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The problem of obtaining parametric models for linear and non-

linear systems based on observations of the input and output of the
system is one of wide ranging interest. For linear systems, moving
average (MA) and autoregressive (AR) models have received consi-
derable attention and based on the Levinson a.lgorithm, a number of
very powerful methods involving lattice filter structures have been
developed to obtain the model solutions. For nonlinear systems the
Vol~terra series model which is a nonlinear extension of the moving
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"average model is frequently used.
The purpose of this research is to extend these techniques to

& more general linear and nonlinear models. Using the equation error
. formulation, lattice solution methods in batch processing and

adaptive form are developed for both single and multichannel
3 •: autoregressive moving average (ARMA) models for linear systems and

Volterra series models for nonlinear systems. A nonlinear exten-
sion of the ARMA model is also considered and is shown in some
cases to remedy problems encountered in Volterra modeling of non-
linear systems. Lattice methods are also developed for the non-
linear ARMA model and it is shown that the methods obtained for
linear ARMA modeling follow as a special case of the nonlinear
results.

Experimental verification of the methods developed for single
channel linear ARMA modeling is presented and used to explore the
characteristics of the lattice solution techniques. The results

• .! clearly indicate that the lattice methods are extremely powerful,
capible of producing highly accurate system models using short
runs of data.

NTIS 
GF• 

l

DL 
DC TA 

B

U~un~z~ced LI
__ ___I

tin

SBv

II
DD ara 1473

2/ M-04-60 2~ ~ U,&,OYIP6~~W#



Approved for public release; distribution unlimited

Parametric Modeling of Linear and Nonlinear Systems

by

Francis Anthony Perry
Lieutenant, United States Navy

B.S., Pennsylvania State University, 1972
M,S. Naval Postgraduate School, 1978

4;- FSubmitted in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

from the
NAVAL POSTGRADUATE SCHOOL

June 1980

Author .____

Approved by:

}.< PA. Titus/ •"R.W. Hamming
Professor of Electrical Enginepring Professor of Computer Sc~ence

R.. Panholzer Wang
"Professor of Electrical Engineering Assoc. Professor of athematics

Assoc. Professor of National
Security Affairs

k,:v S. R, Parker
Professor of Electrical Engineering
Thesis Advisor

Approved by _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Chai' Department of al Enginerring

(i A eApproved by



.. . . ......

"ABSTRACT

The problem of obtaining parametric models for linear

and nonlinear systems based on observations of the input

and output of the system is one of wide ranging interest.

For linear systems, moving average (MA) and autoregressive

(AR) models have received considerable attention and, based

on the Levinson algorithm, a number of very powerful methods

involving lattice filter structures have been developed to

obtain the model solutions. For nonlinear systems the

Volterra series model which is a nonlinear extension of the

moving average model is frequently used.

The purpose of this research is to extend these tech-

niques to more general linear and nonlinear models. Using

the equation error formulation, lattice solution methods

in batch processing and adaptive form are developed for both

single and multichannel autoregressive moving average (ARMA)

models for linear systems and Volterra series models for

nonlinear systems. A nonlinear extension of the ARMA model

is also considered and is shown in some cases to remedy

problems encountered in Volterra modeling of nonlinear sys-

tems. Lattice methods are also developed for the nonlinear

ARMA model and it is shown that the methods obtained for

linear ARMA modeling follow as a special case of the non-

V I :linear results. -

Experimental verification of the methods developed for

single channel linear ARMA modeling is presented and used
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I, to explore the characteristics of the lattice solution

techniques. The results clearly indicate that the lattice

methods are extremely powerful, capable of producing highly

accurate system models using short runs of data.
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1. INTRODUCTION

Tradition~ally, man has attempted to create model~s of

portions of his environment for two principal reasons:

1. To gain insight and understanding as to their

functioning;

2. As a prelud,: to taking some action such as attempting

to exercise control over them.

The field of" physics for instance, is replete with examples

where men have created models to study and explain phenomenon

from planetary motion to the motion and even origin of sub-

atomic particles. In designing machines, engineers routinely

rely on models of the components they use to describe how they

will function, and to obtain the desired results in the finalI

product. Economics is another field where the use of models

abounds for such purposes as identifying, forecasting or

trying to direct trends.

The scope of the modeling problem is quite broad be-

gining with a decision on the type of model to be used, what

physical quantities to measure, how to estimate the para-

meters of the model from the measurement, and finally a yeni-

fication of the model. In the chapters that follow, one

facet of this problem, that off estimating model parameters,

will be explored in detAil for' a number of linear and non-

V ~linear' models.



A. THE PROBLEM STATEMENT

The primary concern of this work is the determination of

discrete time models for both linear and nonlinear, time

invariant systems from sampled observations of the system

inputs and outputs. The general approach underlying all of

the models examined here assumes that the system to be

modeled is described by the equation

y(k) F 0 [.(Rk)+F 2 0[y(k-l)]+F3 0 [u(k),y(k-l)] (1.1)
F1 0, 0  F2 0 3

where Flo) F20 and F30 are functions of past and present

values of their arguments, and u(k) and y(k) are the system

input and output respec'cively. This is depicted in Figure

(1.1). A possible method for modeling this type of system

"is to create a model of exactaly the same configuration with

functions FI 0 , F 2 0 and F 3 0, assume a form for these functions,

operate the system and model in parallel with the same input

"and adjust the parameters of the model functions to minimize

the mean square error (MSE) between the model output y(k)
!iiand the system output. The symbol ""is used here to indi-

cate that the signal is an estimate of y(k). This is depicted

in Figure 1.2 and is often referred to as direct form modeling

since the assumed topology of the system is directly copied

1 Script notation will be used to refer to quantities

associated with the system while nonscript notation will be
used for their corresponding approximants in the model.

10
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S~MODEL

Figure 1.2. A direct approach to system modeling.

by the model. Here the model output is given by

,; -

Euk]FCyk1 ]F uk,~-) (1.2)
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Z? *u and the error signal 15 referred to as th! "output error".

As an example, if the system is linear an appropriate model

is

N

Flo[U(k)] =. a(i)u(k-i) (l.3a)
10S• ~i=0

N
A

F [Y(k-1)] b(i) y(k-i) (l.3b)20

Fa 0 [u(k),y(k-l)] 0 (1. 3c)

(for linear models, F3 0 [-I will be zero). In general

however, the direct form approach will have serious diffi-
culties if either F2 0 [-1 or F3 0 [.] are nonzero since the

A

past values of y(k) used in these functions are themselves

dependent on the model parameters. A mimimum mean square

output error approach results in a system of highly non-

linear simultaneous equations which must be solved to

obtain the model parameters.

To avoid these difficulties, the equation error approach

[Refs. 34 and 23) to system modeling (which uses different

model forms in the analysis and synthesis phases) will be

applied to the problem. The analysis model is depicted in

Figure 1.3 and differs from the direct form model in that

I F2 0 and F3 0 are functions of past and present values of the

delayed system output rather than the analysis model output.

12
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'• •.Figure 1.3. The equa~tion error approach for
S• system modeling.

I iiFor each of the models studied, a general form for the three

•S functions is assumed and the parameters of the model (coef-

•: ficients of the functions) are set to obtain a MMSE solution.

In each case, the MSE cost function is a quadratic function

•i • of the model parameters (due to both the equation error,

• formulation and to the form chosen for the functions) with

• •: a unique miniimum and therefore the solution Ls given by a •

;•. ~system of linear equations, The synthesis model is of the •

same form assumed for the system in Figure 1.1 and uses the

functions FI0' F2O and 30determined during the analysis

• . phase.(
- -. ---- - -,



As an alternative to the topology shown in Figure 1.3

it will occasionally be convenient to consider the error

signal e(k) as the output of the analysis model rather than

the prediction y(k), This can 1,e accomplished in one of two

ways by defining

F2 [y(k)] y(k) - F2 0 [y(k-1)] (l.4a)

or

F3 [u(k),y(k)] y(k)-F 3 0 [u(k),y(k-l)] (l.4b)

and reformulating the analysis model as shown in Figures

1.4a or 1.4b. These model forms are often referred to as

prediction error models since their outputs are the errors

in predicting y(k) rather than the predictions themselves.

There are, however, no substantive differences between the

modeling approaches depicted in Figure 1.3, 1.4a and 1.4b.

The equation error formulation can be generalized to

multiple input multiple output systems as well (henceforth

referred to as multichannel systems) by considering u(k) and

y(k) as vectors of Qi input signals and 0 output signals

and Fl 0 , F20 , F, F F2 and F3 as vector functions. The

prediction error signal e(k) becomes a Q0 -vector of signals

and the model parameters can be set to minimize the trace

of the prediction error covariance matrix P = s{e(k)e(k) 1.

Such generalizations have been developed to a degree in the

4,.,

multichannel filtering literature and will be investigated

. •. further here.

l14
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It is important to keep in mind however, that while the

equation error formulation can be used to find a model solu-

tion, it is an indirect method as opposed to the direct form

method which minimizes the mean square value of output error.

The direct form model has been modifiad to obtain the equa-

tion error analysis model so that the parameters can be ob-

tamned via the solution of systems of linear equations. The

price paid for this simplification in the model analysis

problem is that additive noise on the measured system out-

put will introduce a bias in the model coefficient estimates.

B. OVERVIEW

Chapter II along with appendices A through F provide a

unified review of the existing background theory on minimum

mean square equation error modeling of linear systems. TheI

moving average (MA) and autoregressive (AR) models are pre-

* sented and their relative merits compared. In Section II.C.

the Levinson algorithm [Refs. 9, 10 and 27) for the AR and

MA models is developed, greatly simplifying the solution

process for these models. Section II.D, then shows that the

Levinson algorithm defines the AR and MA models in terms of

lattice filter structures,

These lattice structures have received widespread. atten-

tion and have led to a host of new developments in modeling,

spectral estimation, filter structures and adaptive filtering,

Examination of the properties of these forms have suggested

( a number of new methods for calculating model coefficients

16
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that offer increased accuracy, and in some cases guarantee

Pi model stability even in the presence of correlation estimates

obtained by averaging over short time intervals [Refs. 5,

20, 29 and 363. Applied by Burg [Ref. 53 to spectral esti-

mation, these methods allow the determination of power

spectra via AR modeling from very short runs of data without

any need for the use of a window function. In finite pre-

cision arithemetic implementations, the lattice structures

•I ýhave been shown by Markel and Gray [Ref. 33] to be less sensi-

tive to roundoff noise and coefficient quantization than

direct structures and have led to the design of other

structures that offer improved performance over conventional

parallel realizations. Griffiths has shown that these

lattices can be implemented adaptively [Refs. 16, 17 and 18)

and that they offer the potential for more rapid convergence

than conventional LMS adaptive filters. Recently Morf [Refs.

36, 37 and 38) has also used these lattice structures to

implement a recursively updated deterministic least squares

adaptive scheme. It is readily apparent therefore, that th,.

original work of Levinson and the lattice structures that

have evolved from it have had an important impact on the

field of digital signal processing,

In Section II.E., the multichannel generalization of many

of the single channel AR and MA modeling results is presen-

ted. After a discussion of the basic multichannel AR and MA

models [Refs. 26 and 45], the multichannel version of the

Levinson algorithm originally developed by Whittle [Ref. 56),

17



and Wiggins and Robinson [Ref, 61) is presented. A new

form for the models is introduced and used here however,

to facilitate the application of these results later in

various other modeling problems. Multichannel lattice

structures are then derived and from them alternative

solution methods for the modeling problems are developed.

Finally, in Section II.F. the LMS adaptive algorithm

t•' [Ref. 58) is reviewed and the adaptive implementations of

the lattice structures due to Griffiths are presented.

F In Chapter III, the more general autoregressive moving

average model is presented using the equation error formu-

lation attributed to Kalman [Ref. 23). After a brief

discussion of the model, new model transition formulas

are developed showing how the ARMA model is related to the

simpler and less general AR and MA models. System input

signal requirements for the ARMA modeling process are ex-

plored and it is shown that the power spectrum of the ",iput

signal can be considered as a frequency dependent weighting

function in the model optimization. Then the main result

of the chapter is presented. With suitable assumptions,

a recursive in order solution method for ARMA modeling

(the (n+l)zst order solution is obtained from the n-th

order solution) is obtained based on the Levinson algorithm for

multichannel AR models. From this, lattice solution methods

for the ARMA model are developed in both batch processing

and adaptive form. (Batch processing here refers to assuming

ergodicity and estimating correlations with time averaging).

18
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A similar result has recently been presented by Morf [Refs.

37 and 38] with the assumption of a white noise input sig-

nal to the system. The results presented here follow from a

different approach without the assumption of a white noise

input. Experimental results are also presented verifying

the methods and theory, and showing their advantages (and

disadvantages) over conventional ARMA modeling methods.

The programs used in these simulations are listed in Appen-

dix J. In Section III.F., and Appendix G, it is shown that

these single chainnel methods readily extend to the multi-

channel ARMA model, and as one would expect, can be obtained

as a special case.

In Chapter IV two types of ncnlinear models, the Volterra

series model and the new nonlinear ARMA model recently pro-J

posed by Parker [Ref. 64), are considered. After a brief

discussion of the Volterra model, it is shown that the

solution can be obtained using multichannel MA lattice mLethods

if the regular form of the Volterra kernels is used in place

of the conventional symmetric form. Then the nonlinear ARMA

model is presented in Section IV.B. and it is shown that for

many systems, this model can remedy the problem of the large

number of terms (ideally infinite) required by the Volterra

model to represent the system in much the same way that the

ARMA model solved the problem arising in the MA model. Inf Section IV.B.2 it is also shown that by using the regular

form, the solution for the nonlinear ARMA model can be

obtained using multichannel AR lattice methods and that the

linear ARMA model solutions developed in Chapter III follow

19



I ~ as a special case. Appendix I then presents two examples of

J ~ nonlinear ARMA modeling. First a somewhat academic example

of a cascade of linear and nonlinear subsystem~s is given

then a nonlinear ARMA model is proposed for the tracking

behavior of a phase locked loop.

Finally, in Chapter V, two applications for the linear

and nonlinear ARIIA modeling methods developed in Chapters

III and IV are discussed briefly. (They are reduced order

modeling of complex systems and modeling for fault detection

1 and diagnosis.) Then in Section V.B. conclusions are drawn

on the results ot' this work and a list of significant open

I questions (both old unanswered questions and new ones

raised here) is compiled.

22



II. DISCRETE TIME LINEAR SYSTEM MODELING; BACKGROUND THEORY

While few physical systems are absolutely linear, linear

models often suffice to accurately describe their behavior

under normal operating conditions, A rich body of theory

has therefore been developed for the analysis and modeling

of linear systems [Ref. 22] and a thorough knowledge of

this theory is vitally important to anyone interested in

understanding the functioning of these systems. The con-

tinuing expansion in the availability of powerful, inexpen-

sive digital computing capabilities has also made discrete

time techniques take on a special prominence. With this

as motivation, the portion of the background theory in

discrete time linear modeling upon which much of the re-

mainder of this work depends, is developed here from the

unifying standpoint of a minimum mean square equation error

model solutioi.
The moving average and the autoregressive models are

developed first for single input single output systems.

Their solution via the Levinson algorithm is presented and

from this algorithm alternate solution methods based on

lattice filter structures are derived. It is shown that

almost all of these results can be generalized to the

multiple input multiple output case and the corresponding

multichannel modeling methods are developed. Finally,

4 adaptive implementatiov. of the modeling methods for both

21
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the conventional tilter structures and the lattice filter

structures is presented as an alternative means of obtaining

modes. solutions.

A. MOVING AVERAGE MODELS

The moving average (MA) model was among the earliest

discrete models developed, [Refs. 4, 11 and 19] It estimates

the current value of the output of a system as a weighted

combination of the present value and N past values of the

system input where N is the order of the model. The problem

then is to estimate the weighting function or impulse re-

sponse of the MA model in some fashion, Since the MA model

characterizes a system in terms of a finite duration approx-

imatior, of its impulse response and since any linear time

invar:iant, single input single output system is completely

specified by its impulse response, the MA model is quite

general and can be used for a wide class of systems. De-

fining (N+l)-vectors of model weights and input data as

+T
a [a(0) ... a(N)] (2.1a)

1 A superscript "+" is used to indicate that in spite of

the fact that these vectors are used for a N-th order model,
they are (N+l)-vectors with elements indexed from zero to N
rather than from one to N. Superscript T demotes transpose.

2 Superscripts in parenthesis will later be added to the

model coefficient vectors to explicitly indicate their de-
pendence on the order of the problem being solved, They are
omitted for simplicity however whenever doing so does not

" 41- result in ambigious notation.

22
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T
S(K) [u(k) ... u(k-N)] (2.1b)

':

the MA estimate of the system output becomes

; ~NT

+ T +
y(k) - a(n)u(k-n) u (k) a

n;O

In terms of the modeling approach of Figure 1,3, F20 and

F are assumed to be zero. F1 is a linear time invariant
30

function of past and present values of u(k). Assuming sta-

tionarity, an expression for the mean square value of the

error as a quadratic function of the weights (a(n)} is

"given by

6 +T + +T

E aa - 2 a + R (0) (2.2)
u u u y

where in general R (n) ={v(k)w(k+n)}, r Evw e(v(k)w(k+n)},
vw-w

R : (v(k)w(k)T and e( } denotes expectation.

Ru(0) ... Ruu(--N)

RS+ + -4.
u u

]T
-u+ ER [y(O) R Ruy(N)flu y ,

The surface described by equation 2.2 can be pictured as a

concave hyperparaboloid with a unique minimum and the

i_23



characteristics of such a surface are described in Appendix

F. For example when N-l, the MSE as a function of a(O) and

a(l) appears as shown in Figure 2.1.

E

/

/ , ,"a (0)--Oo

a(l)

Figure 2.1. MSE as a function of model weights
for a first order (N:I) MA model.

The minimum mean square error solution for the coeffi-

cients is given by

+aRr (2.3)._R ~+ + _aOPT - r + 2)
uu uy

24
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and the corresponding minimum value of the cost function
SZ2 is

S+T
E E2 R yy (0) - r(24)
min OPT

Equation (2.3) is a discrete time matrix form of the Wiener

Iopf equation

Ruy('r) f Ru(T-X) h(X) dX (2.5)

where u(T) and y(T) ar, the continuous input and output

signals and h(r) is the system impulse response. The pro-
+

cess of finding SOPT in equation (2.3)is the discrete time

equivalent of deconvolving the input autocorrelation func-

tion from the cross correlatiorn of input and output to

obtain the system impulse response in equation (2.5).

Consequently the MA modeling process has been called dis-

crete Wiener filtering or stochastic deconvolution.

This model constitutes a direct form approach as defined

in section 1.1 but does not encounter difficulty in obtaining

the model weights since both F2 0 and F3 0 are assumed to be

zero. As such, it possesses the advantage that the estimates

of the model parameters will not be biased by the presence of

additive noise on the output of the system as shown in

Figure 2.2, as long as the noise is uncorrelated with the

input signal. This can readily be seen by replacing v in

equation 2.3 by y + v. Additive noise on the input signal
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Figure 2.2. Moving Average Modeling

however will adversely affect the modeling process, and

introduce a bias in the solution for the model coefficients.

In the transform domain, the model can be represented by

.1a polynomial in powers of z -1and has therefore been referred

to as an all zero model

-n
A(z) a 4(n) z (2.6)

n=Q

In terms of this transfer function relationship, any bias

introduced in one or more of the model coefficients has the

* effect of shifting the zero locations of the model.

In summiary a discussion of the advantages and disad-

vantages of MA modeling is instructive.

Advantages:

-1) The solution for the model parameters involves

Ionly linear equations.
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2) The solution is unbiased in the presence of

additive noise on the system output as long as
the noise and system input are uncorrelated.

3) Since the model is nonrecursive it is always

stable.

Disadvantages:

1) The number of terms (N+l) needed for sufficient

model accuracy may be quite large.

2) The solution of a large system of equations is

required.

3) The required correlation terms are usually not

known and must be estimated by assuming ergodi-

city and averaging in time. This requires the

data to be windowed and set to zero outside the

averaging interval in order to maintain the even

symmetry of the autocorrelation functions.
9 .4
4 ) The modeling process is restricted to linear

time invariant systems.

B. AUTOREGRESSIVE MODELS

The autoregressive (AR) model attempts to deal with one

of the difficulties (1) encountered in MA modeling; the need

for a large number of coefficients to accurately describe

the model. [Refs. 2, 4, 11, 19 and 28] In AR modeling,

which is st ietimes referred to as linear prediction, a pre-

diction error approach is considered where

"* N
e(k) y(k) - • b(n) y(k-n) (2.7a)

n=l
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This can be written as

e(k) y(k) - y(k)

- y(k) - y(k) b (2.7b)

with

E(k) [y(k-1) .'. y(k-N)]T (2.7c)

and

b £b(l) ... b(N)T (2.7d)

Here FI 0 and F30 are assumed to be zero (this assumption

- will be modified later to allow a dependence on the input

signal in the synthesis phase) and F2 0 provides an estimate

of the current value of the system output as a weighted sum

of N past outputs. The mean square value of prediction

error as a quadratic function of the weignts (b(n)} is

given by

E b R b 2 1)yr +Ryy0 (2.8a)

and the corresponding MMSE solution for the weights is

given by

.yy="OPT -r(2yb
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with

E R (0) - T (2.8c)

Using equation 2.7a, an expression can be written

in the transform domain for the prediction error model which

accepts y(k) as its input and produces the error sequence

e(k) as its output.

SE(z) Ny(z) 1 - • b(n)z-n B(z) (2.9)
n=-

If it is assumed that the system input output relationship

can be represented in transfer function form with

Hz) (O a(J) (.0
=Z, H z)- b(n) z- n (2-.10"

and that the model parameters can be determined so that B(z)

8(z), then the prediction error output will be exactly

e(k) a=(O) u(k). For this reason AR prediction error

mi modeling has often been called inverse filtering since the

prediction error filter essentially reverses the actions of

the system (with the exception of a gain). Since the

analysis model is in this inverse form rather than in the

direct form, the presence of additive noise on the measure-

ment of the system output as shown in Figure 2.3 will intro-

"duce a bias in the solution for the model parameters. This
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Figure 2.3. Autoregressive prediction error
modeling as an inverse filtering
process.

has the effect of shifting the roots of B(z) which are es-

timates of the poles of the system and is the price paid

for the ability to obtain the model solution from a set of

linear equations.

Thus far, only the analysis portion of the AR modeling

process has been discussed. With the inverse filtering

interpretation of the prediction error analysis model, a

reasonable synthesis model is given in transfer function

form as

a(0)
H~z) =B ( 2.11)

with the gain term set so that the mean square value of

a(0) u(k) is the same as that of the prediction error

signal. Thus it follows that

-a(O) 2 {e(k) (2.12)
uu
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Since the synthesis model is in the form of an all pole

filter, an appropriate impulse response with infinite dura-

tion might be obtained using a low order model (small N),

a result that is impossible to obt6in in any f..nite order MA

model. This is not to say however that a low cr even finite

order AR model will always be an appropriate model for any
linear system. If the transfer function representation for

a system contains both zeros and poles, no finite order AR

or MA model can serve to exactly represent it. This fact

can be understood by considering the form of a geometric

series

1 = (Cz-l)n for jCz' 1 <1 (2.13)
1-Czl n=O

which shows that a single pole can be represented by an

infinite number of zeros ard visa versa. Thus if the sys-I
tem has a single zero, a high order AR model may be required

to represent it with sufficient accuracy.

In summary, the advantages and disadvantages of AR

modeling may be listed as follows:

Advantages:

1) The solution for the model parameters involves

only linear equations.

2) Sometimes an appropriate infinite impulse re-

sponse can be obtained with a small number of

parameters in the model.

,. 3) Direct knowledge or measurement of the system

( input is not required for determing the system

poles. Only a knowledge of its mean square
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value is necessary for determining the gain

factor.

Disadvantages:

1) The model is biased by the presence -,ditive

noise on the measured system output signal.

2) The number of terms required for sufficient

model accuracy may be quite large if zeros are

present in the system. If this occurs, the

inversion of a large matrix will be required.

3) The required correlation terms are usually not

known and must be estimated by assuming'ergodicity

and using time averages.

4) The modeling process is restricted to linear

time invariant systems.J

This list of advantages and disadvantages is quite

similar to the one compiled for MA models with two notable

differences; the bias in the model and the absence ofa

requirement for input measurements. This second point is

modeling to many problems where an input signal is unmea-

surable or indeed does not exist including speech modeling

and spectral estimation. [Refs. 2, 5, 12, 15, 21, 32 and 44]

The noise problem has restricted the process to applications

where measurements with sufficiently high signal to noise

ratio are available, making the effects of the bias minimal.

[Refs, 24 and 43]
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C. RECURSIVE IN ORDER SOLUTIONS FOR AR AND ILA MODELS

p •The preceeding disucssions of the AR and MA modeling

problems tacitly assummed an apriori knowledge of the correct

model order. If this knowledge is not available a reasonable

approach for determining the correct model order must be

developed [Ref. 53). A commonly employed strategy is to

successively increment the model order while observing the

MSE until further increases fail to substantially reduce the

MSE. This requires solving for a number of different models

and can be an arduous task if equations (2.8b) or (2.3) are

employed directly.

The autocorrelation matrices appearing in the AR and

MA model equations (2.8b) and (2.3) are highly structured

matrices (both Toeplitz and symmetric) and this fact can be

exploited to facilitate the solution of these equations.

The Levinson algorithm (Refs. 9, 10 and 27) makes use of

this structure to obtain model solutions recursively in

order, that is, the solution for the n-th order model is

assumed to be known and the solution for the (n+l)-st order

model is then obtained from it. In this manner it is pos-

sible to start with a first order AR or a zeroth order MA

solution given by a single equation and build up the

desired order solution. The AR model will be treated first

since it is a special case that simplifies the analysis.

The simplifications arise due to the fact that the r yy vector
on the right hand side of equation (2.8b) is made up pri-

marily of terms also appearing on the left hand side in R
-yy
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Superscripts in parenthesis are used to explicitly indicate

the order of the problem when specifically needed.

I. The Levinson Algorithm For AR Modeling

The n-th order AR model solution of equation 2.8b

is given by

(n) (n) (n)R b :r(2.14)
-yy - -yy

The Levinson algorithm assumes a relationship between the

n-th and (n+l)-st order solutions given by

bn~ n) _

b(nl) -+ (2.15)
0 Lk n+l)

e)] [ni]

and solves for the vector e and the coefficient k(n+l)

Define permuted versions of the vectors b(n) and ryCn) as
f(n) and (n) by reversing the order of their elements.

-. yy
b~R)(n)

f(n) (n Ryn Ryy (n)

f-(n) F (n) (2.16)
bl(n)

Sb(l) Ryy (1)

Because of the Toeplitz symmetric structure of the auto-

correlation matrix, equation (2,14) can also be written as

R n) f(n) (n) (2.17)

-yy - 2yy
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and this relationship is essential in the development of the

Levinson algorithm. (To apply the algorithm therefore when

time averaged estimates of the needed correlations are used,

the data must be windowed prior to averaging to maint-in the

even symmetry in the autocorrelation function estimates

"produce the required structure in the autocorrelation matrix.)

Making use of equation (2.15), in the (n+l)-st order version

of equation (2.1 4 ), and using the relationship of (2.17) to
sovefo ~(n) (n+l)

solve for e and k results in

(n) f(n)k(n+l)

-f k (2.18a)

and

(n) (n)R (n+l)- (n)Tb(n)
kn = (2.18b)R (0) b b(n)Tr (n)

yy -yy

Therefore, in using equations 2,15 and 2.18 to obtain b(nl)

-(n) .from b via the Levinson algorithm only one new piece of
(n+l)information, kn , need be calculated. The denominator

of equation (2.18b) can also be recognized from equation
(n)an(2,8c) as the MMSE for the n-th order AR model E2 and

thus there is little concern over the possibility of it being

zero. If the n-th order solution produces a perfect predic-

tion (zero MSE) there is no point in trying to find a better

prediction by increasing the order to n+l. The evaluation of

equation (2.18b) can be further simplified by observing that

the MSE also follows a recursion from one order to the next
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given by

~2

(n+) (n) 2 (n+l)E E2 l k (2.19)

making it unnecessary to evaluate the denominator at each

value of n. (Details of this derivation are omitted here

but included in Appendix A in the derivation of the more

general multichannel Levinson algorithm.) This relation for

the propagation of mean square prediction error also leads

(n+lJ)to the restriction that k must be bounded in magnitude

by unity.

2. The Levinson Algorithm For MA M)deling

Next consider the n-th order MA model given by

(n) (n) (2. 20)
u uu u y

and again, assume a relationship between the (n+l)-st order

and n-th order solutions given by

+(n)
+r (n+l)

-+(n+l)F a 1
U•i! • a + L--- (2.21)g (n+l)

0 9n

Notice that in this n-th order problem, R (n) is actually a
U u

n+l by n+l matrix and could be written as R l) Define
Uuu
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R(1) 1 (nn) u22

(n') -u -u LRl n+j (2.22)

RR (1)

Using equations (2,21) and (2,22) in the n+l order MA model

equation it follows that

(n+l),(l

where nf is defined in a manner similar to (2.16) and is

comprised of the coefficients that arise in an (n+l)-st

order autoregression on the input signal u(k),

Therefore to obtain a moving average model relating the

system output signal y(k) to the input signal u(k), an

autoregressive model for the system input must first be

solved. Furthermore,

(n+l)T +(n
R (n+l )-p ag(n+l) -uy -uu

- . .. .. -- • (2.23b)(0)-_u(un+i) Tf(n+ I)

R(0)-u -Ruu

* and the denominator of equation (2.23b) is the MMSE in the

(n+l)-st order autoregression on the signal u(k).

It is significant to note that in applying the

Levinson algorithm to find a given order AR or MA model, all

lower order models along with their MSE's are obtained.

Also, intermediate quantities emerge (the{k (n)} in the AR

? 3
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(
model and the {k and tg I in the MA model) which fully

characterize the models and could be used as an alternative

to the (a(n)} or {b(n)} coefficients. This point will be

developed further in subsequent sections.

D. LATTICE FORM AR AND MA MODELS

The Levinson algorithm derived in the previous section

can be used to derive lattice structures to implement the

MA model and the AR analysis and synthesis models as alter-

natives to a tapped delay line type of implementation using

the coefficients a(n) or b(n) directly. [Refs. 29, 30, 32

and 33)

1. The AR Modeling Lattice Structures

From the relationship between the (n+l)-st and n-th

order solutions to the AR modeling problem determined in

"£ equations (2.15) and (2.18a) it follows that the transfer

function of the prediction error model can be written re-

cursively in order as

B(n+l)(Z) B(n~z) - k(n+l)z-n'lB(n)(z"I) (2.21)

Defining a new transfer function

, •(n)(z) =z-nB~)zI (2.25a)

equation (2.24) can be written as

B(n+l)(Z) B~n(z) k(n+l)z'l§(n)Cz) C2.25b)

38
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"and an expression can also be written for f(n+l)(z) recur-

sively in order by rewriting equation (2.25a) for order

(n+l) and substituting equation (2,24) yielding.

.(n+l)(z) z (n)(Z) -k(n+l (z) (2.25)

As discussed earlier in connection with equation (2.9),

Sn(z) describes the n-th order prediction error model and

when its input is the system output Y(z), it produces the

"n-th order prediction error signal.

(a) (z)
E (z) B ( Z) Y(z) (2.26)

In the time domain t:his signal can be interpreted as the

error in predicting y(k) forward in time from a

weighted combination of the n past values (y(k-').y(k-n)l.

To understand the significance of I(n)(z) consider the out-

put signal when this model is excited by Y(z)..91

,;~ =.,n[1 - b(n)('i)z'-i]y(z) (2.27)
•' L=I

-n)

In the time domain, e(n) (k) can be interpreted as the error

Sin predicting y(k-n) backward in time from a weighted

'ombination of the future signals {y(k-n+l)-'y(k)}, These

n-th order forward and backward prediction processes at time
Vi.
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ko are illustrated in Figure 2.4. Henceforth an overbar 1H0• ~will always be used to denote quantaties associated with

backward in time predictions.

y(k)

. Forward
Prediction

Backward
r Prediction

k on k0 k
0 0

Figure 2.4. Forward and Backward Prediction Error
Filtering.

From equations (2.25b) and (2.25c) equations can be written

recursively in order for these forward and backward predic-

tion error sequences a.s:
(nil)e(n) k(n+l)-(n)

e (n+)(k) e (k) - n) (k-i) (2.28a)

j.(n+l)(k) -en)k- - )e (k) (2.28b)
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A NIoting that the prediction error for a zero-order AR pre-

dictor of y(k) (or no predictor at all) is just the signal

y(k) itself,

C! o) (o)
S•,0)

e (k) e (k) y(k) (2.28c)

the prediction error filter can be drawn in lattice form as

shown in Figure 2.5 for a second order model,

(1)( 
(2)

e (k e Wk

y(k)

~~1 ( 2) k

Figure 2.5. Lattice Form Of A Second Order Pre-

p[ diction Error Model.

This structure has many interesting properties,

among the most important of which is the successive de-

coupling property. In going from one order AR model to the

next, all of the previously determined transfer function

coefficients {b(n)} will generally change. The Levinson

i-f algorithm shows however that only one new piece of infor-

mation is needed to obtain the optimum (n+l)-st order

solution from the optimum n-th order solution (see equation

(2.24)). In terms of the lattice filter of Figure 2.4 this
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•E • means that given the optimum n-th order model in lattice

form, one need only add another stage to the structure,

setting the coefficient of that stage k~+)to minimize

Sthe mean square value of e ~n~l)(k). Nothing in the first

S~n stages need be changed, The overall high order minimi-

!•: zation problem is in this fashion decomposed into a se-

B•<•li.quence of first order minimizations, one at each lattice

,, i•stage.

' • Another important property of the lattice which can

•! • be proven and will be of use later is the orthonogalization

•: of the backward prediction error sequence ERef. 32) which

if 'istates that

Thus it is seen that a set of orthogonal signals (the back-

ward prediction errors at the various stages) are generated

as a by-product of the lattice model.

•. ' As a consequence of the successive decoupling pro-

I• • perty of the lattice, a number of alternatives to equation

S(2,18b) for determining the lattice coefficients can be

:' ~found. The most obvious method is to set k(n+l) to

S~explicitly minimize the mean square value of forward pre-

i diction error in equation (2.28a) at the (n+l)-st order

S •. stage given the best lattice of order n, This is termed

the forward method and is denoted by a subscript F on the

II .. ... I I i , . . . .. . .. . . - ~ .•'1 ., a4 2! • . : •' I. ...___. T f



J: , lattice coefficients. The resulting solution is given by

kF(n+l) e{e(n)(k) (n)(k-l)} (2.30)
F £{;(n)(k-1)2

Alternately, the mean square value of the backward predic-
tion error signal in equation (2.28b) could be minimized to

determine the coefficient resulting in the backward method

solution given by

H kn+l) (n W ;n) (k-l)}Bk in (2.31)
B{e (n) 2

Since, however, the forward and backward prediction error

transfer functions are given by B (n~z) and ZnB(n)(zl),

it follows that

*I B(n)(z), = g(n)(z)j (2.32)

and since they are both driven by the same input, Y(z), the

mean square values of both the forward and backward predic-

tion error signals at a given stage are the same making
equations (2.30) and (2.31) equivalent. It is also possible

to show that they are equivalent to equation (2.18b).

Recognizing that the required expectations will eventually

have to be estimated by using time averages, these two
(n+ 1)methods fov calculating k will not in general be

exactly equivalent and it might be preferable to use the

arithmetic mean of the mean square values of forward and

43
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backward prediction error as a cost function

•[{(n+l)(k2 + eg(n+l)( 2](23)
+C ~ W k)1 (2.33a)

This leads to a third method derived by Burg [Ref. 5] in

his work on maximum entropy spectral analysis and given by

•, • (n l) 29{(n)(k)(n)k-)
i kB (nl 2e{e n),k2} i(k-))kl (2.33b)

k £e (k) 1+e{e( n(k-1)2

Notice that k is the harmonic mean of k~n+l) and k233l)

BG F B
A fourth method due to Itakaura and Saito [Ref. 20) can also

be derived which results in

n+l) e{e (n) (k)(n)(k)} (2.34)k iS 2.. . . . .2 .n
1 {e (k)

and k(n+l) is simply the geometric'mean of the forward and

is
backward coefficients.

Since equation (2.34) is of the form of a normalized

correlation kis will always be bounded by unity in magnitude

as required by equation (2.19). Fur .hermore since

Harmonic Mean < I Geometric Mean I

it follows that k(n+l) will be similarly bounded. These• itfollws tat BG

bounds are significant since Markel [Ref. 32] has shown that

Ik(n) 1<1 is a necessary and sufficient condition to ensure
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(n)
that the roots of B (z) be within the unit circle guaran..

teeing the stability of the n-th order all pole model. No

such guarantees of model stability exist when the forward

tPor backward solution methods of equations (2.30) and (2.31)

/o are used with the correlation estimates obtained by aver-

nil aging for finite time intervals,

i~h To determine the AR synthesis model in lattice form

it is only necessary to rewrite equation (2.28a) as

(n) (n+1) (+1 ;ne W(n)k e (k) + k(n+l)e(n) (k. 1) (2.35)

Together with equations (2.28b) and (2.28c), this describes

the structure shown in Figure 2,6 for a second order case

and when it is driven by the second order prediction error

signal, it will reconstruct y(k) exactly. Thus it imple-
1ments the transfer function •(2)-- z ore, in general, when

stages are used -(N)(z)" ' Recognizing that if the pre-
B (z)

diction error model is an accurate model of the system

denominator polynomial, e(N)(k)=a(o)u(k), this input signal

is used in the synthesis model. Because of analogies with

transmission lines and wave propagation models, the lattice
coefficients have been referred to as reflection coefficients.
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(2) e (k) e (k)

Y y(k)

e(2)k

( (k) (k) i(c) W

Figure 2.6. Lattice Form Of The All Pole Synthesis
Model For The Second Order Case.

2. The MA Modeling Lattice Structure

A similar lattice form is applicable to the MA

'modeling poblem. From equations (2.21) and (2.23a) the

id transfer function of the IIA model can be written recursively

in order as

A(n+l)(z) A (n)(z) + g (n+l)Bgfltl(z) (2.36)

where, as discussed in connection with equation (2,23a),

Snýý(z) is the backward prediction error transfer function

for an autoregressive model of the input signal u(k).

SMultiplying both sides of equation (2.36) by U(z) and trans-

forming into the time domain it follows that

!•i •~~ ~~(n+l)-•n n n+J..

(n+l (k) I y( (k) + g e (k) (2.37)

L i _ _ __ 4_6
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"where (k) is the backward prediction error signal from

the autoregression on the input signal u(k), and can he

obtained by operating a prediction error lattice with u(k)

as its input. Then with the additional term in equation

(2.37) the lattice form of the MA model can be drawn as

shown in Figure 2.7.

(0) (-) (2)

((2)(yy(k)

(0) (2)
gg

Figure 2,7. Lattice Form Of The MA Model (Second
Order Case).

It was stated earlier that the AR prediction error

lattice, as a by-product, forms a set of orthogonal or

uncorrelated backward prediction error signals from its

input. Here in the MA model, these orthogonal signals are

linearly combined to form the IAA 4stimate of the system

output. If the input signal u(k) is a white process, an

47
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K• . examination of any of the solution methods previously dis-

cussed will show that all of the {k(n)} lattice coefficients

will be zero since the delayed samples of a while process
•I' i• { (n)

are already orthogonal. Otherwise the {k lattice

coefficients will be set to orthogonalize the backward pre-

diction error signals. As a consequence of this, the

weighting coefficients g(n) can be set independently of

each other; that is g can be set to minimizeI-i

S.{eon)(k) 2e W e{[y(k) 2(n k)] 2 } (2.38)

given the best prediction of order n-l,y n)(k). This results

in an alternative expression to equation (2.23b) for g(n)

given by

9 ln(k) 2  "(n) (k)2 (2.39)

Here en)(k) is the error between the system output and its

n-th order MA estimate.

E, MULTICHANNEL AR AND MA MODELING

Both the AR and MA modeling problems previously dis-

cussed, as well as their solution via the Levinson recursion

and lattice filter methods, can be generalized to the

multichannel case by replacing the various signals with

signal vectors and replacing the weighting coefficients

with appropriately dimensioned matrices of coefficients.
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r
A discussion of this appears in Robinson [Ref. 45]. ThA

equations that describe the AR and MA models and their MMSE

solutions are repeated here for convenience.

iN
AR y(k) = b(i) y(k.-i) (2.40a)

• i~l

R y(0) R (-l) .. .R (l-N) b(1 R (1)

yy yy yy yy

R (1) R (0) , . .. . R (2-N) b(2) R (2)

yy yy yy -yy

* I (2.40b)

R (N-2) . . . . R (0) b(N) R (N)
yyyy yy y

A N
"1 ~ MA y(k) . a(i) u(k-i) (2.41a)

-1=0

Ruu(0) Ruu(-l) , . Ruu(-N) a(0) R (0)

R ((1) R (0) . . . . . R (2-N) a(l) R (1)
uu uu uu -uy

S. , . . • (2.41b)

'.Ruu(N) R (N-I) . . . . R (0) a(N) R (N)
uuu uu uy

'1 In a multichannel generalization, y(k) becomes a vector of
Q0 output signals, u(k) becomes a vector of Qi input signals,

b(i) becomes a square matrix of Q0 x Q0 coefficients and a(i)

becomes a Q0 x Qi matrix of coefficients so that the N-th
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order mutcanlmdlequations cnbe wri~tten as

A (k) h (n) X~,-n (2.42a)

n~l

MA Y.(k) a(n) u(k-mn) (2.'42b)
n= 0

The equations for the MMSE solutions (2.40b) and (2.141b)

generalize directly as well by replacing each correlation

coefficient R (n) by matrices of correlation coefficientsvw

given by

R (n) {v(k) w(k+n)T(243

where v(k) and w(k) are signal vectors. This causes the

overall correlation matrices to take on a block Toeplitz

str'ucture, The transfer function relationships of the AR

prediction error model and the MA model take the form of

matrix polynomials

B(z) b(l) z + '"+ b(N) z (2.I44a)

A'z) aC0) + a(l) z~ ~ ()~(2.~44b)

so that

E(z) [I B(z)] Y(z) (2 .i44c)



Y(z) A(z) U(z) (2.44d)

where E(z) is the transform of the multichannel AR prediction

error vector e(k) =(k) - y(k), Alternately, equations
(2.44a) and (2.44b) can be written as single matrices, whose

entries are polynomials in z rather than scalars. B(z) is

of necessity a Q0 x Q0 square matrix polynomial while the

dimensions of A(z) (Q0 x Qi) depend upon the number of

inputs and outputs which need not be the same.

In the single channel AR problem, B(z) provides the

transfer function of the prediction error, or inverse fil-

ter, and must be inverted to obtain the all pole synthesis

filter. The stability of the synthesis model therefore

depends upon the roots of this polynomial, The matrix

polynomial [I-B(z)] in the multichannel AR problem is, in

like fashion, an inverse filter representation and must be

inverted to obtain the synthesis model. This inversion of

a matrix with polynomial entries is defined in the same

manner as the inversion of a square matrix with scaler

entries, To see what this inverse matrix polynomial looks

like consider as an example a two channel autoregression

with a prediction error filter given by

Plbb21 (Z) 1 - b 22(Z)

1-b

(. ...... .• . , '" I I



A* Applying Cramer's rule, the inverse matrix polynomial is

written as

1-b 2 (z) b21 (z)

b12 (z) 1-b11 (z)

and it is apparent that the stability of the multichannel

synthesis model is dependent upon the locations of the zeros

of the polynomial detEI-.B(z)].

modlsis wtaihatfhaocutoaril beeeaiain osefi the litRatureA

Thdlsis shtrhaightforward l ge eraiain ofei the AitranduMA

to develop the multichannel models and sim~ilarly derivedI

generalizations of the Levinson algorithm to solve them

recursively in order are available as well. [Refs. 57 and 61)

The multichannel AR and MA modeling problems and their -
solutions via the Levinson algorithm can however be recast

as shown in Appendix A to make them compatible with the form

of other linear and nonlinear modeling problems. To avoid

confusion later in the application of the results, the

derivations in Appendix A have been carried out in a generic

form with x and d used to represent some of the signals and

coefficients respectively. The symbols u. y, a and b have

been reserved to denote system input, output and weighting

coefficients.

Equations (A.7) and (A.26) provide the MMSE solutions to

( the multichannel AR and MA modeling problems in forms
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different than (although entirely equivalent to) those

resulting from the straightforward generalizations of
equations (2.40b) and (2.41b), The multichannel generali-

zation of the Levinson algorithm derived in Appendix A

can, with one exception, be seen as a matrix algebra

generalization of the single channel algorithm and as, one

would suspect, the single channel algorithm results as a

special case of Appendix A. The one exception is that in

the multichannel case, the n-th order forward and backward

prediction error models are not simply related to one

another. The single channel AR backward predictor is given

by (zl) but in the multichannel case the backward

prediction is not z nEI-D(Zn)('l].

Because of this, two reflection coefficient matrices

K and R are required at each stage in the recursion to

relate the n-th and (n+l)-st order solutions rather than

just one as in the single channel problem. Also, in the

single channel case, the fact that IB(n)(z)l
(n) 2,, -(n) 2}

and therefore e{e Wn(k) }m{n(k) } made possible the de-

rivation of the Burg algorithm and the Itakaura-Saito al-

gorithm, which ensured the magnitude of the reflection

coefficient was bounded by unity and that equation (2.19)

would result in nonnegative values of MSE. In the multi-

channel algorithm however, the forward and backward predic-

4iI tion error covariance matrices and their traces are not the

same (except for P(0) and F(0) and as a result, straightfor-

4 ward generalizations of the Burg and Itakaura-Saito algorithms

are not possible.
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I Consequently with correlation estimates obtained by averaging

over finite time intervals, there are no guarantees that

equations (A.18a) and (A.19b) maintain the positive definite-

ness of the prediction error covariance matrices.

Multichannel generalizations of Burg's algorithm due to

•INuttal [Refs. 40 and 41], Morf [Ref. 39), and Strand

[Ref. 50) which guarantee the positivity of the covariance

matrices. are available but are not explored here because.

of their complexity and because they would take the dis-

cussion too far afield.

The relations of equations (A.20) and (A.30) which are

repeated here for convenience permit the construction of

the multichannel AR analysis and synthesis lattice

structures and the MA lattice structure. For the multi-

channel AR model,

_(n+l) K(n+l) T
e (k) e (k) - K(nl (k-l) (2.45a)

en (k) e (k-l) - e (k) (2.45b)

F i(0)gure (n ) (k) x(k) (2.45c)

and the corresponding prediction error lattice is shown in

Figure 258.
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U (0) (1) (2)

x(k)

T T'

Figure 2.8. Multichannel AR prediction error lattice
structure for a second order model. All
signal paths are vector paths and summa-
tions are vector summations. The multi-
plications indicate piemultiplication of
the signal vector by the specified coef-
ificient matrix,

To obatin the multichannel AR synthesis lattice, equation

[ (2.45a) can simply be rewritten as

e(n)(k) e(n+l)(k + K(n+l) )(k-l) (24 6)(n

resulting in the structure shown in Figure 2.9.

(2) (1) (k0)e (k) e (k e _ ): _k

o•• " (2) T ,KlT

j(2) ()•1 k
(k) e (°1 (k)

,• ... Figure 2.9. Multichannel AR synthesis lattice
t structure for a second order model.

i
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u For the multichannel MA model, equations (2.45) and

"(n+ 1) '(n) (+)T (T(2 7)
(k) Z (k)+Gn -+1 k)(.7

describe the lattice structure shown in Figure 2.10.

4+

(2)2

n~x TkT

Figure 2.10~.9Mlihne )AA latc structure
for a second order model. )

,,*" As in the single channel case, the multichannel predic- i

tion error lattice exhibits the successive decoupling pro- :

•: I perty and orthogonabiz'es the backward prediction errors at

!i i ~~the various stages so that Oi •

:;;(0 G.•i)k 7(i )T G- (2)8 .

+ +

y (k)i
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As a consequence of the successive decoupling, the forward

and backward reflection coefficient matrices at the (n+l)-st

stage can be set to minimize the trace of the forward and

backward prediction error covariance matrices respectively,

given the best lattice of order n. This provides alterna-

tives to equations (A,17) for calculating K and g and also

generalizes the forward and backward single channel solutions

discussed previously, resulting in

JT

1R(n+l) (n)- (n) (2,T49b)

where

A (n) .{e(n)"l )(n)(k-)T (2.49c)

It is also possible to show that these relationships are

entirely equivalent to equation (A.17). In the multi-

channel MA lattice, the orthogonality of the backward pre-

diction error signals also allows the G matrices to be

"calculated in succession providing an alternative to equation

(A.28b) and generalizing the single channel solution given

by equation (2.39). Setting G(n) to minimize the trace of*1 the error covariance matrix

(n) (nk) e( (k)T} (2.50a)
S-0 k) 70
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en r(n)2.~b-o 0 () (k) -y ~(k)(25b

results in a solution given by

~(n) () n
- - (k)(n) (k) (2.50c)

Another important characteristic of the lattice solutions
/A

to the AR. and MA modeling problems given by equations (2.4+9)

and '(2.50) and their single channel counterparts is that they

do not impose any requirements to window the data when finite

V timre averages are used to estimate correlations, The auto-

correlation function of a signal is inherently an even func-

tion so that R vv(n) =R vv(-n), This fact is responsible for

much of the special structure of the correlation matrices

that appear in the model solution equations, and was alsoI

used in the derivation of the Levinson algorithm. In esti-

mating the autocorrelation function via time averaging over

a finite interval, a window function that is nonzero over

only a given interval must be applied to the data to retain

this even symmetry property in the estimate. If the data is

not set to zero outside a given interval, end effects will

destroy the symmetry so that R (n) #R (-n) as depictedvv vv

in Figure 2.11.
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I// 
- 'Nv (t)-.

- / • . "' ... .... v t

4/. I

I I
' 1'' ... I ... v (t+n )

iii• Averaging Interval

Figure 2.11. Time averaging to estimate correlations
without windowing.

In the lattice solutions of equation (2.49) however, there

"is no requirement to make such an artificial assumption

about the data (that it is zero outside some interval).

These properties of the lattice solution methods were

responsible for their initial use by Burg in his work on

maximum entropy spectral analysis [Ref. 51 and have con-

4 •tinued to generate interest in the application of lattice

methods to other types of modeling problems.
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F. ADAPTIVE MODELING

The LMS adaptive algorithm provides a well known alter-

native method for obtaining the solution to the AR or MA

modeling problems which does not require the estimation of

correlations or the inversion of a matrix [Refs. 58, 59

1, h and 601. This algorithm updates an estimate of the model

solution vector at each time instant by an amount propor-

tional to the negative of the instantaneous gradient of the

cost function; i.e., in a MA model,

a{ (k+l) a (k) - (k) (2,51a)

where i is a proportionality constant or adaptive gain.

Since the actual gradient is usually not known, it is

approximated by using the square of a single sample of the

error as an estimate of the MSE so that

ke(k)2V+k = f •(k) k)=-2 u (k) e(k) (2-51b1

-a =a +(k)

and

a+(k+l)- a + (k)+2uu+ (k) e(k) (2,51c)

In each of the models considered here, the cost function

(MSE or trace P) is a quadratic function of the model weights

"and defines a concave hyperparaboled with a unique minimum.

The functioning of the LMS algorithm under these conditions
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can easily be understood by considering the scalar case of

equation (2,Sl) illustrated in Figure 2.12.
As this illustration shows, the algorithm can actually

• diverge for too large a value of adaptive gain. The rate

of convergence is also dependent on the size of the adaptive

gain. Widrow has shown that for stability, the gain must be

set so that

0 < < (2.52a)

max

While, in the mean, the weight vector, converge, with an

exponential time constant of

T 1(2.52b)
min

where Xmin and X max are the smallest and largest eigenvalues

of the input autocorrelation matrix R++. From the stand-
u u

point of stability, ý should be made relatively small but

for rapid convergence, equation (2.52b) dictates that it

should be large. Setting

1.' =(2.53a)

where a is a normalized gain and 0 < a < 1, equation (2.52b)

becomes

1" max (2.53b)
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MSE

z.22
MMSE

a( 0)opt a
a) Small adaptive gain; steady convergence toward the solution.

kz3

a(0)b

b) Interm~ediate adaptive gain-, OsciJlaty convergence toward
the solution

MSE

kc 0

c) Large adaptive gain; divergence away fromr the solution

Figure 2.*'.2. Behavior of the LMS adaptive algorithm
for various adaptive gains.
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and for a wide disparity between the largest and smallest
eigenvalues (Xmin << max ), convergence will be quite slow.

Tiiis consideration becomes increasingly important when high

order model solutions are obtained adaptively since the

dimensonality of the input autocorrelation matrix will be

high and the possibility of a wide eigenvalue disparity

greater.

These same adaptive techniques have been applied by

Griffiths [Refs. 16, 17, 18 and 31], to the AR and MA

lattice filter structures derived in the last section. The

key difference between the conventional adaptive filter and

the adaptive lattice is that in the lattice, the adaptation

is carried out on a stage by stage basis for each of the

reflection coefficient matrices. while in the more conven-

tional approach, the entire weight vector is adapted. It

has already been established that the lattice structure

makes the model solutions recursive in order. Implementing

the lattice adaptivity makes the solution recursive in time

as well since the estimate of the solution at each instant

is dependent upon prior estimates of the solution.

The conventional adaptive filter algorithm forms an

error signal as the difference between some desired signal

"and its estimate; i.e.

e(k) y(k) a (k)Tu. (k) (2.54)
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where y(k) is the desired signal, a is the weight vector

and u (k) is the input vector, and the time update for the

weight vector is given by equation (2.51c). To derive the

adaptive AR lattice consider equations (2.45) for a single

stage. The lattice in general has vectc. error and desired

signals and coefficient mitrices as opposed to scalar error

and desired signals and a coefficient vector in equation

(2.54) but such a generalization is straightforward. Com-

paring equation (2.45a) to (2.54) it is clear that:

1) e'n l(k) is analogous to the error signal;

2) e(n)(k) is analogous to the desired signal;

3) '6(n)(k-l) is analogous to the input signal vector.

Using the trace of P as a cost function and applying

a LMS adaptive algorithm to determine the forward reflection

coefficient matrix it follows that

j K(n+l)(k+l) K(n+l)(k) + 2p(n+l)i.(n)(k1)e (n+l)(k)T

(2.55a)

With these analogies, equations (2.51c) and (2.55a) are seen

to be virtually identical with the exception that (2.51c)

uses a scalar error to adapt a weight vector and (2.55a) uses

a vector error signal to adapt a coefficient matrix.

Proceeding in a similar fashion with equation 2.45b it is

4 clear that:
1) e(n~l)(k) is analogous to the error signal;

2) ';(n)(k-1) is analogous to the desired signal;
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3) e'n)(k) is analogous to the input signal vector.

With the trace of p(n+l) as a cost function, the time

update relation for the backward reflection coefficient

matrix is

g(n+l)(kl) "r (n+l)(k) 2(n+l) (k) jn+l)(k)T

(2.55b)

For a MA lattice, equation (2.47) must also be considered.

Multiplying both sides of (2.47) by minus one and adding

X(k) results in

(n+l) (n) (n+l)
- (k) e (k) - e n+l)(k) (2.66)

-o -

where e (k) is defined as in equation (2.30). It is

evident that:

1) e0(n+l)(k), is analogous to the error signal;

(n)2) e,(k) is analogous to the desired signal;

3) •(n+l)(k) is analogous to the input signal vector,

With the trace of P as a c.ost function, the time up-

date relation for G(n+l) is given by

G(n+l)(k+l) G(n+l)(k) + (k) e (k)

(2.57)
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__ It is significant to note that three different adaptive

gains have been used in equations (2.55) and (2.57) and

that the gains have been superscripted indicating that they

vary from one lat'tice stage to the next. For stability consi-

derations the adaptive gain used in the LMS algorithm muct

satisfy equation (2.52a) and therefore is related to the

largest eigenvalue of the input autocorrelation matrix by

equation (2.53a). In developing the time update relations

for the lattice coefficients, three different input signals

were used and these inputs also differ from one lattice

stage to the next. Indeed, even for the case where the in..

put x(k) to the lattice structure is stationary, the inputs

to all lattice stages except the first are nonstationary

since these inputs are outputs of other lattice stages. This

fact indicates that time varying adaptive gains are appro-

priate as well in equations (2.55) and (2.57). Equation

(2,53a) is of no direct usefulness however in setting the

adaptive gains since the time varying eigenvalues are not

known. Recognizing that the largest eigenvalue is always

less than the trace of the input autocorrelation matrix

(which is a measure of the power in the input signal vector)

the gains can be set as

(n+l)(

,, .• .. .. ... . . .. ............ . .... .... .., • .. ..... •. •:•6 6•

4 .. . .. ' i...



-(n+l)(k) (2. 58b)
((k) (k)

S(n+ (k) ... .. (2.58c)
g Y (k)

22
where al(k) 2 , W n+1(k) 2 and n+l(k)2 are estimates of the

power in the three input signal vectors and a is a normalized

adaptive step size with 0 < a < 1, A method that has commonly

been applied to obtain these estimates is to employ a first

order low pass filter so that

a n(k~l)2 2[-a+n (k)2+,(n)(ko-1)Tj(n.)(k-1) (2.59a)
anik+l) l~)n~1()

2 £] k)2 (n) T (n)On+l(k+l) Z [1-1]an+l (k) +ae (k) e (k) (2.59b)

2 2 (n)kT (n)
nl(k~l)2 [1-a]yn (k) +ae0(n(k)Te0(n(k) (2.59c) ,

Taken together, equations (2.55), (2.57), (2.58) and (2.59)

define the adaptive solutions for the AR and MA multichannel

lattice models.

To understand the potential advantage offered by the

adaptive lattice form, recognize that while the conventional

approach solves a high order minimization problem by adapting

all the coefficients at once, the lattice breaks the problem

down into a succession of lower order minimizations at each

stage and solves these lower order problems adaptively. The
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dimensionality of the input autocorrelation matrices., at

each lattice stage in general is significantly less than

that of the large input autocorrelation matrix in the con-

ventional adaptive algorithm and consequently it is hoped

that the possibility of a large eigenvalue disparity with

its attendant slow convergence is reduced.

This advantage is most evident in a single channel

adaptive lattice where the inputs at each stage are single

signals and .ir corresponding autocorrelation matrices

are lxl in dimension. In 'this case the ratio of smallest

to largest eigenvalues is unity and the convergence of each

stage i3 quite rapid while the convergence of the overall

model is independent of the eigenvalue ratio for the over-

all higher dimension input autocorrelation matrix. This has

been demonstrated by Satorius [Refs. 46 and 473 who has

shown that the single channel adaptive lattice converges

much more rapidly than the corresponding conventional adap-

tive filter, and does so independently of the eigenvalue

ratio on the overall input channel autocorrelation matrix.

Furthermore in a single channel adaptive lattice, the

time update relations are simplified by the fact that the

forward and backward reflection coefficients are the same.

Using the average of the mean square values of backward

and forw.rd prediction errors as a cost function and applying

an adaptive algorithm it follcws that
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(n+l)(k(n)K 'nl (k) e• -e(n)_(k_)(n+l)_(k)

a (n+k)

jk n(k-l)e n+l)(k) (2 .60a)

where

2 2c (n) 2-(n) 2
Onl(k+l)2:[1-aOnl(k)2+[e1 (k) +•e (k-l) (2.60b)

The very nature of the lattice structure however with

the output of one stage providing an input to the next stage,

greatly complicates the analysis of the convergence proper-

ties of the adaptive lattice model. Even when x(k), the

input to the lattice, is stationary, inputs to all stages

except the first are nonstationary. An approximate analysis

of convergence and stability on a stage by stage basis is

possible if it is assumed that all prior stages have con-

verged and are providing stationary inputs to the stage

under investigation. With this assumption, the adaptive
(n~l, g~~l (n+l)

solution for the K(n+l), _(n+l) and _ ) matrices are

obtained from the operation of three independent LMS algo-

rithms as shown earlier, with inputs given by ((k-1)

e(n)(k) and j(n+l) (k), respectively. Stability limits on

the adaptive gains used in the stage and the convergence

properties of the stage are then determined by the eigen-

values of the 7(n) P(n) and 7(n4l) matrices. A more exact

analysis of the properties of the adaptive lattice that
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considers the nonstationary character off the inputs to the

second and subsequent stages is not currently availabl.e.

37



WIT
111. ARMA MODELING

One of the most serious disadvantages of either AR or

MA modeling is the fact that to adequately represent even
simple linear systems, both methods may require a large

number of parameters (a high order model). This problem

arises since, from a transfer function standpoint, AR and

MA models attempt to model the system using only poles or

K only zeros, in spite of the fact that the physical system

may have both zeros and poles. While modeling the effects

of a zero with a number of poles and visa versa can be

analytically justified as shown in the previous chapter,

it makes far more sense (both from the viewpoint of model

accuracy and efficient use of model parameters) to let the

model represent the system as it really is with both zeros

and poles if this is at all possible. The ARMA model is a

generalization of the AR and MA models and accomplishes

exactly this, representing the system in rational transfer ,11

function form.

It is worth noting that the titles of all pole and all

zero modeling that have been associated with AR and MA

modeling are misnomers, Both have. equal numbers of

zeros and poles. In the AR model however, all the zeros

occur at the origin of the z-.kplane as do the poles of a. MA

model. The AMII model removes these constraints.
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After a brief discussion of two alternate ARMA modeling

methods due to Shanks and Prony, the equation error formu-

lation for ARMA modeling is developed and the new results

presented. Model transition formulas relating the ARMA

model to the MA and AR models are developed and the input

signal requirements of the modeling process explor~ed. It

is shown that after suitable modification, the Levinson

algorithm can be applied to solve the ARMA modeling problem

recursively in order and lattice solution methods are also

developed for both a batch processing and an adaptive model

solution. The results of experimental simulations of both

of-these modeling solution methods are presented and dis-

cussed, and comparisons are made with conventional means of

ARMA modeling using the equation error formulation. Finally

'1 it is also shown that the lattice solution methods can be

generalized to solve for the mul.tichannel ARMA model withr arbitrary numbers of inputs and outputs.

A. LINEAR ARMA MODELING AND ITS RELATION TO AR AND MA
MODELING

The ARMA model for linear systems assumes the current

value of the output of the system is given by a weighted

combination of present and past values of the input and

past values of the output. In terms of the discussions of

Chapter I, F 30 is assumed to be zero and F 10 and F 20 take

on the following forms

F 10 Eu(k)J - a~(n) u(k-.n) (3.1a)
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ili~ E~oy(k-1)] = n-- b(n) y(k-n) 3. lb)

leading to a transfer function representation for the system

given by

M
•i~i}I N (n) z"n

H(z) n A(z) (3.c)
I- b(n)z'n

n~l

A number of methods exist for finding the model coef-

ficientsia(n)) and {b(n)}. As stated in Chapter I, a XMSE

solution via the direct form modeling approach requires the

solution of a system of highly nonlinear equations and in

general is untractable. An alternative is to first obtain

an estimate of the denominator polynomial 8(z) by some

means such as AR modeling and then using this in the system

shown in Figure 3,1, estimate the numerator polynomial A(z)

by setting its coefficients to minimize the mean square

value of the error. This method was first explored by

Shanks. [Ref. 49)

Another alternative is to apply the Prony method [Refs.

8, 52 and 56) derived in Appendix E which obtains the model

parameters by matching the impulse response of the system

and model over the first N+M+l sample intervals, Both of

these techniques share a common characteristic. They both

start by independently estimating the denominator coefficients

(or model poles) and then, given this estimate, solve for
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uJ k)k

y W

,, • ~A(z)--

•,B (z)

ii
Figure 3.1. Shanks method for .RMA modeling

-the numerator coefficients (or model zeros). This is in-

tuitively unappealing in that one would expect these two

estimation problems to be more closely coupled with the

zero estimates also affecting the estimates of the poles.

The application of the equation error formulation to the

ARMA modeling problem permits simultaneous estimation of the

model zeros and poles and was first used by Kaln'an [Ref. 231

in work on self-optimizing control systems. The pradiction

error form of the model is considered here where £30 is set

to zero while

F10 u(k)] a(n) u(k-n) (3.2a)

X:0
! "1

F " 2Y(k)] -- y(k)- b(n) y(k~n) (3.2b)
21
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The analysis model is depicted in Figure 3.2 where

M

A(z) -"nM a(n)z ýn (3.3a)

n ýO

and
N

B(n) - l- n b(n)Z"n (3.3b)

and these polynomials are the estimates of the system trans-

fer function numerator and denominator,

)Y(z)

;-:.- .$ .. .. -t

'C.'

Figre3.2. The equation error formulation for
ARNA modeling.
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The expression for the model error can be written as

T + T[]e0) -W y(k) - y(k)T I.j+(k)T I (3.4a)

where y(k) and b are defined as in equation (2.7) and

+ T
u (k) -y(k) .. , u(k-M)T (3.4b)

a+ [a(0) ... a(l)T (3.4c)

This results in an expression for the mean square error

which is a quadratic function of the model coefficients,

with the MMSE solution for those coefficients given by

R R + b r1y-4yy - -y
------- - - (3.5a)

R+ R++ a
u Y u u uy

.conterarts it... is clea a .... (3.Sa)

and ry.
R bT£b +T

++

. ) EbT (3.5b)
!: 2rin Y-I- • +|

LUyl

1. Model Transition Relationships

Comparing equations (3.4) and (3.5) with their AR and

MHA counterparts, it is clear that the ARMA model provides a

generalization of these other models since they can be
+

obtained from the ARMA model by assuming that either a or b

I is zero. Consequently it is susceptible to the same type of
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I 4 bias introduced in the AR and MA models by the presence of

additive noise on either the system input or output signals.

To develop the relationships between these models further,

consider the inversion of the correlation matrix in equation

1%3.5a) in terms of its component matricies. Since the left

and right inverses of a nonsingular square matrix are the

same, either

[!ii "•BY -Yu+

I c(3.6a)

or 2or

2 Solving (3.6b)

can be used to find the required inverse in partitioned form.

Solving for the right inverse of equation (3.6b) yields .i
A (R -R R + + )- (3.7a)

yu uu uy

B . (~ , R+ R +)-I (3.7b)

-yu -uu uUy _Y yU

C -R•• R (CR R +R-+.+ )-1 (3,7c)
- uu u y yu uu uy

SD =(R R + + Ry(.7d
.- + + .- +y - u+
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Solving for the left inverse of equations (3.6a) gives iden-

tical results for A and D while equivalent but different

forms are obtained for B and C given by

ft+-RR R (3.8a)
-Yy -Y U U u, y yu, u u

C - -(R + -R+ R R )-i R + R (3.8b)
u u u y"Yyu u y-yy

Using equations (3.7) in equation (3.5a), the solutions for

the ARMA coefficient vectors are given by

; b =(R -R +R" + R +-1 r
YY Y u u y yy

-R- R (R + +-R RR ) r+ (3.9a)
l -yu u u u YuyYyu u y

and

a + + ,+-1.
uu uy uu uy

+ (R - • R R r) + (3.9b)
u u u y yu u y

The matrix inversion lemma [Refs. 11 and 19) which states

that

'1 (E+FGH)- E- E-F(G-+HE-F)- HE"(31

• - -. (3 107d



for nonsingular square matrices E, G and E4FGH, can be

used in equation (3.9) to rewrite them as

- -,yy-yy -yy -yu - +u u yy

ER + r +r I (3.11la)
u Y y y U y

+~ 1R + R-1 R (R -R 1
uu uy uu U y ~ yu uu uy

ER + R-+ + 31b
(Iyu U u u y (3.llb

The all. zero and all pole model solutions of corresponding

orders however are

+4A R•~~ and R

where subscripts are used to distinguish these solutions

r from their counterparts in the ARMA zero pole model.

From equations (3.11) it follows that

bp bA + R' R + ( + + +.4

yu u uy yu

EI+ b.AP I (3,212a)
U y U y
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Z -zP :aAZ R + R (Ry -R + + R + )-
u u u y yu u u u y

ER + Z -- r)](3.12b)
yu

Following a similar development, the left inverse relation-
ships of equations(3.8) can be used to write

b p:(R R. 1 R + -R a (3.12c)S-zP (_yy + +_+- + -11yE+A
,, yu u u u y yu

(R+ R-1 R +)- Cr - ](3.12d)
SzP -- - YY -yy +... .1A

uu uyy yu uy uy

Equations (3.12) are termed the "Zero Pole Model Transi-

tion Formulas" and specify the relationships between the

various models. It is interesting to note that equations

(3.12a) and (3.12b) take the form-of a linear observer with

a new estimate of the solution given by the old estimate

plus a gain times an error term. To gain some insight into

the functioning of these formulas, consider the form of R (n)
yy

and R (n) for the linear system described by the transfer
uy

function of equation (3.1c)

N M
R (-n) = b(i) R (-i-n) + E a(i) Ryu(-i-n)
yy yy yuL'1 L=0

(3.13a)
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Ru(-n) = b(i) R uy(-i-n) + a(i) Ruu(-i-n)

L=I i=O

(3.13b)

Assuming that N-N and M=M, and writing equation (3.13a) for K
-_<n<-l and equation (3.13b) for -M_<n_<O results in

R b + R + r (3.14a)vj ýýy -yu-yy

R + b+R++ + r + (3.14b)

These constraints on the system input and output auto and

cross correlation coefficients are the ARMA modeling equa-

tions of (3.5a) with the model coefficients replaced by the

system parameters. In AR modeling, bAr is set to satisfy

"the constraints of equation (3.14a) with the assumption that

+ is zero. The error term in the model transition formula

(3.12a) then checks this solution to see if it also satisfies
+the constraints of equation (3.14b) still assuming that a

is zero.

error R b p r+ (3.15)
u +y =A u+y

*1 ~81
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P If this error is zero and the oonstraints of equation (3.14b)

are satisfied, equation (3,12a) sets bp -bAP and equation
? +

(3.12d) tict a to zero. If however the error is nonzero,

(3.12a) adjusts bAp in proportion to the error to obtain
+

1A and (3.12d) then provides a nonzero a Thus equations

(3-12a) dnd (3.12") are complementary, specifying the ARMA

or zero pole model solution of order M over N when given

the N-th order AR or all pole model solution.

In like mannr., equations (3.12b) and (3.12c) give the

ARMA model solution of order M over N when given the M-th

order MA or all zero inodel solution. The all zero solution

is obtained from equation (3,14b) assuming that b is zero.

Equation (3.12b) checks this solution against the con-

straints imposed by equation (3.14a) with the same assump-+ +
tions and adjustf uAZ appropriately to determine a

Equation (3.12c) then sets bzp, completing the zero pole

model clu'Qion.

2. Ma•_eling Input Signal RequJ.emann,

Another aupact of the mc'doling problem that must be

considered is that off mystom id~ntifiebility. If, from the

available measurements of signals, a model oan be obtained
that accurately represents the Rystem's opera-ion, the

syste~i is considered identiflable. The two issues that

arise therefore are the meatsurement requirements (which

signals must be meapurksd) and requirements on the input

signal use' to excite the system during the modeling

procesw. In the equation arror formulation of the tRMA
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' •model, both existing signals (system input and output) must

be observed (or at least a knowledge of their auto and cross

t• correlation functions must be available). Most discussions

of input signal requirements for identifiability simply

state that the system can be identified if the input si~gnal

is sufficiently rich, persistent or exciting. eg [Ref. 19)

To explore the question of input signal requirements fur-

ther, consider the mean square equation error cost function

being minimized. Assuming that the equation error signal

is ergodic and has finite energy its mean square value is

obtained via time averaging as

E2  e c(e(k)2} 2 " e(n) 2 (3.16)22

Applying Par~evals relation this becomes

E • e(n) 2 f E(eJe)E*(eI8 ) d6 (3.17)

where eu,',T an'1 * indio-tes the complex conjugate. The

equation error j represented in the transform domain ad

S(B(z)H (z ) - A(z)J U (z) (3.18 )

and using chis in equation (3.17), the cost function becomes

f2
W E lu~,I~lde (3.19)



showing that the power spectrum of the input signal acts as

a frequency dependent weighting function on a transfer

function error term. Therefore to identify the system

equally well at a~ll frequencies, the input must have a

flat spectrum as will be the case for a white noise input

or an impulse function input. Otherwise, the model trans-

fer function will only be matched to the system transfer

function over the range of frequencies where the input

signal has significant power.

As an example consider the equation error ARMA

model for a fourth order system driven by a single sine

wave input at a frequency of n/3. According to equation

(3.19), the model transfer function will only be required

to match the system at this single frequency, and to accom-

* iplish this, only a first order model is~ needed. Any in.-

crease in model order above first order therefore should '
have no effect. Figure 3.3a shows a comparison of the mag-

nitude spectrum of the fourth order system and its first

order ARMA model obtained using the sinusoidal input and

as anticipated they match at the frequency vT/3 (coinciden-

tally they also match at one other frequency as well),

Figure 3.3b shows the same comparison but with a fourth

order ARMA model, It in clear that increasing the model

order, failed to improve its accuracy and that the model

accurately represents the system only at the frequency of

the input signal and, by coincidence, at one other frequency.
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It should be noted that this type of analysis to

determine input signal requirements could be applied to the

AR and MA models as well resulting in the same conclusions.

B. A RECURSIVE IN ORDER SOLUTION FOR THE ARMA MODEL

"t!! :•iSince the equation error formulation for the ARMA model

is a generalization of similar formulations for AR and MA

modeling, it is reasonable to assume that a Levinson-type

algorithm could be devised to obtain the ARMA solution

recursively in order, and that from that algorithm, lattice

filter methods applicable to the ARMA modeling problent could

be derived. Attempts to develop such an algorithm directly

for the ARMA modeling equation (3.5a), howeve'r, fail to

provide useful results, The first problem that arises is

in deciding which model order to make recursive; the order

oZ the numerator polynomiol, the order of the donofninator

t. ~fpolynomial or both. If it is assumed that the numerator

and denominator are of equal or'ders (MuN), the APMA mondeling

equati.ons become as shown in equation (3.20). However,

efforta to develop a Levinson-type algorithm fog, this 1ystem

of equatlons , where the numerator and denominator poll.'nomiils

of tb&• model are incremented aimultaneouoly to obtain re-

cursive In order s,.lutions, are still frutratea by tbti

preqenae of the (N+l)-st ruw and col=mn in equation (3,20).

This a'ises boaous the numa.rtQr coeffiioiet veoto•r + is

a (N+l)-wct'or while the denorini tor ,•oeffioiiant vector '

ia a N-vactor. if it its further~ 4mt5umod that the ,ioefftivcint

7' 7
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a(0) is known in advance or can be estimated in some other

fashion, equation (3.20) for the solution for the remaining

2N coefficients becomes as written in equation (3.21).

R (0) .. R U.-N) R (0) ... '1T R (1) R (1)* .M M u(1"•• , ,*,•
* ... I . ft .'): . 0

R (N-1l) .. R (0) R (N-1) R. P (0) b (N) P. (N) R (N),. yy -yu u y -a(0) yu

R. (0) ... R u(-N) Ru(0) ... R( -N) a(l) R (1) Ruu(1)
uyuyuuuuuy

I ft i S ft n S

5 ft I . , S

(NU 1 .. 0 1 RU(N-1) ... R (0) a (N) R (N) R ()

(3,21)

The coefficient a(O) essentially has the role of a gain for

the model, and a method for estimating it after all the other

coefficients "are obtained, (as was done in AR modeling) will

be discussed later. Equation (3,21) can be written as

Ry R-y b-y ry r

(3.22)

:i ' i( I ,4't
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Now consider the form of a two channel autoregressive

model where the two input channels are y(k) and u(k); that is

xl(k) - y(k)

X2(k) u(k)

Using equations (A,4a) and (A.7b) the two channel AR mode2ling

equations are

R R dl £y

- (3 .?•)

R
"-uy -u -21 122 41

and comnparing equations (3.22) and (3.23) it is clear that

with the exception of the gain ter,|r a(O), the ARMA modeling

solution can be obtained from the two channtl AR Golution

of (3.23). ruti'hermore equation (3.23) can bfn solvold indee-

pendently of the gain term via the Levinson algorithm as

shown in AppendLx A or via the multichannel lattice methode

developed in the previous ahapter. Then all that ramalin

to compl~te the 3olution for thQ ARMA modal is to estimato

the gain term a(O) and solve fat, tha othar mod.l coeffioientu

using Sd'

• (0 ,24)
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From this it follows that the transfer functions A(z) and

B',z) for the ARMA prediction error analysis model can be

related to the twochannel AR prediction error matrix poly-

nomial transfer function by

L I_- lD(z)] (3.25)

-- a(O)

It is also easy to relate the ARMA equation error to the

two channel AR predictioD error vector. Using equations

(A.3) and (A,5), the two channel AR prediction error vector

i3 written As

lT u T k T] i 11 2
S L i(k) uL (3.26)

~ey (k) eu(X) i
y U,

DafLning
(:,2 a

I (3,27a) i

I[I



and postmultiplying equation (3.26) by * and using (3.24) it

follows that

e(k)T = y(k) a(O)u(k) -y(k)TI u, (k) (3.27b)

But from equation (3.4a) this is exactly the ARMA model

equation error so that

Se0 (k) e(k)T £ (3.27c)

and

"{e 0 (k)W 2 T (3.27d)

where P is the forward prediction error covariance matrix

for the 2 channel AR model. Equation (3,ý7d) also provides

a, means of estimating the gain term a(O) after the two channel

AR solution has been obtair'ed by setting it to minimize the

mean squars value of equation err, or result$,ng in

•(Q) (k)ey~)

and comnpleting the ARMA model aoluktion.
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4 The portion of the ARMA model solution in equation (3.24)

given by the two channel AR solution can be found recursively

in order using either the Levinson algrrithm or the lattice

filter techniques. If the desired ARMA model order is not

known in advance, a model gain term a(O) can be estimated

for each order two channel AR solution to find the ARMA

model of corresponding order along with its MSE. In this

fashion, the entire family of ARMA models for the system from

order zero to order N, along with their mean square errors

are obtained. If, on the other hand, the desired ARMA model

order is known apriori, the gain term need not be calculated

at each stage, Only one gain term must be calculated to

obtain the ARMA solution after the appropriate order two

channel AR solution has been found.

It has already been shown that to fully identify the

"system using the equation error ARMA formulation, the input

signal must have a fiat spectrum as in the case of white
'i noise. When white noise is used as the system input u(k),

simplifications emerge in the solution of the two channel

AR model via the Levinson algorithm or lattice methods.

For a white sequence with variance au2

S0 • n 0

Sf Ruu(n) 2 (3.29a)

02
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and

,, !•0 n < 0

R (n) (3.29b)

where h(n) is the sampled impulse response of the system.

Consider equation (A.16c) for K

R yy(0) R yu(0) R yy(1) 0

K Z (3-29c)

R (0) R (0) R (0) 0uY uu (°

"This shows that k12 and k22 are zero and furthermore since

(-y and r are zero for all n it is seen 'that

12 22 (3.29d)

for all n as well, This can reddily be understood by con,. i
sidering the role of these two coefficients at each stage

in the AR prediction of y(k) and u(k), k 1 2 and k 2 2 are the

coefficients used in trying to predict u(k) from past values

of y(k) and u(k), and when u(k) is a white sequence it

cannot be predictedý forcing these coefficients to be zero,

i No such simplifications occur in the backward prediction
problom (and ;hetefore in the V matriuks) since even for

a white u(k), a b~akward prediotion of u(k-n) from subse-

quent values of u and y is possible, This is beoause in
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general, a linear dependence of y(k) upon past and present

values of u(k) can occur (and certainly will occur when the

relationship between y(k) and u(k) is described by an ARMA

model),

As a result of these simplifications, it is seen from

equation (A.19a) that the polynomials dl 2 (z) and d 2 2 (z) are

zero when u(k) is white and the ARMA model is given by

-A(z) "-d 1 (z) 1 -a(O)

6- 21(z

In this special case it follows that

B(z) det[l -1D (z)] 331

and therefore stability of the ARMA model and of the two

channel AR model are equivalent, In gener,-l, however, no

such connection exists for arbitrary input signals. Further-

more, even when the system input u(k) is white, solutions

for k 1 2 and k 2 2 will not in general be exactly zero since

the required correlations are usually not known and must be

estimated.

This development showing that the ARMA model solution

can be obtained from a two channel autoregressive model de-.

pends on two asmumptionst

1) The numorator and denominator polynomial orders in

the model transfer function are assumed to be the
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i _ _ _ _ _=



same and are incremented Simultaneously to build up

the desired solution recursively in order;

2) It is assumed that the coefficient of z to the zero

power (aWO)) in the numerator polynomial of the model is

either known in advance, or that aother means of

estimating it can be found sc th•'4t it need not be

estimated directly in the modeling equations of

(3.20),

The second assumption causes no concern since the two channel

autoregressive solution is obtained independently of a(&),

and given that solution, it has been shown that a(O) can

indeed be estimated in another fashion in equation (3.28).

The first assumption however, warrants further consid-

eration since it seems somewhat reatrictive (at first) to

require that the numerator 4nd denominator polynomials of

the model have the same order when in fact, the system being

modeled may have different order n•merator and denominator

polynomials, To see that this assumption is not restrictive

in general, consider what is ocouring as the model is built

up recursively in order. At each model order, n, the pro-

cedure finds the best n-th order model (with n zeros and n

poles) in a minimum Mean square equation evror senae,

Making the model numerator' and denominator ordersi different

(or equivalently, forcing some of the coefficients to zero

in the model where the orders are the same) places a priori

constraints on the model, forcing some of the poles or

zeros to the origin in the z..plane, rather than allowing the

9.
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model to place them at will to minimize the cost function.

As an example, consider the process of obtaining an AR!IA

model for a system given by

2 -n,•: •. 4(n) z-
H(z) z

-(n) zn

n=l1

where two of the 'systems four zeros actually occur at the

origin of the z plane. Constraining any of the model zeros

to the origin at orders one, two or three will result in a

model with higher cost (MSE) than if they were not con-

strained, Even at order three, a model without constraints

r. can be expected to use the "extra" zero to help in approxi-

* mating the effects of the system's fourth pole as shown in

equation (2.13) yielding a lower cost and more accurate

model than would result 'if one zero were forced to the origin.

Only at order four are such constraints reasonable but even

then, they are not necessary since the modeling procedure

itself should recognize that the best fourth order model

will have two zeros at z=0,

Therefore, it is seen that assuming equal orders for the

model numerator and denominator is entirely reasonable as a

general approach in obtaining MMSE models for unknown sys-

tems or even reduced order models for known systems. When it

is knowr in ad,,ance that the best MMSE model for a system

has zeros at z:0, imposing such a constraint on the model can

,98
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reduce the computational complexity of obtaining the solution,

but even here the assumption of equal orders is not restric-

tive,

C. LATTICE FORM ARMA MODELING

* iIn chapter two it was shown that the lattice structure

of Figure 2.7 could be applied to solve the multichannel

AR modeling problem in terms of the reflection coefficient

matrices given by equations (29.49). Since the ARMA model
solution can be obtained from a two channel AR solution with

y(k) and u(k) as the input channels, only the structure

described by equation (3,27c) need be added to 1 two channel

AR lattice to obtain the lattice form of the ARMA analysis

model, It is interesting to look at the exact structure of

this lattice model as shown in Figure ,'4 for a second order

case, This structure is seen as a. lattice interconnection

of two single channel AR lattices operating on the input

signals y(k) and u(k). The coefficients on the main diag-

A onals of the K and K matrices specify the single channel

lattices while the off diagonal elements specify the inter-

connections. (This will also be the case for extensions

to lattices with any number of channels.)

The ARMA synthesis model implementing the transfer func.-
-A

tion A(z),'B(z) can also be put in lattice form, The for-

ward prediction in the two channel AR analysis lattice isIA A
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ek) e Wk k1  k2  (k-1)

y y11 2
- (3.32)

adthe equation for ek W can be rewritten as

(n ej ) (n+l) e('Wz) (n)2k(h1 e (n)

e W e W +k (k-1)(n);u~-1

Equation (3.33) along with the equation of e~ in (3.32), and

the equations for the backward prediction (2A.45b) describe

the structure shown in Figure ý.S for a second order case.

To provideu the reurdipta recognize from

equation (3.27c) that

e~ Wk (2) e W0 k + a(O)e WC()~2  (3 .34a)

If the ARMA model is an accurate representation of the

system, the equation error e Wk will be quite small (ideally

zero) so that in general for the N-th order case

ekW (N) a(O) euW(k)() (3.34b)

This is indicated by the. dashed feedback path in F'igure 3.5.
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D. ARMA MODEL SIMULATIONS; BATCH PROCESSING

ARMA modeling procedures for linear systems using both

the lattice filter method and a brute force matrix inver-

sion with equation (3.20) have been implemented and the
•j. results of these two approaches have been compared in over

a thousand model simulations of mo:e than thirty different

linear systems. The experimental results which follow are

a representative sampling of these simulations.

In the lattice filter method, equations (2.49) were used
to calculate the forward and backward reflection coefficient

matrices, with time averages over a specified interval used

to estimate the required correlations in P(0) : (0) and
(n)( for 0 < n < N-1. Equations (A.15), (A.16a) and (A.16b)

were used to obtain the two channel AR model coefficients

from the K and 7 matrices and with the gain calculated

in equation (3.28), equation (3.24) was used to obtain the

desired ARMA model coefficients. Equations (A.18) were
used to update the forward and backward prediction error

covariance matrices from one lattice stage to the next.

Figure 3.6a provides a flow diagram of the procedure.

In the brute force matrix inversion method with equation

(3.20) time averaging was again employed to estimate the

required correlation coefficients. A rectangular window

was applied to the data, however, to retain the even symmetry

of the autocorrelAtion function in these estimates. The

ARMA model coefficients were then obtained using a general

purpose library subroutine (which employed gaussian
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elimination) to solve equation (3.20). Figure 3.6b provides

a flow diagram of this procedure.

•' In both cases zero mear, unit variance gaussian white

noise was used as the system input. In the simulation re-

sults that follow, a description of each system discussed

(transfer function coefficients, zero locations and pole

*locations) is listed in tabular form and root locations in

*the z plane as well as transfer function magnitudes are

plotted for the system, and various models obtained for it.

In each case, models were obtained for averaging intervals

of 200, 500, 1000, 2000 and 4000 data points. Only the

results for the two-extremes of 200 and 4000 points are

included here.

The first system considered has asecond order numerator

in z inverse and a fourth order denominatorand its char-

acteristics are listed in Table 3.1. Figure 3.7 shows a
comparison of the root locations and transfer function
magnitude of this system with those of fourth order lattice

filter and brute force models obtained when correlations

were estimated by averaging over 200 samples. Figure 3.8

provides the same comparison for a longer averaging interval

of '4000 samples of data. While both methods perform com-r

parably with the longer averaging interval, the lattice

method produces a far more accurate model with the short

averaging interval. It is also interesting to compare the

performance of the two methods when the system is overmodeled;

4 'that is, when the model order is increased beyond that of
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EstimateE 0); .0)

Estimate P 0 AO

Calculate K and

equations T2.'49).

Calculate P and fo

I equations 'CA. 18)-
A (optional)

Calculate the gain for the (n+l)-st
order ARI4A model from equation~
(3.28) Calculate D ( 'l

an _(n+ I)from

YESN (A.1'6T and (A.16)I
n~STNOPL Calculate Transfer

functions coeffi-
cients 6 MSE for
ARMA model fromi
(3.214) and (3.27d)..

Calculate e n Wl)(kW
EsR~ences by passing e (k and
e Wk sequences thr~ugh the
Tn+l)-.st lattice stage.

increment :n]

Figure 3.6a. Flow diagram of batch processing
lattice solution for all ARMA
models orders 1 to N.
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Estimate R (0), R (0)
yy uu

and R (0)
yu .

Estimate R (n):R (-) 1-

yy yy
R(n):IR (-n)

uu uu
R (n)R (n)yu uy

from windowed data.

Calculate n-th order ARMA
coefficients and MSE from
equations (3.20) and (3.5b)

nN ~~YESTO

NO

Increment ni

Figure 3.6b. Flow diagram of batch processing brute
force solution for all ARIIA models of
order I. to N.
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TAIBLE 3.1

SYSTEM A

TRANSFER FUNCTICN COEFFICIENIS

NiUMERATOR D2ENOMINATOR

Ail)* 0.35000 Bt 1) 1.14000

A(2)u 0.24500 6(21w -1.45490

A(3)w 0.0 8(3)w 0.88490 J
"A(41" 0.0 814)a -0.40745

R OOT LOCATIONS

ZEROS PLE

RE IM RE m
-0.?C00 cC.'?oooc 0.50000 0.50000

-0.70(00 -0.70000 0.5000C -0.50000

C.0 0.0 0.07000 0.90000

0.0 0.0 0.0000 -0.90000
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S
v the system. Figures 3.9 and 3.10 show such a comparison

when sixth order models are obtained for this fourth order

system. Ideally, the extra zeros and poles should lie at

the origin in the z plane making the additional transfer

function coefficients zero. Figure 3.9 shows that for a

200 point averag.'ng interval, the lattice locates the extra

roots in the viciity of the origin while the brute force

model does not. When the averaging interval is increased

to 4000 points, the extra rocts of the lattice model move

in toward the origin while those of the brute force model

do not. Instead, a zero pole cancellation at some arbitrary

location occurs in the brute force model. In all cases

investigated during 4his effort, the lattice method clus-

tered the extra roots in the vicinity of the origin and as

the averaging interval was increased to take in more data,

these roots were consistently moved in closer to the origin.

This property is further evidenced by the plot of mean square

equation error as a function of model order shown in Figure

3.11 for a 200 point averaging interval. The MSE for the N

lattice model flattens out at opder four indicating that F

further increases in model order fail to increase its j
accuracy. Meanwhile the MSE for the brute force model con-

tinues to decrease beyond fourth order as it uses the addi-

tional rcots to reduce modeling errors caused by innaccuracies

in the fourth order model.
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To investigate the ability of these modeling methods to$ ,g distinguish roots located near one another in the z plane,

a pair of zeros were added to the previous system in close
IM • proximity to one of the pole pairs. The characteristics of

this system are listed in Table 3.2. Figures 3.12 and 3.13

show the lattice method and brute force modeling results for

200 and 4000 point averaging intervals. With data over only

200 sampling instants, neither method is able to accurately

model the effects of the adjacent roots. When the averaging

interval is increased, the lattice correctly models the

plant while the brute force method does not, and even results

in an unstable model. (Figure 3.13b comparing the trans~er

function magnitudes has been plotted in spitd of the model

instability.)

To investigate the ability of these zero pole modeling

methods to model systems that are actually all zero or all

pole, the systems listed in Tables 3.3 and 3.4 were used.

The modeling results are shown in Figures 3.14, 3.15, 3.16
and 3.17.

The conclusions drawn from the results of this experi-

mental study are as follows:

1) For short data lengths, the lattice filter method

provides more accurate models than does the brute

force modeling rethod.

2) When the system is overmodeled using the latticef i
•" method, the excess roots are clus-tered about the

( origin in the z'plane and as the ave-..aging interval

is increased and more data taken in, these roots move

116
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TABLE 3.2

SYSTEM B

TRANSFER FUNCTICN C0EFFtC15NIS

NUMERATOR DENOfMINATOR

A(C)s I.COOOO

All)*n 1,34000 Bt(1)s 1.14000
A(2)m 1.79940 8(2)a- 1*45490

401m 1,20400 0(3)u C.88490

A(4Mm 0.88533 B(4)- -0.40745

ROCT LOCATIONS

ZEROS PCLES

RE I M RE T

-CoJCCOO 0.7000C 0.50000 005000c
-C.7CCOC -0.100CC 0.50000 -0.50000
0.03000 0.s550C 0.01000 CosoacC

C-C3Cc0 -0.9550CC 0007000 -0.90000
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TABLE 3.3

S~SYSTEM C

TRANSFER FUNCTICN COEFFICIENTS

"f'UMERATOR DEhCMI'IkTCR

A(0C- 1.COCoo

A(i)" -1,50000 8(l)w CoC
f A(2)- C.62500 8(2)- 0.0

ROOT LOCATIONS

ZEROS FCLES

RE IM RE IM

0.75'C00 0.25000 0.0 0.0

C.1Sccc -0.2500C 0.0 0.0

TABLE 3.4

SYSTEM D

TRANSFER FUNCTTCN COEFFICIENTS

NUM'ERATOR OEh'CM'INAIOR

* A(C)' 1.COCO0

A(li= 0.0 B(1)- 1.50000

A (2)m C.0 8(2)u -0.62500

ROOT LOCATIONS

ZEROS POLES

RE IM qE IM

0.0 0.0 0.75000 0,25000

0.0 0.0 0.75000 -0.25000
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consistently in toward the origin. This also forces

the excess transfer function coefficients and re-

flection coefficients to be very small (ideally zero),

clearly indicating that the model order is higher

than necessary. The brute force method, on the other

hand, scatters the excess roots throughout the z

plane and produces cancellations of the excess zeros

and poles. This results in nonzero values for the

excess transfer function coefficients.

3) The MSE as a function of model order is generally

better behaved for the lattice method than for the

brute force method, decreasing rapidly until the

correct model order is reached and then failing to

I.. decrease substantially as the model order is increased

further.

Two qualitative explanations for the improved performance

of the lattice filter modeling method are offered. The

first is that the data is not windowed in the lattice method

while a window that is nonzero only over the span of the

averaging interval must be used in the brute force method to

maintain even symmetry in the autocorrelation function esti-

mates. The effects of this difference between the two modeling

methods should be most noticeable for short data lengths, and

become less evident as the length of the averaging interval

is increased. The second possible cause for the lattice

method's better performiance is that the actual output se-

quences of the n-.th order lattice are used to calculate the( ; coefficients at the (n+l)-st order stage. In this manner,
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modeling errors that have occurred in the n-th order lattice

can be compensated for to some extent in the (n+l)-st order

stage. No similar phenomenon is evident in the brute force

modeling approach. Consider the differences between the

Levinson algorithm (which is equivalent to the matrix inver-

sion method) of equations (A.16) and the lattice method given

by equations (2.49). Both methods calculate the corrections

that must be made to the n-th order model to obtain the

(n+l)-st order model in terms of K(n+l) and •(n+l) and

theoretically,

e{e(n)(k) j(n)(k-T Rxx(n+l)T _ (n)T

When correlations are estimated by averaging over finite

intervals however this equality will not in general be

satisfied making the two methods different. The Levinson

algorithm will estimate the correction terms to be added to

the optimum n-th order model while the lattice method esti-

mates the correction terms to be added to the estimated n-th

order model actually obtained.

The improved performance of the lattice method is not

achieved without costhowever. The methbod is made compu-

tationally expensive by the need to store the system input

and output sequences and the l~ttice prediction error se-

quences and pass them through tuccessive stages of the

lattice as it is built up in ordt.r. The computational com-

( •plexity of the two methods is c,:ipared in Table 3.5.
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Table 3,5. Computational requirements for batch
processing ARMA modeling of an N-th
order system using P samples of the
system input and output.

Number of
Correlation 4N+3 averaged over
Estimates P data points 4N+3

Required

Mat.rix 1 - dimension 2N+1 2N-dimension 2
Inversions l-.dimension 1

Data Storage
Requirements N.A. 2P samples

Computations
To Pass Data 8NP multiplica-
Through The N.. tions
Filter 4NP additions

t1,-
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A, E. ADAPTIVE LATTICE ARMA MODELING

In addition to the batch processing method described in

the previous section, the lattice ARMA analysis model can be

implemented adaptively as well. The adaptive lattice solu-

tion for the multichannel AR lattice, which solves most of

the ARMA modeling problem, has already been described in

chapter II. To make the lattice ARMA model adaptive, only

an adaptive solution for the gain term a(O) need be added.

To avoid ambiguity, the time varying adaptive estimate of

this term at time k is denoted by a0 (k). Applying an LMS

adaptive algorithm it follows that

aO(k+l) a (k) - V(k) (3.35)

and using equation (3.27d) to form an instantaneous stimate

of the gradient yields

V(k) -2 e (k)[ey (k)-a 0 (k)e (k)] (3.36)

= -2 eu (k) eo(k)

so that

a0 (k+l) a 0 (k) + 2uO eu(k) e 0 (k) (3.37)

13 4



Here it is clear that

1) e 0(k) is analagous to the error signal.

2) euek) is analagous to the input signal.

3) e (k) is analagous to the desired signal.
so that for stability p0 must satisfy

0 < (3.38)0 e {e(k) "

Once again, however, the mean square value of e u(k) may vary

from stage to stage and over time as the two channel AR

lattice adapts making it appropriate to apply relations

similar to equations (2.58) and (2.59)

JIL0 Wk) (3.39a)

(k) W (1-%) aO (k-l) + a e u(k) 2  (3.39b)

where a is the normalized adaptive step size and the depen-

dence on order is implicit (a superscript (n) could be used

on aO, ao,' V, and all the eri r terms in equations (3.35)

through (3.39) to explicitly denote their dependence on the

order of the solution),

This adaptive lattice ARMA modeling scheme was implemen-

ted and the results of its use in modeling system A described

" in Table 3.1 are presented here. A normalized adaptive step

size of a .05 was used in the following simulations and
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the results represent an ensemble average of one hundred

trials. Unity variance white noise was used as the system

input. A flow diagram of the procedure is shown in Figure

3.18.

Figure 3.19 shows a plot of the mean square equation

error as a function of time for a fourth order model while

it adapts and Figure 3.20 shows the behavior of one term in

the K matrix, k(n) and one term in the 1 matrix, at

the first five lattice stages, 1 < n < 5. These graphs of

the k terms clearly show the successive stage by stage

manner in which the lattice model adapts. Figure ý.21 shows

a comparison of the transfer function magnitude and root

locadions of the system with those of the fourth order

adaptive model after 0'00 and 2000 iterations. Figure 3.22

shows the same comparison in the overyiodeled case when a

sixth order model is obtained for this fou:rth order system.
[S

While these reults show that tne adaptive solution

performs well and is a viable alternative to the batch pro-

cessing solution, Figures 3.22c and 3.22d show that one

advantageous characteristic of the batch solution has not

carried over. The excess roots in the overmodeled case are
not tightly clustered in the vicinity of the origin indi-

cating that the excess transfer function coefficients are not

near zero. In examining Figure 3.20 it is also evident that

the convergence of the reflection coefficients at che

overmodeled lattice stage (k11  and V(5)) towards their true

"i Ivalue of zavo is quite slow. This relatively slow tracking
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Initialize the parameter
and step size normalizing
factors

•, J Sample system input :
i•,, • "I and output

Find current value of e(n)(n)

and ()(k) for 0 n M

[ Update the step size
normalizing factors
using equations (2.59)

Update the K and K(n)
estimates using equations
(2.55)

and (2.58) for 1 < n < N

(n)Update a using equations
(3.37) aid (3.39a) for ni
equal to the desired order
ARMA solution

If desired, calculate ARMA
coefficients from K, K and a0I0-' testimates using equations

:;, (A.15), (A.16) and (3.24).

SFgure 3,18, Flow diagram of adaptive lattice ARMA
3solution.
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Figure 3.20b
K(Il) term from the backward reflection
coefficient matrices at the first fivestages of the adaptive lattice model as
a function of time.
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of overmodeled, zero valued parameters has been found to be
a general characteristic of the adaptive lattice algorithm

and has also been noted briefly by Morf. [Ref. 38)

To understand the reason for this behavior, consider

what occurs as the overmodeled fifth stage in the previous

example adapts. Initially, before the coefficients of the

first four lattice stages converge to their optimum values,

the prediction error sequences out of the fourth stage are

large and suboptimum. These signals provide incorrect in-

puts to the fifth stage driving its parameter estimates to

V ! some values other than their optimum zero values. As the

first four stages converge, the prediction error sequences

going into the fifth stage get small and since they drive

the gradient estimates, convergence back toward zero is

quite slow in these parameter estimates.

The cost functions being minimized at the overmodeled

fifth stage are the trace of P(5) and y(5) given by

(5) (4) (4) (5) K(5)T (4) T ( 5 )T1(4) (5)

(3.40a)

() () (4)T(5) -( 5)T(I4) (+ 4KS

(3.40b)

Applying the results of Appendix F, the parabolic surfaces

i defined by these cost functions are described by the eigen-

values and eigenvectors of P and P(4) the prediction error
covariance matrices at the fourth stage. Consider the forward
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Spr-adictions. The actual system output is given by

4 L4

.y(k) b(i) y(k-i) + E a(i) u(k-i) (3.41)
"L:1 i-o

and for a white input signal, the minimum errors in the

fourth order two channel autoregressive predictiins of y and

u are

(4)e ( (k) a(O) u(k) (3.42a)

(4)
!'i•i :,(e (k) u(k) (3.42b)

i u

This results in an optimal prediction error covariance matrix

"given by

r2
.(o)2 a(0)

p Ruu(O) (3.43)

a(0)1

with eigenvalues of 0 and l+a(O) 2 . Also in the case of the

system described by Table 3.1 where a(3) = a(4) = 0, it is

seen from equation (3.41) that a perfect backward two channel

AR prediction of Y(k-4) is possible resulting in an optimal

backward prediction error covariance matrix of

(4)= (3.44g)
S 0-(4)

146 (k)
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which also has a zero eigenvalue.

Since the ellipses obtained by passing a plane through

the parabolic cost surface have axes whose half lengths given

Iby l//'X'T and since P and P each have one eigenvalue of

zero, it is seen that the parabolic bowls along which K

and adapt, degenerate toward infinitely long parabolic

troughs as the first four stages converge toward their opti-

mum values. This is responsible for the slow convergence of

the overmodeled parameters back toward zero. To avoid this

problem, some means of detecting this degeneration of the

cost surface and then reseting the appropriate parameters

to zero must be found and this certainly provides an inter-I

esting area for future study.

F. A LATTICE APPROACH FOR MULTICHJNNEL ARMA MODELING

The lattice filter solution methods for the ARMA model

can readily be generalized to multiple input multiple output

ARMA models for linear systems. The equations for the

multichannel ARMA model of the system shown in Figure 3.21

are developed in Appendix G with the solution for the model

coefficients given by equation (G.7) repeated here for

convenience.

- U~y(3,45)
R :A R+
-U + Y U -U+ y
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u bk y1 (k)

u U(k) y (k)
;Q0

Figure 3.21. A general multichannel ARMA system

This is clearly a generalization of the single channel ARMA
equation error solution given by equation (3.20) and just

as in the single channel case some assumptions are required

to apply a Levinson type algorithm.

If it is assumed that all the a. (O) are known or can

. be estimated in another manner, they can be incorporated

into a matrix given by

a 11 (0) .... alQ (0)

(3.46~)!ý0

a (0).... a i (0 )

and equation (3.45) becomes
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This is similar in form to the equations for the solution of'

a (Qi + Q0) channel autoregression with input channels Yl(k),

*"' YQ0(k), u (k), .,.u uQ(k) so that the multichannel

ARMA solution is related to the multichannel AR solution by

LB] If

II
The multichannel AR prediction error vector is given by

li, and defining
T T

e(k)T• (k) -. u(k).A[yT 1  U] (3.51)

e (k)T

i folos ha
e~) ~) 0 EYU-03.1
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establishing the generalization of equation 3.27c relating

the multichannel AR prediction error vector to the multi-

channel ARMA er:or vector e 0(k). The ARMA prediction error

covariance then is given by

-0 T P p(.2

and the coefficient matrix A can be set to minimize the

trace of P0 resulting in a solutiLon given by

A ~e() kT TA 0 e {e u(k) -u (k)} e{eu(k) ey(k) 1 (3.53)

completing the multichannel generalization of the single

channel results. The portion of the solution given by the

multichannel autoregression can be solved as before using

the lattice methods in either batch or adaptive fashion.

Then the matrix of gains can be obtained from equation (3.53)

by batch processing or equations (3.37)and (3.39) can be

generalized to yield an adaptive solution given by

A(k+l) A0 (k) + 2 e- u(k) eo(k)T (3,54a)
a 0 (k)

where

2 (k) 2 (l-c) 0 (k-l) + e Wu(k)T e (k) (3,54b)
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It is clear that the equations and methods developed ear'lier'

for the single channel ARMA model are a special case of

these results with 1. Q

j'hI

0,
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IV. NONLINEAR SYSTEM MODELING

The modeling of nonlinear systems is a far more complex

problem than linear systems modeling. No attempt is made

here to provide a comprehensive treatment of the problem.

Rather, two specific models for systems comprised of the

interconnection of linear and memoryless nonlinear subsys-

tems are considered. Both of these models, the Volterra

model and the new nonlinear ARMA model, are shown to be

generalizations of the MA and ARMA modeling problems explored

previously so that with appropriate modifications, the

Levinson algorithm and lattice methods can be used to solve

for the model parameters.

A. VOLTERRA NONLINEAR MODELING

The Volterra series model characterizes nonlinear sys-

tems using a generalization of convolution where the system

output is approximated as a summation (possibly infinite)

of outputs of degree m systems.

MSy(k) = Ym(k) (4.1a)

mZl

This is shown pictoria llyin Figure 4.1,
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YM W

M-th degree

system

i !u~k) 0
Fay(s)

A number of representations for these m-th degree systems

are possible. The most commonly used representation is in

terms of symmetric Volterra kernels and is given by

9 m nm_ 0  n as(nl...nm)u(k-nl)r...u(k-nm) (4.1b)

and as(n 1 . .. nm) is the m-th degree symmetric Volterra kernel.

(Any permutation of the indicies results in the same value

for this kernel giving a high degree of symmetry.)

This model arises quite naturally for a linear system in

-, f cascade with a power series nonlinearity as shown in Figure

4.2 for a quadratic nonlinearity where the output can be

written as

153



y(k) a(nl)a(n2 )u(k-nl)u(k-n2 ) (4.2a)
j•!n n=0 n2=0

and

as(n n2 ) a(nl)a(n2 ) (4.2b)

ux~k) y2

F~igur)e4..A quadrat) nonlinear system.

The Volterra series model in this form has been widely dis-

cussed in the literature £e~g. Ref. 1, 6, 13, 14, 259 26, 48

and 54) since Wiener (Ref. 62) first applied it to systems

analysis and modeling. It has the added benefit of treating

li-near systems as a special case of the model since the

first degree kernel is exactly the convolutional represen-

tation of the MA model.

The number of ker'nels (M) required for an accur'ate model

depends on the nature of the nonlinearity in the system and as

long ae'the nonlinearity is soft, a relatively low degree
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model will suffice, keeping the problem manageable in that

regard. The primary difficulty associated with Volterra

nonlinear modeling arises from the fact that it uses a

nonrecursive MA representation for the linear portion of

the system, requiring in general, an infinite memory as

indicated by the upper limits on the summations in equation

(4.lb). In practice, these summations need to be truncated

as shown in equation (4.3)

N N_~ ~ Wmk + . as(nl..nm)U(k-nl)...u(k-n) (4.3)

n-0 nm 0

but a large number of terms may still be required to

accurately model the system. One method of solving for the

model is to set the pa"•ameters (terms of the Volterra kernels)

to obtain a minimum mean square equation error where the

equation error is defined as the difference between the sys-
A

tem output and y(k).

To simplify the solution and reduce the number of para-

meters that must be obtained, the symmetry of the kernels can

"bbe exploited by rewriting equation (4,1b) as

Ym(k) E .- . - at(nr,..,nm)u(k-nl),..u(k-nm
n1 0 n2 zn1  nm=nm,1

(4.4)

where a (n ... nm) is the m-th degree triangular Volterra

kernel. For a finite upper limit of N on the summations

the m-th degree symmetric kernel will contain (N+l)m terms
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but only (N+m)! of them are distinct with the remainder de-

TT m!
termined by symmetry considerations.

Still another representation for Ym(k) uses the regular

form of the Volterra kernel (this terminology has recently

been introduced by MitzelClancy and Rugh [Refs. 7 and 35)).

It is given by
P

y(k 1  h ar(hl.." hm)u(khl)u(k-hh 2 )hii =0 h:o

... u(k-h1 -...- hm) (4.5)

where ar(h1 ... hm) is the m-th degree regular Volterra kernel.

With infinite upper limits on the summations, the symmetric,

triangular and regular forms of the Volterra kernels are

equivalent, however, when finite upper limits are used they

cover the field of the model kernels in different ways.

Because of its symmetry, it is reasonable to have equal

M upper limits on all the summations on the symmetric kernel

as was done in equation (4.3). This is shown in Figure 4.3a

for a second degree kernel. The equivalent triangular kernel

"is given by

N NI•~ ~ Y(k) "' at(n, ... nm)u(k-nl),..u(k-nm (4.6a)

*n =C nm nml

and it covers the region shown in Figure 4.3b for a second

degree case. The corresponding regular form expansion, however,
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requires variable upper limits on the summations to cover

the equivalent kernel space as shown in equation (4.6b), and

SFigure 4.3c for a second degree kernel.

S NhSN N-h . N-h -+i• ~~ ~ Ym "X Z..•M-1 ar(hl ... hm)u(k-hl)u(k-h!-h2)

M h1 0 h 2 "0 h =0

.u(k-hI-. .- h) (4.6b)

Thus it is seen that only half the field needs to be covered

by the triangular and regular expansions to identify the

kernel associated with the square field of the regular ex-

pansion. When the regular form expansion is used with con-

stant finite upper limits there is no inherent reason to

make all the upper limits equal since there is no symmetry I
in the kernel. Considering the regular expansion

N1  N mSJm~(k) -- .. a(hI h )u(k-hI.. (u(k-h-.h)

hr=0 hm=0 .

(4. 7a)

a trian3ular expansion given by

SY(k) = P 0 a (nl...nm)u(k-nl)...u(k-nm)

2 n '0 n 2 :nI nm nm_ 1

(4,7b)

is required to cover the corresponding field. For a quadratic

expansion this is shown in Figures 4.4c and 4.4b, The equi-

-(valent region in the symmetric field is shown in Figure 4.2a.
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Therefore, identifying a rectangular kernel in the regular

kernel s'nace is equivalent to obtaining a symmetric kernel

I ~in the arrow shaped region of Figure 4.4~a.

Which type of expansion is more appropriate for a given

system depends on the shape of -he kernels for that system.

For example, if a quadratic nonlinear system has a kernel

with a relatively square shape in the symmetric kernel

space, a regular form expansion with constant upper summa-

tion limits will have to estimate many zero valued terms

and is inefficient. On the other hand if the system has a

kernel similar to the arrow shaped region of Figure 4.4a

in the symmetric space, a regular expansion will be efficient

while a symmetric expansion over a larger feld would ba

required with many zero valued parameters. Not enough is

known about how to relate types of nonlinear systems with

various shaped kernels however, and the question of kernel

shape a~nd the best type of expansion is not pursued further

here.

1. Lattice Filter Methods For Volterra Modeling

Lattice filter methods derived earlier can be applied

to obtain a minimum mean square equation error solution for

the Volterra model if the regular form of the expansion is

used. The Volterra model can be put in the form of a mul-

tiple input single output MA model by defining a new family

of signals as nonlinear combinations of delayed values of

the system input u(k).
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Uh...h (k)-u(k) u(k-h 2 ) u(k-h 2 -h 3)...u(k-h 2 -...- h)

(4.8)

For finite summations the regular form of the expansion

VT: becomes

"N N NNmm Nm2 Nml

y (k) 0 1  ar.(h... h M)Uh..h (kmh h0 h

(4.9)

and can be regarded as the sum of the outputs of a large

number' of linear filters whose inputs are given by uh2...hm(k).

Equation (4.9) is exactly the form of a Qi input, single

output MA model wher'e

Qi " (N 2 +l)(Nm3 +l)..(Nm+I) (4.10)

Furthermore, if the same upper limit on the summations over

h1 is used in each of the various m-th degree systems,

(N 1 1 =N2 1 . N..Nml), the overall Volterra model given by

equations (4.la) and (4.9) is in a form suitable for solu-

tion via the multichannel Levinson algorithm or the multi-

channel MA lattice methods. The requirement to use the same

upper limit on all summations over hI arises because the

Levinson algorithm and lattice methods assume the same amount

of memory in each channel of the model,

As a specific example consider a second degree ex-

pansion where NI--N21N and N2=N
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N1  N2  1

I Zr y(k)" a (h )u(k-h)+ E ar(h h2)U (k-h)
h =0 r 1= h 2 -O r 102 h 2  1

(4-. 11a)

u h(k) u(k)u(k-h ) (4.llb) j• h2

S ,Defining data and coefficient vectors for each channel given

by

+U(k) Eu (k)...u (k-N (4.12a)

I- 2  h2  1
,+ T

K -h 2  = Ear(01h 2 )....ar (NI, h 2 ))T (4.12b)

and embedding them into single data and coefficient vectors

rwritten as

T I + T 1 +1 TTX+(k) C uu+(k)T u0(k)T : ... ( (k) (4.12c)

I 2

+- -+-T I 2T +

I 2

the equation for the Volterra model output becomes

"A X+ Td+

y((k)(k)T (4.12e)
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which is clearly of the same form as equation (A.24a) and

represents a N2 +2 input, single output MA model. All the

nonlinearities in the Volterra model are external to this

MA model, in the formation of its various input signals from

the system input u(k). This model is illustrated in Figure

4.5.

It is interesting to consider what the recursive in

order nature of the Levinson algorithm or lattice methods

mean to the nonlinear Volterra problem. In building up the

Y:r MA model solution recursively in order, the upper limit of

the summations over h is increased until the desired value

is reached. In terms of the Volterra model kernels, this

means allowing each of the regular form kernels to grow in

size in the h1 dimension while holding their boundaries fixed

at prespecified values in all the other dimensions. In the

linear MA model, the kernel has only one dimension and there-

fore the recursive in order solution elirrinates any require-

ment to prespecify its upper limit (the order of the model).

For the higher degree nonlinear kernels, these methods reduce

by one the number of kernel boundaries that must be pre-

specified for each kernel. Allowing the kernel to grow in

any of the other M-1 dimensions (h 2 through h m) corresponds

to adding additional channels to an existing lattice and

simple methods of accomplishing this are not available.
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SFigure 4.5. A second degree nonlinear Volterra
• ~model~in multichannel MA form..

•-IIcien:Es of the single input single

output MA models shown.
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B. NONLINEAR ARMA MODELING

As was previously mentioned, the primary difficulty

associated with the Volterra series model arises from the

fact that it is a nonlinear generalization of the MA model

and as such, a large number of tevras may be required to

accurately represent even a mildly nonlinear system. In

linear system modeling this difficulty was remedied by
using the more general ARMA model. It is reasonable to

assume therefore that a nonlinear generalization of the

ARMA model could remedy the problem in the nonlinear

modeling case (for at least certain types of nonlinear

systems). Such a generalization called the nonlinear ARMA

model has recently been proposed. [Ref. 614 This model

forms an estimate of the current value of the system output

as follows:

y(k) a (n 1 )u(k-.n1) + a a(n 1n 2 )u(k-n 1 )u(k-n2)nl=0 n o n 2 2

a (n ..n )u(k-nl)...u(k-n
n-1=0 n p =0 p p

+ b S(ml1)y(k-ml) 1 ) bs(ml m2 )y(k-ml )Y(k-m 2

m ml:1 m2 1 1
[*

+...+ b. bs (ml1...m q)y(k-m )...y(k-m q
mll m q=q

16q



+ C(n m )u(k-n)y(k-m.
n1*=O mil nf 0 n -0 m =11 p 1

C(n ... npml...mq)u(k-n )..u(k-n )y(k-m])
m =1 1** q1 p

q

... y(k-M q) (4.13)

The first three terms of equation (4.13) are a discrete

Volterra expansion of the input signal u(k) and represent

F1 0 [u(k)] in terms of the discussion of Chapter I. The

second three terms are a discrete Volterra expansion on the

system output delayed one sample interval and represent

F2 0 [y(k-l)]. The final two terms are bivariate expansions

of the system input and delayed output and represent

F3 0 [u(k), y(k-1)]. (This is the first and only model con-

sidered where F3[-I is not assumed to be zero.) Equationiv
(4.13) is clearly a nonlinear extension of the linear ARMA

model contained in the first and fourth terms. As was the

case in the Volterra model, the number of multiple summations

required in (4.13) is dependent upon the nature of the non-

linearity in the system being modeled. The upper limits on

the summations in (4.13) have been written as infinity in-

dicating a requirement for infinite memory or model order.

As is discussed subsequently however, the required model

order (memory) may in f~ct be finite due to the nature of

the system being modeled, thereby alleviating the difficulty

encountered in the Volterra nonlinear model previously presented.
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The kernels of the input expansion and output expansion

9 asa') and bs(') are symmetric since any permutation of the

indicies results in the same value for the kernel. They

have therefore been labeled with a subscript "s" and can

also be written in triangular and regular form.

n 0 n 00

O Ca
k a (n n .)u(k-n 1 ... u(k-n

n1: ~2: 1  p t l-1

a .. (h a h .. )u(k-h 1)u(k-h 1 -h2)
h n= 0 h =0 p

p

b... b 'k

ME= m M m ZM t q q

r 167

. .. uy(k-hl-...hp (4.15)

! .:.... bs~m... )y~-ml)..y~-mq

ml~l m~l167



In writing the triangular and regular forms in equation (4.15)

the lower index on the summations has been shifted to zero.

In the case of the bivariate expansion terms in equation

(4.13) the kernels do not possess symmetry so that trian-

gular expansions are not possible but regular form expansions

are possible.

E ...... C(n ....nml.06m )u(k-n)•'in -0 n =0 m Ml-M m = l
I-: p- 11 q~

i:'•: .. u(k-np) y(k-ml)... y(k-mq
p 1

• I '
- ." (..p÷h1  hP+q)u(k- h1 ... u(k-h- -**O h .

h =0 "-0 cl 0l

p+q

u(k-hl1-...-h q+l ).•,.u(k-h 1-. •-h p+q)

(4.16)

Thus two regular forms are possible for the bivariate expan-

sions, Figures 4.6 and 4.7 illustrate the manner in which

4 the regular form of the bivariate expansion covers the field
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of model kernels for a second degree case for finite upper
limits of N and N2 on the summations. It is interesting

to note that because of a lack of symmetry in the original

form of the bivariate expansion, the causal region in the

regular form extends outside the quarter plane.

As was the case with the Volterra model, it will be

shown that in reguilar form, a minimum mean square equation

error solution can be obtained for the nonlinear ARMA model

coefficients using either the Levinson algorithm or the

h: lattice methods. This will provide the nonlinear generali-

zation of the results presented in Chapter III on linear

ARMA modeling. Before developing this method of solution,

however, the applicability of the nonlinear ARMA model to

various types of systems and its memory requirements will

be considered.

1. Identifiability Conditions and Memory Requirements

In the previous chapter on linear ARMA modeling it

was stated that there were two facets to the question of

model identifiability; input signal requirements and mea-

surement requirements. The question of measurement re-

quirements was not discussed however, since it was assumed

that all signals (input and output) were observed. In the

study of systems comprised of interconnected linear and

nonlinear subsystems however, various internal signals exist

and the effect of either observing or not observing them on

the modeling process must be explored. To do so, it will

be assumed that the system under study can be put into the

form of Figure 4.8 fulfilling the following equations.
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xL(k) "r 1 YN(k) + Clu(k) (4.l7a)

r(k) - 2 YL(k) + C2 u(k) (4.l7b)

UM F [xn(k)] (4.17c)

YLk M -- T_ NL(Xl] (4.17d)

where

!ELlk) 2 [XLl (k) .. xL7 (k )]T (4.18a)

a vector of inputs to P linear sub.ystems;

!N(k) x [XNl(k) XNO(k)]T (4.18b)

a vector of inputs to Q nonlinear memoryless subsystems;

ZLlk) 2 [yL~lk) "'" YLp(k) ]T (4.18C)

a vector of outputs from P linear subsystems;

u(k) -- [yNl~k W . yNQ(k)] (4.18d)

a vector of outputs from Q nonlinear memoryless
subsystems.
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Fge .. e L inear Sys-•:+ tems

S• u (k )

_N(k) F • (k)

2 n73onlinearSystems

Figure 4.8. A General Nonlinear System
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The z -transforms of these signals are also defined as

XL(z), XN(z), YL(z), Y(z). r r2 , C1 and C2 are matrices

whose elements are either 0, -1 or +1 indicating the

interconnections of the various subsystems. T. ] and F.]

are diagonal matrices specifing the linear and nonlinear

subsystems as follows.

ii

Y_(z) T(z) XT (z) (.19ba)

whereA.(z)

i- _ l-18i(z) i-

and

A A(z) a i(n) z-n (4.19C)

Nai(Z) b i(n) Z-n (4.19d)
n:l

YN(k) - [4s(k)] z F,1[.] a xN (k)
F2[

•. XN2(k)

S0 FQ[. ] XNQ (I)

2 (1.20)

QNXNQ(k)
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I! ¶_ This overall system given by Figure 4.8 is adequate to re-

present a broad class of systems comprised of intercon-

nections of linear and nonlinear subsystems including

cascades, parallel connections and feedback systems.

Equations (4.19) and (4.20) assume all the subsystems

are single input single output noninteracting systems. If

desired, the collection of linear subsystems given by

V T(z) can readily be put into the general multichannel ARMA

form of Section III.F to allow each output to be a function

of past values of all outputs, and past and present values

of all inputs.

Alternate representations of these linear and non-

linear subsystems are also useful. Equations (4.19) are

equivalent to

Y(z) = [Ai(z)]X(z) + [EB(z)]YL(Z) (4.21a)L i -L1 L

or in the time domain

L(k) = [a(k)J*xL(k) + [bi(k)]*L(k) (4.21b)

Here * represents convolution and is carried out in the

same sense as matrix multiplication and the matrices.

(ai(k)3, Ebi(k)J, [A.(z)] and CBi(z)] are diagonal matrices

whose i-th entries are the time domain functions ai(k) or

b hi(k) or the polynomials Ai(z) or Bi(z). The time domain

functions ai(k) and bi(k) are the inverse transforms of the

polynomials Ai(z) and Bi(z). This can also be represented
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in nonrecursive form as

SyL,(k) C hi(k)]•!Ej(X) (4.22a)

where Chi(k)] is a diagonal matrix of impulse responses

defined by

Shi(k) =n- hi(n) 6 (k-n) (4.22b)

The nonlinear systems can also be represented in terms of

inverse functions assuming they exist over the necessary

ranges of the variables so that

F-1[43 0( k)r 1
x, W.]k . . ..

0: F- YNQ(k)

I~ ~ ~~ ~- (k)]:•'lY(k " "
!i~~ ~~ O Cl' Y k

"- (4.23)

F - (k)
So that equations (4.17) are iterative it is

necessary that no delay free loops exist in the system of

Figure 4.8. A necessary a ,,i_4--_q

absence of delay free loops is developed in Appendix H and

requires that the terms of the determinant of the matrix
17
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S=Lim r T - (4.24)

"-( !z)

and all its principal minors must be zero.

The various signal vectors and equations (4.17) can

now be partitioned as

x(k) la k)

+ ÷ u(k) (4.25a)

2SZk) ri2 ~2 (k) £.2

=- F ' (4..25c)

L i I JLJLJ
r C

'(k -2 -1b YL 2

Equation (+.25c) can also be written in terms of inverse

functions as in equation (k.23), and (425d) can be written 2

using either recursive or nonrecursive representations of -

the linear systems as was done in (4.21) and (4.22). The
single primed signal vectors in equations ((.25) represent

S~those signals which are observed and the double primed signals

S~are those which are not. It is assumed that all input signals

y (k I lbE. 177



in u(k) are observed, It is possible to rewrite equations

(4.25) as a single composite matrix equation as done in

(4.264). As written, equation 4.26* is an infinite memory or

model order representation because of th., presence of the

h(k)* operators but a finite memory version can be written

by expressing rows 4 and 8 as

1(k) AaCk)*xl(k) + bCk)* 1(k) + a.b(k)*xL(k)

+ b (k)t"y(k) (4.23b)

YZ"() a(k)*xl(k) + b (k) 1(k) +a k*")

+ b(k)*'x,"(k) (4. 26c)

The third and seventh rows can also be written in terms of

inv-rse functions if desired as

x4(k) Fl[Z(k)] + Lbr,,"i(k)] (4.26d)

1"(k) F_ CyA(k)J + F-1(X4~(k)] (4.26e)

Now the problem of writing a system of iterative equations

for the obser'ied signals in terms of only observed signals

Szonslsts of rewriting equation (4-26) so that. the upper

rig 1 y 5 ;arzition is a null matrix. :f "hs can be

-,ete e genere.- f--7 of the non'.inear A,?A model :an' be
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used to identify the composite effects of the operators

V appearing in the upper left 5 by 5 partition. In some cases

this will only be possible of the infinite memory version of

the model (with h(k)* operators) is used and in other cases

a finite memory model will suffice,

The process of determining whether infinite or finite

memory nonlinear ARMA models can be used to identify a given

system is illustrated for two examples in Appendix I. First

a system consisting of a cascade of linear and nonlinear

systems is consider':d. Then a model of the tracking behavior

of a phase lckked loop is put in the form of a nonlinear ARMA

representation.

2. Lattice Filter Methods for the Nonlinear ARMA Model

As was the case with Volterra modeling, lattice

filter methods can be applied to the nonlinear ARMA modeling

problem if the regular form of the kernels is used. A

family of signals is defined as nonlinear combinations of

delayed values of y(k) and u(k) as follows.

u h (k) u(k) u(k-h2)u(k-h2-h )...u(k-h2-...-h

(4.27a)

Yh2 **hm(k) y(k-l)y(k-l-h 2 )y(k-l-h2 -h 3 )

... y(k-l-h2 -... -h) (4.27b)
m!



y(k-l-h2-. .h~l

...~k--hl.*-hp ) (4.27c)

or alternately

0 ~Yh2***hq Uh q~1 *h q~p y~-~~-- )..yklh2**hq

u(k-h2  *hq+) .. .u(k-h-. hq)

(4+.27d)f

With finite summations, the regular form of equation (i4.14~)

becomes

pip p,2 1

p 2 1

(4. 28a)

Equation (4.15) becomes

M M M

b h h(k- (
h :-0 h 2 0 ~h 1 ' Z rOV""' h. .
q21

(428b)



and equations (4.16) become
•*1

Lp+qp+q L p+q 2  L C+ 11

,r L ** hp+q:O h 2 0 hh:O rl,

p+q(kh (4.28c)

or

L L L
q+pq+p q+p,2 Lq+p,l

I .. M C r2C(h 1 1 h q+p) Yh2...
h q+p- 0 h2=0. h1=0 q

SUhq+1 .. "hq+p(kh1 (4.28d)

A. These terms can be viewed as the summation of the outputs

"of a large number of linear filters whose inputs are the

signals defined in equations (4.27). In the context of

multichannel filtering, each of these :ilters can be con-

sidered as a single channel and each of the input signals

can be associated with one of the channels. Since the

lattice models use the same amount of memory in each channel,

the upper limits on all summations over h. will be made the

same (Np 1  X Nql -- :p+^ NQ). The upper limits on the

* suumatiorsov.r the other indicies determine the number of

"hfLnn*lOs r..uire±.
A •'.



For a quadratic nonlinear system, the present value

of the system output is estimated as

N1  N22 1

y)a (h)u (k-h) + a (hl h)u (k-h

y~)r .. r l' 2h 1
U2

0 h 2 "0 h=O0

N1  
M2 2  N1

+ z br (h )Y(k-hl) + br(hl h 2 )Yh 2 (k-hl)

h =1  
h 2 =0 h 1=0

2N1

L22 11 (Cr
1

!2 (4.29)

(hl,h 2 ) u Yh 1)

2 h1i=

where u(k) 
2u(k)u(k'h (k) Y(k-l)y(k-l-h2)Uh2 2) Yh2

and u y (k) u(k)y(k-l-h 2 )" Signal and coefficient vectors
Yh22

can be defined for the various quantities in equation (4.29)

following the conventions established earlier; for example

T

y(k) [y(k-l) ... y(k-N1 )] 
(4.30a)

(k) (k-N 1 )T (4.30b)

2 2 2

and T

S-b (1) ... b((N, (4.30c)
- r rl

T
T b(~kb( 

(4.30d)

2



Embedding all these vectors into single data and coefficient

vectors, equation (4.29) becomes

i'! y(k) - (kd) (4. 31a)

where
•' 1+ EZ+(k)T

(k) (k)T u+(k)IuWT Y0(k)T "'" 4 (k )TI

Y- _ 1 ... (k) 1
S22 2

0u. (k) ! uY (k)T ] (' 31b).
I I 22

!i ~and
.+bT _ +TT

-l -b a b .''I bM-I 22
T: +T!+T ,T+

d• 1. [b a. 0 '22

+Ti + Taa
-0N 22

+ +T
co j ... I EL ] (4.31c)

22

The minimum mean square equation error solution for the

model coefficient vector d is given by

E{ X (k) Xl(k)T} dl " s{Xl(k) y(k)} (4.32)

where the equation error is defined as

e(k) y(k) - y(k)

tam



because While equation (4.32) is similar in form to equations

(A.7a) and (A.26a) for AR and MA models, it lacks the nec-

essary form for the application of the Levinson algorithm

because of the fact that some component data and coefficient

vectors are Nl-vectors while others are (Nl+l)-vectors.

This is the same problem that arose in linear ARMA modeling

and can be handled here in a similar manner, Defining

I -a (r0) - (0,0) -br (0 2)

- ar(0,0) .. -a.(0 , 22 )

T
.- cr(OO) ... -Cr(O,L 2 2 )

;,:I!:d( 4.3 3a)

and

x(k) - Cy(k) u(k) Y0 (k) ... YM (k)

Su0 (k) *'" UN (k)

T
uY0 (k) ... uL (k)'Y, 22

(4.33b)

and assuming that the coefficients in y can be estimated in

some other manner, the MMSE solution for the remaining

model coefficients becomes

it
_ • 1k



E (k)X(k)T} d C MX(k) x(k)T} T (4.34)

Here X(k) and d are defined as Xl(k) and d 1 with all

superscripts"+" removed from their component vectors (ndi-

cating they are all indexed from 1 to N and are all NI-
11

vectors). Note that just as in the linear ARMA case, the

coefficients in !L essentially correspond to gains on their

respective channels. Comparing equation (4.34) with (A.7a)

for a multichannel autoregression it is clear that d can be

obtained from the multichannel AR solution by

d D~ (4.35)

where the signals in x(k) comprise the channels in the auto-

regression. Therefore, either the Levinson algorithm or the

lattice methods can be used to solve for D and from it and

a knowledge of •, the nonlinear ARMA model coefficients can

be obtained.

By analogy with equation (3,27) it also follows that

the nonlinear ARIIA aquation error is related to the AR pre-

diction error vector by

e(k) z T e(k) (4. 36a)

so that

Eie(k) 2 T 'p (4.36b)

I'i1

t' •,6

, ,•.• ••. I- ,--'-- • -m .... .- •, ," - _ ".'. •.



where P is the AR prediction error covariance matrix. The

coefficients in * can therefore be set to minimize the mean

square value of the nonlinear ARMA equation error in (4.36b)

resulting in a solution given by

P22 "'"2N) P 2 1

- ,"-(4.37a)

SP2 PNN cr(OL 2 2) PNl

where N is the total number of channels in the model oI

N 1 + 1 + (M2 2 +1) + (N 2 2 +1) + (L 2 2 +1)

and the Pij are the elements of' the prediction error co-

variance matrix. It is readily apparent that the linear

ARMA model and its solution via the Levinson algorithm or

lattice methods are a special case of this formulation of

the nonlinear AR14A model just as one would expect.
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V. APPLICATIONS,, CONCLUSIONS,AND OPEN QUESTIONS

In the previous four chapters, existing methods for AR

and MA modeling were reviewed and from them new methods for

linear and nonlinear ARMA modeling were developed. Here,

two applications for these new methods in reduced order

modeling and modeling for fault detection and diagnosis

are examined briefly. Then the results of this research

are summarized, conclusions drawn and significant open

questions for the continuation and extension of this work

are listed.

A. APPLICATIONS

1. Reduced Order Modeling

Oftentimes, complex physical systems, both linear

and nonlinear, can be approximated quite closely using

simple models. The lattice solution methods developed here

provide a very natural and efficient means of determining

reduced order models for complex, high order ssesepcal

in the case of linear systems. In ChapterIIitwsage

that for linear systems it is reasonable to build up ARMA

models by simultaneously incrementing the order of the numera-

tor and denominator polynomials as the lattice method does.

I When this method is used to build up A given order model,

all lower order models and their mecan square values of equation

error are readily obtained as well (the only additional



4 calculations needed are for the MSE and the gain term or

gain matrix in the multichannel case) making it easy to

compare the various models and decide if reduced order models

provide sufficient accuracy.

Consider for example the seventh order, system whose

characteristics are listed in Table 5.1. The magnitude

spectra of second, third, sixth and seventh order lattice

models obtained using batch processing with 4000 point

averages are compared to that of the system in Figure 5.1.

It is apparent that a second order model is unable to

approximate the system well, however a third order model does

provide a good approximation. Furthermore, increasing the

model order to four, five and six fails to significantlyL ~improve its-~performance as evidenced by the sixth order

plot in Figure 5.1c. The model accuracy is not significantly

increased until seventh order (which corresponds to the order

of the actual system) when a very good fit is achieved. This

7' is further illustrated by the plot of the normalized mean

square equation error as a function of model order shown in

Figure 5.2. The cost drops rapidly going from second to

third order but then fails to decrease significantly until

seventh order is reached. The roots of the system and the

various order models are also plotted in Figure 5.3.

The benefits of the lattice method for reduced order

nonlinear ARMA modeling are not quite so pronounced however,

since adding extra stages to the lattice corresponds to

allowing the kernels to grow in only one of their multiple
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TABLE 5.1

SYSTEtV

TRANSFER FUNCIICN COEFFICISEh"S
ýLMIAATOR OIM •O

A(C)" I.COOOO4iA4(Clli -2.16510 •%,2.18950

SA(2)' 1°525C 8(2)s -2.21280

sE(3) 1.2.174O;.:. iA(l-i= 0-0

A s0-0 e(41' -C,8M5O
0' ! B I C,45144

7 AB.6(6)s -C.23462

SA {lis 0.0 87U003-

ROCT LOCATIONS

ZEROS 
PCLES

RE IM RE
0.••• . 6250C., 0.9(:00 0.

-. 20 0.6SZ82 C.4,0000
"09.0 -0.40000

C.c 0.0 0.23941 0.65778
S¢,00.00.2194,1 -,0.65778

C.C 0.0 -0.28750 0.499e

C~ 1

C-0• 0.0 -0.28750 -0.499"€6
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dimensions. (The linear "kernel" had only one dimension.)

Here some a priori information would be useful in determining

the values to prespecify for the boundaries of the kernels

in the other dimensions. Still however, when compared to a

brute force matrix inver~sion approach where all kernel

boundaries must be prespecified, the lattice method provides

a viable alternative in obtaining reduced order models

especially for low degree systems.

2. Modeling For Fault' D'ete'ction

The problem of fault detection and possible diagnosis

can be formulated as follows.

a. Obtain a parameterization that describes the

current functioning of the system under test.j

b. From this parameterization, determin(e if the

system is functioning normally or if a fault

has occurred by comparison with a fault dictionary.

It is the first part of this problem that has been addressed

in this work, The parameterization can be as simple as

sampled measurements of the response to specific inputs

however, the large volume of data that would generally be

involved in such an approach would greatly complicate the

second part of the problem. A more efficient approach in

terms of utilization of parameters is to model the system

and -use the model parameters as a description of its

current functioning.

For linear systems, ARNA miodels provide a very-

general framework with a number of possible parameter sets,
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4, Three candidates are polynomial coefficients, root locations

and lattice reflection coefficients with the latter offering

many advantages. In addition tc the advantages demonstrated

by the ex: Brimental results of Chapter III, reflection

coefficients provide a very efiective and methodical way to

build up knowledge of a system's characteristics. As model

order is increased to more accurately represent a system,

reflection coefficients already determined don't change

making them ideal candidates for use in a dictionary lookup

scheme (a characteristic not shared by the other parame-

terizations). This is made more important since reduced

order models could be adequate to detect and perhaps diagnose

some faults, especially catastrophic ones. While more

- parameters are required when reflection coefficients are

used, these same coefficients also provide all reduced order

models. For a single channel ARMA example, SN reflection

coefficients ane. N gains provide all models from order 1 to

2
N while N +2N parameters would be required using either

polynomial coefficients or roots to provide the same infor-

mation. (SN reflection coefficients are needed if the input

is white noise since kl 2 =k =0.)

A similar argument could be made for the use of

lattice reflection coefficients with the nonlinear ARMA

model for fault detection and diagnosis of nonlinear si0stemrs.

1.97



B. CONCLUSIONS AND OPEN QUESTIONS

The purpose of this research was to extend existing

theories and methods in the modeling of linear and nonlinear

systems to broader, more general types of models. After a

discussion of available results in AR and MA modeling of

linear systems with particular emphasis on the Levinson

algorithm and lattice filter methods, model transition

formulas were developed to relate the more general ARMA

model for linear systems to the AR and HA models. It was

shown that with suitable assunmptions, the ARMA model solu-

tion could also be obtained recursively in order using

either a modified Levinson algorithm or lattice filter

methods. These results were developed extensively in both

theory and practice for single channel linear ARMA modeling

with experimental verification of both the batch processing

and adaptive lattice methods presented. Portions of these

results have already been publiashed. [Refs. 65 and 663

The theory was also developed to generalize these results

to the multichannel ARMA case.

Based on the simulation results it was concluded that

the lattice methods offer the following advantages over a

conventional brute force matrix inversion approach to ARMA

modeling using windowed correlation estimates.

1. For short runs of data the batch lattice methods

provide much more accurate results than the brute

force method.
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2. The batch lattice method performs much better than

the brute force method when the system is over-

modeled.

3. The MSE as a function of model order is well behaved

for the lattice method.

4. The adaptive lattice method has difficulty tracking

zero valued overmodeled parameters.

The cost of these advantages is the extra computational

burden of passing the data through the lattice filter during

the modeling process.

In the discussion of nonlinear system models the Volterra

model was considered as a nonlinear extension of MA modeling

and it was shown that lattice methods could be used to obtain

the model solution if the problem was recast, using the

regular form of the Volterra kernels. Then the new nonlinear

AR±.A model was considered and it was shown that this repre-

sentation in some cases solves the problem of requiring a

very large number of model parameters encountered in Volterra

modeling. Then lattice methods were developed for the non-

linear ARMA problem and it was shown that the linear ARMA

techniques presented earlier are a speical case of the non-

linear ARMA methods. For both types of nonlinear models,

the recursive in order nature of the lattice methods was

shown to allow the various model. kernels to grow in one

dimension while holding their boundaries fixed at pre-

specified values in the other dimensions, The use of the

model nonlinear ARMA was also illustrated with two examples

J.9 9WI/i:..--
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and a nonlinear ARMA model was proposed for the tracking

behavior of a phase locked loop.

Several significant questions remain for the continuation

and extension of this work and are listed here,

1. Stability of the lirear and nonlinear ARMA models

must be considered. In the linear problem, stability

is dependent on the roots of the demoninator poly-

nomial of the synthesis model. The methods

developed do not guarantee stability of the resulting

model. (This was not found to be a problem in

= practice, however, unless extremely short runs of

data in the range of 30 to 50 samples were used.

Even then, model in3tability was not a frequent

occurrence.) Stability for the nonlinear ARMA model

remains to be clearly defined.

2. Input signal requirements in the nonlinear ARNA

modeling process need to be investigated. In linear

was found to play an important role. No requirements

emerged however, on the probability density function

(pdf) of the input. In nonlinear systems where the

behavior is inherently level dependent, it is in-

tuitively appealing to use an input signal with a

"flat power spectrum across the frequency range of

interest and whose amplitude is uniformly distributed

$ • over the range of interest.
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3. The inability of the adaptive lattice method to

track zero valued overmodeled parameters is an

interesting problem warranting further consideration.

If some means of detecting the degeneration of the

cost surface towards an infinite trough can be found,

the problem could be remedied by simply reseting the

appropriate parameters to zero.

4. Experimental experience needs to be gained with the

nonlinear ARMA model itself and the lattice methods

developed for it.

5. The characteritics of the lattice solution methods

need to be further quantified to gain a comprehensive

understanding of how and why it performs as it does.

Also, further comparisons should be made between

the lattice methods and conventional methods. Some

comparisons were made here for batch processing

methods but only a rectangular window was used on

the data. Comparisons should be made using other

types of window functions in the brute force method

and the adaptive lattice method should also be com-

pared with a conventional LMS adaptive algorithm

applied to the equation error model in which all of

the a(i) and b(i) coefficients are adapted simul-

taneously.

6. In the adaptive lattice method, scaling of the lattice

input signals needs to be investigated. It was

"noted that the ratio of largest to smallest eigenvalue

201



of the input autocorrelation matrix was related to

the speed of convergence of the adaptive algorithm.

For the first lattice stage this matrix is

•i- y2(k) y(k) u(k)

2

If the system has a high gain such that the mean

square value of the output y(k) is very much greater

p, than that of the input u(k), convergence will be

slow, This could be remedied by implementing an

adaptive scaling scheme at the lattice input (perhaps

[" similar to the first order low pass filter estimates

used for adaptive step size normalization).

:1
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I APPENDIX A

Alternate Multichannel Model Forms

Multichannel generalization of the MA and AR models were

discussed in Chapter II along with their solution via the

Levinson algorithm. Here the multichannel models and the

Levinson algorithm are developed in an alternate form more

compatible with other linear and nonlinear modeling problems

to be explored later.

Consider first an N-th order, Q0 -channel, AR model where

the current value of the signal vector x(k)

T
x(k) [x (k) ... x (k)] (A.la)

1 Q

T

X(z) [X(z) .. XQ0 (y)] (A.lb)

r is to be predicted from a weighted combination of N past

values of each of the component signals. For each signal

this estimate can be written as

Q0o

x0(k) N d (n) x.(k-n) (A,2a)
i=l n=l di-(n

or Q

Xjk 0 di d(z) Xi(z): (A2.b)!

where N.~dijz d di(n) z-n (.c

n~l
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Defie an N-vacior for each of the Q0 channels to contain

their required tithe histories as

_(k) E (k-1) x (k-N)] (A.3a)

SI

! ~for 1 < i < Q0 and embed all of these vectors into a single

d c-

vh. NQe-data vector given by

ci. Cd.l)**(A. 3b)

Y, I'(k) : [- (k) T 2i k)T(.b

Define a nQo x Q0 matris of weights as

d

d11 ... d0 (A. 4e)

d d

where the N-vectors do a 4 ivnb

d d(1) .. d(z(N) (A.)b)

ci (j j, J 9

and contain the coefficients of the polynomials di (z).

These polynomials can be combined in a matrix polynomial

' defined by

dll(Z) d. • d0(Z)

I D(z) (A.4c)

d (QZ) dQQ (z)
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i~i •With these definitions, the N-th order prediction of x(k) I
and its associated prediction error vector becomes

Ai
T k)T

x(k)T .D (A.5a)

e(k) X'k) x(k) (A.5b)

or in the transform domain

E(z) X(z) [_ D(z)] (A.5c)

Comparison of equation (A.5c) and (2.44c) show that this

"matrix polynomial differs from the more generally used form

of (2.L44Lc) by a transposition. The coefficient matrix D
can be found by minimizing the trace of the prediction

error covariance matrix

P e{e(k) e(k)T} (A.6)

leading to a system of linear equations given by

,(k) X(k)T} D {X(k) x(k)T} (A.7a)

or

EE-r r _
,; , X 0Xl 1Xl 0 xl Q

j K Qo XQxQ XQ 1  Q Q

(A.7b)
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Adopting a shorthand notation, this becomes

RD r (A.7c)

ýV As in the case of a single channel autoregression, the

multichannel generalization of the Levinson algorithm also

requires that the backward prediction problem of estimating

x(k-N) backward in time from the values of x(k-N+l) through

x(k), be solved si'ultaneously. Using an overscore to

indicate quantitie5 associated with the backward problem it

follows that

)T -6 T
T D T (A.8a)

ei~k) x(k-N) - (k) (A.8b)

or

T T -

where X(k) ~ ~(k) (k) ~ (A.8d)

T

and D_ _.. (A.8f)
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- -t ~

k ~ T
di (1) (N)] (A. 8g)

with D(z) (Z) (Z) (A, 8h)
' i

~ (Z)

nil i
1)L ri) "I

Setting the coefficients of this backward predictor to mini-

mize the trace of the backward prediction error covariance

matrix
I'i

leads to a MMSE solution given by

£{X~kT T~)yD£Xk xk-)}(~~)
and since eIx (k) Xj(k)

and e {x(k) x (k-N)} E X

this can be written as

207
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_T T%-

11 Qx 11 1ol

RT T

,X• .. axlo E-Xi X-xox

0 XoXQO QQ0 -Q00

(A.10b)

Adopting a shorthand notation, this becomes

* RD~r(A.11)

At this point it is important to take note of a subtle

difference between the single and multichannel problems 'that

has arisen. While the single channel equivalent of equation

(A.10b) for the backward predictor was not written previously,

it is obviously

and since

T
Rx- E (A.12b)

it follows that the single channel forward and backward

prediction problems have exactly the same solution (as was

found to be the case in Section II.D. when the AR prediction

4 error lattice was developed). This fact is responsible for

•,, •i•'208



a number of simplifications in the single channel case:

a.) Only a single reflcction co(-fffcient k(n+l) was

needed to link the n-th and (n+l)-st order solu-

tions for both the backward and forward problems

(see equations (2.25b) and (2.25c)).

b.) IBW1z)I = I

c.) e(e(k) 2 }

d.) The development of the Burg method and the Itakaura-

Saito method for calculating the reflection

coefficients are a direct consequence of c above.

Unfortunately however, none of these simplifications carry

over into the more general multichannel AR problem because

by comparing equations (A.7b) and (A.10b) it is evident

that in general D o D

Proceeding as in the single channel case, it is shown

in Appendix B that because of the structure in the correlation

matricies R and R , equations (A.7c) and (A.11) can be

re-written as

SF =P (A.13a)

and

R /2 (A.13b)

where F, F, A an _ are obtained from D, D, a and

r respectively by taking their component vectors and turrLing

"them upside down in place; i.e.
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i 0f
F = " "(A. 14a)

f1 "" of

where
Tfsi Ed..(N) .o. d.(1)] (A.14b)

ij Ij

and
_andxX (A.14c)

*Q0

-X QoX, "' P-.Q ox Q

with

Ri [x x(M) .. R x (I)]T (A. l4d)

S~As will soon be evident, the relationships of equations (A.13)

S~form the cornerstone for, the Levinson algorithm and are made

Spossible because the blocks comprising the R and R- matricies

' are themselves Toeplitz and because Rxx" -xj xi"

! Assume that the (n+l)-st order solutions can be related

to the n-th order solutions by

= + .. .. (A.15a)

0 k
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and

-d~n + --- (Aý15b)

Embedding the vectors e n jand the coefficients

(n+l) Z(n+l) 1

(nK a nnd 1 and solving for them in the (nl).)-st order

problem it is shown in Appendix C that

(n) y~n)(n+l)K (A.16a.)

~(n) F - (n) g(n+l) (A.16b)

K(n~l) [ER (o)- (n) TuŽn J ERxx_(n+l)p_(n) T n

(A.16c)

(o~~nTnE T-
7(n+l) (n D (n) ( )P(f)T D(n)]

(A. 16d)

Also the inverted terms on the right hand side of equations

(A.16c) and (A.16d) are just the backward and forward pre-

diction error covariance matrices for the optimum n-th

order models so that (A.16c) and CA.16d) become
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V(n+ n) T1Kn) n) _n•j.~)...(n) D(n)

SDxx (A. 17a)

_nR(p(n) Tn+n)T(n)

O xxD (A. 17b)

As in the case of the single channel problem, the prediction

error covariance matrices obey the recursions

!,'P p(n+l) =p(n)[c,-(n+l)K(n+l)] A 1a

.. (n+l) f(n)[,.K(n+l)R(n+l)] (A.18b)

completing the multichannel generalization of the Levinson

algorithm for AR models..

Comparing equations (A.l-6), (A.17) and (A.18) with their

single channel counterparts (2.18) and (2.19) it is clear

that the multichannel Levinson algorithm simply represents

a matrix algebra generalization of the single channel al-

gorithm. Once again, predictors of all orders 0 < n < N are

obtained in the process of finding the N-th order predictor

along with all their prediction error covariance matrices

and the overall minimization requiring the inversion of

a Q0N x Q0N matrix is replaced by a sequence of N minimiza-

tions, each requireing the inversion of two qO x Q0 matrices
(P(n) and _y(n))
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Using the relationships given in equations (A.15) and

(A.16), successive orders of matrix polynomials can also

be related to one another by

i• ii[I Dn~l)()] =[I_-D•(n)(z)]_-l'z-n[l,-b(n)(z](n+l)_

(A.19a)

•,,[" ~z-(n+l)[I-_ nl (Z) ]=z-lznI n(z)]-[I- D(n)(z)]K(n+l)

(A.19b)

Premultiplying both sides of these equations by X(z)T,, trans-

posing, and transforming into the time domain provides rela-

tionships between the prediction error signals at each stage.

T
e n ')(k) e(n)(k) - K(n+l) e(n)(k-l) (A.20a)

T
e-(n+l)(k) =e(n)(k-1) - K_(n+l) e(n)(k) (A.20b)

Recognizing that for a zeroth order prediction, the forward

and backward prediction error vectors are just the input

vector itself, it follows that

e(0)(k) i_(0)(k) x(k) (A.20c)

and the multichannel equivalents of equations (2.28) have

been obtained.
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4 IiNext consider the N-th order multichannel. MA mode~l in

ii which the current value of a 90-vector of output signals

y(k) is to be predicted from the present value and N past

values of a Q.-vector of input signals x(k).

Qi N

i=1 n=O

or

Hwhere N

n0n

Using a superscript " to indicate the fact that the vectors

are indexed from 0 to N rather than from], to N, define

(N+2L)-vectors for each of the input channels to contain their

required time histories as

+ T
,C.(k) Ex.(k) x. . .(k-n)] (A.22a)

and embed these vectors into a single Qi(N+1)-data vector

given by

+ ~ ~ + T T A2b

X- (k (k 2lL Wr I -A2



•i" t" .' . ... . " .... -~' • -- " "" - - ,r • m, • • • -

Define a Qi(N+l) x Q0 matrix of weights as

+ + +
0D d" +.. d(A.23a)

iL "" •iQ0

wherc- the (N+l)-vectors d.. are given by-- J

d. Ed .(0) ... d.(N)]T (A.23b)

and contain the coefficients of the polynomial d+ .(z). These

polynomials can be combined into a single matrix polynomial

given by

_0+(z) d= d(Z) ... d Q(Z) (A. 23c)

dQ+ (z)
d+Ql(z) ... d QiQ0 Z

With these definitions, the N-th order MA prediction of y(k)

is given by

T (T 7A.24a
Y-(k) X(kT DA.4
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or in the transform domain, ]
T T

Y(z) X(z) _(z) (A.24b)

* Defining a prediction error vector as

(k) - W(k) (A.25a)

and setting the coefficients in to minimize the trace

of the prediction error covariance matrix

TP0 "{e 0 (ke 0 (k)T} (A.25b)

* ,• results in a solution given by

X + (k) X+WT IeX+(k) y(k)T (A.26a)

orI

_R ++ + _ + r_ +_.. +
x x X 1 XlYl xlY

S" " ~D+""

R+ + aR+ + R + E +

LQiX IixQ i Q. Q

(A.26b)
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Adopting a shorthand notation this becomes

R+ D+ = + (A.26c)

Assume a relationship between the components of the

(n+l)-st and n-th order solutions given by

d(n) (n+l)

d+(n+l) + .... + (A.27)

i'i

(n+l) (n+1)
Embedding the vectors and the coefficients

into matrices, designated •(n+l) and G(n+l) and solving

for them in the (n+1)-st order MA problem it is shown in

Appendix D that
C

(n1 ifn) _(n+l) (A. 28a)

i':' (n~l •(n~) l[xy (nl TD

= r)_p(n+l) D+(n)] (A. 28b)

-(n+l) --.(n+l) . .

where F' / amd .(n+1) are matrices,- that emerge

from the back-. 'd predict-"on problem in a nultichannel (n+l)-st

order autoregression on the input signal vector x(k). Again,

_t is clear that the multich.nnel MA solutions given by

equations (A.28) are a matrix algebra generalization of

equations (2.23) for the single channel MA model.
i
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To relate successive order MA matri.x polynomials to one

another, equations (A.27) and (A.28a) can be used to write

D+ () (~l) D+ z) ()+,-n[_-f~n) z)]~n~) (.29
where the second terrn on the right hand side that premul-

tipli~es G is the backward prediction error matrix polynomnial

from the autoregression on the input signal x(k). Pre-

mul1tiplying by X~~,transposing, and transforming into

the time domain results in t~he multichannel equivalent of

oqua±tion (2.37)

nd(k) + G jl)~(n+l)(k) (A. 30)

ard omp2.etec~i the derivation of the recursive in order

solutions for the miultichannel MA model.
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APPENDIX B

A Key Relationship For The Multichannel Levinson Algorithm

Equation (A.13) is a key relationship in the development

of the Levinson algorithm responsible for much of the

algorithm's simplicity. Without this relationship, more

than just the K and • matrices, would be needed to obtain

the new model from the previous model.
In equation (A.7), consider the multiplication of the

i-th block row of R by the j-th block column of D to

Sfor -xix

Rd_ + ... + R d (B.1)X, i x 111j x 0i =QO -xixj3

In particular, consider a general term on the left hand

side of equation (B.1) in detail.

R i(0) R -N) d ()Rmj (I)

Rx x(N-1i). R i~( 0) dmi iiN) Rix (N) -4

(B.2)

Define upside down versions of the d.. and r vectors-x x
d5

dj (B.3a)
d ij (N )
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and (N)

I --x.x. (B, 3b)

Rx (1)

Using these permuted vectors in equation (B.1) in place of

the d and r vectors, the relationship is still satisfied if

the R matrices are permuted as well. In particular, from

(B.2) it is evident that

R RXi'm (0) . .. R xix m(N-1) di (N)

Ri(1-N) Ri (0) di ()

R (N)

x x

'- + -(B .,a)

SRx~i .

or equivalently

R- + "" + iR T X (B.4b)

Embedding the f.. and p vectors into matrices designated, -i-x x.

F and A respectively and using the definition of R it

follows that
.all

RF /' (B.5)

"A; 220



Defining -ij and as upside down versions of their

corresponding vectors in D and r in equation (A,11) and

embedding them in matrices designated F and P, it also

follows from a similar development that

R F (B.6)

Equations (B.5) and (B.6) are essential to the develop-

ment of the Levinson algorithm and are made possible by the

Toeplitz structure of the block components of the R and

R matrices.

i I

I!'

ii
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APPENDIX C

The Multichannel Levinson Algorithm Solution
For AR Modeling

In the (n+l)-st order versions of equations (A.7) and

(A.1O), the component matrices that make up R and can

be written as follows

RRxixj (-N)

(n)
(n+l) 1 ( iX:R 1 Rx x.(i

1 ---------------------------:•,~~~~ ~~ -xxj................%.O..
R (N)Rxixj(l) Rxix (0)

R(n) -x(n)
x x .2 x~

- j 1] (C.1))

(n)T R 

I
Ei x xi R (0)

and

(n+l) (n+l)T R(n) I (n)
R-_xix . xi (C.2)i•..ix. i: -x~x

:• (~n)T
(. xR (0)
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Additionally,

(n+l) (C.3)
,I ---x " x (n+l)

With these matrices and vectors written in this partitioned

form, and with the relationships assumed in equations (A.15)

between the n-th and (n+l)-st order solutions, the (n+l)-st

order modeling equations become:

Forward Model:

R (n) D (n) + R(n) •.(n) + ;(n)K(n+l) r (n) (C.4a)

iT

T (n) + R.x(O)K(n+l) (n+l)
-;(n) (n) + Cn(+. nl

(C.4b)

,. Backward Model:

, (n) 6(n) + R(n) c(n) + ... •(n(n)

(C.5a)

O /(n) T D(n) + O(n)T T-(n) + jxx(0)IZ(n+l) =R (n+l)T

(C.5b)

•y !.>2.
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Equations (C.4a) and (C.5a) contain the n-th order modeling

equations within them however, and therefore can be written

as

R•(n) n) ( K(n+l) (C.6a)

l()"r "- 0  (r) (C.6b)

and applying the relationship developed in Append4.x B

(equations (B.5) and (B.6)) yields

C(n_) - K(n+l) (C7a)

j(n) - (n) R(n+i) (C.7b)

Thus the e and _ vectors have been found in terms of the

known quanties f and _ and the unknown K and • matrices.

Substituting equations (C.7) into (C.4b) and (C.5b) completes

the solution resulting in expressions for the K and K

matrices given by

T-

224
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TJ 7

a ,.T,- T
-xx

(C.8b)

The terms on the right hand side of these equations that

are inverted are just the backward and forward prediction

error covariance matrices:. for the optimum n-th order models

given by

T-

,"p(n) R(0) - n) (C.9a)

- - - --
I; •n) _ R x(o) r ()Dn (Cw 9b) "

Using equations (C.3), (A.15) and (C.7)., the forward pre- f
diction error covariance matrix for the optimum (n+l)-st

order model can therefore be written as

"T (nT nTF(n)(n+)

T (n+l)
R (n+l) K (C.10a)

S-xxx

P~ : (n)+[ r (n)T (n) -R (n+I)T]K (n+l) (C.10b)

i-i •p n [- -- n)l T T__(n)
(n). [I ()ER-x(n+l) T_00 (n)]-n K (n+l)]- I

(C.10c) .i
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an (n+l) - - - in III+13(C10d

adfollowing a similar development for the backward pre-

CI K -1
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I
APPENDIX D

A The Multichannel Levinson Algorithm Solution
For MA Modeling

<+

First note that because of the definitions of the x.(k)

and xi(k) vectors (indexed from 0 to n and 1 to n respec-

tively) in the n-th order models, the matrices R(n) in
x~xS~ix

the n-th order MA problem could also be written J in

terms of xW(k) and x.(k) as (assuming stationarity)

R(n) R(n+l) (D.la)
x x.

"Ji - 3

so that

(n) = (n+l)
R+n R (D.lb)

Ii___ ___÷
R+(n+l) (n+l)

The components of R_ and in the (n+l)-st

order MA modeling problem can be written in partitioned form

as

(n) -(n+l)-- + I i-X~

R(n+l) x ixx I

+ x -- - -]

. IS-(n+l)Ti

227
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and

(n+l) xiYj (D. 2b)

R (n+ 1)

Using these partitioned forms, and the relationship in

equation (A.27) between the n-th and (n+l)-st order solutions,

the (n+l)=st order modeling equations become

(Rn) (n) (n)
+n(n+l) + p(n+l) G(n+l) r+R D+ + R+ ýO~l )G

(D. 3a)

,(n+l)TD+_(n) + ,(n+l)T _(n+l) + Rx(O)G(n+l)

-R y(n+l) (D.3b.)

Equation (D.3a) contains within it, the modeling equation for

the n-th order MA model and using equation (D.ib) can be

rewritten as

R(n+l) a'(n+l) -.(n+l)G(n+l) (D.4)

"A comparison of this result with equation (C.6a) shows that

ai (n+l) -((n+D. (n)l) (.

!• • •228
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wher n is the permuted version of the backward
:• - where

solution in an (n+l)-st order AR model of the input signal

vector x(k). Furthermore, substituting equation (D.5) into

(D.3b) results in a solution for G(n+l) given by

,T-
(n~l) (n ~l)G~nl [R (0)--

[R xy D+ (D.6)

Since

;n(n+l) f 'n+l) f -(n+l) T(n+l)

it follows that the inverted term on the right hand side

of equation (D.6) is just the backward prediction error

covariance matrix for the optimum (n+l)-st order AR mhodel

on the input signal vector x(k).
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"1- APPENDIX F

Prony's Method for ARMA Modeling

Prony's method [Refs. 8, 52 and 56) obtains a zero pole

model for a system by matc!.-,7.r the impulse respoiises of the

system and model over the J:irst M+N+l sample intervals where

M and N are the orders of the model transfer function num-

erator and denominator polynomials. Assume that a signal

"y(k) is available that repr.esents the impulse response of

a causal system and that a rational transfer function model

for this systems is desired. Using a . to denote the

model output and u(k) to denote the input to both the system

and model, the model transfer function is given by

A Z a(n)zn
Y(z) n=O•,• •, ~ ~H(z) = u--Fz T E•

N -
1" 1+ Z b(n)z,• n = l

E

For a unit sample input it follows that

B(z) Y(z) A(z) (E.2)

Equating like powers of z in this relationship results in

N a(n) 0 _<n. _< M

b U.)y(n-i) (E.3)

.0 else

where b(0)=l.

2 3 0. .._ , ,... . "
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F-
t[

' 4 •Equating y(k) and y(k) over the intrrval 0 < k <tM+N pvoduces

a set of M+N+1 equations which can be expressed in matrix

form as

Y(0) 0 0 0 --0 a(O):i ', ~ b ( 1 l.
y(1) y(0) 0 bC0 )

I+. : b ( NM )

y(M) y(M-1) y(M-2) ... 0

S---- ----------------------- (E. 4a)
Sy(M+l) y(M) y(M-l) .. 0

I: L+y(M+N) . . . .y(M)

or adopting a shorthand notation

1 Y1 1 aI
(E.4b)

S... I z X2-b 0 •

Assuming that the NxN matrix Y-2 ýs not singular if follows that

b Y-(El.5a)
- 2

+ + iX2
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The origi4.nal Prony method goes on to form a partial

fraction expansion And inverse transformation on the model

transfer function H(z) resulting in a model for the impulse

rvaonrae of the system given as a aurn of complex exponentials.

This in unnecessary here however, since a rational transfer

funotion inodel is the form sought.

,Pony's method inherently assumes that matching a

sufficient portion of the impulse response of the system

rvs,•rnutIs in dn accurate model but this is not necessarily

th" odse unitss the impulse response damps out quickly or

uni•ss the systm can be represented .axactlt by a low order

model Otherwio6 a very high order model may be required

,to obtain uulficlent ancuracy. Other difficulties asso-

oiat~d with ihio teýhniquo ar•:

1.) TVA uystim impulse repoqse must 1e available;

.)Thcra are ii built in mnechanisms to test for or

*nsiiro staility of the model;

S,) Vhere ls no aýaging of noise 4-n the data;

S,) Only a am,,ll Vortion of the uvailabl: data points

(M+N+I) a-'e t.tually uuad.

Thoto di±fiulliA.us can be partially overcome by modifying

thea proceaure tc obtain an approximakte match of ths system

"and model responses over their entire duration rather than

an •t•,t, ith over the first M+1+4+ points. Consider

equavliorii (E.4 modified ti include -he entire signal y(k)

:oro <
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4i
r'(I) I V(0) +

b a I
[iY y(M) i ( - )0 (E. 6a)

y(M+l)jy(M) "I I

Adopting a shorthand notation this becc'mesb 0

Z 3l3 "~

I j'!- Y3 3-

This yields two equations

Y + YI b -(E.7a)

Y3 + Yb 0 (E.7b)

but withy--3 , 3 3 and 0 having an infinite number of rows,

equation (E.7b) will in general have no solution. In practice
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only a finite portion of the system impulse response y(k)

can be considered but equation (E.7b) will still be incon-

sistent in general. A least squares estimate of b can how-
Tever, be obtained by minimizing e e where

, e = _ b-3 (-Y-3) (E.Sa)

resulting in

b (Y 3 -3 T (E.8b)

+
which in turn can be used in equation (E.7a) to find a

This approximate version of Prony's method is the one most

commonly applied.

2I
,I I
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APPENDIX F

Parabolic Surfaces In n-Dimensions

H Multi-dimensional parabolic surfaces are described by

an equation of the form
"i/

!T : T.
y TAx 2 x b + c (F.l)

where:

y is the independent variable;

x is a vector of dependent variables;

A is a symmetric constant matrix;

b is a constant vector;

c is a constant.

(x, b and c can also be considered as matricies with the

trace of the right hand side set equal to the independent

variable but the problem remains essentially unchanged.)

Completing the square for nonsingulai' A this becomes

y (x A- lb)T A(x -_A-lb) + c - bTA-lb (F.2)

so that for positive definite A it is clear that the minimum

value of y is obtained for x = A"ib and this minimum is
T -1.c - bTAb. It is also clear that nonzero values of b and c

"simply raise and lower the surface aiid move the minimum

point away from x = 0. The shape of the surface (its

"relative concavity or flatness) is determined by the matrix

"I !? 235



"A in the quadratic term of equation (F.1). Therefore, to

study the shape of this surface, consider the simpler pr'o-

blem with b and c set to zero,

y xT A x (F.3)

One way to examine the relative flatness or concavity is to

look at the locus of points on the surface for constant

values of y; in particular when y=l. Recognize. that A canT
be rewritten as Q_ A_ Q where A is a diagonal matrix of

eigenvalues and 2 is a matrix whose columns are the unit

length eigenvectors of A. Now (F.3) becomes

T oT TF.-)

and introducing a new set of variables w=Q x (which are

simply a rotation of the variables in x), equation (F.4) I
reduces to

2 w -l (F.5)2lw + ... + XnWn

This equation describes an ellipsoid in n dimensions whose

axes half lengths are given by 1/ýiT for 1 < i < n. This
follows from letting all but one of the w's equal to zero

and solving for the nonzero variable so that one point on the '

"surface is for example wI l=i/A 1 with w2 = .. w ,
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This point is just a multiple of the first eigenvector ofI A so that in general, the axes of the ellipsoid point in
the direction of the eigenvectors off A with half lengths

given by the recrip cal of the E;quare root off the eigen-

values.
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APPENDIX G

Multichannel ARMA Modeling

Consider a system with Q. output signals [yl(k)...YQO(k)

and Qi input signals Eu (k) ... (k)]. The multichannel

ARMA analysis model forms an estimate of the present value

of each output as a weighted combination of past values of

all output signals and past and present values of all input

signals.

Q0 N
I: ~ ~ (k --1 b n(i) yj (k-i)

j=1 i~l j

SQi N
• + a ni uj (k-l) (G.1)

Define data vectors for all the input and output channels as

£y n(k) " Yn(k-l) ... yn(k-N)2T (G.2a)

-U+) W • Cun(k) u. U(k-N)]T (G.2b)

and embed them into Q0N and Qi(N+l) vectors given by

S~T
S[Yl~kT • kTtY Cy= k ... ] k (G. 3a)

- Q.

'i,

23U+ • T + (kT]
S[u (k) .. ~ k I (G. 3b)
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Define NQ, x Q0 and (N+I)Qi x Q0 matrices of coefficients

given by

b

B (G.4a)

=Q01 =QQQ0
and L

all ... a1

A+ (G.4b)

where

i b..-1= [j1] N]i --•-](1 ... bij( ) (G. 4c)

a ij [aij(0) ... aij(N)] (G.4d) I
With these definitions, the multichannel ARMA estimate for

the vector of output signals becomes
_ r~1

: UT ] 'G.5)
A (k) T=EYT _TU)ý.Y- U -

Forming a prediction error vector as

II ISO yek (k) - (k) (G.6)
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and setting.-the model coefficients to minimize the trace of

the prediction error covariance matrix resUlts in a solu-

tion given by

Ryy B RY

(G.7)

U Y U U

In the transform domain, the prediction error model is re-

presented by

Rowz)T Y(z) T [I-B(z))-U(z) T A(z) (G.8)

where E, Y and U are the transforms of the error, output

and input vectors and the coefficients of the ij-th elements

of the matrix polynomials B(z) and A(z) are the elements of

the vectors b.. and a. The multichannel ARnA synthesis

-i

model is then given by
T, 1

Y (z= ~)A~)1Bz (G.9)

* with the matrix polynomial fraction serving as the generali-

zation of the zero pole transfer function.
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APPENDIX H

Delay Free Loops

To develop equation (4.24) guaranteeing the absence of

delay free loops in the system of Figure 4.8, consider the

equation for YN(k).

4 N(k) F[]4 1 (k)] (H.1)

Since F[") is a memoryless nonlinear function, proving that

x N(k) is not a function of N(k) is equivalent to proving

that 4(k) is not a function of itself, and therefore no

delay free loops exist. From equations (4.17b) and (4.17d)

1: with u(k)=O it follows that

2i•N•z =2 j•zC 1 N(z) (H.2)

and the coefficient of YN at time k on the right hand side

is given by

a= Lim r2 T(z) ri (H.3)

A nonzero aij indicates a dependence of xNi (k) upon YNj(k)

and clearly therefore all the main diagonal elements of a

must be zero to avoid delay free loops. These elements are

the terms of the (Q-l)-st principal minors of a. While this

is a necessary condition it is not sufficient to avoid delay

free loops since loops may exist through two or more signals.
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4r The condition that a.. a.. 0 for all i,j such that

1 < i,j < 9 and i~j, ensures that no delay free loop exist

through 2 signals and is equivalent to requiring all terms

of the (Q-2)-nd principal minors of a are zero. A term of

a determinant [Ref. 63) is defined as the product of elements

of the matrix taken one from each row and one from each

column and the determinent of the matrix is the sum of all

possible terms. It is clear therefore that every term

must contain a cycle such as ai. ... li and must there-

fore be zero. Since the determinant consists of every

possible term, requiring that all terms of the determinants

of the (Q-i)-th principal minors are zero ensures that no

delay free loops exist through any combination of i signals.

Examining all terms of the determinant of a and all its

principal minors ensures that all possible loops through

the Q signals in xN(k) are examined. If any delay free loop

exists, then at least one of the terms of one of the deter-

minants will be nonzero.
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APPENDIX I

Nonlinear AIýMA Modeling Examples

The determination of memory requirements for the non-

linear ARMA model as well as its applicability to systems

consisting of interconnections of linear and memoryless non-

linear subsystems is illustrated here using two examples.

First a cascade of linear and nonlinear subsystems is con-

sidered. Then a real world example is considered and a

nonlinear ARMA model is proposed for the tracking behavior

of a phase locked loop.

A. A CASCADE OF LINEAR AND NONLINEAR SUBSYSTEMS

Consider the system shown in Figure 1.1 where the signals

u(k) and yLz(k) are observed. In terms of the topology of

Figure 4.8, seven signals can be identified (xL1, XL2, YL1,

YL2A'XNl' YNI and u) however for convenience three of the

seven equations in (4.26) which specify

XLl(k) u(k) (I.la)

x L2 W yNl(k) (I.lb)

SNl(k) YLl(k) (1.1c)

will not be explicitly written. In this case, equation

(4,26) becomes
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A 1(Z)A2(Z
u(k) 1 1 I[ YL2 (k)

1.B (Z) I-B2(Z)
12

Figure I.1. A Nonlinear System

"YL2(k) b2 (k)* 0 0 a2 (k)* YL2 (k)

u(k) 0 1 0 0 u(k)

------------- ----H--------- ------

yLl(k) 0 a 1 k)* b 1ik)* 0 YLl(k)

YN1 (k) 0 0 F 1 0 YN1 (k)

(1.2)

where the finite memory representations of Tl(z) and T2 (z)

have been used. The objective now is to eliminate a 2(k)*

from the upper right partition. Using the equations of rows

three and four, the first row can be rewritten as

SYL2 (k)b :2 (k) y L2 (k) +a2 (k*F 1[4 1(k)*u(k) +b I W)*YLl (k) ]

(I,3)

Notationally it is difficult to write equation (1,3) in the
Soperator matrix form of equation (1.2) because of the non-

linear function however, the following representation is

adopted.

i 244*1I



t--4

0 0%

!,1.0

II

- If

'245

• 4t

* I. • ,

i4 0 I 0 0'

iI

/



p,... - .- •. •_. -,, ,__ _ _ _. ... . .. ... .._ _, _

No further reductions are possible to make the upper right

partition d null matrix leading to the conclusion that for

a finite memory nonlinear ARMA model to be appro)riate,

Qither bW(k) must be zero (the first linear system must be

onrecuraivs) or YUW(k) must also be observed, Alternately,

jt bI(k) io nonzero, ar Infinite memory representation can

be used for the first linear system by replacing al(k)*(,)

with iI(k)6(,) and bI(k)*(,) w[th zero in equation (1.4)

indicating that an infinite memory nonlinear ARMA model is

appropriat" when only u(k) and yl2(k) are observed.

UB A NONLINZAR ARMA MODEL FOR A PHASE LOCKED LOOP

A contInuous time model for the tracking behavior of a

,i,.m looked loop [Rf. 55) is shown in Figou•o 1.2 where:

S01 (t) is the phase of the incoming signal

02 (t) is the estimate of the phase of the incoming signal

e(t) iw the phase error signal

V (s) iN the transfer function of the loop filter

SK1 and K2 are constants

K2

1< sin( F(s) 2:..

8 . 2(t)

Figure 1.2. A nonlinear model for the tracking
behavior of a phase-locked loop.
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The model is nonlinear because of the sin function in the

loop. Often the assumption is made that e(t)<<7/2 so

that sin e(t) ' e(t) in which case a linearized model is

obtained as

,!; ,,81)( s) KIX . (s.)
'L1 2

6.7 T K 'K F'(s)+s(15
'!22

A nonlinear ARMA model for the system canbe obtained by

first discretizing the model of Figure 1.2 as shown in

Figure 1.3 where F(z) represents the discrete loop filter.

y (

ef(k) W Asin(.) F(z) +'•" :e 2 (k)

-,, II
"Figure 1.3. A discrete version of the phase-

locked loop model.

Z-1
The integration has been approximated as ,(ýt is

necessary to use this Euler forward approximation for

integration rather than one such as the trapezoid rule to

avoid a delay free loop). Defining a single linear system

a$ the cascade of F(z) and the discrete integration

z 1 A(z)K (z) K (z) (1.6)
"12i-z"
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Equation (4.26) for the phase locked loop becomes

e 2 (k) b 1 (k)• 0 al(k)* 0 a 2 (k)

e 0 1 0 0 8W(k)

,------------ ------.. ( 7

YN(k) 0 0 0 sin(•) YN(k)

e(k) -1 1 0 0 e(k)

where it is assumed that W(k) and e (k) are observed. Using

the relationships specified by rows 3 and 4, this can be

written as

S2 (k) Wb 1 (k)Wi 0 0 0 e 2(k)

el(k) 0 1I 0 0 el(k)
= +

YN(k) 0 0 1 0 sin(.) YNWk)

I e(k) -1 I 0 0 e(k)

alW) sin[-(,) C,)) 0 0 2 W

+0 0 00 6 W

0 0 0 0 YN(k)

0 0 O e~k)i

from which it is clear that a finite memory nonlinear ARMA

model is appropriate. The model can be obtained from the

first row in equation 1.8 by substituting a series expansion 6
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for the sin function and truncating it at the degree desired

resulting 
in

(e S 'e 
W )_ 

_ 

2t+l

0 2 k(k)=b (k)e 2 (k) + a (8 2k)-e (k))
(k1 0 (2m+1B 2 "(1.2

where 2M+l is the degree of the series approximation to

sin(.). (Note that lim Al(z) = lim B1 (z) = 0 so that the

right hand side of equation (1.9) involves only past values

of the output 2(k).) An infinite memory Volterra series

model for this system has been considered by Van Trees

[Ref. 55).

!I
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Model Simulation Program Listings

Z This apedxpoie itn of the fortran model

-simulation programs used in the experimental study of the

lattce harcteistis. ncldedare the main programs

forthebatch processing ARM1A lattice, the adaptive ARMA

laticeand the brute force model solution. Each main

pormis folwdb olcinof subroutines used only

b thtspecific manporm hna collection of commonI

subroutines cle frmtoor more locations in the batch

lattice, adaptive lattice or brute force method is listed.
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