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average model is frequently used.
The purpose of this research is to extend these technlques to

|' more general linear and nonlinear models. Using the equatlon error
I i formulation, lattice solution methods in batch processing and

4 adaptive form are developed for both single and multichannel
autoregressive moving average (ARMA) models for linear systems and
Volterra series models for nonlinear systems. A nonlinear exten-
sion of the ARMA model is also considered and is shown in some
cases to remedy problems encountered in Volterra modeling of non-
linear systems. Lattice methods are also developed for the non-
linear ARMA model ard it is shown that the methods obtained for
linear ARMA modeling follow as a special case of the nonlinear
results.

Experimental verification of the methods developed for single
channel linear ARMA modeling is presented and used to explore the
characteristics of the lattice solution techniques. The results
clearly indicate that the lattice methods are extremely powerful,
capable of producing highly accurate system models using short

%% runs of data.
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ABSTRACT

The problem of obtaining parametric models for linear
and nonlinear systems based on observations of the input
and output of the system is one of wide ranging interest.
For linear systams, moving average (MA) and autoregressive
(AR) models have received considerable attention and, based
on the Levinson algorithm, a number of very powerful methods
involving lattice filter structures have been developed to
obtain the model solutions. For nonlinear systems the
Volterra series model which is a nonlinear extension of the
moving averuage model is frequently used.

The purpcse of this research is to extend these tech-
niques to more general linear and nonlinear models. Using
the equation error formulation, lattice solution methods
in batch processing and adaptive form are developed for both
single and multichannel autoregressive moving average (ARMA)
models for linear systems and Volterra series models for
nonlinear systems. A nonlinear extension of the ARMA model
is also considered and is shown in some cases to remedy
problems encountered in Volterra modeling of nonlinear sys-
tems. Lattice methods are also developed for the nonlinear
ARMA model and it is shown that the methods obtained for
linear ARMA modeling follow as a special case of the non-
linear results, q£~————~—m~er”“““”“W'”“”‘”“

Experimental verification of the methods developed for

single channel linear ARMA modeling is presented and used
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to explore the characteristics of the lattice solution

techniques. The results clearly indicate that the lattice

methods are extremely powerful, capable of producing highly

accurate system models using short runs of data.
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I. INTRODUCTION

Traditionally, man has attempted to create models of
portions of his environment for two principal reasons:
1. To gain insight and understanding as to their
functioning;
2, As a prelud-z to taking some action such as attempting
to exercise control over them.
The field of physics for instance, is replete with examples
where men have created models to study and explain phenomenon
from planetary motion to the motion and even origin of sub-
atomic particles. In designing machines, engineers routinely
rely on models of the components they use to describe how they
will function, and to obtain the desired results in the final

product. Economics is another field where the use of models

abounds for such purposes as identifying, forecasting or
trying to direct trends,

The scope of the modeling problem is quite broad be-
gining with a decision on the type of mocdel to be used, what
physical quantities to measure, how to estimate the para-
meters of the model from the measurement, and finally a veri-
fication of the model. In the chapters that follow, one
facet of this problem, that of estimating model parameters,

will be explored in detail for a number of linear and non-~

linear models,
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A. THE PROBLEM STATEMENT

The primary concern of this work is the determination of
discrete time models for both linear and nonlinear, time
invariant systems from sampled observations of the system
inputs and cutputs, The general approach underlying all of
the models examined here assumes that the system to be

modeled is described by the equation
y(k) = Floh(kﬂ+F20[y(k-l)]+F30[u(k),y(k-l)] (1.1

where FlO’ on and F30 are functions of past and present
values of their arguments, and u(k) and y(k) are the system
input and output respectively. This is depicted in Figure
(1.1). A pos-ible method for modeling this type of system

is to create a model of exactaly the same configuration with
functions FlO’ FZO and FBO’l assume a form for these functions,
operate the system and model in parallel with the same input
and adjust the parameters of the model functions to minimize
the mean square error (MSE) between the model output ;(k)

and the system output. The symbol """ is used here to indi-
cate that the signalis an estimate of y(k). This is depicted
in Figure 1.2 and is often referred to as direct form modeling

since the assumed topology of the system is directly copied

1 Script notation will be used to refer to quantities
associated with the system while nonscript notation will be
used for their corresponding approximants in the model.
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u(k) =

Figure 1.1.

u(k) ——y

Figure 1.2,

by the model.

modeled.

SYSTEM

y(k)

MODEL

7(K)

Here the model output is given by

" ~ [a]
y () =F o Lutk) 1+4F, o[y (k=1)14F, o Tu k) ,y(k=1)]

1l

-+ y(k)

The assumed form for systems to be
T represents a unit delay.

e(k)

A direct approach to system modeling.
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> and the error signal is referred to as th» "output error".

As an example, if the system is linear an appropriate model

is

LSRR T

N

Flo[u(k)] = }E: a(idu(k-i) (1.3a)
i=0

e TP IR TR TN R T W

oA G

R P e

N
f Fly(k-1)] =:z: (i) ylk-i) (1.3D)
. i=1

'

: Faplu(k),y(k=-101 = 0 (1.3¢)

(for linear models, F30['] will be zero). In general
however, the direct form approach will have serious diffi-
- culties if either on['] or P30[-] are nonzero since the
i past values of ;(k) used in these functions are “hemselves
: dependent on the model parameters. A mimimum mean square
output error approach results in a system of highly non-
linear simultaneous equations which must be solved to

obtain the model parameters.

To avoid these difficulties, the equation error approach

(Refs. 34 and 23] to system modeling (which uses different

#
1
1
L
IS
H
=
z

ALY 2mr {450, 2 et B N i L

model forms in the analysis and synthesis phases) will be

applied to the problem. The analysis model is depicted in

Figure 1.3 and differs from the direct form model in that

F,o and F30 are functions of past and present values of the

. delayed system output rather than the analysis model output.

12
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SYSTEM v(k)

e(k)

y(k)

Figure 1.3. The equation error approach for
system modeling.

For each of the models studied, a general form for the three
functions is assumed and the parameters of the model (coef-
ficients of the functions) are set to obtain a MMSE solution.
In each case, the MSE cost function is a quadratic function
of the model parameters (due to both the equation error
formulation and to the form chosen for the functions) with

a unique mininum and therefore the solution is given by a
system of linear equations, The synthesis model is of the
same form assumed for the system in Figure 1.1 and uses the

functions FlO’ F,o and Tag determined during the analysis

phase.
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As an alternative to the topology shown in Figure 1.3
it will occasionally be convenient to consider the error
signal e(k) as the output of the analysis model rather than
the prediction ;(k). This can Me accomplished in one of two

ways by defining

Fz[y(k)] = y(k) - P20[y(k—l)] (l.ka)

or

F3[u(k),y(k)] = y(k)-Fao[u(k),y(k~l)] (1.4b)

and reformulating the analysis model as shown in Figures
l.4a or l.4b. These model forms are often referred to as
prediction error models since their outputs are the errors
in predicting y(k) rather than the predictions themselves.
There are, however, no substantive differences between the
modeling approaches depicted in Figure 1.3, l.4%a and 1.4b.
The equation error formulation can be generalized to
multiple input multiple output systems as well (henceferth
referred to as multichannel systems) by considering u(k) and
y(k) as vectors of Q; input signals and Q, output signals
and F F )3

Fz and T, as vector functions. The

10* “20° "30° 3
prediction error signal e(k) becomes a Qo—vector of signals
and the model parameters can be set to minimize the trace

of the prediction error covariance matrix P = s{g(k)g(k)T}.
Such generalizations have been developed to a degree in the

multichannel filtering literature and will be investigated

further here.
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It is important to keep in mind however, that while the
equation error formulation can be used to find a model solu-
tion, it is an indirect method as opposed to the direct form
method which minimizes the mean square value of output error.
The direct form model has been modifiasd to obtain the equa-
tion error analysis model so that the parameters can be ob-
tained via the solution of systems of linear equations, The
price paid for this simplification in the model analysis
problem is that additive noise on the measured system out-

put will introduce a bias in the model coefficient estimates.

B. OVERVIEW

Chapter II along with appendices A through F provide a
unified review of the existing background theory on minimum
mean square equation error modeling of linear systems. The
moving average (MA) and autoregressive (AR) models are pre-
sented and their relative merits compared. In Sectiun II.C.
the Levinson algorithm [Refs. 9, 10 and 27] for the AR and
MA models is developed, greatly simplifying the solution
process for these models. Section II.D, then shows that the
Levinson algorithm defines the AR and MA models in terms of
lattice filter structures,

These lattice structures have received widespread atten-
tion and have led to a host of new developments in modeling,
spectral estimation, filter structures and adaptive filtering,
Examination of the properties of these forms have suggested

a number of new methods for calculating model coefficients

-~
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that offer increased accuracy, and in some cases guarantee
model stability even in the presence of correlation estimates
obtained by averaging over short time intervals [Refs. 5§,

20, 29 and 36]. Applied by Burg [Ref. 5] to spectral esti-
mation, these methods allow the determination of power
spectra via AR modeling from very short runs of data without
any need for the use of a window function., In finite pre-
cision arithemetic implementations, the lattice structures
have been shown by Markel and Gray [Ref. 33] to be less sensi-
tive to roundoff noise and coefficient quantization than
direct structures and have led to the design of other
structures that offer improved performance over conventional
parallel realizations. Griffiths has shown that these
lattices can be implemented adaptively [Refs. 16, 17 and 18]
and that they offer the potential for more rapid convergence
than conventional LMS adaptive filters. éecently Morf [Refs.
36, 37 and 38] has also used these lattice structures to
implement a recursively updated deterministic least squares
adaptive scheme., It is readily apparent therefore, that th.
original work of Levinsan and the lattice structures that
have evolved from it have had an important impact on the
field of digital signal processing.,

In Section II.E., the multichannel generalization of many
of the single channel AR and MA modeling results is' presen-
ted. After a discussion of‘the basic multichannel AR and MA
models [Refs. 26 and 45], the multichannel version of the

Levinson algorithm originally developed by Whittle [Ref. 561,

17
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and Wiggins and Robinson [Ref. 61] is presented. A new
form for the models is introduced and used here however,
to facilitate the application of these results later in
various other modeling problems. Multichannel lattice
structures are then derived and from them alternative
solution methods for the modeling problems are developed.

Finally, in Section II.F. the LMS adaptive algorithm
[Ref. 58] is reviewed and the adaptive implementations of
the lattice structures due to Griffiths are presented.

In Chapter III, the more general autoregressive moving
average model is presented using the equation error formu-
lation attributed to Kalman [Ref. 23]. After a brief
discussion of the model, new model transition formulas
are developed showing how the ARMA model is related to the
simpler and less general AR and MA models. System input
signal requirements for the ARMA modeling process are ex-
plored and it is shown that the power spectrum of the “.put
signal can be considered as a frequency dependent weighting
function in the model optimization. Then the main result
of the chapter is presented. With suitable assumptions,

a recursive in order solution method for ARMA modeling

(the (n+l)=st order solution is obtained from the n-th

order solution) is obtained based on the Levinson algorithm for
multichannel AR models. From this, lattice solution methods
for the ARMA model are developed in beth batch processing

and adaptive form., (Batch processing here refers to assuming

ergodicity and estimating correlations with time averaging).

18
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A similar result has recently been presented by Morf [Refs.
37 and 38] with the assumption of a white noise input sig-
nal to tre system. The results presented here follow from a
different approach without the assumption of a white noise
input. Experimental results are also presented verifying
the methods and theory, and showing their advantages (and
disadvantages) over conventional ARMA modeling methods.

The programs used in these simulations are listed in Appen-
dix J. In Section III.F., and Appendix G, it is shown that
these single channel methods readily extend to the multi-
channel ARMA model, and as one would expect, can be obtained
as a special case.

In Chapter IV two types of ncnlinear models, the Volterra
series model and the new nonlinear ARMA model recently pro-
posed by Parker [Ref. 64], are considered. After a brief

; discussion of the Volterra model, it is shown that the
solution can be obtained using multichannel MA lattice methods

if the regular form of the Volterra kernels is used in place

of the conventional symmetric form. Then the nonlinear ARMA
model is presented in Section IV.B. and it is shown that for
many systems, this model can remedy the problem of the large
number of terms (ideally infinite) required by the Volterra
model to represent the system in much the same way that the
ARMA model solved the problem arising in the MA model. 1In
Section IV.B.2 it is also shown that by using the regular
form, the sclution for the nonlinear ARMA model can be
obtained using multichannel AR lattice methods and that the

linear ARMA model solutions developed in Chapter III follow

19
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as a special case. Appendix I then presents two examples of
nonlinear ARMA modeling. First a somewhat academic example
of a cascade of linear and nonlinear subsystems is given
then a nonlinear ARMA model is proposed for the tracking
behavior of a phase locked loop.

Finally, in Chapter V, two applications for the linear
and nonlinear ARMA modeling methods developed in Chapters
III and IV are discussed briefly. (They are reduced order
modeling of complex systems and modeling for fault detection
and diagnosis.) Then in Section V.B. conclusions are drawn
on the results of this work and a list of significant open
questions (both old unanswered questions and new ones

raised here) is compiled.
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’ - II. DISCRETE TIME LINEAR SYSTEM MODELING: BACKGROUND THEQORY

L While few physical systems are absolutely linear, linear
models often suffice to accurately describe their behavior
under normal operating conditions., A rich body of theory
has therefore bz2en developed for the analysis and modeling
of linear systems [(Ref. 22] and a thorough knowledge of
this theory is vitally important to anyone interested in

understanding the functioning of these systems. The con-

tinuing expansion in the availability of powerful, inexpen-
sive digital computing capabilities has also made discrete
time techniques take on a special prominence. With this

as motivation, the portion of the background theory in

discrete time linear modeling upon which much of the re-~

mainder of this work depends, is developed here from the

unifying standpoint of a minimum mean square equation error

model solution,

The moving average and the autoregressive models are

—
s ey e oS

developed first for single input single output systems.
Their solution via the Levinson algorithm is presented and

from this algorithm alternate solution methods based on

lattice filter structures are derived. It is shown that
almost all of these results can be generalized to the

multiple input multiple output case and the corresponding §
multichannel modeling methods are developed. Finally, ?

adaptive implementation of the modeling methods for both

1‘!. i‘ 2 l
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the conventional filter structures and the

structures 1s presented as an alternative means of obtaining

mode’. solutions.

A. MOVING AVERAGE MODELS
The moving average (MA) model was among the earliest

discrete models develoned, [Refs. 4, 11 and 19] It estimates

the current vaiue of the output of a system as a weighted

combination of the present value and N past values of the
system input where N is the order of the model. The problem
then is to estimate the weighting function or impulse re-

sponse of the MA model in some fashion, Since the MA model

chiracterizes a system in terms of a finite duration approx-

imatior. of its impulse response and since any linear time
invariant, single input single output system is completely
specified by its impulse response, the MA model is quite

general and can be used for a wide class of systems. De-

fining (N+1l)-vectors of model weights and input data as

T

Ef = [a(0) «+¢ a(N)] 1,2 (2.1a)

1 A superscript "+" is used to indicate that in spite of
the fact that these vectors are used for a N-th order model,

they are (N+l)-vectors with elements indexed from zero to N
rather than from one to N. Superscript T demotes transpose.

Superscripts in parenthesis will later be added to the

model coefficient vectors to explicitly indicate their de-
pendence on the order of the problem being solved. They are
omitted for simplicity however whenever doing so does not

result in ambiguwous notation,
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T N R Yy . s
BRI Rl = oa e Tt e

.. T
= ut K = [ulo) e ulkaN)] (2.1b)
the MA estimate of the system output becomes
N
A " T .,
y(k) = 2, al(n)ulk-n) = u (k) a
n=0
In terms of the modeling approach of Figure 1.3, on and
FBO are assumed to be zero. Pi is a linear time invariant
function of past and present values of u(k). Assuming sta-
tionarity, an expression for the mean square value of the
error as a quadratic function of the weights {a(n)} is
given by
T T
N + *
E,2a R,,a -2a £, +R, (O (2.2)
uu uy
where in general va(n) = g{v(kdw(k+n)}, Tow ° e {v(lk)w(k+n)},
Row 3 e(g(k)g(k)T} and € { } denotes expectation.
— -
,Ruu(O) R Ruu(~N)
R, s+ . .
uu . .
Ruu(N) s Ruu(O)
L -
p, = [R(0) -+ R (O
uy y y
Ig The surface described by equation 2.2 can be pictured as a

concave hyperparaboloid with a unique minimum and the
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characteristics of such a surface are described in Appendix
F. For example when N=1, the MSE as a function of a(0) and

a(l) appears as shown in Figure 2.1.

a(Q)—e

}
l
/
- R} S ~— ~— L

a(l)

¥

Figure 2.1. MSE as a function of model weights
for a first order (N=1) MA model.

The minimum mean square error solution for the coeffi-

cients is given by

+
a = (2.3)
u+u+ 2 OPT ...u+y

|
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and the corresponding minimum value of the cost function

E = Ryy(O) - a r (2.4)

Equation (2.3) is a discrete time matrix form of the Wiener

Hopf equation
Ry (0 = _[ R, (T=A) h(A) dA (2.5)
-0

where u(t) and y(t) ars the continuous input and output
signals and h(t) is the system impulse response. The pro-
cess of finding ESPT in equation (2.3) is the discrete time
equivalent of deconvolving the input autocorrelation func~
tion from the cross correlatior. of input and output to
obtain the system impulse response in equation (2.5).
Consequently the MA modeling process has been called dis-
crete Wiener filtering or stochastic deconvolution.

This model constitutes a direct form approach as defined
in section I.1 but does not encounter difficulty in obtaining
the model weights since both F20 and F30 are assumed to be
zero. As such, it possesses the advantage that the estimates
of the model parameters will not be biased by the presence of
additive noise on the output of the system as shown in
Figure 2.7, as long as the noise is uncorrelated with the
input signal. This can readily be seen by replacing v in

equation 2.3 by y + v, Additive noise on the input signal
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Figure 2.2. Moving Average Modeling

however will adversely affect the modeling process, and
introduce a bias in the solution for the model coefficients.

In the transform domain, the model can he represented by

a polynomial in powers of z-l and has therefore been referred

to as an all zero model

N
A(z) = Y a(n) z7% (2.6)
n=0

In terms of this transfer function relationship, any bias
introduced in one or more of the model coefficients has the

effect of shifting the zero locations of the model.

In summary a discussion of the advantages and disad-~
vantages of MA modeling is instructive.

Advantages:
1) The solution for the model parameters involves

only linear equations.
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2) The solution is unbiased in the presence of
additive noise on the system output as long as
the noise and system input are uncorrelated.

3) 8ince the model is nonrecursive it is always
stable,

Disadvantages:
1) The number of terms (N+1l) needed for sufficient

model accuracy may be quite large.

2) The solution of a large system of equations is
required.

3) The required correlation terms are usually not
known and must be estimated by assuming ergodi-
city and averaging in time. This requires the
data to be wipdowed and set to zero outside the
averaging interval in order to maintain the even
symmetry of the autocorrelation functions.

4) The modeling process is restricted to linear

time invariant systems.

B. AUTOREGRESSIVE MODELS

The autoregressive (AR) model attempts to deal with one
of the difficulties (1) encountered in MA modeling; the need
for a large number of coefficients to accurately describe
the model. [Refs, 2, 4, 11, 19 and 28] In AR modeling,
which is s« tetimes referred to as linear prediction, a pre=-
diction error approach is considered where

N
e(k) = y(k) = b{(n) y(k-n) (2.7a)

n=1
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This can be written as

e(k) = y(k) - y(k)
= y(k) ~ y(Tp (2.7b)
with
y() = [y(kal) o+ y(k-N)IT (2.7¢)
and
b = [b(1) ++- bDIT (2.7d)

Here Flo and F30 are assumed to be zero (this assumption
will be modified later to allow a dependence on the input
signal in the synthesis phase) and F20 provides an estimate
of the current value of the system output as a weighted sum
of N past outputs. The mean square valué of prediction
error as a quadratic function of the weignts {b(n)} is
given by

E, = bR D = 2 bir_ + R__(0) (2.8a)

2 yy=— - =yy yy

and the corresponding MMSE solution for the weights is

given by
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- T
BZ = Ryy(O) - EOPTryy (2.8c)

Using equation 2.7a, an expression can be written

in the transform domain for the prediction error model which

accepts y(k) as its input and produces the error saquence

e(k) as its output.

E(z) _ 1 N -n _ -
Y-—(-z—)'- = - Z b(n)z = B(z) (2.9)
n=1

If it is assumed that the system input output relationship

can be represented in transfer function form with

Y(z) a(0) a(0)
= H(z) = z (2.10)
0z -3 b(n) 270 B(z)
nz=l

and that the model parameters can be determined so that B(z)

B(z), then the prediction eprror output will be exactly

e(k) = a(0) u(k). TFor this reason AR prediction error

modeling has often been called inverse filtering since the

prediction error filter essentially reverses the actions of

the system (with the exception of a gain). Since the

analysis model is in this inverse form rather than in the

direct form, the presence of additive noise on the measure-

ment of the system output as shown in Figure 2.3 will intro-

duce a bias in the solution for the model parameters. This
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Figure 2.3. Autoregressive prediction error
modeling as an inverse filtering

process.

has the effect of shifting the roots of B(z) which are es-~

timates of the poles of the system and is the price paid

for the ability to obtain the model solution from a set of

linear equations.

Thus far, only the analysis portion of the AR modeling

process has been discussed. With the inverse filtering

interpretation of the prediction error analysis model, a

reasonable synthesis model is given in transfer function

form as

H(z) = %{-2—%—

(2.11)

with the gain term set so that the mean square value of

a(0) u(k) is the same as that of the prediction error

signal. Thus it follows that

; 2
a(0)2 . elei0)}

RLIU.
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Since the synthesis model is in the form of an all pole
filter, an appropriate impulse response with infinite dura-
tion might be obtained using a low order model (small N),
a result that is impossible to obtain in any f.nite order MA
model. This is not to say however that a low ¢r even finite
order AR model will always be an appropriate mcdel for any
linear system. If the transfer function representation for
a system contains both zeros and poles, no finite order AR
or MA model can serve to exactly represent it. This fact
can be understood by considering the form of a geometric
series

@

I:ﬁ::f = ng% (Cz"'l)n for lCz"l] <l (2.13)
which shows that a single pole can be represented by an
infinite number of zeros ard visa versa. Thus if the sys-
tem has a single zero, a high order AR model may be required
to represent it with sufficient accuracy.

In summary, the advantages and disadvantages of AR
modeling may be listed as follows:
Advantages:

1) The solution for the model parameters involves
only linear equations,

Sometimes an appropriate infinite impulse re-
sponse can be obtained with a small number of
parameters in the model.

Direct knowledge or measurement of the system
input is not required for determing the system

poles, Only a knowledge of its mean square
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value is necessary for determining the gain
factor.

Disadvantages:

1) The model is biased by the presence . .uditive
noise on the measured system output signal.

2) The number of terms required for sufficient
medel accuracy may be quite large if zeros are
present in the system. If this occurs, the
inversion of a large matrix will be required.

3) The required correlation terms are usually not

known and must be estimated by assuming ergodicity

and using time averages.
4) The modeling process is restricted to linear
time invariant systems.

This list of advantages and disadvantages is quite
similar to the one compiled for MA models with two notable
differences; the bias in the model and the absence of a
requirement for input measurements. This second pcint is
significant in that it has led to the application of AR
modeling to many problems where an input signal is unmea-
surable or indeed does not exist including speech modeling
and spectral estimation. [Refs. 2, 5, 12, 15, 21, 32 and 4u]
The noise problem has restricted the process to applications
where measurements with sufficiently high signal to noise

ratio are available, making the effects of the bias minimal.

[Refs. 24 and 43]
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C. RECURSIVE IN ORDER SOLUTIONS FOR AR AND MA MODELS .
The preceeding disucssions of the AR and MA modeling
problems tacitly assummed an apriori knowledge of the correct
model order. If this knowledge is not available a reasonable

approach for determining the correct model order must be
developed [Ref, 53], A commonly employed strategy is to
successively increment the model order while observing the
MSE until further increases fail to substantially reduce the
MSE. This requires solving for a number of different models
and can he an arduous task if equations (2.8Lk) or (2.3) are
employed directly.

The autocorrelation matrices appearing in the AR and
MA model equations (2.8b) and (2.3) are highly structured
matrices (both Toeplitz and symmetric) and this fact can.be
exploited to facilitate the solution of these equations.

The Levinson algorithm [(Refs. 9, 10 and 27] makes use of

this structure to obtain model solutions recursively in
order, that is, the solution for the n-th order model is
assumed to be known and the solution for the (n+l)-st order
model is then obtained from it, In this manner it is pos-
sible to start with a first order AR or a zeroth order MA
solution given by a single equation and build up the
desired order solution. The AR model will be treated first
since it is a special case that simplifies the analysis.

The simplifications arise due to the fact that the Eyy vector

L e T At et o i i DR vt o TR T AT S S . AR o S R o R e SRS gl i o R i s e I L

on the righ* hand side of equation (2.8b) is made up pri-

marily of terms also appearing on the left hand side in Byy' i

33




Superscripts in parenthesis are used to explicitly indicate
the order of the problem when specifically needed.

1. The Levinson Algorithm For AR Modeling

The n-th order AR model solution of equation 2.8b

is given by

(n) . (n) _ (n)
Ryy B F Do (2.14)

The Levinson algorithm assumes a relationship between the

n-th and (n+l)-st order solutions given by

E(n) E(n)
p(n* D) - . - (2.15)
0 k(n+l)

and solves for the vector E(n) and the coefficient k‘P*1),

Define permuted versions of the vectors g(“) and r~(n) as

vy
£(n) and gyén) by reversing the order of their elements.
B . -
b(n)(n) R (n;
f(n) - . 0 (n) _ Yy (2.16)
& :( ) ~yy : )
b(1) "
R 1
L _ vy

Because of the Toeplitz symmetric structure of the auto-

correlation matrix, equation (2,14) can also be written as

R n) (n) - (n)
Roy £ gy (2.17)

3k
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and this relationsnip is essential in the development of the
Levinson algorithm., (To apply the algorithm therefore when

time averaged estimates of the needed correlations are used,
the data must be windowed prior to averaging to maint~in the

1

even symmetry in the autocorrelation function estimates

produce the required structure in the autocorrelation matrix.)

Making use of equation (2.15), in the (n+l)-st order version

of equation (2.14), and using the relationship of (2.17) to

(n) (n+l1)

solve for g and k results in

E(n) - _E(n)k(n+l) | (2.18a)
and
R (nel) - p(n)Tb(n)
K(0*1) |y (")T : ) (2.18Db)
n n
Ryy(0) = 277 2y,

Therefore, in using equations 2,15 and 2.18 to obtain R(n+l)

(n)

from b via the Levinson algorithm only one new piece of

information, k(n+l), need be calculated. The denominator

of equation (2.18b) can also be recognized from equation

(n)

(2,8c) as the MMSE for the n-th order AR model E, , and

thus there is little concern over the possibility of it being
zero. If the n-th order solution produces a perfect predic-
tion (zero MSE) there is no point in trying to find a better
prediction by increasing the order to n+l. The evaluation of
equation (2.18b) can be further simplified by observing that

the MSE also follows a recursion from one order to the next
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(n+l) _ E

. 2
) = (1’1) [l - k(n+l) ]

2 (2.19)
making it unnecessary to evaluate the denominator at each
value of n, (Details of this derivation are omitted here
but included in Appendix A in the derivation of the more
general multichannel Levinson algorithm.) This relation for
the propagation of mean square prediction error also leads

to the restriction that k(n+l)

must be bounded in magnitude
by unity.

2. The Levinson Algorithm For MA M>deling

Next consider the n-th order MA model given by

(n)
R inz §+ = p (n) (2.20)

= +
uu uy
and again, assume a relationship between the (n+l)-st order

and n-th order solutions given by

(n)] ) i
e (n+1)
L(n+l) = X
a = - + - o (2-21.)
0 g(n+l)
Notice that in this n~th order problem, R ini is actually a
uu
n+l by n+l matrix and could be written as Euin+l). Define
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R, (1) R, (n+1)
p (Do P, s p ot ue. (2.22)
Ruu(n+l) Ruu(l)
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Using equations (2,21) and (2,22) in the n+l order MA mocdel

equation it follows that

I(n+l) - . g(n+l)g(n+l) (2.23a)

where i(n+l) is defined in a manner similar to (2.16) and is

b comprised of the coefficients that arise in an (n+l)-st
b order autoregression on the input signal u(k),

Therefore to obtain a moving average model relating the

et o G e L a3t oo s £ e

system output signal y(k) to the input signal u(k), an
autoregrassive model for the system input must first be

solved. TFurthermore,

T ,(n)
(n+l) " _+
(n+l) Ruy(h+l)-guu a

4 = T
(n+l) f(n+l)
u —

(2.23b)

Riu€07~2,

e e T AT P T N M S i i

and the denominator of equation (2.23b) is the MMSE in the ?

j: (n+l)~st order autoregression on the signal u(k).
i It is significant to note that in applying the
s‘ Levinson algorithm to find a given order AR or MA model, all
lower order models along with their MSE's are obtained.

]

Also, intermediate quantities emerge (the{k(n)} in the AR
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model and the {k(n)} and {g(n)} in the MA model) which fully

characterize the models and could be used as an alternative

e ;;n_—;%.»»\jﬂ%*?m ﬁ?ﬁ"“

to the {a(n)} or {b(n)} coefficients, This point will be

developed further in subsequent sections.

E / D. LATTICE FORM AR AND MA MODELS

The Levinson algorithm derived in the previous section
can be used to derive lattice structures to implement the
MA model and the AR analysis and synthesis models as alter-
natives to a tapped delay line type of implementation using
the coefficients a(n) or b(n) directly. [Refs. 29, 30, 32

and 33]

1. The AR Modeling Lattice Structures

3
|
,},
|

From the relationship between the (n+l)-st and n-th
order solutions to the AR modeling problem determined in

equations (2.15) and (2.18a) it follows that the transfer

function of the prediction error model can be written re-

cursively in order as

R T

I N R i L CRL B e P T

TN

Defining a new transfer function

T R N T S SRR 2

B5(n) (4 = mng(n) (1 (2.25a)

.

equation (2.24) can be written as

SRS ST S

(n+l)

B (z) = B (z) - k(A1) ,~1g(n) oy (2.25b)

..
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“ and an expression can also be written for 5in l)(z) recur-
.

sively in order by rewriting equation (2.25a) for order

(n+l) and substituting equation (2,24) yielding.

B L) 5y = R lE() 4y L (n+ldgn) oy (2.25¢)

As discussed earlier in connection with equation (2,9),
B(n)(z) describes the n-th order prediction error model and
when its input is the system output ¥Y(z), it produces the

n-th order prediction error signal.

M5y = 3™ (5 vim) (2.26)

N In the time domain *this signal can be interpreted as the
error in predicting y(k) forward in time from a
weighted combination of the n past values {y(k-~l):‘'y(k-n)}.
To undefstand the significance of H(n)(z) consider the out~
put signal when this model is excited by Y(z).

£ 2y = B (2)v(z)

z 1 -Lﬁ 5™ 1)z 11y (2) (2.27)
=1

In the time domain, E(n)(k) can be interpreted as the error
in predicting y(k=n) backward in time from a weighted
< -ombination of the future signals {y(k-n+l):‘'y(k)}. These

L

n-th order forward and backward prediction processes at time
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k, are illustrated in Figure 2.4. Henceforth, an overbar

will always be used to denote quantaties associated with

backward in time predictions.

yto 4 | :
| Forward |
[1 " Prediction ] |
= m - - — -
| Backward |
dict]
:._*[.._.E?EéiF_lin _________ ﬂ
l e —
|
!
1
|
| i
—
e ko-n kO k

Figure 2.4. Forward and Backward Prediction Error
Filtering.

From equations (2.25b) and (2.25c) =squations can be written

recursively in order for these forward and backward predic-

tion error sequences é&s:

e(n+1)(k) 2 e(n)(k) - k(n+l)€(n)(k-l) (2.28a)
E(n+l)(k> - E(n)(k_l> - k(n+l)e(n)(k) (2.,28b)
40
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Noting that the prediction error for a zero-order AR pre-~
dictor of y(k) (or no predictor at all) is just the signal

y(k) itself,

-
k
R:,.
i

e (x) = 30 =y (2.28¢)

e R

the prediction error filter can be drawn in lattice form as

shown in Figure 2.5 for a second order model,

e(l)(k) e(Z)(k)

D ) >

-k -k

y(k) —e
L) K2
i 1) 0 (2 ()

Figure 2.5. Lattice Form Of A Second Order Pre-

diction Error Model.

This structure has many interesting properties,
among the most important of which is the successive de-
/ coupling property. In going from one order AR model to the

next, all of the previously determined transfer function

coefficients {b(n)} will generally change. The Levinson
algorithm shows however that only one new piece of infor=-
mation is needed to obtain the optimum (n+l)-st corder
solution from the optimum n~th order solution (see equation

(2.2%)), In terms of the lattice filter of Figure 2.4 this

P
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means that given the optimum n-th order model in lattice

form, one need only add another stage to the structure,

setting the coefficient of that stage k(n+1) to mininize

the mean square value of e(n+l)(k). Nothing in the first

n stages need be changed. The overall high order minimi-
zation problem is in this fashion decomposed into a se-
quence of first order minimizations, one at each lattice
stage.

Another important property of the lattice which can

be proven and will be of use later is the orthonogalization

of the backward prediction error sequence [Ref. 32] which
states that
0 i#9
em 0z P oy = (2.29)
(1) . s
Ez i=3

Thus it is seen that a set of orthogonal signals (the back-

ward prediction errors at the various stages) are generated

as a by-product of the lattice model.

As a consequence of the successive decoupling pro-
perty of the lattice, a number of alternatives to egquation
(2,18b) for determining the lattice coefficients can be
found. The most obvious method is to set k(n+1) to .
explicitly minimize the mean square value of forward pre-
diction error in equation (Z,28a) at the (n+l)-st order

stage given the lLest lattice of order n. This is termed

the forward method and is denoted by a subscript F on the

42

e LN S e < ;
A U 11 ok AT B 5550, o S




T TR

AT b L OF N

B et gyt el St 5 N
o REL S e R S e

IE

£ ST

B o -t

SR

T

lattice coefficients. The resulting solution is given by

L D) | efe™ 0™ 1)) (2.30)
P T2 '
e{e" " (k-1)"}

Alternately, the mean square value of the backward predic-
tion error signal in equation (2.28b) could be minimized to

determine the coefficient resulting in the backward method

solution given by

(1) | ete™ 0™ 1)y (2.31)
B - (n) 2 )
e{e " (k)“}

Since, however, the forward and backward prediction error
transfer functions are given by B(n)(z) and z'nB(n)(z'l),

it follows that

1BM ¢z)| = |5 ()] (2.32)

and since they are both driven by the same input, ¥Y(z), the
mean square values of both the forward and backward predic-
tion error signals at a given stage are the same making
equations (2.30) and (2.31) equivalent. It is also possible
to show that they are equivalent to equation (2.18b).
Recognizing that the required expectations will eventually
have to be estimated by using time averages, these two

(n+1)

methods for calculating k will not in general be

exactly equivalent and it might be preferable to use the

arithmetic mean of the mean square values of forward and
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backward prediction error as a cost function

glele M) 0)2 4 g(0*1)(4y2) (2.33a) |

Ty

This leads to a third method derived by Burg [Ref. 5] in :

his work on maximum entropy spectral analysis and given by

(n),,\=(n)
\ (n+l) 2¢{e (k)e (k=1)1}

X - (2.33b)
' BG efe'™ () “re B (k-1 P}

i

a:'.\

i

4, & Ny
2 r
i ¢
I

¥

"f);! s

§ Notice that kég+l) is the harmonic mean of k§n+l) and k

T

PP,

(n+l)
8 .

ki

% A fourth method due to Itakaura and Saito [Ref. 20] can also J

be derived which results in j

(n+l) _ e{e(n)(k)gcn)(k-l)}
kIS - ’ ) (203"")
Veie™ 0% 5 (k104
and k§g+l) is simply the geometric mean of the forward and

backward coefficients.

Since equation (2.34) is of the form of a normalized
correlation kIS will always be bounded by unity in magnitude

as required by equation (2,19)., Furihermore since

| Harmonic Mean | < | Geometric Mean |

(n+l)
BG

bounds are significant since Markel [Ref. 32] has shown that

it follows that k will be similarly bounded. These

|k(n)|<l is a necessary and sufficient condition to ensure

Ly
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that the roots of B(n)(z) be within the unit circle guaran-
teeing the stability of the n-th order all pole model. No
such guarantees of model stability exist when the forward
or backward solution methods of equations (2.30) and (2.31)
are used with the correlation estimates obtained by aver-
aging for finite time intervals,

To determine the AR synthesis model in lattice form
it is only necessary to rewrite equation (2.28a) as

M (1) = M) gy 4 (P LIg(n) (g g (2.35)

Together with equations (2.28b) and (2.28c), this describes
the structure shown in Figure 2,6 for a second order case
and when it is driven by the second order prediction error
signal, it will reconstruct y(k) exactly. Thus it imple-
. 1 .
ments the transfer function . or, in general, " when
8020 () ’

stages are used “TN%?‘;‘ . Recognizing that if the pre-
A

diction error model is an accurate model of the system
denominator polynomial, e(N)(k)=a(o)u(k), this input signal
is used in the synthesis model., Because of analogies with
transmission lines and wave propagation models, the lattice

coefficients have been referred to as reflection coefficients.
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1o SR 4 > r- ————— v (k) -
- 4
§ g _k(2) /4111) k
s b
0o E
K2 <D
- 242 (x) e (k) ---' 54 (x)
i
ﬁi Figure 2.8. Lattice Form Of The All Pole Synthesis ;
gg Model For The Second Order Case. ;
Ao
g :
meo
e 2. The MA Modeling Lattice Structure §
?} A similar lattice form is applicable to the MA f
C modeling problem. TFrom equations (2,21) and (2.23a) the
f transfer function of the MA model can be written recursively :
% in order as g
! AL 2y = a0 () & g DIERML(,) (2.36)
where, as discussed in connection with equation (2,23a), )
§ni1(z) is the backward prediction error transfer function
for an autoregressive model of the input signal u(k).
Maltiplying both sides of equation (2,36) by U(z) and trans-
forming into the time domain it follows that
. P ~ + —
¢ G = g Mo« gD, (2.37)
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where a"*1(x) is the backward prediction error signal from

the autoregression on the input signal u(k), and can he
obtained by operating a prediction error lattice with u(k)
as its input. Then with the additional term in equation
(2.37) the la{tice form of the MA model can be drawn as

shown in Figure 2.7.

e 9 (5 e () e (k)
—— - > —
RS (2
u(k)r—-ﬁ
(0, L r—* T —>
e k) =V 40 (2 ()
(0)
Y g g(l) g<2)
- : > ) S
200 ey | 2013 (4, 562D 1y

Figure 2.7. Lattice Form Of The MA Model (Second
Order Case).

It was stated earlier that the AR prediction error
lattice, as a by-product, forms a set of orthogonal or
uncorrelated backward prediction error signals from its
input. Here in the MA modal, these orthogonal signals are

linearly combined to form the MA ustimate of the system

output. If the input signal u(k) is a white process, an
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examination of any of the solution methods previously dis-
cussed will show that all of the {k(n)} lattice coefficients

will be zero since the delayed samples of a while process

are already orthogonal. Otherwise the {k(n)} lattice

coefficients will be set to orthogonalize the backward pre-~

diction error signals. As a consequence of this, the

weighting coefficients g(n) can be set independently of

each other; that is g(n) can be set to minimize

é{eén)(k)Z} = e{ly(k) ~ y™U)1%) (2.38)

given the best prediction of order n44y<n)(k). This results
(n)

in an alternative expression to equation (2.23b) for g
given by

-1 ~(n) -
(ny _ Sleg "0 & T eyae) 3™ 00) (2.39)
g = =(n),, 2 —{n),, 2 )
e 8 1)) ef{e” " (k)"

Here eén)(k) is the error between the system output and its

n-th order MA estimate.

E, MULTICHANNEL AR AND MA MODELING

Both the AR and MA modeling problems previously dis-
cussed, as well as their solution via the Levinson recursion
and lattice filter methods, can be generalized to the
multichannel case by replacing the various signals with
signal vectors and replacing the weighting coefficients

with appropriately dimensioned matrices of coefficients.
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A discussion of this appears in Robinson [Ref. 45]. The

SR
£
¥

equations that describe the AR and MA models and their MMSE

solutions are repeated here for convenience.

n
e SRR

IR
e

N
3, b(i) y(k~i) (2.40a)
i=1

Cou AR y (k)

AT
¥ SR
5

B YN ']
i'vfrg-: i - . . . . . R "‘N b ( l R ( l )
‘B Ryy(0) R (=D) gy (1) (R

¢ e oe e e - R__(2
Ryy(l) Ryy<0) Ryy(Z N) b(2) yy( )

* L] L] . - (2ll+ob)

AP B Tt R A e Sh b, < e e R St e e o

- R N" . . . oR 0 b(N) R (N)
. Ryy(N 1) yy( 2) yy( ) vy
. 4 L 4 L .
- N
MA y(k) = ) a(i) ulk-i) (2.41a) }
i=0 i
3
- sl i
3
uu(0) Ruu(-l) e e e Ruu(-N) a(0) Ruy(O) 1
i
. . ' . . (2.,41b) i
“3uuCN) Ruu(N-l) e e Ruu(O) a(N) L}iuy(N)
. - = J —J
In a multichannel generalization, y(k) becomes a vector of
Q0 output signals, u(k) becomes a vector of Qi input signals,
o~ b(i) becomes a square matrix of Q0 X Qg coefficients and a(i)
<»r

becomes a Q0 X Qi matrix of coefficients so that the N-th
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% .. order multichannel model equations can be written as :
¢ i
] N
¥ N 3
AR y(k) = 25 b(n) y(k~n) (2.42a)
{ n=l
3 MA y(k) = £ a(n) u(k~n) (2.42b) 1
§ n=0
j i
| The equations for the MMSE solutions (2.40b) and (2.4lb) b
generalize directly as well by replacing each correlation ?
! f coefficient va(n) by matrices of correlation coefficients b
% given by i
| 1
Ry, (W) = e{y(k) wlkem)T) (2,43)
where v(k) and w(k) are signal vectors. This causes the %
overall correlation matrices to take on a block Toeplitz {
structure, The transfer function relationships of the AR ;
g prediction error model and the MA model take the form of ;
f matrix polynomials é
g
A
o B(z) = b(1) 2”1 + «- + b() "N (2.44a) !
S Alz) = a(0) + a(l) z™~ + -+« + a(N) 2 (2.44D) !
4 i
} . so that ?
E(z) = [I - B(2)] ¥(2) (2.44¢)
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2(z) = A(z) U(z) (2.44d)

where E(z) is the transform of the multichannel AR prediction
error vector e(k) = y(k) - i(k). Alternately, equations
(2.44a) and (2.44b) can be written as single matrices.. whose
entries are pelynomials in z rather than scalars. B(z) is

of necessity a Q0 X Qq square matrix polynomial while the
dimensions of A(z) (Q0 X Qi) depend upon the number of

inputs and outputs which need not be the same.

In the single channel AR problem, B(2) provides the
transfer function of the prediction error, or inverse fil-
ter, and must be inverted to obtain the all pole synthesis
filter. The stability of the synthesis model therefore
depends upon the roots of this polynomial. The matrix
polynomial [I-B(z)] in the multichannel AR problem is, in
like fashion, an inverse filter representation and must be
inverted to obtain the synthesis model. This inversion of
a matrix with polynomial entries is defined in the same
manner as the inversion of a square matrix with scaler
entries, To see what this inverse matrix polynomial looks
like consider as an example a two channel autoregression

with « prediction error filter given hy

1l ~ b, (2) ~b,,(z)

1l 12

[I-B(2)] =

mb,,(2) l - b22(z)

21
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. Applying Cramer's rule, the inverse matrix polynomial is

written as

-t —

l-bzz(z) bZl(Z)

1
et{I=B(z

[1-B(2)1"% = .

blZ(Z) l-bll(z)

o wadd

and it is apparent that the stability of the multichannel
synthesis model is dependent upon the locations of the zeros
of the polynomial det(I-B(z)].

This straightforward generalization of the AR and MA

models is what has customarily been used in the literature

to develop the multichannel models and similarly derived
generalizations of the Levinson algorithm to solve them
recursively in order are available as well. [Refs. 57 and 61]

The multichannel AR and MA modeling problems and their

i ek

solutions via the Levinson algorithm can however be recast

as shown in Appendix A to make them compatible with the form

of other linear and nonlinear modeling problems. To avoid

admergs

confusion later in the application of the results, the
derivations in Appendix A have been carried out in a generic
form with x and d used to represent some of the signals and
coefficients respectively, The symbols u, y, a and b have
been reserved to denote system input, output and weighting
coefficients.

Equations (A.7) and (A.26) provide the MMSE solutions to

the multichannel AR and MA modeling problems in forms
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b * different than (although entirely equivalent to) those

A
w

resulting from the straightforward generalizations of

T T AT 22 T
o—

% equations (2.40b) and (2,4%41b), The multichannel generali-

zation of the Levinson algorithm derived in Appendix A

R o
RS

AT

can, with one exception, be seen as a matrix algebra

Ty
R

T

generalization of the single channel algorithm and as, one

would suspect, the single channel algorithm results as a

special case of Appendix A. The one exception is that in

the multichannel case, the n-th order forward and backward
prediction error models are not simply related to one
another. The single channel AR backward predictor is given

by 2""3(™) (,=1y put in the multichannel case the backward

prediction is not z-nEE-I)(n)(z'l)].

AT Sl BT o il i £ il 3 S S e o

?; ' Because of this, two reflection coefficient matrices

K and K are required at each stage in the recursion to

relate the n-th and (n+l)-3t order solutions rather than

R R T T W

just one as in the single channel problem. Also, in the 3

single channel case, the fact that |B<n)(z)| z ]E(n)(z)l

B g

and therefore e{e(n)(k)2}=e{€(n)(k)2} made possible the de-

rivation of the Burg algorithm and the Itakaura-Saito al-
gorithm, which ensured the magnitude of the reflection
coefficient was bounded by unity and that equation (2.18)
would result in nonnegatiyve values of MSE. In the multi-
channel algorithm however, the forward and backward predic-
tion error covariance matrices and their traces are not the
same (except for 2(0) and E(O) and as a result, straightfor-
ward generalizations of the Burg and Itakaura-Saito algorithms

are not possible.
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Consequently with correlation estimates obtained by averaging
over finite time intervals, there are no guarantees that
equations (A.l8a) and (A.19b) maintain the positive definite-
ness of the prediction error covariance matrices.
Multichannel generalizations of Burg's algorithm due to
Nuttal [Refs. 40 and 41], Morf [Ref. 39], and Strand
[Ref. 50] which guarantee the positivity of the covariance
matricés. are available but are not explored here because:
of their complexity and because they would take the dis-
cussion too far afield.
The relations of equations (A.20) and (A.30) which are
repeated here for convenience permit the construction of
the multichannel AR analysis and synthesis lattice

structures and the MA lattice structure. TFor the multi-

channel AR model,

T
M = M - kPP e oy (2.45a)
—~(n+1) —(n) —-(n+l)T (n)
£V = 8™ (k-1 - K ™ ) (2.45Db)

P = TP = x0 (2.450)

and the corresponding prediction error lattice is shown in

Figure 2.8.




Figure 2.8. Multichannel AR prediction error lattice
structure for a second order model. All
signal paths are vector paths and summa-
tions are vector summations. The multi-
plications indicate premultiplication of
the signal vector by the specified coef-
ficient matrix,

To obatin the multichannel AR synthesis lattice, equation

(2.45a) can simply be rewritten as
) T
eM iy = V(g £ k(PR ey (2.46)

resulting in the structure shown in Figure 2.89.

Figure 2.9. Multichannel AR synthesis lattice
structure for a seccnd order model.
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For the multichannel MA model, equations (2.45) and

N ~ T
z(n"'l)(k) = X(n)(k)+§(n+l) E(n+l)(k) (2.“7)

describe the lattice structure shown in Figure 2.10.

n(k)

(0)

{9

Figure 2.10. Multichannel MA lattice structure
for a second order model.

As in the single channel case, the multichannel predic-
tion error lattice exhibits the successive decoupling pro-
perty and orthogonalizes the backward prediction errors at

the various stages so that

: . 0 i#]
e3P a0 g 30Ty - (2.48)
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iﬁs As a consequence of the successive decoupling, the forward

it i

, g and backward reflection coefficient matrices at the (n+l)-st
g . stage can be set to minimize the trace of the forward and
Fooofy

oY . s . . .

% X backward prediction error covariance matrices respectively,
:

given the best lattice of order n. This provides alterna~

L TR e g

tives to equations (A.17) for calculating K and K and also

generalizes the forward and backward single channel solutions

R e

discussed previously, resulting in

It is also possible to show that these relationships are

entirely equivalent to equation (A.17), In the multi-

channel MA lattice, the orthogonality of the backward pre-
diction error signals also allows the G matrices to be
calculated in succession providing an alternative to equation
(A.28b) and generalizing the single channel solution given

G(n)

by equation (2.,39). Setting to minimize the trace of

the error covariance matrix

P¢™) = eley ™M) oM 0¥y (2.50a)

=0 20
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+(n+1) ()~ (n) ~
K = P Y (2.49b)
where
£ 2 ee ™o k-1 (2.43c)
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e ™M) = g0 - M (2.50b)
results in a solution given by

Can) g™ —(n) T

g = P efe’ (k) g7} (2.50@)

Another important characteristic of the lattice solutions
to the AR and MA moéeling problems given by equations (2.49)
and (2.50) and their single channel counterparts is that they
do not impose any requirements to window the data when finite
time averages are used to estimate correlations. The auto-
correlation function of a signal is inherently an even func-
tion so that va(n) =z RVV(~n). This fact is responsible for
much of the special structure of the correlation matrices
“that appear in the model solution equations, and was also
used in the derivation of the Levinson algorithm, In esti-
mating the autocorrelation function via time averaging over
a finite interval, a window function that is nonzero over
only a given interval must be applied to the data to retain
this even symmetry property in the estimate. If the data is
not set to zero outside a given interval, end effects will
destroy the symmetry so that ﬁvv(n) # ﬁvv(-n) as depicted
in Figure 2.11.
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Averaging Interval

v(t=-n)

v(t+n)

Figure 2.11. Time averaging to estimate correlations

without windowing.

In the lattice solutions of equation (2.49) however

» there

ig no requirement to make such an artificial assumption

about the data (that it is zero outside some interval).

These properties of the lattice solution methods

were

responsible for their initial use by Burg in his work on

maximum entropy spectral analysis [Ref. 5] and have

con-

tinued to generate interest in the application of lattice

methods to other types of modeling problems.
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ADAPTIVE MODELING :
The LMS adaptive algorithm provides a well known alter- ]
native method for obtaining the solution to the AR or MA
modeling problems which does not require the estimation of
correlations or the inversion of a matrix [Refs. 58, §9 !
and 60] This algorithm updates an estimate of the model
sclution vector at each time instant by an amount propor-

tional to the negative of the instantaneous gradient of the

cost function; i.e., in a MA model,

at(xt1) = a0 - w70 (2,51a)

where | is a proportionality constant or adaptive gain,
Since the actual gradient is usually not known, it is

approximated by using the square of a single sample of the

error as an estimate of the MSE so that

] 2
vhe = delo = -2 u" (k) elk) (2.51b)

%2 §+=§+(k) j

1

and
{

at (k1) = atto+2n w0 eli) (2,51c)

In each of the models considered here, the cost function

(MSE or trace P) is a quadratic function of the model weights
and defines a concave hyperparaboled with a unigque minimum.

The functioning of the LMS algorithm under these conditions
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can easily be understood by considering the scalar case of
equation (2,581) illustrated in Figure 2,12,

As this illustration shows, the algorithm can actually
diverge for too large a value of adaptive gain. The rate
of convergence is also dependent on the size of the adaptive
gain. Widrow has shown that for stability, the gain must be

set s¢ that

0 <y < \1 (2.52a)
“max

While, in the mean, the weight vector converges with an

exponential time constant of

~ 1 '
TE o (2,52bh)
HAmin
1
where Amin and Amax are the smallest and largest eigenvalues
of the input autocorrelation matrix R _ .. From the stand-
uu

point of stability, u should be made relatively small but
for rapid convergence, equation (2.52b) dictates that it

should be large. Setting

= x.—a-_. (2.53a)

where o is a normalized gain and 0 < a < 1, equation (2.52b)

becomes
S Amax (2.53b)
20 kmin
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and for a wide disparity between the largest and smallest

eigenvalues (Amin << xmax), convergence will be quite slow.

Tuis consideration becomes increasingly important when high

order model solutions are obtained adaptively since the

KXo}

dimensonality of the input autocorrelation matrix will be

high and the possibility of a wide eigenvalue disparity

R R YT e e e e L
LR YT T e -

g BT

greater,

These same adaptive techniques have been applied by

I

Griffiths [Refs. 16, 17, 18 and 31], to the AR and MA

e A T R e e,

T vy
=T

lattice filter structures derived in the last section. The

AT

key difference between the conventional adaptive filter and

b the adaptive lattice is that in the lattice, the adaptation

| is carried out on a stage by stage basis for each of the

? reflection coefficient matrices. while in the more conven=-

tional approach, the entire weight vector is adapted., It

has already been established that the lattice structure

s e 25w,

makes the model solutions recursive in order. Implementing

the lattice adaptivity makes the solution recursive in time

as well since the estimate of the solution at each instant

is dependent upon prior estimates of the solution,

The conventional adaptive filter algorithm forms an
error signal as the difference between scme desired signal

and its estimate; i.e,

e(l) = y(k) - a"toTu’ (0 (2.54)
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where y(k) is the desired signal, g+ is the weight vector
and g+(k) is the input vector, and the time update for the
weight vector is given by equation (2.5lc). To derive the
adaptive AR lattice consider equations (2.45) for a single
stage. The lattice in general has vectc error and desired
signals and coerfficient matrices as opposed to scalar error
and desired signals and a coefficient vector in equation
(2.54) but such a generalization is straightforward. Com=~
paring equation (2.45a) to (2.54) it is clear that:

1) g<n+l)(k) is analogous to the error signal;

(n)(k) is analogous to the desired signal;
(

2)
3)

ie]l o

n)(k--].) is analogous to the input signal vector,

Using the trace of E(n+l)

as a cost function and applying
a LMS adaptive algorithm to determine the forward reflection

coefficient matrix it follows that

§(n+l)(k+l) - g(n+l)(k) ' 2u(n+l)§(n)(k-l)g(n+l)(k)T

(2.55a)

With these analogies, equations (2.5lc) and (2.55a) are seen

to be virtually identical with the exception that (2,51le)

uses a scalar error to adapt a weight vector and (2.55a) uses

a vector error signal to adapt a coefficient matrix.

Proceeding in a similar fashion with equation 2.45b it is

clear that:
—(n+l) X 4 .
1) e (k) is analogous to the error signal;

2) g(n)(k~l) is analogous to the desired signal;
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3) g(n)(k) is analogous to the input signal vector.

i
i . (n+l) ; ;
i With the trace of F'7"' "% as a cost function, the time
% update relation for the backward reflection coefficient
E matrix is
‘ 2L ny 2 gD gy 4 op(atL) () (1) gin#l) (T
; (2.55b)
§ For a MA lattice, equation (2.47) must also be considered.
Multiplying both sides of (2,47) by minus one and adding
y(k) results in
(n+1) (n) (n+1) T—(n+1)
€ (k) = o (k) -G e (k) (2,56)
where go(n+l)(k) is defined as in equation (2.30). It is
evident that:
9] 20(n+l)(k) is analogous to the error signal;
2) go(n)(k) is analogous to the desired signal;
3) E(n+l)(k) is analogous to the input signal vector.
With the trace of Bo(n+l) as a cost function, the time up-
date relation for g(n+l) is given by
§‘(n'i-l.)(k*_l) - g(n+l)(k) + 2uérﬁl) §<n+l)(k) 20(n+l)(k>T
(2.57)
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It is significanc to note that three different adaptive
gains have been used in equations (2.55) and (2.57) and
that the gains have been superscripted indicating that they
vary from one lattice stage to the next. For stability consi-
derations the adaptive gain used in the LMS algorithm nmuct
satisfy equation (2.52a) and therefore is related to the
largest eigenvalue of the input autocorrelation matrix by
equation (2,53a). In developing the time update relations
for the lattice coeffilcients, three different input signals
were used and these inputs also differ from one lattice
stage to the next. Indeed, even for the case where the in-
put x(k) to the lattice structure is stationary, the inputs
to all lattice stages except the first are nonstationary
since these inputs are outputs of other lattice stages. This
fact indicates that time varying adaptive gains are appro-
priate as well in equations (2.55) and (2.57), Equation
(2,53a) is of no direct usefulness however in setting the
adaptive gains since the time varying eigenvalues are not
known. Recognizing that the largest eigenvalue is always
less than the trace of the input autocorrelation matrix

(which is a measure of the power in the input signal vector)

the gains can be set as

TR F ¢SS S (2.88a)

ep (O
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E(n+l)(k) = '-_‘,-—*-"g-('—-)-z (2.58Db)

g (2.58¢)

(n+1) -
ng (k) W
n+l

2 = 2 2 .
where °n+l(k) , an+l(k) and yn+l(k) are estimates of the

power in the three input signal vectors and a is a normalized

adaptive step size with 0 < a <1, A method that has commonly

been applied to obtain these estimates is to employ a first

order low pass filter so that

(k+1)? = [1-alo,; 0 %+a8 ™ (ea1TE ™ (k-1) (2,592

Inel

- r - 2, _(n), T (n)

Oy (k)" = [l-ala (k) +ae " (k) 7e " (k) (2.59Db)
Yo Gt D2 = Thmady 0 2rae P aoTe (Moo (.58

Taken together, equations (2.55), {(2.57), (2.58) and (2.59)
define the adaptive solutions for the AR and MA multichannel
lattice models.

To understand the potential advantage offered by the
adaptive lattice form, recognize that while the conventional
approach solves a high order minimization problem by adapting
all the coefficients at once, the lattice breaks the problem
down into a succession of lower order minimizations at each

stage and solves these lower order problems adaptively. The
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dimensionality of the input autocorrelation matrices. at
each lattice stage in general is significantly less than
that of the large input autocorrelation matrix in the con-
ventional adaptive algorithm and consequently it is hoped
that the possibility of a large eigenvalue disparity with
its attendant slow convergence is reduced.

This advantage is most evident in a single channel
adaptive lattice where the inputs at each stage are single
signals and .~ 'r corresponding autocorrelation matrices
are 1xl in dimension. In this case the ratio of smallest
to largest eigenvalues is unity and the convergence of each
stage is quite rapid while the convergence of the overall
model is independent of the eigenvalue ratio for the over-
all higher dimension input autocorrelation matrix. This has
been demonstrated by Satorius [Refs. 46 and 47] who has
shown that the single channel adaptive lattice converges
much more rapidly than the corresponding conventional adap-
tive filter, and does so independently of the eigenvalue
ratio on the overall input channel autocorrelation matrix.

Furthermore in a single channel adaptive lattice, the
time update relations are simplified by the fact that the
forward and backward reflection coefficients are the same.
Using the average of the mean square values of backward
and forw.rd prediction errors as a cost function and applying

an adaptive algorithm it follcws that
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KD (1) s 0 (34816 () () 8O (3

a (k)

n+1l

+30 (1ye (1) (3y 3 (2.60a)

where

2_ 2, 0. (n) 2 —(n) 2
04 (kr D 22l1malo_, G0 Zedre! M a0 %™ -1 (20500

The very nature of the lattice structure however with
the output of one stage providing an input to the next stage,
greatly complicates the analysis of the convergence proper-
ties of the adaptive lattice model. Ever. when x(k), the
input to the lattice, is stationary, inputs to all stages
except the first are nonstationary. An approximate analysis
of convergence and stability on a stage by stage basis is
possible if it is assumed that all prior stages have con-
verged and are providing stationary inputs to the stage
under investigation, With this assumption, the adaptive
solution for the §(n+l), E(n+l) and g‘“*l) matrices are
obtained from the operation of three independent LMS algo-
rithms as shown earlier, with inputs given by E(n)(k-l),
g(n)(k) and E(n+1)(k),respectively. Stability limits on
the adaptive gains used in the stage and the convergence
properties of the stage ars then determined by the eigen-

values of the E(n), g(n) and E(n+l) matrices. A more exact

analysis of the properties of the adaptive lattice that
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considers the nonstationary character of the inputs to the

second and subsequent stages
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III. ARMA MODELING

One of the most serious disadvantages of either AR or
MA modeling is the fact that to adequately represent even
simple linear systems, both methods may require a large
number of parameters (a high order model). This problem
arises since, from a transfer function standpoint, AR and
MA models attempt to model the system using only poles or
only zeros, in spite of the fact that the physical system
may have both zeros and poles. While modeling the effects
of a zero with a number of poles and visa versa can be
analytlcally Justlfled as shown in the prev10us chapter,
it makes far more sense (both from the viewpoint of model
accuracy and efficient use of model parameters) to let the
model represent the system as it really is with both zeros
and poles if this is at all possible. The ARMA model is a
generalization of the AR and MA models and accomplishes
exactly this, representing the system in rational transfer
func+ion form.
It is worth noting that the titles of all pole and all

zero modeling that have been associated with AR and MA

modeling are misnomers. Both have equal numbers of

zeros and poles. In the AR model however, all the zeros
occur at the origin of the z~plane as do the poles of a. MA

model. The ARMA model removes these constraints.
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After a brief discussion of two alternate ARMA modeling
methods due to Shanks and Prony, the equation error formu-
lation for ARMA modeling is developed and the new results
presented. Model transition formulas relating the ARMA
model to the MA and AR models are developed and the input
signal requirements of the modeling process explored. It
is shown that after suitable modification, the Levinson
algorithm can be applied to solve the ARMA modeling problem
recursively in order and lattice solution methods are also
developed for both a batch processing and an adaptive model
solution. The results of experimental simulations of both
of these modeling solution methods are presented and dis-
cussed, and comparisons are made with conventional means of
ARMA modeling using the equation error formulation. Finally
it is also shown that the lattice solution methods can be
generalized to solve for the multichannel ARMA model with
arbitrary numbers of inputs and outputs.

A. LINEAR ARMA MODELING AND ITS RELATION TO AR AND MA

MODELING

The ARMA model for linear systems assumes the current
value of the output of the system is given by a weighted
combination of present and past values of the input and
past values of the output. In terms of the discussions of
Chapter I, F30 is assumed to be zero and F10 and F20 take

on the following forms

M
FlOEu(k)] = gé% a(n) u(k=n) | (3.1la)
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N
FZOEy(k-l)] = gga b(n) y(k~n) (3.1b)

L leading to a transfer function representation for the system

given by
M
a(n)z ™M %
H(z) = n=0 T I = %%%% (3.1c) ;
1- b(n)z™"
n=l

A number of methods exist for finding the model coef~

e P e e it

ficients {a(n)} and {b(n)}. As stated in Chapter I, a MMSE
solution via the direct form modeling approach requires the

solution of a system of highly nonlinear equations and in

general is untractable. An alternative is to first obtain

an estimate of the denominator polynomial B(z) by some

means such as AR modeling and then using this in the system
shown in Figure 3.1, estimate the numerator polynomial A(z)
by setting its coefficients to minimize the mean square
value of the error. This method was first explored by
Shanks. [Ref, 49]

Another alternative is to apply the Prony method [Refs.
8, 52 and 56] derived in Appendix E which obtains the model
parameters by matching the impulse response of the system
and model over the first N+M+1 sample intervals. Both of
these techniques share a common characteristic. They both
start by independently estimating the denominator coefficients

(or model poles) and then, given this estimate, solve for
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Figure 3.1. Shanks method for ARMA modeling

.the numerator coefficients (or model zeros). This is in-

tuitively unappealing in that one would expect these two
estimation problems to be more closely coupled with the
zero estimates also affecting the estimates of the poles.
The application of the equation error formulation to the
ARMA modeling problem permits simultaneous estimation of the
model zeros and poles and was first used by Kalman [Ref., 23]
in work on self-optimizing control systems. The pradiction
error form of the model is considered here where FSO is set

to zero while

M

FlOEu(k)] = ég% a(n) u(k=n) (3.2a)
M

szy(k)] = y(k)= 3 b(n) y(k=n) (3.2b)
n=1l

T4




The analysis model is depicted in Figure 3.2 where

(3.3a)

n

J -
g Alz) ¥ alnmdz
' n=0

A and
(3.3b)

N
\ B(n) = 1= % blz™"
" n=l

¢ and these polynomials are the estimates of the system trans-

?’ fer function numerator and denominator,
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The equation error formulation for

Figure 3.2.
ARMA modeling.
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wr The expression for the model error can be written as
| b
eg(k) = y(k) =~ [x(k)T ! 3+(k)T] - (3.4a)
a‘!"

where y(k) and b are defined as in equation (2.7) and

uF o = Cyo o uk-m 1T

+

&

[a(0) +++ a()1T

(3.4b)

(3.4e)

This results in an expression for the mean square error

which is a quadratic function of the model coefficients,

with the MMSE solution for those coefficients given by

and

min

’ - -
P ROy F-E

| yu

| +
R4 a

1 u u

] p L .

- T
= Ry (0) - [b

- -
Zyy
- o - - (3-5a)
LA
uy
L. ]
r
vy
| a+T] A (3.5b)
|- L3
uy

1. Model Transition Relationships

Comparing equations (3.4) and (3.5) with their AR and

MA counterparts, it is clear that the ARMA model provides a

generalization of these other models since they can be

o obtained from the ARMA model by assuming that either 5+ or b

is zero.

Consequently it is susceptible to the same type of
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bias introduced in the AR and MA models by the presence of
additive noise on either the system input or output signals,
To develop the relationships between these models further,
consider the inversion of the correlation matrix in equation
(3.8a) in terms of its component matricies. Since the left
and right inverses of a nonsingular square matrix are the

same, either

A R R I
2 (3.6a)
¢ R, R, Q
. uy U u
or
R R A B I
yu 2 (3.6b)
R, R+ c D e
u'y u u

can be used to find the required inverse in partitioned form.

Solving for the right inverse of equation (3.6b) yields

- -1 -1
A= (Ry =R Ry LR, (3.72)
yu uu Tu'y
-l "'l "1
B = «R R (R - R R ) (3.7b)
- -1 -1 -1
C=-R:+R, (Eyy R W RYLR,) (3,7¢)
uu uy ya© Tuu Tu
_ o=l -1
D* (R, ,~R, RIR ) (3.7d)
uu u y yu

i
b
*
2
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Solving for the left inverse of equations (3.6a) gives iden-

tical results for A and D while equivalent but different

forms are obtained for B and C given Dby

B=~(R~R ,R°> R, )R L, (3.8a)
A A TA AR TR TR TARY yu u u

€= -(R, 4R, RR +)-1 R, 3-1 (3.8b)
uwu Tuty Y yu uy Y

Using equations (3.7) in equation (3.5a), the solutions for

the ARMA coefficient vectors are given by

"Ly (3.9a)

and

ReR Ol (3.9D)

The matrix inversion lemma [Refs. 11 and 18] which states

that

(e+FeH)~t = £t - g lp(gtene~ip) -t ypt
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for nonsingular square matrices E, G and E+FGH, can be

used in equation (3.9) to rewrite them as

b = R r + R R (R ~ R R R )
(R, Rlzr -1p,1 (3.11a)
“uty VY Ty TSty
+ o el -1 -1 -1
a =Ry, *RLULR, (Eyy - R R ¥ + Ry
quu uy u u uy yu uu uy
[R ,R: . r, =1v 1 (3.11b)

The all zero and all pole model solutions of corresponding

orders however are

-1

+ -1
SyyEyy

a = r and b =
-~ AZ u+u+ -u+y AP

(Y]

where subscripts are used to distinguish these solutions
from their counterparts in the ARMA zero pole model.

From equations (3.11) it follows that

~1 -1 -1
b = b *+ R.o R (R - R R )
=ZP =AP =yy yu+ =t ...u+y Byy yu+
[R b -1 ] (3 |125.)
uh+y =AP u+y
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(3.12b)

Following a similar development, the left inverse relation-

ships of equations(3,8) can be used to write

-l g (3.12¢)

-1
b = (R - R R ) (r =R a,ml
=P =yy _y + =+ + .-u+ ~yy = u..-_AZ

= -1 -1
87p * R4 4 =R, ROR O 7 lp, =R, bypl (38.120)

Equations (3.12) are termed the "Zero Pole Model Transi-

tion Formulas" and specify the relationships between the

various models. It is interesting to note that equations

(3.12a) and (3.12b) take the form of a linear observer with

a new estimate of the solution given by the old estimate
plus a gain times an error term. To gain some insight into

the functioning of these formulas, consider the form of Ryy(n)

and Ruy(n) for the linear system described by the transfer

function of equation (3.1le)

N M
Ry (-n) = > b(i) Ryy(=imn) + ¥ a(i) Ryy(~i~n)
L=1 L=0
(3.13a)
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n) = Z b(L) Ry (~i-n) + Z ati) R (~i-n)
L=1

Ruy(

i=0

(3.13b)

Assuming that N=N and M=M, and writing equation (3.l2a) for

-N<n<~1 and equation (3.13b) for -M<<0 results in

+
o+ P - 3- '4
R .
B bvR, a =, (3.14D)
u u uy

These constraints on the system input and output auto and
cross correlation coefficients are the ARMA modeling equa-
tions of (3.5a) with the model coefficients replaced by the
system parameters. In AR modeling, bap is set to satisfy
the constraints of equation (3.lka) with the assumption that
g+ is zero. The error term in the model transition formula
(3.12a) then checks this solution to see if it also satisfies

the constraints of equation (3,14b) still assuming that g+

is zero.
error = R b -~ (3-15)
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If this error ls zero and the constraints of equation (3.1ib)
are satisfled, equation (3.12a) sets by, = b, and equation
(3.12d) wsetis 5+ to zero. If however the error is nonzero,
(3.12a) adjusts Bap in proportion to the error to obtain

yp and (3.12d) then provides a nonzero g;P. Thus equations
(3.124) and (3.12u) are complaemantary, specifying the ARMA
or zero pole model solution of order M over N whuan given

the N-th order AR or all pole model soulution,

In like manne ., equations (3.12b) and (3.12c) give the
ARMA model solution of order M over N when given the M=th
vrder MA or all zero model solution. The all zero solution
ia obtained from equation (3.1u4b) assuming that b is zero.
Equatien (3,12b) aheoks this solution against the con-
stralnts imposed by equation (3.l4a) with the same assump-
tions and adjuastsy 5;2 appropriately to cdetermine EEP‘
Equation (3.12¢) then sets gzp, completing the zero pols

modal mclution,

2. Modeling Input Signal Requiremants
Another aspect of the mcdeling problem that must be

gonsidered is that of system idaintifiability. If, from the
avallable measurements of signals, a model can be obtalned
that acourately represents the system's opera“lon, the
systenn is considered {dentifiable., The two lssues that
arise thearefore are the measurement requirements (whigh
signals must be measuryd) and requirements on the input
signal used to excite the system during the modeling

proceds., 1n the equation arvor formulation of the ARMA
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model, both existing signals (system input and output) must
be observed (or at least a knowledge of their auto and cross
correlation functions must be available). Most discussions
of input signal requirements for identifiability simply
state that the system can be identified if the input sigznal
is sufficiently rich, persistent or exciting. eg [Ref. 19]
To explore the question of input signal requirements fur=-
ther, consider the mean square equation error cost function
being minimized. Assuming that the equaticn error signal
is argodic and has finite energy its mean square value is
obtained via time averaging as

E, * eletk)?t s T a(m? (3.16)

et 1

Applying Parjevals relation this becomes

w0 n
E, ® > e(n)? s %? ‘,. E(eje)E*(eje) d0 (3.17)
ne-o -t

where 6sul ani * {ndi‘utes the complex conjugate. The

squation arror J represented in the transform domain as
E(z) » [B(z)H(z) - A(z)]u(z) (3.18)

and using chis in aequation (3,17), the cost function becomes

"
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showing that the power spectrum of the input signal acts as
a frequency dependent weighting function on a transfer
function error term. Therefore to identify the system
equally well at all frequencies, the input must have a
flat spectrum as will be the case for a white noise input
or an impulse function input. Otherwise, the model trans-
fer function will only be matched to the system transfer
function over the range of frequencies where the input
signal has significant power,

As an example consider the equation error ARMA
model for a fourth order system driven by a single sine
wave input at a frequency of m/3. According to equation
(3.19), the model transfer function will only be required
to match the system at this single frequency, and to accom-
plish this, only a first order model is needed, Any in-
crease in model order above first order therefore should
have no effect, Figure 3.3a shows a comparison of the mag-
nitude spectrum of the fourth order system and its first
order ARMA model obtained using the sinusoidal input and
as antlioipated they match at the frequency n/3 (coinciden-
tally they alsc match at one other frequency as well),
Figure 3.3b shows the same comparison but with a fourth
order ARMA model, It in clear that inoreasing the modael
order failed to improve lts acouracy and that the model

acourately represents the system only at the frequency of

the input signal and, by colincidence, at one other frequency.
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It should be noted that this type of analysis to

determine input signal requirements could be applied to the

AR and MA models as well resulting in the same concilusions.

i B. A RECURSIVE IN ORDER SOLUTION FOR THE ARMA MODEL
N Since the equation error formulation for the ARMA model

is a generalization of similar formulations for AR and MA

i on s
R P SR

modeling, it is reasonable to assume that a Levinson-type

£

algorithm could be devised to obtain the ARMA solutisn

Cc

recursively in order, and that from that algorithm, lattice

TR

filter methods applicable to the ARMA modeling problem could

RS il

be derived. Attempts to deévelep such an algorithm directly

for the ARMA modeling equation (3.,5a), howevar, fall to

~ —

provide useful results. The first problem that arises is

in deciding which model order t¢ make recursive; the order

of the numarator polynomiasl, the order of the denominator
polynomial or hoth, If it is assumad that the numerstor
and denominator are of aqual orders (M=N), the ARMA nndeling

equations become as shown in equation (3.20). However,

efforts to develon & Lavinson-type algorithm for this system

of equatlons, whera the numerator and denominator polinomials
of the model arae incrementad simultaneously to ohtain re-

cursive ln order t»nlutions, are still frugtratea by the

o e D s v 2

pressnce of the (N+1)-st row and column in equation (3.20).

This arlases because the nunerator coefficient veotor 5* ls

it s

& (N+l)eveator while tha denominator woefficient vegtor

10 8 Nevector. [f Lt i further assumed that the Loafficlent
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0 ‘e : - o} vee "'N-‘1 —b R 1
R, (0 R (M) R () R -0 bl R Q) Ry
Ryy(N'l) v Ryy(O) Ryu(N'l) .on Ryu(O) b(N) | Ryy(N) -a(0) Ry“
L] l L] ] L] .
1 L : ) I
|
Lftuy(N-l) vee R (0) IRuu(N"l) . Ruu(O) a(N) Ruy(NiJ
(3,21)

a(0) is known in advance or can be estimated in some other
fashion, equation (3.20) for the solution for the remaining

2N coefficients becomes as written in equation (3.21).

The coefflcient a(0) essentially has the role of a gain for

the model, and a method for estimating it after all the outher

coefficlents "are obtained (as was done in AR modeling) will

be discugsad later.

Yy
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o

i

Equation (3,21) can be written as

= - =) .
Zyy  Fyu| |*
(3,22)
r r -a(0)
“sU -4l
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Now consider the form of a two channel autoregressive

model where the two input channels are y(k) and u(k); that is

y(k)

! : xl(k)

11}

xz(k) u(k)

Using equations (A.4a) and (A,7b) the two channel AR modeling

equations are

rORE B PR B - :

Ryy Byl %1 412 Zyy Zyu

g : (3.25)
b

{ R R d d T L

P =u —-uu| |=21 =212 ) W

' e 4 L ‘] M4 J

and comparing equations (3.22) and (3.23) it 1s clear that
with the exception of the gain term al0), the ARMA modeling
solution can be obtainad from the two channul AR golution
of (3.23). T[urthermore equation (3.23) can bn seclved indew

pendently of ths gain term via the Lavinson algorithm as

shown in Appsndix A or via the multichannel lattice methods
devaloped in the previous chupter. Then ell that remalns
to complate the solution for the AKMA model is to estimate

the gain term a(0) and snlve for tLhe othar modsl cosfficlents

using

s e . . . ( !
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%_ g&; From this it follows that the transfer functions A(z) and
% B{z) for the ARMA prediction error analysis model can be

%. related to the twochannel AR precdiction error matrix poly-

% nomial transfer function by

l, pron '1 puane

‘ Bz, 1 ]

= (I -D)] (3.25)
L_—A(z) -a(0)

° Y P’ b, 1 waghhoid
.ALMMMMAL‘H‘AMNN}&LM!M!{A(“W& B A1 i e s g, : .
R T T N C IR s Erend Ll v ok .

It ig alsoc easy to relate the ARMA equation error to the

two channel AR prediction wrror vector. Using equations

(A.3) and (A,5), the two channel AR prediction error vector

i3 written as

- T -
a7 = o tyteTweaTy TR S12E (3, 26)
' uk) | do1 oo

! : Y9
+ [e (k) eu(k).

T v L TR

y
Dafining
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h (3(275)
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g'” and postmultiplying equation (3.26) by y and using (3.

b -

s g follows that

b T T .| 2
S e(k)” ¢ = y(k) =~ a(0)u(k) ~ Cy()™ 1 ulk)“]|nmm (3,27b)
A € ? ;= a

AT T A 3 e et s,

But from equation (3,4a) this is exactly the ARMA model

s e,
TR

equation error zo that

eq(k) = _e_(k)T ) (3.27¢)

TR T T S,

and

2 T
c{eo(k) bos 9t Py (3,274)

ﬁ
@
B
P
L

where P is the forward prediction error covariance matrix

for the 2 channal AR model. Equation (3.27d) also provides

a means of estimating the gain term a(0) after the two channel

AR solution has been obtaired by setting it to minimize the

mean sguars valua of equation ervor resulting in

efe (k)n (k)}
= ' (3,28)

a(0) =
c(eu(kfé}

and completing the ARMA model solution,

S
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The portion of the ARMA model solution in equation (3.24)
given by the two channel AR solution can be found recursively

in order using either the Levinson algorithm or the lattice

filter techniques, If the desired ARMA model order is not

known in advance, a model gain term a(0) can be estimated

for each order two channel AR solution to find the ARMA

model of corresponding order along with its MSE. In this

fashion, the entire family of ARMA models for the system from

order zero to order N, along with their mean square errors

are obtained. 1If, on the other hand, the desired ARMA model

order is known apriori, the gain term need not be calculated

at each stage, Only one gain term must be calculated to

obtain the ARMA solution after the appropriate order two
channel AR solution has been found.

It has already been shown that to fully identify the
system using the equation error ARMA formulation, the input
signal must have a fiat spectrum as in the case of white
noise. When white noise is used as the system input u(k),
simplifications emerge in the solution of the two channel

AR model via the Levinson algorithm or lattice methliods.

For a white sequence with variance cuz,

(30296)

uu n
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Consider equation (A,1l6c) for K

and

0 y n <0

Ruy(n) z (3.29b)

cuzh(n) 3 n 50

where h(n) is the sampled impulse response of the system.

(1)

~ a1 ~ =
Ryy(O) Ryu<°) Ryy(l) 0

i<

Ruy(O) Ruu(O) Ruy(O) 0

This shows that k§%> and ké%) are zero and furthermore since

(n) (n) rha-
Eou and v, are zero for all n i1t 1s seen that

kgg’ 2 kég’ : 0 (3.29d)

for all n as well, This can readily be understood by con.
sidering the role of these two coefficients at each stage

in the AR prediction of y(k) and u(k). k12 and k22 are the
coefficiants used in trying to pradict u(k) from past valuas
of y(k) and u(k), and when u(k) is a white sequence it
cannot be predicted, foraing these coefficlents to be zaro,
No such simplifications occur in the backward prediction
problem (and therefore in the K matricas) since even for

a white u(k), & backward predilction of u{k=n) from subse=

quent values of u and y is possibla, This i{is because in

93
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general, a linear dependence of y(k) upon past and present

values of u(k) can occur (and certainly will occur when the
relationship between y(k) and u(k) is described by an ARMA
model) .

As a result of these simplifications, it is seen from
equation (A.l9a) that the polynomials dlz(z) and dzz(z) are

zero when u(k) is white and the ARMA model is given by

B(z) l-dll(z) 0 1
- (3030)

~A(2) -le(z) 1- -a(0)

In this special case it follows that

B(z) = detll -~ (2)] (3.31)

and therefore stability of the ARMA model and of the two

channel AR model are equivalent. In general, however, no

such connection exists for arbitrary input signals. Further-

more, even when thae system input u(k) is white, solutions

for ky, and Koo will not in general be exactly zero since
the required correlations are usually not known and must be
estimated.

This development showing that the ARMA model solution
can be obtained from a two channel autoregressive model da=
pends on two assumptions,

1) The numerator and denominator polynomial orders in

the model transfer function are assumed to be the

UL

e e il it s i b AN i o
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gsame and are incremented simultaneously to build up

the desired solution recursively in orderv;
2) It is assumed that the coefficlent of z to the zero
power (a(0)) in the numerator polynomial of the modal is
either known in advance, or that another means of
estimating it can ba found so that it nesd not be
estimated directly in the modeling equations of
(3,20),

The second assumption causes no concern since the two channel
autoregressive solution is obtained independently of a(0),
and given that solution, it has been shown that a(0) can
indeed be estimated in another‘fashion in equation (3.28),

The first assumption howaver, warrants further congid-
evation since it seems somewhat restrictive (at first) to
require that the numerator and denominator polynomials of
the model have the same order when in fact, the system being
modeled may have diffarent order numerator and denominator

polynomials, To ses that this assumption 1s not restrictive

in general, consider what is ocouring as the model is built

up recursively in order. At each model order n, the pro=-

cedure finds the best n~th order model (with n zs4ros and n
poles) in a ninimum mean square squation error sanse,
Making the model numerator and denominator ordery different
(or equivalently, forcing some of the coefficlents to zero
in the model where the orders are the same) places a prionri
constraints on the model, foruoing some of the poles or

zeros to the origin in the z-plane, rather than allowing the
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model to place them at will to minimize the cost function.

As an example, consider the process of obtaining an ARMA

model for a system given by

2
> a(m) 27"

H(z) =
1l- b(n) z~ 1
n=1

where two of the ‘systems four zeros actuially occur at the
origin of the 2z plane, Constraining any of the model zeros
to the origin at orders one, two or three will result in a
model with higher cost (MSE) than if they were not con-
strained, Even at order three, a model without constraints
can be expected to use the "extra" zero to help in approxi-
mating the effects of the system's fourth pole as shown in
equation (2.13) yielding a lower cost and more accurate
model than would result if one zero were forced to the origin.
Only at order four are such constraints reasonable but even
then, they are not necessary since the modeling procedure
itself should recognize that the best fourth order model
will have two zeros at z=0,

Therefore, it is seen that assuming equal orders for the
model numerator and denominator is entirely reasonable as a
general approach in obtaining MMSE models for unknown sys-
tems or e&en reduced order models for known systems. When it
is knowr in advance that the best MMSE model for a system

has zeros at z=0, imposing such a constraint on the model can

A}
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reduce the computational complexity of obtaining the solution,

but even here the assumption of equal orders is not restric-

tive.

C. LATTICE FORM ARMA MODELING

In chapter two it was shown that the lattice structure
of Figure 2,7 could be applied to solve the multichannel

AR modeling problem in terms of the reflection coefficient

matrices given by equations (2.43). 3ince the ARMA model

solution can be obtained from a two channel AR solution with
y(k) and u(k) as the input channels, only the structure
described by equation (3,27c) need be added to & two channel

AR lattice to obtain the lattice form of the ARMA analysis

model, It is interesting to look at the exact structure of

this lattice model as shown in Figure 3,4 for a second order

case, This structure is seen as a lattice interconnection

of two single channel AR lattices operating oa the input

signals y(k) and u(k)., The coefficients on the main diag-

onals of the K and K matrices specify the single channel
lattices while the off diagonal elements specify the inter-

connections. (This will also be the case for extensions

to lattices with any number of channels,)

The ARMA synthesis model implementing the transfer func-

tion A(z)/B(z) can also be put in lattice form, The for-
ward prediction in the two channel AR analysis lattice is

described by
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P s
j b - —(n+1 ~ ~(n) ~(n+1L~ —1(n)
; % ey(k) ey(k) ki1 Koq ey(k—l)
- s - (3.32)
F
& ‘1. Y -
i e, (k) eu.L) 37 Ky eu(k 1
B . ' (n+l) ;
%T , and the equation for ek(k) can be rewritten as
£,
9 (n) _ _ (y(n+l) . (n+l)= (n),, (n+l)— (n)
' e (k) = e () T e (TR (1) iy TR (-1
p
£ (3.33)
pi!
g‘ ' Equation (3.33) along with the equation of e, in (3.32), and

the equations for the backward prediction (2.45b) describe

SRS N

the structure shown in Figure 3.5 for a second order case.

aaos Sl

To provide the required input at ey(k)(Z), recognize from

equation (3.27¢) that

ey(k)(Z) = ey(k) + a(O)eu(k)(Z) (3.34a)

AN T M e S A 2T

! If the ARMA model is an accurate representation of the
g system, the equation error eo(k) will be quite small (ideally
zero) so that in general for the N-th order case
e. (100N 2 a(0) e ()M (3.34D)
y u
This is indicated by the dashed feedback path in Figure 3.5.
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D. ARMA MODEL SIMULATIONS; BATCH PROCESSING

ARMA modeling procedures for linear systems using both
the lattice filter method and a brute force natrix inver-
sion with equation (3.20) have been implemented and the
results of these two approaches have been compared in over
a thousand model simulations of mo:re than thirty different

linear systems. The experimental results which follow are

a representative sampling of these simulations.
In the lattice filter method, equations (2.49) were used
to calculate the forward and backward reflection coefficient

with time averages over a specified interval used

matrices,
(0) - F(O) and

to estimate the required correlations in P

8™ for 0 <n < N-1. Equations (A.15), (A.16a) and (A.16b)

were used *o obtain the two channel AR model coefficients

from the K and K matrices. and with the gain calculated

in equation (3.28), equation (3.24) was used to obtain the

desired ARMA model coefficients. Equations (A.18) were

used to update the forward and backward prediction error

covariance matrices from one lattice stage to the next.

Figure 3.6a provides a flow diagram of the procedure.
In the brute force matrix inversion method with equation

(3.20) time averaging was again employed to estimate the

required correlation coefficients. A rectangular window

was applied to the data, however, to retain the even symmetry
of the autocorrelation function in these estimates. The
ARMA model coefficients were then obtained using a general

purpose library subroutine (which employed gaussian
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Figure 3.6b provides

Rtk B o) o iz B S

‘ elimination) to solve equation (3.20).

% a flow diagram of this procedure.

In both cases zero mear, unit variance gaussian white

noise was used as the system input. In the simulation re-

sults that follow, a description of each system discussed

(transfer function coefficients, zero locations and pole

locations) is listed in tabular form and rcot locations in

the z plane as well as transfer function magnitudes are

plotted for the system, and various models obtained for it.
In each case, models were obtained for averaging intervals
of 200, 500, 1000, 2000 and 4000 data points. Only the

results for the two extremes of 200 and 4000 points are

included here.
The first system considered hasasecond order numerator

in 2z inverse and a fourth order denominator, and its char-

acteristics are listed in Table 3.1. Figure 3.7 shows a

comparison of the root locations and transfer function
magnitude of this system with those of fourth order lattice

filter and Lrute force models obtained when correlations

Figure 3.8

were estimated by averaging over 200 samples.

provides the same comparison for a longer averaging interval

s =P

of 4000 samples of data., While both methods perform com-

parably with the longer averaging interval, the lattice
method produces a far more accurate model with the short

averaging interval. It is also interesting to compare the

performance of the two methods when the system is overmodeled;

€Y
that is, when the model order is increased beyond that of

o B s i S L
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n=0

&
Store samples of system input and output

(0) 1 y=(0) v, y(k)l
e "(kl)=e (k)'[;(k)

i

t T

i =

? Estimate g(O) = _(0)

!

- Estimate é(n)

;; caleculate K1) ang K(n+l) from
‘ equations (2.49).

Calculate P(n+l) and E(n+l) from
equations T(A.18).

(optional)

i Calculate the gain for the (n+l)-st
3 order ARMA model from equation
. (3.28) : Caleulate DP*L)
and l)(n+l) from
(A.15) and (A.16)
e
Calculate Transfer
functions co=zffi-
cients & MSE for
ARMA model from
(3.2&1andl(3.27d)

Calculate g(n+l)(k)‘an§n§(n+l)(k)
sgqyences by passing e’ (k) and
e (k) sequences through the

Tn+l)~st lattice stage.

! ]

Increment n g

:

¥

Figure 3.6a. Flow diagram of batch processing ]

lattice solution for all ARMA i

- mudels orders 1 to N. ;
4> ;
i




=1

o |

Estimate Ry (0), Ruu(O)

and Ryu§0)

L

Estimate R y(n)=R y(--n)
Ruu(n)=Ruu(—n)
Ryu(n)#Ruy(n)

from windowed data.

<

Calculate n-th order ARMA
coefficients and MSE from
equations (3.20) and (3.5b)

XES 4 STOP |

Increment n

Figure 3.6b. Flow diagram of batch processing brute
force solution for all ARMA models of

order 1 to N.
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: ] TABLE 3.1

i ¢ SYSTEM A
: TRANSFER FUNCTICN COEFFICIENTS

5 NUMERATOR DENOMINATOR ;
{

A(C)= Q.25Q00 ’

Atl)s 0.35000 B{1l)= 1,14000
Al2)s  0.26500 3(2)= -1,45490

; Al2)s 0,0 B(3)= (.88490
Al4l= 0.0 Bl4)= =0.40745

EIRT ey

ROGT LOCATIONS
3 2ERAS PCLES
(o RE M RE ™
‘ﬁ : ~0.7CCQ0 €. 7000¢ 0.50000 0.50000

T T B P N TS S VP e

-0.70000 ~0.70000 0.5000¢ =~0.50000 :

€.0 0e0 0.07000 0.90000

i ’ .
= ' ¢.0 0«0 0.07099 -0.,90000 i

s g A




R, BT U IO S St

C e e e el

Wre s,

TALUREIG a0 vm chan e e el

L 20

10 L

-30

-i0

-S0

1

0

(a) | H(®) | 4 VS

20

L

n/2 n

- SYSTEM

- I TH OROER LATTICE MODEL
200 POINT RAVERARGES

0Lk

-30

-4g

-50

(b) 0

R T e

| H (@) ]y

}
n/2 "
—— SYSTEM
-~ I} TH ORDER BRUTE FORCE MOOEL
200 POINT AVERAGES

Figure 3.7

106




i S e PR e A o dsaap T n.g;ﬁg —
Pk R RTINS 7 SRR T A NN A .

A ‘S#L,.,L.mﬁvuh..ﬁmwm%uif.ﬁﬁjn".141.,.9 [Eaasminat EO8 L S

£ T St g

(c)
(d)

RE
RE

7]
ut
(& ]
o
1=
w
>
@
—
4
4
(=]
a
Q
o
o

a
w
Q
1 =
o
xr
—
=4

LATTICE MODEL
BRUTE FORCE MODEL
200 POINT AVERRGES
4 TH OROER

T NGRS T IR e . e

X
B3

107

IM
DA

6

Figure 3,7 con't

x
-
weo

B
%

& 22 52
—ha AT . amaen S e e e — e
o e A N R ST T e . 1.
e R R e L AR s Ehm s
AT e R L




3
A
5
i
i
S
;f

H
[

:

DR o o A RTRS

TR e

(a)

(r)

-20

-30

-u40

-S0

20

L LI . B
-
- -
L . ]
0 n/2 w
{Hlell VS e — SYSTEM

)]

- i} TH ORDER LATTICE MODEL
4000 POINT RVERAGES

IHle)l ;g VS e

1
w/2 n
-— SYSTEM
4000 POINT RVERRGES

Figure 3,8

108

-~ 4 TH OROER BRUTE FORCE MOOEL

|

£

= e b i S T




1

T D o s W

IM LATTICE MODEL
4000 POINT AVERAGES
4 TH ORDER

X
S
RE

[

EL POLE
EL ZERO
TEM POLE

X
o
+
o TEM ZERQ

LVaoo

()

M BRUTE FORCE MODEL
4000 POINT AVERAGES
4 TH ORDER

RE

Figure 3.8 con't

SO S e

P

(d)

109

{

(TR R

B0t o b D v i R PO

2 S ek

RIS




%

L1

the system. Figures 3.9 and 3.10 show such a comparison
when sixth order models are obtained for this fourth order
system. Ideally, the extra zeros and poles should lie at
the origin in the z plane making the additional transfer
function coefficients zero. Figure 3.9 shsws that for a

200 point averag ng interval, the lattice locates the extra
rcots in the vieiliity of the origin while the brute force
model does not. When the averaging interval is increased

to 4000 points, the extra wocts of the lattice model move

in toward the origin while those of the brute force model
Instead, a zero pcle cancellation at some arbitrary

do not.

location occurs in the brute force model. In all cases

investigated during chis effort, the lattice method clus=
tered the extra roots in the vicinity of the origin and as
the averaging interval was increased to take in more data,
these roots were consistently moved in closer to the origin.
This property is further evidenced by the plot of mean square

equation error as a function of model order shown in Figure

3.11 for a 200 point averaging interval. The MSE for the

lattice model flattens out at oirder four indicating that
further increases in model order fail to increase its

accuracy. Meanwhile the MSE for the brute force model con-

tinues to decrease beyond fourth order as it uses the addi-

tiocnal rcots to reduce modeling errors caused by innaccuracies

in the fourth order model.
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To investigate the ability of these modeling methods to

distinguish roots located near one another in the z plane,
a pair of zeros were added to the previous system in close
iy @' proximity to one of the pole pairs. The characteristics of
& i this system are listed in Table 3.2. Figures 3.12 and 3.13

show the lattice method and brute force modeling results for

200 and 4000 point averaging intervals. With data over only

200 sampling instants, neither method is able to accurately

iy
S
2
i

model the effects of the adjacent roots. When the averaging

interval is increased, the lattiée correctly models the
plant while the brute force method does not, and even results
in an unstable model. (Figure 3.13b comparing the transier
function magnitudes has been plotted in spite of the model
instability.)
To investigate the ability of these zero pole modeling
i methods to model systems that are actually all zero or all
: pole, the systems listed in Tables 3.3 and 3.4 were used.

The modeling results are shown in Figures 3.14, 3.15, 3.16

i and 3.17.

The conclusions drawn from the results of this experi-

mental study are as follows:

1) For short data lengths, the lattice filter method
provides more accurate models than does the brute
force modeling riethod.

2) When the system is overmodeled using the lattice
method, the excess robts are.clustered about the
origin in the z plane and as the ave.aging interval

is increased and more data taken in, these roots move
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3 TABLE 3.2
SYSTEM B
TRANSFER FUNCTICN COEFFICIENTS
NUMERATOR DENGMINATOR

A(C)= 1,00000
All)= 1.34000
A(2)= 1.79940
A(2)=  1,20600
Al4)= 0,.,88533

8(1)= 1.14000
B(2)= ~1.45490
8(3)= (C.88490
Bl4)s ~0.40745

ROCT LOCATIONS
PCLES
M RE Iw
0.50000 0.5000¢C

LERQS

RE
-C.7CCCO 0.7000¢C
-C.7CC0C =0.700CC 0.50000 -0.50004

0.02000 0.5500C 0.07000 C.5000¢C
CeC3CC0 =0.9500¢C 0.07000 ~0.90000
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TABLE 3.3

SYSTEM C

TRANSFER FUNCTICN COEFFICIENTS
NUMERATCR

1.€0C00

A(l)= -1.50000

A(2)s=

C.625G0

ZEROS

RE
0.75000
C.TECCC

IM

0.25000

DENCMINATAOR

8{ll=s C.C
8(2)= Q.0

ROQT LOCATIONS
FCLES

RE M
0.0 0.0

'O.ZSOQC 0.0 0.0

TRANS

NUMERATOR

A(C)=
A(ll=
A(2)=

RE
0.0
0.0

1.€0Q00
0.0
C.9

TABLE 3.4

SYSTEM D
FER FUNCTICN COEFFICIENTS
DERCMINATCOR

B(1l)= 1.50000
8(2)= -0.€2500

ROOT LOCATIONS
POLES

RE IM
0.75000 0.25000
0.7500Q0 -0.25Q00
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consistently in toward the origin. This also forces
the excess transfer function coefficients and re-
flection coefficients to be very small (ideally zero),
clearly indicating that the model order is higher
than necessary. The brute force method, on the other
hand, scatters the excess roots throughout the z

plane and produces cancellations of‘the excess zeros
and poles. This results in nonzero values for the
excess transfer function coefficients.

3) The MSE as a function of model order is generally
better behaved for the lattice method than for the
brute force method, decreasing rapidly until the
correct model order is reached and then failing to
decrease substantially as the model order is increased
further.

Two qualitative explanations for the improved performance

of the lattice filter modeling method are offered. The

first is that the data is not windowed in the lattice method
while a window that is nonzero only over the span of the
averaging interval must be used in the brute force method to
maintain even symmetry in the autocorrelation function esti-
mates. The effects of this difference between the two modeling
methods should be most noticeable for short data lengths, and
become less evident as the length of the averaging interval
is increased, The second possible cause for the lattice
method's better performance is that the actual output se-
quences of the n-th order lattice are used to calculate the

coefficients at the (n+l)-st order stage. In this manner,

e 2 bl

AT sl b I




;!; modeling errors that have occurred in the n~th order lattice

A T e P— L s

can be compensated for to some extent in the (n+l)=-st order
stage. No similar phenomenon is evident in the brute force

modeling approach. Consider the differences between the

e TR
e

Levinson algorithm (which is equivalent to the matrix inver-
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sion method) of equations (A.16) and the lattice method given

by equations (2.49). Both methods calculate the corrections

i T T R b e

that must be made to the n-th order model to obtain the

(n+l)-st order model in terms of §(n+l) g(n+l)

and and

{ theoretically,

,"‘ T -
| ce™ 0 T DTy = 50T - p T W

A When correlations are estimated by averaging over finite

intervals however this equality will not in general be
satisfied making the two methods different. The Levinson

algorithm will estimate the correction terms to be added to

the optimum n-th order model while the lattice method esti-

mates the correction terms to be added to the estimated n«th

order model actually obtained. :

The improved performance of the lattice method is not

3 e g ey = oot s AR

achieved without cost, however. The method is made compu-
§ tationally expensive by the need to store the system input
and output sequences and the lattice prediction error se-

(
-g‘ { quences and pass them through :uccessive stages of the

: : o lattice as it is built up in order. The computational com-
i v plexity of the two methods is cc:pared in Table 3,5.
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LY g Table 3.,5. Computational requirements for batch
i processing ARMA modeling of an N~th
i order system using P samples of the
: £ system input and output.
9 g
i %
bt
2 i
il ¢
2
g Number of
& 3 Correlation UN+3 averaged over UN+3
i Estimates P data points
ni Required .
)
i
ﬁ! Matrix 1l - dimension 2N+l 2N-dimension 2
g Inversions l-dimension 1
. : Data Storage
. : Requirements N.A. 2P samples
Computations
To Pass Data N.A 8NP multiplica- :
Through The T tions )
Filter 4UNP additions ]
!
|
{ P
' |
. 1
i
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E. ADAPTIVE LATTICE ARMA MODELING
In addition to the batch processing method described in

the previous section, the lattice ARMA analysis model can be

implemented adaptively as well. The adaptive lattice solu-

tion for the multichannel AR lattice, which solves most of

the ARMA modeling problem, has already been described in

chapter II. To make the lattice ARMA model adaptive, only

an adaptive solution for the gain term a(0) need be added.
To avoid ambiguity, the time varying adaptive estimate of
this term at time k is denoted by ao(k). Applying an LMS

adaptive algorithm it follows that

ao(k+l) = ao(k)l- Mg V(k) (3.35)
and using equation (3.27d) to form an instantaneous .stimate
of the gradient yields

G(k) z «2 eu(k)[ey(k)-ao(k)eu(k)] (3.36)

= -2 e (k) eo(k)
so that
(3.37)

ao(k+l) = ao(k) + 2u0 eu(k) eo(k)
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is clear that
1) eo(k) is analagous to the error signal.
2) eu(k) is analagous to the input signal.

3) e (k) is analagous to the desired signal.

so that for stability Mg must satisfy

1
0 <py ¢ ———p— (3.38)
° le ()%}

g

Once again, however, the mean square value of eu(k) may vary
from stage to stage and over time as the two channel AR
lattice adapts making it appropriate to apply relations

similar to equations (2.58) and (2.59)

- Q
Ko (k) = EETET ‘ (3.39a)

gy (k) = (1=a) gy (k=1) + a e (K)* (3.39D)

where o is the normalized adaptive step size and the depen-
dence on order is implicit (a superscript (n) could be used
on a,, co; ¥, and all the er» .r terms in equations (3.35)

through (3.39) to explicitly denote their dependence on the

order of the solution).
This adaptive lattice ARMA modeling scheme was implemen=
ted and the results of its use in modeling system A described

in Table 3.1 are presented here. A normalized adaptive step

size of o = .05 was used in the following simulations and
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the results represent an ensemble average of one hundred

trials. Unity variance white noise was used as the system

input. A flow diagram of the procedure is shown in Figure
3.18.

Figure 3,19 shows a plot of the mean square equation
error as a function of time for a fourth order model while
it adapts and Figure 3,20 shows the behavior of one term in

n)

the K matrix, kig), and one term in the K matrix, Eil’ at

the first five lattice stages, 1 <n < 5. These graphs of
the kll terms clearly show the successive stage by stage
manner in which the lattice model adapts. Figure 3.21 shows
a comparison of the transfer function magnitude and root
locations of the system with those of the fourth order
adaptive model after 1000 and 2000 iterations. Figure 3.22
shows the same comparison in the overnodeled case when a
sixth order model is obtained for this fourth order system.
While tl.ese results show that tne adaptive solution
performs well and is a viable alternative to the batch pro-
cessing solution, Figures 3.22¢ and 3.22d show that one
advantageous characteristic of the batch solution has not
carried over. The excess roots in the overmodeled case are
not tightly clustered in the vicinity of the origin indi-
caling that the excess transfer function coefficients are not

near zero, In examining Figure 3.20 it is also evident that

the convergence of the reflection coefficients at che

overmodeled lattice stage (kii) and Eii)) towards their true

value of zero is quite slow. This relatively slow tracking




o

FE T AR et s

Initialize the parameter
and step size normalizing

factors
L

Sample system input

and output

.

Find current value of g(n)(n)
and E(n)(k) for 0 < n <N

I

A

Update the step size
normalizing factors
using equations (2.59)

Je

and (2.58) for 1 <n <N

Update the K™ and ‘™
estimates using equations
(2.55)

i ma——.

|

Update aén) using equations
d (

(3.37) a 3.3%9a) for n
equal to the desired order
ARMA solution

L

e A e ot st i, e SRS T

If desired, calculate ARMA
coefficients from K, K and a
estimates using equations
(A.15), (A.16) and (3.24).

0

Figure 3,18,

137

Flow diagram of adaptive lattice ARMA
solution.




R i R ———

ey,

TR

TR T

AT P

T ST g g

b

U-TH ORDER MSE

g.10

0.08

0.08

0.04

0.00

B N
PN

| N |

g. 500. 1000. 1500. 20C0. 2500. 3000.

TIME

Figure 3.19

Mean square value of equation error for the
fourth order adaptive lattice model as a

function of time.

e A N o Wl R I e R R R RV N S et .

T

i

M PR i

LB T s e s g




#1ies o RN

SNt

g
S i
Sy

Ehron o

L R R

i
It
&y
7
}

LE

-r

- ¥

12

ORDERS 1 T0 O

K(i,1);

1.0

0.5

"1-0

R
PJ)LlJIJlll"llJJllllllllLLlllJ
Q. 500.  1000. 1500. 2000. 2500. 3000.
TIME

Figure 3.20a
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a function of time.
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stages of the adaptive lattice model as
a function of time.
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of overmodeled, zero valued parameters has been found to be
a general characteristic of the adaptive lattice algorithm
and has also been noted briefly by Morf. [Ref. 38]

To understand the reason for this behavior, consider
what occurs as the overmodeled fifth stage in the previous
example adapts. Initially, before the coefficients of the

first four lattice stages converge to their optimum values,

the prediction error sequences out of the fourth stage are

large and suboptimum. These signals provide incorrect in-

puts to the fifth stage driving its parameter estimates to
some values other than their optimum zero values. As the

first four stages converge, the prediction error sequences
going into the fifth stage get small and since they drive

the gradient estimates,‘convergence back toward zero is

Quite slow in these parameter estimates.

The cost functions being minimized at the overmodeled

fifth stage are the trace of 2(5) and E(S) given by

T T T
(5) . p(8) _ f(8) ((8) 4 (8)74 (07 | (8)7p(4), (5)

iro

(3.40a)

T T T
BC5) o g | GO0TR(S) | (8T, (8, g(5) T (HIE(s)
(3.40D)

Applying the results of Appendix F, the parabolic surfaces

defined by these cost functions are described by the eigen-

values and eigenvectors of 2(4) and E(u>, the prediction error

covariance matrices at the fourth stage. Consider the forward
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praedictions. The actual system output is given by

Y Y
y(k) = 3 bCi) y(k-i) + 2, ali) u(k-i) (3,41)
L=1 iz0

and for a white input signal, the minimum errors in the

fourth order two channel autoregressive predictiuns of y and

u are

eé“) (k) = a(0) u(k) (3.42a)
e o = uto (3.42b)
) This results in an optimal prediction error covariance matrix
given by
- ) -
a(0) a(o0)
(4) _
P = Ruu(O) (3.43)
a(0) 1
with eigenvalues of 0 and l+a(0)2. Also in the case of the
system described by Table 3.1 where a(3) = a(4) = 0, it is
seen from equation (3.41) that a perfect backward two channel
AR prediction of ¥(k-4) is possible resulting in an optimal
backward prediction error covariance matrix of
.~ 0
T (%) - ' (3.44)
0 el (o)
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which also has a zero eigenvalue.

Since the ellipses obtained by passing a plane through
the parabolic cost surface have axes whose half lengths given
by 1//x; and since g(“) and E(u) each have one eigenvalue of

zero, it is seen that the parabolic bowls along which 5(5)

and 3(5) adapt, degenerate toward infinitely long parabolic
troughs as the first four stages converge toward their opti-
mum values. This is responsible for the slow convergence of
the overmodeled parameters back toward zero. To avoid this
problem, some means of detecting this degeneration of the
cost surface and then reseting the appropriate parameters

to zero must be found and this certainly provides an inter-

esting area for future study.

F. A LATTICE APPROACH FOR MULTICHANNEL ARMA MODELING

The lattice filter solution methods for the ARMA model
can readily be generalized to multiple input multiple output
ARMA models for linear systems. The equations for the
multichannel ARMA model of the system shown in Figure 3.21
are developed in Appendix‘G with the solution for the model
coefficients given by equation (G.7) repeated here for

convenience.

E R, . [3B] (R |
=YY —_Y+U+ - -*Yy
s (3,45)
+

R R A R

2ty gty A “uty

e _l ‘e - b =
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Figure 3.21.

A general multichannel ARMA system

This is clearly a generalization of the single channel ARMA

equation error solution given by equation (3,20) and just

as in the single channel case some assumptions are required

to apply '‘a Levinson type algorithm.

If it is assumed that all the a;

j(o) are known or can

be estimated in another manner, they can be incorporated

into a matrix given by

~ -
all(O) PN a1Q (0)
0
éo =
aQil(O).... aQiQo(O)
- -
and equation (3.45) becomes
RByy Byu| | B Ryg  Ryy 1
Ry By A Ry  Rua -4

(3.486)

(3.47)
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1;}1 This is similar in form to the equations for the solution of

a.Qi + Qo)channel autoregression with input channels yl(k),

i ees g (k), ul(k), seey U (k) so that the multichannel

5 0 0

g ARMA solution is related to the multichannel AR solution by
&

£
[Los]
]

(3.u48)

N G
[}

o TR £ T 20T

=0 ]

T Y v ey

The multichannel AR prediction error vector is given by

P e A .
T R R Y T I T T S S e

i<
—~
~
~
o
<
~
~
~r

g : g(k)T 2 |emwan - [:_r_T E QT] D = |----- (3.49)

and defining

fH

(3.50)
-A

it follows that

oo

(3.51)

]
~
i<
x
cC

ety =y - utaTa,

1>

|13

T
eq(k)
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£ establishing the generalization of equation 3.27c relating

the multichannel AR prediction error vector to the multi-
channel ARMA er-or vector e, (k). The ARMA prediction error

covariance then is given by

completing the multichannel generalization of the single

Po=¥ By (3.52)
1 and the coefficient matrix A, can be set to minimize the
;; trace of 20 resulting in a solution given by
?f A, = efe (k) e (k)T‘-l fe (X) e (k)T1} (3.53)
4 =0 =u =u g €%y =y ‘
L

channel results. The portion of the solution given by the
multichannel autoregression can be solved as before using

the lattice methods in either batch or adaptive fashion.

Then the matrix of gains can be obtained from equation (3.53)

by batch processing or equations (3.37) and (3.39) can be :

generalized to yield an adaptive solution given by

- o s \T
Ao(k"‘l) = _A_O(k) + 2 -7—(;7 _e_u(k) _e_okk) (3.54a)
where
g2(k) = (1-0) 02(k-1) + o e (K)T e (k) (3,54D) ]
'0 0 L s &, R
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It is clear *that the equations and methods develcoped earlier
for the single channel ARMA model are a special case of

these results with Q; = Qp = 1.
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a %' IV. NONLINEAR SYSTEM MODELING

The modeling of nonlinear systems is a far more complex
problem than linear systems modeling. No attempt is made
% g here to provide a comprehensive treatment of the problem.
? é Rather, two specific models for systems comprised of the
?3 ; interconnection of linear and memoryless nonlinear subsys-
tems are considered. Both of these models, the Volterra
i ; model and the new nonlinear ARMA model, are shown to be
- generalizations of the MA and ARMA modeling problems explored
previously so that with appropriate modifications, the
Levinson algorithm and lattice methods can be used to solve

for the model parameters.

A. VOLTERRA NONLINEAR MODELING

The Volterra series model characterizes nonlinear sys-
tems using a generalization of convolution where the system

output is approximated as a summation (possibly infinite)

of outputs of degree m systems.

~ M
yk) = 3 ym(k) (4.1a)

mzl

This is shown pictorially in Figure 4.1,

L e s v i




At

i

e

ym(k>
M-th degree

system
°
u(k) ° + :
‘ * ° y(k)
+
°
l-st degree
eyl System
yl(k)

Figure 4.1. The Volterra model for nonlinear systems

A number of representations for these m-th degree systems
are possible. The most commonly used representation is in

terms of symmetric Volterra kernels and is given by

yplk) = 2 ... X a lng..o.ndulk-n;)..ouCk-n ) (4.1b)
n,=0 n;=0

and as(nl...nm) is the m-th degree symmetric Volterra kernel.
(Any permutation of the indicies results in the same value
for this kernel giving a high degree of symmetry.)

This model arises quite naturally for a linear system in
cascade with a power series nonlinearity as shown in Figure

4.2 for a quadratic nonlinearity where the output can be

)

written as

1563
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2: 2: a(nl)a(nz)u(k-nl)u(k-nz) (4.2a)

nl=0 n2=0

y(k)

and

as(nlnz) = a(nl)a(nz) (4.2Db)

- x{k)
u(k) '-.-ﬂx(k)= £ a(n)ulk=n) "_.ﬂ < L ) —® yx)

n=0

Figure 4.2. A quadratic nonlinear system.

The Vol*terra series model in this form has been widely dis-

cussed in the literature [eg. Ref. 1, 6, 13, 14, 25, 26, 48
and 54] since Wiener [Ref. 62] first applied it to systems

analysis and modeling. It has the added benefit of treating

linear systems as a special case of the model since the

first degree kernel is exactly the convolutional represen-

tation of the MA model.
The number of kernels (M) required for an accurate model

depends on the nature of the nonlinearity in the system and as

long as the nonlinearity is soft, a relatively low degree
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model will suffice, keeping the problem manageable in that
regard. The primary difficulty associated with Volterra
nonlinear modeling arises from the fact that it uses a
nonrecursive MA representation for the linear portion of
the system, requiring in general, an infinite memory as
indicated by the upper limits on the summations in equation
(4.1b). In practice, these summations need to be truncated
as shown in equation (4.3)

ym(k) z as(nl...nm)u(k-nl)...u(k-nm) (4.3)

>
0 n'f

“ul=

n 0

but a large number of terms may still be required to
accurately model the system. One method of solving for the
model is to set the pamameters (terms of the Volterra kernels)
to obtain a minimum mean square equation error where the
equation error is defined as the difference between the sys-
tem output and ;(k).

To simplify the solution and reduce the number of para-
meters that must be obtained, the sypmetry of the kernels can

be exploited by rewriting equation (4,1lb) as

ym(k) = 2;0 .}; o 2; at(nl..upm)u(k-nl)...u(k-nm)
N =0 na®ny  Np®Np.g

(4.4)

where at(nl...nm) is the m-th degree triangular Volterra
kernel. For a finite upper limit of N on the summations

the m-th degree symmetric kernel will contain (N+1)™ terms
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but only ﬁ%%&%% of them are distinct with the remainder de-
termined by symmetry considerations.
Still another representation for ym(k) uses the regular
; form of the Volterra kernel (this terminology has recently
% been introduced by Mitzel, Clancy and Rugh [Refs. 7 and 351).

1 It is given by

ok ACSIEEP VI »

e h; =0 n-0

ar(hl...hm)u(k-hl)u(k-hl-hz)

i oo ulkehy=0..oh ) (4.5)
where ar(hl“'hm) is the m-th degree regular Volterra kernel.
f} ; . With infinite upper limits on the summations, the symmetric,
‘ triangular and regular forms of the Volterra kernels are
equivalent, however, when finite upper limits are used they
cover the field of the model kernels in different ways.
Because of its symmetry, it is reasonable to have equal

upper limits on all the summations on the symmetric kernel

as was done in equation (4.3). This is shown in Figure 4.3a

, for a second degree kernel. The equivalent triangular kernel i

is given by 3

N N )
Y lk) = Y, o0 Y ay(nq.oon dulk=ny),.oulkan ) (4,6a) i
o R s O |

S e

and it covers the region shown in Figure 4.3b for a second

» [J ‘d
degree case. The corresponding regular form expansion, however, ]
3
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ar

. requires variable upper limits on the summations to cover
b

the equivalent kernel space as shown in equation (4.6b), and

Figure 4,3c for a second degree kernel.

N N-h, N-ho o
l- 2- n-
s|!u(k-hl--oc-hm) (u-ab)

Thus it is seen that only half the field needs to be covered
by the triangular and regular expansions to identify the
kernel associated with the square field of the regular ex-
pansicn. When the regular form expansion is used with con-
stant finite upper limits there is no inherent reason to
make all the upper limits equal since there is no symmetry

in the kernel. Considering the regular expansion

N N

m
_’m(k) = i- «s -2- ar(hlcoohm)u(k-hl)ooo (u(k"hl-‘-co-hm)
hl-O hm-O

(4.7a)
a trianzular expansion given by
N, » +N h
yz(k) = 2 t ’tl at(nl...nm)u(k-nl)...u(k-nm)
130 Rp®ny Mpshp g
(4,7b)

is required to cover the corresponding field, For a quadratic
expansion this is shown in Figures 4.4c and 4.4b, The equi-

valent region in the symmetric field is shown in Figure U4.2a.
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Therefore, identifying a rectangular kernel in the regular
kernel snace is equivalent to obtaining a symmetric kernel
in the arrow shaped region of Figure Uu.4a,

Which type of expansion is more appropriate for a given
system depends on the shape of the kernels for that system.
For example, if a quadratic nonlinear system has a kernel
with a relatively square shape in the symmetric kernel
space, a regular form expansion with constant upper summa-
tion limits will have to estimate many zero valued terms
and is inefficient. On the other hand if the system has a
kernel similar to the arrow shaped region of Figure 4.l4a
in the symmetric space, a regular expansion will be efficient
while a symmetric expansion over a larger field would be
required with many zero valued parameters. Not enough is
known about how to relate types of nonlinear systems with
various shaped kernels however, and the question of kernel
shape and the best type of expansion is not pursued further
here.

1. Lattice Filter Methods For Volterra Modeling

Lattice filter methods derived earlier can be applied
to obtain a minimum mean square equation error solution for
the Volterra model if the regular form of the expansion is
used. The Volterra model can be put in the form of a mul-
tiple input single output MA model by defining a new family
of signals as nonlinear combinations of delayed values of

the system input u(k).
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uhz PR ohm(k)=u(k) u(k“hz) u(k~h2-h3) e ou<k-h2‘-o . o-hm)

(4.8)

For finite summations the regular form of the expansion

becomes

(k) N%? a2 | T ( ) (
y k s ¢ e a h---h u e o o k-h)
m ot ‘ ~ r 1l m°~h h 1
hm-o h2-0 hl~0 2 m
(4.9)

and can be regarded as the sum of the outputs of a large

(k).

number of linear filters whose inputs are given by Up **'p
2 m

Equation (4.9) is exactly the form of a Qi input, single

output MA model where

Qq = (N ,*L1)(N_#1). .. (N +1) (4.10)

Furthermore, if the same upper limit on the summations over

h1 is used in each of the various m-th degree systems,

(N11=N21=...=le), the overall Volterra model given by
equations (4.la) and (4.9) is in a form suitable for solu=-
tion via the multichannel Levinson algorithm or the multi-

The requirement to use the same

P i s e i e ot " i il
AT R A o BBt e omia I i i

channel MA lattice methods.

upper limit on all summations over hl arises because the

Levinson algorithm and lattice methods assume the same amount

of memory in each channel of the model.

e A i e

As a gpecific example consider a second degree ex-

pansion where N11=N21=Nl and N21=N2.

L Wanide e L ety s
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)N D ar(hlhz)uhz(k-hl)

% hl=0 h2=0 hl=0
; (4.11a)
0oL up (k) = ulk)ulk=h,) (4.11b)
b 8 2
i
Bk
?} § Defining data and coefficient vectors for each channel given
& by
b
@ + . T
v Ll (k) - [u (k)--.u (k"N )] ('4-123.)
54 =h, h, h, 1
2
% : = [a_(0,h,) Ny, BT (4.12b)
’ ) Ehz - a.r 1] 2 L) o.ar l’ 2 .
o k|
- ;
; 1
: and embedding them into single data and coefficient vectors ‘
written as %
T
{ :
X*ao = twraoT! oot b st e
M - - | [ Ny
o r
a8 ;
' T\ T ) ‘ T T
., ; + - + + +
fl the equation for the Volterra model output becomes
| yk) = X'ooT gt (4.12e)
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which is clearly of the same form as equation (A.24a) and
represents 2 N2+2 input, single output MA model. All the
nonlinearities in the Volterra model are external to this

1 MA model, in the formation of its various input signals from
: the system input u(k). This model is illustrated in Figure
4.5,

“ It is interesting to consider what the recursive in

P % order nature of the Levinson algorithm or lattice methods
mean to the nonlinear Volterra problem. In building up the
MA model solution recursively in order, the upper limit cf
the summations over hl is increased until the desired value
is reached. In terms of the Vblterra model kernels, this
means allowing each of the regular form kernels to grow in
vize in the hl dimension while holding their boundaries fixed
at prespecified values in all the other dimensions. In the
linear MA model, the kernel has only one dimension and there-
fore the recursive in order solution eliirinates any require-

ment to prespecify its upper limit (the order of the model).

For the higher degree nonlinear kernels, these methods reduce
by one the number of kernel boundaries that must be pre-
specified for each kernel. Allowing the kernel to grow in
any of the other M-l dimensions (h2 through hm) corresponds
to adding additional channels to an existing lattice and

simple methods of accomplishing this are not available.
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(k)

u(k) vy (k)
. 1 $la+ 1

A second degree nonlinear Volterra
model, in multichannel MA form.

The ap, represents are coeffi-
cients-of the single input single
output MA models shown.

Figure 4,5.
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3. NONLINEAR ARMA MODELING

As was previously mentioned, the primary difficulty
associated with the Volterra series model arises from the
fact that it is a nonlinear generalization of the MA model
and as such, a large number of terwus may be required to
accurately represent even a mildly nonlinear system. In
linear system modeling this difficulty was remedied by
using the more general ARMA model. It is reasonable to
assume therefore that a nonlinear generalization of the
ARMA model could remedy the problem in the nonlinear
modeling case (for at least certain types of nonlinear
systems). Such a generalization called the nonlinear ARMA
model has recently been proposed. [Ref. 64] This model

forms an estimate of the current value of the system output

as follows:

~ ®
y(k) = 2: a (nl)u(k-nl) + 2: Z a (nlnz)u(k-nl)u(k-nz)
nl=0 s nl=0 n2=0 s

(- -] €N
...+ 2;... 2; as(nl..np)u(k-nl)...u(k-np)
1° np'

n, =0 0
L » L
+ Z_ by(m)y(k-m)+ I ZE b (m m,)yCk=m )y (k-m,)
=1 ml-lmz-l
oo -]
+ + 2;.. 2; bs(ml...mq)y(k-ml)...y(k-mq)
ml-lmq-l
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- -] (- -]
+ Z:O 2:'1 ClnymyJulk=-ny)y(k-m;)+.. .+nz-0“r.xz-:0”r.nz=l. -
R R

e O C(nl...npml...mq)u(k-nl)...u(k-np)y(k-mj)

e ~M 4.13
y(k q) (4.13)

The first three terms of equation (4.13) are a discrete
Volterra expansion of the input signal u(k) and represent
Flo[u(k)] in terms of the discussion of Chapter I. The
second three terms are a discrete Voltérra expansion on the
system output delayed one sample interval and represent
FZOEy(k—l)]. The final two terms are bivariate expansions
of the system input and delayed output and represent
Fao[u(k), y(k=-1)]). (This is the first and only model con-
sidered where F, [(+] is not assumed to be zero.) Equation
(4.12) is clearly a nonlinear extension of the linear ARMA
model contained in the first and fourth terms. As was the
case in the Volterra model, the number of multiple summations
required in (4.13) is dependent upon the nature of the non-
linearity in the system being modeled. The upper limits on
the summations in (4.13) have been written as infinity in-
dicating a requirement for infinite memory or model order.
As is discussed subsequently, however, the required model
order (memory) may in fact be finite due to the nature of

the system being modeled, thereby alleviating the difficulty

encountered in the Volterra nonlinear model previously presented.
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The kernels of the input expansion and output expansion

as(') and bs(’) are symmetric since any permutation of the

indicies results in the same value for the kernel. They

have therefore been labeled with a subscript "s" and can

also be written in triangular and regular form.

2:...2: as(nl...np)u(k—nl)...u(k-np)

nl=0 np=0

[+ ]

2 a (n e o1 )U(k-n )ooou(k-n )
2 - o t 1 P 1l P-
nl 0 nz-nL np-np_l

M
Ms

ar(hl...hp)u(k-hl)u(k-hl-h2)...

™Ms
.M

...u(k-hl-...hp) (4.14)
miz:l m}zl bg(my . m)ylic=my)...yCk-m )
1 q
= 9 Y ... ¥ b.(m...m ylk-l-m;)..(k=1-m )
~ - K t 1 q 1 q
ml-O m,=my mq-mq_l

o« - -]
z 2; E_ br(hl...hq)y(k—l-hl)y(k—-l-hl-hz)
1° qQ

(4.15)
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In writing the triangular and regular forms in equation (%.15)

the lower index on the summations has been shifted to zero.
In the case of the bivariate expansion terms in equation

(4.13) the kernels do not possess symmetry so tha*t trian-

gular expansions are not possible but regular form expansions

are possible.

C(nl...npml...mq)u(k-nl)

...u(k-np),y(k-ml)...y(k-mq)l

o

m .
= hzzo s e h 2=0 crl(hl..‘hp*q)u(k-hl)...u(k-hl-...-hp)
L P*q
y(k-l-hl-..‘-hp*l)...y(k-lmhl-‘..-hp+q)
o - -]
- hz:o .« e ® h zzo crz(hlo-chp+q)y(k"l-hl)oooy(k“l"hl-oo --hq)
1 P*a

u(k"hl-o . Q-hq+l) Y -U(k-hl-. . o‘hp+q)

(4.16)

Thus two regular forms are possible for the bivariate expan-

sions. Figures 4.6 and 4.7 illustrate the manner in which

the regular form of the bivariate expansion covers *he field

168

N . . : _
R T i

ERTT—




ajer.aeATq

Jo waog aeynday (q)

*OM] 233udap jo uojsuedxa ajeraeatrq
aYl jo waoj teutrdrao ayl uy piaty

JeTn3uploaa © J0J S3TqPTJIPA Jo aBuey °g°'h oandry

uotrsuedxy 4
uotysuedxy

3jeraeAlg jo waog (rPuiBiag (P)

L s e et —————

163

o U

oSkt e




T T D T ey gt e e o v

IR TR e e, o

Erres

N om31 99a89p JO uorsuevdxs IJPTIABRAT(Q
] 2yl JO uJuojy Jerndoaa oyl ur pIITI
aegnfuejood e JGJ SaTqelaea jJo dduey “L°h aan3t1j .

:owm:waxm
aletararg Jo waoj Jern3dayg (q) uotrsuedxy 93eTJRATd JO wWaoj Teutrdtay (e) .

AT«as <y




AT ms o

of model kernels for a second degree case for finite upper
linits of N, and N2 on the summations. It is interesting

to note that because of a lack of symmetry in the original
form of the bivariate expansion, the causal region in the

regular form extends outside the quarter plane.

As was the case with the Volterra model, it will be
shown that in regular form, a minimum mean square equation
error solution can be obtained for the nonlinear ARMA model
coefficients using either the Levinson algorithm or the
lattice methods. This will provide the nonlinear generali-
zation of the results presented in Chapter III on linear
ARMA modeling. Before developing this method of solution,
however, the applicability of the nonlinear ARMA model to
various types of systems and its memory requirements will
be considered.

1. Identifiability Conditions and Memory Requirements

In the previous chapter on linear ARMA modeling it
was stated that there were two facets to the question of
model identifiability; input signal requirements and mea-
surement requirements. The question of measurement re-
quirements was not discussed, however, since it was assumed
that all signals (input and output) were observed. In the
study of systems comprised of interconnected linear and
nonlinear subsystems, however, various internal signals exist
and the effect of either obserying or not observing them on
the modeling process must be explored. To do so, it will

be assumed that the system under study can be put into the

form of Figure 4.8 fulfilling the following equations.
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% (k)

Eu(k)

zN(k)

yL(k)

where
EL(k)
a
§N(k)
a

ZL(k)

a

xN(k)

= [, gylk) + G ulk) (4.17a)
= L, g (k) + Coulk) (4.17b)
= F [§n(k)] (4.17¢)
=T [§L(x)] (4.17d)
z [x,,(k) X (k)]T (4.18a)
Ll LN I Lp L]
vector of inputs to P linear sul.ystems;
2 [xy, (k) X () 1T (4.18b)
le a & & NQ L)
vector of inputs to Q nonlinear memoryless subsystems;

- T
vector of outputs from P linear subsystems;

s [le(k) “es yNQ(k)] (4.184)

a vector of outputs from Q nonlinear memoryless
subsystenms.
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Figure 4.8. A General Nonlinear System
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The z - transforms of these signals are also defined as

KL(z), EN(z), !L(z), XN(z). £l’ 22’ gl and g2 are matrices

whose elements are either 0, -1 or +1 indicating the
interconnections of the various subsystems. T(.] and F(.]
are diagonal matrices specifing the linear and nonlinear

subsystems as follows.

E’ " !L(Z) = T(2) _)_(_L(z) (4.19a)

{
%‘
: where A (2) -
S TZFETZT o
T(z) = [T;,(2)] = (4.19b) .
0 i#j ;
- -n !
Ai(z) z gg% ai(n) 2z | (4.19¢) &
|
N 0 |
B,(2) = 2 b;(n) z (4.19d) |
n=1
(k) = Flx ()1 = [F,[.] 0 | [xe (o]
= Flx = WL
In “LEy 1 - xN:!
- :
. xN'(k)
. 2
0 FQ[.] xNQ(k)
s Fllle(k)]
. (4.20)
FQ[xNQ(k)]
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This overall system given by Figure 4.8 is adequate to re-
present a broad class of systems comprised of intercon-
nections of linear and nonlinear subsystems including
cascades, parallel connections and feedback systems.
Equations (4.19) and (4.20) assume all the subsystems
are single input single outpﬁt noninteracting systems. If
desired, the collection of linear subsystems given by
T(2) can readily be put into the general multichannel ARMA
form of Section III.F to allow each output to be a function
of past values of all outputs, and past and present values
of all inputs.

Alternate representations of these linear and non-

linear subsystems are also useful. Equations (4.19) are

equivalent to

Y, (2) = [A;(2)]X (2) + [B;(2)]Y, (2) (4.21a)

or in the time domain

¥y (k) = La (k) 1*x, (k) + [b;(k)I*y, (k) (4.21b)

Here * represents convolution and is carried out in the
same sense as matrix multiplication and the matrices.
(ai(k)], (b, (17, [Ai(z)] and [Bi(z)] are diagonal matrices

whose i-th entries are the time domain functions ai(k) or

bi(k) or the polynomials Ai(z) or Bi(z). The time domain

functions ai(k) and bi(k) are the inverse transforms of the

polynomials Ai(z) and Bi(z). This can also be represented
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. in nonrecursive form as
‘L L W
B
T (k) = [h,(k)]1*x, (x) (4.22a)
i where [hi(k)] is a diagonal matrix of impulse responses
o
L defined by
& .
S
é : ko
g hy(k) = ¥  h;(n) 6 (k-n) (4.22b)
bl 1 - bR
L“ n'o y
;| 3
fi ,s
F1 The nonlinear systems can also be represented in terms of
o ' .
}i : inverse functions assuming they exist over the necessary
f
£ ranges of the variables so that
HJ . A
3 . | -1 T - ]
f[ | Pl o Yy 00 |
1 “lro ¢ ' : J
? : xy(k) = E ﬁzN(k)] = 5 ‘F"1E°] g () ﬁ
- _1 -
F] [le(k)]
SR = : (4.23)
Folly,a (k)]
1 ) B |
4] So that equations (4.17) are iterative it is ;
E: necessary that no delay free loops exist in the system of §
‘ Figure 4.8. A negessapy apdesuffinsiitosdiian dbie thaew om. .
4 b
: absence of delay free loops is developed in Appendix H and 1
i
requires that the terms of the determinant of the matrix :
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and all its principal minors must be zero.

The various signal vectors and equations (4.17) can

now be partiticned as

e — p—e T s = p— -
2N ha Dpl (W) Sa
: , uk) (4.25a)
’i'f.‘k)J Pic  Lia| (W) S
= - - s — s -
e \ — e ann - . — e -
Xy () Doa  Lop| (2L C2a
¥tk e Lpaf i@ S21
vt e - e - S
] TR BT [eyGe]
- (4.25¢)
FALSC] I IS5 B % | B [*100)
FZALT2 I A O B U B F R0 )
= (4.25d)
0] IR SS I S| I (0]

b

Equation (4.25¢c) can also be written in terms of inverse
functions as in equation (4.23), and (4.25d) can be written
using either recursive or nonrecursive representations of
the linear systems as was done in (4,21) and (4.,22). The
single primed signal vectors in equations (4.25) represent
those signals which are observed and the double primed signals

are those which are not. It is assumed that all input signals
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in u(k) are observed, It is possible to rewrite equations

? (4.25) as a single composite matrix equation as done in
(4.263). As writien, equation &.26® is an infinite memory or
% ' model order representation because of th: presence of the

h(k)* operators but a finite memory version can be written

o \
' by expressing rows 4 and 8 as

3 y (k> = a ()*x] (k) + b U *yl(k) + a (k) *x/ (k)

+ b, ()Yl (k) (4.25b)

a (k) *x! (k) + b (K)yf (k) + ay(k)I#x! (k)

¥, (k)

+ gé(k)*zﬂ(k) (4.26¢)

The third and seventh rows can also be written in terms of

inv~rse functions if desired as

-1 -1
k(0 = oyt + eptiynaod (4.26d)
- -1
() = ESMyy (0] + Extlynoo] (4.26e)

R T A R JP SRRt Bkt i, i i

Now the problem of writing a system of iterative equations
for the observed signals in terms of only observed signals

consists of rewriting equation (4.268) so tha*t the upper :

right ¢ LUy 5 partizion is a null matrix. If -his can be )

2o, the general fo-m 0f the nonlinear ARMA model can Se
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used to identify the composite effects of the operators

appearing in the upper left 5 by 5 partition. In some cases

this will only be possible of the infinite memory version of

the model (with h(k)* operators) is used and in other cases

a finite memory model will suffice,
The process of determining whether infinite or finite

memory nonlinear ARMA models can be used to identify a given

system is illustrated for two examples in Appendix I. First

a system consisting of a cascade of linear and nonlinear

systems is consider~d. Then a model of the tracking behavior

of a phase kcked loop is put in the form of a nonlinear ARMA

representation.

2. Lattice Filter Methods for the Nonlinear ARMA Model

As was the case with Volterra modeling, lattice

filter methods can be applied to the nonlinear ARMA modeling

problem if the regular form of the kernels is used. A

family of signals is defined as nonlinear combinations of

delayed values of y(k) and u(k) as follows.

uh2"‘hm(k) = u(k) u(k-hz)u(k—hz-h3)...u(k-hz-...-hm)
(4.27a)
y (k) = y(k-1)y(k-1l=h,)y(k-1l=h,~-h,)
) (4.27b)
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u y (k) = u(k) ulk=h,)...uCk=h,=...=h_)
hpeeehy Thopy b 2 2 p

y(k-l‘hz"o . .-hp"'l)

...y(k-l-hl-'..-hp"'q) ('4.27(2)

or alternately

Yhpeoohg "hoygeeihg,, = y(k=1)yCk=1hy) . oy Ck=l=hy=. . =h )

u(k"hz"o . .-hq"'l) " .U(k-hz-. . --hq+p)
(4.274)

With finite summations, the regular form of equation (4.1l4)

becomes

N
b,yp P
h

=0 h,=0 h

o
N

(4.28a)

Equation (4,19 becomes

M M M

¥

q 0 h2=0 h, =20

1
b
ig b.(hy...h) yhz_..hq(k-hl)

h
(4.28D)
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<«» and equations (4.16) become

: LP"'q yP*q LP"'Q:Z LP"E:l

§; . hp+q'0 h,=0 h,=

;9 y (k-h.) (4.28¢)

s Pp+1tPpig '

o or

E!

L.

‘o

Lq+p,q+p Lq+p,2 Lq*‘p,l

¢ & 0 2 2 crz(hl.llhq+p) yhz...hq

u (k=h,) (4.284)
hq+l"'hq+p 1

These terms can be viewed as the summation of the outputs

of a large number of linear filters whose inputs are the

signals defined in equations (4.27). In the context of

multichannel filtering, each cf these [{1ilters can be con-
sidered as a single channel and each of the input signals

can be associated with one »f the channels. Since the
lattice mocdels use the same amount of memory in each channel,

the upper limits on all summations over h; will be made the

same (Np.l : Nq.l =z Lp*q,l 2 Nl). The upper limits on the

sunnatiom over the other indicies determine the nunber of

shannels required.
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For a quadratic nonlinear system, the present value

of the system output is estimated as

. Ny Nog Ny
g0 = ¥ a(hpuli=hy) # P P ar(hl,hz)uhz(k-hl)
h, =0 n,=0  hy=0
Ny Mag Ny
+ ¥ b (hylk=hy) * $ T bulhyshylvy (k=h,)
_ _ ~ 2
hl'l hz"o hl'o
L, Ny
D) 3 . (hpshp) u vy (k=h,) (4.29)
h.=0 h,=0 T 2
2" 1

where u, (k) u(k)u(k-hz) s yhz(k) = y(k-l)y(k—l-hz)

2
Signal and coefficient vectors

and u Y, (k) ulk) y(k=1=hy).
2

can be defined for the various quantities in equation (4.29)

following the conventions established earlier; for example

T
y(k) = [y(k=1) ... y(k-N;)1] (4.30a)

T

+
Ih, h, hy L
and
T
+ T
Eh = [br(O.kz) BN br(Nl'hZ)] (u.304)

2
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. Embedding all these vectors into single data and coefficient

vectors, equation (4.29) becomes

o TR

yao = X, 00T 4 (4.31a)
where
|
X _ T, +,, T | +,, . T/1 + T
2,00 = [y 1 u (k) ¥q (k) e xnzz(k)
9 |
ugoT | Ly 00T
! ! 22
agh 00T | o) uy 0T (4.31b)
and
T T | T
T + +5 +
4 = [2° & | by 4 .o B
1 0 | | M22
a+T I : + T
=3 } ..
0 | N22
T | T
+ +
Cn | serl & ] (4.31c)
0 | | I..22

The minimum mean square equation error solution for the

model coefficient vector Ql is‘given by

T -
el X, 0 X 0071 a; = 10X, 00y} (4.32)
where the equation error is defined as

e(k) = y(k) - y(k)
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While equation (4.32) is similar in form to equations
(A.7a) and (A.26a) for AR and MA models, it lacks the nec-
essary form for the application of the Levinson algorithm
because of the fact that some component data and coefficient
vectors are Nl-vectors while others are (Nl+l)-vectors.
This is the same problem that arose in linear ARMA modeling

and can be handled here in a similar manner, Defining

g=101  -a (0 -b.(0,0
- ar(0,0) Co —ap(O,sz)
T
- Crl(0,0) " e "crl(O,Lzz)]
(4.33a)
and
x(k) = [y(k) ulk) yo (k) coo yy (k)
. 22
u, (k) ce u (k)
0 N22
( ‘T
uy (k) cos uy k)
0 L22
(4.33b)

and assuming that the coefficlents in y can be estimated in

some other manner, the MMSE solution for the remaining

model coefficients becomas

e S i o e e N N o R S e AR, - S . e i _ o ‘
EE L LR S R LR o PRI = T BRIACRICE e - M 2o e DEdakl | ol sl b e e

R O SN N

A AP Ao it T e

A 5t ol 11




TR e

T

PRI IR T e e e
! . ORI gy

s ot Y s s L Lt
it ot e Ll U

. e

(4.34)

e

elX o X0 d = et X x0Ty

Here ES(k) and d are defined as zgl(k) and d, with all

superscripts"+" removed from their component vectors (indi-
3 o

cating they are all indexed from 1 to Nl and are all Nl-

vectors). Note that just as in the linear ARMA case, the

coefficients in y essentially correspond to gains on their

respective channels. Comparing equation (4.34) with (A.7a)

for a multichannel autoregression it is clear that d can be

obtained from the multichannel AR solution by

a=Dy (4.35)

‘where the signals in x(k) comprise the channels in the auto-

regression. Therefore, either the Levinson algorithm or the
lattice methods can be used to solve for !2 and from it and
a knowledge of ¢, the nonlinear ARMA model coefficients can
be obtained.

By analogy with equation (3.27) it also fcllows that

the nonlinear ARMA zquation error is related to the AR pre-

diction error vector by

e(k) = g? e(k) (4.36a)

sz that
eleC)?) = T P y

(4,36Db)

.36
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where P is the AR prediction error covariance matrix. The

coefficients in ¥ can therefore be set to minimize the mean

square value of the nonlinear ARMA equation error in (4.36b)

: resulting in a solution given by

N
- -~ » - r~ -
’ Pyp <=+ Poy a (0) Po3
- . - = |- (4.37a)
; Py2 PyN Sp0sLyy) Py1

oes — e - e —d

!

where N is the total number of channels in the model

R e L .

N=1+1#+ (M22+l) + (N22+l) + (L22+l)

TN Y e e

and the Py are the elements of the prediction error co-

variance matrix. It is readily apparent that the linear

ARMA model and its solution via the Levinson algorithm or

lattice methods are a special case of this formulation of

R e

the nonlinear ARMA model just as one would expect.
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i V. APPLICATIONS, CONCLUSIONS, AND OPEN QUESTIONS

a In the previous four chapters, existing methods for AR
and MA modeling were reviewed and from them new methods for
linear and nonlinear ARMA modeling were developed. Here,
two applications for these new methods in reduced order

] modeling and modeling for fault detection and diagnosis

are examined briefly. Then the results of this research

[ (ETNTN
ke

are summarized, conclusions drawn and significant open

questions for the continuation and extension of this work

p— - o

are listed.

[
-
3

A. APPLICATIONS

1. Reduced Order Modeling

Oftentimes, complex physical systems, both linear

g R N

and nonlinear, can be approximated quite closely using
simple models. The lattice solution methods developed here

provide a very natural and efficient means of determining

s e R

reduced order models for complex, high order systems especially
in the case of linear systems. In Chapter III it was argued

that for linear systems it is reasonable to build up ARMA

models by simultaneously incrementing the order of the numera-
tor and denominator peclynomials as the lattice method does.
When this method is used to build up a given order model,

all lower order modelsg and their mean sgquare values of equation

error are readily obtained as well (the only additional
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calculations needed are for the MSE and the gain term or

gain matrix in the multichannel case) making it easy to
compare the various models and decide if reduced order models
provide sufficient accuracy,

Consider for example the seventh order system whose
characteristics are listed in Table 5.1. The magnitude
spectra of second, third, sixth and seventh order lattice
models obtained using batch processing with 4000 point
averages are compared to that of the system in Figure 5.1.

It is apparent that a second order model is unable to
approximate the system well, however a third order model does
provide a good approximation. Furthermore, increasing the
model order to four, five and six fails to significantly
improve its -performance as evidenced by the sixth order

plot in Figure 5.1c. The model accuracy is not significantly
increased until seventh order (which corresponds to the order
of the actual system) when a very good fit is achieved. This
is further illustrated by the plot of the normalized mean
square equation error as a function of model order shown in
Figure 5.2. The cost drops rapidly going from second to
third order but then fails to decrease significantly until
seventh order is reached. The roots of the system and the
various order models are also plotted in Figure 5.3.

The benefits of the lattice method for reduced order
nonlinear ARMA modeling are not quite so pronounced however,
since adding extra stages to the lattice corresponds to

allowing the kernels to grow in only one of their multiple

-39
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. TABLE 5.1
SYSTEN E
TRANSFER FUNCTICN COEFFICIENTS
A ALMERATOR DENCMINETOR
ik A(C)s 1.€0000
: A(l)s -2.16510 A(1)s  2.18950
d Al2)s  1.5625C B(2)= -2.21260
£ A1 0.0 B(3)=  1.81740
P 4= 0.0 g(4ls ~0.85350
- AtSis 0.0 Bi5I= C.45144 1
b Al€)e Q.0 B(g)n ~C.23462 ;
- Ali= 0.0 B(T)= 0.09221
.
4 ROCT LOCATIONS .
| ZEROS PCLES ']
RE 1M RE T =
1,0625¢  0.&250C 0.90000 0.0 'y
1.08250 =0.62500 0.65282  €.40000 L
€. 0.0 0.69282  =0.4000C %E
c.C 0.0 n.23941  0.65778 |
C.0 0.0 0.22641  ~D.65778 !
c.C 0.0 ~0.28750 0 4979¢
c-¢ 0.0 -0.28750  =0.4975¢
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Mean square value of equation erior (as

a percentage of the mean square value of
system output) vs, model order for lattice
models of system E obtained using batch
orocessing and 40600 point averages.

193

e e et e Wi sl AT

g
1

|




4000 POINT AVERRGES

LATTICE MODEL
2 ND ORDBER

HE

__

LATTIME MOOE!

A4VERRGES

UGZO PAINT
3 RO ORCER

RE

- .

= R I - - K LT
e R SR e L e s e S n L o F R - -
LRSI e e N Y e 1R e el s

(b)

T e s R T e o A

Figure 5.3.

T e e

184

NPT s A i 4 i S S st S T S B
aoers N NN T

S P I R

R SRR

2l oy

Jedi

IR

R L L AR Ry




GES

RE

4opo POINT AVERA
7 TH OROEH

40n0 PBINT AVERAGES
LATTICE MODEL

6 TH ORDER

LATTICE MODEL

195

Piguve 5.3 cuntt.

Wotiihad i

(d)

vy b ey R e .
R UL SS A IPA TR RN TRE R RR AT




AT TR TN e ety 3 e T T

P SRR W D T v A s it erap——

é :; dimensions. (The linear 'kernel" had only one dimension.)

ﬁ : Here some a priori information would be useful in determining
the values to prespecify for the boundaries of the kernels
in the other dimensions. Still however, when compared to a
i brute force matrix inversion approach where all kernel

boundaries must be prespecified, the lattice method provides

a viable alternative in obtaining reduced order models

b .
! especially for low degree systems.

i
* 2. Modeling For Fault Detection

| The problem of fault detection and possible diagnosis

o vamait ik -

can be formulated as follows.

a. Obtain a parameterization that describes the

current functioning of the system under test.

.7 Bt P

b. From this parameterization, determine if the

B e g et I

system is functioning normally or if a fault 3
has occurred by comparison with a fault dictionary.
It is the first part of this problem that has been addressed

in this work, The parameterization can be as simple as

sampled measurements of the response to specific inputs
however, the large volume of data that would generally be
involved in such an approach would greatly complicate the

second part of the problem. A more efficient approach in

terms of utilization of parameters is to model the system

and ‘use the model parameters as a description of its

current functioning.
For linear systems, ARMA models provide a very

e i e 4

general framework with a number of possible parameter sets.
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Three candidates are polynomial coefficients, root locations
and lattice reflection coefficients with the latter offering
many advantages. In addition tc the advantages demonstrated
by the exr :rimental results of Chapter III, reflection
coefficients provide a very efiective and methodical way to
build up knowledge of a system's characteristics. As model
order is increased to more accurately represent a system,
reflection coefficients already determined don't change
making them ideal candidates for use in a dictionary lookup
scheme (a characteristic not shared by the other parame-
terizations). This is made more important since reduced
order models could be adequate to detect and perhaps diagnose
some faults, especially catastrophic ones. While more
parameters are required when reflection coefficients are
used, these same coefficients also provide all reduced order
models. For a single channel ARMA example, 8N reflection
coefficients and N gains provide all models from order 1 to

2+2N parameters would be required using either

N while N
polynomial coefficients or roots to provide the same infor-
mation. (6N reflection coefficients are needed if the input
is white noise since k12=k22=0.)

A similar argument could be made for the use of

lattice reflection coefficients with the nonlinear ARMA

model for fault detection and diagnosis of nonlinear svstems.
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B. CONCLUSIONS AND OPEN GUESTIONS
The purpose of this research was to extend existing
theories and methods in the modeling of linear and nonlinear
systems to brocader, more general types of models. After a
discussion of available results in AR and MA modeling of
linear systems with particular emphasis on the Levinson
algorithm and lattice filter methods, model transition
formulas were developed to relate the more general ARMA
model for linear systems to the AR and MA models. It was
shown that with suitable assumptions, the ARMA model solu-
tion could also be obtained recursively in order using
either a modified Levinson algorithm or lattice filtex
methods. These results were developed extensively in both
theory and practice for single channel linear ARMA modeling
with experimental verification of both the batch processing
and adaptive lattice methods presented. Portions of these
results have already been published. [Refs, 65 and 66]
The theory was also developed to generalize these resgults
to the multichannel ARMA case.
Bagsed on the simulation results it was concluded that
the lattice methods offer the following advantages over a
conventional brute force matrix inversion approach to ARMA
modeling using windowed correlation estimates.
1. For short runs of data the batch lattice methods

provide much more accurate results than the brute

force method.
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2. The batch lattice method performs much better than
the brute force method when the system is over-

modeled,

3. The MSE as a function of model order is well behaved

for the lattice method.

4., The adaptive lattice method has difficulty tracking

zero valued overmodeled parameters.
The cost of these advantages 1s the extra computational
burden of passing the data through the lattice filter during
the modeling process.

In the discussion of nonlinear system models the Volterra
model was considered as a nonlinear extension of MA modeling
and it was shown that lattice methods could be used to obtain
the model solution if the problem was recast, using the
regular form of the Volterra kernels. Then the new nonlinear
ARM{. model was considered and it was shown that this repre-
sentation in some cases solves the problem of requiring a
very large number of mcdel parameters encountered in Volterra
modeling. Then lattice methods were developed for the non-
linear ARMA problem and it was shown that the linear ARMA
techniques presented earlier are a speical case of the non~
linear ARMA methods. TFor both types of nonlinear models,
the recursive in order nature of the lattice methods was
shown to allow the various model kernels to grow in one
dimension while holding their boundaries fixed at pre~

specified values in the other dimensions. The use of the

model nonlinear ARMA was also illustrated with two examples

S AR R AR BB il

e i




é’, and a nonlinear ARMA model was proposed for the tracking

behavior of a phase locked loop,

Several significant questions remain for the continuation

Lo and extension of this work and are listed here,

1.

Stability of the lirear and nonlinear ARMA models
must be considered., In the linear problem, stability
is dependent on the roots of the demoninator poly-
nomial of the synthesis model. The methods

developed do not guarantee stability of the resulting
model. (This was not found to be a problem in
practice, however, unless extremely short runs of
data in the range of 30 to 50 samples were used.

Even then, model instability was not a frequent
occurrence.) Stability for the nonlinear ARMA model
remains to be clearly defined.

Input signal requirements in the nonlinear ARMA
modeling process need to be investigated. In linear
ARMA modeling the power spectrum of the input signal
was found to play an important role. No requirements
emerged however, on the probability density function
(pdf) of the input. In nonlinear systems where the
behavior is inherently level dependent, it is in~
tuitively appealing to use an input signal with a
flat power spectrum across the frequency range of
interest and whose amplitude is uniformly distributed

over the range of interest.
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The inability of the adaptive lattice method to
track zero valued overmodeled parameters is an
interesting problem warranting further consideration.
If some means of detecting the degeneration of the
cost surface towards an infinite trough can be found,
the problem could be remedied by simply reseting the
appropriate parameters to zero.
Experimental experience needs to be gained with the
nonlinear ARMA model itself and the lattice methods
developed for it.
The characteritics of the lattice solution methods
need to be further quantified to gain a comprehensive
understanding of how and why it performs as it does.
Also, further comparigsons should be made between
the lattice methods and conventional methods. Some
comparisons were made here for batch processing
methods but only a rectangular window was used on
the data. Comparisons should be made using other
types of window functions in the brute force method
and the adaptive lattice method should also be com-
pared with a conventional LMS adaptive algorithm
applied to the equation error model in which all of
the a(i) and b(i) coefficients are adapted‘simul—
taneously.
In the adaptive lattice method, scaling of the lattice
input signals needs to be investigated. It was

noted that the ratio of largest to smallest eigenvalue
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of the input autocorrelation matrix was related to

the speed of convergence of the adaptive algorithm,
For the first lattice stage this matrix is
2
¥ (k) y(k) u(k)

P(O) = g }
u(k) y(k)  ulk)

If the system has a high gain such that the mean
square vilue of the output y(k) is very much greater
than that of the input u(k), convergence will be
slow. This could be remedied by implementing an
adaptive scaling scheme at the lattice input (perhaps
similar to the first order low pass filter estimates

used for adaptive step size normalization).
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APPENDIX A

Alternate Multichannel Model Forms

Multichannel generalization of the MA and AR models were
discussed in Chapter II along with their solution via the
Levinson algorithm. Here the multichannel models and the
Levinson algorithm are developed in an alternate form more
compatible with other linear and nonlinear modeling problems
to be explored later.

Consider first an N-th order, Qo-channel, AR model where

the current value of the signal vector x(k)

T

[xl(k) e xQO(k)] (A.la)

x (k)

T

[Xl(z) “os XQD(y)] (A.1b)

X(z)

is to be predicted from a weighted combination of N past
values of each of the component signals. For each signal

this estimate can be written as

Q w

R = }E: :E: d..(n) x.(k=n) (A,2a)
xj(k) b Lo lJ(n Xs n a

or QO
2. - . X.(2) A2.b
X](k) = dlj(z) I ( )

where N

- -n

dij(z) Eg; dij(n) Z (A.2¢c)

o o B e 2 SN, i S i, Y, R R - AR i

TR Wy i e
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- Define an N-vector for each of the Q channels to contain

their required time histories as

L T
o % (10 = [x;(k=1) .0y %, (ked)] (A.3a)

for 1 <1 < QO and embed all of these vectors into a single

NQO-data vector given by
: . T
" X =[x 00° .. §Q0(k)T] (A.3b)

Dafine a NQ, % Qg matris of weights as

: .Q = .c.i.ll S‘I.]_QO—1 (A.4a)
i d

{ 9,1 2262

a L _

where the N-vectors gij are given by

- T

L i e it A i Skt i

and contain the coefficients of the polynomials dij(Z)'
These polynomials can be combined in a matrix polyncmial f

defined by 1

dll(z) Cee deO(Z)
D(z) = : . (A.4c)
dQOQO(z)
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With these definitions, the N-th order prediction of x(k)

——p < T e s
——— e S T A
o

o

=
g - s ;'.LE-..

and its associated prediction error vector becomes

TR
=
=

s

0

x0T = Xuw?® D (A.5a)

- e
.l e S

el = x0T - xaot (A.5b)

T R T

P g R

St

oy in the transform domain

zm

" g e
e bt e R e R S A - e e it

I E(2)7T = (27 (1 - Di2)] (A.5c)

»
¢
I
Ll ;
L : : ?
£ Comparison of equation (A.5c) and (Z.44c) show that this }
i *
g matrix polynomial differs from the more generally used form

of (2.4%4c) by a transpesition. The coefficient matrix !2

can be found by minimizing the trace of the prediction

error covariance matrix !

=

P = ele(k) e(k)T} (A.6)

R T ey SR

leading to a system of linear equations given by

e X X D= e Xt x0Ty (A.7a)

or
1 o =

X Xy X -?-XX EXX
“X1*1 1%Qq 171 17Q,

o

r
X -XA X .
1 % Qg

(A.7Db)
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Adopting a shorthand notation, this becomes

.iR.. __D_ = T (A.7¢)

—a——

" TR T

A .

i ',

] . . . :

i , As in the case of a single channel autoregression, the
; ' multichannel generalization of the Levinson algorithm also

e

requires that thea backward prediction problem of estimating

e

R e v N

x(k=-N) backward in time from the values of x(k-N+l) through

x(k), be solved si-ultaneously. Using an overscore to

indicate quantities associated with the backward problem it

follows that

!
-3
/“4:‘2‘*""‘ R s B e “—_- -

X D = % (A.8a)
3 -
elk) = x(k=N) =~ x(k) (A.8Db) by
)
or ‘N
! =T T n ‘&
E(z) = x(z) 2701 - D=l (A.8¢) \
; —_— T T -':
: where X (k) = [%, (k) o e b (k)T] (A.84) §
: - -1 "Q(J ,;
r {
;) =[x (k-N+1) ..o %, (K] (A,8e) i
and D r§11 - g (A.8f) g
; s {
3 L a 3
Q. 2% 3
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dyy = (34 L. F50) (A.8g)
with !2(2) = ?&ll(z) HlQO(z;1 (A,8h)

N
- n ,
and 'a'ij(z) s §l aijcm z (A.81)

Setting the coefficients of this backward predictor to mini-

mize the trace of the backward prediction error covariance

matrix

F = ef{a(kx) st} (A.9)

leads to a MMSE solution given by

— == T = _—
et X Xty } D = X0 xx-07} (A.10a)
and since e({X%; (k) Zj(k>T} 2 Bxizj
and e {x; (k) §j(k-N)} = ngxi

this can be written as
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0 0 |
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=XAH X =X X x4 % —Xn X
QO 1 QO QO 1 Qo QO QO
L— ek e —a
(A.10Db)
Adopting a shorthand notation, this becomes
RD-=: I (A.11)

At this point it is important to take note of a subtle
difference between the single and multichannel problems that
has arisen. While the single channel equivalent of equation
(A.10b) for the backward predictor Qas not written previously,

it is obviously

T
R I = o (A.12a)
I K B —X1%1
and since
gz x. * R & (A.12D)
X1%1 1%1

it follows that the single channel forward and backward
prediction problems have exactly the same solution (as was
found to be the case in Section II1.D. when the AR prediction

error lattice was developed). This fact is responsible for
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a number of simplifications in the single channel case:

a.) Only a single reflection coefficient k<n+l) was
needed to link the n-th and (n+l)-st order solu-
tions for both the backward and forward problems
(see equations (2.25b) and (2.25c)).

b.) |[B(z)| = |B(2)|

c.) efetid?) = g8t ?)

d.) The development of the Burg method and the Itakaura-
Saito method for calculating the reflection
coefficients are a direct consequence of c above.

Unfortunately however, none of these simplifications carry
over into the more general multichannel AR problem because
by comparing equations (A.7b) and (A.10b) it is evident
that in general 15 ¢ D
Proceeding as in the single channel case, it is shown
in Appendix B that because of the structure in the correlation

matricies !& and !S , equations (A.7¢) and (A.ll) can be

re-written as

Iz X = il (A.1l3a)
and
.R_ _E_ = _/.0_ (A.13b)

where F, F, P and £ are obtained from D, D, I and

JL respectively by taking their component vectors and turn.ng

them upside down in place; i.e.
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o o L
F - : ) (A.1%a)
£ N
=Qpt =0
— -
where
T
and
A P ] (A.1llc)
= p .0 . (o]
B e & & B
— -J
with
Bk, = R, () .. R (DI (A.14d)
J %5 i%3

As will soon be evident, the relationships of equations (A.1l3)

form the cornerstone for the Levinson algorithm and are made

possible because the blocks comprising the R and !& matricies

are themselves Toeplitz and because R = RT
XX —xjxi
Assume that the (n+l)-st order solutions can be related

to the n-th order solutions by

aln

(n+l) _ —1]
437 = || 4 (A.15a)

0
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Embedding the vectors

PSR
ij

and Ei?*l) into matrices designated

(n) —(n)
Ea:ij £i5
- + —E_- (A.15b)
n+l)
0 Eij
efn) and ES?) and the coefficients
=ij =ij

g(n) and égn)’

and solving for them in the (n_l)-st order

problem it is shown in Appendix C that

(n)

€

E(n)

K(n+l)

o A

wpe:

K(n*-l)

—(n)
F okt (A.16a)
- F0) gln+l) (A.16b)
—, \T=—=(n) ~1 —, \T
(n) (n) (n)
R, (O-E7"D 1 R (n+1)- £ D3

(A.16c)

T -1 T T—
(n) (n) (n) (n)
R (O-L " D1 (R _(n+1) -2 D71

(A.16d)

Also the inverted terms on the right hand side of equations

(A.16¢c) and (A.16d) are just the backward and forward pre-

diction error covariance matrices

for the optimum n-th

order models so that (A.1l6c) and (A.l16d) become
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K(n+l) - R(n) [k, (n+1) -{?(n) lz(n)] (A.17b)

As in the case of the single channel problem, the prediction

error covariance matrices - obey the recursions .

p(n*l) | ~13(n)[I__K(n+l)_l<‘(m+l)] (A.18a)
1—5(1'14'1) - E(n)[I'E(n+l)E(n+l)] (A.18D)

completing the multichannel generalization of the Levinson

algorithm for AR models.
Comparing equations (A.18), (A.17) and (A.18) with their

single channel counterparts (2.18) and (2.19) it is clear

that the multichannel Levinson algorithm simply represents

algebra generalization of the single channel al-

a matrix
gorithm. Once again, predictors of all orders 0 < n < N are
obtained in the process of finding the N-th order predictor

along with all their prediction error covariance matrices
and the overall minimization requiring the inversion of
a QON X QON matrix is replaced by a sequence of N minimiza-

tions, each requireing the inversion of two Qy * Qp matrices

(g(n) and E(n) ) .
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Using the relationships given in equations (A.l5) and
(A.16), successive orders of matrix polynomials can also
be related to one another by

N 1. —

(A.19a)

z—(n+l)[£-ji(n+l)(z)]=z-lz'n[£—]§(n)(z)]-[z-lg(n)(z)lz(n+l)

(A.19Db)

Premultiplying both sides of these equations by g(z)T,.trans-
posing, and transforming into the time domain provides rela-

tionships between the prediction error signals at each stage.

T
ML) (1) & oMy - (M Zd gy (A.20a)

i

T
gD gy = ™ ka1y - gD (Mg (A.20D)

Recognizing that for a zeroth order prediction, the forward
and backward prediction error vectors are just the input

vector itself, it follows that

e a0 = 300 = %) (A.200)

and the multichannel equivalents of equations (2.28) have

been obtained.
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Next consider the N~-th order multichannel MA model in

which the current value of a Qg-vector of output signals
y(k) is to be predicted from the present value and N past

values of a Qi-vector of input signals x(k).

QG N ]
§j<k> = :E: :E: d;5(n) xg (k-n) (A.21a)
izl n=0
Qi
or . ) +
Yj(z) = :z: dij(z) Xi(z) (A.21b)
i=1
where N
+ - -n
dij(z) = dij(n)z (A.21le)
n=0

Using a superscript "+" to indicate the fact that the vectors
are indexed from 0 to N rather than from 1 to N, define

(N+1l)-vectors for each of the input channels to contain their

required time histories as

T
x50 = [xg(R) oo x (ken)] (A.22a)

and embed these vectors into a single Qi(N+l)-data vector

given by

T
X' = xpoot x0T (A.22b)

K |
;
I
i
;
i
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; - Define a Q.(N+1l) x Q, matrix of weights as
v e L 0
D" - _d* al | (A.23a)
L £ 5 R (o ‘
; +'
. d LI BN ‘ d
| P %%
; wherc¢ the (N+l)-vectors g;j are given by
- af. = 4., ... a,, 01t (A.23Db)
co —-1i] ij * ij
!
| _ and contain the coefficients of the polynomial d;j(z). These
4 .
! polynomials can be combined into a single matrix polynomial
given by !
+ + + :
J) (z) = dll(z) cee deO(z) (A.23c)
. .
d (z) . d (z)
“Q;1 Q;Q
With these definitions, the N-th order MA prediction of y(k)
is givén by
o
' i
) : .
: 1 vaoT = Xtao® D (A.24a) -‘
{ ;i
: i
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or in the transform domain,

'_g_(z)T

x(z)T DYz

Defining a prediction error vector as

T T "o T
golkd™ = y(k)* - y(k)

(A.24b)

(A.25a)

; . . + <5
and setting the coefficients in 12 to minimize the trace

of the prediction error covariance matrix

Eq

= e{go(k)go(k)T}

results in a solution given by

e (X 0o XraoTy DY = e (X 00 yaoTy

or

1
+
D
+
Q;
216
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Adopting a shorthand notation this becomes

R*D":=r? (A.26c)

—— e

Assume a relationship between the components of the

(n+l)-st and n~th order solutions given by

- — -
d+(nﬂ (n+1)
i3 i3
++l) | |TH L, (T (A.27)
=1] 0 (n+1)
ij

n 5 L _

(n+1) (n+1)

Embedding the vectors Y13 and the coefficients 834

into matrices. designated Q(n+l) and g(n+l), and solving

for them in the (n+l)-st order MA problem it is shown in

Appendix D that

1<n+1) - _:E':(n*-l) g(n+l) (A.28a)
-1 —_— T
g(n"'l) = E(ﬂ"'l) [Bxy(n+l)’£(n+l) -D-+(n)] (Au28b)
—(n+1) —(n+l)
where Ji o amd E(n+l) are matrices; that emerge

from the back.. *d prediction problem in a nultichannel (n+l)-st
order autoregression on the input signal vector x(k). Again,
-t is clear that the multichannel MA solutions given by
equations (A.28) are a matrix algebra generalization of

equations (2.23) for the single channel MA model.
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g To relate successive order MA matrix polynomials to one ;
: another, equations (A,27) and (A.28a) can be used to write 9
% | + - =
1 | DYz L) 2 D2 (M -D M () 360D (A.29) 3
4 3
A'v: \(.‘
r‘l“)l ""I- k4 ‘:é
é”- where the second tern on the right hand side that premul- =
Eﬁ ; tiplies G is the backward prediction error matrix polynomial §
FW from the autoregression on the input signal x(k). Pre- %
’.;. ' m
Ep multiplying by X*(z), transposing, and transforming into 1
AL 4
[ﬁ the time domain results in +he multichannel equivalent of
i{ v equation (2.37)
o :
@l
a A A T ¢
b 4
,‘i and completes the derivation of the recursive in order ;
1 % _ solutions for the multichannel MA model. |
t i
. 3
»1; vn 3
a
i
]
L ' ;i
¥, ! é
y | ;‘
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I ! %
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APPENDIX B

A Key Relationship For The Multichannel Levinson Algorithm

Equation (A.13) is a key relationship in the development

of the Levinson algorithm responsible for much of the

algorithm's simplicity.
than just the K and K matrices. would be needed to obtain

the new model from the previous model.

Without this relationship, more

In equation (A.7), consider the multiplication of the

i-th block row of R by the j-th block column of ll to

form o

— .

R

1

X ®
]

d, .

+

.o + R

a. .
=Qpn ]
c 0

—_K XK.

13

(B.1)

In particular, consider a general term on the left hand

side of equation (B.1l) in detail.

Define upside down versions of the éij and L

as

s

=ij

n

(0) .o

-

d,.(ND
1]

(1-N) ]

et Lo

A (1]
a4 (D)

dmjiN)

-~
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and R, . (N)
Xixj
E =
xixj , (B,3b)
R (1)
- -

Using these permuted vectors in equation (B.1l) in place of

the d and r vectors, the relationship is still satisfied if

the R matrices are permuted as well. In particular, from

(B.2) it is evident that

dij(N;

(0) dij(l)

RX.X (l"'N)' LI IR RXOX

i m i“m
L. ' - -
R (N)
xixj
... = (B.4a)
R (1)
xixj

or equivalently

T T -
_R_xixl g"lj + « s e + R . f 2 - gx'x_. (qub)

vectors into matrices

Embedding the Eij and Bxixj de

F and /2 respectively and using the definition of !& it

follows that
(B.5)

designated
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Defining Eij and p. .. ii upside down versions of their

J ———
corresponding vectors in 012 and I in equation (A,11l) and

enibedding them in matrices designated Ji and fz, it also

follows from a similar development that

(BOS)

1Y

RF -

Equations (B,5) and (B.6) are essential to the develop-
ment of the Levinson algorithm and are made possible by the

Toeplitz structure of the block components of the R and

!S matrices.
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A ;o APPENDIX C
{ & «»
y The Multichannel Levinson Algorithm Solution
ot For AR Modeling
,{
¥ In the (n+l)-st order versions of equations (A.7) and
g (A.10), the component matrices that make up !& and !S can
5 be written as follows
S +1 =X ¥ :
N - RO = 173 R
| “XiX SN Wl e Mt
" R <R
N xixj(N) Xixj(l)] inxj(o)
!
2 C o) | =)
- n = (n
' R % Bx.x.
- ity i%] (C.1)
- + ...... -————
LS L ;'
L | xixj(O) !
5 and _ §
i T =
¢ (n+1) (n+1)7 r{M) | (n) L
R = R z 4% P"‘i"‘j (C.2) '-,I
=% X =xgxs T |llliloao | . o ;
r | .;ﬂ
; (n) | ]
Bi%5 ) Ry (o) :
¥
222 §




g

. Additionally,
-
r(n) ]
—X.X
_‘Xlx-
" Re.x, (n+1)
With these matrices and vectors written in this partitioned
form, and with the relationships assumed in equations (A.l5)
between the n~th and (n+l)-st order solutions, the (n+l)-st
order modeling equations become:
Forward Model:

li(n) l;(n) + !&(n) E;(n) + Zi(n)g(n+l) = JL(n) (C.4a)

(n) (n) (1) (n) (n+l) _
2 DY+ L € + R (0K 2 R, (n*1)

(C.ub)

Backward Mddel:

R P, R T o) gl) | rm

(C.5a)

T — T —
£(n) —Q(n) + £(n) S—(n) + Bxx(o)z(n"’l) = B_xx(n+l)T

* (C.5b)
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} g < Equations (C.4a) and (C.5a) contain the n-th order modeling

b equations within them however, and therefore can be written

; £ as

g5 (n) #(n) _ _ 200 ,(ntl) :
R™ ™ . . B0 (c.68) f.‘
R € | | ofm) glatl) (. 6D)

O

i} and applying the relationship developed in Append.x B
ﬁi : (equations (B.S5) and (B.B)) yields
| _
S e o | F() g(n+l) (C.7a)
o . - —_— = . .

e o F(n) K(n+i) (C.7Db)

Thus the g and € vectors have been found in terms of the

known quanties £ and f and the unknown K and K matrices.

Substituting equations (C.7) into (C.4b) and (C.5b) completes

the solution resulting in expressions for the K and K

matrices given by

—— T—--— -l — T ‘

M - g (o) - T D™ TR (arny-2M D) |
K R r=n R ~" D j
(C.8a) ;
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‘ T -1 Toe
. (n+l) _ (n) (n) T (n) (n)
Y K = [R (- D1 (R (a+1)"- 2" D'y
f : (C.8b)
g
b
ﬁ ; The terms on the right hand side of these equations that
é; " are inverted are just the backward and forward prediction
;3 error covariance matrices. for the optimum n-th order models
5? given by
b
L ()T ¢
g p‘m) 2R (o) - r®) D (C.9a)
r - —XX — =
':-i
H
[ (n) T T :
o PR 2R _(0) - £ DI (C.9b)
b - —XX — — :i
, Using equations (C.3), (A.15) and (C.7), the forward pre- 2
g diction error covariance matrix for the optimum (n+l)-st 3
1 order model can therefore be written as g
5
1 :
i (n+1) T, » MTF () (n+1) §
| P = Ry (0= DIV p O F I ;

—XX

é - R, (n+1) T (P*D) (C.10a) 2

' (), p ()T () Ty (n+1) j
= P4l T F'Wr (n+1)71K (C.10b)

LA SR K ;

(n)py_op(m)t T_ o) TP (n) 1, (n+1) !

= p[I-p [R  (n+1)" -2 Dk ) ]

- |

;Y (C.10c) :

: j

]

; g




p(n*1), pln)py gln+l)y (n+l)y (C.10d)

A 4 —

and following a similar development for the backward pre-

diection error covariance matrix results in

(ndpp . K(n+l)g(n+l)] (C.11)

1o}

E(n*-l)

i
iy
*
5
)
v
i
i
I'v
b
i,
3

T

prp

T R T Ty g s
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| APPENDIX D
T r The Multichannel Levinson Algorithm Solution
§ For MA Modeling
%: - First note that because of the definitions of the i;(k)
;ﬁ and x;(k) vectors (indexed from 0 to n and 1 to n respec-
?ﬁ tively) in the n~th order models, the matrices 5(?)+ in
S‘ the n-th order MA problem could also be written 3 in
5 terms of §i(k) and ij(k) as (assuming stationarity)
"".-;
o
2 R(2) o gn*l) (D.la)
r | Xk} Xi%3
L +d
L
Pl so that
(n)
+ - (n+l) )
-—R— - -B- (D.1b)
§ 4(n+l) +{n+l)
{ The components of K and T in the (n+l)-st
1 order MA modeling problem can be written in partitioned form
3 as
b — o
9 (n) —~(n+1)
E 5 + + l E-x.x
: R(A*1) X% L3
% — + + = - G e e - .y o - - o~ - (Dlza)
¢ X3%3 TT
$ E(I'l"'l) | R 0
Ex.x, x.%x,(0
i HE S R A
L -
4 ]
%) 4
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k.

and

2(?)
p0*) . X193 (D.2b)
Xiyj -y Ty o - - -
R (n+1)
X35

Using these partitioned forms, and the relationship in
equation (A.27) between the n-th and (n+l)-st order solutions,

the (n+l)=st order modeling equations become

(n) (n) (n) -— (n)
!$+ Il+ + !i+ AZ(n+l) + £2<n+l)§(n+l)=JL+
(D.3a)
—— T (n) _— T
52(n+l) ll+ + £Z(n+l) jL(n+l) + Bxx(O)Q(n+l)
z gxy(n+l) (D.3b)

Equation (D.3a) contains within it, the modeling equation for
the n-th order MA model and using equatiocn (D.1lb) can be

rewritten as

- - p(n+l)§(n+l) (D.4)

p——

R(n+l) 0 (n+1)

A comparison of this result with equation (C.6a) shows that

T J (n+1) _ | F (n+l) (n+1) (D.5)

St o RN A . e o il

o AL A e leT

Do M A Sl A

Tor B %A iR S
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F'(n+l) is the permu%edlversion of the backward

where
solution in an (n+l)~st order AR model of the input signal

—————

vector x(k). FPurthermore, substituting equation (D.5) into

(n+l)

(D.3b) results in a solution for G given by

— T -1

— T
[R,, (n+1)-2 71 p* )y | (D.6)

Since

2D TF (D) | T T ns)

it follows that the inverted term on the right hand side
of equation (D.6) is just the backward prediction error

covariance matrix for the optimum (n+l)-st order AR model

on the input signal vector x(k).
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APPENDIX E
Prony's Method ror ARMA Modeling

Prony's method [Refs. 8, 52 and 56] obtains a zero pole
model for a system by match.ng the impulse resporses of the
system anéd model over the iirst M+N+1l sample intervals where
M and N are the orders of the model transfer function num-
erator and denominator polynomialz. Assume that a signal
y(k) is available that represents the impulse response of
a causal system and that a rational transfer function model
for this systems is desired. Using a "*" to denote the

model output and u(k) to denote the input to both the system

! and model, the model transfer function is given by

M
- z a(n)z P
_ Y(z) _ n=0
1+ I b(n)z

n=l

e T~

For a unit sample input it follows that

Bldiciena LT 3 bantes

B(z) ¥(z) = A(z) (E.2)

Equating like powers of z in this relationship results in

a(n) 3 0 <n <M

N
Z b(i) y(n-i) = (E.3)
i=0

0 else

where b(0)=1.

L

;;:Hi-e:_am.uﬂg;_ei;-aym,.-m“_mgﬁkm TR 1 Ltk
Sk s
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Equating y(k) and y(k) over the interval 0 < k < M+N produces
a set of M+N+1 equations which can be expressed in matrix
form as
o 1 ' mand - —
y(o) | o0 0o ... 0 e a(O;
' b(1) .
Y(l) ly(o) 0 . [} 0 . = .
Pl | |acity
| S 0
y(M) 'y(M"l) y(M‘Z) ) .
SRR S S | (R |
y(M+l): yM)  y(M-1) ... 0
: |
I |
y(M+N) .. y (M) 1
*!

-, - - = -
VAT ¥ 1 a i

= (E.ub) )
Lo ¥, b 9 )
- - L _— w

b= -yt (E.5a)

(E.5b)
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The original Prony method goes on to form a partial

fractlon expanslon and inverse transformation on the model
transfar function H(z) resulting in a model for the impulse
response of the system given as a sum of complex exponentials.
This in unnecegsary here however, since a rational transfer
funotion model is the form sought.

Prony's method inherently assumes that matching a
sufficlent portion of the impulse response of the system
resulty {n an acourate modzl but this Ls not necessarily
tha ¢osae unless the impulse response damps out quickly or
unless the sysvam can be represented axactly by a low order
model., Otherwise¢ a very high order model may be.required
2y obtaln auffisient ancuracy., Other difficulties asso-
olated with thie technique are:

1.) The gystem impulse response must De availlable;

2.)  Thera are ue bullt in mechanisms to test for or

angiire stabdlity of the model;

&.) "Yhere 1 no averaging of noige Iin the data;

b,) Only a4 amsll porticn of the uvailabls data points

(M¥N+1) ave ratually used.

Ihege difficuliics can be partially overcome Dy modifying
the procedure tc obtain an approximate match of the system
and model responses over their entire duration rather than
an etget watoh over the first M+N+l points. Consider

equations (E.4) modifled tn include the entire sigral y(k)

for 0 ¢ & < w,

32
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ATy
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L
|

y(0) 0
3y (1) v{(0)
y (M) y(M=-1)

y(M+1) | y(M)

Adopting a shorthand notation this becomes

_ " - -
..... T
Y3 : 13
l
|

but With713s 23

equation (E.7b)

equations

o
)
ju

o
n
jo

will in general have no solution.

1
‘‘‘‘‘ - +
b = a
—
0 (E.5a)
""""""" .
|
.
a
e (E.6bh)
9
b
I
(E.7a)
(E.7D)

and 0 having an infinite number of rows,

In practice

A it o B O o ie EUR s B SN Y NP N N .
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only a finite portion of the system impulse response y(k)

can be considered but equation (E.7b) will still be incon~-

sistent in general. A least squares estimate of b can how-

ever, be obtained by minimizing g?g where

e=¥3Db - (g3

resulting in

- T
b= (¥3¥3) X3 ¥,

which in turn can be used in equation (E.7a)

(E.8a)

(E.8D)

. +
to find a .

This approximate version of Prony's method is the one most

commonly applied.
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APPENDIX F

Parabolic Surfaces In n-~Dimensions

Multi-~dimensional parabolic surfaces are described by

an equation of the form

y=xAx-2x"p+c (F.1)

where:

y is the independent variable;

is a vector of dependent variables;

%

is a symmetric constant matrix;

>

is a constant vector;

1o

1s a constant.

0

(x, and ¢ can also be considered as matricies with the

o

trace of the right hand side set equal to the independent
variable but the problem remains essentially unchanged.)

Completing the square for nonsingular A this becomes

15T ACx - A™'b) + ¢ - BTATD (F.2)

y = (x =A7b) b'A "b
so that for positive definite A it is clear that the minimum
value of y is obtained for x = é‘lg and this minimum is

c - E?Q-lg. It is also clear that nonzero values of b and ¢
simply raise and lower the surface aiid move the minimum
point away from x = 0. The shape of the surface (its

relative concavity or flatness) is determined by the matrix

e N L G A i R 5 e B b il oA e i L




A in the quadratic term of equation (F.l). Therefore, to

study the shape of this surface, consider the simpler pro=-

blem with b and c set to zero,

T (F.3)

<
u
%
j>
1%

One way to examine the relative flatness or concavity is to

‘tﬁ
k

lock at the locus of points on the surface for constant

values of y; in particular when y=l1. Recognize that A can

7 e T e s

. be rewritten as Q A QT where A is a diagonal matrix of

eigenvalues and Q is a matrix whose columns are the unit

length eigenvectors of A. Now (F.3) becomes

T TR

- §T9A9T1<.= 1 (F.4)

and introducing a new set of variables g=g?§ (which are

simply a rotation of the variables in x), equation (F.4)

reduces to

(F.5)

L mit

This equation describes an ellipsoid in n dimensions whose
axes half lengths are given by 1//Ay for 1 < i <n. This
follows from letting all but one of the w's equal to zero

and solving for the nonzero variable so that one point on the

. surface is for example w; = 1/VA] with w, = .., = w_ = 0,

RPN St . ot o e s oo e
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-

This point is just a multiple of the first eigenvector of
A so that in general, the axes of the ellipsoid point in
the direction of the eigenvectors of A with half lengths

given by the recriprocal of the square root of the eigen-

values.

2317
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APPENDIX G
Multichannel ARMA Modeling

Consider a system with Q, output signals [yl(k)---yQO(k)]

and Q, input signals [ul(k) KRR (k)]. The multichannel
i

ARMA analysis model forms an estimate of the present value

of each output as a weighted combination of past values of

all output signals and past and present values of all input

signals.

y (k) }E: :E: b (1) Y3 (k-1)

Q.

1

N
.. :2; a. kl) u (k=1) (G.1)

[
n

Define data vectors for all the input and output channels as

g (0 = Ly (e-1) ...y (k-1 (G.2a)
(k) = Lu (k) (k-N)1T (G.2b)
.\.ln It un veos un .

and embed them into QyN and Qi(N+l) vectors given by

[y, ()T ( )TJT (G.3a)
: (k 4 00 k G' a
VA ZQO
¥, .T + ,. T T
4;, = [u (k) LI I u (k) J (G-ab)
v, 2q4
+»
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Define NQ, x Qq and

given by
LIRS -]31Q
B = | . 0 (G.4a)
b, .. b,
Q01 =%
and — -
at a+ ]
3 . 21
11 QO
A+ = . . (G.4b)
at a+
1l
:Ql —QIQQ
where
- T
+
iij = [aij(O) e oo aij(N)] (G.ud)

With these definitions, the multichannel ARMA estimate for

the vector of output signals becomes

. ;LT B 1
yooT = v" ) vty [-=- (6.5)
' A+

Forming a prediction error vector as

eglk) = ylk) ~ y(k) (G.6)

!
|
|

e a3

s, S o, Bl 3 1.

H
1




and setting. the model coefficients to minimize the trace of

the prediction error covariance matrix results in a solu-

tion given by

Ry R B Ry, |
=YY _YU+ - =Xy
- (G . 7 )
R R N R
“uty  “utut - -U+y

In the transform domain, the prediction error model is re-

presented hy
Eg(@)T = ¥(2)7 [1-B(2)1-U(=2)T Atz) (G.8)

where E, ¥ and U are the transforms of the error, output

and input vectors and the coefficients of the i,j-th elements

of the matrix polynomials B(z) and A(z) are the elements of

and gf. The multichannel ARMA synthesis

the vectors b, . i

J
model is then given by

¥T(z) = U(2)T A(z)[I-B(2)171 (6.9

with the matrix polynomial fraction serving as the generali-

zation of the zero pole transfer function.

R
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APPENDIX H
Delay Free Loops

To develop equation (4.24) guaranteeing the absence of

delay free loops in the system of Figure 4.8, consider the

equation for yy (k).

¥y (k) = Elx (k)] (H.1)

Since F[.] is a memoryless nonlinear function, proving that

§N(k) is not a function ofx&(k)is equivalent to proving

that zN(k) is not a function of itself, and therefore no

delay free loops exist. From equations (4.17b) and (4.17d)

with u(k)=0 it follows that

Xy(2z) = L, T(z) I, ¥, (2) (H.2)

and the coefficient of Yy at time k on the right hand side

is given by

)
@ = Lim T, T(z) T; (H.3)

200

A nonzero %3 indicates a dependence of xNi(k) upon yNj(k)

and clearly therefore all the main diagonal elements of o

must be zero to avoid delay free loops. These elements are

the terms of the (Q-l)-st principal minors of a. While this

is a necessary condition it is not sufficient to avoid delay

free loops since loops may exist through two or more signals.
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a
i

ol The condition that aij aji = 0 for all i,j such that

E
ik 1 <i,j <Q and i#j, ensures that no delay free loop exist

.
ok i 7

through 2 signals and is equivalent to requiring all terms

T da -

of the (Q-=2)-nd principal minors of g are zero. A term of

paim s - R ARV
s

o a determiﬁﬁnt [Ref. 63] is defined as the product of elements

of the matrix taken one from each row and one from each

LT
Al e,

P column and the determinent of the matrix is the sum of all
C possible terms. It is clear therefore that every term
must contain a cycle such as aijajk Ceelqy and must there-
fore be zero. Since the determinant consists of every

R kit T

possible term, requiring that all terms of the determinants
of the (Q-i)~th principal minors are zero ensures that no
delay free loops exist through any combination of i signals.
Examining all terms of the determinant of & and all its =
principal minors ensures that all possible loops through

the Q signals in xN(k) are -examined., If any delay free loop

exists, then at least one of the terms of one of the deter-

minants will be nonzero. s
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APPENDIX I
Nonlinear ARMA Modeling Examples

The determination of memory requirements for the non-
linear ARMA model as well as its applicability to systems
consisting of interconnections of linear and memoryless non-
linear subsystems is illustrated here using two examples.
First a cascade of linear and nonlinear subsystems is con-
sidered. Then a real world example is considered and a
nonlinear ARMA model is proposed for the tracking behavior

of a phase locked loop.

A. A CASCADE OF LINEAR AND NONLINEAR SUBSYSTEMS
Censider the system shown in Figure I.l1 where the signals
u(k) and yLZ(k) are observed. In terms of the topology of

Figure 4.8, seven signals can be identified (xLl, xLZ’ yLl,

PR~

Y2 *N1° YN1 and u) however for convenience three of the

seven equations in (4.26) which specify

xLl(k) = u(k) (I.la)
xLz(k) = le(k) (I.1b)
le(k) = yLl(k) (I.1c)

will not be explicitly written. In this case, equatien

(4,26) bLecomes
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Lo

Al(z) A2(z)
U(K) ot - ﬂuFl['] - - - +yL2(k)
1-Bl(z) l-Bz(z)
Figure I1.1. A Nonlinear System
ool oo 1o a0 #] [y. . ao]
yL2 k) bz(k) ) : a2 k yL2
u(k) 0 1 | o o ulk)
l
- oy o - - oy w o - E R R Y k) Fx—- ———————————————————
l |
yLl(k) 0 a, (k)* | b, (x)* 0 yLl(k)
l
yyp (K 0 0 ] Fl[°] 0 Yyp ()
hee ad L. —] et po—
(I.2)

where the finite memory representations of Tl(z) and Tz(z)

have been

from the upper right partition.

used.

three and four, the first row can be rewritten as

The objective now is to eliminate az(k)*

Using the equations of rows

yLz(k)=b2(k)* yL2(k)*az(k)*Fl[al(k)*u(k)+bl(k)*yLl(k)]

(I.3)

Notationally it is difficult to write equation (I.3) in the

operator matrix form of equation (I.2) because of the non-

linear function however, the following representation is

adopted.
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gt
h

No furthei reductions are possible to make the upper right Q

partition a null matrix leading to the conclusion that for

a finite memory nonlinear ARMA model to be approjyriate,

aither bl(k) must be zaro (the first linear system must be

D T,

honrecursive) or yLl<k) must also be observed, Alternately,

L s

if bl(k> i8 nonzevo, ar infinite memory representation can
be used for the first linear system by raplacing al(k)*(.)
with hl(k)*(.) and bl(k)*(.) with zero in equation (I.4)

indioating that an infinite memory nonlinear ARMA model is

dppropriata when only u(k) and yLQ(k) are observed,

U, A NONLINEAR ARMA MODEL FOR A PHASE LOCKED LOOP
A continuous time model for the tracking behavior of a

vaase loocked loop [Ref., 55] is shown in Figure I.2 where:

Ol(t) is the phase of the incoming signal
02(t> is the eatimate of the phase of the incoming signal

#(t) iy the phase arror signal
F(s) is the transfer function of the lowp filter

K1 and K2 are constants

K8in(.) fomep  F(8) ‘--—-ng_ >
s (t)

Figure I.2. A nonlinear model for the tracking
behavicr of « phase-locked loop.
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The model is nonlinear because of the sin function in the
locp. Often the assumption is made that e(t)<<n/2 so

that sin e(t) 2 e(t) in which case a linearized model is

o~

obtained as

92(8) KlKZF(s)

( * KX T(s)+s
N s) 1K, S)+s

(I.5)

A nonlinear ARMA model for the system can'be obtained by
first discretizing the model of Figure I.2 as shown in

Figure I.3 where F(z) represents the discrete loop filter.

yn(k)

+ e(k) + _l‘
Bl(k) Asin(.) ——-.l F(z) z -»
: ‘ 8,(k)
+

[N ]

Figure I.3. A discrete version of the phase-
locked loop model.

The integration has been approximated as I%iéT . (It is
necessary to use this Euler forward approximation for
integration rather than one such as the trapezoid rule to
ayoid a delay free loop). Defining a single linear system

as the cascade of F(z) and the discrete integration

-1
Z . A(z)
K1K2 -L_z‘l F(Z) = m (I.6)
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Equation (4.28) for the phase locked loop becomes

9, (k) b ()t 0 : a (0% 0 [0, (x)

el(k) 0 1 l 0 0 el(k)

SR (NP R —— el I ESEEEE (1.7)
yy (k) 0 o | o sin(.) vy (k)

e (k) -1 1 1o 0 e (k)

. e e - e —

where it is assumed that el(k) and ez(k) are observed. Using

the relationships specified by rows 3 and 4, this can be

written as

- ——y p— —n—y e —
l
9, (k) by d* 0!l 0 0 8, (k)
(k) | (
8, (k 0 1,0 o0 8, (X)
------ = -----------+------------ -
gy o 0 : 0 sinC)| |yg(0)
(k) -1 1 0 0 e(k)
o - - o
a; (k)% sinl-C,) ()] | 0 o 0, (k)
1 .
0 0 | 0 o) 3 GO
i 0 0 |0 o)

from which it is clear that a finite memory nonlinear ARMA

model is appropriate., The model can be obtained from the

first row in equation 1.8 by substituting a series expansion

: : 248
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for the sin function and truncating

%
it at the degree desired i
resulting in 3

¢J.

M

A :
8, (k) =by (KI#8, (k) + ag (O ) z—%%,‘%ﬂ—(ez(k)-el(k))zm'.'I

m=0

s (1.9)

: where 2M+1 is the degree of the series approximation to

i” ) sin(.). (Note that lim Al(z) = lim Bl(z) = 0 so that the

= Z+® Z+®

- right hand side of equation (I.9) involves only past values 1

3] d

iq ‘ of the output ez(k).) An infinite memory Volterra series %

2 3

yi model for this system has been considered by Van Trees 1

e ‘

;‘ !
1
!
|
i
i
i
i
|
i
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APPENDIX J

i ®
’ : Model Simulation Program Listings

This appendix provides a listing of the fortran model

‘simulation programs used in the experimental study of the

lattice characteristics, Included are the main programs

for the batch processing ARMA lattice, the adaptive ARMA

Each main

STER e n e

lattice and the brute force model solution.

T -

program is followed by a collection of subroutines used only

L by that specific main program. Then a collection of common

“ subroutines called from two or more locations in the batch

lattice, adaptive lattice or brute force method is listed.

ot Skl s e s sl
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