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- j_f’ ABSTRACT

We discuss a scheme for digitizing curves that is con-~
sistent with a scheme for digitizing regions. It is shown
that the cellular image of a region is determined by the
cellular image of its boundary by the scheme. It is proved
that the chord property is a necessary and sufficient condition
for a cellular arc to be a cellular straight line segment. By
showing that the chord property and the cellular convexity con-
dition are equivalent, we prove that a cellular arc is a cellular
straight line segment if and only if it is cellularly convex.
This leads to an algorithm to determine whether or not a cel-
lular complex is a cellular straight line segment in time linear
in the number of rows of cells. Finally it is proven that a
cellular complex is cellularly convex if and only if any pair
of its cells is connected by a cellular straight line segment
in the cellular complex.
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1. Introduction

A standard scheme for digitizing curves is the grid-inter-
section scheme for chain coding [1]. It was used in [7] to
study digital curves and digital straight line segments and in
[4] to characterize convex digital regions in terms of digital
straight line segments. More specifically, in [7] the chord
property was shown to be a necessary and sufficient condition
for a digital arc to be a digital straight line segment. It
was proved in [4] that a digital region is convex if and only
if any pair of points in the region can be connected by a digi-
tal straight line segment within it. 1In deriving the latter
result, however, two different digitization schemes were used,
one for digitizing curves and another for digitizing regions.
The reason was that the scheme for digitizing curves could not
be used to digitize regions.

There are two slightly different schemes for digitizing
regions. One has been used widely [2,6,9,10] and the other was
introduced recently and used in [3,4,5]. We use the latter
because the digitization of a region is unique under this
scheme while not unique under the former scheme.

In this paper we present a new scheme for digitizing curves.
It will be shown that the new scheme can be used to digitize
regions as well and the digitization by this method results in

the same digitization as under the usual scheme for digitizing
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regions. In fact, the digitization of a curve under the new
scheme is the same as the digitization of a region obtained by
thickening the curve infinitesimally on one side. In the sequel,
we use "cellular" instead of "digital" for the following two
reasons: (1) it distinguishes the new scheme from the old one,
and (2) it is more convenient to discuss the scheme in terms

of cells and lattice points than in terms of lattice points only.

The chard property was introduced in [7] and used to charac-
terize digital straight line segments. We prove that a cellular
arc is a cellular straight line segment if and only if it has
the chord property. This is an interesting characterization of
a cellular straight line segment but does not easily lead to an
efficient algorithm to determine the straightness of a cellular
arc.

In Euclidean plane geometry, an arc is a straight line seg-
ment if and only if it is convex. Here it will be shown that the
same holds in the case of cellular arcs; that is, a cellular
arc is a cellular straight line segment if and only if it is cel-
lularly convex. This in turn leads to an efficient algorithm
to determine the straightness of a cellular arc because there
exists an efficient algorithm to check cellular convexity.

A region is said to be convex if for every pair of points
in the region, the line segment connecting them lies entirely

within it. 1In the sequel, we show that a cellular complex is

cellularly convex if and only if every pair of cells in the




complex is connected by a cellular straight line segment lying

T

o

within the complex.

In the next section, the new scheme for digitizing curves
is introduced and its relation to a scheme for digitizing
regions is discussed. Section 3 is concerned with characterizing
cellular straight line segments in terms of the chord property.
1 An efficient algorithm is presented in Section 4 to determine
whether or not a cellular complex is a cellular straight line
segment. In the next section, the relation between cellular

convexity and a cellular straight line segment connecting a pair

of cells is discussed.
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2. Two schemes for digitizing curves

Consider a coordinate grid on the plane and the set of
all lattice points. With each lattice point d=(h,k) is asso-
ciated a unit square whose center is the lattice point. The
square associated with d is denoted by c¢ and is called a cell,

Let D be a set of lattic points. Then D denotes its comple-
ment. We denote by C the set of cells that are associated with
the points of D. The set of (real) points in C is denoted by
s{C), and its boundary by 9s(C). An interior point of D is a
point all of whose eight 8~neighbors [8] are points of D. &
boundary point of D is a point of D which is not an interior
point. An interior cell and a boundary cell are defined accor-

dingly. A finite set D of lattice points is called a digital

region and a finite set C of cells is called a cellular complex.

Digital image of a curve [1,7]

Consider a curve on the plane with a coordinate grid. When-
ever the curve crosses a grid line, thelattice point nearest
to the crossing becomes a point of the digital image of the
curve. When the crossing is exactly midway between two lattice
points, the one having shaller coordinate becomes a point of
the digital image.

Digital arc (7]

A digital arc R is an 8-connected digital region in which
every point except two has exactly two 8-neighbors in R and the

exceptional two, called endpoints, each have exactly one

8-neighbor in R.
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It is easy to see that the digital image of an arc is not
necessarily a digital arc. The larger the radius of curvature
of an arc at every point, the more likely is its digital image
to be a digital arc. As was shown in [7], if the radius is
infinite, that is, the arc is a straight line segment, then its
digital image is always a digital arc.

Cellular image of a curve

A set C of cells is the cellular image of a curve f if
f<s(C) and for every element c of C,
(i) O ne # @, where c® is the interior of c, or
(ii) cfif # g, assuming cOnt = #, and ¢ lies to the right
of £, where ¢ is the boundary of f.
(Note that a curve has a direction and its right side is with
respect to its direction.)

Cellular arc

A cellular complex S is a cellular arc if
(i) it is 4-connected, and
(ii) every cell except two has exactly two 4-ﬁeighbors in
S, and the exceptional two, called end cells, each have
one 4-neighbor in S.
Again, the cellular image of an arc is not necessarily a
cellular arc. It is shown in the next section that if an arc
is a straight line segment, then its cellular image is a cel-

lular arc.
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Figure 1l. Digital and cellular images of arcs.

Figures 1l-(a) and 1-(b) show the digital and cellular
images of an arc. These images are a digital arc and cellular

arc, respectively. Pigure 1l-{c) illustrates the cellular image
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of an arc that is a cellular arc, while its digital image is not
a digital arc. The opposite case is shown in Figure 1-(d). We
note from Figure 1-(c) that an arc may have an arbitrarily large
radius of curvature at every point but still have a digital
image that is not a digital arc. A similar remark for the case

of the cellular image may be made from Figure 1-(d).




The digital image of a

This method of digitization can be used for digitizing curves

a region, it is reasonable

*

- but not for digitizing regions. Since the boundary determines

the boundary determines the digitization of the region. 1In the
sequel, we show that the cellular image of a boundary indeed
determines the digitization of a region.

Cellular image of a region [3]

region q, and q a preimage

(ii) for each element c

However, we use the definition given above because the cellular

ol ; Then 9q is a closed curve that does not meet itself. We assume

that its direction is such
right of the closed curve.
J(3q) is a closed sequence

F . all cells that are bounded

-
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A cellular complex C is said to be the cellular image of a
(i) g=s(C) and _

We denote the unique cellular image of a region q by I(g). A

slightly different definition has been used widely [2,6,9,10].

. ; Let g be a simply 4-connected region and 3q its boundary.

l Then, obviously, gss(J(q)).

curve is a digitization of the curve.

to expect that the digitization of

of C, if

of C, cofq # .

! image of a region is not unique under the other definition.

that the interior of g lies to the
Let J(3q) be the cellular image of 3g.
of cells. Let Jo(Bq) be the set of

by the closed sequence of cells J(3q).

Then the points of Jo(aq) are in g, that is, s(JO(Bq))Cq. Let

the cellular complex J(q) be the union of J(3q) and Jo(aq).
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Suppose that c is an element of I(q). Then coﬂq 9.

Thus, ¢ is an element of J(g), since otherwise there exist
points of q that are not in s(J(q)). Conversely, suppose that
c is an element of J(q). Either c is an element of J(3gq) or

c is an element of J°(aq). In both cases, it is obvious that
coﬂq # #§. Hence, c is also an element of I(q}). Therefore,
I(q) = J(g). Summarizing the argument above we obtain:
Theorem 1. Let g be a simply 4-connected region. Then the
cellular image of its boundary determines the cellular image
of the region.

Due to the above theorem the digitization scheme for a curve
by the use of cellular images is consistent with the digitization
scheme for a region. Thus for a given curve £, we denote its
cellular image by I(f).

Let f be a curve. Build a parallel curve f' to the right
side of £ such that the distance between them is as small as
desired. Add line segments between corresponding end points of
the two curves to obtain an elongated region g. It is not dif-
ficult to see that I(f) = I(g). Thus, the scheme for digitizing
curves by their cellular images may be considered equivalent

to the scheme for digitizing regions.
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3. Cellular straight line segments

A cellular (digital) arc is called a cellular (digital)
straight line segment if there is a straight line segment
whose cellular (digital) image is the cellular (digital) arc.
In [7], it was shown that ﬁhe chord property is a necessary and
sufficient condition for a digital arc to be a digital straight
line segment. 1In this section, we derive an identical result
for the case of cellular straight line segments.

Let C be a cellular complex. If a cell c is an element of
C, then its center d is called a lattice point of C. If dl and
d, are two lattice points, the line segment between them is

denoted by dle'

Chord property [7]

Let C be a cellular complex, and dl,d be lattice points of

2
C. We say that dld2 lies near C if, for any real point (x,y)

of EI_;, there exists a lattice point 4 = (h,k) of C such that
max{|h-x|, |k-y|} < 1. We say that C has the chord property if,
for every d,,d, of C, the chord EIE; lies near C.

Lemma 2. The cellular image of a straight line segment is a
cellular arc and has the chord property.

Proof: Let £ be a straight line segment and I(£) its cellular
image. 1I1f £ is either horizontal or vertical, then I(£) is a
row or column of cells. It is obvious that I(£) is a cellular
arc and has the chord property.

Now suppose that £ is neither horizontal nor vertical.

Without loss of generality, assume that £ has a slope a, 0<asl.




tice points of I(L), uy and u, the upper left corner points and

It is easy to see that I({) is a cellular arc. It remains to

show that I(£) has the chord property. Let 4, and d, be lat- 1

1

vy and vy the lower right corner points of ¢ and C,, respec-

tively. Then £ lies between the line segments u;u, and ViVy-.

(See Figure 2.)

) ) i
-~ i
— !
- i
-~
- /dz
P
-~
- ”
12
-7 -7 2
- -
- -~
P //
g ! / //
// ? 1 J4 -
-~ b 2 (I A 3
-~ Y |
-~ Cmmd
- -
// -
P L 7.
u., -7 /,/ ds
Ve
/ -
-
4, P
¢ -
o4
v, i
Figure 2.

Let z = (x,y) be any point of EIE; and c the cell containing

z. If c is an element of I(£), max{|x-h|,|y-k|} < 1, where

d = (h,k) is the center of c¢. Suppose c is not an element of
I(£). Note that d is not on EIE;, since if it were, £ would
pass through ¢ and c would be an element of I(£). Assume with-

out loss of generality that 4 lies above dldz' Then the cell

C, just below ¢ is an element of I(£). 1If z lies strictly




below d, that is, y<k, then max{]x—h3|,|y-k3|} < 1, where

d3 = (h3,k3). Suppose ksy, and consider the unit square c'
whose center is z. Since £ must lie below c and pass through
c', it passes through the cell Cy immediately to the right of
c. Then max{|x-h,|,|y-k,|} <1, where d, = (h,,k,). Thus,
EIEE lies near I(£) and therefore, I(£) has the chord pro-
perty. O

A run of cells in a cellular complex C is a row or column
of cells of C. In a cellular arc S, horizontal and vertical
runs of cells alternate and the first cell of a run is a 4-
neighbor of the last cell of the previous run. An example is

shown in Figure 3.

/st run whicl .
Qr's vertical .
- A nd run whick
\ is horizontfal
S
€

Figure 3. A cellular arc.

The first run is always assumed to consist of a single cell.
If it has a horizontal 4-neighbor, it is a vertical run; other-

wise, it is a horizontal run. The length of a run is the

number of the cells in the run.




Lemma 3. If a cellular arc has the chord property, then it
is a cellular straight line segment.

Proof: Let S be a cellular arc that has the chord property.
No two successive runs may both have a run length larger than
1. Otherwise S does not have the chord property as can be

seen easily in the examples of Figure 4. Either all horizontal

.z

;

2
N

2
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x Figure 4

runs or all vertical runs are of length 1. Thus, S must have
the shape of a step as shown in Figure 5, since it is a cellular

arc.

r
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—
—— s
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Figure 5.
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Without loss of generality, assume that the vertical runs of
S are of length 1 as in Figure 5-(a). If S has only one run,
it is a cellular straight line segment. Assume that S has
h, h>1l, horizontal runs. Let Lis l=ish, denote the length of
the i-th horizontal run and W lsish, the top edge of the last
cell of the i~th row and W, the bottom edge of the cell of the
first vertical run. The line segment W, is closed to the left
and open to the right, that is, the right corner point of the
edge is excluded from W, . All of these notions may be easily
modified for the case when all horizontal runs have length 1
or the other end cell of the arc is used as the first run.

{(a) S has two horizontal runs.

Then it is obvious that § is a cellular straight line
segment.

(b) S has more than two horizontal runs.

We claim that Iri-rjl < 1 for all 2si,jsh-1. Suppose not
and assume without loss of generality that rj-rizz for some
i and j, 2si<jsh-1, and rk=ri+l for all k, i<k< j. Let di—l’di
be the centers of the last cells of the (i-1l)st and i-th runs,
respectively. The center of the (ri+2)nd cell of the j-th run
is denoted by dj‘ Then a;:;a; passes through the lattice point
d immediately to the right of di’ and d is not a lattice point
of S. Thus, EI:IEE does not lie near S, and S does not have
the chord property. Let m be an integer such that for all
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i,2sish-1, r;=m or m+l. It may be that r.=m for all i. By
an argument similar to the above, it can be shown that
rl,rhim+l.

Let W be the set that consists of WiitWoreeo, W 4, aS well as
L if r1=m+l, and v if rh:m+1. First we show that if there
exists a line { passing through every W, in W, then S is the
cellular image of a segment of £ and is a cellular straight :
line segment. If W contains every w,, 0=ish, then obviously
S is a cellular image of a segment of £. If wo.is not in W,
then r.sm. Since £ passes through Wy and rizm for all i,

1
lsish-1, its slope is less than or equal to 1/m. Also it does

not touch the top-right corner point of the last cell of the
first run. Hence, { passes through every cell of the first run
and S is the cellular image of a segment of £. .A similar argu-
ment applies when v is not in W.

It remains to be shown that such a line exists. Suppose
that no such line exists and £ is a line that passes through
the most wi's in W. Let W' be the subset of W that consists of
all w,'s through which £ passes and |W'| =n, where |W'| is the
number of elements in W'. Then there is a wj through which £
does not pass.

We consider the case when wj lies above £ as shown in

Figure 6. Displace { by upward parallel translation until it

reaches the left end point‘of some w. in W' for the first time.




Figure 6. w5 lies above Z.

The line still does not pass through wj, since no line passes

through more than n w's.
Case 1: [£ passes through the left endpoint of more than one W, .
(i) Suppose there are two integers i and k such that i<j<k and
£ passes through the left end points of Wy and wp and does not
pass through wj as shown in Figure 7. (The line £ may pass
through the right corner point of the edge of wj.) Note that

i cannot be 0, since the slope of £ is larger than 1/ (m+l),

and for it to pass through both Wy and the left end point of
Wor its slope must be at most 1/(m+l). Let di’ dj and dk be

the lattice points just below w,, w.

i 3 and Wy respectively.

Consider didk and the point z=(x,y) at which the horizontal

——

grid line passing through dj intersects didk' Then there is

no lattice point d=(u,v) such that max{|u-x|,|v-y|} < 1.

Therefore didk does not lie near S and S does not have the

chord property.




Figure 7.
(ii) Suppose that if £ passes through the left end point of
Wi then j<i. (The case when i<j is dealt with identically.)

Let i be the smallest such index. Using the left erd point of
w, as the fixed point, rotate £ clockwise until £ touches either
the right end point of the edge of Wy, or the left end point of
wy for some k. ‘

I1f £ touches the right end point of the edge of Wy then

W is in W' and i<k as shown in Figure 8. Let dj’ di and dk be

dk P

/‘/J

:

Figure 8.




the lattice points of S just above wj, Wi and Wy s respectively.
Consider a;a; and the point z=(x,y), the intersection of 3;3;
and the horizontal grid line through di' There is no lattice
point d=(u,v) of S such that max{|u-x|,|v-y|} < 1. Thus a;a;
does not lie near S and so S does not have the chord property.
If £ touches the left end point of w,, then w,  is in W'
and k<i. If k<j<i, then we have the case 1-(i) and S does not
have the chord property. If j<k, we come back to the case 1-(ii),
with smaller i. Thus, eventually either the case in Figure 7
or the case in Figure 8 is achieved.
Case 2: There is one W, through whose left end point £ passes.
Suppose j<i. The opposite case is handled similarly. Using
the left end point of w, as the fixed point, rotate £ clockwise
until £ touches either the right end point of the edge of W, or
the left end point of Wy for some k. This happens before £
reaches wj. The first is the case shown in Figure 8, and the
second is Case 1. This completes the proof for the case when
w. lies above £. The poof for the case when wj lies below £ is
almost identical. Care must be taken because of the fact that
the wi's are open to the right. But these considerations can
be handled without difficulty.(
Combining Lemmas 2 and 3, we obtain a necessary and suffi-
cient condition for a cellular arc to be a cellular straight 1line
segment as stated in the following theorem:

Theorem 4. A cellular arc is a cellular straight line segment

if and only if it has the chord property.




Next we briefly describe a relationship between digital

T

and cellular straight line segments. Let £ be a straight line
segment and let J(£) and I(£) denote the digital and cellular
images of £, respectively. For any cellular complex C, let
D(C) denote the set of the centers of all cells of C. By Lemma
2, I() is a cellular arc and has the chord property. In the }
proof of Lemma 3, it was shown that in I(£), either all the
vertical runs or all the horizontal runs have length 1. Let
L(I(2)) be the set of last cells of all the runs. L(I({)) con- :

tains all the cells of either vertical runs or horizontal runs.

We state a relationship between J(£) and D(I(£)) as a theorem
without proof.

Theorem 5. D(I(L))-D(I{L)-L(I(&L))) « J(L) « D(I(L)). Thus,
the center of any cell of I(£) which is not the last cell of q
a run is a point of J(£&). Moreover, except for the last cells

of the first and the last runs, the center of exactly one of

= i
e e e o

two adjacent cells in L(I(£)) is a point of J(&).

Given a digital straight line segment R, there may be line

5L i

segments £ and £' such that J(£) = J(£') = R but I(L) # I1(L').
Therefore, the digital image of the boundary of a region does

not determine the digital image of the region.
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4. Algorithm for recognition of cellular straight line segments

In this section we present an algorithm that determines
whether or not a cellular complex is a ceilular straight line
segment. Suppose that a cellular complex C resides in n rows
of m cells and is represented by a run length code [8]. The
algorithm has a time complexity of O(n), and is optimal up to
a constant factor, since it take 0O(n) time for any sequential

algorithm to scan a cellular complex.

Informally, the algorithm checks if a given cellular complex
is a cellular arc with a special configuration and then deter-
mines whether or not it is cellularly comvex. The part of the
algorithm that determines the cellular convexity of a cellular
complex was presented in [3]. If a cellular complex passes

both tests, it is a cellular straight line segment; otherwise,

it is not. To see why the algorithm works, we need a preliminary
result, which is interesting in its own right.

Cellular convexity [3]

Let dl,d2 be lattice points of a cellular complex C.

P(C;dl,dz) denotes the set of polygons each of whose boundaries
consists of a nonempty subarc of dld2 and 9s(C), and whose in-
terior is a subset of s(C). A cellular complex is said to be

cellularly convex if there are no lattice points dl,d of C

2
such that P(C;dl,dz) contains a lattice point of C.
A result given in [3] is stated as a lemma, which will be

used to prove our next theorem.




Lemma 6 (Theorem 5 in [3]): A cellular complex C is cellularly
convex if and only if there is no triplet of collinear lattice
points (d,,d,,d;), such that 4, and d; are in C and 4, is in C.
Theorem 7. A cellular complex has the chord property if and
only if it is cellularly convex.

Proof: Let C be a cellular complex, and suppose C does not
have the chord property. Then there exist lattice points

dl,d2 of C such that dld2 does not lie near C. That is, there

is a point z=(x,y) on éldz such that for any lattice point
(h,k) of C, max{|x-h|,]y-k|} 2 1. Consider the center of the
cell c that contains z. Then d is not in C. If d is in
P(C;dl,dz), then C is not cellularly convex. Assume that 4
is not in P(C;d,,d,) as shown in Figure 9. If z is on VW,

then max{|x-h"|, |y-k"|} < 1 where d"=(h",k"). Then 4" is a

Py
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Figure 9.

lattice point of both C and P(C;d;,d,). If z is on uv excluding
v, then max{|x-h'|,|y-k'|} < 1, where d'=(h',k"). Thus 4' is a
lattice point of both C and P(C;dl,dz). Therefore C is not

cellularly convex.




Now suppose C is not cellularly convex. By Lemma 6, there

' are lattice points d,,d; of C and d, of C such that d,=(x,y)

3
Then for any lattice point d=(h,k) of C,

1s a point on d1 3

max{|x-h|,|y-k|} = 1. Thus d,d; does not lie near C and C

does not have the chord property.l

Our algorithm is based on the following result, which is
obtained by combining Theorems 4 and 7.
Theorem 8. A cellular arc is a cellular straight line segment
if and only if it is cellularly convex.

Algorithm LINE(C)

l. Check if C is a cellular arc in which horizontal and

vertical runs alternate and if so, see if either all

horizontal runs or all vertical runs have a length of 1.
If not, output (False); stop.

2. Construct H(C), the convex hull of the set of lattice
points of C.

3. If H(C) contains a lattice point of C, then output

Lt v A g

(False); stop.

4. Output (True); stop.
Theorem 9. Algorithm LINE determines whether or not a cellular
complex is a cellular straight line segment and has a time com-
plexity of O(n).
Proof: The correctness of the algorithm is due to Theorems 4
and 8. It is obvious that step 1 takes O(n) time and it was

shown in [3] that step 2 also takes 0O(n) time.[
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5. Cellular convexity and cellular straight line segments

In Euclidean plane geometry, a region q is convex if and
only if, for any pair of points z,z2' of g, zz' is a subset of qg.
Here we shown that an equivalent statement holds for cellular
complexes.

A cellular arc is said to connect two cells < and c, if
they are its end cells.

Theorem 10. A simply 4~connected cellular complex C is cellularly
convex 1if and only if, for any pair of cells ¢ and ¢, of C,
there is a cellular straight line segment that connects them

and is a subset of C.

Proof: Suppose C is not cellularly convex. Then by Lemma 6,
there exist cells Cq1¢C, of C and ¢ of C such that d is a point on
HIE;. Let d=(h,k). For any lattice point d'=(h',k') of C,
max{|h-n'|, |k~k'|} 2 1. Thus, EIE; does not lie near C. Let

S be a cellular arc in C that connects cq and Cye Then 3;3;
does not lie near S, and S does not have the chord property.

By Theorem 4, S is not a cellular straight line segment.

Now suppose that C is cellularly convex. Let cl,c2 be
cells of C, and assume without loss of generality that the
slope a of 5;3; is between 0 and 1, that is, O=o=l. If a=0,
then the set of cells S between ¢, and c, inclusive is a subset

of C, since otherwise C is not cellularly convex. S is a cel-

lular straight line segment that connects < and Cye If a=1,




it is easy to see that the cellular image S of dld2 in one

of two directions, either from dl to d2 or from d2 to dl' is

a subset of C. So assume that 0<a<l. 1In the following, the
diagonal of Cy i=1,2, means the one with the top-left corner
point as an end point and will include the left but not the
right end point. We claim that there is a line segment £ such
that (i) its end points e and e, are on the diagonals of <
and c,, and (ii) it does not go through the interior of any
cell of C to its left and does not touch any cell of C to its
right. 1If there is such a line segment £, then I(£) is a cel-
lular straight line segment that is a subset of C and connects
c and c,. It remains to prove our claim. Suppose there is
no such line segment. Let £ be a line segment with end points
e, and e, on the diagonals of < and ¢, that does not go through

the interior of any cell in C to its right and passes through

the fewest number of cells in C to its right. Translate £ upward

in parallel until it reaches either the end point of the diagonal

of Cyr i=1 or 2, or a corner point of a cell in C to its left.

(The end points of £ are extended or retracted so that they lie
on the diagonals of cy and c2.) The line £ still passes through
all the cells in C to its right that it did before the parallel
translation because otherwise the translated £ passes through

fewer cells in C to its right than the original £.
{(a) £ reaches the end point of the diagonal of cy-
Case 1l: £ also reaches the end point of the diagonal of Cye




Let c be a cell in C to the right of £ through which £

passes. The P(C;d d2) contains 4 and C is not cellularly

1’
convex.

Case 2: £ touches a corner point e' of a cell in C to its left
and e' is farther from ey than from d as shown in Figure 10.
Let 4' be the lattice point just below and to the right of e’'.

Since C is 4-connected, d' is a lattice point of C. Then

P(C;dl,d') contains d and C is not cellularly convex.

Figure 10.

Case 3: £ touches a corner point e' of a cell in C to its

left and e' is always nearer to e than 4 as shown in Figure 11.

Figure 11.

[—
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Let e' be such a point farthest from e, - Rotate £ around e'
counterclockwise until (i) it reaches e,, (ii) it reaches the
opposite end of e, on the diagonal of Cq (iii) it touches the
corner point of a new cell in C to its right, or it touches a
corner point e" of a cell in C to its left. 1In case (iii), e’
lies between C and the new cell. The corner point e" is such
that either (iv) c lies between e' and e" or (v) e" lies between
e' and ¢c. For cases 3-(i), (ii), (iii) and (iv), it is easy to
show that C is not cellularly convex. In case 3-(v), rotate
£ counterclockwise around e" until one of the above four cases
arises again.
Case 4: £ does not touch a corner of any cell in C to its left.
Rotate £ counterclockwise around e until it touches e,
or a corner point of a cell in C to its left. Both result in
cases discussed already.
The case where { reaches the end point of the diagonal of
¢, is handled identically.
(b) £ reaches a corner point of a cell in T to its left.
Case 1l: There are two such points and between them there is a
cell in C to the right of £ through which £ passes. Then it is
easy to show that C is not cellularly convex.
Case 2: There is such a point and on both sides of it, there
are two cells in C to the right of £ through which £ passes.

Again it is easy to see that C is not cellularly convex.




Let e be such a point nearest

Case 3: None of the cases above.

to a cell in C through which £ passes. Assume without loss of

generality that e lies to the left of any cell in T through

which £ passes. This case can pe treated as was case 3 of (a) .

This completes the proof.l




6. Conclusions

The results in this paper are the "cellular" analogies of
the "digital" results given in [7] and [4]. 1In [7] it was sug-
gested that such results be proved for the scheme to digitize
regions. We accomplished this in Sections 2 and 3 by introducing
a new scheme for digitizing curves and proving that the chord

property is a necessary and sufficient condition for a cellular

arc to be a cellular straight line segment. The results in
Sections 4 and 5 correspond to those in [4]. Even though the
results are analogous, the proofs are different because of the
differences between the digitization schemes.

As is shown in [3] and [5), three independent definitions

of digital convexity are equivalent. Hence, the concept of

digital convexity seems well defined and universal. Many equi-
valent properties of convex regions in Euclidean geometry have
been shown to hold for convex digital regions under two different
schemes for digitizing curves. These further confirm the sound-
ness of the definitions of digital straightness and convexity in

digital pictures.
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