reduction and back substitution jobs are then recoded to

permit working with an A matrix diagonal that does mot contain 1's.

Elimination of the normalize jobs saves ‘1?n2 + 5n divisions. Each row

reduction job then contains 1 division and each back substitution job contains
1 division. A final division is required to compute the value of the last
variable. Thus there is no change in the total number of divisions required
by the Gaussian elimination .progran. However, there is now a much less
restrictive job precedence relationship which results in more parallelism
which can potentially be exploited in a multiprocessor. It must be remembered
that GAUSB and GAUSZ would have the same execution time on a system with a
single serial processor. This type of change reflects the kind of
considerations which become important for multiple processor systems.

8 12] 1 T L]
l,.
== == Tdeql /,
S —-GSz(1=64) s
—G3B(1:64) %
——GSZ(1=1) ’
---==GSY (I=1) 7 o
6+ / et

H - N

Speedup (Relalive 10 Gausz)

ol

——GS8 (I=L) A

3 4 S 6 7

Processors ro-casy

Figure 25. Gaussian elimination performance.

-121-

. &

e = = o T T e e Ty

The data graphed in Figure 25 shows the differences in performance level

between these three versions of the Gaussian elimination program for maximum
and minimum degrees of interleaving as a function of the number of processors.
It is apparent that little semaphore congestion exists in the GAUSB program
since GAUSY has virtually identical performance to GAUSB. GAUSZ, however, is
slightly higher in performance with no interleaving of the memory and is
clearly superior when a sufficient degree of memory interleaving is present,
particularly as the number of processors grows to a point where the additional
parallelism of the GAUSZ program can be exploited. Figure 26 shows in detail
the performance of GAUSZ for various degrees of interleaving as a function of
the number of processors., Despite the job precedence restrictions which cause
processor wait time, the critical sections of code which can be executed by
only 1 processor at a time, and the memory access contention in the shared
memory, a performance speedup of over 6 exists for 8 processors relative to

the performance of 1 processor when the memory is fully interleaved, I = 6A4.

Specific data was collected to determine the extent of performance
degradation due to memory access conflict. These data were compared against
performance levels predicted by the memory access conflict model used
previously for matrix multiplication. The GAUSZ program references menory
slightly more often than the matrix multiply program. Modeled and measured
probabilities of acceptance for an access request to memory are shown in
Figuwre 27. The model conforms fairly closely to the measured levels, but not
as closely as for matrix multiplication. The model tends to be somewhat lower
than measured values for probability of acceptance indicating that memory
contention is actual slightly less than the model predicts. This is at least
partly due to the fact that the memory request rate actually decreases
slightly as the number of processors increases, ¥ = .7961 for 7 processors.

This decrease is due to the effect of specialized program codes executed while

~122-

s T

=== Ideal
—=== Mode!
—— 1204
- 1216,32

Figure 26, GAUSZ performance.

-123-
]

o ToT e,

/

¥ = .8316 for GAUSZ (vs.

“w &~ w

Figure 27.

.7917 for MXMC)

MODEL MEASURED
N PA

1 1l

.9936 .9950
.9873 .9897
.9809 .9844
.9746 .9823
.9682 .9827
.9619 .9769
.9555 -

Memory access conflict model for GAUSZ.

a processor is waiting to enter a critical section or waiting for job

precedence to became satisfied. The performance degrédation from ideal
speedup caused by memory access contention is shown in the curve labeled Model
in Figure 26. Thus one may conclude that the performance degradation of the
GAUSZ program for fully interleaved memory is not primarily due to memory
access conflict. Further research is required to accurately model and measure
performance degradations due to the execution of critical sections which can
be executed only by one processor at a time and those due to waiting for a
prior job to be completed. This research is somewhat complicated by the fact
that while a processor waits, it is actually executing code in a tight loop

and making memory access requests as well while in this loop.

3.10 Conclusions and Recommendations

A preliminary characterization of finite element methods has been
campleted by measuring performance of actual state-of-the-art code for the
finite element method on conventional medium scale and large scale camputers.
These results indicate that numerical integration, and specifically matrix
multiplication performed in the numerical integration routines, and solving of
linear equations are most significant in determining performance. As problems
become larger and nonlinear, the proportion of time spent executing these two
kernels of code becomes increasingly dominant. Paging traffic is also severe
for these larger problems.

Known algorithms and studies on existing computers have been collected
for matrix multiplication and solving of linear equations. The studies for
matr.ix multiplication indicate that the side effects of certain vector and
array oriented computers are severe and minor modifications of programs which

would make no difference for a serial processor with matrices resident in

«123-

e nr s i

primary memory, make a great deal of difference in the performance of more
highly concurrent architectures and paged systems. For the solution of linear
equations, the Choleski and LU decamposition type algorithms are preferred for
banded, symmetric matrices in linear equation solving. To be truly effective,
these algorithms must be further tailored to the particular computer
architecture being considered and must be amenable to dealing with large
problems by accessing the matrices involved in blocks, so as to reduce the
amont of paging required. Iteration and retriangulation effects for

nonlinear equations must be considered as well.

Pilot multiprocessor experiments show that a high degree of parallelism
is possible in these kernels of code. Appropriately structured shared‘ memory
can achieve low access conflict. -Effective access conflict models exist.
However, further research is required to extend the memory access conflict
model to a general shared resource model which can effectively deal with
memory access requests as well as shared function wnits, critical sections of

code, and job precedence wait. This research has been initiated.

Also initiated 1is research oriented toward modeling alternative
structures for high performance multi-access cache memories within a general
memory hierarchy model. Such a model is essential for discovering effective
organizations for the memory hierarchies of multiprocessor systems as well as

for a single processor systems with high performance dedicated function units
having direct memory access capability.

A general approach to characterizing alternative architectures and
alternative algoritims is in the formative stages. Such a model will allow a
single characterization for each algorithm regardless of the architecture on
which it is to be run. This characterization will include direct measures of
the types of parallelism inherent in the algorithms which can be exploited by

-126-

L S R s et A A . i e b S AT O TN 5

appropriate architectures. Such a model is extremely useful
identifying the most effective algorithm-architecture pairs

evaluation in detail.

Appropriate machine primitives are being identified for the
matrix computations. Thase will include embedded vector operati
address generation constructs, ete. Primitives to be develop
campatible with memory overlays, sparse matrix computations
precedence relationships. Once such primitives are identified, t
instrumental in determining the effective .instruction sets f‘q
tailored to matrix camputation as well as appropriate function wi

computers.

The research described above can be completed within a thr
frame with a funding level sufficient to support 3 faculty witl
assistants including funds for computer time and the development ¢
subsystems. A detailed budget along these lines would amount to 4

$150,000 per year for the 3 years.

The research emphasis for years 1 and 2 will be to complete
and experimental studies for alternative architectures and algorit
range of concurrent processing architectures, memory organiz
function wnits will be considered. The cost effectivenes
architectures and algorithms will be identified with respeq

application to the finite element method. Primary considerat]

evaluation will be given to large nonlinear and dynamic probl
mat:~ix approaches leading to low paging rates, and exploitable pa
efficient camputation. Year 2 will also include further measure
complex finite element problems with conventional archit
state-of-the-art code. These results will provide a base

-127-

evaluation of more effective architectures and algorithms.

In year 3 the emphasis will be on deriving recommended preferred
architectures and the algorithms appropriate for them considering existing
large scale computers, medium scale camputers with enhanced memory and
function capability, and highly concurrent processor and multiprocessor

systems.,

-128-

ahe aivis dbiine sl s

SECTION IV
EVALUATION OF SIGNAL PROCESSING ARCHITECTURES

4.1 Simulation Studies

In order to accurately select cost effective candidate architectures for
signal processing applications, 2a number of simulation studies have been
performed. Studies like these are an effective approach toward gaining a
better understanding of computer system performance. Two simulators have been
implemented; the first describes a shared resource multiprocessor, while the
second describes a high speed vector processor. Each of these architectures
uses parallel processing techniques to enhance the camputational rate.

4.1.1 A Simulator for a Shared-Resource Multiprocessor

We have completed the design and construction of a simulator for a
shared-resource .multiprocessor (SRM). An SRM is logically similar to a
tightly-coupled multiprocessor and contains multiple virtual processbrs that
can simultaneously execute multiple, independent instruction streams
(programs) . These programs may, however, interact via explicit
synchronization instructions. In actual fact, there is only one physical
processor that is organized in a manner similar to a high performance
wmniprocessor such as a System/360 Model 91, i.e., it is overlapped and
pipelined. Each virtual processor has, dedicated to it, a set of registers
which are lnmown as a skeleton processor. The skeleton processor holds the
state of the corresponding virtual processor. The rest of the resources,
including the instruction pipeline, the functional units, the buses and memory
are shared by the virtual processors in a time-multiplexed fashion.

=129~

At no point in time does any one stream have more than a single
instruction in any stage of execution. Thus, the problems associated with
instruction 1lookahead, such as guaranteeing logical independence between
concurrently executing instructions from the same stream, are eliminated.
This contributes to simplicity in the hardware. On the other hand, it is
possible to have multiple 1nstrﬁctions from distinct streams (independent by
definition) béing executed simultaneously, thereby achieving concurrency. The
SRM organization could potentially be very attractive from a cost-performance
viewpoint for signal processing purposes. It is with this in mind that we
initiated work on the simulator.

The simulator has been written in a high-level simulation language called
SIMULA. SIMULA is based on ALGOL 60 but has been enhanced to facilitate
simulation. The two most important features involve the addition of a
co-routine capability and a limited language extension capability. The former
supports the simulation of simultaneously existent objects in a natural way
and the latter provides the ability to construct a simulation enviromment that
is well matched to the application at hand. In SIMULA, both features are
provided via the CLASS construct. We have found it to be extremely useful in

developing owr simulator.

One of the initial problems that we encountered in the design of the
simulator arises from the fact that the system being simu.lated is essentially
a parallel structure whereas programming languages are generally sequential.
The existence of co-routines in SIMULA provides a form of parallelism that is
termed quasi-parallelism. This reduces, but does not eliminate the problem of
describing parallel structures and computations. We, therefore, developed a
rather general programming construct, a graph which consists of a set of nodes
with arbitrary precedence relationships between them. A node (currently)
contains conventional sequential code within it. This code will be executed

=-130-

only when the specified precedence conditions have been satisfied, viz., all
predecessor nodes in the graph have completed execution. This graph construct
has been incorporated into the simulator using the language extension feature
of SIMULA. Although this construct is not the last word on this issue, it has
greatly facilitated the construction of the simulator by providing the
illusion of a more parallel language.

A second problem, which points out a serious deficiency in SIMULA for our
purposes, is the lack of a rich variety of data types and operations upon
them. SIMULA has the data types integer decimal, floating point decimal,
boolean, etc., but not integer binary, integer hex, etc. This leads to
significant problems in representing the contents of memory. If represented
as a bit string (the most natural and desirable representation), arithmetic is
difficult and must be simulated in detail in a bit-by-bit manner. If this is
not done, instruction interpretation, field extraction and bit string
manipulation are camplicated. There is no direct solution to this problem in
SIMULA. We plan to solve it by interfacing machine language subroutines to
the simulator to support bit string manipulation.

We have developed a novel simulator organization which permits for great
flexibility in comparing different camputer structures with the same
instruction set architecture, or different instruction set architectures using
the same hardware organization. This has been achieved by implementing the
simulator two almost independent parts; one part corresponds to the
instruction set interpreter and all information regarding the nature of the
instruction set is localized here; the second part is concerned with the
organization of the hardware and encapsulates all the details of the structure
of the machine. We have been able to define a partition such that there is a
very limited amount of interaction between the two partitions. As a

consequence, it is easy, for instance, to replace the interpreter part by code

-131-

for another instruction set architecture, thereby obtaining the simulator for

a machine with the same organization but a different instruction set.

For purposes of this investigation, we have developed a simple, register
oriented architecture with powerful (PDP-11-like) addressing modes. Data and
instructions are 32 bits wide each. The simulator for a shared resource
multiprocessor with such an instruction set has been designed, implemented and
debugged. It is highly parameterized to allow a number of variations to be
studied. Included in the set of design parameters that we wish to examine are
the number of instruction streams, the number of memory modules, the number of
buses between the processor and the memory, the speed of the pipelined
multiply wnit, the memory cycle time and the number of slots per buffer. In
addition, we intend to study various priority schemes to be used in selecting
from a number of contending requests. The workload used will be a matrix
multiplication algorithm since computations of this type are common in signal
processing applications. As a result of these studies, we shall have gained
valuable insight into f.he design and performance of an architecture that we
feel is a good cost performance candidate for signal processing.

4.1.2 A Simulator for a Vector Processor

A simulator for an existing high speed vector processor was constructed
in order to evaluate the effectiveness of existing vector processing
methodologies. The architectures simulated consist of a class of computers
closely patterned after the highly successful CRAY-1 processor. However, the
simulation was constructed so as to allow the alteration of architectural
parameters such as: the number of vector registers, the vector register
length, the memory cycle time, the number of memory banks, the number of
vector functional wnits and the instruction buffer size. By varying these

~132-

parameters, we can explore the performance of a class of processors related to
the CRAY-1 for the execution of selected benchmarks from the application area.
The actual simulation program was constructed in FORTRAN for lack of a better
simulation tool. Rather than explicitly simulating actual logic, the
simul ator models reservations placed on the use of functional units and memory
banks and tests instruction issue conditions to determine the readiness of the
next instruction for execution. While the simulator accurately predicts the
performance of memory resident CRAY assembly language programs, no attempt was
made to simulate I/0. The accurate simulation of I/0 was considered too

difficult, especially in a serial programming language such as FORTRAN.

A matrix multiplication program was selected as a simple benchmark
program for the investigation of this class of vector processors. It should
be noted that this is a highly camputation intensive program stressing demands
on the vector floating point functional units of the CRAY-1. The benchmark
program had to be reprogrammed when certain of the architectural parameters
were varied in order to exploit added capability. For example, if the number
of vector registers is increased, the benchmark program has to be reprogrammed
to exploit this additional hardware. 'i‘he use of additional vector registers
may lead to higher performance since a vector fetch operation could be more
efficiently overlapped with vector multiply operations. The first simulation
experiment performed measured the the effects of the number of vector
registers on benchmark performance. The standard CRAY-1 processor has 8
vector registers each 64 elements long. The innermost loop from the benchmerk
progran was simulated on machines having 4,8, and 16 vector registers to
estimate performance. The table below illustrates the results of this study.

Number of vect. reg's. MFLOPS “Change
y 135.33 -8.7
16 150.36 +1.4

A Ak A A M R s e e ats et e e g

R et 1 et 1 e

Note that for this benchmark, the execution rate in million floating point

operations per second is rather insensitive to the addition of new vector
registers. This is partially due to the fact that the increased length
innermost loop program for 16 registers will no longer fit within the
instruction buffer and requires the instruction buffer to be repeatedly

reloaded increasing memory traffic.

The second experiment explored the effects of vector length on processor
performance. As the vector length is increased, the vector startup cost is
averaged over a larger number of elemental operations leading to more

efficient operation. The results of this experiment are shown below.

Vector length MFLOPS %Change
8 78.77 -38.8
16 105.13 -18.3
32 119.77 '7-0
64 128.72 -
128 133.73 +3.9

This experiment was performed using the ccmplete matrix multiply program
instead of the innermost loop used above. Thus, the simulated performance is
somewhat lower than that shown in the experiment on the number of vector
registers described above. From these studies, it became clear that this
camputationally intensive benchmark is largely limited by functional uwunit

performance, and memory bandwidth.

The following experiment was completed to measure the dependence of
performance on vector functional wnit capability. The simulation was
constructed to allow the vector functional units to operate on more than one
element at a time. Thus, while the startup time for a vector instruction is
constant, the execution rate of elemental operations is proportional to the

number of parallel operations performed at a time (NPAROP).

-13‘-

T s . ol o T o

- e o oA Sl e ol i S P A i 5 ST

NPAROP MFLOPS %Change
128.72

] 1 -

: 2 162.80 +26.5 _

! 4 189.28 A7.0 i
8 203.98 +58.5

, 16 206.45 +50.4

] 32 206.45 460.4

Note that the performance of this computationally intensive benchmark program
is highly sensitive to functional unit parallelism. However, when 16 or more
floating point operations are performed simultaneously, the performance

increases level off due to memory bandwidth saturation. 4

4.2 Architectural Issues for Fast Fourier Transform Processing

This project was the result of exploration of methods of Fast Fourier

Transform (FFT) implementation and of machines that had been conceived to
perform these operations. It is useful to consider FFT operations, because
many signal processing algoritims and manipulations are FFT-like. These
include the Discrete Fourier Transform (DFT), the inverse IFT, convolution,

and correlation.

The basic form of the Cooley-Tukey algorithm resulted in savings of
several orders of magnitude in coamputation of the FFT for moderate and long
sequence lengths. Many methods of honing the time to compute FFT's have been
proposed. Most of these methods capitalize on bottlenecks in. hardware such as
long multiply time with respect to add time, or on special cases related to
applications, such as all real input data.

The methods for increasing caomputational speed through specialized signal
processing hardware can result in a performance gain of perhaps two orders of

magnitude over general purpose camputers. This is as significant as the

savings realized from the FFT algorithm, and should receive careful attention.

=135~

Implementation of special FFT processing hardware results in not only a

camputational savings, but often an economic savings as well. Many of the
early considerations of hardware implementation have been discussed by
Bergland [31]. (ne example of design implementation is given by Pomerleau, et
al [32], for the realization of an FFT processor, based on real time, real
valued input sequences, and an attempt to maximize the precision of the
result.

The heart of all FFT signal processors is some form of FFT wnit, or
specialized ALU to efficiently perform the sums-of-products operations
inherent in FFT computation. Parallelism and pipelining can be introduced at
all levels of computation to enhance performance. The "butterfly", the basic
primitive of Radix-2 FFT's, can be highly parallel-pipelined. To produce each
of the gbogzN butterflies sequentially at a very fast rate. Also, if many
"butterfly units" are replicated, as many as N/2 butterflies can be executed
in parallel. By cambining many parallel wits that are each
parallel-pipelined, the maximum speed can be achieved. Economic constraints,
however, will limit this maximally parallel, pipelined structure to those
cases where application dictates the absolute necessity of handling a large
amount of data very quickly.

Today's technology allows a single butterfly to be computed in less than
100 nanoseconds. With this speed available, the general trend is to provide a
single, very fast butterfly unit, and sequentially compute each butterfly.
This speed is sufficient for many real-time applications.

Since the late 1960's, many specialized signal processors have been
constructed. Two basic categories exist: First, the dedicated processor that
operates as a stand-alone processor, and second, the distributed system that
takes the form of a specialized peripheral controlled by a host computer. The

-136~

E P R b aali i aientas tic,

e Y . KA AT M, LT SO TT PYT A e e

& dedicated processors tend to be more flexible in their operations, often
providing for data processing other than FFT's such as windowing, buffering,
smoothing, interpolating, and automatic gain control. The distributed

! processors take advantage of the widely varying speeds between the FFT

| camputation and the handling of the data sequence. The "number crunching” is

handled by a special high-speed butterfly unit, while the slower host
initiates tasks, and performs operations that require decision-making
capabilities.

Several of the representative machines have been compared by Allen [33],
and numerous articles relating to this can be found in the collection [34].
Current work includes implementation of machines to take advantage of numerous
special}zed algorithms and machines that take advantage of ECL, LSI, WSI, and
é, the advanced state-of-the-art technology.

The need to compute a 2 dimensional discrete Fourier Transform (2D DFT)

of a large array (say 1024 x 1024 or larger) arises in many different

1 practical problems. Unfortunately, to take a 2 DFT, even using a FFT
| algorithm, requires a large amount of computer resources (i.e., memory and CPU
time). This reﬁearch has been concerned with how such a OFT can be calculated
most efficiently.

There is very little that can be done to minimize memory as almost all of
the memory typically used is required to store the data array. An
insignificant amownt of the required memory is needed to store the program
itself. One possible tradeoff between memory and speed is whether or not to
store a table of constants need in the FFT butterfly operations. Since the
time penalty of calculating rather than storing the needed constants is s

great, we assume the needed constants are stored.

-137-

-~

The procedure for computing a 2 DFT of an NX N array is as follows.
N-N point 1-dimensional DFT's are calculated along rows or columns. The array
is then transposed and the process is repeated. Thus, the number of
operations required for a straightforward DFT implementation will be
proportional to N3. If a FFT algorithm is used, the complexity is reduced to
NzloszN.

Wnen working with large arrays, the entire array may not fit into main
memory. In most cases it will be stored in row major or column major order on
some sort of sequential access memory device such as a disk. In the process
of calculating the IFT, each row or sequence of rows will be read from disk
into main memory where the 1-dimensional DFT's will be calculated. The result
will then be returned to the disk and the process will continue. The penalty
of doing this will be relatively small since each 1-dimensional DFT represents

a large amount of computation.

The problem arises when transposing the array. It is obvious that
transposing an array stored on a disk in a straightforward manner would be
very time consuming as the number of read and write operations would be

approximately equal to the number of elements in the array.

On the other hand, methods such as the one proposed by Eklundh can reduce
the required number of I/0 operations significantly [35]. For instance, if an
array contains " x 2" samples, the array can be transposed without reading in
and writing out the array more than n times, assuming that at least 2 rows of
the array fit in main memory at once. If a larger number of rows will fit
into main memory at once, the number of times the array will have to be read
and written can be reduced to as little as two.

-138-

P AR P A =

Another problem is that of reducing paging faults to a minimum.
Unfortunately, because of the sequence of operations, there is very 1little
that can be done to reduce page faults. Ideally, all the pages that hold a
given row should remain in main memory until the DFT on that row has been

campleted. Otherwise, an excessive number of disk swaps will be necessary.

Another related area investigated is the calculation of a 2 DFT uwhere
the input data is in polar rather than rectangular coordinates. This is a
problem that often arises in synthetic aperture radar, tomography, and
crystalography. The traditional approach has been to use some method §f
interpolating the data into rectangular coordinates and then calculate the
transform in a conventional manner. This, however, is very time consuming and
results in large mmerical errors. Another procedure is to manipulate the
transform into a finite integral which can be evaluated numerically. This can
also be very time consuming. We have begun a research study to derive a
discrete form of the polar Fourier Transform. The polar Fourier Transform

pair is

’ 2m
F(pgp) = r‘f £(r,8)exp(~-j2mrpcos (8 -¢)]rdodr
)

and

2m
£(x,8) = II F(p,p)exp[j2nrpcos(8-p)]pdadp.
"o

The presence of the cosine term in the experimentation makes the polar Fourier
Transform much more difficult to evaluate than the rectangular form. In the
process of deriving a DFT from a continuous form, it is necessary to know
several transform pairs from the continuous transform. No such tabulation for
polar Fourier Transforms is now known to us. We are hopeful that we can
develop this tabulation, that the polar Fourier Transform will lend itself to
a discrete form and that a "fast" implementation will be possible.

=139-

SECTION V
AVIONICS PROCESSOR ARCHITECTURES EVALUATION

In real time computer applications that require the concurrent handling
of many tasks, computational efficiency is very important. Specifically, in
the avionics enviromment, where navigation, system monitoring and weapons
delivery are included among the ongoing tasks of the avionics computer,
efficiency of computation is the foremost requirement for handling the
voluminous data entering the computer. Computational efficiency results from
a combination of the system architecture and the software used to control the
many processes., A given task domain has inherent processes which can give
rise design possibilities for tuning both hardware and software in order to
optimize the overall efficiency of a processing system. In particular,
expected types of data flow, operations, and computation sequences that recur
frequently can lead to the specification of data paths and instruction types,
vhich if added to an existing architecture can considerably improve its
throughput. In addition to this, compilers that are optimized with respect to

the architectural features can greatly improve the processing efficiency.

We have begun an investigation of the processor efficiency of the Air
Force AYK/15A computer with respect to avionics processing requirements. The
intention is to find areas which can be improved and to investigate the
consequences of proposed improvements. This investigation is being done in
two steps. The first step is to compare the architectural features of the
AYK/15A with those of the Raytheon fault tolerant space borne computer (FTSC)
and with those of the Delco Magic 362F. Simulators which run on the [EC
System-10 have been constructed for these machines as tools on which
benchmarks of representative avionics processes can be run. The second step
is to code the benchmarks on each machine and evaluate the runs with respect

to instruction and address mode usage, memory reads and writes, storage

~140-

ekl s wA e o ok ARG A4 At AN 1. A AN 2 it <5 1 09l N7 veodthlPteniin s

requirements, and register usage.

5.1 The Avionics Processors

5.1.1 The Air Force AYK/15A

The AYK/15A is an extension of the AYK/15 prototype
Westinghouse in conjwnction with AFAL. The AYK/15A has
instruction set of the AYK/15 [36,37]. It has up to 65,536
core memory. In addition it has 16 user accessible 16-bit rJ
which can be used as accumulators, stack pointers, index
registers, and temporary storage. It has 207 implemented
length 16 bits and 32 bits. It has the following address modeﬂ

Register EA = Reg

Direct EA = Address

Direct-Indexed EA = Address + (Rx)

Indirect EA = (Address)

Pre-Index Indirect EA = (Address + (Rx))

Immediate Long (EA)= Address

Immediate Short with (EA)= sign-extended 4-by
Positive or Negative operand

IC-Relative EA = (IC) + Displacemeq

Base Relative EA = (BR) + Displaceme

Base Relative-Indexed EA = (BR) + (Rx)

Special modes

(Rx : R1-R15; BR : R4-R7; IC—Instruction Counter)

Subroutine Linkage

The AYK15A provides several ways for calling subroutines

1. JS Ra, Label return by JC 15,0,Ra

The return address is stored in Ra and subroutine pa
be passed through STM and IM which stores and loa
registers respectively.

-141-

LM n,0,Ra will bring in all parameters and
S™ m,0,Ra will return the results.
2. SJS Ra,Label return by RS Ra

The return address is stored in the stack location pointed to by
Ra. This saves one address word for the return instruction.
Subroutine parameters may be passed by PSHM and POPM which
pushes and pops multiple registers respectively onto the stack.
pointed by R15. PSHM and POPM can act on individual register
too. Thus, it frees the registers to be used in subroutines.

Unusual but Useful Features

The CBL instruction tests if (Ra) is less than, in between, or greater
than an integer-interval defined by (Addr) and (Addr+1). Base-Relative
Addressing Mode allows single word instructions (e.g. ADD, SUB, AND, OR,
etc.) for record structuring in high level programming languages with the base
register pointing at the record. This decreases the program size and speeds
up the execution as well. It is to be noted that this address mode is

available for certain registers only.

General Comments

The AYK15A is a general purpose processor and it has very well designed
instructions. Most of the short instructions (e.g. Immediate-Short, Base
Relative, ADD LOAD) are the most commonly used instructions. Thus it results

in less memory fetches and faster execution as well as smaller program size.

The instructions PSHM and FOPM can free any number of consecutive
registers for use in subroutine linking. There are 16 registers available for

users and even though they are 16 bits long, they are sufficient for

addressing all of memory.
=142~

The AYK15A lacks some rather important function instructions such as

square-root, vector-manipulations which are common in aviation formulae.

Since the machine is 16-bits but floating point data are in 32-bits, this
means that a floating point array indexing have to be doubled. This can be
done just by a logical left shift. This may be the reason that AYK15A has no
post-increment index address mode. The processor has the one-word instruction
to add two to an indexing register and this may be the replacement the

designer put up for the lack of post-increment index mode.

5.1.2 The Raytheon Fault Tolerant Spaceborne Computer

The Raytheon Fault Tolerant Spaceborne Computer (FTSC) has the generality
of a conventional computer, with many added features for hardware and software
fault detection and recovery. It has an instruction space of 128 instructions
with 112 implemented [38]). Of these, 18 are operational in executive mode

only. The word size is 32 bits and the arithmetic is two's complement.

The FTSC has eight 32-bit general purpose registers that are programmer
accessible and eight 32-bit working registers. Four of the working registers
have special assigrments, namely, the memory data register, the memory address
register, the status register, and the extension register. The status
register contains the following information: bit 8 is the carry-out flag, bi.t
9 1is the invalid arithmetic operation flag, bit 10 contains the overflow
status, bit 11 contains the executive mode status, bit 12 is the interrupt
disable, bits 13-15 contain the interrupt level if an interrupt is running,
bits 16-31 are the program counter. The extension register is used with
double word operations such as long shifts and floating point instructions to
accomodate the least significant bits. The other four registers have no

special designation and are used as scratch registers by the more complex

-143- ,

TR e P ATy AL R s T LRI T UL VN

3

instructions.

Data Formats
Logical data are stored in one word and each bit is treated identically.

Integer data is stored in one word and has two's complement

representation.

Single precision floating point data takes one word. Bits 0-23 are used
for the two's complement normalized mantissa and bits 24 - 31 are used for the
two's complement exponent. All floating point instructions expect normalized
operands. Floating point zero is represented by all zeros in the mantissa and
an 80 (hex) exponent.

Double-~Precision Floating Point data takes two words. The high-order
word has the exact format as the floating point data. The low-order word is a
32-bit continuation of the high-order mantissa. Double precision instructions
expect normalized operands. Normalized double precision zero is a normalized

floating point zero in the high-order word and all zeros in the low-order
word.

Immediate numbers are treated as 16-bit integers. The sign bit occupies
bit 16 and is extended by immediate mode instructions to the upper 16 bits of
the word before the value is used in the computation. Immediate numbers may

be used as logical or integer data.

Upper immediate numbers are treated as 16-bit two's complement integers.
The value of the instruction address field is multiplied by 216 before the
value is used in the computation. Upper immediate data may be used in
logical, integer, or floating point instructions. i

«144=

The Instruction Set

Addressing modes:

AM Name Effect
0 Register EA = Register
1 Immediate " (ER) = Constant .
1 Upper Immediate (EA) = Constant¥2
2 Direct EA = Address
3 Indirect EA = (Address)
i Indexed Postincrement Reg = Reg + 1;
EA = (Reg) + Address
5 Indexed Predecrement EA = (Reg) + Address;
Reg = Reg - 1
6 Indexed EA = Address + (Index Reg)
7 Index Indirect EA = (Address + (Index Reg))

3 .
Addressing mode 1 is used only in the load type instructions (opcode
00-3F hex).

Instruction Format:

The FTSC machine has only one instruction format. Each instruction
occupies exactly one word. Bits 0-6 contain the op-code. Bits 7-9 and bits
10-12 contain the RB and RA fields, respectively. The register fields, RB and
RA, each specify one of the eight general purpose registers. For certain
instructions, either one, or both, of these fields may be unused. Bits 13-15
contain the addressing mode. Addressing mode 1 is not used for store type
instructions. Thus, when decoding an instruction, if the addressing mode is
1, the op-code is interpreted as if bit O were zero, thus forcing a load type
instruction. Then when the effective address is being computed, bit O
specifies whether the addressing mode is Immediate or Upper Immediate.
Finally, bits 16-31 contain the address. Again, not all the instructions use
the address field.

<145~

Useful unusual instructions:

SQUARE ROOT FLOATING

VECTOR ADDITION FLOATING

VECTOR SUBTRACTION FLOATING
VECTOR MULTIPLY FLOATING

VECTOR INNER PRODUCT FLOATING
VECTOR-SCALAR MULTIPLY FLOATING

Subroutine Linkag_g

The only way to save the program counter is by the jump to subroutine
instruction. The effect of this instruction is to store the PC in the
specified register and jump to the specified effective address. Once arriving
at the subroutine the return address could be stored, stacked, or left in the

register. The subroutine could then return through any of the several jump
instructions used in any of seven addressing modes. It should be noted that
there is no instruction to explicitly stack the PC or dynamic 1link when
executing a jump to a subroutine. This scheme demands that the programmer

take care in keeping track of his calling points if he wants his program to
return properly from subroutines.

Interrugts

The priority interrupt network recognizes 10 levels of interrupts. In
order of increasing priority these interrupts are: Direct memory access no.
2 (end-of-block), Direct Memory Access no. 1 (end-of-block), Serial Interface
Unit (end-of-block), Direct Memory Access no. 2 (general), Direct Memory

Access no. 1 (general), Serial Interface Unit (general), Real Time Interrupt,
Arithmetic Error, Illegal Operation Code, and Fault.

-146-

L VT S S

The lower priority interrupts are honored during the instruction fetch
cycle. The Illegal Operation Code interrupt and the Fault interrupt are
honored at the end of every micro-code instruction. Interrupts 1-8 (the lower
{ priority interrupts) are individually maskable under program control. Also it
is possible to enable or disable the lower priority interrupts under program
control. An interrupt is serviced if, 'and only if, it is not disabled or
masked. When an interrupt is serviced, the program status register is ctored
in a preassigned memory location corresponding t< the interrupt. Then the
machine vectors to a location in memory according to the value stored at

- another preassigned memory location. Also the request flip-flop for the level

serviced is reset and the "in-process" flip-flop for the same 'level is set.

While an interrupt is being serviced, all 8-lower priority interrupts are
disabled. Only illegal operation codes and faults can interrupt. The

in-process flip-flop can be reset by the return from interrupt instruction.

General Comments

L/ The main strength of the FTSC is its ability to detect and correct
errors, both in hardware and software. This is an advantage to the avionics
programmer, since much effort is devoted to these problems in an avionies
computer. Another strength lies in the speed gained from the inclusion of

hardware vector aritimeti: instructions. The FTSC was designed to calculate
three dimensional vector algorithms. Another strength is the wide variety and

wniformity of addressing modes; each load instruction has nine addressing

modes, and each store instruction has seven.

The main weakness of the FISC is the way it implements Upper Immediate

addressing. Since the store instructions can never use immediate data, v

addressing mode 1 implies a load type instruction. The FTSC used this fact in
~147-

A SR

R4 D ST I B s e

coding Upper Immediate by placing a 1 in the most significant bit of the
opcode. Hence, hardware must recognize the address mode 1 concurrently with
the 1 in the first opcode bit in order to distinguish the instruction from a
store instruction, which also has a 1 in the first opcode bit.

5.1.3 The Delco Magic 362F

The Delco M362F is a modular, flexible, high performance digital computer
{39,40]. It is a microprogrammed, high speed, general purpose, parallel
computer with a 16 bit basic word length. It employs 16 and 32 bit
instruction words and 8, 16, 32 and 64 bit data words. Multiple memory words
are used for extended instructions and floating point and double precision
data words. Two 8 bit bytes are stored in each memory location. Mainframe
memory options include core and semiconductor. The arithmetic operations are
binary, with negative numbers in the two's complement form. The processor is
mechanized with standard and medium scale integration (MSI) and TTL integrated
ceircuits. The MSI includes a 64 bit random access memory, a 2,048 bit read
only memory, and a programmable arithmetic unit. The M362F addressing modes
include direct (512 words), indirect, relative (index registers and
instruction counter), and stack processing. The maximum memory size for the
M362F is 65,536 words. The M362F processor has 16 user accessible registers
that are used as accumulators, index registers, stack pointers and temporary

storage.

Addressing modes

Direct EA = Address

Indexed EA = Address + (Index Reg)
Deferred EA = (Address)

Index Deferred EA = (Address + (Index Reg))
Post Indexing EA = (Address) + (Post-Index Reg)
Index Deferred EA = (Address + (Index Reg)) +

with Post Indexing (Post-Index Reg)

s R

Data Formats

FIXED POINT

Single precision 16 bit two's complement.
Double precision 32 bit two's complement.

FLOATING POINT

Single precision 32 bit (23 bit mantissa, 8 bit exponent)
Double precision 64 bit (48 bit mantissa, 8 bit exponent)

(Note: Both mantissa and exponent are also represented in two's complement.)

Subroutine Linkage

Subroutine linkage on the M362F is accomplished via a stack mechanism.
To call a subroutine, the current Instruction Counter (IC) is pushed onto a
stack located in memory via any register designated as the stack pointer. A&
transfer is then made to the specified routine. To return from the subroutine
the IC is loaded form the stack area, which effects a transfer back to the
calling routine. There are also instructions in the M362F repertoire which
facilitate register stacking in memory, .thus allowing registers to be used
freely by the subroutine and then restored to their previous values before
returning to the calling routine. It should be noted, however, that there is
no instruction that pushes or pops multiple registers. Registers must either
be pushed and popped individually (which requires tedious and inefficient
coding) or stored and loaded en masse via the store and load multiple register

instructions (which lacks some of the conveniences of a general recursive

push-pop multiple facility).

T o -Mm'-:*wf!ﬁ':y e

o A ARSI 1 W mmie

The Instruction Set

The M362F instruction set is composed of 92 basic machine instructions,
with 30 additional special purpose input/output and control instructions.
There is direct addressing to 512 words, with relative, stack, indirect, and
indirect/post-indexed addressing to 65,536 words. There are five instruction
types. These include two 16 bit formats to operate on register and memory
contents. One of these types is indexable, whereas the other is not. A third
16 bit instruction type is used to manipulate register data or to perform
4 operations on register pairs. Finally, there are two 32 bit instruction
types, both of which are indexable. The first is used to operate on memory

and register contents and to process single bits in memory. The second is

used to perform program transfers, compare immediate, load immediate, and to
operate on register and memory contents. The M362F has some

macro-instructions which are useful for avionics computations. These include:

PEX polynomial expansion
PEXD odd polynomial expansion
SQ sum of square

SQR square root

Interrupt Processing

The occurrence of a specific M362F interrupt forces the processor to
execute a unique transfer-to-subroutine instruction (TRSI). This method
automatically transfers the program to the required interrupt serviecing

routine. The rules of interrupt operation are as follows:

1. An interrupt signal is not acknowledged until execution of the
current instruction is completed. If that instruction is an IND
or IPX instruction, the interrupt signal will not be
acknowledged until execution of both that instruction and the
next sequential instruction is completed.

=150~

B e o

2. Simultaneous interrupts are recognized in order of priority.

3. An interrupt routine may be interrupted by one of higher
priority.

4, The responsibility of saving and restoring pertinent register
data (except for the instruction counter contents) lies with the
interrupt servicing routine.

5. Each interrupt servicing routine shall be terminated with a
return-fram-interrupt instruction (RFI).

6. At power-on, all interrupts except the power-off interrupt are
disabled.

General Comments

The weaknesses of the M362F start in the complex layout of the opcodes.
Many commonly used instructions are two words instead of one (a normal
instruction size). A key example are the LRM and SRM instructions (load

register from memory and load register to memory). These useful instructions

need twice the size of less needed instructions like FSDP (double precision
subtract).

Another problem is the lack of orthogonal design. The AND instruction
ANDs the AREG to memory. The OR instruction will OR any register to memory.
A programmer may, without thinking, assume that because the OR instruction
will OR any register, the AND instruction will also. This means that the
programmer must generally do an accumulator save, do a register transfer to
accumulator, do the AND operation, transfer the result back to the register

and then load the accumulator again. There are several instances of this

inconvenient design feature.

The last major difficulty is when you want to do indexing or post
indexing. Before any instruction wishing to index or post index you must
precede that instruction with a IND or IPX. Other than just being annoying,

-151-

it can cause programmer errors if the program is modified. In haste the
programmer may delete some assembler code and accidently leave in the IND or
- IPX. This would then effect the code immediately after the deletion and cause

unknown behavior.

5.2 The Avionics Processor Simulators

In an attempt to make comparisons of the memory requirements, memory and

T X Y

] register transfers, and speeds of execution for several benchmarks on the

———

AYK/15A, the FTSC and the M362F, simulators were produced for these machines.
A running version of the AYK/15A, which was generated from the ISP compiler
developed at the Coordinated Science Laboratory, was obtained from AFAL. 1In

addition, ISPS, which is a more powerful simulation construction facility,

that allows easy gathering of statistical information about a simulator, was

obtained from Carnegie-Mellon University. Along with this facility we |
obtained the ISPS version of the AYK/15A from CMU., ISPS descriptions were ' , p
generated for the FISC and the M362F. Debugging of these simulators and |
attempting to get support software to run with these simulators consumed the

A bulk of the effort for this part of the project.

The AFAL cross assembler was copled to the DEC-10 at CSL along with a
loader for the AYK/15A and a lookup table for the M362F. Math packages were
obtained for each of the machines. A FORTRAN version of the FTSC was obtained
from SAMSO, It turned out to be unusable as it was written for a CYBER, and
the conversion effort required to get it running on the DEC-10 was beyond our
means. Instead we constructed a lookup table for the FTSC to be used with the

the ALAP cross assembler.

-152-

.

Tk L,

A benchmark was written in FTSC assembly. This benchmark decomposes a
square matrix into a lower and upper triangular matrix using Gaussian
elimination. It is based on the algorithm suggested by CMU to exercise the
] floating point instructions and test the array addressing and nested iteration
E capabilities. Attempting to assemble the program brought to light several

deficiencies in the ALAP cross assembler. ALAP i{s currently insensitive to

word sizes larger then 16 bits. It allows the specification of larger word
sizes, but attempts to either ignore this face, or to treat a 32 bit word as
two consecutive 16 bit words. Conversations with personnel at AFAL and TRW at
AFAL resulted in a new ALAP cross assembler being generated. However, this
still did not properly generate values indicated by the DATA statement when
the value was 2'6 or larzer. As a result, these values had to be hand coded
into the simulated memory for the FISC. Preliminary execution time, program

size, and number of memory accesses were obtained.

This same benchmark was then coded for the AFAL simulator for the
AYK/15A. FRunning the benchmark was inconclusive as the timings were not
available for several of the instructions. However, some comparisons can be
made between the FISC and the AYK/15A. The FTSC used about the same number of
words as the AYK)15A (78 vs. 80, respectively). However, since the FISC isa = .
32 bit machine, it requires twice the number of bytes as the AYK. “Exanination
of the FISC machine code revealed that about 35% of the instructions had
wasted lower bytes and were of no use to the program. Furthermore, the AYK
accessed memory about 2/3 as many times as the FISC. This may be due to the
fact that the FTSC has only eight user accessible registers as opposed to 16
for the AYK/15A.

There is still some effort needed to complete the evaluation of these
machines. A working version of ALAP must be constructed to allow cross

assembly to 32 bit machines. It would be useful if the cross assembler

«153-

capabilities were extended to allow conditional coding based on the testing of

a value in the address fields, as for instance, the address mode field. This
would allow proper coding of the upper immediate mode for the FTSC instruction
set. When the support software for the simulators is functional then the
benchmarking should be performed.

B s L T

SECTION VI
A HARDWARE SYSTEM FOR ANALYZING IMAGE PROCESSING KE

In order to adequately investigate the performance of v ‘
for image processing, it 1is necessary to work with reaj
resolutions comparable to those used in real applications.
development of the CCD (charge-coupled devices) industry, it
the very near future, CCD imaging devices will all ‘i

conventional vidicon camera. The advantages of CCD cameras aJ

1. accuracy and stability in the positions of the pixel

. insensitivity to surrounding electric and magnetic f

2
3. virtual nonexistence of image bloom and lag, and
y

. extreme ruggedness due to all solid-state constructi

Since CCD cameras with large arrays of pixels have recently
from General Electric and RCA, it was decided to obtain thf
for research. Because it was more suitable for computer
TN-2500 CCD camera from GE was selected. The camera feat
array of pixels with the video signal quantized to 256 lew
rate of 30 frames per second. Two of these cameras wers

experimental algorithms for stereoscopic vision could be inv

Next, the problem of interfacing the cameras to \
PDP-11/40, was considered. The problem was considerably

choice of camera; nevertheless, with the pair of camen
kilobytes of data at a rate of 4.5 megawords per second, it ‘
output could not just be dumped into the computer's memory b
both the capacity and the bandwidth of the memory. For

decided to place an image buffer between the cameras and

further advantage of having an image buffer is that it cs

~155~

memory bank for several processors. This requires a rather special design for

the image buffer, but the possibilities for improved throughput make it well
worth the effort.

An attempt was made to find a commercially available bﬁffer memory
meeting the above requirements, namely, a 4.5 megaword/second input bandwidth
and an output port which could be easily multiplexed among several PDP-11's.
However, nothing could be found satisfying both requirements, so it was
decided to use a general purpose memory system to which we would add our own
input and output ports. Even at that, the rather high input bandwidth
narrowed the search for such a memory system down to Jjust one, the Intel
IN-7000 series. Each IN-7000 memory board contains 16 kilowords of static
random access memory with a 250 nanosecond cycle time. Four boards would be
required to store one pair of images from the stereo camera system; however,
to further improve the system performance, eight boards were purchased so that
a new image could be loaded into one part of the image buffer while the
‘previous image was still being processed. In essence, two image buffers would
be constructed and connected to common input and output ports via two
electronic switches as shown in Figure 28.

The next consideration was how to allow several processors to
simultaneously access the image buffer. Immediate concern was given only to
the problem of access by three PDP-11's (one model 11/40 and two model
11/04's) which are presently available at CSL. However, the design was
required to be flexible in the actual number that could be connected. It was
further assumed that most requests for accessing the image buffer would come
in short high speed bursts, i.e., a processor would fetch, say, 72 pixel
values from the buffer at a time, then not request anything at all for a
couple hundred machine cycles. With such an operating enviromment, a simple
polling scheme would be suitable for arbitrating the memory requests from the

-156-

Image Processing System

R
Camera
— sl o
[camera ¥
s A B
ALU
_ , ouT
o
Image Image
Buffer lt> Buffer
1l 2
e
°f
PDP-11/40 |~gt—d -
st
POP-11/04 |~g—p] i
-+ Control
PDP-11/04 | t— A
g
Processors Processor
Interfaces rr-e3s2

Figure 28. Interconnection of cameras, image buffer and processors.

-157-

several processors. Each processor, in its turn, would be polled to see if it
'required access to the image buffer, and if 80, it would be granted a 250
nanosecond memory cycle. With individual requests from a single computer
coming at a maximum rate of about one per microsecond, four computers could be

simultaneously reading from the buffer at their maximum rates.

The input side of the image buffer consists of four 16-bit registers to
hold four successive cells of pictorial data before being loaded into the
memory -array. Each register corresponds to one of the four memory boards used

to store an image, and when all four registers are filled, their contents are

transfered en masse into the memory array. It was later decided to route the
second stage of this transfer through an arithmetic logic unit (ALU) so as to

enable integration and differencing between successive image frames.

The purpose of the ALU is to modify the data coming from the cameras as
it is being loaded into the buffer. The ALU operates on two operands labelled
A and B. Input A is the data coming from the cameras, and input B is the data
from the image buffer that is being overwritten. Of special interest was the
operation in which the image coming from the cameras would be subtracted from

the image already stored in the image buffer. It was desired that this be
performed on either the left image or the right image or on both of them
simultaneously. Thus the ALU would have to consist of two independent halves,
each operating on a pair of 8-bit operands. Another desirable function was to
add a series of successive frames together in order to obtain more bits of
grayscale. For this, the two halves of the ALU would have to operate as a

single 16-bit accumulator with the input from the left hand camera being
ignored.

The primary consideration in the design of the ALU was speed. Whatever
was going to be done had to take place in about 110 nanoseconds per pixel for
the following reason. A new word of data comes from the cameras at the rate
of one every 220 nanoseconds, thus filling the four registers at the input of
the image buffer once every 880 nanoseconds. During those 880 nanoseconds,
four pixels would have to be read from the image buffer, modified by the new
data in the four registers, and stored back in the buffer. The only way this
can be accomplished is to use two additional features of the Intel memory
sSystem:

1. the read-modify-write cycle which takes 60 nanoseconds less than

a separate read cycle and write cycle, and

2. the ability to overlap the cycles of different memory boards on
the same bus.

The manner in which the cycles overlap is shown in the following diagram:

BD 1 RRRRRRRRRRR MMMMMM WwWWWWW *¥3%

BD 2 RRIRRRRRRRR MMM WWWWHW $#e%

BD 3 RRRRRRRRRRR MMM WWWWWW Ran

BD & RRRRRRRRRRR MMM WWWWWH *aen
TIME O 100 200 300 400 500 600 700 800 900

where R represents the time it takes the data to reach the output of the
memory board after initiation of the read-modify-write cycle; M represents
the time this data is transmitted on the read-data bus; and W represents the
time when the board samples the data on the write-data bus. The asterisks
denote the remainder of the cycle to allow the write-data to completely sink
into the memory chips. The inputs to the ALU become valid about 30
nanoseconds after the the beginning of the "modify" part of each cycle, but
due to propagation delay, the output does not become valid until about 50
nanoseconds later. Finally, it takes about 20 nanoseconds to latch the output

=159~

A

PR

*OTIBWRYDE INOJTO Y 62 a.nB1g

Vea Y13 Y23 ¥e3 Y99 %4 Yoy Y13 o2 93 "3 Tz4 ey 94 'S4 %3 Uy o2
LI T T T B N A A A -
- »oLIIS 130788 i P

¥ 2815hL

.Tv 1% <1 o LsishL
A M A ZA O EA Ex
._. 11

.T o .L dod el s ZRPEER 14+ dd

v > 5 s UG N e el A * N5 1 o Axwis e nht LI IR ~

o))" w 2 O av T2 ol el nwv g nw

Yos i Y (2] Tes 1 eis 3. sBISHL

s . 191S¥L . 18SHL ‘e s ¥L . '

ves > f2s €5 5 w .n [29 A1 +]- 0 25, €5 W

¥es V||Jb“...<.-<--<nh \‘\-.cﬁzunncm- s (2. 32 Y2 Y 4] .“'.!Iﬂu-n!nl =
€ € € 3 . .

u_.ﬂ 12{oe] &) u.~.~ o o LG

bibhdbbd dbodoadad) 0 bddbdobd

98 18 W £9 99 SO 99 1@ 00 (@ %9 e UG €18 MO S@ oV v 2vr EV WY SY W LV 8y 6y MV UV W siv ey Siv
LHOI1Y 1337 LM01Y
h————————— (YIS4N8 JOYWI WONS) @ - INdNI —— < - e (SHILSI9Y VIVA wHINY)I WONS)

4437
v - A0dN] ———————

‘UOT3038 IV 3U3 Jo Jley aug °Qf a.nBry

(A0 30i1S 1497) 3> ¢———f0 [}

(30s 2Ho1¥) ®0 10 20 60 #0 so 90 w0
(21 1437) 80 60 ®a o U0 €O #ad siQ (0. 907,57 ") 293M5) "4y Lc q

'¢s «——1o Q

- L iz
- (0.034 @) M AN
$34vo 10V
+9S0L :
L\ fv —C '
"
[-]
o g |
» - - d- . - —(= ?
AWG, I © 9
—~3-
e — > :
TESHL 1° o :
'] - SLivL i
¢
(a.va f1) ZoseL wv ;
$¥05 L _ w
A i
'73 ‘e ‘s34 's9 ‘91 ‘ed 'on ¥ m
(-4 % 3 21 T 433IHS) .
i

D

¥ A

of the ALU to hold it steady for the subsequent "write" part of the cycle.
Thus, the modified data to -be written back into the memory board does not
become available until 110 nanoseconds after the data first appeared at the
beginning of the "modify" part of the cycle. No other board can use the
read-data bus during this time, so the completion of each board's cycle is
delayed 110 nanoseconds from the preceding board. For four boards, this just
barely fits within the allotted 880 nanosecond period.

Hence, the basic ALU could have a total propagation delay of at most 60
nanoseconds. To achieve such performance, the design made exclusive use of
Schottky TIL. The completed design, shown in Figures 29 and 30, has a

calculated worst-case delay of 54 nanoseconds.

The ALU consists of two halves operating on 8-bit operands, though, upon
command, they can also be connected to operate as a 16-bit ALU. Each half of
the ALU is further divided into two stages, the first consisting of a pair of
4-bit ALU chips (the 74S181) which perform addition, subtraction, and Boolean
logic, and the second consisting of discrete logic to compress the results
from the previous stage into eight bits. Both halves of the first stage are
shown together in Figure 29, while only one of the halves of the second stage
(since both are identical) is shown in Figure 30.

A total of 20 bits are used to control the ALU, i.e., to specify what

function the ALU is to perform. These are equally divided between the left
and right halves of the unit, each half being controlled by ten bits labelled
co, C1, C2, ..., C9. The functions controlled by these bits are as follows:

co the value of the carry input to the least significant bit
of the ALU chips (when enabled by C1 & C2).

c1 selects between CO (above) and the carry output of the
;ut:tht::g of the ALU for the carry input (only for the
e .

selects the mode of the ALU chips, arithmetic or Boolean

=162~

REISPRETP

logic. (The Boolean mode effectively disables CO & C1.)
C3-C6 selects one of 16 arithmetic functions or one of 16
Boolean logic operations, depending on the mode. Among
the arithmetic functions are addition, subtraction, and
shift left by one bit. Among the Boolean logic operations
are the bitwise NOT, AND, OR, and EXCLUSIVE-OR.
c7 selects whether or not to invert the sign bit.
c8 selects whether to (a) ~Ywmp the 9-bit result from the ALU
chips to fit within an it field, or (b) simply select
the high-order eight bi.. of the 9-bit result.
Cc9 enables C7 & C8, otherwise all second-stage circuitry
is bypassed.
The above descriptions shouid be self-explanatory with the exception of
C8. Ordinarily, adding or subtracting two 8-bit operands ylelds a 9-bit
result. However, there are only eight bits available for storing the result,
s0 one bit has to go. If two 8-bit numbers were added, then it would normally
be best to simply eliminate the least significant bit. This would also be a
suitable alternative for subtraction, but when the difference is most likely
to be small, as it will since two successive images are usually quite similar,
then it would be better to retain the full resolution of the difference so
long as it fits in an 8-bit field. This would include all results from -128
to +127. However, it is possible for the difference of two 8-bit operands to
lie anywhere from -255 to +255, so something will have to be done with those
differences below =128 or above +127. Changing these out-of-range values to
-128 and +127, respectively, is known as clamping and is the other choice
offered by control bit C8. If neither clamping nor selecting the high-order
eight bits is desired, as would be the case if no modification to the camera

data were desired, then bit C9 can be used to disable C8.

=163~

3.

10.

1.

12.

13.

14,

15.

REFERENCES

McClellan J. H. and R. J. Purdy, "Applications of Digital Signal
Processing to Radar," in Applications of Digital Signal
Processing, A. V. Oppenheim o), Prentice-HaIf, EngTe
Ciiffs, N. J., 1978.

Swartzlander, E. E., "High Speed Micro signal Processor Study,"
Technical Report AFAL-TR-77-63, TRW Defense and Space Systems,
Redondo Beach, CA, April 1977.

Hunt, B. R., "Digital Image Processing,” in Applications of

Digital Signal Processing, A. V. Oppenheim (ed.) entice-Hall,
EngIemoa_ngt‘s, N. 7., 5978. ’ ’

Roberts, L. G., "Machine Perception of Three Dimensional
Solids", Optical and Electro-optical Information Processing, J.
Tippett et al., eds., MIT Press, Cambridge, Massachusetts, 1965.

Duda, R. and P. Hart, Pattern Classification and Scene
Analysis, John Wiley & Sons, New York, 1973.

Burr, D., "On Computer Stereo Vision with Wire Frame Models",
Ph.D. Thesis, Dept. of Electrical Engineering, University of
Illinois, 1978, 117 pp.

Rosenfeld, A. R. and Kak, A. C., Digital Image Processing
Academic I;ress, New York, 1676. ’ ’

Robinson, G. S., "Edge Detection by Compass 6Gradient; Masks,"
anﬁuter Graghics and Image Processing, Vol. 6, No. 5, October
y PP. -501.

Kirsch, R., "Computer Detemmination of the Constituent Structure

of Biological Images, Com%ters and Biomedical Research, Vol.
4, No. 3, 1971, pp. 315-

Y!’rat:t:, Ww. é Digital Imagé Processing, John Wiley & Sons, New
ork, 1978.

Yakimovsky, Y., "Boundary and Object Detection in Real World
Mesn, JACM, VO].. 23, NO. u, mtObel’ 1976’ Pp. 599-618-

Hueckel, M. H., "An Operator which Locates Edges in Digitized
F;%gures," J. ACM, Vol. 18, No. 1, January 1971, pp.
-125o

Hueckel, M. H., "A Local Visual Operator which Recognizes Edges
and Lines," J. ACM, Vol. 20, No. M4, October 1973, pp.
634-647.

Castleman, K. R, Digital Image Processing, Prentice-Hall,
Englewsod Cliffs, N T T79:

Nevatia, R., "Locating Object Boundaries in Textured
Envirc:?;gnﬁ%; IEEE Transactions on Computers, November 1976,
PP- =1175.

-1“-

16.

17.

18.

19'

20.

21,

22.

23.

24,

25.

26.

28.

29.

l;:ner, u., "An Iterative Procedure for the Polygonal
proximation of Plane Curves," Computer Gra hics and Image
Processing, Vol. 1, No. 3, NO\;enber ?972, pp.

McKee, J. W. and J. K. Aggarwal, "Computer Recognition of
Partial Views of Curved Oojects,“ IEEE Trans. on Computers,
Vol. C-26, No. 8, August 1977, pp. ~790-8500.

Ohlander, R. B., Analysis of Natural Scenes, Ph.D. Thesis,
Dept. of Computer Sgience, Carnegie-Mellon University, April
1975.

Haralick, R. E., "Statistical and Structural Approaches to
Texture," Fourth IJCPR, November 1978, pp. u45-69.

Galloway, M., "Texture Analysis Using Gray Level Run Lengths,"
Cﬁuter GraEhics and Image Processing, Vol. 4, No. 2, June
» PP. - .

. Nevatia, R., "Depth Measurement by Motion Stereo," Computer
%%

Gragics and Image Processing, Vol. 5, No. 2,

Hall, D. J., R. M. Endlich, D. E. Wolf and A. E. Brain,
"Objective Methods For Registering Landmarks and Determining
Cloud Motions from Satellite Data,” IEEE Transactions on

Claire, E. J., "Bandwidth Reduction in Image Transmission,”
Proc. IEEE 1972 International Communizations Conference, June
'g:z, ppo 39% - .

Brown, R. D., "A Recursive Algorithm for Sequency-Ordered Fast
Walsh Transfoms," IEEE Trans. on Computers, Vol. Cc-26, YNo.

"LSI Electronically Programmable Arrays (Configurable Polynomial
grray:;‘}” Technical Report AFAL-TR-76-228, RCA and Adaptronics,
une 7.

Chien, R. T. and L. J. Peterson, "Optimized Computer Systems for
Avionics Applications,” R & D Status Report #3 on Contract
No. F33615-78-C~-1559, Project No. FY1175, Air Force Avionics
Laboratory, WPAFB, Dayton, Ohio, May 1, 1979.

McClellan, J. H. and C. M, Rader, Number Theo in Digital
Signal Prc,acessing, Prentice-Hall, l":ng Tewood CIIH'% —%VT
Jenkins, W. K., "Recent Advances in Residue Number Techniques
for Recursive Digital Filtering," IEEE Trans. on

Acoustics
%ﬂh 29'981 al Processing, Vol. ASSP-27, No. 1, February
» PP

?;;gwistle, G. et al., SIMILA Begin, Auerbach, Philadelphia,

vl s

31.

33.

34,

35.

36.

37.

38.

39.

4o,

Various papers from Proc. International er_:gg’sium on Computer
Hardware Description Eanﬂgges, IEEE Press,

Bergland, G. D., "Fast Fourier Transform Hardware
Implementation--an Overview," IEEE Trans. on Audio
Electroacoustics, Vol. AU-17, June 1989, pp. 104-108.

Pomerleau, A., M. Fournier and H. L. Buijs, "On the Design of 2a
Real Time Modular FFT Processor," IEEE Trans. on Circuits and
Systems, Vol. CAS-23, October 1976, pp. 0630-633. ~—

Allen, J., "Computer Architecture for Signal Processing," Proc.
of IEEE, Vol. 63, April 1975, pp. 624-633.

Digital Signal Computers and Processors, A. C. Salazar (ed.)
ess, New YorE, 1977. ' ’

Exlundh, J. 0., "A Fast Computer Method for Matrix Transposing,”
IEEE-TC, July 1972, pp. 801-803.

DAIS Processor Instruction Set, Reference Manual, Westinghouse
Electric Corporation, 1976

Milita Standard: Airborne Computer Instruction Set
Krchitecture, Final Working Draft, HIE]%TE-J 750 (USAF), October

Instruction Set Definition FTSC, ER78-4227, Raytheon Company,
Equipment Division, April 1979.

Magic 362F Milita Standard Avionics Computer, S76-61, Delco
ectronics, July %8‘76 ’ ’

M362F-2 C ter Programming Manual, ES11442, Delco Electronics,
October 1978. .

-166-

