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/ //

Coupled nonlinear wave equations are derived for the evolution of the com-

ponents of thq electric induction field D in a class of rigid nonlinear dielectrics
i/

governed by nonlinear constitutive relation E = ) (D)D where E is the electric//-

fIeld and 0 is a scalar--valued vector function. ror the special case of a

finite one-dimensional dielectric rod, embedded in a perfect conductor, and subjected

to an applied electric field, which is perpendicular to the axis of the rod, and

depends only on variations of the coordinate along that axis, it is shown that,

under relatively mild conditions on/L' solutions of the corresponding initial-

boundary value problem for the electric induction field can not exist globally in

time in the LOsense; under slightly stronger assunptions on the constitutive function

,A, a standard Riema nn Invariant argument may be applied to show that the space-time

gradient of the non-zero component of the electric induction field must blow-up in

finite time. Some growth estimates for solutions, which are valid on the maximal

time-interval of existence are also derived. .
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I. Evlution Eqjuations for a Claus of WNclinca Dielectric-,

'lleories of material dielectric behavior are based upon a set of field

equations (Maxwell's equations) and a set of constitutive relations which hold

among the electromagnetic field vectors. In a Lorentz reference frame (x ,t),

i 1 1, 2, 3, where the (xi) represent rectangular Cartesian coordinates, and t

is thc. tirme parameter, the local forms of Maxwell's equations are given by

+ curl E = 0 div B = 0,
(1.1) aD

curl H - D 0, div D = 0,
- at

povi de'd Iu t the density of free current, the magnetization, and the density of

freo clhage all vanish. In (1.1), B, E, and U are, respectively, the magnetic

flux density, electric field, and magnetic intensity while D-- Ec E + P(E),

C0 > n a physical constant and P the polarization vector, is the electric

riducLion field; the relations (1.1) hold in sore bounded open domain 9 _ R3 which

is filled with a rigid, nonconducting, dielectric substance. The precise nature

of the dielectric medium in Q is determined by specifying a set of constitutive

equations relating E, D, H, and B; indeed, without the specification of additional

relations Arong the electromagnetic field vectors, the set of equations (1.1)

represents an indeterminate system.

Thcre is, in existence, a wide variety of constitutive hypotheses which

Iuve L.en a-s sociated with theories of nonconducting, rigid, dielectric media; the

simplest of these is that associated with the dielectric response of a vacuum in

which there hold the classical constitutive relations
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where the fundamental physical constants col P0 satisfy cO 0.i 0  c-, c being

the speed of light in a vacuum. In 1873 Maxwell [1] proposed as a set of con-

stitutive laws for a linear, rigid, stationary non-conducting dielectric the

rv*l iBns

wlr ' e C, 1r', oor)l:;tallt ";Oond-onler tonsors which are proportional to the

identity tensor if the material is isotropic. A set of constitutive relations,

which are still linear, but which take into account certain memory effec1sin the

dielectric, were proposed by i1xwel] in 1877 and subsequently used by Hopkinson

12] in connection with his studies on the residual charge of the Leyden jar;

th,_ Maxwell-Hopkinson dielectric is governed by the set of constitutive relations

X 0):

D (x,t) = c E (x,t) + ft 0(t_-r)E(x,t)dt

(1.2)

B

where i > 0, p > 0 and 0(t), t a 0 is a continuous monotonically decreasing

funiction of t, 0 s t < -. Noting that the Mdxwell-Hopkinson constitutive

relations do not account for the observed absorption and dispersion of electro-

magnetic waves in material non-conductors, Toupin and Rivlin [3] generalized the

'onstilltjive reiationf; (1 .2) and intmiuced the concepts of holohedral isotropic

ad l Kil £i ccr.il dielectLic response; while the response incorporated into both

of these *icories is linear, they are more sophisticated than (1.2) in the sense

that magnetic memory effects and coupling of electric and magnetic effects is

built into the constitutive theory. The qualitative behavior of the electric

imduction field in a rigid non-conducting dielectric exhibiting holohedral

isotropic response has been studied by this author in a series of recent papers

4l - [6].



ini this papeu we will be concerned with initial-boundary value problems

associated with the evolution of the components of the electric inducLion field

D in a relatively simple class of materials exhibiting nonlinear dielectric

respon:.e. A rather generel theory of nonlinear dielectric behavior which allows

for Luth electric and mugnetic mezmry effects, but still effects an a priori

sepaation of electric and magnetic response, was proposed by Volterra [71 in

191? iTn the form of the constitutive relations

L
AD(xt) = C E (x,t) + D (E(ct)), x C Q

(l 3)
t

B(x,t) = (x, t) + 8 (H(;S,t)), ?S e fl

The consLitutive relations (1.3) reduce to those considered in [2], [3] under

special assumptions relative to the functioni]Is D, B, i.e., if B = 0, D is

I i c,i' and L;otropic, and c = cI, U = ul, then (1.3) is easily seen to reduce

to (1.2) ; the particular class of nonlinear dielectrics to be considered in this

exposition results by specializing (1.3) to the situation where p = I, p > 0,

B (o, iro] ,octric rield memoJry offec :; ar.'e neg]igible, i.e.,

B(x,t) = D (x,t)), x i Q

1e shall further assume that det W- 9 0, so that in a (Euclidean)

nezighborhood of E = 0, the relations (l.4a) may be inverted so as to yield the

Ctunli Lu tive equations

(xt) EQ((x,t)), x c Q

(1 .4b)
Hx -t) -B(,t)), X l 0
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As the vector function E is still completely arbitrary, the constitutive theory

defined by (1.4b) is still far too geneul to provide a tractable system of

evolution equations for the electromagnetic field in Q; we will, therefore,

confine our attention to that special case of (l.1ib) for which there exists a

scalar-vaiued vector function A(L) such that E(.) = A(Q),VL with real

cumporicnts &i" ' hus, the final form of the constitutive relations which define

the nonlinear dielectric response to be considered here is given by

(x~) = (D(2S,t))P(x,t), .x c Q2

(1.5)
LI(x't) =P- B(x<,t), x5 E Q (p > 0)

Ir now wu will simply assume that 0 : A (L) < -, vL, with A(L) > 0,

v_ 0; further assumptions on the constitutive function X will be imposed

below. It seems worthwhile to note, in passing, that electromagnetic constitutive

relation, of the form (1.5) or,to be somewhat more accurate, the inverted relations

D(x,t) =x(E(x't))E~x't), x C J2

(1.6)

(x't) 11 (x't), x C Q (V > 0)

have appecaed in Lhe recent literuture; e.g., Rivlin 18] considers (1.6) and

in licates that in an isotropic material conforming to this constitutive hypothesis

the dielectric "constant" X must be an even function of the magnitude of E, i.e.,

X = X(E E). However, there does not seem to exist, anywhere in the literature,

equations for the evolution of the components of either the electric or electric

induction fields in a dielectric exhibiting nonlinear response; for the simple

nonlinear dielectric which is governed by the constitutive hypothesis (1.5) such

,1 systm of evolution equations is given by the following



Lnmia 1. Let 0 c R3 be a bounded domain and assume that Q is filled with

a rigid, nonlineart', nonconducting dielectric substance which conforms to the

constitutive hypothesis (1.5). Then, in 1, the components Di(x,t) ,of the

k;o-,ric iin]uction field,satisfy the coupled system of nonlinear wave equations

2
(17- - • gadA~ .), i =1,2,3.

at1

Proof. We begin with the identity

= grad(div A) - curl curl A

which is valid for any sufficiently smooth vector field on S; applied to the

eectric field (.,t) the identity yields

(1.8) (div E) - (curl curlF)i; i 1,2,3.
1

In view of Maxwell's equations (1.1), and the second constitutive relation in

!.), we have

aB
curl curie - cur] ( )

- curl ( )

- (curl H)
a2

at

:;o that (1.8) has the equivalent form

2
3D. 2 

(1.9) j- 2 I. V E. - a (div E), i 122,3
21

By (1.4b),

div E : D --. • D A (D) D4E. j - ax j

2 . DD

xk '×k axk

[ IIII I I I I II III III [ I II I III " -. . .. 1
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aEi
where Aij (D) -D and the standard summation convention has been employed.

Thus (1.9) becomes

a2D 3D 3D k(.io) (D) ) - (Aj (D)
- (Ai, Xi (j k

21xk 5 i - x

However, by virtue of our hypothesis that E.(D) = X(D) D., we easily find that

A.. (D) X(D)6i + -. D.
1] ij aD.jJ

and therefore

(1.11) ) : + |)

2D. D.aD
(1= (X(D) 6 + x D i) k )

ax. 3k Dk D 3x.

where we sum on each repeated index; expanding (1.11) and using the Maxwell

22

-
2 axx

k 1= ~ )~)- - ..2LD.)

Q.E.D.

We now assume that DQ is sufficiently smooth to admit of applications of

the divergence theorem and we denote by v(x) the exterior unit normal to DO

at a point 4 e ag ; we also denote by t(4) a generic vector in the tangent

plane to N5 at x e 3Q. The evolution equations (1.7) are to hold in some
4:

cylinder S1 x (0,T), T > 0, in R and we now associate with this system a set

of initial and boundary data. In Q we require that
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1

3D.

li.=l,213

while st andard results from electromagnetic theory [9,§13] dictate that

(l.14ab) I.E(x,t) t(x)] = 0, (x,t) c N x [0,T)

In the set of relations (1.14), [FCx]] denotes the jump of the scalar-valued

function F across DQ at x c aQ while ox) denotes the density of surface

cl.mge at the point x E X2; these boundary conditions can be written in an

dt(ernative form as follows: If we let D (xWt) denote the electric induction

field at points (x,t) c R3 /( / [0,T) then (l.14a), (1.14b) are clearly

equivalent to

(l.15a) D(x,t) • v(x) - D (x,t) •(x) = o(x), (x,t) c aX[O,T)

(1.15b) A((x2,t))D(x,t) • t(x) -- (x,t) - t(x), (x,t) e 3P x N,T)

where L (x,t), (x,t) E R3 1Q x [0,T), is the electric field associated with

L) (x,t). In particular, if 11 c c R, and (/1 is filled with a perfect

conductor (in which D = E = 0) then (l.15a), (l.15b) reduce to

(1.1ji) D(x,t) • () (T) ,  (x,t) o t g e0,T)

(1.16b) X(D(t))D(x,t) a t(x) x 0, (x,t) e-O x [0,T).

In this paper we wish to consider that particular subcase of the general

initial-boundary value problem (1.7), (1.13), (l.16a,b) which corresponds to

the assumption that the geometry of Q is one-dimensional (non-linear dielectric



rod) ,d that the rod is subjected to an applied electric field, which is per-

pendicular to the axis of the rod, and depends only on variations of the coordinate

along that axis; cor esponding to the appropriate specialization of the boundary

conditions (l.16a,b) which result i, the physical assuuption that the rod is

osLnjdd(d in a perfect conductor. We assume, therefore, that the rod occupies

the configuration depicted in Figure 1. (below):

'X2.

4^P
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Specifically, we take for 9 the finite cylinder

(1.17) 0 = {(xlx 2,x 3) xi real, i = 1,2,3, 0 : x1  LI

2 Xx3 Cl(const.))

with generators parallel to the x I axis and we assume that for some small c > 0

0 n {(xX2,X3  x, L', 0 < L' L}

{( , L' ,0 x' 2 +x2 <C2
~ C 1 ,x2 ,x3 ) I ~ 2 +x 3-

,or R we then take the (infinite) circular cylinder

(1.18) i (x1,x2,x) I - Ooo< x < co, x2 + x 2 = a2, 6>> 0o1

and, in accordance with the boundary conditions (l.16a,b),we assume that the

annular region /S between the dielectric rod and the circular cylinder is filled

with a perfect conductor; in R the dielectric media is assumed to be governed

by the constitutive hypothesis (1.5). Finally, we will assume that the entire

configuration in Figure 1. is subjected to an applied electric field which is

perpendicular to the Xlx 3 plane and, hence, orthogonal to the axis of the

dielectric; specifically, we assume that

(1.19) E(x,t) = (0, E2 (xl,t),O), 0 5 x, < L

with E, a 0 for x2 c [0,L]; of course, in 2/l we must have E = 0. In

or]er to r-oceed with the reduction of the evolution equations (1.7), which

Collr'sponds to the situation at hand, we will need some additional assumptions

relative to the constitutive function A; specifically, the hypotheses on X

which will hold throughout the rest of this section are

Y"
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(Al) A CI(R 3 ; [0,c)), A(i) > 0, 'V/ S 0

(A? ~'(r) < ", Vr.

1 .
w1ire Ai) = A((0, r, 0)), c R By (Al) and the definition of X it is

immediate that X C CI(R; [O,=)).

We n(w proceed with the reduction of the nonlinear evolution equations

(1.7). In view of (1951) , (1.19), in 0

(0,' 2 0)) = X(D)(D 1'D2 'D3)

from which it follows that, in Q, D, = D3 v- 0 and E 2(xlt) = A(D)D2(N1 x2,x3,t).
2 3D 2 xx,2 ,)

However, div D-
~ x 2 = 0 so that, for each t a 0, D2 can depend, at most, on

xlx 3. As E2 depends only on x

-x X 2 1:L x3 t)/
3 33[:ax 3  2' 2 T 3 ')

3 (x 3- (D 2(N I9x3,t))D 2(xl,x3, t))

DD 2 (X*'(D 2)D2 + A(D 2 ))=.

3D
By hypothesis () it then follows that a 2 0 and, thus, in A

(1.20) D(xt)f ( o S D i(xl,t) , 0)

In view of (1.20), not only is div D :0 automa~tically satisfied in S1, but,



]

as is easily verified, so are the nonlinear evolution equations (1.7) for

i = ,3, i.e.,

S(J"I" d A (D). AM (x 0 (D(l ) " D2(Xl1t).

- 0, i 1,2,3

while (Di )t ( V2( D)D)R 0 for i 1,3. For i = 2 we then obtain, for

L 1., and 0 ! t < T,

S2 D2  (2

(1.22) (1 a V 2 (D2(xit)) D2(xi,t)]

a 2 ,
S_2 [A(D 2 (xl , t))D2 (X,t)i.x12

We nov trn our attention to the boundary conditions (l.16a,b); in order to

simplify the exposition we will assume that 0(x), the surface charge density

,it c 3, vanishes on the plarr faces of the cylinderical region Q at

x 1 U and X = L. Clearly, (Figure 1.), on the planar boundary at Y,= 0,

v = (-1,0,0) and t (0,1,0). By (l.16a), therefore,with O(R) = 0 for x I = 0,

(x], ) 3 C1 ,

(1.22) D(x,t) • v 0 = [(0,D2 (xl,t),0) • (-lOO)]I  = 0

0gt<T 0-t<T

i u_ trivial]y satisfied and an analogous result holds at x1 = L where v = (1,0,0).

In or'dcr to satisfy the boundary condition (1.16b) along the planar face at

1= 0, for 0<t<T, we require that
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(l.?3) X(D(x,t)) D(x,t) 't I x

Ogt<T

* (0, X(E(N )(x 1 lt),0 • 0,1,0

* X(D2(xt)) D 2(xlt) = 0

Inr vicw of our assum)tion that A(C) > 0, V C # 0, we have A(p) > 0 for

p 1 0. It [hen follows liKom (1.23) that the bourxuary condition (1.16b) will

Lb satisfied along the plan r surface at xI = 0, for 05t<T, if D2 (0,t) = 0,

0 t<T; in an analogous fashion it follows that D2 (L,t) = 0, 05t<T. In view of

our assumptions relative to the nature of the rmrdium in /Q we also have

)2 =,O t<T, for xI  (--,0) and x 1 (L,-). Tus supp D21 = (0,L).

We now set x, = x, D2 = u. Then, for the physical situation described

Above, the initial-boundary value problem associated with the coupled system of

noril inta.rir evolution equations (1.7) reduces to the following nonlinear, one-

dJicinionLal, initial-boundary value problem on the x axis: find u u(x,t),

0 <x<-L, o-t<T, such that

2 2

(1.214) U(x,0) = u10(W , 11t (x,0) = v0,(x) , 0Nx!L

u(0,t) = 0, u(L,t) = 0, 0 t<T

where p > 0, A satisfies the hypotheses (Xl) - (M3), and for 05t<T,

u(xit) E 0 for x < 0, x > L.

Reir.k s

(i) we note here an equivalent form for the one-dimensional non-linear
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wave equation (1. 241), i.e., as

a- u (u)) T- (u u x (u) + u (1u))ax2 x

=- ( u il'(u) + A(u)] .-! )

(C ) may be written with the spatial part of the equation in divergence form

a2
22u - (A(u) ' ), (x,t) E [0,!.) [ x roT)

where, in view of (03)

MO = '( ) + A(C) > 0, VC C- ,-) C 9 0

(ii) The initial-boundary value problem (1.24) can be (formally) extended

1to a pure-initial value problem on R x [0,T) by extending the dielectric rod

occupying the configuration 0 into the perfect conductor, i.e., we may think

of hiving extended

. x {(Xlx 2,X3) j - 0 < x I < c, 6(x2,x3) CI}"

Then 0 c f and u(x,t) - D 2(x ,t) satisfies (1.24I ) for - - < x <

th,, ext, tm;io oF (.2'i) to a pure initial-value problem on R1 x [0,T) is

carried out in a rigorous fashion in §3, after (1.24) has first been transformed

into an initial-boundary value problem for an equivalent quasilinear first order

:vrvtm, cjn(l involves oxtending u0(x), u(x,t), as odd functions to (-L,L),

v(x,t) a fx ut(y,t)dy as an even function to (-L,L), and then continuing

these functions periodically to all of R1 with period 2L.
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2. Global Nonexistence of Electric Induction Fields

In this section we will demonstrate that under the additional hypothesis

on the constitutive function A(C) = A((0,C,0)),

(A4) For all cR and some a > 2

GL fo PX(P) dp a C 0

siw.oth global solutions of (1.24), i.e., solutions of (1.24) on [0,L] x [O,T),

for all T > 0, will not, in general, exist; in fact,we will show that under

relatively mild assumptions on the initial data,the L 2(0,L) norm of u(xt)

mu-: be bounded from below by a real-valued nonnegative function of t which

b con~s infinite as t + to < -. Some grmth estimates for solutions of the

initial-boundary value problem (1.24), which are valid on the maximal time-

interval of existence, will also be derived. In §3, under stronger assumptions

oil A( ) than th at represented by (A4), we will demonstrate that smooth

solutions of (1.24) cannot exist globally due to finite-time breakdown of the

space-time gradient (u (x,t), ut(x,t)).

Before proceeding with the analysis, let us note that if we set

0X), c R , and M( ) = i(p)dp then Ct(C) '(4) and hypothesis

(A4) is equivalent to

-- RI
(04) P'r all C e R and some a > 2 (E) (.

The proof of the global nonexistence property claimed above now proceeds

via a series of lemmas, the first of which is just an energy conservation theorem

for the solutions of (1.24), i.e.,



L.~mm 2. If we define the total energy E~t) of the syntem (1.24) by

(2.1) EML f"Jb ( L'tytd)d L~uxt pX(p)dp) dx,

then for as long as smooth solutions of (1.24) exist,

+ (x)
(2.2) E~t) f (fx L x+P(Pd)d2 0~(- v(df0 0 pApd)d

Proo f. In view of the definitions of ipC), VOi,

(2.3) E(t) - l T fL ( yt~ 2 dx+ (L E Cu~x,t)) dx
2 0jXU utyty dx

Therefore,- i
(2.4) E~t) =P1 L Cfx. utCY,t)dy) (x u 0, (y,t)dy) dx

+ fL E'Cu~x ,t)) U (x,t) dx

f L C fx,,uyty DIC~x

+ fL'Eu(x ,t)) ut(x,t) dx

fL (fx,,u(y,t)dy Oj(u(y,t)), dx

ay
= #(u(x,t)),x

- Ur (iP (y't)),y )

p<O



as €(0) 0 by virtue of (Xl) and the definition of p. Therefore

(2.5) E(t) = - [*(u(x,t)) fX.ut(y,t)]dx

- I(u(xt)) ut(xt) dx + L (u(xt)) utCx,t) dx

= (L,t)) L G0 ut(y,t)dy - o(u(0,t)) f 0 utCy,t) dy

as ((4) ='( ), V4 , by definition. As *(0) 0, the boundary conditions

(1.24 ) now imply that E(t) = 0, 0 : t < T, and (2.2) then follows by integration

over [0,t), the definition of E(t), and the initial conditions (1.242)

Q.E.D.

Our next lenm is concerned with establishing a certain differential

inequality for a real-valued nonnegative functional defined on solutions u(x,t)

of the initial-boundary value problem (1.24); namely, we have

IAma 3. Let u(x,t), (x,t) c [0,L] x [0,T) be a smooth solution of (1.24)

and define

(2.6) F(t) = JlL ( fx u(y,t)dy)2 dx + S(t+to)2

where 0, to 0. If X(W) satisfies (Xi) - (W'), then for 0 s t < T

2.7) FT" - (y+l)F' 2 a -2(7y+l) F (8 + 2E(O))

where a s-2 > 0 (with a the constant which arises in the constitutive4

assumption (04)) and E(0), the initial energy, is given by the right-hand side

of (2.2).

Proof. By direct differentiation we have
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(2.8) F'(t) 2P fo (fX u(y,t)dy) (fX utCy,t)dy) dx + 28Ct+t0 )

dnd

(2.9) F"(t) 02p fL (Xut(Yt)dy) x

+ 21 fL (fXu(y,t)(1y) (fx~utt(y,t)dy) dx + 20.

R1
Again, in view of (1.241 ) the definition of *(C), r R , and the

fact that u(x,t) - 0, x < 0, t > 0, we have

2. 10) F"I(t = 2vL (f CXut(y,t)dy) 2 dx

+ 2fL ( x . u(y,t)dy) M(u(x,t)), dx + 28

S21 (f ut(y,t)dy) dx

+ 2fL  - {L D u(y,t)dy)*(u(x,t))}dx

- 2fL u(x,t) *(u(x,t))dx + 20

jL ix2

211 O ( ut(y,t)dy)2 dx

0 I

- 2f u(x,t) E (u(x,t))dx + 28

whc.i, we have again used the fact that *(u(O,t)) = *(u(L,t)) = 0, 0 . t < T.

By adding and subtracting 2 afl E (u(x,t)) dx on the right-hand side of the

list line in (2.10) we obtain

2.11) r(t) 211 (f .  (yt)dy)dx - 2a 0 (u(x,t)) dx

L 2S0 (Or(u(x,t) - u(x,t) E (u(x,t)) dx + 20

2V f (f_- u C(y,t)dy)2 dx - 2a fL E (u(x,t))

where we have used the hypothesis (A4) in the form given by (4). However, in
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view of the definitions of E(t), i.e. (2.1) and Z(;), c e , the inequality

in (2.11) may be replaced by

(2.12) F"(t) Z 2p 0
L (fX ut(Yt)dy)2 dx

- 2a [E(t) - fL (fx ut(y,t)dy)2dx] + 28

(2+t)ljL JL (X . ut(y,t)dy)2 dx

- 2c E(O) + 20

where- we have used the energy conservation result of Lemma 2. Finally, we rewrite

the last inequality in (2.12) in the form

(2.13) r"(t) (2+a) [N1 fo (fx ut(yt)dy)2 dx + 0]

-a [O + 2E(O)]

Cuirdiriing (2.8), (2.13) and (2.6) we now obtain

(2.111) FF" F

i[ JL (f,. "  )2O, t")2 ]
(2+a) - u(yt)dy)2 dx + 8(t +

x [i 0
L (fx . ut(Yt)dy)2 dx +8]

- aF(O + 2E(O))

- (2+ct) [jifO (fX u(y,t)dy) (fX, ut(y,t)dy) dx

+ O(t + to)]2
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I(uf (fx. uyt)dy)2 dx + (t + t)2

x [1*1fL (fx. uCy,t)dy )2 dx + ~

-(,JfL (fx. u(y,t)(1y) (fx. ut~y,t)dy) dx

+ Oft + t 0 ))2

-a MF( + 2E(O)).

By virtue of the Cauchy-Schwarz inequality the ( } expression in the last

inequality in (2.14) is nonnegative for all t, 0 5 t < T, and,therefore,

(2.15) FF" - (C-2) F'2 ar( + 2E(O)), 0 5 t < T

The required result, i.e., (2.7) now follows directly frcm (2.15) if we set

y =(a-2)/4.

Q.E.D.

Global nonexistence of solutions to the initial-boundary value problem

( .211) can now easily be shown to be a consequence of the differential inequality

(2.7) under various assumptions on the initial energy E(0) and the initial

dita u0Cx), v0 x). To simplify the discussion we introduce the notation

(2.16a) I(u ) = P1L (f
x . u (Y)dy)2 dx

0 0 -~ 0

(2.1Gb) -Cu 0,v 0 ) :2pfL (fx. u0 (y)dy) (fx v 0 (y)dy) dx

Our first result then assumes the following form



2 .0

Theorem 1. Let u(x,t) be a solution of (1.24) and assume that the constitutive

function A(C) X((0,C,0)) satisfies (Xi) - (4). If J(u 0 ,v 0 ) > 0 and

(2.17) (d dx < -d f (f_ v0(y)dy) dx

then .i K= K (V;L) > 0 and t < m such that

(".18) u(t)j1 22 KG(t), 0 -< t -m
S(O,L)

where [0,t m x ) denotes the maximal interval of existence of u(x,t) and

lir Ct) + .

Rtmurk: As a consequence of (2.18), and the fact that G(t) tends to +

as t 4 t , it follows that t max : tM . i.e., that the maximal interval of

existence of u(x,t) is finite; it may happen, however, that tma x < t.

and thus, without stronger assumptions on A(C), we cannot conclude that

u(x,t), or its derivtives,blow-up in an appropriate norm as t - t, (See

J. Ball [i0], [1I] for a relevant discussion of the relationship between global

nonexistence and finite-time blow-up theorems for solutions of nonlinear

evolution equations).

'roof ('heorem 1). In view of (2.17), E(0) : 0. Thus, if we set 8 = 0 in

(2.7) this inequality reduces to

'2
(2.19) F0(t) Fo" Ct) - (y+l) F0 (t) a 0, 0 t a t x ,

1 L x 2
rF (t) x c) (1_. u(yt)dy) dx. But (2.19) is easily seen to be equivalent to

0(2.20) (FO-Y)"(t) 5 0, 0 s t S tmax
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Two successive integrations of (2.20) yield

(2.21) F0 -(t) < -y 1 (0) F0 (0)t + F-Y (0), 0 S t t

or, as y > 0, F0 (t) > 0

(2.22) o(t) a 0  () - G(t), 0 . t :5 t
C? .22 00 t 111 (0T)tI max

Clearly, lira C(t) + where
Lt

1 ( ) 1 I(lUo)
(2.23) t;, FY 0) < J, 0 0

Also, is u(x,t) 0 0, x < 0

fL (fx uCyt)dy)2 dx f (fx u(y,t)dy)2 dx

fl, x (fx uCy t)dy) dx y

S (fL x2 dx ' (fL(f u 2(y t)dy )2 dx)4

I" ( L 2 d

1L -0 0u (y,t)dy XrLO • L IL u2(y t dy

and, therefore,

(2.24) II u(t) 2 a '  h (
L (0,L) _

Ilk- growth estimate (2.18), valid for 0 ! t s t nnow follows directly from

2(2.22), (2.24), and the definition of F0 (t), with K /-/pL

Q.E.D.
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'Tere are several other situations in which the same basic conclusion, as

thit expressed by Theorem I, follows; we will xamine two such sets of circum-

.low whLch n(rT(spod to situations in which we have, respectively,

J(u0,v0) 0 and J(u01v0) < 0, with E(O) < 0 in both cases. Suppose, tirst of

all, that E(0) < 0 with v0(x) -=0 0 ! x < L; in this case we may choose a Bo

such that 2E(0) + 0 = 0 and therefore (2.7) reduces to (2.19) with F0 (t)

F(t; t'0t) UfL( x (yt)dy)2 dx + 00(t~ to2

0 -_O

'lTervfomN, F(t: 0,t ) satisfies, for 0 S t t MEW

Fl(o; 0'to -- t)i
( .2 b ) Vr ; 00 ')t )  0 ,( o t Y

00 ; ,t) t

;, tlut Ir H(t) + - where

1 F(0;0't 0)(2.20) 0~O  F,(O;aolto.)

I(un) + to)
Yt 2$ 0t 0 /

We note that, in view of our hypothesis,

(.2) = : -2fL ( xo 0 p)pd) dx > 0

It is not difficult to show that the minimum value of t (to) is achieved at

T(uO)

00
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and that

/(u)
(2.28) o)  --To- =to

Choosing to = t0  in (2.25) we have, therefore,

(2If (fxu(y,t)dy)
2 dx + (t+20)

- 1 t

I(u )

>~ro t
0

for 0!t!tm In view of (2,24), (2.28) we then have the growth estimate

(2.30) IIu(t)Il 2 + 00

Vu0

i 1(u0 )

< Ot5t 0  where 0  is given by (2.27) and 1(u O) by (2.16a).

'llie euftinute (2.30)establishes global nonexistence of solutions to the initial-

I .)uikliy value problem, under the hypotheses (A) - (4),for the case where the

initial data satisfy v (W) E O, 0 < x ! L, and L (fOW PX (P)dP) dx < 0.
I0 0_
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Having examined the cases where E(0) < 0 with J(u0,v0 ) > 0 and E(0) < 0

with J( 0 ,v 0 ) = 0, v0(x) - 0, 0 ! x < L, we now want to look at the situation where

E(O) < 0, i.e.,

( ) 20 ( W iP(p)dp) dx < f L (fx  v (y)dy)2 dx

,u1d J(1 0 ,v 0) < 0. In this case we may again choose a 0 such that

2E(U) + 0 = 0, so that F(t; R0,t 0 ) satisfies (2.25), with a0 0' for

0 <t t . We note that we now have
max

- 2
) (u 0 ) + Bot0(2. )~ t(t ) 2R to - IJ(uo,vo)I

where

2L Uo(X) *
(-.3) - ' (f_ vo(Y)dy) dx- 2fo(f0  p X(p)dp) dx > 0

.ind thus we must choose t 0 > t0 where

"0 > I lJ(u0 ,Vo)I

I[ is a Tvlatively simple matter to show that t (t ) achieves a minimum at0

2/2

1H we ,cnote t (I then we have the estimate

( )fl(f>, u(y,t)dy)2 dx + 0(t +

0 1
(1 - ;~



for 0 S t : t and the companion estimate

2 Ilu(t) II2  -(t+fo ) 2
2.37) L- 2(0,t ) + 0

l(uO)

(i t)

for 0 5 tt f t 5t. and global nonexistence of solutions to the initial-

boundary value problem (1.24) follows as in the previous cases. We may summarize

the two results corresponding to the situation where E(O) < 0 as

'llcorem II. Let u(x,t) be a solution of (2.24) and assume that the constitutive

function X(p) = A((0,p,0)) satisfies (Al) - (4). Then

(M) If vo W EO,9 0 x L, and L U(0 W pI(p)dp) dx <000 0 )

then u(x,t) satisfies, for 0 : t t nVLx !5 the growth estimate (2.30)

where 0 is given by (2.27).

(ii) If the initial data (u0(x), v0(x)) satisfy (2.31) and

f L (fX,0 u0 (y)dy) (fx= vo(y)dy) dx < 0,

then u(x,t) satisfies, for 0 5:5 tmax < too , the growth estimate (2.37),

wh, rv. 0 i:; givcn by (2.33), f0 by (2.35), (2.16b), and f = t (f 0 ) where

t(t 0 ) is given by (2.32). In both cases i) and (ii) above the respective

estimates (2.30), (2.37) imply that solutions of (1.24) cannot exist globally,

i.e., for t C [0,-).

Remarks. Results analogous to those established in Theorems I and II for the

situations where E(O) ! 0 with u0
2 + v02 9 0 and E(O) < 0, respectively,



can also be established for the case where E(O) = 0, with u0  v 0  0, and for

certain situations in which E(O) > 0; we will not pursue a further discussion of

these situations here but, rather, refer the reader to the recent work of Knops,

levine, and Payne [12.1 on growth estimates and global nonexistence theorms in

nonlinear elastodynamics where there also arise differential inequalities of the

&sam IoTmul form as (2.7) for which associated growth estimates are derived in

cases wheve the term corresponding to our E(0), in those estimates, is either

positive or zero.

'
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3. Riemann Invariants and Finite-Timo Breakdown of the Llectric Induction Field.

In this section we offer a brief demnstration of the fact that under a

filightly different set of assumptions on Q(), C c RI , than those represented by

(i) - (W), it is po s iblc to apply the Riurunn Invariant argument of Lax L131

!o as to conclude that finite-time breakdown of ut + I /*'(u Xx must occur,

wher(,e u(x,t) is a solution of the initial-boundary value problem (1.24).

It I I ' I Lax c_,n:sdci'r; tilc non-tineatr initia.-boundary value problem on

L.O,LJ x LO,,')

Ytt (x,L) = K"(yx)Yxx(X,t),

(3.1) y(x,O) = y0 (x), yt(xO) = 0; 0 £ x - L

y(0,t) = y(Lt) = 0, t > 0

'Thlis problem may be extended to a pure-initial value problem on R x [0, ca) by

.:.:,endinrg v0 (.), y(',t) as odd functions to (-L,L) and then periodically, to

,,L of RI , with period 2L. By setting U = Yx, V = Yt the resulting extended

initial-value problem on R is then easily seen to be equivalent to a pure

initial -value problem for -t coupled quisilinear system on R1 x [0,-), i.e.,

2(1)- U 0

V ),t -K (U)0 V x

(.3.2)

U(x ) O(X)) the extension 1
IV(x'O) " 0 of YO to 1 1

.1w cigerivalucs ,ind eigenvectors associated with the system (3.2)

are, respectively,



(3.31) 1  ± K(U) and
p( )_ (

and thus the system is hyperbolic if and only if K (E) > 0, V c RI . Also, the

system rray be diagonalized in a familiar way so as to yield the system

V, + 1((U)U" = 0
(3. )

V- K(U)U" = 0

where = - K(U) an = + K(M) denote, respectively, differentiation

along the right and left-hand characteristics defined by the ordinary differential
dx

equaLtiofns = ±K(U). Using (3.4) one then shows in the standard way that the

Rieminri Invariants

R(U,V) =V + K(o dc

S(UV) =V - fUK(C) d

satisfy R' = S 0 = 0, i.e., that they are constant along the respective character-

istic curves. It is shown in [13] that with a suitable choice of H fC(R,A), the

function Z = exp(A)R satisfies Z'=-[(exp(-H)) z2 where 6= K

so thaLt Z, and hence R x, must breakdown (blow-up) in finite time if a C > 0

such that I(exp(-H)K > C; this last condition, on the other hand, tvxns out

to he a consequence of the assumption that 3 E > 0 such that

SaK/3aIj :t E > OV U E . Finite-time breakdown for R then implies finite-time

breakdown for at least one of the second-order derivatives YxxYtt of the

solution y(x,t) to the nonlinear initial-boundary value problem (3.1),as

R= UU + R V x

= K(U)U + Vx x

K(yx)yxx + YxtX C X
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Suppose that we now reconsider the initial-boundary value problem (1.24)

and recall that as a consequence of the fact that u(x,t) E 0, (x,t) e (- ,0] x [0,,)

x
if 11 (Yt),ly = *(u(x,t)), = '(u)u (x,t).

If we set

(3.6) vx,t) f=X 0 ut(y,t)dy, t z 0(3.6 V'(utu (= t)

then, clearly, v (x,t) = ut(x,t) and vt(x,t) (y,t)dy =1

Also, ,(x,O) = u(X), v(xO) = f " ut ( y , O)dy - Vo(y)dy, 0 S x 5 L. Therefore,

the initial-boundary value problem (1.24) for u(x,t) is easily seen to be

equivalent to the following initial-boundary value problem for the pair

(u(x,t), v(x,t)):

(.)ut - v x = 0 10 5 x :5 L
(3.7)

vt -1'0(u)ux = 0 t a 0

l u(x,O) = 1(x), v(x,O) f x vo(y)dy, 0 : x < L

u(O,t) = u(Lt) = 0, t a 0

The system (3.7) is clearly of the same form as that considered by Lax [13], i.e.,
(3.?), if we assume that v (x) - 0, 0 : x < L; also, the initial-boundary value

problem (3.7) my, in view of the above definition of v(x,t), be extended to a
~1

pure-initial value problem on R if we

i) extend u 0 (.) as an odd function to (-L,L) and then periodically with

period 2L

(ii) define, for -L 5 x : 0, u(x,t) = -u(-x,t), v(x,t) = v(-x,t), and then

extend u and v to all of R as periodic functions with period 2L.
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'lhe system (3.7) now assumes the following form

I<U + 0 -1 U) < x< 0) )(D 0{
Iv u-v ) 0ta 0

(3.8)

u(xO) /u 0 (x) < x<

v(XJ)"" 0

when u0 x), - - < x < -, is the extension of u 0(x) to RI . In comparing (3.8)

with (3.2) we clearly have the correspondence K() ( c R, and thus

(3.8) is a hyperbolic system if and only if

= '(;) + X(;) > 0, V ;R

which i. preci:;ely hypothesis (A3). The Riemnnn Invariants associated with the

iystem (3.8) are, clearly, given by the expressions

IL(L,V) = v + 1 f 4 75 dp

(3.9)

6 (u,v) = v fu 1*'j(P)dp

and they satisfy )L =.6' 0 along the respective characteristics given by

I'x = t- u where L and L + I -a

By the results in [13],which we have described above, finite-time breakdown

(blow-up) of

4 V + '(u)u x

(3.10)

ut + x/0'(u)ux

R I {I I II/"T
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will occur if, V e R 1,

I (2d __ ' ,(i) = ___

for some E > 0. Using the relationship between X(r) and *(4) this last
* 1I stsy osm

condition is equivalent to the requirement that A(*),V C£R 1 satisfy, for some

C > 0,

(X5) X"(i) + 2A,(i;)I ) +

11 also follows from the work of Lax (13] that

-4A ~ ___

max u0(x)

.: ft * R1

As ('(4) : i'( ) + X(Q) a-nd 0"(Q) = rX"(i) + 2 C'(l), e R we clearly

must require that X(4) also satisfy the conditions

(XG 0° <X (~ A
(G) 0 < ~(O) < -, 0 < I'(0) < ,

in which case t 2v (. I
max max u I(x)

We summarize the above discussion as

Theorem III. Let u(x,t) be a solution of (1.24) and assume that the constitutive|2 1
function X(i;) : ((0,,0)) is of class C2(R 1 ) and satisfies (M3), (XS) for

some > 0, and (6). Then, if v (x) 0, 0 S x s L, the space-time g rdient

( must break-down in finite-time t 2P X(O)/nax U1 (x) NO).
x t )/



Remarks. Different finite-time breakdown results for solutions of the initial-

lotuidary value problem (l.211) may be gleaned from the work of McCamy and Mizel

I. 14 .; the hypthcscs of [ 14.1 do nol, however, sem as well suited to the discussion

of (1.24) as do those of Lax 113]. Finite-thize breakdown results for initial-

boundary value problems associated with the coupled system of equations (1.12)

il R' x I (),,-) cannoL, of couivse, be obtained v:ia the use of Riemann Invariant

type arguments as the applicability of such arguments is essentially restricted to

one-dimensional situations; we hope to discuss the general problems of local and

),o,,Jl cxxi tence, ad g oh-il nonoxif;tence of rolut ions for the coupled three-

dim, nsiornal system (1.12) in future work. For recent work on the breakdown of

solutions to nonlinear wave equations in spatial dimension n > 1 we refer the

realer to John []5] and Payne and Sattinger [16]; a good source for work on the

pr,&1, nm of- pmving gliln] exi!;tence of solutions for nonlinear, wave equatiornr in

diemntion n > 1 is the rcent worb of Klainermn [17].

A kn~owi,,Igemnt. 'le ,uthor wishes to acknowledge several useful discussions

with P'tul. Marshall 3lenrod on the problem of global nonexistence of smooth

solutions to nonlinear initial-boundary value problems.
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