
AD-AOS9 542 STANFORD UNIV CA DEPT OF OPERATIONS RESEARCH F/9 12/2

THE STAIRCASE AND RELATED STRUCTURES IN INTEGER PROGRAMIMe*.(U)
.1U O8 L J POLENZ N0001fs-7"-0418

UNCLASSIFIED TR-94 N L*flflfflfllflfllflf
EEEEEI/I/IllEE
EIIIEIIIIIIEI
Eh/hhlhElhEEEE
mhElhEElhlhEEE
mEEEEEEEEElhhE
I/EE-EE--EEIII

THE STAIRCASE AND RELATED STRUCTURE

IN INTEGER PROGRAMMING

BY

LYNNE J. POLLENZ

TECHNICAL REPORT NO. 94

JUNE 1980

PREPARED UNDER CONTRACT

NOOO14-76-C-0418 (NR-047-061)

FOR THE OFFICE OF NAVAL RESEARCH

Frederick S. Hillier, Project Director

Reproduction in Whole or in Part is Permitted
for any Purpose of the United States Government

This document has been approved for public release -.. ,

and sale; its distribution is unlimited. 6 jSE P' 2 6 1 80

A ,

DEPARTMENT OF OPERATIONS RESEARCH

STANFORD UNIVERSITY

STANFORD, CALIFORNIA

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION 1

1.1 Problem Definition 1
1.2 Integer Programming Solution Techniques 5
1.3 Decomposition Methods 12
1.4 Overview 21

2 A STAIRCASE DECOMPOSITION ALGORITHM 22

2.1 The Staircase Structured Problem 22
2.2 Outline of the Decomposition Method 25
2.3 Generating Initial Bounds 29

3 A SPECIFIC IMPLEMENTATION OF THE ALGORITHM 35

3.1 Subproblem Solution Methods 35
3.2 The Algorithm in Detail 38
3.3 Forward Pricing Methods 42

3.4 Algorithmic Modifications for Some
Special Cases 46

3.5 Advantages and Disadvantages of the SDA 48

4 OBJECTIVE BOUNDS FOR FATHOMING 52

4.1 A Bound on the Future Objective Value 52
4.2 A Second Type of Bounding Procedure 57
4.3 Computational Comparison of Bounding

Procedures 63

5 EXTENSIONS OF THE STAIRCASE ALGORITHM 66

5.1 Higher Order Staircase Constraint Matrices 66
5.2 Alternative Search Strategies 72
5.3 Nonlinearity 73
5.4 Mixed Integer Linear Programs 76

6 COMPUTATIONAL RESULTS 81

6.1 Implementation and Data Generation 81
6.2 Empirical Success of the SDA 83

6.3 The Influence of Various Problem Parameters . .. 88
6.4 Suboptimal Solution Times 96

7 CONCLUSIONS 98

7.1 Summary 98
7.2 Directions for Future Research 100

REFERENCES 14

.... . - "-- ~ ~~~~~~~~ ~~ ~~~Ill l I . . I 1.

CHAPTER 1: INTRODUCTION " "

1. Problem Definition -

. With the advent of the computer age, liear-progradiuz h,

become a major tool for practical problem solving. Integer program-

ming applications are also widespread, but unfortunately no integer

programming solution method has beenas successful as the simplex method

for linear programming. However, it is often possible to improve

considerably on computation time by exploiting the special structure

of a problem. One common special structure, the staircase structure,

occurs frequently in multitime period models.

The staircase integer programming problem* can be written in

the following form:

maximize cx

(P) subject to Ax < b

x>O

x integer

where the cost coefficients form the n-vector c, the right-hand side

b is an m-vector, and x is an n-vector of nonnegative integral

variables. The m x n constraint matrix A has the special structure

depicted in Figure 1.

Such a matrix A, with all of its nonzero elements found in

blocks centered roughly on and just below the main diagonal, is called

a staircase matrix because of its resemblance to a set of steps. The

submatrices At, t - 1, ... , T, are called diagonal blocks and are of

!1

A

B I A2

1 2 A3

BI A A
r

B3

0
1BT-1 AT

Figure 1: Staircase Matrix

T T

dimensions m r x nt, where I mt W m and I nt
= n. The off-

tl
t=l

diagonal blocks are of size mti x nt, and are represented by sub-

matrices Bt, t 1 1, ..., T - 1, in Figure 1. For any nonzero column

of an offdiagonal block, the associated column of A is called a linking

column, with the corresponding linking variable being the appropriate

component of the vector x. On the other hand, an all zero column in

Bt is associated with a variable that is said to be local to period t

(since it has no effect on period t + 1 throughthe matrix Bt).

If the constraint matrix A is not required to have any particu-

lar structure, problem (P) is called an integer linear programming

problem (henceforth abbreviated ILP). Omission of all the integrality

constraints on the variables results in a linear programing problem

(abbreviated LP) which is called the LP relaxation of problem (P). If

2

only a subset of the variables are constrained to be integral, a mixed

integer linear program (MILP) is obtained. Although the methods developed

in the next chapter assume a pure integer programing formulation,

extensions to the MILP case will be examined in Chapter 5.

Problem (P) can alternatively be formulated as a linear optimal

control problem:

maximize ct xt

(CP) subject to Ax =bt - B tXt I - ut , t 1, ...,T

xt , ut > 0, x - 0

xt integral

The optimal control problem is to choose a sequence of admissable

controls ut and system states xt maximizing the objective function.

Unfortunately, control theory methods have not been developed to deal

with the discrete nature of the integrality restrictions (see Luenberger

[19791).

The above formulation can be generalized to an r th order control

problem, in which the equality constraints of (CP) would involve r + I

consecutive system states. These constraints are given by:

minfr,t-i1

A x b ~ B t -,

t = bt -ttixt i - ut

i i~ 3

th
Analogously, the period t constraints of an r order stair-

case matrix link activities from periods k, t - r < k < t. Carrying

this generalization to the extreme results in the lower block triangular

form, an example of which is shown in Figure 2. The solution techniques

developed in succeeding chapters can be extended to the r th order case,

as we will discuss in Chapter 5.

Figure 2: Block Triangular Matrix

Staircase structured constraint matrices arise in a wide variety

of practical applications. Some notable examples which have been examined

in the literature are: multiplant production allocation problems

(Driebeek [1969]), optimal design of multistage structures (Ho [1975]),

multisector economic planning models (Manne [1970]), and multitime

period production and inventory problems (Glassey [1971], Lasdon [1970]).

Of these applications, the latter are perhaps the most representative.

For this reason, most of the terminology used in this paper will draw

heavily upon the jargon associated with multitime period models.

4

2. Integer Programming Solution Techniques

One way in which to solve the staircase integer programming

problem (P) is to ignore the special structure of the constraint matrix

and apply one of the standard integer programming algorithms. These

algorithms fall into three major categories: cutting plane methods,

group theoretic methods, and implicit enumeration methods. The discus-

sion of these techniques here will necessarily be brief; a more compre-

hensive survey is given by Geoffrion and Marsten [1972], and a fuller

treatment of the theory of integer programming can be found in Garfinkel

and Nemhauser [1972].

The cutting plane approach to integer programming utilizes the

simplex method to solve a succession of linear programming problems

for which the optimal solutions converge to an optimal integral solution

to the original problem (see Gomory [1963]). Initially the LP relaxa-

tion of the ILP is solved, and if the optimal solution x is integral,

the algorithm terminates. Otherwise, an extra linear constraint or

"cut" is added to the LP, which is then resolved via the dual simplex0(
method. This new constraint is chosen so as to eliminate x from the

feasible region without excluding any feasible integral points. Proper

construction of these cuts, using data available from the current

simplex tableau, ensures that after a finite number of iterations the

optimal solution to the augmented LP will be integral, and hence will

also solve the ILP. Recent work has been devoted to determining "better"

cuts, i.e., additional constraints which will irore efficiently lead to

the integer solution (see Balas [1974] and Balas and Jeroslow (19751).

5

An important characteristic of the cutting plane method is that

while dual feasibility is maintained throughout, no feasible integral

solution is generated until the final iteration. Since a large number

of cuts are often required to reach an integral solution, the inability

to terminate the procedure prematurely with a feasible solution could

be a serious drawback if computational resources are limited. Indeed,

computational experience with cutting plane methods has been disappoint-

ing (Trauth and Woolsey [1969]).

The group theoretic approach to integer programming is based

on a transformation first proposed by Gomory [1965]. This reformula-

tion begins with the addition of slack variables to the ILP, so it can

be written in the following form:

maximize cx

(1) subject to Ax = b

x > 0 , integer

For this discussion, which follows that of Shapiro [1968a],

assume that A, b, and c are integral, and that the LP relaxation of

(1) has an optimal solution with associated basis B. By partitioning

x into basic variables xB and nonbasic variables xR, we can transform

(1) to

maximize cRXR + c BxB

(2) subject to RxR + BxB = b

XR9 xB > 0 , integer

6

Solving for xB and dropping the constant c B8-b from the

objective function, we obtain

maximize cxR

(3) subject to xB B= b -1BRx R

XR, xB i 0 integer

where c = cR - CBB R < 0 since B is dual feasible. Now xB will

be integral if and only if B- RxR B- b (mod 1), or equivalently, if

their fractional parts are equal. Assuming for the moment that

(4) B-1 (b - Rx R) > 0 ,

the nonnegativity conditions on xB can be dropped, and the problem can

then be stated solely in terms of xR* Clearing fractions by multiply-

ing through by D = Idet BI yields the group theoretic formulation (GTP):

maximize CXR

(GTP) subject to QxR E q (mod D)

xR > 0 , integer

where Q - D(B_ R - [B1 R]), q - D(B- b - B bJ), and [a) denotes the

integer part of a.

7

Problem (GTP) can be solved using a shortest route algorithm

(see Denardo and Fox [1979]). If the solution xR is such that (4) '

holds, we are done. Otherwise an enumerative type of search, involving

the solution of (GTP) for several different dual feasible bases B,

must be executed (Shapiro [1968b], Gorry and Shapiro [1971]).

The term "implicit enumeration" is descriptive of a wide range

of integer programming algorithms, not all of which can be surveyed in

the limited space here. Attention will be focused on branch-and-bound

methods, since an LP-based branch-and-bound technique was chosen for

the implementation of the staircase algorithm proposed in Chapter 2.

However there are two approaches that should be mentioned at this point,

namely the bound-and-scan algorithm of Hillier [1969] and a new dynamic

programming technique developed by Cooper and Cooper [1978].

Hillier's bound-and-scan algorithm requires as input a "good"

feasible integer solution x', perhaps generated by an heuristic

procedure (e.g., Faaland and Hillier [1979]), and an optimal (non-integer)
0

solution x to the LP relaxation of the ILP. By adjoining the

0
constraints cx > cx' to the set of binding constraints at x , (i.e.,

0*those constraints which are satisfied with equality at x°) , a simplex

is defined which must contain an optimal integer solution. This

simplex, or a suitably transformed equivalent (as used in the accelerated

bound-and-scan algorithm of Faaland and Hillier [1975]), is efficiently

searched by an enumeration routine which, in part, "scans" over the

values of a subset of the variables. Tight conditional bounds expedite

this search procedure.

In case of degeneracy, a subset of the binding constraints is used.

8

Cooper and Cooper have recently demonstrated that dynamic program-

ming methods can be applied to integer programming problems without

necessitating huge storage capacities. Their algorithm searches

0
hyperplanes defined by cx = k, for k an integer, k < cx° . The target

objective value k is reduced only after the corresponding hyperplane

has been shown to contain no feasible integral points. An analytic

representation of the optimal solution to a dynamic programming formula-

tion of the problem allows the algorithm to proceed rapidly with a minimal

amount of storage space.

Let us turn now to a description of branch-and-bound methods. i

First proposed by Land and Doig [1960], these algorithms have been

modified, improved, and refined for the last twenty years. There are

several excellent surveys of this subject, including those of Lawler

and Wood [1966], Geoffrion and Marsten [1972], and Geoffrion [1976].

Consider the integer linear programming problem with bounds,

given by

maximize cx

(5) subject to Ax < b

L< x < U x integer, j f1,..., n

*This is a more general formulation than that given in Section 1, provided

L and U are not restricted to finite values.

Initially, the branch-and-bound algorithm attempts to solve (5),

commonly by applying the simplex method to its LP relaxation. Assuming

9 k

that (5) is feasible and an optimal solution is not immediately discovered,

the set of feasible solutions to (5) is partitioned by the creation of

two new problems, differing from the original only in the bounds on one

of the variables, say xk. The bounds are adjusted to Lk < xk < U'

for one subproblem and U' + I < x < U for the other, where U' is
k -k-k k

an integer such that Lk < U < Uk, Lk # Uk. Each of these subproblems

is placed on a list of nodes, i.e., problems remaining to be solved.

Associated with each node i is a bound, objbnd(i), on the optimal

objective value attainable for the corresponding problem. The variable

xk is called the branch variable, and the entire process is called a

branch.

A skeleton version of a branch-and-bound procedure would invariably

contain the following steps:

1. Initialize the node list to include only (5).

2. Remove a problem from the node list; attempt to

solve it.

3. If the current problem is "fathomed", discard it and

go to step 2. Otherwise continue to step 4.

4. Choose a branch variable Xk, branch, go to step 2.

The procedure halts when it returns to step 2 and finds the node

list empty. If the LP relaxation of (5) has a bounded optimum, finite

termination can be guaranteed.

Ordinarily, the choice of branch variable xk is based on

penalties which are computed at each iteration. These penalties are

a lower bound on the change in the objective value that will result

10

from branching on xk. The up (respectively, down) penalty represents

the minimal degradation in objective value resulting from increasing

(respectively, decreasing) variable j from its current non-integral

value xi to [x] + 1 (respectively, [xj]).

Fathoming (discontinuance of the search for a solution to the

current subproblem i) occurs in three cases:

1. Subproblem i is found to be infeasible.

2. objbnd(i) < objective value of the incumbent x.

3. x', an optimal solution to subproblem i, is found.

The incumbent x is the best integer solution encountered so

far. In case 3, if cx' is greater than the incumbent objective value

cx, x' replaces the incumbent. When the algorithm terminates, the

incumbent is an optimum for (5) (unless no feasible point was found,

in which case (5) is infeasible).

SThe agoe outline'ar give rise to a large assortment of

algorithms. Some of the options which have been implemented pertain

to orderings for removal of problems from the node list and methods

for obtaining objbnd(i). Fathoming techniques, including surrogate

constraint methods (Glover [1968], Geoffrion [1969]), can be found in

abundance in the literature. In addition, judicious choice of the

branching variable can greatly enhance the efficiency of this approach.

Hence devices such as pseudocosts have been developed (see Forrest, et

al. [1974], Gauthier and Ribiere [1977]).

J*

Until the first solution is found, the incumbent objective value is
taken to be -

I1

Computational experience with branch-and-bound algorithms has

been relatively encouraging; they dominate practical usage today.

Partially for this reason, this approach was chosen for the implementa-

tion of the staircase integer programming technique. As this method

is developed in Chapter 3, one specific instance of the general frame-

work described above will be examined in detail.

As reported in Garfinkel and Nemhauser [1973], computational

results with the integer programming algorithms characterized in this

section have fallen far short of expectations. Unlike linear program-

ming problems, for which a theoretical polynomial time bound exists

(Khachian's algorithm, see Gacs and Lovasz [1979]), there is no known

method for solving ILPs with solution times that do not grow exponen-

tially with the size of the data. Indeed, it appears rather unlikely

at this stage that any such algorithm will ever be found, since the ILI

belongs to a class of difficult problems known by the name NP-complete

(see Aho, et al. [1974]). Even the average case behavior of these

techniques is not of polynomial time complexity, (see e.g., Ibaraki

[1977])', s seemd fo bi the' ase in practice for the simplex meihod."

However, current research in the field of expected behavior of ILP

algorithms may lead to the development of solution methods with improved

average case behavior (Karp [1977], Lenstra and Rinnooy Kan [1978]).

3. Decomposition Methods

Decomposition methods, in general, attack a problem using a

divide-and-conquer strategy. Large problems are broken up in accordance

with their special structure into smaller component subproblems which

are treated separately. Dependencies between subproblems are usually

12

handled by a so-called master program which coordinates them and allows

them to exchange information. These techniques have been receiving

a great deal of attention recently because of the huge size of the

models being build to solve current problems, especially in the energy

field.

Despite the remarkable improvement in speed of computers over

the last two decades, large unstructured integer programming problems

remain virtually intractable due to the tendency for solution times

to grow exponentially with the number of variables. However, this

exponential growth rate implies that the smaller subproblems can usually

be repeatedly solved in a small fraction of the time needed for the

original undecomposed problem. A similar observation holds for linear

programming because the simplex method, in practice, solves a problem

in time roughly proportional to the cube of the number of rows. Further-

more, the size of practical linear programming problems can easily

exceed available in-core (high speed) memory capacity, thus slowing

down execution time dramatically. By solving (several) smaller sub-

problems, the need to access external storage devices will be reduced,

along with computation time.

Motivated by the desire to quickly solve large, structured

linear programming problems, Dantzig and Wolfe [1960] developed a

specialized algorithm. Their method, known as the Dantzig-Wolfe

decomposition principle, was designed to solve a linear programing

problem with block-angular structure, i.e., a problem for which one

(or several) rows link otherwise unrelated subproblems. In the formula-

tion below, submatrices Ai. i = 1, ..., k, form the linking rows of

a block-angular constraint matrix with k subproblems.

13

BLOCK-ANGULAR PROBLEM

maximize clx 1 + c2x 2 + + Ckxk

subject to Alx 1 + A2x2 + ... + Ak k I bo

B Ix~ <b

(6) B2 x 2 < b 2

Bkxk < bk

xii 0 =l ..., k

th *

Consider first the constraints of the j subproblem:

(7) Bx < bi. x > 0

Assuming that the feasible region defined by these constraints is

bounded, any feasible xj can be written as a convex combination

of the extreme points w (1), wJ(2), ... , wJ(E1) of (7). Problem (6)

can then be reformulated in terms of these extreme points, resulting

in the full master problem (M):

For a discussion of the modifications necessary for the more general
case, see Dantzig and Wolfe [19601.

14

MASTER PROBLEM (M)

E1 E2 Ek

maximize P p1 (i)w(i) + P2(MW 2(1) + + Pk(i)wk(i)

E E

2 k(8) subject to [X(i)ct(i) + [A2 (i)ct 2 (i) + •'• + A(i)ct(i) < b
i-i i=l i-i

1Xk(i) =1i
i-i

P A2(i) i1

aind

(9)

Ek

a Xk(i) = 1
i=l

Aj() >O0 for j = i, ... , k and i-i, . .,Z

where

Oj()= cj (i)Aj (i)

and

czj(i) = Ajwj(i) for all i,j.

Although this transformed problem has fever rows than (6), in

general it contains many more columns. If it were necessary to generate

all of these columns, this method would not be very efficient. Fortunately

15i

the revised simplex method can be used, so that at each iteration only

the column of (M) which is about to enter the basis has to be computed.

That particular column will be the one with lowest reduced cost, provided
,

this cost is negative. Letting iT be the current simplex multipliers

(dual variables) associated with rows (8) of (M), we can find the appro-

priate column by solving the subproblems S., for j = 1, ... ,J

where S is defined by:

minimize rA jx

(Sj) subject to B x. bj

x. > 0J -

The solution of each Si generates an extreme point w (i) of

(7) with corresponding reduced cost wAjwj(i); by minimizing this over

all j, tMhe efitf£ing cdli mni proauced. Reduced to basic and entering

columns only, problem (M) is called the restricted master problem.

This decomposition approach bears a strong resemblance to decen-

tralized planning techniques within a multi-divisional corporation

(Dantzig [1963]). Regarding the subproblems S as intra-divisional

optimization problems for generating production proposals, the master

problem (M) can be thought of as a managerial problem of coordinating

the various divisions while keeping within the company resources defined

by constraints (8). Proposals are passed from each division to the

If all reduced costs are nonnegative, the current solution is optimal.

16

manager. After evaluating these recommendations, he sends back new

prices (r) on goods, labor and materials. Thus the divisions are moti-

vated to submit additional proposals which can be mixed with their

previous ones to form a company-wide feasible, optimal strategy.

Application of these methods to LPs with a staircase constraint

matrix (as in Figure 1) was first proposed by Dantzig and Wolfe in the

aforementioned paper, and later by Dantzig [1963]. Since then, nested

decomposition methods have been examined by several researchers, includ-

ing Glassey [1973] and Ho and Manne [1974]. Briefly, this approach

begins by decomposing the staircase problem into a period 1 "subproblem",

and a "master" problem consisting of constraints from periods 2, 3, ..., T.

Recursive decomposition of the master problem yields T problems SPJ,

j = 1, ..., T, with the property that SP behaves as a subproblem with

respect to SPk for k > j and as a restricted master problem for SPi

for i < J.

In most versions of nested decomposition, the algorithm proceeds

by solving the subproblems backward in time, from period T to period 1.

During each such cycle, prices are calculated to pass one period back-

ward in time and proposals are generated to be passed one period forward

on the next cycle. Although preliminary computational experience has

been somewhat disappointing, Ho [1977] has recently obtained good results

using multi-proposal generation (see Ho [1974]) on a particular class of

moderate-sized staircase test problems. Furthermore, promising research

is currently being carried out on a variation of the nested decomposition

algorithm that moves forward and backward in time, working from a dual

standpoint (Abrahamson [1980]).

17

Many other techniques for solving staircase LPs have been developed;

a fairly complete list is given by Madsen [1977]. The majority of these

methods try to take advantage of the staircase structure inherited by

the basis matrix in order to simplify calculation and updating of the

basis inverse (see Heesterman and Sandee [1965], Saigal [1966], Dantzig

[1973], and Wolmer [1979]). Although computational experience with

these algorithms is severely limited, Fourer [1980] has thoroughly tested,

with great success, an adaptation of the simplex method for solving

staircase LPs using sparse matrix and partial pricing techniques.

The first application of decomposition principles to integer

programming was Benders Decomposition, a technique designed to solve

mixed variable programming problems, especially mixed integer programs

(see Benders [1962] and Geoffrion and Graves [1974]). The basic idea

of this approach is to convert the problem into an (almost) pure integer

master program, usually with many more rows. These constraints are

generated, as needed, by the solution of an appropriate dual LP. Thus

the concept of a restricted master problem is carried over from Dantzig-

Wolfe decomposition.

Exploitation of special structure in an ILP began with the work

of Schrage [19731 on solving pure-integer problems with either stair-

case or dual angular structure. A problem is said to have the latter

structure if the constraint matrix has a relatively small set of columns

linking otherwise independent subproblems, as in Figure 3. Note that

the dual LP has a block-angular structure.

In order to solve this problem, Schrage's strategy is to execute

a branch-and-bound search, always branching first on linking variables

(those variables corresponding to the linking columns formed by

18

B A

B1 A
B2 [2

B3 A3

Figure 3: Dual Angular Matrix

submatrices B1, B2, ..., B in Figure 3). After all such variables

are fixed at integral values, the problem decomposes naturally into

its component subproblems, which may then be solved independently.

For a staircase matrix with k diagonal blocks, the crucial

observation is that once the variables from period [k/2] + 1 have been

fixed at an integral value, the matrix decomposes into two independent

staircase submatrices with [k/2] and [(k - 1)/2] blocks. Applying

this idea recursively to the component staircase problems produces a

branching order that ultimately leads to maximal decomposition of the

problem.

Limited computational experience with this staircase algorithm

has demonstrated that it is extremely sensitive to the number of linking

columns. Moreover it has yet to be tested on problems of even moderate

size.

19

As a modification to Schrage's approach to dual angular problems,

Reardon [19741 suggested decomposition into independent subproblems

from the start of the search, that is, before any of the linking variables

are fixed. This decomposition is achieved by temporarily relaxing the

implicit constraint that each linking variable must attain the same value

in the solution to each subproblem. As in Schrage's method, the linking

variables are considered first. As soon as a branch is taken on a

linking variable in one subproblem, that same branch is repeated in every

subproblem. Thus the implicit constraint is reimposed whenever a branch

is taken. True decomposition occurs when all the linking variables have

been set to an integral value. Because the problem is treated as if

decomposed from the start, however, the computational expense of pivoting

in the large tableau associated with the original problem is avoided.

In addition to Reardon's favorable computational results, application of

this method to a specialized integer linear programming problem has

proven successful (Kochman and Pollenz [1978]).

Block-angular ILPs have also been solved using decomposition

methods. Treating the right-hand side b0 of the linking rows of (6)

as a set of precious resources to be shared among the subproblems,

Kochman [1976a] executes a branch-and-bound search of the feasible

distributions of b0. This technique, called resource decomposition,

recognizes an allocation (BI, B2 , ... , Bk) as feasible if

k

(10) B1 =b 0
i= 1

and if for i 1, ... , k, there exists an integral xi such that

(11) holds.

20

A x <
Bi< i

(11) Bixi !bi

x > 0

Notice that this transformation of the model has a dual angular struc-

ture, with the allocation variables i as the linking variables.

Using an adaptive version of Reardon's method, Kochman reported excel-

lent computational results for several test problems.

4. Overview

To supplement the background information provided in the

preceding sections, several important definitions are presented in

the first section of Chapter 2. These concepts are necessary for the

development of the staircase decomposition algorithm outlined in the

latter part of that chapter. The third chapter contains a detailed

description of the procedure, including modifications for some special

cases. Objective bounds for fathoming are developed in Chapter 4,

along with computational experience on the effectiveness of such bounds.

In Chapter 5, the staircase decomposition method is extended to higher

order staircase matrices, mixed integer linear programs, and certain

nonlinear integer programs. Computational results, including compari-

son with a branch-and-bound algorithm applied to the undecomposed

problem, are presented in Chapter 6. Conclusions and directions for

future research are given in the seventh and final chapter.

21

CHAPTER 2: A STAIRCASE DECOMPOSITION ALGORITHM

1-

1. The Staircase Structured Problem

A staircase matrix A (see Figure 1) is formally defined by a

partition of the m rows into T disjoint subsets and the n columns

into T (different) disjoint subsets. Rows (columns) which belong to

the k subset of this partition are said to be constraints (activities)

of the k period. Furthermore, the matrix is defined to be a lower

staircase matrix if these periods are ordered so that constraints of

period k have nonzero coefficients only in columns of periods k and

k - 1. Alternatively, if the period k constraints involve only columns

from periods k and k + 1, the matrix is called upper staircase. Since

any upper staircase matrix can be permuted to lower staircase form by

simply reversing the order of the partition (see Figure 4), these two

characterizations are equivalent. Therefore, without loss of generality,

we will henceforth assume a staircase matrix to be in lower staircase

form.

A1 0 A 3 B 2

B A - A2 B I

0 B2 A3 0 AI

Lower Staircase Form Upper Staircase Form

Figure 4: Equivalence of Staircase Forms

22

The jth variable of period t will be denoted by x t(j). As

defined in Chapter 1, x t(j) is a non-linking or local variable if it

is associated with a column of A which has nonzero elements only in

the rows of period t. Linking variables appear with nonzero coefficients

in constraints of two adjacent periods. Linking and non-linking con-

straints can be defined in a similar manner.

The version of the staircase integer programming problem that

will be solved by the decomposition method to be developed here can be

formulated as follows:

maximize cIxI + c2x 2 +*.. + cT-1xT_1 + CTxT

subject to A1x 1 b1

B1X1 + A2x2 < b2

(P)

BT- XT-1 + ATXT < bT

L t(j) xt (j) < Ut (j), for j = n, nt, and t = 1, T

x t integer, t 1, ... , T

where the lower and upper bounds Lt(j), Ut(j) are finite. In Section

3 we will explore the nature of the bounding restriction and consider

methods for generating such bounds when none are given. Note however,

that no restrictions are placed on the coefficients of the submatrices

At, Bt, or the vectors b and c except that they be rational.

23

The decomposition algorithm will operate by solving the subproblems

S t = 1, , T, given by: r.

maximize ctx

(St) subject to Atxt < bt - B t-lXt-i

L <x <U
t - t- t

x integer

where B = 0.
0

The term B t-xt_1 has been moved to the right-hand side of

the constraints because it is assumed that by the time the period t

subproblem is solved, the values of the period t - I variables have

already been set. Thus both the optimal solution and the set of

feasible solutions to subproblem St is dependent upon the solution

to subproblem Stl . In fact, a more accurate notation would reflect

this conditional nature of subproblem t, as in St(xt-l). Nevertheless,

for the sake of brevity the notational dependence on xt_1 will be

dropped unless special emphasis of this dependence is deemed appropriate.

A vector x = (xl, x2, ... , Xk) such that xt is feasible for

St. for 1 < t < k, will be called a partial solution for (P). If there

exists a vector X' = (x, ... Xk+, ... , xT) such that xt is

-feasible for St, for t > k, then x' is both a completion of x and

a complete solution. This terminology differs from conventional defini-

tions in that a completion is required to be feasible.

24

2. Outline of the Decomposition Method

Underlying the decomposition algorithm is a basic search pro-

cedure for enumerating all the feasible solutions to each subproblem

St for a fixed right-hand side. This search procedure can utilize any

of a number of integer programming solution techniques; the advantages

and disadvantages of some of these methods will be discussed in the

next chapter. All that is required of the search procedure is that it

generate all feasible solutions to St in some systematic way (without

repetition), so that the search can be suspended at some point and resumed

without difficulty later.

The overall structure of the algorithm resembles that of an

enumerative search over the set F, which is defined by:

F = {(x , x2 I KT)Jx t is feasible for S txt1), t = 1, ... , T}.

Clearly, the set of feasible solutions to (P) is a subset of F. If

we consider the subproblems S in their proper time sequence, (i.e.,
t

from 1 to T), it becomes apparent that an element (xl, x2, ... , xT)

of F also satisfies the constraints of (P). Thus the two sets are

equivalent, and problem (P) can be solved by finding that element of F

which maximizes the objective value of (P).

The algorithm begins by searching for a feasible solution x

to subproblem SI . If S1 is infeasible, then so is (P), since the

constraints of S1 are identical to the period 1 constraints of (P).

Suppose then that S1 is feasible. Once the search routine finds a

feasible point xl, the search is temporarily halted, and a new search

25

is begun for solutions to subproblem S2 given xI. This process of

solving subproblems and moving forward to the next time period continues

until the current solution path is fathomed. As in a standard branch-

and-bound search (see Section 2 of Chapter 1), fathoming while solving

St occurs in these three cases:

I. All feasible solutions to St (if any) have been

explored for possible completions of the current

partial solution (xI , x2, x t).

2. An objective value bound proves that no unexplored

completion of (xi, x2 9 ... , x) can result in a

better solution than the incumbent.

3. t = T, and an optimal solution to S has been
T

encountered.

Upon fathoming in cases I and 2, the algorithm backtracks to

the previous subproblem St_ 1 , and continues the search procedure from

the point at which it left off. In case 3, the objective value of the

newly generated complete solution x must be greater than the incumbent

objective value (otherwise we would have fathomed due to criterion 2).

After replacing the incumbent with x, the algorithm backtracks to the

last time period T - 1 to seek a better completion of (xI , x2, ..., XT2).

Each time a forward step to period t is taken, a new search for
feasible solutions to St is begun. Thus a subproblem solution may
be examined several times along different solution paths.

26

This decomposition algorithm, in its most general form, can be

summarized in 6 steps:

Step 1. Initialization: Input all data. Set k = 1.

Step 2. Search Procedure: Find an unexplored, "promising" feasible

solution to Sk' If no feasible solution xk that can yield

an improved complete solution exists, go to Step 5. Otherwise

go to Step 3.

Step 3. Forward Step: If k = T go to Step 4. Otherwise, suspend

and store the current search procedure position for Sk, alter

the right-hand side of Sk+ 1 according to the newly set value

of xk9 increase k by 1, and return to Step 2.

Step 4. Improved Complete Solution: Record the solution (x,, x2, ..., xT)

as the new incumbent. Go to Step 2.

Step 5. Backtrack Step: If k = 1, go to Step 6. Otherwise decrement

k by 1, restore the search procedure of Sk and go to Step 2.

Step 6. Termination: Halt. The incumbent is an optimal solution,

unless no complete solution has been found. In that case, no

feasible solution to (P) exists.

A feasible solution is considered "promising" in Step 2 if the

objective value bound on the associated partial solution (xI , ..., xk)

is greater than the incumbent objective value z = cx. A very crude

objective bound is given by (12).

27

k T nt
(12) z I c t x t + Y c t(j)<q. tw + (I - ,)u t()t=l t=k+l j=l L(

where

(0 if c t(j)> 0

1 if (j) < 0

Although this bound is valid, and is perhaps useful for exposi-

tion purposes, it is not very effective in practice. Improved objec-

tive bounds, which greatly speed the fathoming procedure, are developed

in Chapter 4.

Termination, Step 6, occurs when all feasible solutions to S1

have been examined for completions. Finite termination is highly

desirable if we actually intend to implement this algorithm. To show

this property, let M be the number of complete solutions examined by

the procedure described above. Define Nt by:

n
t

(13) Nt = (U - L(i) + 1)

Then we have the following

T
Theorem: M < 1n N

-- t.1 t

28

i 4.

Proof:

At most, each subproblem St has N t feasible solutions. Now,

if the number of periods, T, is 1, then M is trivially bounded by

N . Inductively assume that if T < p, then the theorem is true.

Next suppose T = p + 1. For each feasible solution x to S1

the algorithm will consider all feasible solutions (x2 , x3, ... , x)

to the remaining subproblems (where S2 is understood to have right-

hand side b2 - B1xl). Since the remaining subproblems form a staircase

problem with p periods, the induction hypothesis applies, and we obtain

p+l T
(14) M < N I N = urN

- l 2 t t=1 t

Thus, by induction, the theorem is true for all T.

Since we will choose to implement this algorithm with some

integer programming search technique that finds all the feasible

solutions to a subproblem (without repetition) in a finite amount of

time, finite termination of the algorithm is guaranteed.

3. Generating Initial Bounds

The formulation of problem (P) given in Section 1 includes

finite upper and lower bounds on the variables. In most applications,

lower bounds (usually all zero) are given, but upper bounds are often

omitted. Sometimes maximum values are clear from the interpretations

7or physical meanings of the variables. Whether or not upper bounds

29

are given or obvious, the staircase decomposition algorithm relies on

their existence. Without them, finite termination is not guaranteed.

In this section, we will consider the problem of finding upper

bounds for the general integer programming problem (ILP) given below,

where the elements of the m x n matrix A are all rational numbers.

maximize cx

(ILP) subject to Ax < b

x > 0, integer

Let (LP) denote the LP relaxation of (ILP). The following

result (due to Gomory) demonstrates that boundedness of (ILP) is

directly related to that of (LP).

Lemma: Suppose (ILP) is feasible. Then the objective value of (ILP)

is unbounded if and only if (LP) has unbounded objective value.

Proof:

->: If (ILP) has unbounded objective value, then clearly any

relaxation of (ILP) cannot have a finite maximum. Thus, the objective

value of (LP) would also be unbounded.

<--: Let x be feasible for (ILP). Suppose that (LP) is dual

infeasible, although primal feasible. Applying the simplex method

results in a basic feasible solution x, basis B, and a ray r of

the form:

30

1l, J =k

r -aik X j is basic in row i

0, otherwise

Here xk is some nonbasic variable and aik = (B-A)ik < 0.

The ray r has rational elements because A is assumed to be

a rational matrix. Therefore, for some constant a > 0 sufficiently

large, all components of ar will be integral. Since r is a ray,

each element of Ar < 0 and cr > 0. Thus x + icr, for i = 1, 2, ... ,

is a sequence of points feasible for (ILP), with lim c(x + iar) =

This lemma does not necessarily hold for the case of irrational

data (see Kaneko [1974]).

According to the lemma, if (LP) is dual infeasible, (ILP) is

either infeasible or has unbounded objective value, and hence is of

little further interest. Assume then that (LP) has optimal objective

value z < -. To partly answer the question of when upper bounds on

the variables do exist, we have the following three theorems.

Theorem 1: If c > 0 for all J - 1, ..., n, then for all k such

that ck > 0, xk < [zo/Ck].

Proof:

Suppose Yk > (zo/ck). Then any solution x > 0 such that

Xk - Yk would have objective value greater than z0 . Thus x could

not be feasible for (LP), and therefore it is also infeasible for (ILP).

31

With the addition of the integrality restriction on xk, the

desired bound is obtained. N21

Theorem 2: If c J< 0 for all j 1, ... , n, and x is a feasible

solution to (ILP), then for all k such that ck < 0, xk k [cX/ckJ.

Proof:

Suppose yk > cX/ck' so that CkYk < cx. Then any solution

x > 0 such that xk = Yk would have objective value cx < CkXk < cx.

Thus x could not be an optimal solution to (ILP).

Adding the integrality restriction on xk results in the upper

bound given above.

Theorem 3: If for some row i, A(i,j) > 0 for all j = 1, ..., n, then

for all k such that A(i,k) > 0, xk < [b i/A(i,k)].

Proof:

n
If xk > bi/A(i,k), then the constraints I A(i,j)x < bi

j=l i
and x > 0 cannot be satisfied simultaneously. After taking into

consideration the integrality restriction on xk, the result is proven.

Thus upper bounds are guaranteed to exist if any of the following

conditions hold:

(1) all costs are strictly positive;

(2) all costs are strictly negative and a feasible
solution is known;

(3) at least one row of A has all coefficients strictly
positive.

32
!4

Upper bounds on some of the variables may still be available

from Theorems 1, 2 and 3, even if none of the three conditions above

holds. In fact, after upper bounds Uj, for j c U, have been discovered

for a subset U of the variables, the hypotheses of the three theorems

can be slightly weakened. The following corollary to Theorem 3 is

illustrative of the kind of result easily obtained from any of the

three theorems.

Corollary: If for some row i, A(i,j) > 0 for all j t U, then for

all k t U such that A(i,k) > 0, then

(15) xk < (bi - yA(iJ)U 1)/A(ik)

where

I0, A(i,j) > 0

A(i,j)
< 0.

For the general case in which no special conditions are placed

on the cost coefficients or the constraint matrix, no guarantees can

be given that upper bounds will exist on all variables. If no such

maxima are given or readily discernable, various procedures can be

executed in an attempt to generate the required bounds.

For example, each variable xk can be maximized subject to the

constraints of (LP) and the known upper bounds. If this linear program

has a finite optimum, its objective value will be an upper bound on xk-

Unfortunately, there is no guarantee that such an upper bound exists.

33

The heuristic procedure of repeatedly trying to find bounds by applying

the corollaries of Theorems 1, 2 and 3 and solving the linear program

mentioned above may fail to find maximum values for all the variables.

Even in this case, the staircase decomposition algorithm (in a slightly

modified form) is likely to terminate in a finite amount of time,

particularly when the problem is feasible with a bounded optimum. How-

ever, finite termination is not guaranteed, and another solution method

might be appropriate under these circumstances.

34

CHAPTER 3: A SPECIFIC IMPLEMENTATION OF TH1E ALGORITHM

1. Subproblem Solution Methods

Finite termination, while necessary, is not sufficient to

ensure algorithmic efficiency. If all the numerous solutions to (P)

had to be examined explicitly by the algorithm described in the preced-

ing chapter, a lot of computer time would be wasted. This is avoided

by generating good objective function bounds for use in fathoming

(see Chapter 4). Another important factor in computational speed is

how quickly the search procedure can find all the interesting feasible

solutions to each subproblem. Also, the order in which these feasible

points are discovered can have a substantial impact on the total number

of partial and complete solutions explored.

Several different integer programming techniques could be used

for the search routine. For example, the dynamic programming hyperplane

search algorithm of Cooper and Cooper (see Chapter 1) could easily be

modified to generate all feasible solutions to a subproblem. Due to

the nature of the hyperplanes used in this method, these solutions

would be generated in order of decreasing objective value. This "greedy"

approach, while most efficient in a local sense, would probably prove

to be far from a globally optimal search strategy for the majority of

staircase problems. A good search strategy must take into consideration

the effect of the subproblem solution on subsequent (future) subproblems;

It must in some sense "look ahead".

Another possible search procedure would make use of cutting

plane methods. Although cutting planes are used to generate only an

optimal integral solution to the ILP, the method can be extended to the

case in question.

35

,

Proposition: A variant of the cutting plane method can be used to

find all feasible solutions to a bounded ILP.

Proof:

For convenience, assume A, b are integral. Also, transform

the problem, if necessary, so that all lower bounds are 0.

Apply the cutting plane method to the ILP tc obtain an optimal

integral solution y. Since y is an extreme point solution to the

last augmented LP, there is associated with y a basis B, and a set

of nonbasic variables N. Add the following constraint to the augmented

LP:

(16) x. > 1
jEN

J -

Clearly, y violates this constraint. Furthermore, consider

any feasible integral point x which also violates this constraint.

Since x > 0 and x is integral, we must have x. = 0 for all j E X.

However, the unique solution to the constraints with the remaining

(independent) set of variables is y. Thus the hyperplane (16) eliminates

y without excluding any other feasible integral points.

Note that the cutting plane approach described above also finds

solutions in order of decreasing objective value. As mentioned before,

this is not particularly desirable. However it is possible that the

search order could be perturbed in a useful way, by adjusting the cost

coefficients to reflect the impact of each variable on the optimal solu-

tion of the next subproblem.

If A, b ore rational, the right-hand side of (16) must be adjusted
to a sufficientlv small positive £.

1
36

A far more serious drawback is the large amount of setup time

necessary to find the very first feasible subproblem solution, even

after the problem has been solved previously with a different right- v
hand side. For a typical problem, each subproblem (after the first)

will be solved many times for many different values of the right-hand

side. Thus a method which has a short initial setup time, or which can

be modified to reduce subsequent setup times after the initial subproblem

solution, is highly desirable. Group theoretic methods and the accelerated

bound-and-scan algorithm both seem disadvantageous because they do not

have either of these properties.

After solving an ILP with a cutting plane algorithm, parametric

changes in the right-hand side can be handled by appropriate modifica-

tions in the right-hand sides of the Gomory cuts (see Holm and Klein

[1978D). Dual feasibility is always maintained by this procedure, but

additional cuts may be necessary to reestablish primal feasibility.

Limited computational experience suggests that this parametric version

of the cutting plane method is more efficient than solving the problem

from scratch. However, it does require additional storage space and

computation of a significant number of extra vector products.

Reoptimization after a change in the right-hand side is relatively

easy for the simplex method. In fact, dual simplex reoptimization after

a branch is standard procedure for many LP-based branch-and-bound codes.

In addition, setup time is relatively brief and the branch-and-bound

search order is very flexible. Prices, penalties, and/or pseudocosts

can be employed to modify the search order to reflect the structure of

subsequent subproblems. Finally, computational experience with this

37

solution technique has been relatively encouraging; most of the int,'ger

programming codes commercially available employ some version of this

method. In light of the above, an LP-based branch-and-bound routine

was selected for the implementation of this decomposition algorithm.

2. The Algorithm in Detail

It is now possible to elaborate on the description of the stair-

case decomposition algorithm (SDA) given in Chapter 2. Before proceed-

ing with this characterization, a few definitions are needed. First,

let maxc(k) be an upper bound on the objective value of the following

problem:

T
maximize I c x

t=k+l

subject to (xl, x2, xT) feasible for (P)

One valid, although inefficient, bound is given by (17), where

is as defined in (12).

n

T t
(17) maxc(k) I c (j)(6 '4I(i) + (1 - 6 lU(j))

t=k+l j=l

Next, let

k-l

cumobj = cx t = cumulative objective value for S1, S2 t ..., Sk-l,
t=l

along the current solution path;

incval - objective value of the incumbent x;

38

zk(i) = optimal objective value of the LP relaxation of node i

(descended from subproblem k);

GPk(i) = maximum Gomory penalty (see Tomlin [19711) associated with

node i of S k;
b = bk - Bk k = updated right-hand side of Sk'

With the exceptions noted below in Step 2, the following is a

detailed characterization of the SDA. (See Figure 5 for a flow diagram

of this method).

Staircase Decomposition Algorithm (SDA)

Step 1. Initialization: Input data. Set k = 1, bI = bl, cumobj = 0.

Also let incval = -- or some known lower bound on the objec-

tive value of (P). Go to Step 2.

Step 2. Bound Generation: Compute maxc(t), for t = 1, 2, ..., T - 1.

(See Chapter 4 for a precise definition of these objective

value bounds and a description of the procedure for determining

them.) At the same time, calculate some prices P t(j),

j = 1, ..., nt, (see Section 3) for use in determining branch

strategy. Go to Step 3.

Step 3. Initial Subproblem Solution: Solve the LP relaxation of Sk

with right-hand side bk. Save the optimum basis inverse for

later use in Step 5. Go to Step 4.

Step 4. Branch-and-Bound Search: Start (or continue) an LP-based

branch-and-bound search for all promising, feasible solutions

to Sk(xk-l). This search is guided by penalty calculations,

39

B N Step 1. Initialization:BEGIN
input data, set k = 1

SSte2. Bounding Procedure:
compute maxc(.), prices

/.. Initial Solution:
solve LP relaxation of Sk

Ste._p _4. Branch-and-Bound Search:

> search for an unexplored, promising
solution to S k . Has one been found?

Is k = T? S . Backtrack Step: No
I k=k-. Is k =O?

Ye No

Step 6. New Solution: Step _5. Forward Step:
Replace incumbent k = k + 1. Reoptimize

and update Incval. if not is t time at S k -

Can we reoptimize? Yes
Yes No

Step_8. Termination:
report optimum, halt.

END

Figure 5: Flow Chart of the Algorithm

40

although pseudocosts could be substituted. Continue the search

until one of the following fathoming conditions holds at the

current node i:

(a) the LP relaxation of node i is infeasible.

(b) cumobj + FLOOR(Zk(i) + GPk(i)) + maxc(k) < incval.

(c) an integral solution xk has been encountered.

Upon fathoming in cases (a) or (b), backtrack within this

subproblem search. If the search then terminates (because all

nodes have been explored), jump to Step 7. Assuming (a) and

(b) are not satisfied at node i and (c) holds, mark node i

as fathomed. Then if k = T, (c) implies that cumobj + zT(i) >

incval. Therefore a new complete solution with improved objec-

tive value has been discovered. In this case, go to Step 6.

For k < T, go to Step 5.

Step 5. Forward Step: Suspend and store the branch-and-bound search

of S k . Set cumobj = cumobj + ckxk and bk+l = bk+l - Bkxk -

Set k = k + 1. If this is the first time we have tried to

solve Sk, go to Step 2. Otherwise, restore the basis inverse

saved in Step 3 and reoptimize via the dual simplex method.

Go to Step 4.

Step 6. Improved Complete Solution: Replace the incumbent x with
T

(xI, x2, ... , XT). Set incval = c x . Return to Step 4.
t=l t t

FLOOR(a) - greatest integer not greater than a. This rounding off
assumes integral costs.

41

Step 7. Backtrack Step: Set k = k - 1. If k = 0, go to Step 8.

k-i

Otherwise reset cumobj = X c x . Restore the search of
t=l t t

Sk(xkl) to its most recent state and go to Step 4.

Step 8. Termination: If incval = - , report the infeasibility of

problem (P). Otherwise report the optimal solution x and

its objective value incval. Halt.

3. Forward Pricing Methods

While executing the subproblem branch-and-bound search the choice

of branch variable and direction (up to the next higher or down to the

next lower integral value) should be based at least partly on the coef-

ficients of the entire problem, not just one subproblem. In order to

accomplish this, we need some measure of the global effect of changing

the value of each variable.

By the time subproblem Sk is solved, the variables of period

t, for t = 1, 2, ..., k - 1, have already been fixed at integral

values. Thus, a change in xk(j) can only affect the optimal objective

value (and feasibility) of the present and future, that is, of subproblems

Sk, Sk+l' ..., ST. Since the algorithm is currently working on Sk' it

has available sufficient information (from the simplex tableau) to

compute Tomlin's improved penalties (see Tomlin [1971]). These penalties

are used to gauge the first order effects of a change in xk(j) on the

present period k. The effect on subsequent periods is more problematical

because the problem is decomposed; the SDA is not allowed to examine

more than one period at a time once the iterative portion (starting with

Step 3) has begun.

42

To circumvent this restriction, consider the problem (Rk)'

which is the LP relaxation of the aggregation of the remaining

unsolved subproblems Sk+l' ... ST

T
maximize I crx

t=k+l

(Rk)

(18) subject to BtIxt-i + Atx t bt, t = k + 1, ... , T

Lt(j) < xt(j) < Ut (j), j = 1, ... , nt, t = k, ... , T.

Suppose we temporarily adjoin to (Rk) the constraints xk = Lk and

solve using the simplex method. Since the majority of practical

problems will have Lt
= 0 and bt > 0 for all t, it is plausible

to assume that this problem is feasible. Under this assumption, an

optimal solution (x, +, ... , 0 0) exists. Furthermore, this vector

represents the best that can be achieved in periods k + 1, ..., T,

given that each xk(j) is fixed at its lower bound.

For the augmented problem, let 7 be the optimal simplex

multipliers (dual variables) associated with rows (18) of (Pk). Then

the reduced cost, or price, Pk(j) associated with increasing x(j)

from Lk(j) is given by (19).

mk+l
(19) P k(J) - I T(S)Bk(SJ)

s=l

Clearly this price Pk(j) is not a valid bound on the minimum

change in objective value for (Rk) given an increase in xk(j); the

other period k variables have been artificially forced to their lower

bounds in order to compute Pk(j). Therefore these prices cannot be

used, as penalties are, to speed fathoming and ascertain which branches

are forced (a branch is forced if condition (20) holds, where PEN can

be either an up or down penalty on xk(j) at node i).

(20) cumobj + FLOOR(zk(i) + PEN(j)) + maxc(k) < incval

The prices Pk(j) are effective as measures of the general

nature of the future impact of increasing xk(j), especially when they

are used for comparison purposes only. When comparing Pk(j) with

P k~'), we are in some sense judging the relative value to future

periods of one unit of activity xk(j) and one unit of activity xk(J').

Alternative means of estimating the impact of a change in xk(j)

on the remaining periods do exist. For example, the single constraint

xk(j) - Lk(j) could be appended to (Rk) and a reduced cost computed

after solving this problem. However it iJ not clear that these prices

would necessarily be more effective in guiding the subproblem search.

Furthermore, a significant amount of extra computational work would be

required. The prices Pk(j) can be easily calculated at the same time

as the bound maxc(k), as we shall see in Chapter 4. In fact, Pk(U)

can be obtained at essentially no additional cost in computer time and

no increase in program complexity. Therefore, if these prices lead to

a reasonable search strategy, they are preferable to the many other

i possibilities.

As for the fathoming criterion, (Step 4), we do not round off if the
costs are not all integral.

44

" " I I I ' "

It should be noted that the prices Pk(J) are more likely to

give an accurate indication of the nature of the true future penalty

functions if Uk(J) - Lk(J) + 1, as in a binary integer program. To

understand this, consider a problem for which Uk(j) = 10, Lk(j) - 0.

At various times during execution, branch decisions may have to be made

for xk(J). Clearly Pk(j) is a better criterion for judging the cost

of increasing xk(j) from 0 to 1 than from 9 to 10, or even from

1 to 2. Unfortunately, it is not computationally feasible to calculate

prices for all levels of each variable, particularly if the values of

the other variables are not held fixed at their lower bounds. For this

reason, Pk(J) is used for guiding the search in spite of the drawback

mentioned above. Substantial improvement in search direction would be

expected if some more dynamic method of calculating future penalties

were implemented (see the discussion on pseudocosts in Chapter 7).

Only computational experience can give a true evaluation of the

effectiveness of the look-ahead prices Pk(J). The results reported

in Chapter 6 were obtained by directly adding the price Pk(j) to the

up penalty for variable xk(J) after fathoming and forced branching

tests are performed. Thus these prices are used only to help guide the

branch-and-bound search, so that feasible solutions to Sk which are

more likely to yield improved complete solutions are examined first.

Empirical evidence suggests that for most classes of test problems,

the look-ahead prices do indeed lead to good search directions.

45

'Ii| IIII llr I|II

4. Algorithmic Modifications for Some Special Cases

The version of the SDA described in Section 2 was designed to

find an optimal solution to the most general staircase ILP formulation.

Often additional information on the structure or characteristics of the

constraint matrix A is available. There are a few simple ways to

alter the SDA to take advantage of two of these special cases.

One special case occurs when all coefficients of the constraint

matrix are nonnegative. To take advantage of this property, the right-

hand side bt of St must be updated and tested after each branch

on a period t - 1 variable (normally b is calculated after at

forward step). Since Bt 1 > 0, we can generate the bound (21) on the

change -Bt-ixt_1 in the right-hand side of St, where xt (j) is

the lower bound for xt1l(j) at the current node.

(21) -B t lXt_ 1 < -B t -1xt -1

Without loss of generality, assume that the problem has been transformed

so that Lt 0 for t = 1, ..., T. Then an extra fathoming condition,

given by (22), can be tested in Step 4 of the SDA.

(22) bt -B t-l t- > 0

If (22) is violated, S t(xt I) will be infeasible, since both

At,x > 0. Thus we can immediately fathom the current node; at this

point it is not necessary to take a forward step to the next subproblem

Recall that each branch to a new node resets the variable bounds.

46

(which would entail branching on all the period t variables not

currently fixed at some integral value) to determine its infeasibility. V

This increased fathoming power (at minimal computational expense) should

enhance the efficiency of the SDA for this special case.

The staircase constraint matrix A may have a special type of

structure in which many of the variables are local to one period. In

this case, the matrix A takes on the form exemplified in Figure 6.

0F

Figure 6: Staircase Matrix with Non-Linking Columns

As originally suggested by Schrage [1972], problems with some

linking and some non-linking columns can be solved most efficiently

by branching first on the linking variables. This idea can be applied

to the subproblem branch-and-bound scheme (Step 4) of the SDA. After

all the linking variables j of period t have been fixed at integral

values xt(J), the remaining problem is truly independent of the other

47

subproblems. Thus the local part of subproblem t can immediately

be solved to optimality; it will not be necessary to examine every

feasible local solution.

Alternatively, a solution to the local part of St need not be

calculated right away. If an upper bound on the optimal solution to

this local problem (such as the optimum value of its LP relaxation) is

generated, the SDA can take a forward step to the next time period.

The algorithm would return to find the optimal values for the local

variables only after finding a promising set of values for the linking

variables in all time periods. This additional decomposition nested

within the staircase decomposition would allow the SDA to disregard

the local variables (as far as branching on them is concerned) until

the problem is truly decomposed into T independent periods. As

demonstrated by Reardon 11974) on dual angular problems, such a branch-

ing strategy leads to considerable improvement in execution times.

5. Advantages and Disadvantages of the SDA

Is the SDA a "good" algorithm? The best measure of the merit

of a solution procedure is how well it performs in practice. The

analysis of computational experience in Chapter 6 shows that decomposing

the problem does usually lead to a substantial decrease in execution

times. However it is also important to understand why this method

succeeds, and what its weaknesses are, so that we may continue to

improve it.

I
48

-j

The SDA possesses all of the intrinsic advantages of decomposi-

tion methods. The branch-and-bound search, Step 4, is carried out on

small subproblems, each with approximately n/t variables and m/t

rows. These subproblems can generally be solved entirely in core, i.e.,

without having to access external storage devices such as disks, tapes,

and drums. In contrast, valuable computer time may be squandered by

excessive paging while solving the full problem, especially in a time-

sharing environment.

The reduced size of the subproblems also considerably accelerates

the execution of the linear programming segments of the algorithm. In

fact, the solution times for the LP routines decrease faster than

linearly with the number of subproblems, because the simplex method

solves a typical practical problem in time roughly proportional to the

cube of the number of rows. This is a crucial observation, since a large

percentage of the total execution time of the LP-based branch-and-bound

method for solving ILPs is spent in the dual simplex reoptimization

phase. The speed of this part of the procedure enables the SDA to

branch and to perform the reoptimization after a forward step very

efficiently.

An added bonus of the reduction in problem size is that the

small problems tend to be more stable numerically. This means that

basis reinversion can be done less frequently.

One of the most important properties of the SDA is its ability

to quickly locate good, feasible solutions. The two main reasons that

it is able to accomplish this are the rapidity with which feasible

subproblem solutions can be found and the excellent search directions

normally produced by the combination of look-ahead prices and Tonlin's

49

improved penalties. The advantage of finding feasible, near-optimum

integer points early is that for very large problems, the cost of solu-

tion to optimality may be prohibitive. Premature termination may be

the only option available in this case. Computational results indicate

that early termination of the SDA quite often yields a better solution V
than comparable termination of a standard branch-and-bound code. In

addition, the SDA usually finds its first feasible solution within a few

seconds (for moderate-sized problems). It is therefore likely that the

SDA would be a good choice as an heuristic to generate starting solutions

for methods such as Hillier's accelerated bound-and-scan algorithm.

Further modifications along heuristic lines are discussed in Chapter 7.

One disadvantage of the SDA in comparison to a standard branch-

and-bound approach is that the branching order is partially restricted;

all variables in time period t must be set at fixed values before the

algorithm can consider branching on period t + 1 variables. If it

should happen that some variables in the last few periods are very

important, then a branch-and-bound search working on the undecomposed

problem might prove superior by virtue of the ability to branch on

these crucial variables first. Fortunately, problems arising from

practical multitime period models generally discount costs over time.

In the discounted case, variables in early periods should be given priority

over those in later periods. Therefore the lack of full choice in

branching strategy should not be a serious hindrance to expeditious

solution of the problem.

Another problem associated with the SDA is that it has less

fathoming power than a standard LP-based branch-and-bound code. The

SDA can not fathom a node simply because the optimum LP solution to

50

the current subproblem is integral; other feasible integral points may

prove globally superior to this locally optimal (optimal for the current

period) solution, so they must be considered. Furthermore, the standard V
code has the advantage of full information at each stage. This complete

information allows it to calculate the strongest possible conditional

bounds for fathoming purposes. The SDA must make do with knowledge of

the current and previous subproblems, and only partial information

about the future (in the form of look-ahead prices and the objective

value bound maxc(k)). In order to alleviate this difficulty as much

as possible, two sets of objective value bounds are used for fathoming

in the SDA (see Chapter 4).

Less fathoming power implies more branches must be taken. In

fact, the SDA typically (though not always) examines three to five

times as many nodes as an algorithm working on the undecomposed problem.

Nevertheless, the SDA will be faster on most problems because each

branch can be taken much more efficiently. This is the key to the

success of the SDA.

51

CHAPTER 4: OBJECTIVE BOUNDS FOR FATHOMING

1. A Bound on the Future Objective Value

The efficiency of the algorithm described in the preceding

chapter is heavily dependent on its ability to fathom partial solutions

before they are completed, preferably as early as possible. In the

absence of a good objective bound on an optimal completion of the cur-

rent partial solution, the SDA would be forced to find completions

for most of the feasible solutions to the current subproblem. The set

of complete solutions examined could quickly grow to an unmanageable

size, and the performance of the algorithm suffer correspondingly.

In order to develop a bound tighter than the trivial bound (12)

given in Chapter 2, consider the problem (Rk) defined in Section 3

of the third chapter and repeated here for convenience.

T
maximize I ctxt

t=k+l

(Rk) subject to B t-lxt- + At xt < b t k + 1, T

L t(j) < xt (j) Ut (j), j = 1 , nt , t = k, ... , T.

Problem (Rk) is the LP relaxation of the aggregation of subproblems

k + 1, ..., T. From the perspective of time period k, the optimal

solution to (Rk) represents the best that can be accomplished in the

future, disregarding the past and the present.

52

Let maxc(k) be the optimal objective value of (Rk), for

*k 1 1, ..., T - 1. Define maxc(T) = 0. Furthermore, let zk be the

optimal objective value of subproblem Sk(xk-l). Armed with these

concepts, we can prove the following theorem.

Theorem: Let x = (x1 , x2, xk-1) be any partial solution of (P),

where I < k < T. Then for every completion x' of x, the objective

bound (23) is valid

k-l
(23) cx' < C txt + zk +maxc(k)

t 1

Proof:

For k = T, (23) is merely a restatement of the optimality of

the objective value zT. That is, (23) is reduced to cTx ZT for

all x' feasible for S . This is true by definition of zT*

Consider now k < T. Since x is a partial solution of (P),

x is feasible for S for t < k - 1. Moreover, the completion x'
t t

must be such that its components x' satisfy the constraints of
t

S tx;_), for k < t < T. Thus (y,w k) = (x',x'k) is also feasible

for the separable programming problem (24) given below.

*i

For k - 1, x is the null vector and the sum in (23) is defined
to be 0.

53

T
maximize c Cy t

t=l

subject to yt xt' t 1, ... , k 1

Bkl xk_1 + Akyk b k

(24) Bkwk + Ak+lYk+l I bk+l

Bt-lytl + Atyt < bt, t = k + 2, ..., T

L t(j) < y t(j) < U t(J), j = 1, , nt, t = 1, .. . T

L k(J) < wk (J) < Uk (j), j=l,. . n k

The variable Wk' which does not appear in the objective function,

has been introduced to make (24) separable into 3 independent problems.
0

To solve (24) for an optimum value y , the first k - 1 variables are

fixed at predetermined values xt . The variable Yk is determined by

solving the LP relaxation of Sk(Xkl) , and y k+l' "..' YT' and wk

are found by solving (Rk). Let (yO, wo) be an optimum for (24).

Then since (x',x) is feasible for this maximization problem,

k-l
cx' < cyO c x + z + maxc(k)

t=l t t

54

Obviously, if the right-hand side of (23) is less than the

incumbent objective value cx, no completion of x can lead to an

improvement in the objective function. Therefore, there is implicit

in (23) a fathoming criterion for the SDA.

As the branch-and-bound search of subproblem Sk proceeds, the

bound associated with (23) should be strengthened to reflect the extra

information at the current node i. In particular, (23) is modified

by replacing zk with zk(i) + GPk(i), where (as before) GPk(i)

is the maximum Gomory penalty associated with node i of subproblem k,

and zk(i) is the objective value of the LP relaxation of node i.

This alteration yields the bound (25), which is equivalent to fathoming

criterion (b) of Step 4 of the SDA (see Chapter 3).

k-l
(25) ctxt + z i)+GPk(i) + maxc(k) < cx

t-l

The problem (Rk) is independent of any branching decisions

or search strategy implemented by the SDA. For this reason, it can be

solved exactly once, as part of the initialization of the SDA. To

find the values maxc(k), k = 1, ..., T, efficiently, the following

iterative procedure is executed in Step 2 of the SDA (see Figure 5).

Calculation of Bounds Maxc(k) and Prices Pk(j), for all k

1. Set maxc(T) - 0 and k - T - 1. Input bounds on

all the variables. (RT) has no other constraints.

2. Adjoin the period k + I constraints to (Rk+l).

55

3. Let the objective function include the term Ck+1 Xk+l .

This completes the transformation of (R+I) into (Rk).

4. Temporarily set xk = Lk, and solve for an optimum set

of dual variables. Use these simplex multipliers to

calculate Pk(j), the look-ahead prices (see Chapter 3).

5. Relax the requirement xk = Lk, and solve (Rk). The

optimal objective value is maxc(k).

6. Set k - k - 1. If k = 0, stop. Otherwise, go to 2.

Note that the prices Pk(j) are computed at relatively little

cost. Also, by adjoining constraints to an LP which has already been

solved, we are likely to have a good starting solution for the simplex

method. In practice, execution of the procedure described above usually

comprises a small percentage of total solution time.

Values for zk(i) and GPk(i) are available as a by-product

of the branch-and-bound search of S The sum in (25) can be stored

as a variable called cumobj (cumulative objective value), and updated

with each forward and backward step. Therefore, since the bound maxc(k)

can be computed initially, the iterative portion of the SDA need never

involve the examination of data from more than one subproblem at a

time. This property was required to make the SDA a true decomposition

algorithm.

56

2. A Second Type of Bounding Procedure

The bound maxc(k) defined in the preceding section provides

a valid bound on the objective value of the future, as portrayed by

(R k). However, by assigning a cost of 0 to the period k variables

appearing in (Rk), unrealistic values of these variables may occur in

an optimum solution. In an attempt to correct this fault, another set

of bounds, called maxc(A,k), has been developed.

One way to generate more realistic values for xk would be to

introduce the term ckxk into the objective function of (Rk). For

ck > 0, this modification would cause an increase in at least some of

the variables xk(j) in an optimal solution to (Rk). It is probable

that xk(j) would in fact rise to levels somewhat higher than those at

which they appear in an optimal solution to the LP relaxation of (P).

This inflation of the period k variables is attributable to the fact

that (Rk) is a relaxation of (P); the period k constraints are not

present in the formulation of (R k).

There is a problem with adding c kXk directly into the objective

function of (R k). If this were done, the contribution of the period k

variables would be counted twice in (25). To avoid this double-counting,

define maxc(X,k) to be the optimal objective value of problem (Qk)

stated below, for some fixed X c [0,I].

T

maximize X ctxt + X(ckxk)
t-k+l

(Qk subject to Bt-ixt I + A x < bt, t = k + 1, ..., T

L t(J) _ x t(J) < Ut(J), J - 1, n t t t k T.

57

This definition of maxc(X,k) holds for k = 1, T - 1. For

k = T, no bounds are needed on the future (since our finite horizon

problem ends at period T). In this case, (23) is as tight a bound as

is available for the SDA.

As depicted in Figure 7, the constraints of problem (Qk) are

identical to those of (Rk), and the objective function differs only

in the term X(ckxk). Ideally, the parameter A should reflect the

influence of the period k + 1 constraints in determining xk. In

practice, the weights (1 - X), X that should be assigned to the period

k and k + 1 constraints vary considerably with the settings of the

variables of periods 1, .. , k - 1.

Objective

0 1 1 Weights x

A1

Figure 7: Correspondence Between R 1 and 1

B1 d

58

2

The definition of maxc(X,k) given above leads to the fathom-

ing criterion (26).

k-i
(26) t ctxt + (1 - X)zk + maxc(X,k) < cx

t=l

Here, as in the preceding section, zk can be replaced by

zk(i) + GPk(i) as the branch-and-bound search produces more informa-

tion about the period k subproblem.

To verify that (26) is a valid fathoming criterion, we have a

generalization of the theorem in Section 1.

Theorem: Let x = (x,, x2, ... , xk-1) be any partial solution of (P),

where 1 < k < T -1. Then for every completion x' of x, the objec-

tive bound (27) is valid.

k-i
(27) cx' < I c x + (i - X)z + maxc(X,k)

t= t t k

Proof:

Since x' is a complete solution of (P), we have that x' is

feasible for and x' is feasible for St(x I), 2 < t < T. There-

fore, (y,wk) = (x', xk) satisfies the constraints of the separable

programming problem (28), where c t c for tO k, and c (1 -)ck'

59

T
maximize CrY t + Ackwk .

t=l

subject to Yt= x t t = 1, ... , k - 1

Bk-iX k-1 + Akyk < k

(28) B k + Ak+lYk+l < bk+l

B tlYt I + Aty t < b t, t = k + 2, ... , T

L t(j) < y t() < U t(j), j = 1, .. ., nt, t = 1 T

Lk(j) < Wk(j) < Uk(j), j = 1 ' nk

The variable wk has been introduced to relax the implicit

constraint that Yk take on the same values in both the period k

and k + 1 constraints. This procedure is equivalent to a Lagrangean

relaxation of (P) (see Geoffrion [19741).

To solve (28) for an optimal solution (y ,w), three indepen-

dent problems must be solved. To find y , for t < k, solve the

trivial problem defined by the equality constraints in (28); its solu-

tion is yt = xt' for t - 1, 2, ... , k - 1. Secondly, the values of

0 can be found by solving Sk(xk l) Note that the objective contribu-

tion is (1 - X) times that of Sk. Finally, by solving (Qk), an

optimal set of values for yk+l' ...' YT' and wk can be determined.

The fact that (x',x) is feasible for (28), together with

the equation cx' = c'x' + XckX , implies that:

60

k-i
cX1 < C'y0 + XCk = C x + (1 - A)zk + maxc(X,k)

t=l

The bound maxc(X,k) can be computed in the initialization

phase (Step 2 of the SDA) along with maxc(k) and Pk(j). The procedure

outlined in Section 1 need only be altered so that the last step (6)

is expanded into steps 6' and 7' given below.

6'. Now that (Rk) has been solved, change the objective

function by including the term X(ckXk) to create

(Qk). Reoptimize via the primal simplex method; set

maxc(X,k) equal to the optimal objective value of (Qk

7'. Set k = k - 1. If k = 0, stop. Otherwise go to 2.

Notice that the solution of (R) makes available a good,

feasible starting point with which the simplex method can begin to

solve (Qk) in step 6'. Thus maxc(X,k) can be obtained at relatively

little extra computational expense after finding maxc(k) -- which is,

in fact, equal to maxc(O,k).

o Similarly, for any set of values {Xi, i 1 1, ... , r), only a

series of primal simplex reoptimizations is necessary to determine the

bounds maxc(Xik) once maxc(k) has been calculated. The "best"

choice of r (the number of bounds generated) and the values of the

parameters Xi is highly problem dependent. Furthermore, the strength

of any particular bound changes dramatically during the course of the

solution procedure, because the variables of period k - I become fixed

at widely varying values (hence the right-hand side of the period k

61

constraints also fluctuates substantially). Finding criteria for

making decisions on the values r and {A i is an interesting ques-

tion for future research.

One easy result can be obtained for the case in which it is

desirable to find only one X, especially when k = 1.

Theorem: For k 1, a value X* which gives the tightest possible

bound in (27) can be found by solving a linear program.

Proof:

The parameter X* can be found by solving the quadratic program

(29).

T

minimize {maximum (I - A)cIx 1 + AclY 1 + X ct xt
t=2

0< A< 1

subject to B t-lxt- + Atxt < bt t 1, 3, 4, T

(29) BJy I + A2x2 < b2

L (j) < x (J) U (j), j 1, ... n,
t -t t

t=i, ... , T.

L1 (j) < yl(J) < U 1(j), j = 1, n 1

In (29), the implicit constraint yl = 1 has been dropped, as

in a Lagrangean relaxation of (P).

62

By taking the dual of the inner maximization problem, the quadratic

terms (I - A)c Ix1 and Acly I are eliminated. In this dual formulation,

which is a minimization problem, the parameter X does not appear in

the objective function; it is found only on the right-hand side of the

constraints. The desired linear programming problem emerges when these

terms are moved to the other side of the inequalities and the inner and

outer minimizations are combined.

A similar result can be obtained for any period k, provided

the values of the past variables (variables from periods 1, ..., t - 1)

are close to those of the optimum x0 of the LP relaxation of (P).

Unfortunately, this condition is satisfied only a small percentage of

the time during the course of the algorithm.

3. Computational Comparison of Bounding Procedures

The value of X which yields the tightest bound (27) changes

as different partial solutions are examined. For some values of xkl ,

the objective value of Sk(xkl) will be relatively large; the most

effective bound in this case will have a value of X closer to I than

to 0. On the other hand, a greedy setting for xkl might result in

a small right-hand side for subproblem k. In this case, a small value

of X will maximize the right-hand side of (27).

No single value of A can dominate all other possibilities

throughout the entire branch-and-bound search. However, it may be that,

in practice, maxc(k) produces ineffective bounds compared to maxc(X,k),

63

K

or vice versa. In order to further explore this question, the bounds

created from maxc(k) and maxc(Ik) were tested for effectiveness,

both individually and together, on several moderate-sized problems.

1 I
The choice of X = - was made in an attempt to strike a balance between

2

neglecting the influence of the objective contribution of xk (by giving

it a weight of 0 in (Qk)) and overemphasizing it (a weight near I

would be too large in light of the fact that some constraints affecting

Xk do not appear in (Qk)).

A representative sample of the results of testing these two objec-

tive bounds is given below in Table 1. The number of branches taken

is a reliable criterion for judging the fathoming power of a particular

objective bound since solution time is directly proportional to this

number. On some of the smaller problems, the number of branches taken

using only the trivial bound (12) for fathoming is included for compari-

son purposes. This information is contained in the category marked

"neither". The column designated "both" exhibits the number of branches

taken when a node is considered fathomed if either (25) or (26) (with

= 1) is satisfied.

Note that maxc(k) provides a more effective fathoming criterion

for some problems, while maxc(I,k) is more effective for others.

Either bound alone is far superior to the trivial bound (12), but there

is also a marked improvement in all cases when both bounds are used.

Because of these findings, the version of the SDA developed for testing

1
(see Chapter 6) uses both maxc(k) and maxc(Ik) to produce objective

bounds for fathoming.

64

PROBLEM SIZE TOTAL NUMBER OF BRANCHES TAKEN

1
rows vars periods both maxc(k) maxc(l,k) neither

20 20 4 1004 1164 1076 2,083

20 32 4 1779 2193 4117 28,055

20 40 4 1942 2646 3359 >100,000

25 45 5 3336 4272 3872

40 40 5 1656 2072 2165

30 50 5 8502 20280 11997

30 50 5 44804 64311 66614

Table 1: Comparison of Bounding Procedures

65

I I
CHAPTER 5: EXTENSIONS OF THE STAIRCASE ALGORITHM

1. Higher Order Staircase Constraint Matrices

The concept of a multitime period structure can be generalized

to include constraints which link nonadjacent time periods. For

example, if the period t constraints have nonzero coefficients only

for variables of periods t, t - 1, and t - 2, then the matrix is said

to be a staircase matrix of order 2 (see Figure 8). Similarly, the
th

rows of an r order staircase matrix may link activities from as many

as r + 1 consecutive periods. Applications of models with higher

order staircase structures arise in industries for which construction

of new plants or capacity expansion of existing facilities requires

several time periods to complete. The power industry exhibits this

kind of behavior due to long lead times for plant construction and further

delays necessary for satisfaction of environmental standards.

2 1 2

B B1 A

B31 B32 A3

B BA
42 43 A4

K)B B A53 54 5

Figure 8. Staircase Matrix of Order 2

66

The order of a staircase matrix can be reduced by the addition

of new constraints and variables. For each variable xt(J) which links

time periods t and t + r, a new variable y can be introduced into

period t' = t + fr/2]. Replacing x t(j) by y in the constraints

of periods t', ... , t + r eliminates the long interperiod dependen-

cies due to x (j). By equating these two variables (via the period t'

constraint xt(j) = y), the original problem is unchanged, although

the structure has been simplified. This process reduces the order of

the staircase matrix by at least 1 (by fr/2] if all variables are

treated in this way).

With the addition of enough extra constraints and variables,

th
any r order staircase matrix can be transformed into an equivalent

staircase matrix (of order 1). The resulting staircase problem could

be solved by the SDA; the optimal values of the original variables

xt(j) would be the optimal values for the original problem as well.

Although the increase in problem size renders this approach impractical

for matrices with many linking variables, it is probably the best method

of attack when only a few columns violate the staircase structure, as

in Figure 9.

Figure 9: "Almost" Staircase Matrix

67

Alternatively, problems with only a few variables that link

nonadjacent periods could be solved by modifying the staircase algorithm

rather than the constraint matrix. Those few variables could be given

priority; once they are fixed at integral values the problem is truly

staircase in structure. However it is not even necessary to force the

initial branches to be taken on these variables. The decomposition

approach of the SDA ensures that they will be fixed before any future

period is examined. Some simple changes to the bounding and pricing

routines are sufficient to account for the effect of these variables

on future periods. With these alterations, the SDA can be used to solve

a problem with the structure shown in Figure 9.

The ideas expressed in the preceding paragraph can be extended

to all higher order staircase problems. Consider a multitime period

model for which many variables link three consecutive periods (i.e.,

an order 2 staircase problem) as depicted in Figure 8. Proceed as in

the original version of the SDA: variables in each period are fixed

before moving on to the next period. After setting the variables from

periods t - 2 and t - 1 to fixed integer values, the only variables

which influence the period t constraints are those from period t.

Therefore the subproblems can again be solved by looking only at the

small diagonal blocks. The sole change from the original formulation

used by the SDA is that the right-hand side of each subproblem St

depends on values passed forward from both periods t - 1 and t - 2

(transformed by the offdIagonal submatrices Bt,t_ 1 and Bt). Thet~t-lt,t-2

subproblems corresponding to this structure have the following form:

68

maximize ctx t

subject to Atx < b - t-l - B x_

(St)
L< xt < U t
Lt t

xt integer

th

For the general r order staircase problem, the right-hand

side of subproblem t will have terms depending on the (fixed) values

of the period k variables, for t - r < k < t - 1. The overall struc-

ture of the algorithm (as given in Chapter 3) does not change when it

is applied to this problem, although some of the procedures must be

modified slightly.

The look-ahead prices Pk(j) described in Chapter 3 can be

calculated in exactly the same fashion for the higher order staircase

problem. The aggregation of future subproblems (Rk) inherits the
th
r order structure from the original problem, but otherwise the compu-

tation is unchanged. As before, these prices can be used to help guide

the branch-and-bound search for feasible subproblem solutions.

The bounds for fathoming developed in Chapter 4 must be adjusted

to reflect the presence of variables from several "past" periods in

the problem (Qk). In fact, it would probably be advantageous to assign

different weights Xi to the objective function contributions of the

period i variables, for i < k, appearing in (Qk). For example, in

the case r = 2, it might be desirable (for reasons of symmetry) to

choose k 1, 2

k-l 3'k

69

The fathoming criterion in the general case becomes:

k-i
(30) Y (l tt)ctxt + (1 - Ak)zk + maxc(X,k) < cx

t=l

where A = 0 for t < k - r and maxc(A,k) is the optimal objectivet _

value of the problem (Qk given below.

k T
maximize X Xcx + t x

t-k-r+l t=k+l

r

(Qk) subject to Bt,t-ixt-i + Atxt < bt, for t = k + 1, ..., T

Lt < x t < U t, for t = 1, , T

A staircase matrix of order T - I is also called a lower block

triangular matrix (see Chapter l and Figure 2). The ability of the SDA

(with the modifications detailed above) to solve a problem with this

structure is important because any linear set of constraints can be

transformed into lower block triangular form. In fact, a rearrangement

of the rows and columns of a typical (somewhat sparse) constraint matrix

is often sufficient to put the problem in this form (see, e.g., Weil

and Kettler [1971] for block-angular rearrangement methods). Thus if

the SDA performed well on lower block triangular matrices, it could be

a good algorithm for the general, unstructured integer programming

problem.

70

In order to test this possibility, a version of the SDA was

designed to solve integer programning problems with lower block

triangular structure. Unfortunately, computational tests (using

I
At = 0 and j) revealed that the decomposition approach is not very

efficient for solving randomly generated problems of this type (see

Chapter 6 for a description of the methods employed to generate test

problems). Apparently too much useful information is lost by examining

only the small subproblems. In particular, the look-ahead prices are

inadequate for guiding the branch-and-bound search. The fathoming

criterion (30) is also not as effective as objective function bounds

which can be generated if information from the undecomposed problem is

available.

To find a better global search strategy, pseudocosts could be

employed (see Chapter 7). Although the use of pseudocosts should

eliminate the problem of poor search directions, fathoming would still

be a major problem. The large variations in the right-hand side of

each subproblem which accumulate as the variables of the past are fixed

cause the solution of problem (Qk) to bear less and less relation to

actual LP-optimal settings of the variables. For fixed values of Xt'

the bound (30) does not seem to be useful often enough to make the

decomposition approach competitive with a standard branch-and-bound

solution technique applied to the undecomposed problem. Thus it appears

that the decomposition method is most successful when applied to problems

with staircase structured matrices of low order.

71

2. Alternative Search Strategies

The LP-based branch-and-bound algorithm was chosen as the appro-

priate subproblem search procedure for reasons detailed in Chapter 3.

Briefly, this technique has proven to be computationally fast (relative

to other integer programming methods), is easy to reestablish after a

change in the right-hand side, and provides flexible search strategies.

Nevertheless, some of the other integer programming algorithms might

search the subproblems more efficiently when the problem has special

characteristics.

In particular, a greedy algorithm, such as the dynamic program-

ming method of Cooper and Cooper (see Chapter 1), could work very well

on problems with weak interperiod relationships. For such problems,

locally optimal solutions at each stage should quickly lead to a good

(although usually suboptimal) feasible solution. The advantage of the

greedy algorithm is that it rapidly discovers several of the (locally)

best solutions, although a complete search of the feasible solutions

would be quite time-consuming. Thus fathoming capabilities might be

improved by the exceptionally fast location of a good feasible integer

point. It might also be possible to modify this greedy search strategy

by a parametric change in the objective function corresponding to some

measure of the effect of each variable on future subproblems. Provided

that set-up time after changes in the right-hand side has a minimal

impact on total solution time, this method could be quite successful.

Group theoretic methods could prove valuable in solving sub-

problems for which the determinant D of most dual feasible bases is

small in magnitude. The procedure for solving the group theoretic

72

formulation (GTP) (see Chapter 1) would be easy to reestablish after

a forward step, because the dual feasibility of a basis is unaffected

by a change in the right-hand side. However the search for feasible

subproblem solutions would require the solution of many shortest route

problems, which increase in complexity with IDI. Thus this approach

would be efficient only for small values of IDI.

In multitime period models, the diagonal submatrices often have

a structure that is not necessarily shared by the matrix as a whole.

For example, these smaller matrices might describe transportation or

network flow problems. A solution technique designed to work with the

entire undecomposed problem might not be able to take advantage of this

additional structure, especially if the offdiagonal blocks do not have

the same characteristics.

The decomposition technique described in Chapter 2 can capitalize

on this embedded structure. The subproblems (S t) are determined by

the diagonal blocks; only the magnitude of the (constant) right-hand

side is affected by the offdiagonal blocks. Therefore a specialized

algorithm could be developed to expedite the search for feasible

solutions to each subproblem by exploiting the special structure of its

constraint matrix. This adaptability of the SDA should make it a very

effective solution procedure for proble is with special substructures.

3. Nonlinearity

In the preceding section, it was observed that the diagonal

blocks may have a special structure that the decomposition algorithm

can exploit. A method which does not decompore the problem must deal

73

with the characteristics of the matrix as a whole, including the off-

diagonal blocks. For the SDA, the offdiagonal blocks are relatively

unimportant once the initial stage of calculating look-ahead prices

and bounds for fathoming has been completed. At this point, the algorithm

can proceed in exactly the same manner whether or not the offdiagonal

terms are linear.

To avoid difficulties with computation and interpretation of the

look-ahead prices, pseudocosts should be used to guide the branch-and-

bound search. With this substitution, the SDA can solve the following

generalized integer programming problem (GIP):

maximize c x
tt

subject to Atx t + ft(xt-l) < b t 9 t = 1, T

(GIP)

t t - Ut- t = T

xt integer, t = 1, ..., T

where f 0 E , and the only restrictions on the functions ft are

that the problems (Qk), k = 1, ..., T - I, are not too difficult to

solve. As in Chapter 4, (Qk) is obtained by aggregating the subproblems

Sk+l, ..., ST9 and relaxing the integrality constraints (see below).

74

T

maximize Xk + Il xkk t=k+l t

(Qk) subject to Atx t + f t(x t) < bt, t k + 1, ... , T

L t < xt < Ut , t k, ..., T

The optimum objective value of (can be used to develop the

same fathoming criterion (26) given in Chapter 4. Since pseudocosts

do not require any additional calculations on the undecomposed problem,

the SDA can proceed as before except for a slight modification of the

forward step. The change in the right-hand side of S k+ is given now

by the formula bk+l = bk+l - f k+l(x k). With this one alteration, the

SDA can solve the problem (GIP). Moreover, it should have a clear

advantage over any method which tries to solve the undecomposed problem,

and hence must deal directly with the nonlinear constraints of (GIP).

In addition to nonlinear offdiagonal terms, nothing in the

development of the SDA in Chapter 2 precludes a nonlinear objective

function. Of course, the subproblem search procedure would have to

use a nonlinear integer programming algorithm rather than the LP-based

branch-and-bound search, but the basic structure of the decomposition

method would not have to be altered. The same remark applies to non-

linearities in the diagonal blocks, although in this case the sub-

problems would inherit all the nonlinearities of the original system.

The benefits of a decomposition approach in this instance would not be

as clear as in the nonlinear offdiagonal (and linear diagonal) case.

75

A

4. Mixed Integer Linear Programs

A mixed integer linear program (MILP) consists of linear con-

straints and a linear objective function, plus integrality restrictions

on a proper subset of the variables. If the constraint matrix (excluding

the integrality constraints) has a staircase structure, the methods

developed in the previous chapters can be applied to this problem.

The staircase MILP can be formulated as follows:

T T
maximize X ctxt + I d ty t

t=1 t=l

subject to x + t + Di y + E y < bt, t = T ... , TAtx t + -l -1 D t Et-l1t_ 1 --

(MILP)

L t ! xt < Ot , t 1 , , T

x t integer, t =,..., T

In one special case, the SDA can solve a mixed integer program

without any modifications whatsoever. Suppose the linking variables are

all required to take on integral values, i.e., the continuous variables

Yt are local. In terms of the formulation above, the matrices Et_ 1

are identically 0 for all t. For this problem, fixing all the

integral variables of subproblem t, which has constraint matrix (At Dr),

leaves a linear programming problem in the local variables y t This local

problem can be solved imediately for values of the continuous variables

76

* (

before proceeding to the next period Since the continuous variables

appear in precisely one subproblem, no complications ensue, and the

decomposition algorithm encounters no difficulties in solving the

problem.

In the more general case, for which at least some of the linking

variables are continuous, difficulties do arise. After fixing the

values of the integer variables of period 1 at, say, x1 =I a1,

subproblem SI will have the following form:

maximize clX 1 + di1y

(SI1) subject to Alx 1 + DIyI < b1

Xj a 1

Although this problem could be directly solved for values of

the continuous variables yI, it is improbable that those values would

be optimal for the entire problem, even given the settings of the period

1 integer variables. The values of yl also affect the period 2

constraints, and this effect cannot be ignored. Unlike the integer

variables, all the distinct possible values of yl cannot be explicitly

examined, nor implicitly screened through a branch-and-bound type of

search, because there are an infinite number of them. Therefore the

constraints containing these variables must be carried forward into the

next period. Subproblem S2 thus becomes:

In fact the solution will already have been calculated as a by-product
of the branch-and-bound search.

77

maximize c2x2 + d2Y2 + dl1y

subject to DIy I < b I - A1 x I

(S 2)

A2x 2 + D2Y 2 + El1y < b2 - B 1 1

L2 < x2 < U2' x2 integer

None of the continuous variables y, or Y2 can be set at any particu-

lar value, even after the period 2 integer variables are fixed,

because of the connection through y2 to subproblem 3. As the algorithm

progresses towards the final period, constraints depending solely on

the continuous variables of previous periods will continue to accumulate.

Only when the last period is reached can definite values be placed on

the continuous variables, as (ST) (shown below) is solved to optimality.

T
maximize c TXT + X dtY t

t.1

subject to DIy1 < b1 - AIx 1

Dtyt + E tlYt I < bt A txt - Bt-ixt- 1 ,

(ST)

for t- 2, ... , T - I

ATXT + DTYT + ETIYTi <b T - B TIT 1

L T < < UT' x T integer

Clearly, if the number of continuous variables is a substantial

proportion of the total number of variables, this solution method will

not be efficient. The advantages gained by decomposing the prublem

would be dissipated by the fact that later subproblems can have almost

-as many rows as the original problem. Since each subproblem must be

resolved many times, this increase in the number of constraints will

have a substantial adverse impact on solution times. Therefore, the

decomposition approach is recommended for MILP only if the number of

continuous variables is relatively small, or if none of the continuous

variables link time periods.

What methods should be employed to solve a staircase MILP which

has only a few integer variables and many (linking) continuous variables?

The staircase decomposition algorithm does not adapt well to this

problem, but there are other solution techniques available. The linear

programming portions of a standard branch-and-bound algorithm can be

modified to recognize and take advantage of the staircase structure.

Techniques for simplifying the calculation and updating of the basis

inverse, such as block triangularization (see Heesterman and Sandee

[1965], Saigal [1966], Dantzig [1973], and Wolmer [1979]), could be

used to accelerate both the primal simplex and dual simplex reoptimiza-

tion phases of the algorithm. Alternatively, the sparse matrix and

partial pricing methods developed for staircase LPs by Fourer [1980]

could make the LP part of the algorithm extremely efficient.

Another possible approach is to use nested decomposition (see

Chapter 1) to solve the LP relaxation of (MILP), followed by a branch-

and-bound search over the feasible values of the integer variables.

79

Unfortunately, reoptimization after a branch would then be very difficult

both because primal solutions are difficult to construct from the

information present in the subproblems (even though optimal dual values

are apparent) and because many proposals become infeasible after a

branch. A more promising approach involves nested decomposition ot "

dual (Abrahamson [1980]). In this method, the dual linear program is

decomposed into small subproblems, and information is passed both forward

(in the form of "economic cuts") and backward ("feasibility cuts")

between time periods until equilibrium, and hence optimality, is achieved.

Branches in the primal problem correspond to adding or deepening dual

economic cuts; reestablishing equilibrium after a change in one economic

cut might not require too much extra work. Moreover, a solution to the

primal is readily accessible. Therefore this staircase linear program-

ming algorithm, although it is still in the development stage, could

eventually provide a way to decompose and efficiently solve (MILP).

* -J*

CHAPTER 6: COMPUTATIONAL RESULTS

1. Implementation and Data Generation

Evaluation of the staircase decomposition algorithm presented in

this paper was carried out on the SCORE DEC System 20 computer at Stanford

University. For this purpose, a computer code embodying all the features

discussed in Chapters 3 and 4 was written in FORTRAN. Due to the restric-

tive nature of the FORTRAN-1O compiler at SCORE, few (if any) features of

the current implementation would be unacceptable to a FORTRAN compiler

on another system. The selection of FORTRAN as the programming language

was not based on any natural inclinations of the author or characteristics

of this language which make it a particularly good choice for encoding the

SDA; it was selected to maintain compatibility with an existing integer

programing code already written in FORTRAN.

The branch-and-bound search procedure, which is the heart of the

algorithm, is a slightly modified version of the computer program BB

written by Gary Kochman as part of his dissertation at Stanford University.

This computer code solves pure integer programming problems with general

upper and lower bounds on the variables using a branch-and-bound technique

similar to that outlined in Chapter 1. Tomlin's [1971) improved penalties

are employed to guide the choice of branching variable at unfathomed nodes,

with the branch being taken in the direction opposite to the maximum

penalty. Nodes are removed from the branch-and-bound list according to a

last-in-first-out (LIFO) strategy, and reoptimization after a branch is

accomplished by the dual simplex method. See Kochman [1976b] for further

details about this program.

81

The linear programming portions of the code BB were developed by

John Tomlin of the Systems Optimization Laboratory at Stanford University

and adapted by Kochman to efficiently deal with simple upper bounds on

the variables. The most important features of LPM-l are: storage of

the basis inverse in product form (see Orchard-Hays [1968]); LU decomposi-

tion of the basis inverse (see Benichou et al. [19771); and storage of all

data, including the inverse, in compressed form (i.e., zeroes are not

saved). Because of these features, the program BB works efficiently on sparse

matrices. This is crucial for solving a multitine period problem without

using decomposition, since by definition a staircase matrix is quite sparse.

In addition, if the diagonal blocks also happen to be sparse, these features

of LPM-l will help improve the performance of the SDA.

The test problems mentioned in the rest of this chapter were

generated randomly using various parameters to influence the problem

characteristics. Objective function coefficients were generated uniformly

from the integers in the interval [Z,u]; entries in the constraint matrix

were determined in the same manner, using different parameters to describe

the range of allowable values. For some problems the right-hand side was

produced by the same process, but for others the right-hand side of the

ith constraint was generated deterministically from the formula (31),

where the parameter T is a measure of the tightness of the constraint.

n
bi =t * A(i,j)/n (31)

j=l

With this method of determining the right-hand sides, the tightness of

the constraints is more uniform over the subproblems, making it easier to

82

judge the effects on solution times of varying problem dimensions. To

complete the specification of the test problem, additional input parameters

control the density of the diagonal and offdiagonal submatrices, the

dimensions of each subproblem, the total number of periods, and the seed

for the random Aumber generator.

All solution times reported in this chapter are in CPU seconds,

excludi ng output but including input times. These numbers should be used

for comparison purposes only, as solution times might vary substantially

on other computer systems, or if computer codes of professional caliber

were substituted for BB and SDA. It should be noted however that any flaws

inherent in the program BB are perforce repeated in the implementation of

the SDA, which uses BB as a subroutine. Moreover the sparsity techniques

present in LPM-l ensure that any computational advantage enjoyed by the

SDA over BB is truly a result of the decomposition, and not merely due to

the fact that the SDA need not deal with the large number of zeroes present

in the problem formulation. Therefore a direct comparison of solution

times for SDA and BB (the latter on the undecomposed problem) is a fair

test of the benefits of decomposing a staircase integer programming problem.

2. Empirical Success of the SDA

Several thousand test problems were generated and solved during

the development of the staircase decomposition algorithm. Not all of these

results will be presented and discussed here; however, representative

examples have been selected to give an accurate picture of the overall

effectiveness of the SDA. Special care was taken to ensure that these

sample problems cover a broad range of possible data types.

83

Table 2 illustrates the behavior of the SDA on several small,

relatively simple, binary test problems. The dimensions of each problem

are given by m, the total number of constraints, n, the total number

of binary variables, and T, the number of time periods. For these

and similar examples, the SDA generally finds and verifies an optimal

solution in approximately half the CPU time (given in seconds) necessary

for the branch-and-bound algorithm BB. Both the rapid arrival at an

optimal solution and the short total execution time are attributable to

the greater speed in branching of the SDA.

Total Solution Time to

Time Optimum

m n T SDA BB SDA BB

105 2.94 4.50 2.07 3.84

10 30 5 4.48 11.12 3.10 8.37

12 24 3 2.46 10.11 .89 9.40

12 24 3 3.04 5.87 1.54 5.38

30 6 3 1.55 3,74 1.00 2.45

30 12 3 4.14 18.36 2.82 17.91

15 15 3 1.88 4.32 1.08 4.32

15 15 3 2.10 4.17 1.00 4.16

18 18 3 1.32 3.06 .74 2.80

20 20 4 1.51 5.27 1.08 2.61

20 20 5 1.74 3.86 1.24 3.29

24 24 4 2.00 4.03 1.82 2.68

Table 2: Results for Some Small Test Problems

84

The decomposition algorithm also performs well on most moderate-

sized binary test problems. As demonstrated by the results in Table 3,

the SDA can often solve a problem with 40 or 50 variables in a relatively

small fraction of the time used by BB. This behavior holds over an

extremely wide range of test problems.

Ordinarily the decomposition technique will require one-third to

one-tenth as many seconds as the non-decomposition method, although even

greater disparities can occur. Occasionally, however, the decomposition

approach will not fare so well; there are certain types of problems

which are more difficult for the SDA than for BB. An example of such a

problem is given in the last line of Table 3. One unfavorable character-

istic of this problem is that the right-hand sides of the constraints

are quite large, so that the look-ahead prices are too small in magnitude

to effectively guide the subproblem search. In this particular case,

the search directions chosen due to penalty calculations are rather poor.

Fortunately this situation does not occur often, and even under these

adverse circumstances the solution times for the SDA are competitive with

those of BB.

Due to limitations on computer resources, the testing of problems

with more than 60 variables was not as extensive as the examination of

more moderate-sized problems. A selection of the results on larger or

more difficult problems is given in Table 4. For some of the sample

problems presented there, BB exceeded a reasonable time limit just trying

to find an optimal solution, while the SDA was able to discover and verify

an optimal solution in approximately one-fifth the time.

Computations were halted after 100,000 simplex iterations for BB and
1,000,000 simplex iterations for the SDA.

85

Total Solution Time to
Time Optimum

m n T SDA BB SDA BB

18 30 3 19.9 77.0 10.1 31.6

18 42 6 7.6 119.1 3.5 108.1

20 40 5 39.1 126.1 34.8 108.4

20 50 5 43.2 139.4 27.1 55.5

24 32 4 15.1 112.2 12.7 32.0

42 30 6 5.5 112.6 2.8 88.9

50 30 5 5.7 100.6 5.3 68.3

20 52 4 114.0 592.3 58.7 47.1

30 40 5 16.9 293.3 5.0 13.2

30 30 5 5.5 56.4 4.6 47.4

30 30 3 29.2 86.8 21.7 14.9

36 36 6 2.8 26.5 2.4 22.8

40 40 4 111.7 813.5 5.3 68.3

20 40 4 51.7 34.0 31.1 26.0

Table 3: Results for Some Moderate-Sized Problems

86

Total Solution Time to
Time Optimum

m n T SDA BB SDA BB

28 56 7 216 952 112 559

20 60 4 552 2142 261 897

20 60 4 48 101 37 91

30 60 5 110 4335 9 1735

30 60 5 222 >4737 72 1427

50 50 5 923 6149 570 251

50 50 5 1182 >5700 900 >5700

54 54 9 393 1210 339 125

50 100 5 133 928 39 712

50 100 5 355 >9495 290 397

50 100 5 931 >7536 689 >7536

20 100 10 75 1 71 1

Table 4: Results for Some Large Problems

The final line in Table 4 shows the test results of a large

problem having a binary constraint matrix. The solution to the LP

relaxation of this problem was naturally intcgral, as is sometimes the

case with binary data. This property enabled BB to solve the problem

without taking a single branch. On the other hand, the SDA could not

take advantage of this fortuitous linear programming solution, because

such information is unavailable after the problem has been decomposed.

This example clearly illustrates one of the limitations of the SDA: it

should not be used on a problem with a unimodular constraint matrix.

87

3. The Influence of Various Problem Parameters

In the preceding section, empirical evidence was given to demon-

strate the effectiveness of the decomposition method. That effectiveness

can be enhanced or diminished by changing the input parameters which

determine the characteristics of a randomly generated test problem. The

effects of problem size and structure on solution times will be examined

in this section.

Of principal concern for any integer programming algorithm is the

growth rate of solution times as the number of integer variables increases.

As for all general purpose integer programming methods developed to date

(see Chapter 1), an apparently exponential rate of growth has been observed

for the branch-and-bound code BB. Since BB is incorporated as an important

subroutine in the SDA, the latter must share the exponential growth

characteristic of the former. Figure 10 depicts the growth rate of the

SDA and BB on a test problem having 30 rows and 5 periods, as the number

of binary variables increases from 20 to 60. The coefficients of the

original variables remain the same as new variables are appended to the

problem.

To further illustrate the effects of increasing the number of

columns, Table 5 presents computational results from another sample

problem. Throughout extensive testing, the SDA has maintained a consistent

advantage over BB, whether the number of variables is large or small.

One parameter which has a strong influence on the relative solution

times of the SDA and BB is the number of rows. As the number of con-

straints grows, the look-ahead prices become a more reliable criterion

fur guiding the branch-and-bound search, and the fathoming bound maxc(X,k)

88

9I:
7.

6

Log Of 5 D
the

Solution 4

Time

3.

2"

20 30 40 50 60

Number of Variables

Figure 10: Exponential Growth of Solution Time

89

Total Solution Time to
Time Optimum

m n T SDA BB SDA BB

20 20 4 1 5 1 3

20 28 4 4 29 2 27

20 36 4 9 41 7 35

20 44 4 63 200 59 195

20 52 4 114 592 59 47

20 60 4 552 2142 261 897

Table 5: Effect of Increasing the Number of Variables

is strengthened. On the other hand, the linear programming subroutines

must work harder to solve the larger LP relaxations at each node. This

latter effect causes more difficulty for BB than for the SDA, since

decomposition lessens the impact of the increase in the number of rows.

An increase in the number of constraints therefore is more likely to

benefit the SDA. A typical example of the results obtained when extra

constraints are appended to a problem is shown in Table 6.

Total Solution Time to
Time Optimum

m n T SDA BB SDA BB

10 30 5 3 5 2 4

20 30 5 9 32 7 11

30 30 5 14 192 6 154

40 30 5 31 353 9 25

50 30 5 32 469 22 103

Table 6: Effect of Increasing the Number of Rows

90

As the number of periods increases, so does the effectiveness of

the decomposition approach, at least for a while. A sequence of randomly

generated problems with similar characteristics, except for the number of

,
periods , was tested to demonstrate the consequences of varying T. The

outcomes for these sample problems are exhibited in Table 7. (When the

number of periods did not divide 40, the rows and columns were distributed

as evenly as possible, so that no period had more than one extra constraint

or variable.)

Total Solution Time to
Time Optimum

m n T SDA BB SDA BB

40 40 4 81 473 38 189

40 40 5 81 1050 64 381

40 40 6 83 1397 54 1092

40 40 7 138 1670 100 1374

40 40 8 21 270 5 75

40 40 9 44 368 6 95

40 40 10 17 221 14 162

Table 7: Effect of Increasing the Number of Periods

Unlike the preceding 3 sample problems, the change in parameter T does
also imply a change in all the problem coefficients. This is an unfor-
tunate result of the structure of the data generation program.

91

V

The tightness of the problem constraints can have a strong influence

on the comparative solution times of BB and the SDA. Large values for

the right-hand sides can produce enough slack in the problem (Rk) to

make the look-ahead prices Pk(j) ineffective (see Chapter 3). For this

reason, increasing the tightness ratio T defined in Section 1 of this

chapter leads to a decrease in the efficiency of the decomposition approach.

This fact is illustrated in Table 8 on a problem with 20 rows, 30 columns,

and 5 periods. All constraint and objective function coefficients are

held fixed as T increases from 2 to 10.

Total Time to

Solution Time Optimum

T SDA BB SDA BB

2 2 12 1 5

4 7 34 2 4

6 9 50 3 41

8 15 53 9 39

10 2 5 2 3

Table 8: Effect of Decreasing Constraint Tightness

The decomposition approach appears to be most advantageous when

the diagonal blocks are moderately dense. This effect, which is exempli-

fied in Table 9, is largely attributable to an increase in the efficiency

of the branch-and-bound algorithm BB as the sparsity of the whole con-

straint matrix increases. Thus the SDA seems to improve in comparison

92

as the density increases from low to moderate values. The sample

problem shown in Table 9 has 40 rows, 40 columns, and 4 periods. The

density of this problem was decreased by changing the appropriate propor-

tion of (randomly chosen) coefficients to zero.

Total Time to

Solution Time Optimum

Density SDA BB SDA BB

.2 6 16 4 12

.3 9 49 8 35

.4 18 100 18 16

.5 16 458 13 238

.6 26 620 4 170

.7 40 407 35 94

.8 44 434 37 101

.9 48 206 41 41

1.0 82 140 74 28

Table 9: Effect of Increasing Diagonal Block Density

All of the results given thus far have been for binary, I.e.,

(0,1) integer programming test problems. One explanation for this is

that problems with wider ranges for the variable bounds can take quite

long to solve. However it is also true that the SDA does not perform

as well on such problems. This is due, in part, to the fact that the

look-ahead prices are a measurement of the relative effects of increasing

93

7 AD-AOS9 5112 STANFORD UNIV CA DEPT OF OPERATIONS RESEARCH F/s 12/2
THE STAIRCASE AND RELATED STRUCTURES IN INTEGER PROGRAPSlt. UD

IJUN 80 L J POLLENZ NOOOIB76-C-0118
I UNCLASS7FIEDTR -94 NL22 flfflfllflfflfllflf

%TlTii

each variable from 0 to 1, and are somewhat less valid over a wider range

(see Chapter 3 for further explanation). Judgement on the merits of the

decomposition method should be withheld in this case, pending the imple-

mentation of pseudocosts as a replacement for the look-ahead prices.

Table 10 gives a small sample of results for the SDA on some non-binary

problems.

Total Time to
Solution Time Optimum

Range m n T SDA BB SDA BB

(0,2) 30 30 3 56 121 36 88

(0,2) 20 20 4 5 13 4 8

(0,2) 30 30 6 25 9 20 4

(0,3) 30 30 6 38 38 29 20

(0,5) 30 30 6 444 92 382 41

Table 10: Results for Some Non-Binary Problems

To conclude this investigation into the effects of varying test

problem characteristics, Tables ii and 12 show the impact of uniformly

increasing the problem dimensions. For a multitime period model, this

would correspond to expanding the time horizon of the study. For both

of the sample problems shown below, the advantage of the SDA increases

with overall problem size. Test results of this kind are a strong indica-

tion that decomposition would prove beneficial even for problems larger

than those examined in this computational study.

94

Total Time to
Solution Time Opt imum

m n T SDA BB SDA BB

18 18 3 1 1 1 1

24 24 4 2 4 2 3

30 30 5 2 10 2 4

36 36 6 7 49 5 34

42 42 7 14 59 11 11

48 48 8 24 128 18 17

54 54 9 49 537 37 250

Table 11: Effect of Increasing Problem Dimensions

Total Time to
Solution Time Optimum

m n T SDA BB SDA BB

12 24 3 3 6 2 5

16 32 4 47 72 42 63

20 40 5 39 126 35 108

24 48 6 139 714 117 502

28 56 7 433 2032 370 716

Table 12: Effect of Increasing Problem Dimensions

95

4. Suboptimal Solution Times

As evidenced by the computational results presented in the preced-

ing two sections, the staircase decomposition algorithm not only ter-

minates faster than the branch-and-bound method, it also usually discovers

(without yet verifying) an optimal solution more rapidly. Quite often

the difference in time to reach an optimal solution can be an order of

magnitude or more. This fact is remarkable because the search directions

produced by BB should be superior to those of the SDA (due to the extra

information available from the full simplex tableau).

Although the branch-and-bound method will occasionally arrive at

an optimum solution faster than the decomposition technique, the SDA

normally finds a good feasible point more quickly. For the vast majority

of problems the SDA will swiftly find an integer point within 5 or 10%

of the optimum objective value. A variety of sample results are given in

Table 13 to demonstrate the speed of the SDA in reaching good feasible

solutions. Note the initial dominance of the SDA even on problems for

which the total execution times of BB and the SDA are comparable. The

final line of Table 13 shows that the SDA does not really perform so badly

under this criterion on the problem with binary data shown previously in

Table 4.

The extremely rapid arrival of the SDA at near-optimal solutions

implies that it would be an excellent choice if computer resources are

limited. It would also serve well as an heuristic for generating a good

initial feasible solution to use as input to a method like Hillier's

bound-and-scan algorithm (see Chapter 1).

96

gL'So

Total Time to 95%
Solution Time of Optimum

m n T SDA BB SDA BB

20 20 2 16 14 2 4

20 40 5 94 120 2 62

20 60 5 1120 1521 30 507

30 50 5 58 886 3 73

30 60 5 110 4335 5 606

30 60 5 222 >4737 8 76

36 30 3 35 66 5 24

40 40 4 100 317 4 64

40 40 4 102 1725 10 728

50 100 5 133 928 39 712

50 100 5 1337 >7759 14 295

20 100 10 75 1 5 1

Table 13: Rapid Arrival at Near-Optimum Solutions

On some of the more difficult problems tested (with 60 or fewer

variables), BB required 30 CPU seconds to reach any feasible solution at

all. For all problems of that size, the SDA first encounters a feasible

solution within 1 to 6 seconds, regardless of problem difficulty. Thus

it seems that the decomposition approach is superior to the branch-and-

bound method in the early stages of execution, as well as terminating

more quickly for most problems.

97

CHAPTER 7: CONCLUSIONS

1. Summary

Staircase structured integer programming models arise in a number

of applications, including multiplant production allocation problems and

multitime period production and inventory problems. Conventional pure or

mixed integer programming methods for solving these problems may be quite

time-consuming, particularly if the models are large. The staircase

decomposition algorithm described in Chapters 2 and 3 should be a better

solution technique because it takes advantage of the inherent structure

of the problem.

By decomposing the original problem into small subproblems (one

for each diagonal block of the constraint matrix), the SDA can execute

each branch very efficiently. Compared to a standard branch-and-bound

algorithm, it uses less CPU time and a smaller portion of core. Guided

by look-ahead prices and Tomlin's improved penalties, this algorithm

quickly arrives at an optimal solution. The fathoming criteria derived

from the bounds on future objective value developed in Chapter 4 allow

rapid verification of optimality, so that total execution time is rela-

tively small.

Computational results, on a wide variety of randomly generated

test problems, have been very encouraging. These empirical results

involve the comparison of the staircase decomposition method with a

standard branch-and-bound algorithm (BB) applied to the undecomposed

problem. This comparison is particularly valid because BB also serves

98

as the subproblem search procedure for the SDA. Thus any flaws or

inefficiencies which might be present in the computer code BB would

also affect the performance of the SDA.

For the majority of the moderate-sized problems tested, the

decomposition technique discovered and verified an optimal solution 3

to 10 times faster than the standard branch-and-bound algorithm. These

impressive results held true for small and large problems as well, and

under varying problem dimensions, density, and tightness of constraints.

The effectiveness of the SDA increased significantly as the constraints

were made tighter or more numerous, and decreased as the bounds on the

variables were widened beyond [0,1].

In addition to its advantage in total execution time, the SDA

consistently found near-optimum integer solutions much faster than the

branch-and-bound method applied to the undecomposed problem. For this

reason, and also because of its smaller core requirements, the decomposi-

tion method could prove even more valuable if computer resources are

limited.

As explained in detail in Chapter 5, the staircase decomposition

algorithm can easily be modified to solve higher order staircase problems,

nonlinear integer programming problems (with the nonlinearities concen-

trated in the offdiagonal blocks), and mixed integer linear programs.

The ability to solve mixed integer programs is of particular importance,

since the formulations of many real world applications of the staircase

model contain both integer and continuous variables.

9

99

2. Directions for Future Research

One computational modification of the SDA which should be explored

is the substitutionofpseudocosts (see Forrest et al. [1974] and Gauthier

and Ribiere [1977]) for look-ahead prices and penalties. After enough

data are obtained to provide a good basis for pseudocosts, they provide

a more accurate estimate of the actual degradation in objective value

per unit change of each integer variable than penalties. Moreover,

pseudocosts are not calculated in a static manner, as are the look-ahead

prices; they are updated as the branch-and-bound search progresses.

Therefore, a branch-and-bound subproblem search guided by pseudocosts

should be more efficient than the more rigid search strategy which results

from the use of look-ahead prices.

For certain problems, such as higher order staircase problems,

loosely constrained problems, and non-binary problems, the look-ahead

prices are less likely to be effective in guiding the subproblem search

procedure towards a global optimum. The algorithmic improvement due to

the replacement of look-ahead prices by pseudocosts should be especially

significant for these types of problems.

In addition to the use of pseudocosts, alternative search strate-

gies might enhance the performance of the SDA. The last-in-first-out

(LIFO) search strategy of Kochman's branch-and-bound algorithm is the

best in terms of minimal programming complexity, but other strategies

might lead to the optimum more quickly. Under one alternative strategy,

the most promising node remaining on the node list is investigated next.

For this approach to improve on the performance of the LIFO strategy, the

extra bookkeeping work must be compensated for by the faster arrival at

100

I
II

an optimal solution. Even more appealing is the idea of fathoming

certain nodes temporarily when that particular branch does not appear to

be leading towards a significant improvement in objective value. Two

possible less stringent fathoming criteria are given by (32) and (33).

k-l
(32) ctx t + (1 - X)zk + maxc(X,k) + min{Pk(J)l < c;

t-l J

k-l
(33) t ctx t + (1-))zk + maxc(X,k) < (1 + c)cx

tfl

In (32), the price Pk(j) could be replaced by a pseudocost for

rounding off variable J. Using this fathoming criterion, a (perhaps

suboptimal) solution will be discovered by the decomposition algorithm.

At the end of the search procedure, the SDA could return to these

temporarily fathomed nodes to check for further improvement in objective

value.

If criterion (33) is used for fathoming, an c-optimal solution will

be found by the SDA. For some purposes, this solution will suffice; if

not, the nodes fathomed early (because E > 0) can be explored at the

end of the search procedure. Often many of these nodes will be fathomed

(with c - 0) immediately because of the improvement in objective value

from the time at which these nodes were temporarily fathomed. Compared

to the LIFO search strategy, fewer nodes will have to be explored, and

a near optimum solution should be found more quickly.

101

Another factor which might influence the performance of the SDA

is the degree of decomposition of a staircase problem. For example, a

multitime period model with 12 periods can be expressed as a staircase

problem with 2, 3, 4, or 6 periods simply by aggregating adjacent periods.

The higher the degree of decomposition, the faster branches can be taken,

but also the less information is available to guide the subproblem search.

For a problem with a large number of time periods, it is therefore

likely that the optimal level of decomposition would be somewhat less

than the maximum degree possible. Further computational results on this

subject are required to pinpoint the optimal degree of decomposition for

a large problem.

As discussed in Chapter 4, the "optimal" choice of {X., i = 1,... ,r}1

for use in fathoming is not obvious. It would be useful to investigate

the tradeoff between the increase in fathoming power due to enlarging

the number of bounds generated and the extra computational work needed

* to calculate and test these bounds. In addition, the speculation that

the best choice for the values Ai' for i = 1, ..., r, is to space them

evenly over the interval [0,(r - 1)/r] (i.e., Xi = (i - l)/r) should

be subjected to computational testing.

Perhaps the most important unresolved question concerns the effec-

tiveness of the staircase decomposition algorithm on real world problems.

The empirical evidence given in Chapter 6 is very promising, but actual

problems may not behave in the same manner as randomly generated ones.

Many of the applications of multitime period models are mixed integer,

often with strictly local continuous variables. These have not yet been

102

tested. Also, most real world problems discount costs over time, which

should benefit the SDA (because it automatically gives priority in the

branching strategy to variables in the early periods). The indications

are that the decomposition approach will be an efficient solution technique

for real staircase problems, but this remains to be proven conclusively.

103

REFERENCES

Abrahamson, Philip, private communication (1980).

Aho, Alfred V., John E. Hopcroft and Jeffrey D. Ullman, The Design and
Analysis of Computer Algorithms, Addison-Wesley Publishing Company,
Reading, Massachusetts (1974).

Bales, Egon, "Intersection Cuts from Disjunctive Constraints." Management
Science Research Report 330, Carnegie-Mellon University (1974).

----- and R.G. Jeroslow, "Strengthening Cuts for Mixed Integer Programs."
Management Science Research Report 359, Carnegie-Mellon University
(1975).

Benders, J.F., "Partitioning Procedures for Solving Mixed Variables
Programming Problems." Numerische Mathematik 4 (1962), 238-252.

Benichou, M., J.M. Gauthier, G. Hentges, and G. Ribiere, "The Efficient
Solution of Large-Scale Linear Programming Problems -- Some Algorithmic
Techniques and Computational Results." Mathematical Programming 13
(1977), 280-322.

Cooper, L. and M.W., "All-Integer Programming -- A New Approach Via
Dynamic Programming." Naval Research Logistics Quarterly 25 (1978),
415-429.

Dantzig, George B., Linear Programming and Extensions, Princeton
University Press, Princeton, New Jersey (1963).

-----,"Solving Staircase Linear Programs by a Nested Block-Angular Method."
Technical Report 73-1, Department of Operations Research, Stanford
University (1973).

..... ,and Philip Wolfe, "Decomposition Principle for Linear Programs."
Operations Research 8 (1960), 101-111.

Driebeek, Norman J., Applied Linear Programming, Addison-Wesley Publishing
Company, Reading, Massachusetts (1969), Chapter 5.

Denardo, Eric V. and Bennett L. Fox, "Shortest-Route Methods: 2. Group
Knapsacks, Expanded Networks, and Branch-and-Bound." Operations
Research 27 (1979), 548-566.

Faaland, Bruce H. and Frederick S. Hillier, "The Accelerated Bound-and-
Scan Algorithm for Integer Programming." Operations Research 23 (1975),
406-425.

----- * and Frederick S. Hillier, "Interior Path Methods for Heuristic
Integer Programming Procedures." Operations Research 27 (1979),
1069-1087.

104

Forrest, J.J.H., J.P.H. Hirst and J.A. Tomlin, "Practical Solution of
Large Mixed Integer Programming Problems with UMPIRE." Management
Science 20 (1974), 736-773.

Fourer, Robert F., "Solving Staircase Linear Programs by the Simplex Method."
Ph.D. Dissertation, Department of Operations Research, Stanford
University (1980).

Gacs, Peter and Laszlo Lovasz, "Khachian's Algorithm for Linear Program-
ming." Report 79-750, Department of Computer Science, Stanford
University (1979).

Garfinkel, R.S. and G.L. Nemhauser, Integer Programming, Wiley & Sons,

New York (1972).

..... ,and G.L. Nemhauser, "A Survey of Integer Programming Emphasizing
Computation and Relations Among Models." Mathematical Programming,
T.C. Hu and Stephen M. Robinson, editors, Academic Press, New York
(1973), 77-155.

Gauthier, J.M. and Ribiere G., "Experiments in Mixed-Integer Linear
Programming Using Pseudo-costs." Mathematical Programming 12 (1977),
26-47.

Geoffrion, A.M., "An Improved Implicit Enumeration Approach to Integer
Programming." Operations Research 17 (1969), 437-454.

, "Lagrangean Relaxation for Integer Programming." Mathematical
Programming Study 2 (1974), 82-114.

"A Guided Tour of Recent Practical Advances in Integer Linear
Programming." OMEGA 4 (1976), 49-57.

..... ,and G.W. Graves, "Multicommodity Distribution System Design by
Benders Decomposition." Management Science 20 (1974), 822-844.

..... ,and R.E. Marsten, "Integer Programming Algorithms: A Framework
and State-of-the-Art Survey." Management Science 18 (1972), 465-491.

..... ,and R. Nauss, "Parametric and Postoptimality Analysis in Integer
Linear Programming." Management Science 23 (1977), 453-466.

Glassey, C. Roger, "Dynamic Linear Programs for Production Scheduling."
Operations Research 19 (1971), 45-56.

- , "Nested Decomposition and Multi-Stage Linear Programs." Management
Science 20 (1973), 282-292.

Glover, Fred, "Surrogate Constraints." Operations Research 16 (1968),
741-749.

--- -- , "Parametric Branch and Bound." OMEGA 6 (1978), 145-152.

105

Gomory, R.E., "An Algorithm for Integer Solutions to Linear Programs."
Recent Advances in Mathematical Priramming, R. Graves and P. Wolfe,
editors, McGraw-Hill, New York (1963), 269-302.

, "On the Relatiorn Between Integer and Noninteger Solutions to
Linear Programs." Proceedings of the National Academy of Science 53
(1965), 260-265.

Gorry, G. and J. Shapiro, "An Adaptive Group Theoretic Algorithm for
Integer Programming Problems." Management Science 17 (1971),
285-306.

Heesterman, A.R.G. and J. Sandee, "Special Simplex Algorithm for Linked
Problems." Management Science 11 (1965), 420-428.

Hillier, Frederick S., "A Bound-and-Scan Algorithm for Integer Linear
Programming with General Variables." Operations Research 17 (1969),

638-679.

Ho, James K., "Optimal Design of Multi-Stage Structures: A Nested
Decomposition Approach." Computers and Structures 5 (1975),

249-255.

"Nested Decomposition of a Dynamic Energy Model." Management

Science 23 (1977), 1022-1026.

------ , and Alan S. Manne, "Nested Decomposition for Dynamic Models."
Mathematical Programming 6 (1974), 121-140.

Holm, Soren and Dieter Klein, "Discrete Right Hand Side Parametrization
of Linear Integer Programs." European Journal of Operations Research
2 (1978), 50-53.

Ibaraki, Toshihide, "On the Computational Efficiency of Branch-and-Bound
Algorithms." Journal of the Operations Research Society of Japan 20
(1977), 16-35.

Kaneko, I., "On the Unboundedness of the Set of Integral Points in a
Polyhedral Region." Technical Report SOL 74-12, Systems Optimization
Laboratory, Department of Operations Research, Stanford University
(1974).

Karp, Richard M., "Probabilistic Analysis of Partitioning Algorithms
for the Traveling Salesman Problem in the Plane." Mathematics of
Operations Research 2 (1977), 209-224.

Kochman, Gary A., "Decomposition in Integer Programming." Technical
Report 66, Department of Operations Research, Stanford University
(1976a).

"Computer Programs for Decomposition in Integer Programming."
Technical Report 71, Department of Operations Research, Stanford
University, (1976b).

106

Kochman, Gary A., and Lynne J. Pollenz, "A Decomposition Algorithm for
the Uncapacitated Plant Location Problem." Presented at the ORSA
Conference in New York (May 1978).

Land, A.H. and A.G. Doig, "An Automatic Method of Solving Discrete
Programming Problems." Econometrics 28 (1960), 497-520.

Lasdon, Leon S., Optimization Theory for Large Systems, The MacMillan
Company, New York (1970), Chapter 2.

Lawler, E.L. and D.E. Wood, "Branch-and-Bound Methods: A Survey."
Operations Research 14 (1966), 699-719.

Lenstra, J.K. and A.H.G. Rinnooy Kan, "On the Expected Performance of
Branch-and-Bound Algorithms." Operations Research 26 (1978),
347-349.

Luenberger, David G., Introduction to Dynamic Systems: Theory, Models,
and Applications, Wiley & Sons, New York (1979).

Madsen, Oli B.G., "Solution of Linear Programming Problems with Staircase
Structure." Research Report 26, The Institute of Mathematical
Statistics and Operations Research, Lyngby, Denmark (1977).

Manne, Alan S., "Sufficient Conditions for Optimality in an Infinite
Horizon Development Plan." Econometrica 38 (1970), 18-38.

Orchard-Hays, William, Advanced Linear Programming Computer Techniques,
McGraw-Hill, New York (1968).

Perold, Andre F. and George B. Dantzig, "A Basis Factorization Method
for Block Triangular Linear Programs." Technical Report SOL 78-7,
Systems Optimization Laboratory, Department of Operations Research,
Stanford University (1978).

Reardon, Kevin J., "A Decomposition Method for the Solution of Dual-
Angular Integer Programs." Technical Report 51, Department of
Operations Research, Stanford University (1974).

Rosen, J.B., "Primal Partition Programming for Block Diagonal Matrices."
Numerische Mathematik 6 (1964), 250-260.

Saigal, Romesh, "Block-Triangularization of Multi-Stage Linear Programs."
Report ORC 66-9, Operations Research Center, University of California,
Berkeley (1966).

Schrage, Linus, "Using Decomposition in Integer Programming." Naval
Research Logistics Quarterly 19 (1972), 435-447.

Shapiro, J.F., "Dynamic Programming Algorithms for the Integer Programming
Problem I: The Integer Programming Problem Viewed as a Knapsack Type
Problem." Operations Research 16 (1968a), 103-121.

107

Shapiro, J.F., "Group Theoretic Algorithms for the Integer Programming
Problem II: Extension to a General Algorithm." Operations Research
16 (1968b), 928-947.

Tomlin, John A., "An Improved Branch-and-Bound Method for Integer Program-
ming." Operations Research 19 (1971), 1070-1075.

Trauth, C.A. and R.E. Woolsey, "Integer Linear Programming: A Study in
Computational Efficiency." Management Science 15 (1969), 481-493.

Weil, R.L. and P.C. Kettler, "Rearranging Matrices to Block-Angular Form
for Decomposition (and Other) Algorithms." Management Science 18
(1971), 98-108.

Wollmer, Richard D., "A Substitute Inverse for the Basis of a Staircase
Structure Linear Program." Mathematics of Operations Research 2
(1977), 230-239.

10

r

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dle gnfere4

REPORT DOCUMENTATION PAGE R INSTRUCTIONS
BEFORE COMPLETING FORM

REPO2 NUMUE . GOVT ACCESSION NO. I. IIIECIPIENTS CATALOG NUMISER

94F-U
4. TITLE (end Subliti) s. TYPE OV REPORT & PERiOO COVERED

THE STAIRCASE AND RELATED STRUCTURES IN TEHNC REPORT

INTEGER PROGRAMMING TECHNICAL REPORT

6. PERFORMING ORO. REPORT lUMBER

7. AUTNOR(q) I. CONTRACT OR GRAN? NUMBERe)

LYNNE POLLENZ N00014-76-C-0418

9. PERFORMING ORGANIZATION NAME AND ADDRESS .0. PROGRAM ELEMT. PR T TASK

OPERATIONS RESEARCH PROGRAM ONR AREA A WORK UNIT NUMBERS
Department of Operations Research
Stanford University, Stanford, California NR-047-061

I. CONTROLL|NGPP A IESS It. REPORT OATEOFFICE "OF N'AV A SEARCHOPERATIONS RESEARCH PROGRAM CODE 434 JUNE 1980

ARLINGTON, VA. 22217 IS- Nu10E8 OAGES108
14. MONITORING AGENCY NAME a AODRESS(II diffetent Mw Conrolling Office) IS. SECURITY CLASS. (of this reportj

UNCLASSIFIED
15. DECL ASSI FI CATION/ OWNGRAOING

SCHEDULE

It. DISTRIOUTION STATEMENT (of thi Report)

This document has been approved for public release and sale;
its distribution is unlimited.

17. DISTRIBUTION STATEMENT (of he astroct orntl~ in Dieck 20. II difrt h o , Repeop)

IS, SUPPLEMENTARY NOTES IAlso issued as Technical Report No. 80-13, Dept. of Operations Research
Stanford University, under National Science Foundation Grant MCS76-81259

I9. KEY WOROS (Contfifue on rovere* side II Wc.eeW , and IdontIIpI by Wee5t)nlkl)

INTEGER PROGRAMMING

DECOMPOSITION

STAI RCASE
20. ADSTRACT (C.ntinu.,,e n vmw" e4. #1 n06e*e00y eed #I#p#ef, by Woe" jKWAe)

SEE OTHER SIDE

D , ',, 1473 tt o o.o . m OifOare
.E 1 9646617 C. A1OW IS R1311 (n 11. B

UNCLASSIFIED.
.UWmYV CLANFCATio@ or THISU PASS M 0.

TECHNICAL REPORT NO. 94 Author: Lynne Pollenz

Staircase structured integer programming problems arise in a

vide variety of practical applications, including multitime period

production and inventory problems and multisector economic planning

models. In order to exploit the special structure inherent in a

staircase model, a decomposition algorithm has been developed. This

algorithm can be modified to solve lower block triangular problems

and staircase mixed integer linear programs. Computational results,

including testing against a standard integer programming code, have

been very encouraging.

II

UNCLASSIFIED
,,,re e,.MIe Af, Tf i,,m PRra bmu..

