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1. INTRODUCTION

The von Mises distribution, in 2-dimensions, and the Fisher

distribution, in 3-dimensions, have been extensively used in recent

years to describe directional data. In this paper we give the theory

of the von Mises distribution in p-dimensions, and suggest some

possible applications. Some results along these lines were given

by Watson (1956) and by Watson and Williams (1956), but the first

complete extension to p-dimensions was given in the author's Ph.D. thesis

(Stephens, 1962a, Chapter 9). It was later issued as a technical report

(Stephens, 1962b) and some results have since been reproduced by

Mardia (1975) and by Degerine (1977); since these sources are

relatively inaccessible, we begin with a summary of results, taken

essentially from Stephens c1962a,b). In later sections, we develop

some new techniques for the analysis of data, and illustrate with

an application to data recorded as a set of continuous

proportions.

2. THE VON MISES DISTRIBUTION IN p-DINENSIONS

2.1. The von Mises Distribution.

A typical sample item is recorded as a unit vector from

the center 0 to a point P on the surface of a hypersphere, of

unit radius, in p-dimensions. A typical sample then consists of the

points Pi i = 1,...,N , or equivalently the vectors OPi . When

p = 2, the points are on a circle, and when p 3, they are on

a sphere. The vectors can then denote directions, e.g. of
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prevailing winds, flights of birds, or magnetization of rocks.

Until now, it is in these context that the distribution has been

extensively used. Let the unit vector OP , called v , have

coordinates xlx 2 ,...,x P  in a suitable rectangular system.

It will also be useful to use polar coordinates, consisting, in

general, of the radius r (here r - 1), and angular coordinates

81,8 2?o... P e The relations between the two sets of coordinates

are

x = cos 1

o n 6. n Wtj=l

xj - cos e. Z sin 6. , (j = 2 .... ,p-l); (j - 1,...,p-2);
i=l

P-1 0 !E 6 p 1 f-7
p-1i-

x - R sin 8.
p i=l 1

The von Mises density is symmetrical around the modal

vector OA ; for convenience in analyzing the distribution, we place

this vector along 61 = 0 . The density per unit area on the

hypersphere is then proportional to exp(k cos 61) where k is a

concentration parameter. The joint density function of the e6 is

f(e 1 ,e 2 ,...e p 1 )-Cp (k)exp(kcosel )sinp-2e sin' 3 2... sin 2 1-

over the range of . The constant term is

C (k) - k, q
P W(k) (21) p / 2
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where q is written for p/2-1 and where Imk) is the imaginary

Bessel function of order m and argument k . When k is 0 ,

C p(0) becomes r(p/2)/(2n) p/ 2 and the density is uniform over the

unit hypersphere; the concentration around OA increases with k

With the density as described, xI is the component of OP on the

modal vector and e1 is the angle between OP and the modal vector.

An orthogonal transformation allows the density to be transformed

to place OA along any chosen vector, but the general form is then

very complicated.

2.2. Notation for vectors and related statistics.

In a suitable rectangular system, let vector w. have1

components x ilx 2, .,xp, written w i = (x ilXi2...,xip ). Two

calculations involving vectors are often needed; the scalar product

of two vectors and the length of a vector. The scalar product

s(w.,w of vectors w. and w. is defined as

s(wi,w j ) - X.x + xX + ... + x xjp (2)

ilj 1J ilxj2 i pp

and the length Si of wi  is given by 9 2 s(w -1 i

2 2 2
x + x + .. + X A vector w. is reduced to unit lenqth by

ii i2 * ip I

dividing by its length, its components are then (xii/ei , x12/Si,...,xtip/I).

The scalar product is also 8(wi#w i Cos Mij where Oij is

the smaller angle between vectors wi and w. . The values of s(wiw)

and of ti are not dependent on the coordinate system used. Vectors

3l
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and their lengths are often denoted by the same letter but with the vcctor

printed boldface; for ease of printing we shall mostly not use this

convention, i.e., vectors will not be written boldface, except to

distinguish between a resultant vector R and its length R

Suppose a sample of N unit vectors is given, consisting of

vectors OP. = v., i = l,...,N; a typical vector v. has components

(xilli 2 ,.o.,xip), and the polar coordinates are (9ill ,i2.'. ,i(p-l)).

The resultant, or vector sum, of the set of N vectors has components

XlX 2,..X p , where

N
X. = X..

3 1

The resultant is denoted by R = (XIX, Xp) and its length by R;

th R2 = 2  2  X2
us X + X + ... The length of the component of R on the

modal vector OA, when this is known or hypothesized, is often used

and will be denoted by X with no subscript. Suppose OA has unit

length, and components al,a2, .... a ; then

X - s(OA,R) a X1 + a2X2 + ... a X (3)

The value of X will also be independent of the coordinate system.
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The statistics R , R and X are all important statistics for

the analysis of a sample. For example, the maximum likelihood estimator

(MLE) of the direction of the modal vector is the direction of R and

the MLE k of the concentration parameter k is given by the

equation

q+l (k) R (4)

Iq M

with q = p/2-1 as before. For k large this equation becomes

2k Ni 2(N-R) 
(5)

If OA is known, the component X replaces R in (4)

and (5).

'tI

When several samples of unit vectors are given, questions

arise whether they have the same modal vectors, the same concentration

parameters, etc. Let the i-th group have modal vector OAi , and con-

centration parameter k. . Let vj, - l,...,N i P be the set of unit

vectors in the i-th group, so that N. is the number of vectors in

the group, and let R be the length of the resultant vector R. of the
i

group. Let N - EiNil and let R be the length of the resultant R of

all the vectors treated as one large group.
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2.3. Distributions of statistics X and R.

In the applications to be described, we shall mostly need

approximations to the distributions of X and R which hold when

k is large; however for completeness the exact distributions of

these two statistics will be given. Suppose J (t) and I (t) areq q

respectively the usual Bessel function and the imaginary Bessel

function of order q , and let

M1(R) = f tq(l-N)2-qJ (Rt){J (G)N t dt
0

and

M2 (X) = f {J (t)}N t-qN cos Xt dt
0 q

Aldo, put

C1 = {kq/ q(k) }N and C2 = {/frr(q + 1/2))-

The densities of R and of X are (Stephens, 1962a)

fl(R) C CIq (k)Rp/2 MI(R) 0 n R :< N

f 2 (X) = (C1/r) e kx  
2 (x) -N 5 X f- N

These densities involving Bessel functions simplify for odd values

of p.: Stephens (1962a,b,1967,1969a) discusses the densities for

p - 2 and 3 in much greater detail and uses them to find tests for k

Stephens (1962ab) also gives the conditional density of R given X

in p-dimensions; this is independent of k as was earlier shown by

Watson for p - 2 and 3, and so can be used for a test that the modal

vector is along a given vector OA, , when k is unknown. The tests

for p - 2 and 3 are described in detail in Mardia (1972) and in
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Section 9 of Volume 2 of Biometrika Tables for Statisticians, see

also Stephens (1975) for a test for the modal vector, when k is

known. Other exact results for p-dimensions are given in

Stephens (1962ab).

When k = 0, the densities above simplify considerably. The

vectors are now uniformly distributed on the hypersphere, and the length

R is the length of the final displacement of N unit steps in a

random walk from 0 in p-dimensions. For this reason it has attracted

attention long before the use of the von Hises and Fisher distributions.

For the exact densities, and for further references, see

Stephens (1964, 1969b). When k = 0, a simple approximation exists

for the distribution of R. Suppose Z = pR2/N for large X; a is

approximately X2 distributed with p degrees of freedom. This

result can be used to provide a test for uniformity based on R;

the test has come to be known as Rayleigh's test. A recent paper

(Prentice, 1978) surveys tests for uniformity in p-dimensions.

2.4. Properties of the von Mises density with large concentration

parameter k

When k is large, there are useful approximations

concerning the densities of R and of X. There is then a high

probability that 01 *ill be small and so cos e 1 I -1 2/2

and sin 01 # 81 The density of e1 becomes



2 P-, 6)f(el) n Cp(k)exp(k)exp(-k 1 / 2 )6 1 pl, 0 < 1 < i , (6)

so that the quantity kO12 has approximately a X2 distribution

with p-i degrees of freedom. Since x= cos 61 , we write

2 2
k81 = 2k(1 - cos e1) = 2k(l - x 1 ) 2 (7)

1 1 1 Xp-l

Because of the symmetry around the modal vector, the other coordinates

xi, j _ 2, have identical distributions; for large k these are approximately

normal with mean 0 and variance 1/k . For a tightly clustered sample

of vectors v we expect R to point fairly accurately along the modal
i

vector OA , and the length of R to be relatively large. If OA

is known, the projection X of R on OA will also be large. Then

clearly N - X and N - R are both measures of the dispersion of

the set of vectors. For large k , we have from (7), with r = p-1,

2 2
E i 2k(1 - xi) 2 ; this gives 2k(N-X) s X .

Further, the distributional results for x., j = 2,...,p, lead

2 2 2
to the approximate distribution k(R - X )/N 't Xr2 - since R r X s N,

this becomes 2k(R-X) Xr

2.5. Tests for the modal vector and for k.

Watson (1956) and Watson and Williams (1956) have used these

identities to devise a technique of analysis for large k , which is

analogous to the usual one way analysis of variance for continuous

variables. Watson writes the identity

2k(N-X) - 2k(N-R) + 2k(R-X) , (8)

which, by analogy with the analysis of variance, becomes, in

p-dimensions
2 2 2

XNr X(N-l) + Xr (9)
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This leads to the approximation for the statistic Z

Z, z (N-i) (R-X) P
1-R r,(N-l)r

where F is the F distribution with S and t degrees of freedom.s,t

Watson suggested the use of statistic Z1 in two or three

dimensions, to examine whether a given vector OA0 is the modal

vector. On the null hypothesis, both R and X will be known,

and, the hypothesis will be rejected for larg( values of Z,

indicating that X is much smaller than R i in that case R does not

point in the direction of the vector OA . Tests of the null

hypothesis that k is a given value k0 will be based on the
2
x approximations given above for 2k(N-X), when OA is known, or for

2k(N-R), when OA is not known. Stephens (1967, 1969a) examined these

tests for p = 2 and 3 and found them to be very good even for quite

low values of k . They will certainly be valid for the large values

of k which arise in the applications below.

2.6. Comparison of several modal vectors.

Suppose s different samples of unit vectors are given and

we wish to test whether all the samples come from populations with the

same modal vector, assuming they have the same value of k . On the
2

null hypothesis we again use the X approximation for 2k(N-R), and

apply this result to the individual samples as well as the entire group

taken as a whole. We write the following identity

2k(N-R) - 2k(N -R ) + 2k(N 2 -R2)+ "" + 2k(N -Rs ) + 2k(R+R+...+R-R) (10)

and, again by analogy with the analysis of variance we obtain
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2k{l:.(N.-R. X 2 and 2k(R +R +...+R -R) 2

i 1 i (N-s) r 1 2 s (s-1) r

where again r = p-i; hence the statistic

(N-s)( (i Ri-R)

2 (s-i) (N-..R.)

will have approximately the F distribution with (s-l)r and (N-s)r

degrees of freedom. Therefore to test whether the different groups

have the same modal vector, the statistic Z is calculated and
2

compared with this F distribution. Large values of Z2 will be

significant, indicating that the R vectors point in different

directions.

The above analysis is essentially a one-way analysis of

variance which can be set up in the usual tabular form;

Variance Components d.f.

Between groups: ..R. - R (s-l)r
1 1

Within groups : N - E.R. (N-s)r

Total : N-R . (N-l)r

Note that throughout the table 2k has been omitted before the

variance components; since only ratios will be used for tests

this does not effect the calculations. This is analogous to omitting

22 in the terms of squares of an ANOVA table. In a later section

we shall give an extension to the above analysis which can be used

when, for example, the groups of vectors can be classified according

to two criteria.
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2.7. Tests for constant k.

In the variance component analysis, k is assumed to be

constant for each group, analogous to the assumption of constant

variance in an analysis of variance table. For large k this

assumption can be tested as follows. Suppose in general, there are

s groups of vectors, and it is required to test for constant k for

all groups. For group i , calculate Qi = Ni-Ri and

qi = (N.-l)r = (Ni-l)(p-l); let T = iQi and t = Ziq i . Calculate

z = t Zn T - iqi en Q. - t en t + Ziq. n q.

and C =1 + 1( q- 1/t);
3(s-1

finally let Z = Z /C- The hypothesis of constant k is rejected if Z
3 33

2
is significantly large compared with the X distribution with s-1

degrees of freedom. Note that if Z3 is not significant, Z3 will

not be significant, since C is greater than 1 . This test is based

on Bartlett's test for homogeneity of variances. Other tests for

the same purpose (e.g. those in section 16 of Biometrika Tables for

Statisticians, Vol. 1) can be adapted in a similar way.

3. THE ANALYSIS OF CONTINUOUS PROPOnTIONS.

3.1. Applications of the von Mises distribution in p dimensions.

The von Mises distribution in p-dimensions can be a useful

tool of analysis of multivariate data, where the variables are subject

to a constraint which corresponds to the fact that all vectors in the

11



von Mises sample have unit lengths. An example is the analysis

of continuous proportions, where the typical vector v has components

XX2, ...,Fx p which are proportions of a continuum, e.g. time or volume

or mass. Suppose, for example, a subject records the proportion of

his day spent in p different activities; let these proportions be

2and let x = Y'. . Since E.x. 2 , 1,

a typical activity pattern for a subject can be recorded as a unit

vector v with components X,X 2, .... x . A group of subjects

will be denoted by a set of points on the unit hypersphere, and the population

might well be represented by a von Mises density around a central

vector. This application occurred to the author when at a Conference some

years ago such a data set was being discussed, gathered from the activity

patterns of over 200 students at Reading University, and covering over 60

activities. The students had been asked to compile a diary for one

week, giving their activities for every fifteen minute period. Thus

the vector of activity pattern was available for each student, and in

addition a transition matrix was available giving the probability

of moving from activity i to activity j . The example in

Section 3.3 examines a similar data set, but much simplified.

3.2. The von Mises distribution for continuous proportions.

The von Mises distribution was suggested above as a useful model

for a cluster of vectors around a modal direction. For continuous

proportions further analytic justification can be given. Suppose for

each i the proportion it. recorded by a subject is a random variable

. = + Ei; ai is the modal value for the population, and fi a

random fluctuation with a normal distribution with mean 0 and a small

variance a. . Since Zit = 1, and Ei a 1, the constraint E 01 11ii1

is imposed on the E., which are otherwise assumed independent. The

12



* typLcal component of the unit vector v for the subject is x. AT.

and the modal vector OA has components a., i = 1,...,p. The

scalar product s(OA, v) gives cos 81; thus

cos 81 = E1xi/a i Eifa i + Ei/(2-a i ) _ (i2/{8(ai 3 / 2 ) } ]

using the binomial expansion of xi = /(ai + (i). In the simplest case,
2as2

suppose that all ai are equal to l/p, and that all a. 2 , , a constant.

Then cos 61 becomes

cos 81 1 - p3/2Eii2/8

1 ~ l2 kO2 2 =4/ 2
and since cos8 1 - 1/2 we have k181% E iE. 2  where kI  4/p /

However, iE 2/o2 has the X2_ distribution, one degree of freedom being

lost since E. = 0. Hence kO 2 ; -1 '2 where k = k /CT2 = 4a2/p3/2 .

1 1 1 X- 1s I

By symmetry, the vector component of v which is not along OA will be
uniformly distributed; this result, together with k8 2  Xp2, indicates

1 Xp.uiniae

that the vector v has the von Mises distribution, at least to a good
2

approximation. When ai and oi are not all equal, the approximation

still holds well provided we can take iE/ ai - 0 and

2 3/2 2
E (/a. ; k X where k2  is a constant. These approximations
ii 2 p-2

will be good if , a reasonable model, and the von Mises

distribution will be probably quite robust for most situations provided

the a. are not too different in value.1

3.3. Example.

The data to be analyzed concerns the proportions of time spent in various

activities by 130 students at Simon Fraser University. The activities

were classified in 8 ways: sleeping, attending lectures, studying,

socializing, travelling, family activities, meals, and personal activities

and the students were asked to record their activities for one day

only. Thus the sample does not represent the overall activity pattern,

13



but it is used here as an illustration of the general methodology. The

complete data set is available from the author.

The first step in analyzing the data is to convert the

proportions to x-coordinates. For student i let it.. be the

proportion of time spent in activity j , i = 1...,N, j =

and let x.. = ji.. • From the x.. , the component X. of the resultant1) 1) 1) J

and the length R of R , are calculated as described in Section 2.2.

We first use the analysis of variance technique to examine

whether there appears to be a difference in activity patterns between

men and women. The data set is divided into two groups; group 1 for

women and group 2 for men. The results for the two groups are given

in Table I. From the ANOVA table of part (a), the value of statistic

Z2 is 0.61, which is not significant at a = .10 when compared with

the Fs' t distribution with s = 7 and t = 896. With such a large

value for t , the percentage point of F, at upper level a , is

excellently approximated by X(2a)/s, where X (a) is the upper tail

2
percentage point of X at level a . Here the value required would

2s
be X2(a)/7; for a = .10, this is 1.909. Therefore there appears

to be no reason to suppose the activity pattern is different between

men and women students.

The data were next examined to see if there was a difference

is patterns explained by the style of living arrangements of the

students. The living styles were classified as: 1, college

residence; 2, marriage or marriage style; 3, other, e.g. at

home, sharing an apartment, renting a room, etc. The results are

given in part (b) of Table 1. The value of Z2 is now 3.3, to be

compared with the F table with s - 14, t = 889. At the 1%

14



level, the value of X 2(.01)/14 is 2.08, so that Z is significantleeth aueo 142

at this level, and we conclude that there is a difference between groups

classified by living styles. The data will be examined in greater detail

after some new techniques have been introduced.

4. NEW TECHNIQUES

4.1. Two-way analysis of variance.

In this section we give some new techniques for the examination of

data. First the variance component analysis of the preceding section is

extended to a two-way layout, and the student data is again used for

illustration. In section 4.3, we discuss goodness-of-fit to the von

Mises distribution, and in section 4.4 some techniques of clustering and

correlation are briefly mentioned.

Suppose the sample items (for example, students) are classified in

two ways: by a main classification 1 with I groups, indexed by ifl,...,I,

and by classification 2 with Ji groups within group i of classifica-

tion 1. When a student falls into group i of classification 1 and

group j of classification 2, the associated vector of activity proportions

will be placed in cell (ij) in row i, column J, of a two way table.

Extending our previous notation, we write viik for the k-th vector

in cell (ij). Let N be the number of vectors in cell (ij), and

let R be the length of the resultant in this cell. Let N be the

total number of vectors and let N* be the number of non-empty

cells. Let Ri. be the length of the resultant of all

vectors in row i, i.e., of the vectors for all students in group i of

the first classification, and suppose R is the length of the resultant

15
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of all the vectors. As before, write r = p-i. A table may be constructed as

in Table 2(a). By extension of the previous analysis, we write the

following identity

Ji J2  J

2k(N-R.) =2k Y(Nlj-Rj + 2 k  I (Nj-R) +...+2k t (N -Rj)
•- j=l 2 2jJ-1 IjI

Jl JI I

+ 2k{ I R1j)-R 1 . +...+ 2k{ I R.j)- R.} + 2k( I Ri.-R.);
j=l j=1 i-I

collecting terms, we have

I J i Jl J I

2k(N-R) = 2k (N -R -  2 k  ' (RI -R 1 )} + + 2kt i ( j-R)}
i-l j-1 i i j= -  j=l

I

+ 2k( L R. -R )
i=1 i. ..

with corresponding distributions, for large k

2 2 2 2 + 2
X(N-l)r ( X(NJ)r X(J -1)r +..+X r X(I-l)r

The terms may be arranged in a variance component table as in

Table 2(b). A final column ("Mean Component") may be added,

giving the value of the variance component divided by its degree of

freedom. The table allows us to examine differences between rows,

or differences between columns within any one row; thus the analysis

will be similar to what is usually called a nested analysis of variance.

To test the null hypothesis H0 : that there is no difference between

rows, we calculate the quotient

I(N-N*)( R i.--R..)

z= i-lI (12)

i-( j-l

which, on R0 , has an P-distribution with (I-l)r and (N-!1*)r

degrees of freedom. The null hypothesis is rejected for a significantly

16
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large value of Z Similarly, to test the null hypothesis H

there is no difference between columns within row i, the quotient

Ji
(N-N*) ( R _iJR.

z 5 -1 (13)
(J-1) (N- 7 Rs )

I i

i=1 jii

is calculated. On H, Z5 has an F-distribution with (J-l)r and

(N-l)r degrees of freedom, and H should be rejected for a signifi-

cantly large value of Z5.

4.2. Example.

We continue with the example already begun in the previous

section. The original sample is now subdivided by both sex and living

arrangements, making a total of six cells. Table 3 shows the sample

size of each cell and the resultant length in each cell. Also shown

* in the table are the resultant length for each row, i.e., for the

males and for the females, and for each column, i.e., for the three

* styles of living arrangements. Other relevant statistics are also

given for use with Table 2(b). Tables 3(a) and 3(b) give the tables

for two analyses. The column MC gives the mean component, i.e.,

variance component divided by its degrees of freedom.

In analysis 1, we first test if there appears to be a

difference between activity patterns for men and women, using the

variance components for "between sexes" and "within groups". The

test statistic Z4 = 0.00857/0.01376 = 0.62 and this is clearly

not significant when compared to the F7,868 distribution. The next

17



test is for difference between living styles for women only. The

statistic Z5 = 0.01486/0.01376 = 1.08, and this is also not

significant. The test statistic for difference between living styles

for men is Z5 = 0.0421/0.01376 = 3.06 ; this is significant

compared with F14 868- X24/1
4) at the a = 0.005 level. Thus the

previously noted difference between activity patterns for different

living styles has been narrowed down to a difference for men.

In analysis 2, the difference between activity patterns for

different living styles again shows up in the corresponding Z4

statistic, Z4 = 0.043/0.01376 = 3.13 ; but for a difference between

sexes within each living style there is no significant Z5 statistic,

confirming the results already found. The results of the more detailed

two-way analysis are consistent with each other and sharpen the

conclusions gained from the one-way analysis.

Example of the test for constant k. For the cells in Table 3

the values of k across the top row are 32.44, 36.63, 38.70, and

those across the bottom row are 51.39, 36.53, 37.99. The test

statistic Z of Section 2.7 has value Z = 3.44, not significant

when compared with X
5 ' so that the hypothesis of constant k

can be maintained.

Example 2. In the above example, the classification within each row

was the same, with Ji = 3 for both men and women. However, with ai!
nested model, Ji can of course be different for each row. We

illustrate with a second example with data kindly provided by Dr. Charles

Jones of the Dept. of Sociology, McMaster University. N - 232 respondents

18
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were each asked to rate 35 ethnic or religious groups in Canada, by the

criterion of social standing, using a 9-point scale. By a scaling

device, the 35-vector of replies was reduced to a vector n 3 dimensions.

These vectors could have negative components, in contrast to the continuous

proportions data. Thus the basic data set consists of 232 vectors in 3

dimensions; these were divided into 8 groups according to ethnic origin

of the respondents. The eight groups have been put into four rows

indicated by the nature of the Canadian population, and two of the rows

have been subclassified. The data is given in Table 4, with the Analysis

of Variance. For a test of significance between rows, the test statistic

is Z2 
= 1.28/.063 - 20.31 and is highly significant when compared with

2
X6/6 at the 0.005 level. The test statistics for differences in groups

within rows 2 and 4 are respectively Z5 - .0306/.063 and Z 5  .0419/.063

and are clearly far from significant.

4.3. Godness-of-Fit.

The analysis described so far assumes that the observations

come from the p-dimensional von Mises distribution. In order to test

this assumption, we use two of the distributional results described

in Section 2. The results are the distribution of the angle

e1 between a typical vector v and the modal vector OA , and the

distribution of the component of v, say y , at right angles to the
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modal vector. Since the modal vector is not precisely known, 01 must

be estimated by *i I the angle between v and the resultant R of

the sample. The set of angles *l is tested to come from the density

2
for e given in equation ( 6 ), using the usual Pearson X test.

Since *l replaces 01 , it is difficult to determine exactly the degrees

of freedom (though k-2 might be indicated for a test involving k cells)

and more examination needs to be made of the test in this case.

However the statistic will be a helpful guide to the fit of 01 The

components yi F i = 1,2,...,N, at right angles to R should be uniform

on the hypersphere of dimension p-l, and the hypothesis that this is so

can be tested in many ways (see e.g. Prentice, 1978). For robustness

of the analysis, it will be important that they are not clustered

around a single mode and for this purpose the Rayleigh test is indicated.

The vector component yi is found as follows. Let u = R/R be the

unit vector along R and let ci  be the scalar product of v. and

R (see section 2.2 for these calculations). The component of v.1

along R is then uc and yi . the component at right angles,

is yi = vi - uc . To apply the Rayleigh test, we then reduce

each vector yi to unit length as shown in Section 2.2; let the unit

vector be i, with components z1 , z 2 ,...,z. ; the resultant Z of this

set of vectors has components Z1,z 2 ... ,Z p, where Z. = Eizij, and the

length Z of Z is given by Z = + 2 + .. + Z on the null" 1  Z2  • p

hypothesis that the vectors z. are uniform in the p-1 dimensional

subapace, the test statistic T = (p-l)Z /N is asymptotically

2
distributed as X with p-l degrees of freedom; the hypothesis of

2
uniformity is rejected if T is larger than X2_l (a). The two tests

above, taken together, provide a good omnibus test that the original

sample of vectors vi comes from the von Mises distribution. The
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distributional tests are appliod to each cell of the two way analysis

of variance table described above, analogous to applying tests for

normality in the usual analysis of variance table. If, of course,

there were to be a significant difference in the modal vector, say

between men and women, a test for the von Mises distribution applied

to the complete sample, including both men and women, might well be

rejected. On the other hand, if each group is found to have a von

Mises distribution, the test for common modal vector can be applied,

and if accepted, the overall sample should have a von Mises

distribution. For the student data in Table 3, all the groups gave

far from significant values for the test statistics for goodness-of-fit,

so that the von Mises distribution appears to fit the data well.

4.4. clustering and correlation.

The scalar product sij = svi,vj) is a convenient

measure of the closeness of the vectors v. and v. ; s. . takes

values between -1 and 1. We can call s.. a proximity measure, and1)

the matrix S , with entries sij, a proximity matrix. A cluster

may then be defined as containing all points for which si. is

greater than r0 , for a suitable r0 , or by using some similar

algorithm. This proximity measure has been used on some economic

data in an M.Sc. thesis (Holguin, 1980); data on the proportions

of different wood products produced by Canadian and U.S. lumber

companies were provided by Dr. R. Schwindt of this University and the

companies were examined both for differences between groups and also

to find clusters. In a second data set, taken from a U.N. publication,

countries were clustered according to the proportions of certain staple

foods in the national diet.
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When two sets of vectors can be logically paired, the techniques

of correlation developed by Stephens (1979) may be useful. These have

not been illustrated here because they did not appear to be applicable

to the student data.

5. CONCLUDNG REMARKS

(a) It is hoped that the methodology developed above will be useful

for the analysis of data which it is convenient to record as a set of

unit vectors; the example illustrated is that of continuous proportions.

The special feature of the technique is that it incorporates the constraint

expressed by" EiIri = 1 in a natural way. Note that the order of

proportions, e.g. the order of labelling student activities, does

not affect the analysis. For reasons of space, only one such

example has been discussed in detail but analyses similar to the above

could be applied to the proportions of different minerals in an ore

deposit, calculated by volume or by mass, or the proportions of

different products in the total output of a company, the proportions

of the area of a city used for different purposes, etc. Several

examples on these lines have been suggested to the author, and they

will be followed up in later case studies.

(b) For proportions analysis, the components of sample vectors

are naturally all positive, so that the vectors in p-dimensions are

tightly clustered; hence we obtain the high k values seen with the

student data, and the analysis of variance technique works very well.

Nevertheless, the robustness of these methods needs further exploration.

For example, the effect must be determined of specifying too many

components for vi , e.g. too many student activities, or too many
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subdivisions of output of a lumber company, so that some components

are zero for many of the sample vectors. The Rayleigh test should

detect if the effective reduction in dimensions which this produces

has a strong influence.

(c) The methodology described is not primarily intended for proportions

which come from counted data, such as proportions of a sample of voters

expressing different political preferences. Proportions of this type

are usually examined for homogeneity in contingency tables (though

not of course using the proportions themselves), and each group of

voters represents an independent sample. Even if they were expressed

as unit vectors, the model behind the counted data is such that it would

not necessarily be appropriate to regard the vectors as from a

von Mises distribution. However, if the samples of voters could be

naturally grouped, say by regions, and especially if each voter sample

were of the same size, some of the above techniques might be useful

in exploring the data. For example the scalar product proximity

measure s.. discussed in Section 4.4 could be a practical measure1)

of the similarity of two patterns of voter preferences.

The pitfalls of proportions, which have often been emphasized in

discussions of contingency tables, should again be stressed. The

author has seen, for example, a proposal to analyze proportions of

land use in major cities, one of the examples briefly mentioned above,

using contingency tables, on the grounds that the numbers were"counted

data"; they had been obtained by superimposing a fine grid on the map

and counting squares. It is not always easy, especially for the

applied worker with only a limited knowledge of a contingency table

model, to distinguish between the two types of data when presented

as proportions.
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(d) It may be seen that there is no shortage of interesting examples

where the above methodology may be applied. The best test of its

effectiveness will be in these practical applications and especially

in comparisons with other techniques of analysis. In this way any

difficulties of application, especially concerning robustness of the

methods, will hopefully come to light. A number of such comparisons

have been started, and it is hoped in a later paper to report on several

case studies in different fields.
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TABLE 1

Analysis of activity pattern of 130 students.

Overall resultant length (130 vectors) R = 117.199.

Part (a) Analysis of differences between men and women.

Group Ni  Ri  ki

1 (Women) 56 50.504 35.67

2 (Men) 74 66.754 37.74

Total 130 117.258

ANOVA Table

Variance Component Value d.f. Mean Component

Between groups E.R. -R 0.059 7 .0086
11

Within groups N - Zi R 12.742 896 .0142

Total N - R 12.801 903

Part (b) Analysis of differences by living style.

Group N R. ki

1 18 16.317 37.43

2 28 25.190 34.87

3 84 76.293 38.13

Total 130 .17.801

ANOVA Table.

Variance Component Value d.f. Mean Component

Between groups E.R.-R 0.602 14 .043

Within groups N - EiRi 12.199 889 .0137

N - R 12.801 903
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TABLE 2

Two way analysis of variance for resultant vectors..

(a) Table of resultants.

Classification 2

(Columns)
Vector

1 2 3 4 . .. Total

1 R 11  R 1 2  R 13  R 14  R1

.lassification 1 2 R 21  R 2 2  R 23  R 2

rows
IRRX.

R

Note that the vector total at the end of a row or column is not the

arithmetic total of the entries of that row or column.

(b) ANOVA Table.

Variance Component Value d.f.

Between rows R -R(I-l)r

Between cols. within row 1 j R 1R. 0j1-1)r

Between cols. within row I j RIJ-R1 . 0J-l)r

I
Within groups N- i R i (N-N*) r

Total N-R (N-l)r
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TABLE 3

(a) Results for 130 students classified by sex and by three living

styles.

Each cell shown the number of students and the resultant lengths

for the group. Ri = length of resultant of all students in row i

and R is the resultant length for all students in

column j . R.. is the length of the resultant of all 130 vectors.

Living style 1 2 3 Ri.
Se ~~13 34

Sex F 8.029 11.758 30.925 50.504

1483715 50 6.5

H9 8.387 is13.563 45.394 66.754

R. 16.317 25.190 76.293

E Rlj = 50.712 EiRil = 16.416 E R j = 117.800

EjR2j = 67.344 EiR12 = 25.221 EiRi. = 117.258

EijRij = 118.058 EiRi3 = 76.319 R.. = 117.198

(b) ANOVA Table for analysis 1.

Variance Component Value d.f. M.C. Test Statistic

Between sexes ER. -R 0.060 7 .0086 .62

Between styles, F ERlj-RI. 0.208 14 .0149 1.08

Between styles, M ER 2J-R 0.590 14 .0421 3.06

Within groups N - EijRj 11.942 868 .0138
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(c) ANOVA Table for analysis 2.

Variance Component Value d.f. M.C. Test Statistic

Between styles ER. -R. 0.602 14 .043 3.13

Between sexes, Style 1 ER. -R, 0.099 7 .014 1.02

Between sexes, Style 2 ZR i2-R 2 0.131 7 .019 1.36

Between Sexes, Style 3 ER 3-Ro3 0.026 7 .0037 .270

Within groups N - EijRj 11.942 868 .0138

1) i
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TABLE 4

Vectors determined from sociological ratings.

Each cell shows the number of respondents and the resultant length
for the group.

Respondents

Canadian 33

28.59

English Irish Scots R. - 91.42

British 62 15 26 N2. - 103

55.19 12.86 23.49

41
French

32.75

German Russian Others R4. - 50.72

Others 9 5 41 N4. - 55

8.25 4.58 38.06

R = 195.79

Test
ANOVA table df M.C. Statistic

Between rows 203.48- 195.79 7.69 6 1.28 20.31

Within row 1

row 2 91.54-91.42 - .12 r(J 2 -1) - 4 .03 .49

row 3

row 4 50.89-50.72 - .17 r(J4-1) - 4 .04 .67

Within groups 232- 203.77 - 28.23 2(232-8) - 448 .063
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