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1. INTRODUCTION

The von Mises distribution, in 2-dimensions, and the Fisher
distribution, in 3-dimensions, have been extensively used in recent
years to describe directional data. 1In this paper we give the theory
of the von Mises distribution in p-dimensions, and suggest some
possible applications. Some results along these lines were given
by Watson (1956) and by Watson and Williams (1956), but the first
complete extension to p-dimensions was given in the author's Ph.D. thesis
(Stephens, 1962a, Chapter 9). It was later issued as a technical report
(Stephens, 1962b) and some results have since been reproduced by
Mardia (1975) and by Degerine (1977); since these sources are
relatively inaccessible, we begin with a summary of results, taken
essentially from Stephens (1962a,b). In later sections, we develop
some new techniques for the analysis of data, and illustrate with
an application to data recorded as a set of continuous

proportions.

2. THE VON MISES DISTRIBUTION IN p-DIMENSIONS

2.1. The von Mises Distribution.

A typical sample item is recorded as a unit vector from
the center 0 to a point P on the surface of a hypersphere, of
unit radius, in p-dimensions. A typical sample then consists of the
points Pi' i=1,...,N, or equivalently the vectors OPi . When
p = 2, the points are on a circle, and when p = 3, they are on

a sphere. The vectors can then denote directions, e.g. of




prevailing winds, flights of birds, or magnetization of rocks.
Until now, it is in these context that the distribution has been
extensively used. Let the unit vector OP , called v , have
coordinates xl,xz,...,xp in a suitable rectangular system.

It will also be useful to use polar coordinates, consisting, in
general, of the radius r (here r = 1), and angular coordinates

61,62,...,6P_1. The relations between the two sets of coordinates

are
7
x1 = Ccos 01 .
0898, =n
j=1 ]
x. =cos 0, I sin o, , (3 =2,...,p~1); (j =1,...,p-2);
3 i1 i
0696 <7 .
p-1 p-1
x = JI sin Bi .
P j=1

The von Mises density is symmetrical around the modal
vector OA ; for convenience in analyzing the distribution, we place
this vector along 91 = 0 . The density per unit area on the
hypersphere is then proportional to exp(k cos 91) where k is a
concentration parameter. The joint density function of the @

is

3

- p-2 p-3 X
f(el,ez,...,ep_l) Cp(k)exp(kcosel)sin 0,sin 92...sznep_

1l 2

over the range of Oj . The constant term is

x4

Cp(k) =

p/2
{I(q)(k)}(zn)
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where q is written for p/2-1 and where Im(k) is the imaginary
Bessel function of order m and argument k . When k is 0 ,

Cp(O) becomes I‘(p/2)/(211)p/2 and the density is uniform over the

unit hypersphere; the concentration around OA increases with k .
With the density as described, x1 is the component of OP on the
modal vector and 61 is the angle between OP and the modal vector.
An orthogonal transformation allows the density to be transformed

to place OA along any chosen vector, but the general form is then

very complicated.

2,2. Notation for vectors and related statistics.

In a suitable rectangular system, let vector w, have
components xil'xiz""'xip' written wi = (xil'xiz""'xip)' TwO
calculations involving vectors are often needed; the scalar product

of two vectors and the length of a vector. The scalar product

s(wi,wj) of vectors w, and wj is defined as ﬁ

s(wi.wj) = Xi1%5 + Xi1%42 + ...+ xipxjp (2)

2
and the length ti of w, is given by Zi = s(wi,wi)

2 2
X, v %

2
12+-o.+x

ip ° A vector v, is reduced to unit length by
dividing by its length; its components are then (xil/ti, xiz/si,...,xip/ei).
The scalar product is also s(wi,wj) = ‘1‘5 cos “ij where uij is

the smaller angle between vectors v, and wj . The values of s(wi,wj)

and of 8i are not dependent on the coordinate system used. Vectors
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and their lengths are often denoted by the same letter but with the vector
printed boldface; for ease of printing we shall mostly not use this
convention, i.e., vectors will not be written boldface, except to
distinguish between a resultant vector R and its length R .

Suppose a sample of N unit vectors is given, consisting of
vectors OPi = vi, i=1,...,N; a typical vector vi has components
(xil'xi2"'°'xip)' and the polar coordinates are (°11'°iz""'°i(p-1)"
The resultant, or vector sum, of the set of N vectors has components

xl,xz,...,xp » where

N
X, = I xi. .
3 j=1 22

The resultant is denoted by R= (xl,xz,...,xp) and its length by R;

2 2 2 2

thus R = x1 + xz + ... xo . The length of the component of R on the

modal vector OA, when this is known or hypothesized, is often used
and will be denoted by X with no subscript. Suppose OA has unit

length, and components a,.a

2,...,ap ; then

X = s(OA,_g) = alx1 + a2x2 + ... apxp (3)

The value of X will also be independent of the coordinate system.

IO
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The statistics R , R and X are all important statistics for
the analysis of a sample. For example, the maximum likelihood estimator

(MLE) of the direction of the modal vector is the direction of R and

the MLE k of the concentration parameter k is given by the

equation k

1 +l(k) .

_ . @)
k
1,(6)

z|w

with q = p/2-1 as before. For k large this equation becomes

. ' i

Pl _R - Np=1)
1 2. N i.e. k 2(N-R) ° (5)
k
If OA is known, the component X replaces R in (4) 7

and (5).

When several samples of unit vectors are given, questions

arise whether they have the same modal vectors, the same concentration

parameters, etc. Let the i-th group have modal vector OAi , and con-

centration parameter ki . Let v j=1,...,N be the set of unit

i3’ i’
vectors in the i-th group, so that Ni is the number of vectors in

the group, and let Ri be the length of the resultant vector‘gi of the

group. let N = ziui. and let R be the length of the resultant R of

all the vectors treated as one large group.




2.3. Distributions of statistics X and R.

In the applications to be described, we shall mostly need
approximations to the distributions of X and R which hold when
k is large; however for completeness the exact distributions of
these two statistics will be given. Suppose Jq(t) and Iq(t) are
respectively the usual Bessel function and the imaginary Bessel

function of order q , and let

q(1-N) ,-q N
M, (R) = t 2 *J (R J (G d
LR =] g (RE) (3, (@) e at

0
and
My (x) = [ {3_(t) W "IN o5 xt at .
o 4
Algo, put

c, = {kq/Iq(k)}N and C, = {/nT(q + 1/2)}-1 ’

The densities of R and of X are (Stephens, 1962a)

/2
£(R) =ccC Iq(k)Rp M, (R) 0O<R<N

172

kx

1A
-1

fz(x) (Cl/") e M2(X) . -N <X .

These densities involving Bessel functions simplify for odd values

of p. Stephens (1962a,b,1967,1969a) discusses the densities for

p = 2 and 3 in much greater detail and uses them to find tests for k .
Stephens (1962a,b): also gives the conditional density of R given X
in p~dimensions; this is independent of k as was earlier shown by
Watson for p = 2 and 3, and so can be used for a test that the modal
vector is along a given vector OAO , when k is unknown. The tests

for p = 2 and 3 are described in detail in Mardia (1972) and in
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Section 9 of Volume 2 of Biometrika Tables for Statisticians; see

also Stephens (1975) for a test for the modal vector, wvhen k is
known. Other exact results for p-~dimensions are given in
Stephens (1962a,b).

When k = 0, the densities above simplify considerably. The
vectors are now uniformly distributed on the hypersphere, and the length
R is the length of the final displacement of N unit steps in a
random walk from O in p-dimensions. For this reason it has attracted
attention long before the use of the von Mises and Fisher distributions.
For the exact densities, and for further references, see
Stephens (1964, 1969b). When k = 0, a simple approximation exists
for the distribution of R, Suppose 2 = pRz/N for large W; & is
approximately x2 distributed with p degrees of freedom. ‘This
result can be used to provide a test for uniformity based on R;
the test has come to be known as Rayleigh's test. A recent paper

(Prentice, 1978) surveys tests for uniformity in p-dimensions.

2.4. Properties of the von Mises density with large concentration

parameter Kk .

When k is large, there are useful approximations
concerning the densities of R and of X. There is then a high

2
probability that 61 will be small and so cos eltu 1 - 61 /2

and sin 91 k:ﬁl . The density of 91 becomes

A A i
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_ 2 p-l .
f(el)tx Cp(k)exp(k)exp( kel /2)61 ' 0= 61 =7, (6)

so that the quantity k612 has approximately a X2 distribution

with p-~1 degrees of freedom. Since x, = cos 61 . We write
k0.2 = 2k(1 - cos 8.) = 2k(1 - x,) & x
1 cos B X)) N Xpey - (7)

Because of the symmetry around the modal vector, the other coordinates

xj, j > 2, have identical distributions; for large k these are approximately
normal with mean 0 and variance 1/k . For a tightly clustered sample

of vectors vi we expect R to point fairly accurately along the modal

vector OA , and the length of R to be relatively large. If OA

is known, the projection X of R on OA will also be large. Then

clearly N - X and N - R are both measures of the dispersion of

the set of vectors. For large k , we have from (7), with r = p-1,

) = X2 ; this gives 2k(N-X) ~ xﬁr.

By (1 - x;y Nr

Further, the distributional results for xj, j=2,...,p, lead
to the approximate distribution k(R2 - xz)/N N’szt since R X x~ N,
2

this becomes 2k (R-X) =~ Xp

2.5. Tests for the modal vector and for k.

Watson (1956) and Watson and Williams (1956) have used these
identities to devise a technique of analysis for large k , which is
analogous to the usual vne way analysis of variance for continuous
variables., Watson writes the identity

2k (N=X) = 2k(N-R) + 2k{(R-X) , (8)

which, by analogy with the analysis of variance, becomes, in

p-dimensions

2 2 2
e T X(N-l)r X o (9

s e e &




This leads to the approximation for the statistic 2

1

/ (N~1) (R-X)
Z) =7 wr_ *F,m-1r

where Fs e is the F distribution with s and t degrees of freedom.

Watson suggested the use of statistic z1 in two or three
dimensions, to examine whether a given vector OAO is the modal
vector. On the null hypothesis, both R and X will be known,
and, the hypothesis will be rejected for larg¢ values of Z1 ’
indicating that X is much smaller than R ; in that case R does not

point in the direction of the vector OAo . Tests of the null

hypothesis that k is a given value k0 will be based on the

2 . . .
X approximations given -above for 2k(N-X), when OA is known, or for

2k (N-R), when OA is not known. Stephens (1967, 196%9a) examined these

tests for p =2 and 3 and found them to be very good even for quite

low values of k . They will certainly be valid for the large values

of k which arise in the applications below.

2.6. Comparison of several modal vectors.

Suppose s different samples of unit vectors are given and

we wish to test whether all the samples come from populations with the
same modal vector, assuming they have the same value of k . On the
null hypothesis we again use the x2 approximation for 2k(N-R), and
apply this result to the individual samples as well as the entire group

taken as a whole. We write the following identity
2k (N~R) = 2k(N1-R1) + 2k(N2—R2)+ ces *+ 2k(Ns-Rs) + 2k(R1+R2+...+Rb-R) (10)

! and, again by analogy with the analysis of variance we obtain

B4
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2 oy e o2 (
2k{Zi(Ni-Ri)} 2 X (n-g) r and 2k (R +R,+...+R_-R) »y X(s-1)r ' 11

where again r = p-1; hence the statistic

(N-s) (LR, -R)

- i'i
2 (s-1)(N-L.R))
i1

will have approximately the F distribution with (s-1)r and (N-s)r
degrees of freedom. Therefore to test whether the different groups
have the same modal vector, the statistic 22 is calculated and
compared with this F distribution. Large values of Z2 will be
significant, indicating that the R, vectors point in different
directions.

The above analysis is essentially a one-way analysis of

variance which can be set up in the usual tabular form;

Variance Components d.f.

Between groups: ZiRi - R : (s-1)r

(N-s)r

Within groups : N - ZiRi

Total : N-R (N-1D)r .

Note that throughout the table 2k has been omitted before the
variance components; since only ratios will be used for tests

this does not effect the calculations. This is analogous to omitting
02 in the terms of squares of an ANOVA table. In a later section

we shall give an extension to the above analysis which can be used

when, for example, the groups of vectors can be classified according

to two criteria.

10




2.7. Tests for constant k.

In the variance component analysis, k is assumed to be
constant for each group, analogous to the assumption of constant

variance in an analysis of variance table. For large k this

T

assumption can be tested as follows. Suppose in general, there are
s groups of vectors, and it is reguired to test for constant k for

all groups. For group 1i , calculate Qi = Ni-—Ri and

q; = (Ni-l)r = (Ni-l)(p-l); let T = EiQi and t = Ziqi . Calculate j

N
1l

ténrT- Eiqi in Qi -t ént+ Ziqi in q; g

1 -1

Y45 9

and Cc - 1/t);

finally let 2, = Z3/C- The hypothesis of constant k is rejected if zZ,

is significantly large compared with the x2 distribution with s-1

degrees of freedom. Note that if Z3 is not significant, Z3 will

not be significant, since C is greater than 1 . This test is based
on Bartlett's test for homogeneity of variances. Other tests for

the same purpose (e.g. those in section 16 of Biometrika Tables for

Statisticians, Vol. 1) can be adapted in a similar way.

3. THE ANALYSIS OF CONTINUOUS PROPOIMTIONS.

3.1. Applications of the von Mises distribution in p dimensions.

The von Mises distribution in p-dimensions can be a useful
tool of analysis of multivariate data, where the variables are subject

to a constraint which corresponds to the fact that all vectors in the

11
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von Mises sample have unit lengths. Aan examplé is the analysis
of continuous proportions, where the typical vector v has components
xl,xz,...,xp which are proportions of a continuum, e.g. time or volume

or mass. Suppose, for example, a subject records the proportion of

his day spent in p different activities; let these proportions be

. 2
“l'"2""'"p , and let x; = /ni . Since Zixi = zi"i =1,

a typical activity pattern for a subject can be recorded as a unit
vectoxr v with components xl,xz,...,xp . A group of subjects 1
will be denoted by a set of points on the unit hypersphere, and the population

might well be represented by a von Mises density around a central

vector. This application occurred to the author when at a Conference some
years ago such a data set was being discussed, gathered from the activity
patterns of over 200 students at Reading University, and covering over 60
activities. The students had been asked to compile a diary for one
week, giving their activities for every fifteen minute period. Thus
the vector of activity pattern was available for each student, and in

f addition a transition matrix was available giving the probabilitf

of moving from activity i to activity j . The example in

Section 3.3 examines a similar data set, but much simplified.

3.2. The von Mises distribution for continuous proportions.

The von Mises distribution was suggested above as a useful model
for a cluster of vectors around a modal direction. For continuous
proportions further analytic justification can be given. Suppose for

each i the proportion L recorded by a subject is a random variable

m,o=ay + Gi; a; is the modal value for the population, and Gi a
random fluctuation with a normal distribution with mean O and a small
{ variance 0? . Since L.,n, =1, and I.a, = 1, the constraint [ .€. =0
i ii ii i'i

' is imposed on the €i' which are otherwise assumed independent. The

-1 12




typical component of the unit vector v for the subject is x, = /ni ’

and the modal vector OA has components /éi, i=1,...,p. The

scalar product s(OA, v} gives cos 6,; thus

1

_ ~ _ e 2 372
cos 01 = Elxi/hi ~ Ei[ai + Ei/(Z/ai) €i /{B(ai ) 1]
using the binomial expansion of X, = /(ai + Gi). In the simplest case,

suppose that all a, are equal to 1/p, and that all oiz = 02, a constant.

Then cos 61 becomes

3/2 2
cos 61 &Nl -p Ziéi /8 ;

. o1 - a2 2 2 _ 3/2
and since cos Ol.v 1 91 /2 we have klel R’Ziei . Where kl = 4/p .

2 . . R
However, zieiz/cz has the xp_l distribution, one degree of freedom being

. 2 2 2 2 3/2
lost = ~ = =
since I, €, 0. Hence kel X 1’ where k kl/O' 40 /P .

By symmetry, the vector component of v which is not along OA will be
uniformly distributed; this result, together with kei ~ x;;l, indicates
that the vector v has the von Mises distribution, at least to a good
approximation. When a; and oiz are not all equal, the approximation

still holds well provided we can take ZiGi/Jbi ~ 0 and

/2 2X;-1 where k2 is a constant. These approximations
. . 2 3/2 s
will be good if o, ~a, , a reasonable model, and the von Mises

3
£.€.27a.7% & x
11 b &
distribution will be probably quite robust for most situations provided

the a; are not too different in value.

3.3.  Example.

The data to be analyzed concerns the proportions of time spent in various
activities by 130 students at Simon Fraser University. The activities
were classified in 8 ways: sleeping, attending lectures, studying,
socializing, travelling, family activities, meals, and personal activities
and the students were asked to record their activities for one day

only. Thus the sample does not represent the overall activity pattern,

13




but it is used here as an illustration of the general methodology. The

complete data set is available from the author.
The first step in analyzing the data is to convert the
proportions to x-coordinates. For student i let "ij be the

proportion of time spent in activity j , i=1,...,N, J =1,...,p,

and let x.. = Vn,. . From the x.. the component X. of the resultant
ij ij ij ! 3

R and the length R of R , are calculated as described in Section 2.2.
s

We first use the analysis of variance technique to examine
whether there appears to be a difference in activity patterns between
men and women. The data set is divided into two groups; group 1 for
women and group 2 for men. The results for the two groups are given

in Table 1. From the ANOVA table of part (a), the value of statistic
z2 is 0.61, which is not significant at o = .10 when compared with

the FS ¢ distribution with s = 7 and t

]

896. With such a large
value for t , the percentage point of F, at upper level o , is
excellently approximated by xz(a)/s, where xz(a) is the upper tail
percentage point of xz at level o . Here the value required would
be xg(a)/7; for o« = .10, this is 1.909. Therefore there appears

to be no reason to suppose the activity pattern is different between
men and women students.

The data were next examined to see if there was a difference
is patterns explained by the style of living arrangements of the
students. The living styles were classified as: 1, college
residence; 2, marriage or marriage style; 3, other, e.g. at
home, sharing an apartment, renting a room, etc. The results are
given in part (b) of Table 1, The value of 2 is now 3.3, to be

2

compared with the Fs ¢ table with 8 = 14, t = 889. At the 1%
’

14
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level, the value of X§4(.01)/14 is 2.08, so that 2Z

is significant

2

at this level, and we conclude that there is a difference between groups
classified by living styles. The data will be examined in greater detail

after some new techniques have been introduced.

4. NEW TECHNIQUES

4.1. Two-way analysis of variance.

In this section we give some new techniques for the examination of
data. First the variance component analysis of the preceding section is
extended to a two-way layout, and the student data is again used for
illustration. In section 4.3, we discuss goodness-of-fit to the von
Mises distribution, and in section 4.4 some techniques of clustering and
correlation are briefly mentioned. .

Suppose the sample items (for example, students) are classified in
two ways: by a main classification 1 with I groups, indexed by i=1,...,I,
and by classification 2 with Ji groups within group 1 of classifica-
tion 1. When a student falls into group i of classification 1 and
group j of classification 2, the associated vector of activity proportions
will be placed in cell (i,}) in row i, column j, of a two way table.
Extending our previous notation, we write vijk for the k-th vector

in cell (4,j). Let N be the number of vectors in cell (i,j), and

ii

let Rij be the length of the resultant in this cell. Let N be the
total number of vectors and let N* be the number of non-empty

cells, Let Ri- be the length of the resultant of all

vectors in row 1, i.e., of the vectors for all students in group i of

the first classification, and suppose R is the length of the resultant

15
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of all the vectors. As before, write r = p~1. A table may be constructed as

in Table 2(a). By extension of the previous analysis, we write the

following identity

ZN-R_ ) = 2k JON =R )42k ] (N, -R) )+ eee 42k EI(N -R_.)
) . l . s .
=1 J J - y=1 2j 2j j=1 Iy '1j
T o ong g s 26 Iy on 3 s 2
+ 2k )-R, ...+ 2k J-R. .} +2k() R, ~R );
451 By R bt TR Lt
collecting terms, we have
F 3 SO e
: 2k(N-R_ ) = 2k (N, - )+2kl } (R,,-R, )} +-ev+ 2kl ] (R, -R )
F i ghya T ERtiE shy TR
1
+2k( ) R, -R )
. 1° LY
i=1
with corresponding distrxibutions, for large k :
2 _.2 2 2 2
Xn-1r = X(nav*)r t X(J1_1)r* e X(JI-l)r+ X(1-1)r

The terms méy be arranged in a variance component table as in

Table 2(b). A final column ("Mean Component") may be added,

giving the value of the variance component divided by its degree of
freedom. The table allows us to examine differences between rows,
or differences between columns within any one row; thus the analysis

will be similar to what is usually called a nested analysis of variance.

To test the null hypothesis H that there is no difference between

o:

rows, we calculate the quotient

I
(N-N9C] R =R )

1=1
z, = — (12)
‘ (1-1)(N- ) ) R,y
1-1 =1

which, on R, hac an P-distribution with (I-1)r and (N-¥%)r

k degrees of freedom. The null hypothesis is rejected for a significantly
;.Q 16
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large value of 24. Similarly, to test the null hypothesis HO:

there is no difference between columns within row i, the quotient

I3

¢

(N-N*) (jn,-;l R:Lj Ri.
5 1 Iy

(J'l)(N' z X Rij)
i=1 j=1

)

(13)

is calculated. On Ho’ ZS has an F-distribution with (J~1l)r and

(N-1)r degrees of freedom, and HO should be rejected for a signifi-

cantly large value of ZS'

4.2. Example.

We continue with the example already begun in the previous

section. The original sample is now subdivided by both sex and living

arrangements, making a total of six cells. Table 3 shows
size of each cell and the resultant length in each cell.

in the table are the resultant length for each row, i.e.,
males and for the females, and for each column, i.e., for
styles of living arrangements. Other relevant statistics

given for use with Table 2(b). Tables 3(a) and 3(b) give

the sample
Also shown
for the
the three
are also

the tables

for two analyses. The column MC gives the mean component, i.e.,

variance component divided by its degrees of freedom.

In analysis 1, we first test if there appears to be a

difference between activity patterns for men and women, using the

variance components for "between sexes" and "within groups". The

test statistic 2z, = 0.00857/0.01376 = 0.62 and this is clearly

4

not significant when compared to the F 8 distribution.

7,86

17
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test is for difference between living styles for women only. The

statistic z5 = 0.01486/0.01376 = 1.08, and this is also not

significant. The test statistic for difference between living styles
for men is z5 = 0.0421/0.01376 = 3.06 ; this is significant

compared with F /14) at the o = 0.005 level. Thus the

14,868% X4
previously noted difference between activity patterns for different
living styles has been narrowed down to a difference for men.

In analysis 2, the difference between activity patterns for
different living styles again shows up in the corresponding Z4
statistic, z4 = 0,043/0.01376 = 3.13 ; but for a difference between
sexes within each living style there is no significant Z5 statistic,
confirming the results already found. The results of the more detailed

two-way analysis are consistent with each other and sharpen the

conclusions gained from the one-way analysis.

Example of the test for constant k. For the cells in Table 3

the values of k across the top row are 32.44, 36.63, 38.70, and

those across the bottom row are 51.39, 36.53, 37.99. The test

statistic z3 of Section 2.7 has value Z3 = 3.44, not significant

when compared with x2

5 ¢+ SO that the hypothesis of constant k

can be maintained.

Example 2. In the above example, the classification within each row

was the same, with Ji = 3 for both men and women. However, with a

nested model, J1 can of course be different for each row. We

11lustrate with a second example with data kindly provided by Dr. Charles

Jones of the Dept. of Sociology, McMaster University. N = 232 respondents

18
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were each asked to rate 35 ethnic or religious groups in Canada, by the
criterion of social standing, using a 9-point scale. By a scaling

device, the 35-vector of replies was reduced to a vector in 3 dimensions.
These vectors could have negative components, in contrast to the continuous
proportions data. Thus the basic data set consists of 232 vectors in 3
dimensions; these were divided into 8 groups according to ethnic origin

of the respondents. The eight groups have been put into four rows
indicated by the nature of the Canadian population, and two of the rows
have been subclassified. The data is given in Table 4, with the Analysis
of Variance. For a test of significance between rows, the test statistic
is 2, = 1.28/.063 = 20.31 and is highly significant when compared with
x§/6 at the 0.005 level. The test statistics for differences in groups
within rows 2 and 4 are respectively Z. = .0306/.063 and’ Zg = .0419/.063

and are clearly far from significant.

4.3, Goodness-of-Fit.

The analysis described so far assumes that the observations
come from the p-dimensional von Mises distribution. In order to test
this assumption, we use two of the distributional results described
in Section 2. The results are the distribution of the angle
el between a typical vector v and the modal vector OA , and the

distribution of the component of v, say y , at right angles to the
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modal vector. Since the modal vector is not precisely known, 61 must

be estimated by ¢1 » the angle between v and the resultant R of
the sample. The set of angles ¢1 is tested to come from the density
for 61 given in equation ( 6 ), using the usual Pearson x2 test.

Since 01 replaces 6, , it is difficult to determine exactly the degrees

1
of freedom (though k-2 might be indicated for a test involving k cells)
and more examination needs to be made of the test in this case.

However the statistic will be a helpful guide to the fit of 6 The

1 °
components yi ,i=12,...,N, at right angles to R should be uniform
on the hypersphere of dimension p-1, and the hypothesis that this is so
can be tested in many ways (see e.g. Prentice, 1978). For robustness

of the analysis, it will be important that they are not clustered

around a single mode and for this purpose the Rayleigh test is indicated.

The vector component Y; is found as follows. Let u = R/R be the
unit vector along R and let c; be the scalar product of V; and
R (see section 2.2 for these calculations). The component of vi
along R is then uci and yi , the component at right angles,

is Y; = vy~ uc. To apply the Rayleigh test, we then reduce

each vector yi to unit length as shown in Section 2.2; let the unit
il’ziz""’zip; the resultant Z of this
set of vectors has components zl,zz,...,zp, where zj

length 2 of 2 is given by 22 = zf + zi + ...+ Z; . On the null

hypothesis that the vectors Ei are uniform in the p-1 dimensional

vector be ﬁf with components 2z

I.2,., and the
i“ij

subspace, the test statistic T = (p-l)zz/N is asymptotically

distributed as x2 with p-1 degrees of freedom; the hypothesis of

uniformity is rejected if T is larger than x;_l(a). The two tests

above, taken together, provide a good omnibus test that the original

sample of vectors v, comes from the von Mises distribution. The
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distributional tests are applied to each cell of the two way analysis

of variance table described above, analogous to applying tests for
normality in the usual analysis of variance table. 1If, of course,
there were to be a significant difference in the modal vector, say
between men and women, a test for the von Mises distribution applied

to the complete sample, including both men and women, might well be
rejected. On the other hand, if each group is found to have a von
Mises distribution, the test for common modal vector can be applied,
and if accepted, the overall sample should have a von Mises
distribution. For the student data in Table 3, all the groups gave

far from significant values for the test statistics for goodness-of-fit,

so that the von Mises distribution appears to fit the data well.

4.4. élustering;and correlation.

The scalar product sij = s(vi,vj) is a convenient

measure of the closeness of the vectors vi and vj: sij takes

values between -1 and 1. We can call sij a proximity measure, and

the matrix S , with entries sij' a proximity matrix. A cluster
may then be defined as containing all points for which sij is

greater than Iy, for a suitable r., or by using some similar

0
algorithm. This proximity measure has been used on some economic

data in an M.Sc. thesis (Holguin, 1980); data on the proportions

of different wood products produced by Canadian and U.S. lumber
companies were provided by Dr. R. Schwindt of this University and the
companies were examined both for differences between groups and also
to find clusters. 1In a second data set, taken from a U.N. publication,

countries were clustered according to the proportions of certain staple

foods in the national diet.
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When two sets of vectors can be logically paired, the techniques
of correlation developed by Stephens (1979) may be useful. These have
not been illustrated here because they did not appear to be applicable

to the student data.

5. CONCLUDING REMARKS

(a) It is hoped that the methodology developed above will be useful

for the analysis of data which it is convenient to record as a set of

unit vectors; the example illustrated is that of continuous proportions.

The special feature of the technique is that it incorporates the constraint

expressed by Eini = 1 in a natural way. Note that the order of

proportions, e.g. the order of labelling student activities, does

not affect the analysis. For reasons of space, only one such

example has been discussed in detail but analyses similar to the above

could be applied to the proportions of different minerals in an ore ;
|

deposit, calculated by volume or by mass, or the proportions of

'f different products in the total output of a company, the proportions

r of the area of a city used for different purposes, etc. Several

ii examples on these lines have been suggested to the author, and they

| will be followed up in later case studies.
(b) For proportions analysis, the components of sample vectors
are naturally all positive, so that the vectors in p-dimensions are
tightly clustered; hence we obtain the high k values seen with the
student data, and the analysis of variance technique works very well.
Nevertheless, the robustness of these methods needs further exploration.
For example, the effect must be determined of specifying too many

components for v, v e.g. too many student activities, or too many
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subdivisions of output of a lumber company, so that some components

are zero for many of the sample vectors. The Rayleigh test should
detect if the effective reduction in dimensions which this produces

has a strong influence.

(c) The methodology described is not primarily intended for proportions
which come from counted data, such as proportions of a sample of voters
expressing different political preferences. Proportions of this type
are usually examined for homogeneity in contingency tables (though

not of course using the proportions themselves), and each group of
voters represents an independent sample. Even if they were expressed
as unit vectors, the model behind the counted data is such that it would
not necessarily be appropriate to regard the vectors as from a

von Mises distribution. However, if the samples of voters could be
naturally grouped, say by regions, and especially if each Qoter sample
were of the same size, some of the above techniques might be useful

in exploring the data. For example the scalar product proximity
measure s, . discussed in Section 4.4 could be a practical measure
of the similarity of two patterns of voter preferences.

The pitfalls of proportions, which have often been emphasized in
discussions of contingency tables, should again be stressed. The
author has seen, for example, a proposal to analyze proportions of

land use in major cities, one of the examples briefly mentioned above,
using contingency tables, on the grounds that the numbers were"counted
data"; they had been obtained by superimposing a fine grid on the map
and counting squares. It is not always easy, especially for the
applied worker with only a limited knowledge of a contingency table
model, to distinguish between the two types of data when presented

as proportions.
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(d) It may be seen that there is no shortage of interesting examples
where the above methodology may be applied. The best test of its
effectiveness will be in these practical applications and especially

in comparisons with other techniques of analysis. In this way any
difficulties of application, especially concerning robustness of the
methods, will hopefully come to light. A number of such comparisons
have been started, and it is hcped in a later paper to report on several

case studies in different fields.
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their support. The author also is grateful to Professor G.S. Watson

for his guidance in the early stages of this work, and to Mr. J.
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Analysis of activity pattern of 130 students.

TABLE 1

Overall resultant length (130 vectors) R = 117.199.

Analysis of differences between men and women.

Part (a)
Group Ni Ri
1 (Women) 56 50.504
2 (Men) 74 66.754
Total 130 117.258

ANOVA Table

»

ky

35.67

37.74

Variance Component Value d.f. Mean Component
Between groups ZiRi-R 0.059 7 .0086
t
Within groups N - ZiRi 12.742 896 .0142
Total N - R 12.801 903

.. o — —

Part (b) Analysis of differences by living style.

Group Ni Ri ki

1 18 16.317 37.43

2 28 25.190 34.87

3 84 76.293 38.13
Total 130 117.801

ANOVA Table.
Variance Component Value d.f.  Mean Component
Between groups ZiRi-R 0.602 14 .043
Within groups N - EiRi 12.199 889 .0137
12.801 903
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TABLE 2

Two way analysis of variance for resultant vectors.

,. (a) Table of resultants.
’ ‘Classification 2
(Columns)
Vector
1l 2 3 4 e e s Total
1 1Ry Ry Rz Ry R;.
slassification 1 2 | R, Ry, Ry R,.
rows

1 RIl RI-
R'.

Note that the vector total at the end of a row or column is not the

arithmetic total of the entries of that row or column.

(b) ANOVA Table.

Variance Component Value a.f.
I

Between rows Y R, -R (1-r
gm1 10T

J
1
Between cols. within row 1 ) R,-Ry. (3,-)r
. i=1
. JI
Between cols. within row I ) RpyRy. (3;-Dr
j-1
I Ji .
Within groups N- ) 1 Ry (N-N*)r
i=1 j=1
Total N-R (N-1)r

26
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TABLE 3

(a) Results for 130 students classified by sex and by three living

styles.

Each cell shows the number of students and the resultant lengths

for the group.

and R-j is the resultant length for all students in

column j . R__

R, = length of resultant of all students in row i ,

i

is the length of the resultant of all 130 vectors.

Living style 1 2 3 Ry.
Sex F 9 8.029 13 11.758 | 3% 30.925 | s50.504
M 2 8.387 15 13.563 50 45.394 66.754
R-j 16.317 25.190 76.293
I.R.. =50.712 I.R,, = 16.416 L.R . =117.800
313 iil 33
szZj = 67.344 ZiRiz = 25.221 ziRi- = 117.258
L,.R.. = 118,058 Z,R,, = 76.319 R = 117.198
13713 ii3 oe
{b) ANOVA Table for analysis 1.

Variance Component Value d.f. M.C. Test Statistic
Between sexes ZRi.-R__ 0.060 7 .0086 .62
Between styles, F Zle-Rl. 0.208 14 .0149 1.08
Between styles, M szj'R2~ 0.590 14 .0421 3.06
within groups N - zinij 11.942 868 .0138
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(c) ANOVA Table for analysis 2.

Variance Component Value d.f. M.C. Test Statistic
Between styles ER.j-R.. 0.602 14 .043 3.13
Between sexes, Style 1 znil-R'l 0.099 7 .014 1.02
Between sexes, Style 2 XRiz—R.2 0.131 7 .019 1.36
Between Sexes, Style 3 ZR13-R.3 0.026 7 .0037 .270
Within groups N - zinij 11.942 868 .0138

28




e o e
.
b

TABLE 4

Vectors determined from sociological ratings.

Each cell shows the number of respondents and the resultant length
for the group.

Respondents
Canadian 33
28.59
English Irish Scots R2. = 91,42
i British 62 15 26 N, = 103
§ 55.19 12.86 23.49
41
French
32.75
German Russian Others R‘_ = 50,72
Others 9 5 41 N4. = 55
8.25 4,58 38.06
R.. = 195.79
Test
ANOVA table df M.C. Statistic

Between rows 203,48 -195.79 = 7.69 6 1.28 20.31
Within row 1 -

row 2 91.54-91.42 = .12 r(Jz-l) =4 .03 .49

row 3 -

row 4 50.89 - 50.72 = .17 r(Ja-l) =4 .04 .67
Within groups | 232 -203.77 = 28,23 2(232-8) = 448 .063
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