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AFOSR-TR- 80-0780
ON THE MAYNE-FRASER SMOOTHING FORMULA AND STOCHASTIC

REALIZATION THEORY FOR NONSTATIONARY LINEAR STOCHASTIC SYSTEMS®
Faris Badawi, Anders Lindquist, and Michele Pavon TN
Department of Mathematics

University of Kentucky ]
Lexington, Kentucky 40506, U.S.A. .

ABSTRACT Problem 2. Given the stochastic process {y(t} ;

This paper is a shortecned version of [1], its
basic purpose being to provide an easily accessible in-
troduction to the results of [1], many of which are
presented here without proofs. However, we have tried

to rearrange the material of [1], changing the logical Note that we are only considering proper stochastic re- &
order in which various topics are introduced, and occa- alizations {20}, i.e., models S whose outputs not mcrciy by
sionally we regard the results from a somewhat different have the same covariancc propertics as the given process F
angle. This has becn done to increcase the present (the only requirement in the earlier realization ticory ¥
paper's usefulness as a complement to [1]. [34-38]), but are equal to it a.=. for cach t. i
.

The work reported herc is aimed at providing a - As we shall sce in this paper, these two probicms i

theory of smoothing in the context of stochastic reali- are intimately connected to ecach other. In fact, all i
zation theory.' This approach enables us to obtain sto- the well-known smoothing forimulas found in [2-i8] have’ 2

chastic interpretations of many important smoothing
formulas and to explain the relationship between them.
In this paper, however, we shall only consider one such’
formula, namely the Mayne-Fraser two-filter forwula,
which has a very natural interpretation in the stochas-
tic realization setting; we refer the reader to [1] for
further results. As a by-product, we also obtain cer-
tain results on the stochastic realization problem
itself.

1. INTRODUCTION
Consider a linear stochastic system
dx = A(t)x(t)dt + B(t)dw ; x(0) = & (1.1a)
(s)
dy = C(t)x(t)dt + D(t)dw ; y(0) = O (1.1b)
defined on the interval 0 S t s T, where x is the n-dim-
cnsional state process, y is the m-dimensional output
process, w is a p-dimensional process with orthogonal
increments such that
E{dw)} = 0; E{dwdw’} = Idt (1.2)
(prime denotes transposition), § is a centered random
vector with finite covariance T :=E{££°} and uncorreclated
with w, and A, B, C, and D are matrices of bounded func-
tions with properties to be further specified below. We
shall consider two problems related to such systems:

Probiem 1. For an arbitrary't ¢ [0,T], find the linear
least-squares estimate X{t) of the state x(t) given the
output record {y(t) ; 0 s t s T), i.e., find the wide
sense conditional meun

2(t) = E(x(v)iy(t) ; 0 st 5 T). (1.3
This is the smoothing problem, which has genersted a
rather extensive litcrature [1-18, 48], and is of con-
siderable importance in applications.

* This resecsrch was supported partislly by the Airforce
Office of Scientific Research, USAF Systems Command,

under grant No. APOSR-78-3519, and partislly by the Na-
tional Science Foundation under grant No. ENG-79-03731.

0stsTl, find all possible systems (1.1) (in some
suitable class of models S) having this process as its
output process. This is the stochastic realization gro-
blem discussed in [20-33), and each such model § is
called a stochastic realiszation of {y(t) ; 0 s t s T}.

natural interpretations in the stochastic realization
setting; see [1] for a more complete discussion of these
results. Here we shall only consider the so-called
Mayne-Fraser two-filter formila [5,6], on which topic a
large number of papers have been written (7-9,12-17;.
The many attempts to motivate this formula stochastically
have, in our opinion, been less than convincing. We
refer the reader to [d48) for a well-written account of
these matters. In our realization setting, however,

the two filters have a natural interpretation: they are
simply the minimum- and maximum-variance realizations
respectively. Hence, the latter is not a "backward
filter" as suggested in the literature (although it can
be reformulated as such), but a "forward filter" just as
its structure suggests.

The concept of backwanrd reaiizaticn is an esscn-
tial tool in this paper. A similar approach was applied
to the smoothing problem in the earlicr papers [1d4-.7],
but, since only 'wide sense' backward represcntations
were used, somc subtle points were overlooked. The fun-
damental idea of this paper, to cmbed the given system
(1.1) into a class of stochastic realizations, was no-
tivated by the results in [20-22]. Note that restrict-
ing our analysis to models (1.1) for which BD” = 0 (as
in [14-17}), would render the natural class of realiia-
tions incomplete, since it would exclude the minimum-
and maximum-variance realizations.

c
&

©

This paper is essentially a shortened conference
version of (1], but the last section contains some as-
pects on the stochastic realization problem not included
in [1]. Whenever a proof has bcen omitted, it can be
found in [1]}.

2. SOME NOTATIONS

Let H be the space of all centered stochastic \':\rn-N
ables (on an underlying probability space) with fimte
second-order moments. Then i isx a llilbert space with
inner product (f,n) = T{fn}. For an arbitrary k-diwcn- N
sional stochastic process {z{t): O s t $ T} with conpo-
nents in i, define Ht(:) to be the (closcd) subspace

spanncd by the random variabies (:l(t). z:(t). AN

zk(t)}. snd let 1i{z) be the closed linear hull in h of

the subspaces (ut(z); 0s ts T}; we shall write this as

H(1) = vt«(O,T] Ht(z). Similarly define the past space
Approved for publie release;
aistributionunl imited.
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Hr(z) and the future spoce u:(z) 1Y
Somctimes we shail be more interested

"t“)=' 1e0,1]

Veege, 1) (3
_in spaces spanned by the zncremcnts of z. Hence, we
define (dz), u (dz) and HY (dz) to be the closed linear

hulls in Ul of (z(r) - z(o), T, 0 ¢ I} where 1 is the
interval [0,T], [0,t] and [t,T] respectively.

For each n ¢ H and subspace X ¢ H let E{niK) be
the projection of n onto K, i.e., the wide gsense con-
diticnal mean. Let u be a stochastic vector with com-
ponents in li, and let H(u) be the closed linear span in
H of the componentg of u. Then, for any n ¢ H, we
shall often write E{ nl u} in place of E{nt H(u)), and,
for any subspace K ¢ H, E{ ui K} will denote the vector
with components E(u IK}

3. FORWARD AND BACKWARD STOCHASTIC REALIZATIONS

_Assuming that R := DD has a bounded inverse on
[0,T], it is well-known that the linear least-squares
estimate

x,(t) = E{x()IH ()} - (3.1)

of the state process x of S is generated on [0,T] by
the Kalman-Bucy filter

dx, = Ax,dt + B,R Y 2(dy - cx,dt);
(3.2a)

x,(0) = 0

where Rllz(t) is the symmetric square root of R(t), and
the gain function B, is given by

B, = (Q.C° » 80°)R"/2, (3.2b)
the error covariance matrix
Q.(t) = E{[x(t) - x (t)]{x(t) - x, ()]} (3.2¢)

being the solution of the matrix Riccati equation
[q, = AQ, + QA
| -aee R (Q
vQ.(O) = .

Note that the filter (3.2a), and hence the estimate x,,

is completely determined by the matrices A, C, R and

B.. Clearly there are many models S having the same
Kalman-Bucy filter.

,C° + BD")” + BB (3.2d)

In the sequel we shall only consider models $
which are minimgl, i.e., there is no other realization
of {((t); 0 s t s T} with a state process x of smaller
dimension n, and analytic, i.e., the cocfficient ma-
trices A, B, C, N and R-1 arc anmalytic on [0,T]. Both
.these assumptions are purely technical and are intro-
ducecd to insure that a certain matrix function is in-
vertible; they could probably be removed at the price
of a less elegant thcory. Now, let the initial reali-
zation S used in forming (3.2) be minimal and amaiytic,
and define S to be the class of all analytic realiza-
tions of {y(t); 0 s t £ T} having (3.2) as its Kalman-

Bucy filter. Then lll realizations of class S are
minimel. Clearly A, C and R := DD’ are the same for
8ll1 S ¢ S, while B, D and the state covariance function

P(e) := E{x(t)x(t)"} (3.3)

wil) differ over the class S. Of course, different
$ ¢ S will have compietely different stochastic pro-
cesses x and w.

Furthermore, from (3.2b) and the fact that Q, = P - T,
where P, (t) := E{x,(t)x,(t)"j, it follows tihat also the

function

G := PCZ + BD* (3.4)
is an invariant over §. In fact,

¢ = p,C + B8RV (3.5

1t is easy to see khat P satisfies the matrix
differential equation

P s AP+ PA° + BB” ; P(0) =T, (3.6)
which has the solution
P(t) = ¢(t,0)ne(t,0)°
(3.7)

t
- I &(t,T)B(T)B(T) “¢(t,T) "dT
0

where ¢ is the transion matrix of the system : = Az of
differential equations. liencc, P(t) > O for all t ¢ [0, n,
if and only if S belongs to the subclass S, = {SeS,i1>0;
[For symmetric matrices P and Q, P 2 Q (P > Q) means that
P-Q is rnonnegative (positive)definite.] It can be shown
(1] that S, is nonempty.

Let S« S,. Then x(t) := Pty " 1x(t) is a well-
defined stocnast1c vector process on all of [0,7], and
it can be shown [1; Lemma 2.3] that it satisfies the
backward Markovian representation

dx = -A“Xdt + Bdw ; X(7) = & (3.8a)
where B = P'IB, w is a p-dimensional orthogonal increment
process of type (1.2) defined by

aw = dw - B°P 1xdt, (3.5b)
and £ = P(T)'lx(T) is uncorrelated with w. Then
HO(dW) & HI(X) for all t e [0,T]; this is what character-
iZed the backward property of (3.8). DMorcover. the state
coYarxnnce function P(t) := E{X(t)R(t)’} satisfies I =
p-

Representation (3.8) is a strict sense version of
a similar result presented in [15,16,42]. (The last
paper contains an alternative justification of the formu-
las of [15,16] using the techniques of [12,13].) The
version given in these papers is however insufficient for
our purposes since it provides a representation up to
sccond-order properties only. Modulo some trivial tech- v
nicalities, the proof of (3.8) above [1; Lemma 2.3] is
the same is the one presented in [20]. (In this context
it should be mentioned that gll the basic ideas of a ve-
cent paper coautiored by Kailath [IECE Trans. IT-25(1979),
p.121-124] are contained in {20,21], and that. three
months prior to the submission of Kailath's paper and at
his request, [20,21] were personally handed over to lam
by one of the authors.)

Together with (3.4), representation (3.8) yields
a backward realisation of {y(t) ; 0 s t s T), namely

. [dr = -A’Rdt » BdW ; X(T) = £
(s); . (3.9)
\ dy = G kdt + Ddw
whose state covariance matrix function P satisfies

Pe-AD - DA -8B P(T) » f (3.10)
where it :» P(T) By this procedure each S ¢ S, gives
rise to a backward realization S; tho class of all §




gencrated in this way will be denoted S,.

. Next we proceed to cnlarge the class §, Given
any § ¢ §,, (by symmetry with the forward setting) the

lincar least squares estimate
%.(t) = R{x(0) W] (dy)) (3.11)
is gencrated by the hackward Kalman-Bucy filter
di, = -A“x.dt + 8,87V 3ay - 6°%.4t)
(3.12)

x(T) =0,

where the gain function B, can be determined via a ma-
trix Riccati equation [1]. Now, in complete analogy
with the forward setting, we define S to be the class
of all analytic backward realizations of {y(t),

0 s t s T} whose backward Kalman-Bucy filter is given
by (5.12). It can be shown [1] that §, < 8, and hence
we have obtained the required extenszon All realiza-
tions of class S are minimal.

© Unfortunately, there is no one-one correspondence
between models in § and S. For this we need to en-
large these classes even further. This leads to gen-
eralized stochastic realizations.

4. GENERALIZED STOCHASTIC REAL1ZATIONS

In order to extend the one-one correspondence be-

tween forward and backward realizations beyond S, and
. we shall have to enlarge S and s slightly in the

following way. Let S be the class of all systems (1.1)
which for any € > 0 is an analytic realization of
{v(t); 0 st <7 - g} having (3.2a), restricted to the
interval [0,T-¢], as its Kalman-Bucy filter. Similarly,
we define § to be the class of all modeis (3.9) which
for any € > 0 is an analytic rcalization of {y(t);
€S t ST} such that (3.12), restricted to (¢,T], is its
backward Kalman-Bucy filter. The elements of § and S
will be called generalized reclizations and generalized
backward realizations ¢f {y(t); 0 S t s T} respectively.
Clearly S < 8 and §¢ §.

Then to each realization S ¢ § there corresponds
a generalized backward realization § € §. In fact, it
can be shuwn that, since S is minimal, (A,B) is com-
pletely controllable. This together with the analyti-
city implies that (A,B) is totally controllable [40,41].
Conscquently P(t) has an analytic inverse on any inter-
val [g,T), for the last term of (3.7) is the controlla-
bility gramian. (Cf {1}; Lemma 2.2). Ilence the proce-
dure Jeading to the backward model (3.9) can always be
carricd out on the restricted interval {¢,T]. Similarly
there corresponds a generalized realization S ¢ S to
any backward realization § € S. We collect these obser-
vations in the following thecorem.

FHEOREH 4.3. To each realization (1 1) in S there cop-
resgoncs a_generalized backward realization (3.8} in §
fuch that P e P12 p7I8, % = P-lx ond di = dw - -

R p-ixdt.  Likewise to each baﬂbmani realization (2.9)
-iu S there Lo oa genepiiined r-rm Liation (1.1} in 8 um'h
tiat P = P71, B = Pif, x = P-ix and dw = 4@ + 8 F-ixde.

5. THE MINIMUM- AND MAXIMuli- VARIANCE REALIZATIONS

It is well-known that the inmovation proceas
fw,(t); 05 t < T}, whose increments are defined by
aw, = RV 300y - oexLat, (s.1;
is a process with orthogonal increments satisfying
(1.2) and §i_(dw,) = ii_(dv) fer all t ¢ (0,T) (sec e.g.

[43;). Theh (3.2a) ald (5.i) yieid

se ¥

R e

f

jdx, = Ax,dt + B,dw, ; x,(0) =0
(5.)‘ 1/2 (5.2, : :
ldy = Cx,dt + R “dw,, d

which is a realization in S, for B, is cleariy analytic. d

Likewise, the backward Kalman-Bucy filter (3.12)
can be written

_ dk, * -A‘K,dt + B,dW,; X, (T) = 0
(5,)
* {dy - G'x,dt « RV %s,,

where {W_(t); 0 s t s T} is the backward irnovation rrs-
cess

(5.3).

daw, = R Y204y - 6'x,dt), (5.43

wihich has orthogonal increments and satisfies (1.2) and

the condition MI (du.) = ht(d), for all t ¢ [0,T]. (See
(20,453 .) Clearly, S, €5, Now let
(dx' = Ax*dt + B*dw*; x*(0) = £*,
(5*)4 (5.5)

0y = Cxtae + R/ 2gye

be the forward counterpart of 5. as defined by Theorem
4.1, and let P* be the_corrcsponding state covariance
function. Since 8. ¢ §,, S* cxists only as a generalized
realization, and obviously iI'*(t) ~®as t -~ 7.

LEMMA 5.1. Let P, and P* be the state covariance finc-
tiong of S. and S* respectively and define Q := P* . P,.
Then the state covariance function P of en arbitrary
realization S ¢ S satisifiee

P,(t) s P(t) s P*(¢) (5.6)

Jor all t ¢ [0,T). HMorecver, Q¢ > 0.

Consequently, we shall cail S, the mini=iv= and S*
the maximum-vartance realization. By eliminating dw* 1n
(5.8), it is immediately seen that x* satisfies the iXal-
man-Bucy type equation
~1/2 (5.7a)

dx* = Ax*dt + B*R (dy ~ Cx*dt); x*(0) = &°

Let S be an arbitrary realitation of class S.  Taen, de-
fining Q* := P* - P, it is not hard to see from (3.4;
and (3.6) that

«1/2

B* = ~(Q*C’ - BD)R KL Th)

with Q* satisfying the matrix Riccati eguatio:n
Yqeer -

- BD)R™ BD')' - 8’

}ét P AQ", Q'A' . (Q'ci

\ (8.7¢,
LQ'(O) = fI* - I,
where N1* = ﬁ,(o)'l. Clcarly Q*(t) < ® as t = 7. Tie

filter (5.7) is preciseiy the niysterious “bscaward fil-
ter" of the Mayne-Frascr two-filter formula, as we nave
seen above, it is actualiy a forward realizaticn.  Since
QF = ' « I, we can interpret Q° 4% an errer coviuriaon
function, much in analogy with the Aalman-ducy fiiter.
In fact,

QU(t) = E{[x(t) - x*(t))ix(t) - x=*(2);"' (5.8

for aii t « (0,7,. This is an imuediate contcgucence of
the following lemma, which we shall neced ayain i tne
next section.

LENVA 5.2. Let x be the state process and P tne sta:.
covariance function of my realization in §, Tien
E{x(t)x,(2)')} = P, (t), E{x(t)x*(t) ) = P(t] (5.9)
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and
E({x(t) - x,()1[x*(t) - x(t)])'} =0 (5.10)
on any interval on which these quantities are defined.
We shall now demonstrate that the two processes
X, and x* together contain all the relevant information
on y needed in estimating the state process x of an ar-

bitrary realization S € S. To this end first note that
(3.1) can be written '

s(ut(x) Illt(dy)} . llt(x,). (5.11)
and that, since obviously Ht(x') = N‘(i.). (3.11) yields
) . . .

E{Ht(x)lﬂt(dy)} =11 (x*) (5.12)
for all t ¢ [0,T). Now define the orthogonal comple-
ments Kp := llg(dy) @ H (x,) and Ny i= Hi(dy) @ M (x*)
respectively. Then we obtain the orthogonal decomposi-
tion

=K o9 e N

H(dy) Nt [ Ht . Nt (5.13)

where ug is the frame space
a
ity = H(x,) v H (x*) (5.14)

(where A v B denotes the closed linear hull in H of A
and B.) (Cf. [22,24,26].)

LEMMA 5.3. (cf, {27)) Let x be the state process of a
realization tn S. Then, for t ¢ {0,T),

H (x) € HD @ (H(dy)]*

where [H(dy)]* i3 the orthogonal complement of H(dy)
in il.

Proof. Clearly H.(x) 4 N{. To see this note that the
components of x(t} - x,(t) are orthogonal to H;(dy) >
NI and that the components of x,(t) belong to H,(x,) 1
N;. In the same way we show that H.(x) 4 NT.

6. THE SMOOTHING PROBLEM

Consider an arbitrary realization (1.1) in the
class S. The basic problem before us is to determine
the smoothing estimate

() = E{x(t) IH(dy) ) (6.1)

for each t ¢ [0,T) and to interpret it in terms of sto-
chastic realizations. Let I denote the corresponding
estimation error covariance, i.e.,

T(t) = B{[x(t) - X(t)][x(t) - X(©)]'). (6.2)

In view of Lemma 5.3, X(t) € IS and conscquently
there are two matrix functions K, and K* such that

x(t) = K, (t)x, () + K*(t)x*(t). (6.3)

The components of the estimation error x(t) - X(t) are
clearly orthogonal to l(dy), and hence, in particular,
to the components of x,(t) and x*(t). Thercfore,
E(x(t)x, (1))} » E{X(t)x,(t) '} and E{x(t)x*(t)'; =
E{x(t)x*(t)’}. By Lemma 5.2, tic first of thesc rela-
tions yields P, = K,P, ¢ K*P, and consequently

K,(t) » K*(t) = (6.4)

for ali ¢t ¢ (0,T), because P (t) is nonsingular on this
interval. The second relation yieclds

P() = K (2)P,(t) + Ke(2)Pe(r) (6.5)

for all t ¢ [0,7).- Then solving (6.4) and (6.5) for K,
and K* we obtain K, = Q*Q™* and K* = Q,Q~1, where as be-
foreQ, =P -0, Q*=P* -Pand Q =P -DP,. Note
that Q(t) is nonsingular for all t ¢ [0,T) (Lezna 5.3)
and that

Q(t) = Q,(t) + Q*(v). (6.6)

THEOREM 6.1. Let x be the stcte process o c reclization
(1.1) of class S. Then .the smootihing estimate (6.1) ©s

given by
x(t) = [1I - Q.(t)Q(t)-x]x.(t) . Q.(t)Q(t)-lx'(t) (6.7}
and the aerror covariance function (6.2) by
E(t) = Q(8) - Q,(1)Q(®) AL (2 (6.8)
for all t ¢ {0,T).
Proof. Relation (6.7) was derived above for t « (0,7);
for t = 0, (6.7) follows from (7.6} below. To prove
(6.8) note that
x-5=(0-Qex-x) Qe x- 2. (6.9

BY Lemma 5.2.the two terms of (6.9) are orthogonal and
therefore, observing (3.2c) and (5.8),

£=(1-qahe0 -y +ea e,

which, in view of (6.6), yields (6.8). G

7. THE MAYNE-FRASER SMOOTHING FORMULA

We shall now restrict our attcantion to realizations
for which both Q, and Q* arc invertible for arbitrary
t e [0,T). SinceQ, =P - P, and Q* = P* - P, this is
possibie for all S ¢ S such that P (t) < P(t) < P*(t) for
all t on this interval. We shall call the class of all
such S the interior of S and denote it int S. It can be
shown that intS is indeed nonempty [1; Lemma 3.6].

THEOREM 7.1. Llet S € int S, let x be the state process

of S, and let X be the corresponding smoothing estiraie
(6.1). Then, for each te {0,T)

R(0) = KO0 Ik (t) ¢ @) k)], (.

where x, and x* are gitven by (3.2) and (5.7) respectivel;
and the smoothing error covartance L by

O RN WO RLRID IO R (7.2)

Proof. Since S ¢ int S, Q, and Q* arc invertible. By
writing (6.8) as £ = Q,Q-1(Q - Q,) and using (6.6), it
is seen that

T =0 e, (7.3)

Inverting this and again using (6.6) vields (7.3). Fronm
(7.3) we also see that Q,Q s L(Q) 4. Then I - QQ7% e
£{L-% - (Q*)-%] = IQ;!. Hence (7.1) fallows from (6.7).C
Relations (7.1) and (7.2) togetiher with (3.2) and
(5.7) is the Mayne-Fraser twe-filter forruic (5,6,
which nas received considerabie attention in the litera-
ture {7-9,13-17). Altnough this aigorithm is easy to
derive formally {5,i2,13], its probavilistic justifica-
tion has caused considerable difficulty, partly due to
the fact that Q*(t) = was t « T. Tac system (5.7 has
usualiy been interpreted as a backwaru filter, and in
[14,17] it is presentcd as tie limit of such a filter as
a certain covariance matrix function tends to iafimaty.
liowever, in our Stochastic recalization settang (5.7) has
a very natural interpretation: It is simply the maximm-
variance forward realization S°.- By using the identity

L T\ > X
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x () = B (1) 5, () (7.4)

we can instead write the smoothing formula (7.1) in
terms of two Kalman-Bucy filters, one (3.2) evolving
forward and the other (3.12) ecvolving backward in time.
(Note that then (7.1) is defined on the whole interval
{0,T}.) This fact was pointed out in [14,15,17], in
which papers the backward estimate

%, (1) = E(x(2)1 1 (dy)) (7.5)

was used in place of X,, a choicc that may at first
sight seem more natural. The reader should however note
that

%, (t) = P(e)P*(t)~1xe (1) (7.6)

is not invariant over S and is therefore less suitable
for our purposes. It is not hard. to see that

Q) = [(Q')
and conscquently (7.1) may also be written

2(t) = LA  x (1)
UM IO PRI (7.8)

which is the formula presented in [14,15,17]. In the
early papers [7,8], relation (7.1) was introduced via

a formula {47] for optimal weighting of two estimates
with orthogonal crrors. No justification of this or-
thogonality was given in [8]), and the argument in [7] is
incompliete due to problems with the end point condition.
(Cf. [148].) llowever, the stochastic rcalization theory
provides a natural justification of this procedure. In-
decd, (5.10) is the required orthogonally condition.

+.p dypepy? (7.7

8. INTERNAL AND EXTERNAL REALIZATIONS

Since R := DD’ is assumed to be full rank, the
dimension of w is always greater than or equal to the
dimension of y, i.e., m < p. We shall now consider re-
alizations for which m = p. Then D is invertible, and
w can be eliminated from (1.1) to yield the Kalman-Bucy
type equation

dx = Axdt + BD }(dy - Cxdt); x(0) = . (8.1)

1f, in addition, we assume that £ ¢ H({dy), it is imme-
diately clear that -

(x) e N(dy). (8.2)

We shall call any generalized realization of (y(t);

0 sts T} for which_(8.2) holds an internal realiza-
tion; all other $ € S will be named eztermal [20]. Ob-
viously, the internsl realizations are precisely those
for which the smoothing problem is trivial, the esti-
mate being exact. In particular, S, and S* are inter-
nal.

Let S be the class of all S ¢ § such that p = m
and £ ¢ n(dx) Then we have just shown that all reali-
sations in S, are internal. The following theorem, the
proof of which is given in [1], states that, under some
mild regularity conditions, the converse is also true.
THEOREM 8.1. 4 realisation S ¢ § such that {g} hae full
rank is intermal if and only if S ¢ §°.

In view of Theorem 6.1, the statc process x of
any realization S of class S can be written

a(t) = [ - A(e)Ix,(2) » Gi(t)x*(t) + R(t), (8.3)
where i1 :» Q,Q°) and % :s x - £. The smoothing error i

is identically zero if and only if S 1s internai. 7o ov-
tain a complete characterization of the external reali-
zations in S., we shall provide a representation for X
also. To this end, note that, given a rcaiization (i.l),
there exists an orthogonal p x p-matrix V(t) for each

t ¢ [0,T] such that

B (t) 8 (t)
IV(t). (§.4a)
L(c nl/z(:) )
where B1 is n X m and Bz is n x (p - m), and that
[
{ 2 V dw (8.4b)
{dv

defines a pair of orthogonal increment processes u aad v,
of dimensions m and p - m respectively. Obviously (5.do)
satisfies (1.2).

THEOREM 8.2. Le! x be the state process of c reaitza-

tion S ¢ S, and let By and v be defired by (S.4). Then
the snvotnzng error X is given by

X(t) = Q. (t)n(t)
n = -Tndt « Q'B, d3; n(T) = n

(5.5a)
(5.5b)

where T, = A - B,R™M2¢, n = QIH(T)(x(T) - x.(7)] and
g 18 a (p - m) - dimansional ortivgonal truerément JIVecss
of type (1.2) such that H{dg) & li{dy). dorecver,

N 4 H({dg), t.e., (8.5a) is a backward Marxovian repre-
gentation (3.6a), and the increments of { are given by

dg = dv - BZ'Q:I(x - x,)dt. (5.6)

Together with (8.5), (§.3) constitutes a generali-
zation of the stationary internal state representation
in Theorem 5.5 of [20]. For external realizations, now-
ever, Il is not a projection. In fact, & is a projection
ig and only 1f S li internal. To see tnhis observe that

=, i.e., =Q,, if and only if £ = 0
(Theorem 6. 1)

For internai realizations we have the foilowing
stronger result, which illustrates the important roie
played by the feedback matrix [, defined in Theorem §.2.
It is a generalization of a result found in (I2; pp.75-
79].

z.e.,
2H(t,5) = T (OY(L,8); ¥(s,8) = 1 (5.7)

Let Y be the transition function of V,,

Then x.i8 a state proccas of an internal realiszation of
class S if and only if there is a formits (Mt € [0,T)5
of subspaces of R, satisfying the condition

‘i’(t,s)Ms c Mt for all s s ¢, (8.8)
gsuch that, foreacht ¢ [0,T),

x(t) = [i - A(e)ix,(t) + R(t)x*(t), (5.9)
where Ni(t) ts a pPOJCC‘lcﬂ onzo M, along Q(t)M ,» Q)

being the covariance matrix ¢S x*(t) - x,(t). Them i
is given by
s} (8.0

where Q, t8 defined by (3.2¢).

Proof. We shall usc the same idca of proof as in [22].
(only if): Let x be _the state process of an intcrnai re-
Then, by Theorem 6.1, x satisfies
We just proved that i is

slizstion of class S.
(8.9) with Il given by (8.10).
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3 projection {onto somc subspace My), and the fact that
N(t)Q(t) is symmetric implies that ii(t) projects along
QCtimi. It just rcmains to show that the family \Mt'
te [0,T)} of subspaces satisfies (8.8), or, which is
equivalent,

RCEW (t,s)i(s) = ¥(t,s)N(s) for all t 2 s. (B.11)
To this end, first note that (8.9) can be written
« =z ' (8.12)

where z, :® x - x, and z = x* - x,. From the differ-
ential equ1tlons for z, and z it is_ immedintely seen
that E{z(t)lz(s)} = ¥(t,s)z(s) and sz.(t)lz (s)} =
v(t,s)z,(s). Projecting the first of these relations
over lg(z,) and premultiplying by N(t), one obtains

Bz, (£)12,(s)} = B(LIY(t,sIM{s)z(s), (8.13)

for, in view of (8.12), Hg(z,) < Hs(z) and, by Lemma 5.2
and the usual projection formula [1; Lemma 2.1},

E( (s)iz (s)) = Q.(s)Q(s)' 2(s). Then comparing (8.13)
with the second of the formulas in the text above (8.13),
(8.11) follows by noting (8.12) and the fact that Q(s) =
E{2(s)2(5)’} > O (Lemna S5.1). (if): Let {i(t);

t ¢ {0,T]) be a family of projections satisfying the
conditions of the theorem. Since Q := E{z(t)z(t)'} and
Q, :* E{z,(t)z,(t)'}, it is immediately seen that & I, is
given by (8.10). In fact, by (8.12), Q, = IQA' = & Q=
nQ, for, since NI(t) projects along Q(t)M;,

Qn’ = nQ. . (8.14)
Moreover, since
M(z,) < H.(2) + H (dy) (8.15)

[see (8.12)], (3.1) holds. Hence, it only remains to
prove that x is actually the state process of a reali-
zation S with the prescribed values of A, C and R; then
B, will have the right value also, and, in view of

(8 9), S must be internal. To this end, first note
that, in view of (5.2) and (5.5), z satisfies the dif-
ferential equation °

dz = T,2dt - QC'R™2awe; 2(0) = g*. (8.16)

We need to prove that

Bz(0)IH](2,)) = ¥(t,8)2,(s) for t 2 5.  (8.17)
But (8.17) is equivalent to E{z(t)z,(T)’} =
v(t,s)E(z,(s)2,(1) '} for all t s s, and, by (8.12) and
(8.16), this is the same as

(e, TIQUON(1) ' = (e, IN(S)¥(s, T)QTI(T) ', (8.18)

which it an immediate consequence of (8.11) and (8.14);
Then, premultiplying (8.17) by f(t) and using (8.11)
and (8.12), we have

Bz, (0} IH_(2,)] = ¥(t,8)2,(s) for t 2s. (8.19)
Now, inserting

-1/2

dw, = R Cz2dt » dw* (8.20)

into the state equation of S, we see that
Bz, (t) I (2,)} = (e, 8)E{x, (8) 1] (2,0}
. f:b(t.1)!,(t)R'I/Z(T)C(T)V(f.s)dtz,(s). 18.21)

where w¢ have uscd (8.17) to ohtain the last term.
Adding (8.19) and (8.21) yields

E(x(0)iNj(,)) = o(t,s)E x(s)ilfig(z,)) for t 2 s, (5.22)

for the last term of (8.21) can be written
[e(t,s) - v(t,s3)z,(s) [39; p.117]. Moreover,

E{x(t)IH (dy)) = o(:,s)E(x(s).H;(dy)) for t ¥ s. (8.23)

To see this, replace x by x, + z, and rememper that
lig(z,) € He(2) o H;(dy).
yield

E(x(t)|H]} = o(t,s)x(s) for t 2 s, (5.2

where H; ] lg(dy) v H;(z,). yqxt define a process u
with incrcments du = dw, - R™/“CZ dt, wiich can be seen
to Le an orthogonal increment process of type (1.2) such
that H{du) ¢ lg. It is not hard to <ce that Ht\uu\ 1 big.
In fact, in view of ({8.20), du = R™ 2c(z - z.)at + dw*,
and, since Hg(z,) c Hg(z) &+ H{(aw*) {see (5. 16),, {8.17;
and (8. 19) 1mw1v that Hg(du) ; ”t(")' aiso, because of
(8.15), H \ou) 4 HZ (dy) hoids trivialiy. But

= Cxdt + R %4y, (5.25;

and therefore

a - rt .

E{y(t)|H } = [j C(z)o(1,s)dr]x(s) (5.26)
follows from (§.24) and the fact that hg\ou. 4 Hg. Now,
since ds(dy) vilg{x) ¢ H {8.243 and (3.26 lmfl\ tihat
(x?,y")' is a lhrkov proccss, and consequently it has a
representatxon (1.1). Relations (§.24) - (S.‘G) insure

that A, C and R have the requirecd values. o

Finally, to further stress the importance of tie
feedback matrix [,, let us point out that (8.3) can be
written

x(8) ® x,(8) + Q. (8D T2(1) + Q(tIn(r) (8.27)
where x, satisfies .
. s Tuxdt + BR Y26y, < (0) ~ 0, (8.28)

and z and n, are given by (8.16) and (8.5b).
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