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ABSTRACT

We discuss a scheme for digitizing curves that is con-
sistent with a scheme for digitizing regions. It is shown
that the cellular image of a region is determined by the
cellular image of its boundary by the scheme. It is proved
that the chord property is a necessary and sufficient condition
for a cellular arc to be a cellular straight line segment. By
showing that the chord property and the cellular convexity con-
dition are equivalent, we prove that a cellular arc is a cellular
straight line segment if and only if it is cellularly convex.: This leads to an algorithm to determine whether or not a cel-
lular complex is a cellular straight line segment in time linear
in the number of rows of cells. Finally it is proven that a
cellular complex is cellularly convex if and only if any pair
of its cells is connected by a cellular straight line segment
in the cellular complex.
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1. Introduction

A standard scheme for digitizing curves is the grid-inter-

section scheme for chain coding [1]. It was used in [71 to

study digital curves and digital straight line segments and in

[4] to characterize convex digital regions in terms of digital

straight line segments. More specifically, in [7] the chord

property was shown to be a necessary and sufficient condition

for a digital arc to be a digital straight line segment. It

was proved in 14] that a digital region is convex if and only

if any pair of points in the region can be connected by a digi-

tal straight line segment within it. In deriving the latter

result, however, two different digitization schemes were used,

one for digitizing curves and another for digitizing regions.

9he reason was that the scheme for digitizing curves could not

be used to digitize regions.

There are two slightly different schemes for digitizing

regions. One has been used widely [2,6,9,101 and the other was

introduced recently and used in [3,4,5]. We use the latter

because the digitization of a region is unique under this

scheme while not unique-under the former scheme.

In this paper we present a new scheme for digitizing curves.

It will be shown that the new scheme can be used to digitize

regions as well and the digitization by this method results in

thesame digitization as under the usual scheme for digitizing



regions. In fact, the digitization of a curve under the new

scheme is the same as the digitization of a region obtained by

thickening the curve infinitesimally on one side. In the sequel,

we use "cellular" instead of "digital" for the following two

reasons: (1) it distinguishes the new scheme from the old one,

and (2) it is more convenient to discuss the scheme in terms

of cells and lattice points than in terms of lattice points only.

The chord property was introduced in [7] and used to charac-

terize digital straight line segments. We prove that a cellular

arc is a cellular straight line segment if and only if it has

the chord property. This is an interesting characterization of

a cellular straight line segment but does not easily lead to an

efficient algorithm to determine the straightness of a cellular

arc.

In Euclidean plane geometry, an arc is a straight line seg-

ment if and only if it is convex. Here it will be shown that the

same holds in the case of cellular arcs; that is, a cellular

arc is a cellular straight line segment if and only if it is cel-

lularly convex. This in turn leads to an efficient algorithm

to determine the straightness of a cellular arc because there

exists an efficient algorithm to check cellular convexity.

A region is said to be convex if for every pair of points

in the region, the line segment connecting them lies entirely

within it. In the sequel, we show that a cellular complex is

cellularly convex if and only if every pair of cells in the

Ji



complex is connected by a cellular straight line segment lying

within the complex.

In the next section, the new scheme for digitizing curves

is introduced and its relation to a scheme for digitizing

regions is discussed. Section 3 is concerned with characterizing

cellular straight line segments in terms of the chord property.

An efficient algorithm is presented in Section 4 to determine

whether or not a cellular complex is a cellular straight line

segment. In the next section, the relation between cellular

convexity and a cellular straight line segment connecting a pair

of cells is discussed.
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2. Two schemes for digitizing curves

Consider a coordinate grid on the plane and the set of

all lattice points. With each lattice point d=(h,k) is asso-

ciated a unit square whose center is the lattice point. The

square associated with d is denoted by c and is called a cell.

Let D be a set of lattic points. Then D denotes its comple-

ment. We denote by C the set of cells that are associated with

the points of D. The set of (real) points in C is denoted by

s(C), and its boundary by as(C). An interior point of D is a

point all of whose eight 8-neighbors [8] are points of D. A

boundary point of D is a point of D which is not an interior

point. An interior cell and a boundary cell are defined accor-

dingly. A finite set D of lattice points is called a digital

region and a finite set C of cells is called a cellular complex.

Digital image of a curve [1,71

Consider a curve on the plane with a coordinate grid. When-

ever the curve crosses a grid line, the lattice point nearest

to the crossing becomes a point of the digital image of the

curve. When the crossing is exactly midway between two lattice

points, the one having smaller coordinate becomes a point of

the digital image.

Digital arc (71

A digital arc R is an 8-connected digital region in which

every point except two has exactly two 8-neighbors in R and the

exceptional two, called endpoints, each have exactly one

8-neighbor in R.



It is easy to see that the digital image of an arc is not

necessarily a digital arc. The larger the radius of curvature

of an arc at every point, the more likely is its digital image

to be a digital arc. As was shown in [7], if the radius is

infinite, that is, the arc is a straight line segment, then its

digital image is always a digital arc.

Cellular image of a curve

A set C of cells is the cellular image of a curve f if

f .s(C) and for every element c of C,

(i) c 0 f , where c is the interior of c, or

(ii) cff 0 0, assuming c 0F = 0, and c lies to the right

of f, where c is the boundary of f.

(Note that a curve has a direction and its right side is with

respect to its direction.)

Cellular arc

A cellular complex S is a cellular arc if

(i) it is 4-connected, and

(ii) every cell except two has exactly two 4-neighbors in

S, and the exceptional two, called end cells, each have

one 4-neighbor in S.

Again, the cellular image of an arc is not necessarily a

cellular arc. It is shown in the next section that if an arc

is a straight line segment, then its cellular image is a cel-

lular arc.
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Figure 1. Digital and cellular images of arcs.

Figures 1-(a) and 1-(b) show the digital and cellular

images of an arc. These images are a digital arc and cellular

arc, respectively. Figure 1-(c) illustrates the cellular image

of an arc that is a cellular arc, while its digital image is not

a digital arc. The opposite case is shown in Figure 1-(d). We

note from Figure 1-(c) that an arc may have an arbitrarily large

radius of curvature at every point but still have a digital

image that is not a digital arc. A similar remark for the case

of the cellular image may be made from Figure 1-(d).
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The digital image of a curve is a digitization of the curve.

This method of digitization can be used for digitizing curves

but not for digitizing regions. Since the boundary determines

a region, it is reasonable to expect that the digitization of

the boundary determines the digitization of the region. In the

sequel, we show that the cellular image of a boundary indeed

determines the digitization of a region.

Cellular image of a region [3]

A cellular complex C is said to be the cellular image of a

region q, and q a preimage of C, if

(i) q~s(C) and

(ii) for each element c of C, c0 q :0 .

We denote the unique cellular image of a region q by I(q). A

slightly different definition has been used widely [2,6,9,101.

However, we use the definition given above because the cellular

image of a region is not unique under the other definition.

4Let q be a simply 4-connected region and aq its boundary.

Then 3q is a closed curve that does not meet itself. We assume

that its direction is such that the interior of q lies to the

right of the closed curve. Let J(Dq) be the cellular image of aq.

J(3q) is a closed sequence of cells. Let J O(q) be the set of

all cells that are bounded by the closed sequence of cells J(Dq).

Then the points of J O(q) are in q, that is, s(J° (q))Qq. Let

the cellular complex J(q) be the union of J(3q) and J O(q).

Then, obviously, q-s(J(q)).



Suppose that c is an element of I(q). Then c 0°q 0.

Thus, c is an element of J(q), since otherwise there exist

points of q that are not in s(J(q)). Conversely, suppose that

c is an element of J(q). Either c is an element of J(aq) or

00
c is an element of JO(eq). In both cases, it is obvious that

c°Ck $ 0. Hence, c is also an element of I(q). Therefore,

I(q) = J(q). Summarizing the argument above we obtain:

Theorem 1. Let q be a simply 4-connected region. Then the

cellular image of its boundary determines the cellular image

of the region.

Due to the above theorem the digitization scheme for a curve

by the use of cellular images is consistent with the digitization

scheme for a region. Thus for a given curve f, we denote its

cellular image by I(f).

Let f be a curve. Build a parallel curve f' to the right

side of f such that the distance between them is as small as

desired. Add line segments between corresponding end points of

the two curves to obtain an elongated region g. It is not dif-

ficult to see that I(f) = I(g). Thus, the scheme for digitizing

curves by their cellular images may be considered equivalent

to the scheme for digitizing regions.



3. Cellular straight line segments

A cellular (digital) arc is called a cellular (digital)

straight line segment if there is a straight line segment

whose cellular (digital) image is the cellular (digital) arc.

In [7], it was shown that the chord property is a necessary and

sufficient condition for a digital arc to be a digital straight

line segment. In this section, we derive an identical result

for the case of cellular straight line segments.

Let C be a cellular complex. If a cell c is an element of

C, then its center d is called a lattice point of C. If d1 and

d2 are two lattice points, the line segment between them is

denoted by d1 d2.

Chord property [71

Let C be a cellular complex, and dl,d2 be lattice points of

C. We say that dld2 lies near C if, for any real point (x,y)

of d1 d2, there exists a lattice point d = (h,k) of C such that

- maxflh-xl,lk-yj } < 1. We say that C has the chord property if,
for every dl,d 2 of C, the chord dld2 lies near C.

Lemma 2. The cellular image of a straight line segment is a

cellular arc and has the chord property.

Proof: Let Z be a straight line segment and I(t) its cellular

image. If t is either horizontal or vertical, then I() is a

row or column of cells. It is obvious that I() is a cellular

arc and has the chord property.

Now suppose that t is neither horizontal nor vertical.

Without loss of generality, assume that t has a slope a, O<asl.

,2



It is easy to see that I1(t) is a cellular arc. It remains to

show that I(t) has the chord property. Let d1 and d2 be lat-

tice points of I(t), uI and u2 the upper left corner points and

v and v2 the lower right corner points of c1 and c2, respec-

tively. Then t lies between the line segments UlU2 and vlv2 .

(See Figure 2.)

C2

I1

Figure 2.

Let z = (x,y) be any point of dld2 and c the cell containing

z. If c is an element of I(t), max{Ix-hl,ly-kl} < 1, where

d = (h,k) is the center of c. Suppose c is not an element of

I(t). Note that d is not on d1 d2, since if it were, Z would

pass through c and c would be an element of I(t). Assume with-

out loss of generality that d lies above d1 d2. Then the cell

c3 just below c is an element of I(t). If z lies strictly

__ _ _ _ _
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below d, that is, y'k, then max{Ix-h3 1,y-k31} < 1, where

d3 = (h3 1k3). Suppose k'y, and consider the unit square c'

whose center is z. Since t must lie below c and pass through

c', it passes through the cell c4 immediately to the right of

c. Then max{Ix-h41,jy-k 4 1) < 1, where d4 = (h4 ,k4 ). Thus,

d1d2 lies near I(t) and therefore, I(t) has the chord pro-

perty. []

A run of cells in a cellular complex C is a row or column

of cells of C. In a cellular arc S, horizontal and vertical

runs of cells alternate and the first cell of a run is a 4-

neighbor of the last cell of the previous run. An example is

shown in Figure 3.

t? i)A runI I
Figure 3. A cellular arc.

The first run is always assumed to consist of a single cell.

If it has a horizontal 4-neighbor, it is a vertical run; other-

wise, it is a horizontal run. The length of a run is the

number of the cells in the run.

_______________I.



Lemma 3. If a cellular arc has the chord property, then it

is a cellular straight line segment.

Proof: Let S be a cellular arc that has the chord property.

No two successive runs may both have a run length larger than

1. Otherwise S does not have the chord property as can be

seen easily in the examples of Figure 4. Either all horizontal

- i- 3

Figure 4

runs or all vertical runs are of length 1. Thus, S must have

the shape of a step as shown in Figure 5, since it is a cellular

arc.

Ir

Figure 5.
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Without loss of generality, assume that the vertical runs of

S are of length 1 as in Figure 5-(a). If S has only one run,

it is a cellular straight line segment. Assume that S has

h, h>l, horizontal runs. Let ri, l.i~sh, denote the length of

the i-th horizontal run and wi, is&ilh, the top edge of the last

cell of the i-th row and w0 the bottom edge of the cell of the

first vertical run. The line segment wi is closed to the left

and open to the right, that is, the right corner point of the

edge is excluded from w1 . All of these notions may be easily

modified for the case when all horizontal runs have length 1

or the other end cell of the arc is used as the first run.

(a) S has two horizontal runs.

Then it is obvious that S is a cellular straight line

segment.

(b) S has more than two horizontal runs.

We claim that Iri-r.I s 1 for all 2si,jsh-l. Suppose not

and assume without loss of generality that rj-rik2 for some

i and j, 2£i<jSh-l, and rk=ri+l for all k, i<k< j. Let d il,di

be the centers of the last cells of the (i-l)st and i-th runs,

respectively. The center of the (ri+2)nd cell of the j-th run

is denoted by dj. Then d iid j passes through the lattice point

d immediately to the right of di, and d is not a lattice point

of S. Thus, dii d. does not lie near S, and S does not have

the chord property. Let m be an integer such that for all

b

k -



i,2 iih-1, ri=m or m+l. It may be that ri=m for all i. By

an argument similar to the above, it can be shown that

rl,rh m+l.

Let W be the set that consists of WlW 2 ,...,WhI as well as

w if rl=m+l, and wh if rh=m+l. First we show that if there

exists a line t passing through every wi in W, then S is the

cellular image of a segment of t and is a cellular straight

line segment. If W contains every wi, O:Li'h, then obviously

S is a cellular image of a segment of L. If w0 is not in W,

then r1 &m. Since £ passes through wi and ri m for all i,

li:&h-l, its slope is less than or equal to I/m. Also it does

not touch the top-right corner point of the last cell of the

first run. Hence, Z passes through every cell of the first run

and S is the cellular image of a segment of t. A similar argu-

ment applies when wh is not in W.

It remains to be shown that such a line exists. Suppose

that no such line exists and t is a line that passes through

the most wi's in W. Let W' be the subset of W that consists of

all wi's through which t passes and iW'I =n, where jW'Ij is the

number of elements in W'. Then there is a w. through which £
3

does not pass.

We consider the case when w. lies above t as shown in

Figure 6. Displace Z by upward parallel translation until it

reaches the left end point of some wi in W' for the first time.



Figure 6. wj lies above Z.

The line still does not pass through wi, since no line passes

through more than n w's.

Case 1: t passes through the left endpoint of more than one w.

(i) Suppose there are two integers i and k such that i<j-qk and

Z passes through the left end points of wi and wk and does not

pass through w. as shown in Figure 7. (The line t may pass

through the right corner point of the edge of w..) Note thatJ

i cannot be 0, since the slope of Z is larger than i/(m+l),

and for it to pass through both wI and the left end point of

w0, its slope must be at most i/(m+l). Let di, dj and dk be

the lattice points just below wi , wj and wk, respectively.

Consider didk and the point z=(x,y) at which the horizontal

grid line passing through d intersects di d Then there is

no lattice point d=(uv) such that max{ilu-xl,lv-yIl} < 1.

Therefore didk does not lie near S and S does not have the

chord property.
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Figure 7.

(ii) Suppose that if Z passes through the left and point of

wi, then j<i. (The case when i<j is dealt with identically.)

Let i be the smallest such index. Using the left end point of

w. as the fixed point, rotate Z clockwise until I touches either1

the right end point of the edge of wk or the left end point of

wk for some k.

If I touches the right end point of the edge of wk' then

wk is in W' and i-4c as shown in Figure 8. Let d., di and dk be

Figure 8.

*1i



the lattice points of S just above wi, wi and wk respectively.

Consider did k and the point z=(x,y), the intersection of di dk

and the horizontal grid line through di . There is no lattice

point d=(u,v) of S such that max{lu-xj,Iv-yjl < 1. Thus djdk

does not lie near S and so S does not have the chord property.

If t touches the left end point of Wk, then wk is in WI

and k<i. If k<j<i, then we have the case l-(i) and S does not

have the chord property. If j<k, we come back to the case l-(ii),

with smaller i. Thus, eventually either the case in Figure 7

or the case in Figure 8 is achieved.

Case 2: There is one wi through whose left end point Z passes.

Suppose j<i. The opposite case is handled similarly. Using

the left end point of w. as the fixed point, rotate Z clockwise1

until t touches either the right end point of the edge of wk or

the left end point of wk for some k. This happens before £

reaches w . The first is the case shown in Figure 8, and the

second is Case 1. This completes the proof for the case when

w. lies above e. The poof for the case when wj lies below t is

almost identical. Care must be taken because of the fact that

the wi's are open to the right. But these considerations can

be handled without difficulty.0

Combining Lemmas 2 and 3, we obtain a necessary and suffi-

cient condition for a cellular arc to be a cellular straight line

segment as stated in the following theorem:

Theorem 4. A cellular arc is a cellular straight line segment

if and only if it has the chord property.



Next we briefly describe a relationship between digital

and cellular straight line segments. Let t be a straight line

segment and let J(/) and I(t) denote the digital and cellular

images of t, respectively. For any cellular complex C, let

D(C) denote the set of the centers of all cells of C. By Lemma

2, 1(t) is a cellular arc and has the chord property. In the

proof of Lemma 3, it was shown that in I(t), either all the

vertical runs or all the horizontal runs have length 1. Let

L(I(Z)) be the set of last cells of all the runs. L(I(Z)) con-

tains all the cells of either vertical runs or horizontal runs.

We state a relationship between J(t) and D(I(Z)) as a theorem

without proof.

Theorem 5. D(I(Z))-D(I(t)-L(I(t))) r J(t) F D(I(e)). Thus,

the center of any cell of I(t) which is not the last cell of

a run is a point of J(Z). Moreover, except for the last cells

of the first and the last runs, the center of exactly one of

two adjacent cells in L(I(t)) is a point of J(Z).

Given a digital straight line segment R, there may be line

segments t and V such that J(Z) = J(Z') = R but I(t) 0 I(').

Therefore, the digital image of the boundary of a region does

not determine the digital image of the region.



4. Algorithm for recognition of cellular straight line segments

In this section we present an algorithm that determines

whether or not a cellular complex is a cellular straight line

segment. Suppose that a cellular complex C resides in n rows

of m cells and is represented by a run length code (8]. The

algorithm has a time complexity of O(n), and is optimal up to

a constant factor, since it take O(n) time for any sequential

algorithm to scan a cellular complex.

Informally, the algorithm checks if a given cellular complex

is a cellular arc with a special configuration and then deter-

mines whether or not it is cellularly comvex. The part of the

algorithm that determines the cellular convexity of a cellular

complex was presented in [3]. If a cellular complex passes

both tests, it is a cellular straight line segment; otherwise,

it is not. To see why the algorithm works, we need a preliminary

result, whicn is interesting in its own right.

Cellular convexity [31
Let dl,d 2 be lattice points of a cellular complex C.

P(C;dl1 d2 ) denotes the set of polygons each of whose boundaries

consists of a nonempty subarc of d1 d2 and 3s(C), and whose in-

terior is a subset of s(C). A cellular complex is said to be

cellularly convex if there are no lattice points dl,d 2 of C

such that P(C;dl,d 2 ) contains a lattice point of C.

A result given in [31 is stated as a lemma, which will be

used to prove our next theorem.
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Lemma 6 (Theorem 5 in [3]): A cellular complex C is cellularly

convex if and only if there is no triplet of collinear lattice

points (d11d2 1d3 ), such that d and d3 are in C and d2 is in C.

Theorem 7. A cellular complex has the chord property if and

only if it is cellularly convex.

Proof: Let C be a cellular complex, and suppose C does not

have the chord property. Then there exist lattice points

dld 2 of C such that d1 d2 does not lie near C. That is, there

is a point z=(x,y) on d1 d2 such that for any lattice point

(h,k) of C, max{jx-hl,jy-kj} - 1. Consider the center of the

cell c that contains z. Then d is not in C. If d is in

P(C;dld2 ), then C is not cellularly convex. Assume that d

is not in P(C;dl,d2 ) as shown in Figure 9. If z is on vw,

then max{lx-h"I, iy-k"l} < 1 where d"=(h",k"). Then d" is a

Figure 9.

lattice point of both C and P(C;dl,d 2). If z is on uv excluding

v, then maxfjx-h'j,jy-k'j} < 1, where d'=(h',k"). Thus d' is a

lattice point of both C and P(C;dld 2). Therefore C is not

cellularly convex.

I
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Now suppose C is not cellularly convex. By Lemma 6, there

are lattice points d1 d3 of C and d2 of C such that d2=(x,y)

is a point on dld Then for any lattice point d=(h,k) of C,

max{jx-hl,ly-kl} a 1. Thus d d does not lie near C and C
1 3

does not have the chord property.L

Our algorithm is based on the following result, which is

obtained by combining Theorems 4 and 7.

Theorem 8. A cellular arc is a cellular straight line segment

if and only if it is cellularly convex.

Algorithm LINE(C)

1. Check if C is a cellular arc in which horizontal and

vertical runs alternate and if so, see if either all

horizontal runs or all vertical runs have a length of 1.

If not, output (False); stop.

2. Construct H(C), the convex hull of the set of lattice

points of C.

3. If H(C) contains a lattice point of C, then output

(False); stop.

4. Output (True); stop.

Theorem 9. Algorithm LINE determines whether or not a cellular

complex is a cellular straight line segment and has a time com-

plexity of O(n).

Proof: The correctness of the algorithm is due to Theorems 4

and 8. It is obvious that step 1 takes O(n) time and it was

shown in [3] that step 2 also takes O(n) time.Li



5. Cellular convexity and cellular straight line segments

In Euclidean plane geometry, a region q is convex if and

only if, for any pair of points z,z' of q, zz' is a subset of q.

Here we shown that an equivalent statement holds for cellular

complexes.

A cellular arc is said to connect two cells cI and c2 if

they are its end cells.

Theorem 10. A simply 4-connected cellular complex C is cellularly

convex if and only if, for any pair of cells c1 and c2 of C,

there is a cellular straight line segment that connects them

and is a subset of C.

Proof: Suppose C is not cellularly convex. Then by Lemma 6,

there exist cells clc 2 of C and c of C such that d is a point on

dId 2. Let d=(h,k). For any lattice point d'=(h',k') of C,

max{Ih-h'I,jk-k'I} a 1. Thus, d1d2 does not lie near C. Let

S be a cellular arc in C that connects cI and c2 . Then d d

does not lie near S, and S does not have the chord property.

By Theorem 4, S is not a cellular straight line segment.

Now suppose that C is cellularly convex. Let cl,c 2 be

cells of C, and assume without loss of generality that the

slope a of d1d2 is between 0 and 1, that is, Osct.l. If a=0,

then the set of cells S between c1 and c2 inclusive is a subset

of C, since otherwise C is not cellularly convex. S is a cel-

lular straight line segment that connects cI and c2. If a=i,

1 2



it is easy to see that the cellular image S of d1d 2 in one

of two directions, either from d1 to d2 or from d2 to dl, is

a subset of C. So assume that Q<a<l. In the following, the

diagonal of ci , i=1,2, means the one with the top-left corner

point as an end point and will include the left but not the

right end point. We claim that there is a line segment t such

that (i) its end points eI and e2 are on the diagonals of c1

and c2, and (ii) it does not go through the interior of any

cell of C to its left and does not touch any cell of C to its

right. If there is such a line segment Z, then I(Z) is a cel-

lular straight line segment tnat is a subset of C and connects

c and c2. It remains to prove our claim. Suppose there is

no such line segment. Let Z be a line segment with end points

e and e2 on the diagonals of c1 and c2 that does not go through

the interior of any cell in C to its right and passes through

the fewest number of cells in U to its right. Translate t upward

in parallel until it reaches either the end point of the diagonal

of ci , i=l or 2, or a corner point of a cell in E to its left.

(The end points of t are extended or retracted so that they lie

on the diagonals of c1 and c2.) The line t still passes through

all the cells in C to its right that it did before the parallel

translation because otherwise the translated t passes through

fewer cells in C to its right than the original I.

(a) Z reaches the end point of the diagonal of c

Case 1: Z also reaches the end point of the diagonal of c2.



Let c be a cell in C to the right of Z through which Z

passes. The P(C;dl,d2) contains d and C is not cellularly

convex.

Case 2: £ touches a corner point e' of a cell in C to its left

and e' is farther from eI than from d as shown in Figure 10.

Let d' be the lattice point just below and to the right of e'.

Since C is 4-connected, d' is a lattice point of C. Then

P(C;dl,d') contains d and C is not cellularly convex.

Figure 10.

Case 3: t touches a corner point e' of a cell in C to its

left and e' is always nearer to e1 than d as shown in Figure 11.

Figure 11.



Let el be such a point farthest from e 1. Rotate taround e'

counterclockwise until (i) it reaches e2,' (ii) it reaches the

opposite end of e 1 on the diagonal of c1,l (iii) it touches the

corner point of a new cell in E to its right, or it touches a

corner point e" of a cell in C to its left. In case (iii), el

lies between C and the new cell. The corner point e" is such

that either (iv) c lies between e' and e" or (v) e" lies between

e' and c. For cases 3-(i),(ii),(iii) and (iv), it is easy to

show that C is not cellularly convex. In case 3-(v), rotate

Z counterclockwise around e" until one of the above four cases

arises again.

Case 4: t does not touch a corner of any cell in ZC to its left.

Rotate t counterclockwise around e 1 until it touchese2

or a corner point of a cell in C to its left. Both result in

cases discussed already.

The case where t~ reaches the end point of the diagonal of

cis handled identically.

(b) t reaches a corner point of a cell in U to its left.

Case 1: There are two such points and between them there is a

cell in E to the right of tL through which t passes. Then it is

easy to show that C is not cellularly convex.

Case 2: There is such a point and on both sides of it, there

are two cells in E to the right of t through which t passes.

Again it is easy to see that C is not cellularly convex.

Ii



Case 3: None of the cases above. Let e be such a point nearest

to a cell in C through which t 
passes. Assume without loss of

generality that e lies to the left 
of any cell in C through

which t passes. This case can be treated as was 
case 3 of (a).

This completes the proof.0

I!
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6. Conclusions

The results in this paper are the "cellular" analogies of

the "digital" results given in [7] and [4]. In 17] it was sug-

gested that such results be proved for the scheme to digitize

regions. We accomplished this in Sections 2 and 3 by introducing

a new scheme for digitizing curves and proving that the chord

property is a necessary and sufficient condition for a cellular

arc to be a cellular straight line segment. The results in

Sections 4 and 5 correspond to those in [4]. Even though the

results are analogous, the proofs are different because of the

differences between the digitization schemes.

As is shown in [3] and [5], three independent definitions

of digital convexity are equivalent. Hence, the concept of

digital convexity seems well defined and universal. Many equi-

valent properties of convex regions in Euclidean geometry have

been shown to hold for convex digital regions under two different

schemes for digitizing curves. These further confirm the sound-

ness of the definitions of digital straightness and convexity in

digital pictures.
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