AD=ADB9 489 SOUTH CAROLINA UNIV COLUMBIA DEPT OF MATHEMATICS COM=~ETC F/6 20/3
GLOBAL NONEXISTENCE OF SMOOTH ELECTRIC INDUCTION FIELDS IN ONE=—=ETC(U)
F BLOOM AFOSR-77-3396
UNCLASSIFIED AFOSR~TR=80-0935
Vo
R

END

Hine>

1080

e




L0

e

/s |AFOSRIfTR- 8 -§935 |

Global Nonexistence of Smooth Electric Induction Fields
in
\

\ One-Dimensional Nonlinear Dielectrics

AoA089449
(

. .
by oo . S

} Frederick Bloom |
Department of Mathematics, Computer Science, and Statistics
University of South Carolina
Columbia, S.C. 29208

—~ it \
- < - /L
{\T -
- /
LN A
WiINEL
‘?>~’
.
€
O
L (1) Research supported, in part, by AFOSR Grant 77-3396 g C
R |
‘
| =
. Ap?\vu,.’fl'\‘ Law H‘\hI ic 1‘9109.‘30 :
% ) e tismuripited.
Yovyo, 80 9 227114




. , ’/
o ¢ . ) /u'1‘~"lf/_l/L

Clobal Nonexistence of Smooth Electric lnduction Fields e
in ” C_,
‘ 1 : /;;;¢¢Lv5, r
One-Dimensional Nonlinear Dielectrics e T
S peeler €L

! el
&’ - 7" —ABSTRACT L

/ s

/ /

Coupled nonlinear wave equations are derived for the evolution of the com-
ponents of the electric induction field D in a class of rigid nonlinear dielectrics

ficld and « 0 is a scalar-valued vector function. !or the special case of a

governed hzégpg/honlineur constitutive relation E = A(D)D » where E is the electric
finite one~dimensional dielectric rod, embedded in a perfect conductor, and subjected
to an applicd electric ficld, which is perpendicular to the axis of the rod, and
depends only on variations of the coordinate along that axis, it is shown that,

under relatively mild conditions on/}, solutions of the corresponding initial-
boundary value problem for the electric induction field can not exist globally in

time in the Lé};;nse, under slightly stronger assunptions on the comstitutive function
», a standard Riemiunn Invariant argument may be applied to show that the space-time
pradient of the non-zero component of the electric induction field must blow-up in
finite time. Some growth estimates for solutions, which are valid on the maximal

time-interval of existence are also deriVEd:tf"“ .
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Lvolution lquations for a Class of Nonlincar Dielectrics

is the time parameter,

-—+curlE

curl H - —=

provided that the density

free charge all vanish.

'Theories of material dielectric behavior are based upon a set of field
equations (Maxwell's equations) and a set of constitutive relations which hold
among the electromagnetic field vectors. .

= 1, 2, 3, where the (xi) represent rectangular Cartesian coordinates, and t

the local forms of Maxwell's equations are given by

0,

-~

9,

In a lorentz reference frame (xl,t),

, the magnetization, and the density of

of free

are, respectively, the magnetic

In (1.1),

flux density, electric field, and magnetic intensity while
a physical constant and P the polarization vector, is the electric

induction {ield; the relations (1.1) hold in some bounded open domain Q ¢ R3

is filled with a rigid, nonconducting, dielectric substance.

of the dielectric medium in f is determined by specifying a set of constitutive

cquations relating E, D, H,

relations among the electromagnetic field vegtors, the set of equations (1.1)

represents an indeterminate system.
There is, in existence, a wide variety of constitutive hypotheses which

huve been asgociated with theories of nonconducting, rigid, dielectric nedia; the

simplest of these is that associated with the dielectric response of a vacuum in

which there hold the classical constitutive reiations
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where the fundamental physical constants €3> Wg satisfy € Mg = c'2, c being
the speed of light in a vacuum. In 1873 Maxwell [1] proposed as a set of con-
stitutive laws for a linear, rigid, stationary non-conducting dielectric the
relations

Bre b Bru-H

~

whre €5 Woare constant second-onder tensors which are proportional to the
identlity tensor if the material is isotropic. A set of constitutive relations,
which are still linear, but which take into account certain memory effectsin the
dielectric, were proposed by Maxwell in 1877 and subsequently used by Hopkinson
[2] in connection with his studies on the residual charge of the Leyden jar;

the Maxwell-Hopkinson dielectric is governed by the set of constitutive relations

(xef:

D (x,t) = € E (x,t) + J¥ ¢(t-1)E(x,t)at

(1.2)
H= u'l B

~ ~

where € >0, u >0 and ¢(t), t 2 0 is a continuous monotonically decreasing
function of t, 0 < t < ., Noting that the Maxwell-Hopkinson constitutive
relations do not account for the observed absorption and dispersion of electro-
magnetic waves in material non-conductors, Toupin and Rivlin [3] generalized the
congtitutive relations (1.?) and introduced the concepts of holohedral isotropic
aidd hamihedral dieleclric response; while the response incorporated into Loth

of these eories is linear, they are more sophisticated than (1.2) in the sense
that mapgnetic memory effects and coupling of electric and magnetic effects is
built into the constitutive theory. The qualitative behavior of the electric
induction field in a rigid non-conducting dielectric exhibiting holohedral
isotrupic response has been studied by this author in a series of recent papers

4y - [6].
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In this paper we will be concerned with initial-boundary value problems
associated with the evolution of the components of the electric induction field
D in a relatively simple class of materials exhibiting nonlinear dielectric
response. A rather general theory of nonlinear dielectric behavior which allows
for both electric and magnetic memory effects, but still effects an a priori
separation of electric and magnetic response, was proposed by Volterra [7] in

1972 in the form of the constitutive relations

(x,t)), x¢Q

(1.3) .
B(x,t) = g - H (x,t) + B (H(g,t)), xef
-00

The constitutive relations (1.3) reduce to those considered in [2], [3) under

special assumptions relative to the functionals P, B, i.e., if B =0, D is
Tinear and isotropic, and g = €I, ¥ = uI, then (1.3) is easily seen to reduce
to (1.2); the particular class of nonlinear dielectrics to be considered in this
exposition results by specializing (1.3) to the situation where y = ul, u > 0,

B = 0, and clectric field memory effect:s are negligible, i.e.,

i)
g

12
+
N
H

DE(x,t)), x € Q
(1.4a)

(=
~~
12
+
A d
"

HH(x,t), xeQ

oD,
~=| # 0, so that in a (Euclidean)
LY
neighborhood of F = 0, the rclations (1.5a) may be inverted so as to yield the

We shall further assume that det [

conctitutive equations

€
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E(D(x,t)),

™

(1.4b)
u'lB(;,t)), X e
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As the vector function E is still completely arbitrary, the constitutive theory
defined by (1.4b) is still far too gencrul to provide a tractable system of
evolution equations for the electromagnetic field in Q; we will, therefore,
confine our attention to that special case of (1.4b) for which there exists a
scalar-valucd vector function A(g) such that E(§) = A(E)L,VE with real
camponents  &.. Thus, the final form of the constitutive relations which define

the nonlinear dielectric response to be considered here is given by

[{3¢]
~
W
-
+
~
1]

A(D(x,t))D(x,t),  x e

(1.5)

B0 = pL Blx,t), x € 2 (u > 0)

lor now we will simply assume that 0 s A(§) <, y§, with A(§) > 0,

vg # 0; further assumptions on the constitutive function A will be imposed

below. Tt seems worthwhile to note, in passing, that electromagnetic constitutive

rclations of the form (1.5) or,to be somewhat more accurate, the inverted relations

=]

—~
W
~+
]}

X(E(x,t)) E(x,t), e

™

(1.8)

fies]
~
123
+
~
n

u H(x,t), x € Q {u > 0)

have appeared in the recent literature; e.g., Rivlin L8] considers (1.6) and
inlicates that in an isotropic material conforming to this constitutive hypothesis
the dielectric "constant" x must be an even function of the mapnitude of E, i.e.,
x = X(L + L). However, there does not seem to exist, anywhere in the literature,
equatlions for the evolution of the components of either the electric or electric
induction fields in a dielectric exhibiting nonlinear response; for the simple
nonlinear dielectric which is governed by the constitutive hypothesis (1.5) such

1 system of evolution equations is given by the following




Lemma 1. let 2 c K5 be a bounded domain and assume that @ is filled with
a rigid, nonlinear, nonconducting dielectric substance which conforms to the
constitutive hypothesis (1.5). Then, in £, the components Di(gg,t) , of the
clecteie ditluction ficld,satisfy the coupled system of nonlinear wave equations

‘ a%p,
(1.7) b—pt = V2D, - 5?(: (grad M(D) * D), i =1,2,3.
Proof. We begin with the identity

4 A = grad(div A) - curl curl A

which is valid for any sufficiently smooth vector field on Q; applied to the
clectric field (-,t) the identity yields

(1.8) V2E, = <9~ (div E) - (curl curlE).s i = 1,2,3.
1 Bxi ~ ~"1

In view of Maxwell's equations (1.1), and the second constitutive relation in
(1.5), we have

B
curl curlE = - curl ({)"E)

o
- M curl (H)

-u at (curl H)
821)
_u ——l

b
at?

50 that (1.8) has the equivalent form

2
D; o .. .
(1.9) 1] R 5 =V Ei T (div g), i=1,2,3
t 1
By (1.4b),
oF. k 3
dlvE-§—1 F-:Ak(g)'ax—
g j
) 38 oD
2 2 iy . 3 3
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T,

——

oE.

where Aij (D) = -55-31 , and the standard summation convention has been employed.
3

Thus (1.9) becomes

82

(1.10) W=
ot

BDR. 2 QD](

However, by virtue of our hypothesis that E, (D = AM(D) D., we easily find that

Aij (D) = XD) sij + ——-aDj Di
and therefore
2
3°D. aD
d )N '8
(1.11) W—p = 5— CIA(R) &, + 5= D. 1 5==)
8t2 axk il aDl Bxk
3
3 I Dy
-a— ([AD) 6., + zz=D.1 )
Ixs jk 9p 73 axj

where we sum on each repeated index; expanding (1.11) and using the Maxwell
an,

relation div D = _33_(1 = 0, we obtain the stated result (1.7), i.e.,

3°D, aD,
3 i 3 A d A
(1.12) B—3 = m— (MD) ) + ( D,) - =— ( =22 D.)
3 t2 X ¥, 3%, 9% 1 axi ij 3
= 5__2_ DD = 5 .a.al D.)
%% %

Q.E.D.

We now assume that 9Q is sufficiently smooth to admit of applications of
the diverpence theorem and we denote by V(%) the exterior unit normal to dQ
at a point x € 3 ; we also denote by t(x) a generic vector in the tangent
plane to 32 at x e 3. The evolution equations (1.7) are to hold in some
cylinder § x [0,T), T > 0, in R“ and we now associate with this system a set

of initial and boundary data. In @ we require that




R e AL

oD,
(1.13) D, (%,0) = £,(0), m= (%0 = g;(®, | x e

ot
'i:l,2,3

while standard results from electromagnetic theory [9,§13] dictate that

(1.14%a) [D(x,t) - w(x)]

a(x), (x,t) € 3 x [0,T)

(1.14D) LE(x,t) - t(x)] 0, (x,t) e 3% x [0,T)

In the set of relations (1.14), [F(x)] denotes the jump of the scalar-valued
function F across 3 at x € 32 while 0(y) denotes the density of surface
charge at the point x e 3Q; these boundary conditions can be written in an
alternative form as follows: If we let Q*(g,t) denote the electric induction
finld at points (x,t) e R°/2 x [0,T) then (1.14a), (1.14b) are clearly

equivalent to

*
(1.1%)  D(x,t) « w(x) - D (x,t) * w(x) = o(x), (x,t) e a2 »[0,T)

k3

(1.15b)  A(D(x,tND(x,t) * t(x) = (x,t) * t(x), (x,t) € 3 x [0,T)

«

[

RTeY

% e . . .
where L (x,t), (x,t) « R7/Q x [0,T), is the electric field associated with

0 ~ ~ 5
L' (x,t). In particular, if Q< Q¢ R3, and /@ is filled with a perfect 4

e &
conductor (in which D = E = Q) then (1.15a), (1.15b) reduce to

3 (1.1ba)  D(x,t) » w(x) = ol(x), (x,t) € 3Q x [0,T)
(1.16b)  A(D(x,t)) D (x,t) « t(x) = 0, (x,t) € 3Q x [0,T).

In this paper we wish to consider that particular subcase of the general

initial-boundary value problem (1.7), (1.13), (1.16a,b) which corresponds to

the assumption that the geometry of £ is one-dimensional (non-linear dielectric




rod) and that the rod is subjected to an applied clectric field, which is per-
pendicular to the axis of the rod, and depends only on variations of the coordinate
along that axis; corresponding to the appropriate specialization of the boundary
conditions (1.16a,b) which result i: the physical assumption that the rod is
aabedded in a perfect conductor. We assume, therefore, that the rod occupies

the configuration depicted in Figure 1. (below):

N Xy

=X

%L
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Specifically, we take for Q the finite cylinder

(1.17) Q= ((xl,x2,x3) | x; real, i=1,2,3, 0%, 5L,
6(x2x3) = Cl(const.)}
with generators parallel to the x. axis and we assume that for some small € >0

L', 0 s L' <L}

H

Q n {(xl,x2,x3) | X

2 2 2
c {(xl’XQ’x3) | x, =L, 0% L' s L, X, + X3 S€ }.

For @ we then take the (infinite) circular cylinder

,x3) | -~ » < x, <o x2 + xg = 62, §>e > 0}

(1.18) 8= (0 L 5

2

and, in accordance with the boundary conditions (l.16a,b),we assume that the

annular region {/Q betwcen the dielectric rod and the circular cylinder is filled
with a perfect conductor; in  the dielectric media is assumed to be governed
by the constitutive hypothesis (1.5). Finally, we will assume that the entire

configuration in Figure 1. is subjected to an applied electric field which is

perpendicular to the X)X, plane and, hence, orthogonal to the axis of the

dielectric; specifically, we assume that

(1.19) E(x,t) = (0, Ey(x,1),0), 0sx <L

with E, 2 0 for X, € [0,L]; of course, in Q/2 we must have E=0. In
order to proceed with the reduction of the evolution equations (1.7), which
corresponds to the situation at hand, we will need some additional assumptions
relative to the constitutive function A; specifically, the hypotheses on A

which will hold throughout the rest of this section are




I A
~
>
-
S

(A3)

fram which it

However, div
Xp9Xge As L2
]
0x3

By hypothesis

(1.20)

In view of (1.

A e MRS 0,2, AME) >0, VL £0
b 1
[A'(r) | <=, VI eR

k3 % 1
0<zg A'(g) + Mgl <w, Yrze R, g # 0,

immediate that X ¢ CH(RY; [0,9)).

(1.7). 1In view of (1,51), (1.19), in R

(0,C,0) = A(D(D,b,,D,)

follows that, in 9, D, = D, = 0 and E,(x,,t) = A(Q)Dz(x

1 3 271
an,
D= gy

3x,2 = 0 so that, for each t 2 0, D2 can depend, at most, on

depends only on Xy

_ 9
= 3;{; ()\(,Q)DQ(XI,th))
_ 9
s (A(O,DQ,O)D,Z(xl,xa,t))
3 *
= 7}?3_ (A(Dz(xl,xs,t))Dz(xl,x3,t))
oD .
_ 2 ,.' L3 _
% (5 (b,)D, + X(D,)) = o.
3D2
(A3) it then follows that Prad 0 amd, thus, in Q
3

D(x,t) = (0, D,(x),t), 0)

20), not only is div D = 0 automatically satisfied in

1] 13
where  ALg) £ A((0, €, 0)), £ € R'. By (A1) and the definition of A it is

We now proceed with the reduction of the nonlinear evolution equations

Q, but,

1 $x2 ,X3 ’




T, ey e

as is easily verified, so are the nonlinear evolution equations (1.7) for

i=1,3, i.e,,

i

) )
&: (grad A(D) - D) 5}-1- (b—-z- A(DQ(xl, 1)) D2(xl,t))

0, i=1,2,3

while (D), = V2(A(DD;) 50 for i=1,3. Fori=2 we then obtain, for

Dex styand 01 <T,

aQD? 2 b3
(1.21)  u e (x 1) = VIX(D,(x,£) Dylx,,t)]
R A P Y]
= g;;é LACD,(%y , END, (%, 51

We now turn our attention to the boundary conditions (1.16a,b); in order to
simplify the exposition we will assume that d(x), the surface charge density
al 3 € X, vanishes on the planar faces of the cylinderical region £ at

= 0and x, = L. Clearly, (Figure 1.), on the planar boundary at ¥ =0,

X1 1
v = (-1,0,0) and t = (0,1,0). By (1.16a), therefore,with 0¢(x) = 0 for X) = 0,
5(5{1,)(3) = Cl’
(1.22) D(x,t) = v = [(O,Dz(xl,t),o) + (=1,0,0)] =0
X, =0 X, =0
1 1
0st<T 0<t<T

i trivially satisfied and an analogous result holds at x, = L where y = (1,0,0).

1
In order to satisfy the boundary condition (1.16b) along the planar face at

X = 0, for O0st<T, we require that




(1.23) A(D(x,t)) D(x,t) ' t x; = 0

0st<T

(0, ’f(n,z(xl,t))li)z(xl,t), o) . (0,1,0)

t) =0

x
A(Dz(xl,t)) D2(xl,

%
In vicw of our assumption that A(Z) > 0, VI # 0, we have A(p) > 0 for
p # 0. 1t then follows from (1..3) that the boundary condition (1.16b) will

Le satisfied along the plandr surface at x, = 0, for 0st<T, if D2(0,t) =0,

1
0<t<T; in an analogous tashion it follows that DZ(L,t) = 0, 0st<T. In view of

our assumpt ions relative to the nature of the medium in (/9 we also have

b, = 9,0 =t<T, for x

) € (~»o,U) and x

€ (L,»). Thus supp {D2} = (0,L).

1 1

X, D2 Z u. Then, for the physical situation described

above, the initial-boundary value problem associated with the coupled system of

1t

We now set x1

nonlincar evolution equations (1.7) reduces to the following nonlinear, one-
dimensional, initial-boundary value problem on the x axis: find u = u(x,t),

Osx<l., ost<T, such that

2’y _ 27 8
y—x = (ur(w), (x,t) ¢ [0,1.] x [0,T)
2t 3l ’

(1.24) ¢ u(x,0)

uo(x), ut(x,O) z vo(x), OsxsL

u(0,t) = 0, u(L,t) = 0, Ost<T

where u > 0, A satisfies the hypotheses (A1) - (A3), and for Ost<T,

0 for x <0, x>L.

il

ulx,t)

Remarks

(1) we note here an cquivalent form for the one-dimensional non-linear




wave ejquation (1.2l+1), i.e., as

2 b
-—8—,2— (ui(u))
ox

d =':' %
% (u u, A' (u) + u, A (w)

9 [ %, ¥ .. du
& (tu Xra + A 22)

Q .?.lt]) miay be written with the spatial part of the equation in divergence form

32u P Ju y .
p 5= g% () JR0, 6D € 10,11 X 10,1

where, in view of (A3)
. o« b
AG) = ¢ A (L) + X(g) >0,V € (==,@) , £ #0

(ii) The initial-boundary value problem (1.24) can be (formally) extended
to a pure-initial value problem on Rl x [0,T) by extending the dielectric rod
occupying the configuration £ into the perfect conductor, i.e., we may think

of having extended

<t
Q+Q = {(xl,xz,x3) | - »< Xp <@, f(x,,%5) = Cl}'

Then Q c @ and ulx,t) = D2(xl,t) satisfies (1.2141) for - o< x < o

the extension of (1.24) to a pure initial-value problem on Rl x [0,T) is
carried out in a rigorous fashion in §3, after (1.24) has first been transformed
into an initial-boundary value problem for an equivalent quasilinear first order
syetom, and involves extending uo(x), u(x,t), as odd functions to (-L,L),

vix,t) = fx ut(y,t)dy as an even function to (-L,L), and then continuing

these functions periodically to all of Rl with period 2L.

.
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2. Global Nonexistence of Electric Induction Fields

In this section we will demonstrate that under the additional hypothesis

#
on the constitutive function A(g) = A((0,7,0)),
(\4) Yor all z € R1 and some o > 2
14 & g
a f5 PA(p) do 2 T A(E),

smooth global solutions of (1.24), i.e., solutions of (1.24) on [0,L] x [0,T),
for all T > 0, will not, in general, exist; in fact,we will show that under
relatively mild assumptions on the initial data,the L2(’0,L) norm of u(x,t)
muct be bounded from below by a real-valued nonnegative function of t  which
becomes infinite as t -+ t_ < <. Some growth estimates for solutions of the
initial-boundary value problem (1.24), which are valid on the maximal time-
interval of existence, will also be derived. In §3, under stronger assumptions
on 3'\:(5) than that represented by (A4), we will demonstrate that smooth
solutions of (1.24) cannot exist globally due to finite-time breakdown of the
space-time gradient (ux(x,t), ut(x,t)).

Before proceeding with the analysis, let us note that if we set
V@) = TAiD), T e RY, and I(2) = [5 w(p)dp then TA(D) = I'(§) and hypothesis

(A\4) is equivalent to
(W) lorall 7 e R1 and some o > 2 al(g) 27 E'(C).

The proof of the global nonexistence property claimed above now proceeds
via a series of lemmas, the first of which is just an energy conservation theorem

for the solutions of (1.24), i.e.,




—~

Lemma 2. If we define the total energy E(t) of the system (1.24) by

2.0 EW = 8L u y,0a%ax s [1 a0 Xy ax,

then for as long as smooth solutions of (1.24) exist,

uo(x)

, L 2 L #
(2.2) E(t) = & [0 (X v (yday)ax + [ (f, pA(p)dp) dx

o0

Proof . In view of the definitions of ¢(g), E(g),
. u ol opx 2 L
(2.3) E(t) = 5 [ (f7 u ly,t)dy)dx + [ L (ulx,t)) dx
Therefore,
. L ox P
(2.4) EC) =pf” (f7 u (y,t)dy) ( f_mutt(y,t)dy) dx
0

+ o 2, 1)) u lx,t) dx
L X X 2)2
= }'0 ( f_wu (y,t)dy) (J'__m-—2 Y(uly,t))dy) dx
ay
+ ft‘ ' (ulx,t)) u (x,t) dx
_ (L, '
= IO (f7 Ju ly,t)dy) blux, 1)), dx
+ [5 I ux, 1)) u (x,t) dx

where we have used (1.2'31) and the fact that u(x,t) 20, x <0, t 203

, 2
X, 25 wuly,tdy = wluty, ),y X
ay
= plulx,t)),x
- lim (Yuly,t)),y | )
pr- p

p<0

yulx,t)),x

n




as ¥(0) = 0 by virtue of (A1) and the definition of y. Therefore

(2.5)  E(t)

[§ 5 bt X u ty,0)x

- fé‘ Plux, 1)) u (x,t) dx + f{)" ' (u(x,1)) u (x,t) dx

YL, 1) f5u ly,tdy - plulo,)) 0 uty,t) ay

as () = L' (%), yi& ¢ Rl, by definition. As $(0) = 0, the boundary conditions
(1.243) now imply that é(t) =0,0<t<T, and (2.2) then follows by integration

over [0,t), the definition of E(t), and the initial conditions (1.2‘42).
Q.E.D.

Our next lemma is concerned with establishing a certain differential
inequality for a real-valued nonnegative functional defined on solutions u(x,t)

of the initial-boundary value problem (1.24); namely, we have

lemma 3. Let u(x,t), (x,t) € [0,L] x [0,T) be a smooth solution of (1.24)

and define

(2.6) F(t) = uj‘(; (X _uly,t)ay)? dx + B(t+to)2
where 8, to 2 0. If i(c) satisfies (Al) - (A4), then for 0 <t < T
2.7) FF" - (y+1)F'2 2 —2(2y+1) F (B + 2E(0))

where Y = O‘T'z- > 0 (wvith a the constant which arises in the constitutive
assumption (A4)) and E(0), the initial energy, is given by the right-hand side

of (2.2).

Proof . By direct differentiation we have




it e t————— AT A w3 i

(2.8)  Fre) = o2u (X uty,vay) (J¥_u (y,t)dy) dx + 2B(t+ty)
and

L x 2
(2.9) FU(t) = 2u [, (f_aout(yt)dy) dx

+2u [ (¥ uly,t)ay) (¥ Jug (y,t)dy) dx + 28.

Again, in view of (1.2Hl), the definition of Y(g), <z e Rl, and the

fact that wu(x,t) = 0, x < 0, t 2 0, we have

(2.10) r"(t)

2u IE (f)_(wut(y,t)dy)2 dax

+ 2]’6 (f* . uly,t)dy) ¥ (ulx,t)), dx + 28

2u fg (ff‘n ut(y,t)dy)2 dx
P 2fE as (¥ uly,t)dy)plule,t))ddx

- 2f8 UG, ) Plule,t))dx + 28

2u fg (Ifa, ut(y,t)dy)2 dx

- 2}8 u(x,t) Z'(u(x,t))dx + 28

where we have again used the fact that y(u(0,t)) = p(u(L,t)) = 0, 0 s t < T,
By adding and subtracting 2(1]5 I (u(x,t)) dx on the right-hand side of the

1ast line in (2.10) we obtain

(2.11) F"(t) = 2u fg (]f ut(y,t)dy)de - 2a fg I (u(x,t)) dx i ?

oo

+ 2f (aZ(ulx, ) = ulx, ) T (ulx,t)) dx + 28

2 2y fg (ff“, ut(y,t)dy)2 dx - 2013 Z (u(x,t))

where we have used the hypothesis (A4) in the form given by oW, However, in




view of the definitions of E(t), i.e. (2.1), and Z(g), L € Rl, the inequality

in (2.11) may be replaced by

(212) PO 2 fg (X u (y,0ay? ax

w
1

20 [E) - B [0 (f* u(y,tdy) axd + 28

(2+a)y j})‘ > ut(y,t)dy)2 dx

20 E(0) + 2B

where we have used the energy conservation result of Lemma 2. Finally, we rewrite

the last inequality in (2.12) in the form

(213) IO 2 e [n fi X uty,tan? dx + 8]
-a (B + 2E(0)]
Combining (2.8), (2.13) and (2.6) we now obtain

) FEt - (RF'?

v

, (2+a) [ufg (¥ uly,0)ay)? ax + 8t + t 7]

X

[u!é‘ ([’_(m ut(y,t)dy)zdx + B]

aF(g8 + 2E(0))

2ea) [ufg (ff L uty,0ay) (2 u ly,t)dy) ax

+

2 ;
B(t + to)] !




(2+a) {( [ufé‘ (f)fw u(y,t)dy)2 dx + B(t + t0)2]

x (ufl(; (.P:.., ut(y,’c)dy)2 dx + 3])
- (uﬂ(; (I)_(m u(y,t)dy) (Ifo,, ut(y,t)dy) dx

2
+ B(t + to)) }
- a F(B + 2E(0)).

By virtue of the Cauchy-Schwarz inequality the { } expression in the last

inequality in (2.14) is nonnegative for all t, 0 < t < T, and,therefore,

a+2

2.18) P - & F'? 2 -ar(@ + 26(0)), 0st<T

The required result, i.e., (2.7) now follows directly from (2.15) if we set
Yy = (a=-2)/u,
Q.E.D.
Global nonexistence of solutions to the initial-boundary value problem
(1.74) can now easily be shown to be a consequence of the differential inequality
(2.7) under various assumptions on the initial energy E(0) and the initial

Jdata uo(x). vo(x). To simplify the discussion we introduce the notation

(2.162)  ICup) = wft (X u yIay? ax

- - oy fh
(2.160)  JCugeve) = 2ufy (X ugyddy) (fX ) voyddy) ax

Our first result then assumes the following form

POy




‘Theorem 1. Let u(x,t) be a solution of (1.24) and assume that the constitutive

'e
function ,A(;) = A((0,;,0)) satisfies (A1) - (A4). If J(uo,vo) >0 and
L™ p (Lo, qx 2
2an  fr Yp)dp) dx s - = [ (f7 v (y)dy)© dx
0 0 240 - 0
then dxk=«k(u3l) >0 and t_ <= such that

(218 fluw]’, > kG(t), O0stst

3

max

where [ O’tnux) denotes the maximal interval of existence of u(x,t) and

lim G(t) = + =,
t>t

on

Rumark: As a consequence of (2.18), and the fact that G(t) tends to +
as t-+t,  , it follows that tax S t, » i.e., that the maximal interval of
existence of u(x,t) is finite; it may happen, however, that tax < e
and thus, without stronger assumptions on § (z), we cannot conclude that
u(x,t), or its derivatives,blow-up in an appropriate norm as t + t_ (See

J. Ball [10], [11] for a relevant discussion of the relationship between global

noncxistence and finite-time blow-up theorems for solutions of nonlinear

cvolution equations).

Proof (Theorem 1). In view of (2.17), E(0) < 0. Thus, if we set B = 0 in

(2.7) this inequality reduces to

" '2
(2.19) Fo(t) F" (t) - (y+1) Fy(t) 20, 0st st

F () = ufld‘ ([’_‘m u(y,t)dy)2 dx. But (2.19) is easily seen to be equivalent to

-y
2.20 "
(.20 (Fg D™ty s0,0stst




Two successive integrations of (2.20) yield

(2.21) F.Y () < F -y-1 (0) F'(O)t +FY(0,0stst
. 0 =Y %o 0 o (V) max

or, as y >0, Fo(t) >0

Fy'(0) %
(2.?4) Fo(t) 2 ———Fo—r(—o-)- = G(t), 0st < tmx
L-\ro )t

Clearly, 1lim &(t) = + @ yhere
>t

F_(0) I(u,)
(2.23) t.=-1—(0 > -1 0

¥ \FJ(0 Ty Jlugvy) <@

Also, as u(x,t) = 0, x <0

Ig U%, uty,tan? ax =[5 (% uly,tap? ax
< (LJ X (fg u2(y,t)dy) dx

s (]16 x2dx)? (,ﬂo‘(fz](\12(y,1:)dy)2 dx)® 1

‘ /3
L’ L (L 2 2 ]
?’ . S 3 (]0 (f0 u’ (y,t)dy) dx)!’

3 —
s /-31‘— /L fé u2(y,t)dy ]

T —

and, therefore,

2 Y 3 (L ,x 2
(2.24) [l uCt) || 2 (7, uly,t)dy)” dx
t2o,Ly | L2 o 4 ’

sl AT

The growth estimate (2.18), valid for 0 < t < trax » "W follows directly from

(2.22), (2.24), and the definition of F,(t), with « = Il

e —eien A e e

Q.E.D.




There are several other situations in which the same basic conclusion, as

that expressed by Theorem I, follows;

we will examine two such sets of circum-

stances . clow which correspond to situations in which we have, respectively,

JUPPIREE

J(uo,vu) = 0 and J(uO,vo) < 0, with E(0) < 0 in both cases. Suppose, tirst of

all, that E(0) < 0 with vo(x) 20, 0s x s L; in this case we may choose 8 = BO

such that 2E(Q) + BO = 0 and therefore (2.7) reduces to (2.19) with Fo(t)

replaced by

F(t; BO,tO)

Therefore, F(t: Bo,to) satisfies, for 0 <t < tma

uf](;(f-:: u(y,t)dy)2 dx + Bo(tﬂo)2

x’

Y 1
F'(0; B,yty) =
0’0 Y oz H@,

(2.25) r(t, Bo,to) > F'(O;Bo,to)
1"(}‘(0-8 Ty )¢t
b 0’ 0
so that  lim H(t) = + » where
ot ()
F(038,,t,)
1 °70°°0
(2.20) t (t,)) = =
; L Yy F'(0; O’tO
- T(u,) + Bt °
-1 N 00
Ty ZBOt_O
L We note that, in view of our hypothesis,

(2.2) BO =

It

~

RS i A

TUETEER

u.(x)

2f5 (" werde) ax > 0

is not difficult to show that the minimum value of tw(to) is achieved at

: T(uo)
By

/




B aaac sl I

and that
(2.28) tw(to) = ¢ 5" to

Choosing to = EO in (2.25) we have, therefore,

(2.29) ufg (X uly,0dan ax + 8 (st
1
~2Y =
R (I(uo) + Boto ) Y
1- —1 ¢
t(ty)
I(uo)

1
1 - L0 Y
' I(uo)

for Ostst . In view of (2,24), (2.28) we then have the growth estimate

(2.30)

Al

rl

I(u,)
2 (VI W
| uCed i + B [t +
12,1y © B

I(uo)

1
1 - /—0 )y
I(uo)
——

I(uy)
for Ustst s —g— > where B, is given by (2.27) and I(u,) by (2.16a).
0

3

The estimate (2.30) establishes global nonexistence of solutions to the initial-

bourklary value problem, under the hypotheses (A1) - (A4),for the case where the
u,{x)

*
initial data satisfy v,(x) 20, 0 S x < L, and 13 Jod e (p)ap) ax < 0.




Having examined the cases where E(0) < 0 with J(uo,vo) >0 and E(0) <O

with J("o’VO) =0, vo(x) =0, 0 sx <L, we nowwant to look at the situation where

E(0) <0, i.c.,

(.31 J5 3 ppdap) ax < - B 5 %, votyaay)? ax

ard JGu,v) < 0. In this case we may again choose B = By such that
2E(L) + BO = 0, so that F(t; Bo,to) satisfies (2.25), with BO - BO’ for

0Dst<t . We note that we now have

max
- 2
I(uo) + BOtO
(2.32) t () =
QBOtO - [3ug,vy)|
where
N\ L, % 2 L %™«
(2.73) By = -y (U, voa® ax - 2[5, p A(p)dp) dx > 0
and thus we must choose t 2 EO where
(7.34) t >—};-IJ(U v )|
o 0 0o
230

it is a relatively simple matter to show that ﬁm(to) achieves a minimum at

(noar - - 1 2
(7.35) ty = 4 = ;g—-<]J(u0,v0)| v (up,vg) + HBOI(uO))
0

1t we denote tm({o) = t_ then we have the estimate

(2.36) ufgf% . uty,Dayd’ax + Bt + £
= 2,Y41
R (I(uo) + BOtO ) 7
1 -ttt
I(uy)

2 et . it

(1 - 7')

1
Y

o e e o e




. — " O L

- ’ 75

for 0 st < thax and the companion estimate

2.37) %“u(t) ||2 ’ + Bo(tﬂ':o)?
L0, L)
I(u,)
2 -0.1 1
(1 -t t) Y

for 0 <t < tax S T_ and global nonexistence of solutions to the initial-
boundary value problem (1.24) follows as in the previous cases. We may summarize

the two results corresponding to the situation where E(0) < 0 as

Theorem II. Let u(x,t) be a solution of (2.24) and assume that the constitutive

function K(p) = A((0,p,0)) satisfies (A1) - (A4). Then

. L uO(X) x
(1) If vo(x)E0,0SxSL, and IO (fo pA(p)dp) dx < 0,

I(u,)
. s 0 .
then u(x,t) satisfies, for 0 s t < tmax 9 —B the growth estimate (2.30)

0
where B, is given by (2.27).

(ii) If the initial data (uo(x), vo(x)) satisfy (2.31) and
JE L ugay) (X, volyddy) dx < 0,

then u(x,t) satisfies, for 0stst < t_ , the growth estimate (2.37),
where FU is given by (2.33), EO by (2.35), (2.16b), and T_ = t“(fo) where
'm(to) is given by (2.32). In both cases (i) and (ii) above the respective

estimates (2,30), (2.37) imply that solutions of (1.2u4) cannot exist globally,

i.e., for t e [0,°),

Remarks. Results analogous to those established in Theorems I and II for the

situations where E(0) < 0 with uo2 + V02 #£0 and E(0) < 0, respectively,




e TR 7 ¥ B i R . -

can also be established for the case where E(0) = 0, with Uy = Vg © 0, and for
certain situations in which E(0) > 0; we will not pursue a further discussion of
these situations here but, rather, refer the reader to the recent work of Knops,
levine, and Payne [12] on growth estimates and global nonexistence theorems in
nonlinear elastodynamics where there also arise differential inequalities of the
same [ormal form as (2.7) for which associated growth estimates are derived in
cases where the term corresponding to our E(0), in those estimates, is either

positive or zero.




3. Riemann Invariants and Finite-Time Breakdown of the Llectric Induction Field.

In this section we offer a brief demonstration of the fact that under a
alightly different set of assumptions on f(c), L e Rl, than those represented by
(A1) - (AW), it is possible to apply the Ricmann Invariant acgument of Lax (12]
$0 as to conclude that finite-time breakdown of wu_ + 1

LA

where u(x,t) is a solution of the initial-boundary value problem (1.24).

P (u u, must occur,

In 11731 Lax considers the nonlinear initial-boundary value problem on

LO,L] x [0,°)

N
ytt(x,t) = K (yx)yxx(x,t),

I

(3.1) y(,0)

yo(x), yt(x,O) =0; 0sx=<L

y(0,t) = y(l,,t) =0, t >0

This problem may be extended to a pure-initial value problem on Rl x [0, =) by

extending v (+), y(+,t) as odd functions to (-L,L) and then periodically, to

aul of Rl, with period 2L. By setting U = Yye? V=y, the resulting extended

initial-value problem on RY is then easily seen to be equivalent to a pure

initial -value problem for 1 coupled quasilinear system on Rl x [0,@), i.e.,

U 0 -1 {]
). Cewo) (), =
v/,t K 0 v /,x

(U(x,O)) (§é(x)> §, the extension
V(x,0) 0 of Yo to Rl

(3.2)

Jhe ecigenvalues and eigenvectors associated with the system (3.2)

are, respectively,




PP e s

s 1
(3.3) } = 4+ K(U) and [ ]
pQn K@)

and thus the system is hyperbolic if and only if KQ(E) >0,VE ¢ Rl. Also, the

system may be diagonalized in a familiar way so as to yield the system )

Vo + KU = 0
(3.4)
V: - K(NDU™ = 0
_ .20 3 « .39 3 . . . s
where © = AT < KD % and © = T + K(U) % denote, respectively, differentiation

along the right and left-hand characteristics defined by the ordinary differential

e bin,

equations g'i;i = #K(U). Using (3.4) one then shows in the standard way that the

Rieminn Invariants

R(U,V)

Vv + Ig K(z) dg

S,V =V - JU K@)

satisfy R” = 8% = 0, i.e., that they are constant along the respective character-
istic curves. It is shown in [13] that with a suitable choice of H =H(R,A), the
function 2 = exp(A)R  satisfies 2”=-[(exp(-#))8,12° where &, = 2% JxW

so that Z, and herce Rx, must breakdown (blow-up) in finite time if I C > 0
such that | (exp( -H)GKI 2 C; this last condition, on the other hand, turns out

to be a consequence of the assumption that J€ > 0 such that

[oK/U| = € > 0,VU € R]. Finite-time breakdown for Rx then implies finite-time

breakdown for at least one of the second-order derivatives vy x of the

,ytt
solution y(x,t) +to the nonlinear initial-boundary value problem (3.1).as

~
]

- RU Ux * RV Vx

K(U)Ux + Vx

1]

K(yx)yxx * yxt

SO, aesmnatsieastll
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Suppose that we now reconsider the initial-boundary value problem (1.24)

and recall that as a consequence of the fact that u(x,t) £ 0, (x,t) e (-» ,0]x[0,»)
X
N{m u“(y,f)dy = W(u(x,t)),x = lp'(u)ux(x,t).

If we set i

(3.6) vix,t) = [X u (y,t)dy, t 2 0

X 1 !
then, clearly, vx(x,t) ut(x,t) and vt(x,t) = ]_m utt(y,t)dy =5 W'(u)ux(x,t). a

Also, u(x,0) = u (x), v(x,0) = . u, (y,0)dy [* vo(y)dy, 0 s x < L. Therefore,

- 00
the initial-boundary value problem (1.24) for u(x,t) is easily seen to be
equivalent to the following initial-boundary value problem for the pair

(u(x,t), vix,t)):

u_t -v. =0 0sxsL
(3.7) -
- =t =
Ve T ] (u)ux 0 t20
u(x,0) = ug0x), v(x,0) = f’_‘_m v (y)y, 0sxsL

u(0,t)

u(L,t) =0, tz0

The system (3.7) is clearly of the same form as that considered by lax [13], i.e.,
(3.7), if we assume that vo(x) 0,0 xsL; also, the initial-boundary value
problem (3.7) may, in view of the above definition of v(x,t), be extended to a

1
pure-initial value problem on R if we

(1) extend uo(-) as an odd function to (-L,L) and then periodically with
period 2L
(ii) define, for -L s x s 0, u(x,t) = -u(-x,t), v(x,t) = v(-x,t), and then

extend u and v to all of R as periodic functions with period 2L.




The system (3.7) now assumes the following form
u 0 -1 u -® X< ®
v/, - L-W'(u) 0 v/ ,x t20
u(x,0) Go(x)
( ) = ( y = ® < X < w
v(x,d) )

when Go(x), - w < x <= js the extension of uo(x) to Rl. In comparing (3.8)

(3.8)

with (3.2) we clearly have the correspondence Kz(c) = %0'(;), e Rl, and thus

(3.8) is a hyperbolic system if and only if
# &
V(D) = gX (D) + X(g) >0, VgeR

which is precisely hypothesis (A3), The Riemann Invariants associated with the

system (3.8) are, clearly, given by the expressions

n(u,v) = v + —:1 fg ' (p)dp
v u
(3.9)
3 A(u,v) = v - 1 3 ' (p)dp
¢ o

and they satisfy 2” = 4" = 0 along the respective characteristics given by
) '3
]

'~ ax ,=a_/;'a .-
- Fr -1/@—'—‘(13)_ where : 3% u—-vé; and -_t-+ i =

By the results in [13],which we have described above, finite-time breakdown

(blow-up) of

i 1 :
,Lx = Vx + F v w'(U)ux i

(3.10) :

=y, + 2 v ¢'(u)u
"N X

t
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1

—_—— ) | 2 &’
2/ ()

)

for some € > 0. Using the relationship between X(z) and Y(z) this last
*
condition is equivalent to the requirement that A(gZ),v e Rl, satisfy, for some

£ >0,
&* ® /‘F—"‘_T"_
(A5) lgA"(g) + 2A'(5)]| 2 eVTA'(T) + A(p),

It also follows from the work of Tax (13] that

] MO
: max uo(x) P(o)

® N # ®
As ¢'(Z) = gA'(g) + ML) and $"(T) = TAME) + 2A'(B),vL € Rl, we clearly

must require that ¢ z) also satisfy the conditions

% % %
(X6) 0 <A0) <o, 0<X'(0) <o, [A"(0)] <o,

in which case tmax = max21'1/l'j(x) 2(0)
0 AT

We summarize the above discussion as

Theorem 11I. Let u(x,t) be a solution of (1.24) and assume that the constitutive
&
function A(Z) = AC(0,£,0)) is of class C2(R') and satisfies (A3), (AS) for
*
some € > 0, and (A6). Then, if vo(x) £ 0, 0 £ x s L, the space~time gradient

‘ . .. . ) % / .
(”x"“t) must break-down in finite-time tmax = 2u° A(0)/max ué(x) X'(O).

L2 o e v - St




Remarks. Different finite-time breakdown results for solutions of the initial-

- boundary value problem (1.24) may be gleaned from the work of MacCamy and Mizel

{ 14 ]; the hyptheses of [14]) do not, however, scem as well suited to the discussion
{ of (1.24) as do those of lax [13]. Finite-time breakdown results for initial-

- boundary value problems associated with the coupled system of equations (1.12)

in R x [U,m) cannot, of course, be obtained via the use of Riemann Invariant
type arguments as the applicability of such arguments is essentially restricted to

one-dimensional situations; we hope to discuss the general problems of local and

T

plobal existence, and plohal nonexistence of solutions for the coupled three-
Jimensional system (1.12) in future work. Tor recent work on the breakdown of
1 solutions to nonlinear wave equations in spatial dimension n > 1 we refer the

realer to John [15] and Payne and Sattinger {16]; a good source for work on the

i iroblem of proving global existence of solutions for nonlinear wave equations in

Jdimension n > 1 is the recent work of Klainerman [17].
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