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ATSRM.8 0 0 7 80AFOSR-TR. 8 0 - - 8 O9 THE MAYNE-FRASER SMOOTHING FOPRMULA AND STOCHASTIC

REALIZATION THEORY FOR NONSTATIONARY LINEAR STOCHASTIC SYSTEMS*

Faris Badawi, Anders Lindquist, and Michele Pavon

Department of Mathematics
University of Kentucky

Lexington, Kentucky 40506, U.S.A.

ABSTRACT Problem 2. Given the stochastic process (y(t)
0 S t S'T7, find all possible systems (1.1) (in some

This paper is a shortened version of [1]. its suitable class of models S) having this process as its
basic purpose being to provide an easily accessible in- output process. This is the stochastic realization pro-
troduction to the results of (1], many of which are blem discussed in [20-333, and each such model S is
presented here without proofs. However, we have tried called a stochastic realiation of {y(t) ; 0 S t S T1.
to rearrange the material of [1], changing the logical Note that we are only considering proper stochastic re-
order in which various topics are introduced, and occa- alizations [20), i.e., models 5 whose outputs not mcrci?
sionally we regard the results from a somewhat different have the same covariance properties as the given process
angle. This has been done to increase the present (the only requirement in the earlier realization theory
paper's usefulness as a complement to il]. [34-38]), but are equal to it a.s. for each t.

The work reported here is aimed at providing a As we shall see ill this paper, these two problemrs
theory of smoothing in the context of stochastic reali- are intimately connected to each other. In fact, all
zation theory.' This approach enables us to obtain sto- the well-known sroothing formtilas found in [2-i8j have
chastic interpretations of many important smoothing natural interpretations in the stochastic realization
formulas and to explain the relationship between them. setting; see [1] for a more complete discussion of these
In this paper, however, we shall only consider one such results. Here we shall only consider the so-called
formula, namely the Mayne-Fraser two-filter formula, Mayne-Fraser to-fiZter forrnmla [S,6], on which topic a
which has a very natural interpretation in the stochas- large number of papers have been written i7-9,12-17;.
tic realization setting; we refer the reader to [1) for The many attempts to motivate this formula stochastically
further results. As a by-product, we also obtain cer- have, in our opinion, been less than convincing. We
tain results on the stochastic realization problem refer the reader to [48) for a well-written account of
itself. these matters. In our realization setting, however,

the two filters have a natural interpretation: they are

1. INTRODUCTION simply the minimum- and maximum-variance realizations
respectively. Hence, the latter is not a "backward
filter" as suggested in the literature (although it can

Consider a linear stochastic system be reformulated as such), but a "forward filter" 3ust as

dx - A(t)x(t)dt + B(t)dw ; x(O) a C (1.la) its structure suggests.

(S) •The concept of bachoaard "raii"atic is an essea-
dy - C(t)x(t)dt + D(t)dw ; y(O) - 0 (1.1b) tial tool in this paper. A similar approach was applied

to the smqothing problem in the earlier papers [j4*.-],
defined on the interval 0 S t s T. where x is the n-dim- but, since only "wide sense" backward ropresrntations
ensional state process, y is the m-dimensional output were used, some subtle points were overlooked. The in-
process, w is a p-dimensional process with orthogonal damontal idea of this paper, to embed the given system
increments such that (1.1) into a class of stochastic realizations, was rw-

E~dw) = 0; E{dwdwi} - Idt (1.2) tivated by the results in j20-22]. Note that restrict-
ing our analysis to models (1.1) for which RD' - 0 (as
in 114-17)), would render the natural class of reali-a-

(prime denotes transposition), C is a centered random tions incomplete, since it would exclude the minimum-
vector with finite covariance fl :E(VC} and uncorrelated and maximum-variance realizations.
with w, and A. B. C, and D are matrices of bounded 

func-

tions with properties to be further specified below. we This paper is essentially a shortened conference
shall consider two problems related to such systems: version of [1], but the last section contains some as-

pects on the stochastic realization problem not included
Problem 1. For an arbitrary t c [0,T], find the linear in [1]. Whenever a proof has been omitted, it can be
least-squares estimate ilt) of the state x(t) given the found in [1].
output record (y(t) ; 0 s t s T), i.e., find the wide
somse conditioriat meam

2. SOME NOTATIONS
(t) - (x(t)Ily(r) ; 0 s r s TI. (1.3)

Let H be the space of all centered stochastic var-
This is the smothing problem, which has generated a ables (on an underlying probability space) with fillIte
rather extensive literature [1-18, 48]. and is of con- second-order moments. iThon Ii is a iilhvert space ',ith

siderable Iimortance in applications. inner product (r,,n) - f{C ). For an arbitrary k-dimell-
sional stochastic process (z(t); 0 s t S T) with cop-.|o-
nents in II, define 1it(;) to be tle (closed) subspacr

spanned by the random variables {zM(t). %.(t) ....

* This research was supported partially by the Airforce z,(t)i, and let l(z) be the closed linear hull in hi of

Office of Scientific Research, USAF Systems Command, the subspaces (Hit (z); 0 s t s T); we shall write this as
wider grant No. Ai'OSR-78-3S19, and partially by the Na- "(z) V ms.Smlrydeieyeps pc
tienel Science Foundation under grant No. ENG-79-03731. t[0,T] H5 (). Similarly define the pa ace

Apro9d for publi@ release
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litL) :V. 1 0,t H(z) and the future apace li (z) : Furthermore, from (3.2b) and the fact that Q. u P - .,t where Po(t) :- Eix.(t)x.(t)'), it follows that also the
V ettT ] i t(z). Sometimes we shiail be more interested function

in spaces spanned by the increments of z. Hence, we
define i(dz), Uif(dz) and 1i*(dz) to be the closed linear G :- PC' BD' (3.4)

t t
hulls in Ii of (zCr) - z(o); rt a t 1) where I is the is an invariant overS. In fact,
interval [O,T], [0,t] and it,T] respectively.

G -oC" B.
1/ 2 .  

3S

For each n c H and subspace K c H let &{-IK) be G - PC' + BR (3.)

the projection of n onto K, i.e., the wide sene con- It is easy to see that P satisfies the matrix

ditional mean. Let u be a stochastic vector with com- differential equation
ponents in II, and let 11(u) be the closed linear span in

H of the component; of u. Then, for any n I H, we - AP * PA- * BB ; P(O) - jl, (3,6)

shall often write E{ nI u I in place of {(n I H(u)), and,
for any subspace.K c H, g{ ui K) will denote the vector which has the solution
with components E{uiIK).

Pt) - *(t,0)fO(t,0)"

3. FORWARD AND BACKWARD STOCHASTIC REALIZATIONS
t (3.7)

Assuming that R :* DD' has a bounded inverse on f , ) )'d

[O.T], it is well-known that the linear least-squares 0

estimate where 0 is the transion matrix of the system - Az of

(3.1) differential equations. lence, P(t) > 0 for all t c [0,T]
x(t) = E t dy)) -(3.1) if and only if S belongs to the subclass S. - (cSil'0C6.

[For symmetric matrices P and Q. P a Q (P > Q) means that
of tile state process x of S is generated on [0,T] by P-Q is nonnegative (positive)definite.] It can be shown
the Kalman-Bucy fi ter [1] that S. is nonempty.

dx. a Ax*dt + BR 
1
/
2 
(dy - Cx~dt); Let S r S . Then i(t) :- P(t)

1
Ix(t) is a ell-

(3.2a) defined stochastic vector process on all of [0,T], and

x.(O) = 0 it can be shown [1; Lemma 2.3) that it satisfies the

where R /2(t) is the symmetric square root of R(t), and backjard Markovian representation

the gain function B. is given by dx - -A'idt Bdw ; i(T) * (3.8a)

B = (Q.C" . BD')R
"1 2 , (3.2b) where 3 = P 9, w is a p-dimensional orthogonal increment

the error covariance matrix 
process of type (1.2) defined by

Q.(t) - E{[x(t) - x.(t)][x(t) - x.Ct)]') (3.2c) dw dw - B'PIxdt, (3.Sb)

and :- P(T)'
1 x(T) is uncorrelated with w. Then

being the solution of the matrix Riccati equation lif(d) in II(R) for all t e [0,T]; this is what character-

iled the b cAward property of (3.8). , oreover. the state= AQ° * Q.A (tsaiie
covariance function P ((t) :- E{(t).(t)*) satisfies P

- (Q.C' + BD')RI (Q.C' + RD')' * BB' (3.2d) p-1.

Representation (3.8) is a strict sense version of
Q(O) a T1. a similar result presented in [15,16,42]. (The last

paper contains an alternative justification of the formu-
Note that the filter (3.2a), and hence the estimate x,, las of [1S,16] using the techniques of (12,13].) The
is completely determined by the matrices A, C. R and version given in these papers is however insufficient for
B.. Clearly there are many models S having the same our purposes since it provides a representation up to
Kalman-Bucy filter. second-order properties only. Modulo some trivial tech-

models nicalities, the proof. of (3.8) above [1; Lemma 2.3] is
In the sequel we shall only consider models S the same is the one presented in [20]. (In this context

which are miniral, i.e., there is no other realization it should be mentioned that all the basic ideas of a re-
of (Yet); 0 s t !% T) with a state process x of smaller cent paper contitored by Kailath (IflE Trans. IT-25(1979).
dimension n, and anaZytic, i.e., the coefficient ma- p.121-124] are contained in [20,21], and that. three
trices A, B, C, 1) and R-1 are analytic on.[0,T]. Both months prior to the submission of Kailath's paper and at
these assumptions are purely technical and are intro- his request, [20.21] were personally handed over to him

duced to insure that a certain matrix function is in- by one of the authors.)
vertible; they could probably be removed at the price
of a less elegant theory. Now, let the initial reali- Together with (3.4). representation (3.8) yields
zation S used in forming (3.2) be minimal and analytic, a baoleiard reaiaation of (y(t) ; 0 S t S T), namely
and define S to be the class of all analytic realiza-
tions of (y(t); 0 5 t 9 T) having (3.2) as its Kalman- r dl - -A'idt * Bdi ; i(T) -
Ducy filter. Then all realizations of class S are (3.9)
minimal. Clearly A, C and R :- DD' are the same for ( d * 0'Rdt * (39
all S t S, while B, D and the atte t ot ariance function dy

PM E~x(t)x(t)' (3.3) whose state covariance matrix function P satisfies
Pr) • -Al' - PA - i' P(T) s fl, (3.10)

will differ over the class S. Of course, different

S t S will have Completely different stochastic pro- where ii : P(T)-1. By this procedure each S c S. gives
cesses X and W. rise to a backward realization 5; the class of all S

2



generated in this way will be denoted dx* - Ax~dt * B~d~o ; x.(0) - 0

N ext we proceed to enlarge the class v. en (S) Cxdt R 1/%w., (5.2)any, S c S., (by symmetry with the forward setting) thetY-Cd R/w,

linear toast squares estimate which is a realization in S, for B. is cleariy analytic.
i.(t) = {i(t)Iildy)} (3.11) Likewise, the backward Kalman-Bucy filter (3.1-)

is generated by the b'ackard AaZman-Bccy fier can be written

di. - - + .-- *y - "Idt) I ( di * -A'i.dt + .d1..; i.(T) - 0

(3.1) (S1/2
i.(T) - 0, * . (dy (3.12) )dy a G'i.dt + R d;*,

where {r*(t); 0 s t s Ti is the backward inno;rtio,where the gain function g. can be determined via a m- cess
trix Riccati equation [1]. Now, in complete analogy
with the forward setting, we define S to be the class dio - R-1/2(dy - Gl.dt), 45.4)
of all analytic backward realizations of (y(t);
0 s t s T) whose backward Kalman-Bucy filter is given which has orthogonal increments and satisfies (1.2) and
by (3.12). It can be shown [1] that . c , and hence the condition H:(da.) • H(dy) for all t [ 10,T). (See
we have obtained the required extension. All realiza- (20,4S;.) Clearly, CS eS. Now let
tions of class S are minimal.

Unfortunately, there is no one-one correspondence Ax*dt + B*dw'; x*(O) (5.5)
between models in S and S. For this we need to en- R1/2dw.
large these classes even further. This leads to gen- 1dy a Cxdt * ld(.
eratized stochaGstic realizations. be the forward counterpart of 9. as defined by Theorem

4.1, and let P* be. the corresponding state covariance
4. GENERALIZED STOCHASTIC REALIZATIONS function. Since S. I 5,, S. exists only as a generalized

realization, and obvaously l'(Ct) -as t - T.
In order to extend the one-one correspondence be-

tween forward and backward realizations beyond S. and LEMMA 5.1. Let P. and P" be the state ooariac ce fw'c-
3we shall have to enlarge S and S slightly in the tiona; of S. and S* respectivelyt and define Q :- P* P..

following way. Let S be the class of all systems (1.1) Then the state oovariance fanc:ion P of cm arb ',rm,:,
which for any C > 0 is an analytic realization of realization S £ S satisifica
(y~t) ; 0 5 it I T - el having (3.2a) , restricted to the
interval (O,T -E], as its Kalman-Bucy filter. Similarly, P,(t) s P(t) s P'(t) (5.6)
we define to be the class of all models (3.9) which
for any c '0 is n analytic realization of fy~t); for all t c [0,T). torecver, Q > 0.
c % t 5 T) such that (3.12), restricted to [c,T], is its
backward Kalman-Bucy filter. The elements of S and 8 Consequently, we shall call S. the .- ini.-v':- and S*
will be called generalized reeliaatione and greneralized the riaxmum-variance reaZlzation. By eliminating di.' in
backward realizations 9f {y(t); 0 s t s T) respectively. (S.S), it is immediately seen that x" satisfies the Kal-
Clearly S - S and S c A. man-Bucy type equation

Then to each realization S e S there corresponds dx* = Ax'dt + B*R -/2(dy - Cx*dt); x*(O) " 5.7a)
a generalized backward realization S c 3. In fact, it
can he shuwn that, since S is minimal, (A,))) is com- leet S be an arbitrary realization of clats S. Then. de-
pletely controllable. This together with the analyti- fining Q" :* P" - P, it is not hard to see from 3.4)
city implies that (A,B) is totally controllable [40,41). and (3.6) that
Consequently P(t) has an analytic inverre on any inter-
val e,'T), for the last term of (3.7) is the controlla- B* * -(Q'C' - BD')R " 1/ 2 .. h)
hility gramian. (Cf [1]; Lemta 2.2). Ilence the proce-
dure lending to the backward model (3.9) can always be with Q* satisfying the matrix Riccati etation
carried out on the restricted interval rc,T]. Similarly ['
there corresponds a generalized realization S c S to I * AQ* + Q*A' (Q*C - BD')RI(Q'C' - SD',' - BE'
any backward realization 9 c S. We collect these obser- I jS.7cj
vations in the following theorem. Q'(O) - fl - fl,

THEOREM 4.1. To each realization (1.2) in S there co.- where TI •.) " 1  Clearly Q(t) a .. s - -. The
re.ro'-a a generaZlized backward realization (S.9) in t filter (S.7) is precisely the rysterious "bsc#'ard fal-
rudciJ o;:at P a r-1, ri r-I, - p-Ix cindi dv - dw - ter" of the Ma)yne-Fraser two-filter forwula, as we nave
RIVp:ixdt. hikewia to each bn.?j,)ar,1 real:.ation (..9) seen above, it is actually a forward reali:t:cn. incer
in 3 1.h'P,: SLU 1 a V!DU nf.!' :: d 'l," :a tic'ia (1.i) ! ' l Q I' - , we C16 ii lit erpret Q* :Is .111 t 'l' i 'i.;ttI..m'i '

that. P 8 - - - o, x - P'iE and dw - dO * V'P'11dt. finction, much in analogy with the kalman-ducy fiiter.
In fact,

S. THE MINIMUM- AMD MAXIMut- VARIANICE REALIZATIONJS Q'(t) , E{(x(t) - x*(t)]J.(t) - x-(t)' (%.A

It is well-known that the innPItotntiot rocenA for ail t ( (0,T. "Mis is in imwdCitc con~ci..t,-cc o"
tw.(t); 0 s t Ti. whose increments are defined by the following lemma, which we sihall need a,:aii iii tue

-I1 next section.
dw. a R'ItZdy - Cx.dtj, (S.l e

LEPvA 5.2. Let x be the etate process and P :,ae st:.-
is a process with orthogonal increments satisfying covariance function of any realiZatior in j. 7ieP:
(1.21 and H1 (dw ) a IIr(dvj for all t c (0,T] (see e.g.
[43;). Thoi (3.2a) aJd (S.i) yield E{x(t)x.(t)') - P.(t), E(x(t)x*(t)') * P(t) (S.9)

3



and for all t c [O,T). len solving (6.4) and (6.5) for K.

) - x(t)]') 0 (5.10) and K* we obtain K. - Q-Q-1 and K' - Q.Q-1, where as be-
(ix(t) -x(t)][x(t) fore Q. - P -.P,, Q* - P° - P and Q - P* - P.. Note

on any interval, on which these quantities are defined. that Q(t) is nonsingular for all t [0,T) (Lezaa S.I)
and that

We shall now demonstrate that the two processes
x. and x* together contain all the relevant information Q(t) - Q(t) * Q(t). (6.6)
on y needed in estimating the state process x of an ar.-
bitrary realization S e S. To this end first note that THEOREM 6.1. Let x be the state process of a realization
(3.1) can be written - (3.1) of class S. Then the smoothing esti.rte (6.1) i

given byJ
E(It(x) Ill(dy)} - kljx.). (5.11) ;(t) - [I - Q.(t t) l]x.(t) Q.(t)Q(t) 'x*(t) (6.7)

and that, since obviously 1t (x*) = Ift1(i,) (3.11) yields and the error cooariaywe fune-on (6.2) by

ilIi (x) 1H (dy) I x)}.2 -1tx- "tx' (5.12) (t) = Q.(t) - Q.(t)Q(t) Q.(t) (6.8)

for all t e (0,T). Now define the orthogonal conple- for al t c (0,T).
ments N- := ll(dy) it(x.) and N+ := ll(dy) o li(x*)
respectively. Then we obtain the orthogonal decomposi- Proof. Relation (6.7) was derived above for t e (0,T);
tion for t - 0. (6.7) follows from (7.6) below. To prove

* (dy) - N @0 N (5.13) (6.8) note that

0he re is h e f s e ex - x - ( I - Q Q 1) ( x - a.) * Q Q '(x - x *) . (6 .9 )

Ila v * (5.14) By Lemma 5.2 the two terms of (6.9) are orthogonal and
t t t therefore, observing (3.2c) and (5.8).

(where A v B denotes the closed linear hull in H of A I Q )Q.(I Q-QI) I Q Q
and B.) (Cf. [22,24,26].) Z - (I - Q.Q - + Q.Q-Q*Q-Q.,

LEMHA 5.3. (cf. (27]) Let x be the state process of a which, in view of (6.6), yields (6.8). 0
reaiition in S. Then, for t c [OT),

7. THE MAYNE-FRASER SMOOTHING FORMULA
lit(x) € Ht[ * (H(dy)1-

4

t We shall now restrict our attention to reali:ations
where [f(dy)]J is the orthogonal complement of I(dy) for which both Q. and Q* are invertible for arbitrary
in II. t e [0,T). Since Q. - P - P, and Q* - P* - P, this is

possible for all S e S such that P,(t) - P(t) < P(t) for
Proof. Clearly H (x) . N-. To see this note that the all t on this interval. We shall call the class of all
components of x(ti - x.(t) are orthogonal to Hj(dy) . such S the interior of S and denote it int S. it can be
N. and that the components of x(t) belong to Ht(x*.) I shown that intS is indeed nonempty [1; Lemma 3.6].

THEOREM 7.1. Let S e int S, let x be the state process

6. THE SMOOTHING PROBLEM of S, and Let ; be the corresponding smoothing estimate
(6.1). Then, for each t c [0,T)

Consider an arbitrary realization (1.1) in the -x ( (
class S. The basic problem before us is to determine ;(t) - r(t)[Q.(t) x.t + Q*t) x(t)]. (7.1,

the smoothing estimate where x. and x* are given by (3.2) and (5.7) respectivel.;

;(t) - E(x(t) H(dy)) (6.1) and the emoothing error couariace E by

for each t c [0,T) and to interpret it in terms of sto- (t)l " Q*(t)' 1 Q(t)' . (7.2)

chastic realizations. Let Z denote the corresponding Proof. Since S C it S, Q. and Q are invertible. "
estimation error covariance, i.e.. writing (6.8) as E - QQ-I(Q - Q.) and using k6.6), it

E(t) " U{[x(t) - ;(t)][x(t) - ;(t)]'). (6.2) is seen that

In view of Lemma 5.3, i(t) C Ila and consequently I = Q.Q1Q (7.3)
there are two matrix functions PC. anS K* such that

Inverting this and again using (6.6) _'ields (7.2). Froi.

(7.3) we also see that Q.Q'1 - E(Ql) -. Tnen I - Q.Q-i -
;(t) - K.(t)x.(t) " X*(t)x'(t). (6.3) E(E-, - (Q-)-I] - Q.-1 . Hence (7.1) follows from (b.7).,:

The components of the estimation error x(t) - 1(t) are Relations (7.1) and (7.2) together with (3.2) and
clearly orthogonal to l(dy), and hence, in particular,
to the components of x.(t) and x*(t). Tlherefore, (S.7) is the Ak,,e-Fraser twoojqiter f rnu-" S,
{x(t)xe(t) '1 * r.((t)x*(t) '1 and E~x(t)x*(t)' - which has received considerabie attention in tne litera-

rf(t)x*(t) '). By Lemma 5.2, the first of these rela- ture [7-9,1-17 . Altnough this algorithm is easy to
derive formally j9,;2,13', its probailistic ustifica-

tions yields tion has caused considerable difficult), partly due to

K.(t) 4 K*(t) - I (6.4) the fact that Qft') - w-as t - T. *Te system 5.7; has
usually been interpreted as a backwaru filter, and in

for all t t (0,T), because P.(t) is nonsingular on this [14.173 it is presented as the limit of .such a filter as

iterval The second relation yields a certain covariance matrix ftunction tends to infinity.
"e l yowever, in our stochastic realization setting (5.7) has

(t) 0 KMre .(t) 4K* tPf(t7 (6.5) a very natural interpretation: It is simp~ly the maxaitm-
variance forward realization S*.- By using the identity



x(t) P.(t) 'l.(t) (7.4) is identically zero if and only if S is internal. 7o ob-
tain a complete characterization of the external reali-

we can instead write the smoothing formula (7.1) in zations in S., we shall provide a representation for ;
terms of two Kalman-Sucy filters, one (3.2) evolving also. To this, end, note that, given a realization 0.1),
forward and the other (3.12) evolving backward in time. there exists an orthogonal p x p-matrix V(t) for each
(Note that then (7.1) is defined on the whole interval t C [0,T] such that
[,T].) This fact was pointed out in [14,15.17], in
which papers the backward estimate [I(tY f 8 (t) B2Ct)

=)- x(t)III*(dy)) (7.S) [I LR/2(t) 0 V

was used in place of I., a choice that may at first where Bl is n x i and 032 is n x (p . i), and that
sight seem more natural. The reader should however note
that Fd J1

t)-x(t) (7.6) . V dw (8.4b)
that t) - P~t)P'C)''t) 076 d_

is not invariant over S and is therefore less suitable defines a pair of orthogonal increment processes u aad %,
for our purposes. It is not hard, to see that of dimensions m and p - m respectively. Obviously (6.4b)

(Q)-I [(Q*)- .+.P-l ]pcp-1 (7.7) satisfies (1.2).

THEOREM 8.2. Let x be the state process of' a reaZi:'-
and consequently (7.1) may also be written tion S c S. and let B2 and v be defir.ed by (5.4). Z;e'

R(t) = E(t){Q.(t) lx(t) the amvothing error R is given by

[Q*(t)- i + P(t)f ]Rb(t)}, (7.8) f Rt) = Q.(t)nCt) (S.Sa)

which is the formula presented in [14,15,17]. In the dn v -r.nrdt - Q:IB, d;; ?I(T) * n. (S.5b)
early papers [7,81, relation (7.1) was introduced via
a formula [47] for optimal weighting of two estimates ohere r. = A - B.R-1/ 2C, r , Q:1CT)'xCT) - x.a)] ,
with orthogonal errors. No justification of this or- is a (p - in) -'lnanso,;i2 or iloaZ incree:nt tPI-'.'e,'
thogonality was given in (8]. and the argument in [7] is of type (1.2) such that kitld) L 11(dy). ,Abrjovor,
incomplete due to problems with the end point condition. nT L H(d;), i.e., (8.5a) is a backward ;arkovian repre-
(Cf. [48 .) However, the stochastic realization theory sentation (3.8a), and the inzcrcnvnts of ; are gi-cn 1-i
provides a natural justification of this procedure. In- -1
deed. (S.10) is the required orthogonally condition. d; - dv - B2Q.I x - x.)dt. (S.6)

8. INTERNAL AND EXTERNAL REALIZATIONS Together with (8.5), (S.3) constitutes a generali-

zation of the stationary internal state representation

Since R :- DO' is assumed to be full rank, the in Theorem 5.5 of [20]. For external realizations, how-

dimension of w is always greater than or equal to the ever, 11 is not a projection. In fact, Z is a projection

dimension of y, i.e., m ! p. We shall now consider re- i and only if S il internal. To see this observe that

alizations for which a a p. Then D is invertible, and Hf - 11, i.e., Q.Q- Q. - Q., if and only if E - 0

w can be eliminated from (1.1) to yield the KXiman-Bucy (Theorem 6.1).

type equation For internal realizations we have the foilowinc

dx a Axdt + 3D_ I (dy - Cxdt); x(O) *(8.1) stronger result, which illustrates the important role
played by the feedback matrix r. defined in Theorcrn S..

If, in addition, we assume that E e H(dy), it is imme- It is a generalization of a result found in Z2; pp.75-

diately clear that 
- 79].

11(x) C h(dy). (8.2) THEOREM 8.3. Let Y be the transition function of T.,II~x)€ li~y). ( 2) i.e.,

We shall call any generalized realization of (y(t); . -X.(ts) - r.(t)'(t,s); V(s,s) - I (8.7)
0 S t s T) for which.(8.2) holds an internal realiza-
tion; all other S 4 S will be named exteznal [20]. Ob- Then x.is a state process of an interna realization of
viously, the internal realizations are precisely those class S if and only if there is a fdarmC (4; t c [0,T)
for which the smoothing problem is trivial, the esti- of subepaces of Rn , satiefying the condition
mete being exact. In particular, S. and S" are inter-
nal. Y(t,s)Ms c Ht for all ss t, (8.SI

Let So be the class of all S c S such that p - n such that, for eacht c [0,T),
and 4 , 11(dX). Then we have just shown that all reali-
zations in So are internal. The following theorem, the x(t) R Mi - I(t)jx.(t) * i(t)x(t), (S.9)
proof of which is given in (1], states that, under some
mild regularity conditions, the converse is also true. where 1(t) is a projection on.o M. along Q(t)Mt, Q(t)

being the covariance mutrix cf x*(t) - x.(t). Ahen AlTH4EOREN 8.1. A realzation S c i such that© 180) full is given by,

nkiinenlif and only if S C SO' Q as isgienb (s.101

in view of Theorem 6.1, tne state proces. x of where Q. is dexi oud bj (.2ci.
any realization S of class S can be written

Proof. we shall use the same idea of proof as in [22).
) 11 El Xt)]Xe(t) * (t)X*(t) 0 i(t), (8.$) (only if): Let x be.the state process of an interni re-

ee Q.Q-1 and I : X E. The smoothing error 1 alization of class S. Then, by Theorem 6.1, x satisfies
(8.9) with nl given by (8.10). We just proved that ri is

Si



aprotection (onto some subspace Mt), and the fact that 0(~~IC:) (t,s)I tx(s)iii5(z.)) for t s. (8.22;,
'7~~1 (t)Q,(t) is symmetric implies that ff(t) projects along

Q(t)i-. It just remains to show that the family fmt; for the last term of (8.21) can be written
t 9 lO.T)) of subspaces satisfies (8.8) , or, which is [4(t,s) - y(t,s)]z.(s) [39; p.117). 1Ioreover,
equivalent.

tix(t)IH&(dy)) , 0(t,s)Eix(s)gH_(dy)) for t t s. (8.23)
nJ(Qt)(t~s)fl(s) - ly(t,s)fl(s) for all t a: s. (8.11) s

To see this, replace x by x. + z. and remnember that
To this end, first note that (8.9) can be written Iit(z.) c Ilt~z) L Hj(dy). Now, (8.22) and (S.23) togethe~r

yield
2.-n: ~~~~~~~~~(8.12) ~ xtIf (~~~)frta5 S4

where z. x - x. and z : x* - x.. From the differ- ftli aotsxs)ortz,

* ntial equations for z. and z it isjimmcdia-tely seen where 11 -:= 11(dy) v 1II(z.). *qxt dlefinle a process It
that It(z(t)Iz(s)) - Y(t,s)z(s) and E1,z.(t) Iz.(s)) = with increments du - dw. - R1 MC.Lft. iiich c.1n be seeni
y(t,s)z.(s). Projecting the first of these relations to be an orthogonal increment process of type (1.2) suaci
over 11(z.) and premultiplying by Tl(t), one obtains that H(du) c Ii:. It is not hard to see that 1ikduI. lit *

In fact, in view of (8.20), du -R-1 /2 C(; - :.)ait - dw.
!(z.t)IZ(s = - r(t)T(t's)flis)z(s), (8.13) and, since Hi(z.) c Hi(:) I~ H'(uw) -see (6.16)1, (6.1~

and (8.19) imply that Ht(du) L liI(:.); also, because of
*for, in view of (8.12), H,(-..) r- Hsz) and, by Lemma 5.2 (8.1S), H*(du) k H-(dy) holds trivially. But

and the usual projection formula [1; Lemma 2.1), t 1/2
E(:_(s)iz.(s)) - Q.(s)Q(sY- 1 z(s). Then comparing (8.13) dy = Cxdt *R du, (8.25)
with the second of the formulas in the text above (8.13),
(8.11) follows by noting (8.12) and the fact that Q(s) -and therefore
E(z(s)z(s)') 2, 0 (Lemma 5.1). (if): Let fri(t); rt
t 41O1,T]) be a family of projections satisfying the ~ {~~i) fC(')P(r's)d-r~x(s) (~S.26)
conditions of the theorem. Since Q :- E~z(t)z(t)') and is

Q. :, r[(:.(t)z.(t)'), it is immediately seen that it is follows from (8.24) and the fact that IiZCciu' L H-. Now~.
given by (8.10). In fact, by (8.12), Q. . flQII . r12Q . since ii;(dy) v il1(x) c 11, (S.N~) and (6.26) impliy t ha t

* JQ, for, since 11(t) projects along Q(t)ik, (x'.y')' is a 1,1Iarkov process, and consequently it has a
representation (1.1). Relations (8.24) -(8.26) insure

Q = flQ. (8.14) that A, C and R haive the requiired valuecs. u

Moreover, since Finally, to further stress the importance of the
feedback matrix r.,, let us point out that (8.3) can be

1 t (z.) C H t(z) I. H t(dy) (8.1) written

[see (8.12)], (3.1) holds. Hence, it only remains to x(t) a x.Ct) - Q.(t)Q(t)- 1azt) 4 Q,(t)n(t) (8.27)
prove that x is actually the state process of a reali-
zation S with the prescribed values of A, C and R; then where x. satisfies
B. will have the right value also, and, in view of -112
(8.9), S must be internal. To this end, first note dx. a r~x~dt + B.R dy; X.(O) - 0, (8.28)
that, in view of (5.2) and (5.5), z satisfies the dif-
ferential equation *and z and r, are given by (8.16) and (8.Sb).

dz - r~zdt - QCIR 1 / 2 dw; z(O) = '. (8.16)
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