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CHAPTER 1

INTRODUCTION

Recently the need and capability to describe human
joint mobilitv has prompted studies into the kinematics of
joint motion. Particularlv since the 1960's when the advent
of large digital computers made complicated three dimen-
sional kinematic analvsis practical, there has been an
expansion of research aimed at creating the elements of a
model for describing human body motion.

The kinematics of body motion often involves compli-
cated three-dimensional disvlacement descriptions. One com-
monlv used method of three-dimensional kinematic analvsis is
the screw axis. By describing a displacement with a single
translation and a single rotation, screw axis analvsis aids
in understanding how parts of the bodv move during a partic-
ular displacement.

The Svstems Anthropometry Laboratory is a new facilitv
dedicated to the study of human bodv motion. Screw axis
analvsis is used as a part of these studies, but how accura-
tely can a body displacement be described bv the screw axis?
The displacement descriptions are derived from empirical
data such as vosition descriptions. Measurement errors,

which are present in empirical data, will propogate through

e e e




the kinematic analysis. Even if there are no measurement

;1 z

errors, the number of significant figures affects the i

calculations.

P

This thesis will examine the limitations and require-~ : ]

| ments for accuracy in the kinematic analvsis of human body l 1

motion. Two different but related questions will bhe

examined. First, how do measurement errors in position data 1
propogate through the computation of Displacement Matricies?

The second question is, given some error in the Displacement

Matrix, how is the screw axis affected? Along with measure-
ment errors, the number of significant figures in the
Displacement Matrix may limit the screw axis analvsis.

In summary, the limitations on Displacement Matricies
due to measurement errors, and the limitztions on screw axis
analvsis due to the Displacement Matrix will he considered

in the following pages.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 Literature Review

Many situations encountered in design require a
knowledge of the position and motion of the human body.
Examples include the design of vehicles for situations where
large dynamic forces are encountered, as in a crash. The
design of a chair requires knowledge of the interaction be-
tween the chair and the person sitting in it. A prosthesis,
such as an artificial hip, must accurately reoroduce the
function of the replaced part. Further apvlications are in
workspace definition. 1If a driver cannot reach the controls
of a car when wearing a shoulder harness, he is not likely
to use the shoulder harness.,

Traditionally, the human body is modelled using rigid
body mechanics. Bv dividing the bodv into a series of "mass
links", and connecting these links with a number of dif-
ferent types of joints, a kinematic model of the bodv is
created. In the late 1800's Braune and Fisher {3,4,5} laid
the foundation for this approach when thev investigated the
biomechanics of the body positions assumed by German

infantrymen. The technique of using mechanical analogues of

human anatomy, such as the "mass link", was continued into
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i the 20th century. Dempster {8,9 } achieved the most
extensive results in 1955, and much of his data is still
! in use, Much of Dempster's research in bodv mobility con-
| cerns locating a path of instantaneous joint centers of H
rotation, which is a two-dimensional description of body
motion.
Dempster and other investigators prior to the 1960°'s
used the two-dimensional kinematics of Reuleaux {19;.
Three-dimensional kinematics existed, indeed Chasles {7}
described the screw axis theorem in 1830, but analvtical
methods were cumbersome and impractical until the advent of
large digital computers in the 1960's. DPotthoff {18} was

among the first to apply the more sophisticated kinematic

analvsis made possible by computers. Potthoff tried to ana-
lyze Braune and Fisher's data using the screw axis theorenm, i
but found that their data was not accurate enough for screw

axis analysis.

Braune and Fisher's data were taken from surface i

targets on the skin of a person. Emanuel and Barter {10}

found that targets placed on human skin do not maintain a
stable position relative to the skeleton, or relative to
other targets on the skin, and thus violate the rigid bodvy
assumption of the "mass link" concept. Measurement tech- \
niques not relving on surface targets were developed and
used in the late 1960's and early 1970's. Thompson {28} and
Kinzel {13,15} used instrumented linkages to describe the

relative motion between bodv segments. Both Thompson and

R A T A TR R R P RGPPSR A e wl S 6 N e SR R 7



5
Kinzel used screw axis analysis, with Thompson reporting
that an averaging technique was necessary before accurate
results could be obtained. Kinzel opntimized his linkage
and reporteF -se of the screw axis with confidence, but he
too noted its sensitivitv to error.

The use of the "mass link" concept requires knowledge
of the characteristics of the joints which connect the "mass
links.® The least constrained joint model is the spatial
joint, which allows translation in all three coordinate
directions, and rotation around each of the three coordinate
axes. A spatial joint is, therefore, a full three-
dimensional six degree of freedom* joint, and the resulting
kinematic analvsis is complicated. Researchers often make
assumptions to reduce the degrees of freedom and thus
simplify the analvsis. Kinzel {13} has identified five
joint models commonly reported or implied in the literature,
These five are:

1) the one DOF hinge, or revolute joint

2) the three DOF planar joint

3) the three DOF spherical, or ball and socket joint

4) the two DOF spherical joint

5) the six DOF spatial joint
Kinzel discusses each of these in detail. Kinzel also sta-
tes "all anatomical joints permit six degrees of freedom to

some extent."” The implication is that use of a joint model

*degree of freedom, or DOF, is defined as the minimum
number of independent parameters required to completely
define the relative position or displacement of one member
relative to another ({13}.

Ny
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other than a spatial model is unduly restrictive.

While Thompson and Kinzel used instrumented linkages to
describe anatomical motion, others {6,12,17,21,26} were
investigating the use of stereo-radiographv. The most nearly
rigid part of the anatomy is bone, and most single bones are
essentially rigid bodies under the forces normally encountered
in the body. Because radiographv allows the determination of
a bone's position in vivo, and bones are essentially rigid
bodies, rigid body position data may be obtained. The utilitv
of stereo-radiography is its ability to accurately Aetermine
the three-dimensional coordinates of a target on a bone.

Other methods such as instrumented linkages must contend with

the problems due to skin not being a rigid body.

2.2 The Systems Anthropometry Laboratory

The Systems Anthropometry Laboratorv (SAL)
{20,21,22,23) of the Department of Biomechanics, College of
Osteopathic Medicine at Michigan State University is a new
facility for obtaining accurate and reveatabkle data relating
to the kinematics of human joint mobilitv. Through the use
of stereo-radiographv {21,22,23} the relative movement be-
tween bones, or the absolute vosition of a bone with respect
to an inertial axis svstem may be measured. Body position
and mobilitv are studied from the viewpoint that the human
body is a three dimensional system composed of links con=-
nected by joints with six DOF {23}.

As a bone is moved, the use of stereo-radiographv allows




FIGURE 2-1 -Systems Anthropometry Data Collection and Analysis System
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FIGURE 2-2 Basic Stereo-Radiographic Configuration for
Systems Anthropometry Laboratory
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the measurement of the position of the bone. Since large

doses of X~-ray radiation are required, cadavers are used for

the joint mobility studies. Thus there is no restriction,

based on radiation exposure limits, on the number of
radiographs which can be obtained. Embalming tends to make

cadavers unnaturally stiff, so only fresh, unembalmed cadavers

BT WL ST TR . ey L,

are used.

A joint mohility study begins by imbedding X ray

targets, tungsten~carbide balls .8mm in diameter, in a bone

near a skeletal landmark. Figure 2-1 shows the subsequent

steps involved in collecting the data. The cadaver is

placed between the X-ray tubes and the film holder, as illus-

trated in Figure 2-2,

Two X-ray tubes are mounted a fixed distance apart. At

[ R

each step in the movement of the cadaver's joint, a film is

loaded into the film holder. One of the X-ray tubes then

"fires," exposing the film. The film is changed and the other

X-ray tube "fires,"” exposing the second film from a different

angle. The two pieces of exposed film are called a stereo

pair, and contain all the information necessary to determine

the three-dimensional coordinates of the X-ray targets in the

cadaver. Large film sizes of 14" x 36" are used to allow the

imaging of an entire "mass link"™ with all anatomical targets,

such as the femur, on one piece of film.

Between the cadaver and the film holder is a grid of

tungsten wires which define an inertial axis svystem.

Devices on the film holder create images which can be used
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to determine the geometry of the film holder relative to the
X-ray tubes. The film holder is free to move between the
two exposures of a stereo pair. To aid in imaging the
bone, the film holder mav translate in a plane parallel to
the wire grid, and the film holder mavy rotate in the same
plane around an axis normal to the wire qrid.

Once the film is devleoped it is placed on an X-Y
digitizer, which is accurate to within +.013 cm. The output
from the digitizer, the coordinates of a digitized image,
are then processed through an algorithm which computes the
three~dimensional coordinates of the target. The coor-
dinates are reported in the inertial axis system defined by

the wire grid. 3

To summarize, radiovaque targets implanted on a bone
are tracked as the bone is moved through a series of finite i
steps representative of the joint's mobilitv. Radiographs f

of the targets on the bone are digitized for later use and

study.

. i

|
|
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CHAPTER 3

4 DESCRIPTION OF THREE-DIMENSIONAL MOTION

L 3.1 Introduction

The description of three-dimensional motion involves a

i Can

4 x 4 matrix called the Diplacement Matrix (DM). All infor-
4 mation necessary to describe a three-dimensional displace-
ment of a rigid bodv is contained in DM. Screw axis analy- !

sis is an attempt to put DM into a form more easily b

understood. ':
For a change of position of a rigid bodv there exists
a unique instantaneous screw axis (ISA) {7}. The ISA is
simply a line in space. All points on the rigid body mav be
thought of as translating parallel to the screw axis bv an ~f
equal amount s, and rotating around the screw axis bv an
angle¢ . The screw axis analysis describes displacement in
terms’ of two vector quantities and two scalars. The two
scalars are the translation s, and the rotation ¢ . The vec-
; tor quantities are a unit vector U in the direction of the
screw axis, and the position vector of a point A which fixes

the screw axis in space. All of these parameters are found

from DM, but not all of the parameters are independent.

There are eight parameters for screw axis analvsis (s, ¢ , {

three in U, and three in A), but since this is six DOF

11
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displacement, only six are independent.

3.2 Displacement Matrices

If A is a point on a rigid body, and A is known at two
different positions 1 and 2, then there exists a linear
transformation which maps A from 1 to 2. This linear
transformation, called the Displacement Matrix by Suh

and Radcliffe {27}, is defined as follows:

DM A1 = A2
where:

Al is the position vector of a point A at
rigid bodv position 1

A2 is the position vector of a point A at
rigid body position 2

Point A is expressed in homogeneous coordinates. The need
for homogeneous coordinates arises from the fact that in
order to fully describe an object in n dimensional space,
n+l coordinates are needed. The subject of homogeneous
coordinates is treated in computer gravhics, and a typical
text is Rogers and Adams {25}. 1Insight into the need for an
n+l svstem for n dimensional space can be attained from the
classic text FLATLAND {l}. The fourth coordinate for a
three-dimensional system is arbitrary and usually 1. Thus

A2 in homogeneous coordinates is

oo litantal o it
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A2x
A2y

A2,

1
DM may be partitioned as follows:

F‘ ] 211 212 a13 | 2147
a1 a2z a3 | a4

DM = (3.2)
a3l @32 a33| azq

4] 342 aa3 44

where for homogeneous coordinates

ag1=ajg2=a43=0.0 and agy4=1.0

The upper 3 x 3 represents a rotation matrix (RM),

while the last column has information about the translation.

If there is no translation of the rigid body,

ajg=azg=a3y=0.0

and

RM Al = A2 (3.3)

If no rotation occurs then RM = I, the identitv matrix.

Note that for equation (3.3) both Al and A2 are not in
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homogeneous coordinates, and are simply position vectors
with x, y, and z components. Unless otherwise stated in
this thesis, all position vectors and position matrices are

in homogeneous coordinates.

3.3 Computation of DM for Position Data

If the coordinates of a rigid body are known at two
different poisitons, DM can be computed. Assume there are
four points A, B, C, D in homogeneous coordinates at

two different positions 1 and 2. Then the following is true

{271}
; Aly Blg Cly D1y A2y B2y C2y D24
1
l
: Aly Bly Cly D1 A2, B2y C2y D2
DM § Y1- y ‘ v (3.4)
Al Bl, Cl, D1, A2, B2, C2, D2,
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
] | -4 = —

j or
i DM Pl = P2 (3.5)

Post multiply both sides bv Pl =1 to get:

DM = p2 p1 -1 (3.6)

where:

Pl is a 4 x 4 matrix describing the first
. position of the rigid body

]
«




P2 is a 4 x 4 matrix describing the sec-
ond position of the rigid body
Thus DM may be found directly from three-dimensional
empirical data in homogeneous coordinates. 1In this example
it has been assumed that four points are specified. 1In
fact, only three non-collinear points are needed. A fourth

point may be created at each position by point C 90°

about an axis from A to B. Alternatively, a

coordinate system based on the three non-collinear data
points may be set up. Four new points are then available,
one on each axis, and the origin. Once DM is calculated the

parameters which specify the screw axis can be determined.

3.4 Determining The Screw Axis Parameters from DM

In this section an algorithm for determining the
screw axis parameters is presented. This algorithm is based
on a method presented by Suh and Radcliffe {27}. Begin with
the Rotation Matrix, which is the upper 3 x 3 partition in

equation (3.2).

ug2Vé + Co UguyVo = uzS¢ uguzVé + uySe
RM = UguyVo + uyS¢ uylvé + Co UyuzVd - uyeSy (3.7)

uxuzVé = uySP uyu,Vo + uySé uy2ve + C
- ‘ —




Vd = l-cos
Cé = cos
S¢ = sin

and uy, uy, and u, are components of a unit
vector U which indicates the direction of

the screw axis.

The rotation angle ¢ is found in the following manner:

Trace = aj] + ajzy + aisj (3.8)

where ajj indicate entries in RM

Trace = ux2V o+ C 9+ uy?ve + Co + uz2ve + C¢  (3.9)

(ux? + uy? + uz2) (l-cos¢ ) + 3 cos¢ (3.10)

Since U is a unit vector

Combining (3.10) and (3.11)

Trace = 1 + 2 cosj (3.12)
- (3.13)
cosd = Trace 1
2
$ = cos~l
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Once ¢ is calculated uy, uy, and uy are determined,

Referring to equation (3.7).

a32 = UvquCb + qu¢ (3-15)
az3 = UyUzV¢ = uygS¢ (3.16)
a3z = asz = 2 ugSy (3.17)
_ 2327 35
Uy = =————— (3.18)
2 s

By similar reasoning

a. = a
13 31
Uy =
v 356 (3.19)
a. - a
21 12
u, = 3.20
z s ( )

Note that for this algorithm the values of ug, uy, and uz
are computed using the value of 9 calculated in equation

(3.14).

Now assume that two points, A and B, are on a rigid
bodv. ABI is a vector from point A to point B when the rigid
bodv is at position 1, and ABZ is the same vector at rigid
bodv poisition 2. Since A and B are on a rigid body the

magnitude of AB cannot change, but AB will follow the rigid

body rotation. From equation (3.3):

RM ABL = 2 (3.21)
or
RM (Bl - Al ) = B2 - A2 (3.22)

- P " Y T VT Ty~
oy s R R U R
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where:

Bl is point B when the rigid body is at
4 position 1

B2 is point B when the rigid bodv is at
position 2
Point has similar notation

A
E A, B, AB are not in homogeneous coordinates

Rearrange (3.22)
RM (Bl - AL ) + AZ = B2 (3.23)

Equation (3.23) is a 3 x 3 system of equations. Add the equa-

tion 1=1 to get:

B2y RM : A2 - RM Al Bly
B2 Bl
Y1- | Y (3.24)
BZZ - - _l -------- Blz
1 00 0l 1 1
The 4 x 4 matrix mapping Bl to B? is DM. The
ﬂ elements of the fourth column of DM can be defined from
equation (3.24).
ajgq = A2¢ - ajjAly - ajlAly - ajjAl, (3.25)

and so on.

AT is any arbitrary point on the same rigid body as B.

T R e e e e
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Assume A is on the screw axis so that it translates only, and

rotations do not change the position of A. Thus,

A2 = A2 + s U.

Therefore:
ajq = suy + Aly - allAlx - ajzAly - aj3Aly (3.26)

and so on for ajgg and asjy

In matrix form:

1 10
214 ux (1-aiy) -a12  -ajj S
agl=Ju -az (1-a99) =ajs Aly (3.27)
34 uz -aszl  -azy  (1-az3) Aly
1

Al,

The translation s, and Aly, Aly, and Al cannot be
solved for because there are three equations and four
unknowns. However, A is of interest onlv because it fixes
the screw axis in space. Thus any point on the screw axis
will suffice. The point where the screw axis intersects a
coordinate vplane of the inertial axis system is called a
piercing point. At a piercing point one of the coor-
dinates is 0.0 depending on which plane is intersected. For
example, the piercing point for the XY plane has a 7 coor-

dinate of 0.0. Setting one of the components of A equal to

0.0, reduces equation (3.27) to three equations and three

P

o
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unknowns, which yields A and s.

Suh and Radcliffe's method {27} has been presented so
far. Kinzel, et al. {13, 14} present a different algorithm.
As part of this research Kinzel's methods were compared to
Suh and Radcliffe's. 1In most cases both methods gave similar
answers, but at not time did Kinzel's method give more
accurate results, and on occasion Kinzel's method gave less
accurate results. Suh and Radcliffe's method involves less
computation, and is more straightforward.

One final note on the algorithm. 1In determining uyg,
Uy, and u, Suh and Radcliffe rely on the off diagonal ele-
ments of DM. These terms are verv small for a small
rotation, and thev mav be adversely effected bv round off
error. For this case one further method exists for finding

U. Recall equation (3.7).

ajl] = uxglVo+ Co (3.28)
aj] - Cé = ug? (1 - Co) (3.29)
et s (3.30)
ug? = T
a1 ~ <
ux =\ 1T - (3.31)

This method can be similarly applied for uy and uz.

Note that in equation (3.31) the sign of uy is not known,

The sign must be determined using Suh and Radcliffe's

J
E
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1
i
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method, but the magnitude of ux is found with equation
(3.31). In the screw axis program implemented U is found
using equations (3.18-3.20). If the magnitude of U is not
within some epsilon (+.01 in SAL) of 1, then equation (3.31)

is used.

3.5 Relationship to the Eigenvalue Problem

If an eigen analvsis is done on RM there will be one
real eigenvalue, and one pair of complex conjugate
eigenvalues. The imaginarv part of the complex eigenvalue is
the rotation angle ¢ in radians. The one real eigenvector will
be a vector in the direction of the screw axis. Because of
the different algorithms used to compute eigenvectors, the
eigenvector may not have a unit magnitude, but a simple scaling
of the eigenvector will give U. The real eigenvalue also
gives a method of determining if RM is orthogonal. 1If the
real eigenvalue does not equal 1, RM is not orthogonal. 1In
computer graphics, if the size of an object is to be enlarged
or shrunk, the eigenvalue represents the magnification
factor. Orthogonal transformations preserve lengths and
thus have eigenvalues (magnification factors) of 1. The
real eigenvalue of RM provides information on how much the
lengths between the data points changed between position 1

and position 2.

Al e
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CHAPTER 4

THREE DIMENSIONAL POSITION DESCRIPTION

4.1 Introduction

As discussed in Section 3.3, "Computation of DM from
Position Data", onlv three non-collinear points are needed
to describe the position of a rigid bodv in space. Two
algorithms for computing DM from position data were
presented, namelv, 1) a fourth point may be created by
rotating the third data point about an axis between the
first two data points, or 2) a coordinate system based on
the three data points is set up, and three new points at
unit distances from the created origin, one on each axis,
together with the origin make up the four points.

If the first method, rotating the third point, is
used, the three points must maintain their position relative
to one another, from one position of the rigid bodv to
another. Anv change in the true 1. 'ative position of the
points, or an apparent change due to measurement error,
violates the riqgid bodv assumption. Violatinag the rigid
body assumption results in a non-orthogonal RM. The effect
of measurement error is an apvarent shrinking or stretching
of the rigid body. DM reflects this change in size even

though the object has not changed. Numerical problems mav

22
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result. For example, in the determination of ¢ through
equation (3.14) it may be necessary to find the inverse co-
sine of a number greater than 1. Or the computed magnitude
of U may deviate from 1. Different values of s, the
translation parallel to the screw axis, may result from
using different piercing points.

Early in the work for this thesis the possibility was
investigated that scaling the magnitudes of the columns of
RM to 1.0 would avoid a non-orthogonal RM. This did not
work because scaling simply changes the magnitudes of the
entries in RM. The reason RM is not orthogonal is tt
the ratios within the rows and columns of RM are incc ect. '

The second method of computing DM from posit’ . data,

=

setting up a coordinate system bhased on the three ata
points, prevents measurement errors from propagating through i
the analysis. An algorithm for setting up a coordinate ‘
system is presented in the next section. The coordinate 4
svstem approach always gives an orthogonal RM since the

coordinate systems rather than the measured data are used to

compute DM. Each point used is always a unit distance away
from the origin. Further, since the coordinate system set
up has three mutually perpendicular axes, the system is
already orthogonal. This does not mean the method is error
free. An error in any of the data points used to create the

new coordinate system will change the location and orien-

tation of the new axis system.
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‘ 4.2 Algorithm for sSetting Up a Coordinate System Based on
S Three Data Points

Three points define a plane, and in the problem at
hand the three points define one of the coordinate planes.
Call the data points A, B, and C. Create vectors from A to
B (AB), and from A to C (AC). This is done by subtracting

components.

AB = vector from A to B
= (Bgx - Ag) i + (By - Ay) j + (Bz ~ Az) k (4.1)
where i, j, k are unit coordinate vectors

AC is similarly defined
The dot product of the two vectors AR and AC is defined by

AB + AC = AByACy + AByACy + AB,AC, = |ZBl [&| coso
(4.2)

Rearrange (4.2) to get:

aB - AC
cosf = S —— (4.3)
|&B| |AC|

The origin of the new coordinate system is a point on
AB which lies on a line pervendicular to AB and containing
C. The distance along AB from A to the new origin (Or) is

ﬁa cosC . Thus the three dimensional coordinates of the

origin are determined from:
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OB and OC are unit vectors created.
OB x OC comes out of the Page
A,B,C are Anatomical Data Points

Figure 4-{ Data Based Coordinate System
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— AB ——
= & +——— [AC| coso (4.4)
|AB|

ql

Vector AB is divided by its magnitude to form a unit
vector in the direction of AB. Once the origin's coor-
dinates (0r) are established with equation (4.4) unit vec-
tors in the direction from Or to B (OB), and from Or to C
(OC) are determined. These unit vectors are then added to
Or to determine the location of a point on each axis.
Finally, the vector cross product of the unit vectors OB and
OC determines the direction of the third axis. Four points
have been created, Or, and the end points of unit vectors
OB, OC, and OB x OC. These four new points mav now be used

to directly solve for DM.

4,3 Effect of Errors on Coordinate System Determination

The effect of an error in a data point used to define
a coordinate system has been analvzed bv Robbins 24 . The
analysis which follows uses a different technique but simi-

lar conclusions are reached. Recall equation (4.2).
[AB| |AC| cos@ = ABxACy + AByACy + ABZAC, (4.5)
The effect of an error, dx, in the x coordinate of point B

can be evaluated using the partial derivative with respect

to x {2} of equation (4.5).




T

ACydx
40 = ——— (4.7)
|AB| |AC| siné

If the angle 0 between AB and AC is small then sin® will be

small, and the error propogation will become large.

ACydx
lim d6 = lim ——— =
80 90 |AB| |AC| sin®@

@ (4.8)
In addition, the closer point B is to point A, the smaller

the magnitude of AE.

ACygdx
lim 46 = lim — = ® (4.9)
|AB|+0  |AB|+o |AB|I|AC| sin®

Equations (4.8) and (4.9) show that the angle between
AB and AC should be as close to 90° as possible, and points
B and C should be located as far away from point A as
possible. At present the computer program which creates the
coordinate system for use in the screw axis analysis, does
not check for either of these conditions, and this is an

area worthy of further investigation in SAL.
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CHAPTER 5

ERROR ANALYSIS

5.1 How EBrrors in Position Effect the DM

The propogation of measurement errors through the
matrix operations used to compute DM is a complicated
question to analyze. This section develops a method of
bounding this error propogation based on methods used in
rramerical analysis. It is not within the scope of this the-
sis to provide a full and complete analysis of matrix propo-
gation of measurement error. Rather, this thesis provides an

introduction to this subject. Recall equation (3.6):
pM = p2 pl -l (3.6)

The error in P1-l is difficult to evaluate because each ele-
ment of P1~1l is a function of several elements of Pl. In
addition, the elements of Pl which determine an element of
Pi~l are different for each element of P1-1l,

The field of numerical analysis has dealt with the
question of how error in a matrix effects the inverse.
Round off error in a computer has an effect similar to
measurement error in empirical data. To analyze the effect

of round off error, Forsythe and Moler {11} define a number

28
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called the condition number. Assume a svstem of linear

equations exists,
Ax=0DbL (5.1)

where:
A is a known n x n matrix

X is an unknown n vector, or an unknown matrix,
and is to be solved for

b is a known n vector, or a known matrix

By definition:

condition number = cond(A) = ||A|| |]A‘1[] (5.2)

where ||Al| is the euclidean norm of
the matrix A. For an n x n matrix A,

the euclidean norm is

"\/ . . ajj? (5.3)
1

i=1 j

nem s
[ ]

The condition number will never be less than 1, but it
may approach infinity. The greater cond(A), the greater
the error propagation in the resulting inverse and/or solu-
tion to a set of linear equations.

As an example of equations (5.1-5.3), assume
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1 4
A =
3 5
so
5 -4
.l ‘%
-3 1

From equation (5.2)

A = N2+ (D2 + (2 + (5)2 = 7.14
and
Al = Y2+ (5924 (=12 + (-4)2 + (12 = 1.02
Using equation (5.2)
cond(A) = (7.14) (1.02) = 7.28
Forsvthe and Moler {11} state that for a system of
equations such as equation (5.1).
3% 1, I %l (5.4)
- cond (A) —_—

where:

ey is a matrix containing the errors in the
solution x

ep is a matrix containing the errors in matrix b
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In similar fashion, an error in A, ep, produces an error in

x bounded by

e
%I < ona ay Al (5.5)

[ 1%+ e 1] |12 1]

Assume that ey is insignificant compared to x, then equation

(5.5) becomes

e
Lol < cona qay AL 5.6
FE® 0 AT

Assume the worst case in equation (5.4) and (5.6) so that
the inequality is remlaced by an equality.

Define eyxp as a matrix containing the error in the

solution due to errors in b, and define eyp as a matrix con-

taining the error in a solution due to errors in A. Combine

equations (5.4) and (5.6)

(5.7)
. = cond(a) lliéLL + cond(Aﬂl:illl
I [| Al Il bl

x| i
i
Define ey = eyxp + exp
He (1= 1p condmfI AL + 11%]] (5.8) I
* I

To continue the previous example assume A and b con-

sist of measurements with a measurement error of +.01.

Crym————
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Then,

.01 .01
ep = €p =
.01 .01

Use equation (5.2) to find

[1ea|] = {|ep|] = .01 N& = .02
Assume
1.5 4,25
b =
2.5 5.6
and

Equation (5.1) may be solved by inverting A and multiplying

the inverse times b.

X = aA-1l p

-5/7  4/7 1.5  4.25
x =
3/7 =1/7 2.5 5.6
e 4
.357  .164
“|.286 1.02
I —_

Py
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and using equation (5.3)

= []= *4(3-57)2 + (.286)2 + (.164)2 + (1.02)2 = 1.13

i b At e

Substitute into equation (5.8)

[ TRVNEP AR

I €x ]

(1.13) (7.28) (.02 . .02 i
7.14  7.61 |

0.45

In computing DM, A is P1, b is P2, and x is DM. Substitute ; i

into equation (5.8) to get

[lepm || = ||DM|| cond(a) ::eil::+:r§z:: (5.9)

5.2 How Errors in DM Effect the Screw Axis

In determining the screw axis parameters the oppor-
tunity for error to multiply is enhanced by the fact that U

is determined from ¢ , which may already be in error, and s

N e n M b

is determined from T. 1In this section it will be shown that

an error in the angle of rotation mav be very large, and vet
that rotation angle is needed to determine directly, or
indirectly, all other screw axis parameters. Recall from ;

Chapter 3 that the first step in finding the screw axis

parameters is to find ¢ using equation (3.14).

Trace -1 4
b = cos~1 - (5.10) :
2

"’”“"-""-‘“‘W«’*'ww’\-na—s'-mnr..ww:ﬁ-u-:;«”"x~» Yo Ee o
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The trace is the sum of the diagonal elements of RM, If
each element is in error by an equal amount epy, the trace

will be in error by the following

epr = epM '43 (5.11)

This is derived by setting the resulting error equal to the

square oot of the sum of the individual errors {2}. As an

example assume epy = +.0008, then ep, = +.00138.
Propogation of errors in the inverse cosine is

calculated by taking the derivative of the function {2}:

o = cos~l x (5.12)
dx
d¢ 2 ———e
l1-x (5.13)

Trace - 1

where: x

Figure 5-1 presents the error in the rotation angle
resulting from epr = .00138. The figure indicates that the
error term is significant for small angles. For example, if
the correct value of ¢ is 0.8° the induced error is 5.6°.
Further calculations using equation (5.13) show that if
rotation angles on the order of 1° are to be measured to
within +0.59, the required accuracy in the Trace is +,0003,
or epy must be less than .00018.

Note that epy for Figure 5~1 is .00138 indicating only

P RN S AR e Y
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’ three significant figures are available. The number bf T
significant figures which can be used in calculations has an 1
effect on the accuracy of ¢ . Table 5-1 illustrates the

effect of significant figures when ¢ is small. ;
Table 5~1 was computed in the following manner. If 1
k-

cos ¢ has two signficant figures that means the value is be-
tween .9949 and .985. The inverse cosine of .9949 is 5.73°. P
The inverse cosine of .985 is 9.94°9., The resolution is

9.949° -5,739, or 4.21°,

TABLE 5-1

Effect of Significant Fiqures on Small Angles r

Significant Lo
Figures Cos 4 Resolution }
2 .99 4.21 ]

3 .999 1.33

4 .9999 0.42

5 .90999 0.13

6 999999 0.04

7 9999999 0.01

Because at small angles, sine is less affected by an
error than cosine, the possibility of using the sine to find 9
was investigated. Two different methods exist for using the
sine, but neither is more accurate than using the cosine.
The first method investigated involves substituting 1 = sin2¢ by

for cosz¢, and the second method utilizes the off diagonal

oy

elements of RM. Changing the names of variables does not

avoid the bhasic cause of the error propogation. To

measure small rotation angles on the order of 1°© accurate
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measurements of rigid body positions are needed, and as many
significaqt figures as possible should be retained. To find?¢
to +.13° when the rotation angle is 1° requires that five
significant figures be available for computations.
Once ¢ is known the components of U, the unit vector
in the direction of the screw axis, are computed using

equations (3.18-3.20). Consider the computation of uy

333 ~ a3

x 2 sing (3.18)

To find the effect of an error, take the vartial derivatives

{2}, one with respect to¢ , and one with respect to

(azz = az3)

cos ¢ d(a,,~ a,.) d(ay,-a, )
auy = 332" %23’ | 327223 (5.14)

2 sin2¢ 2 sin¢

It may be argued that a3 and aj3 are functions of ¢
(see equation 3.2 for the proof of this) and should have
been differentiated with respect to ¢. An error in ¢ arises
from errors defined in equation (5.13) which is independent
of a3z and az3. The values of a3y and aj3 arise from tha
computation of DM, and an error in the calculated value of ¢
will not effect a3z and asj.

Equation (5.14) reveals that even if ¢ is known

exactly, i.e. d ¢= 0, error in DM may still propogate into
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the value of U. Error in (a3z - az3) is related to the

1
error in DM, and that error is multiplied bv ———77;—- . 1If
sin
¢ is small,——é%r—— is large, independent of d¢. In addi-
sin

tion to measurement error in DM, when ¢ is small RM
approaches an identity matrix causing off diagonal elements
such as a3y and aj3 to be effected by round off error.

An error in (a3 - az3) is defined bv finding the

square root of the sum of the individual errors squared {2}.

d(a3zp - az3) = \]t?322 + ey32 (5.15)

As an example of the error progation in finding uy,

assume
¢ = 1° (.0174 rad)
d¢ = 0.25° (.004 rad)
(azz = az3) = .001
e3z = e23 = .0008

By equation (5.15)

d(a3y - az3) = .0008 2 = .o00ll

To find the error in uy use equation (5.14)

(.999) (.004) (.0010) + .0011
duX =

2(.0174) 2 2(.0174)

= ,038
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The error in uy will be increased compared to the
error in DM when ¢ is small, even though ¢ may be known
exactly. As with the determination of ¢ , small angles
require accuracy and precision to determine U.

The final step in the screw axis algorithm is to solve
for the translation s, and a piercing point A1. As in

finding DM this is a matrix operation. Recall equation

(3.27)
—
alg ux (l-ajy) =-a;y; -ay3 s
azg =1 w -az) (l-azj)=-ajzj Alx (3.27)
aszy g -a3l] =-a32 (1l-asz3) Aly
- Al,

Assume Al, = 0.0, i.e., the piercing point lies in the XY

plane
— — — —_ — -
a4 ux (1~a11) a12 s
azxs l = Uy a1 (l-ajy) Aly (5.1R)

uz a3y as: Aly

.. § Ly

s i
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A and b are known to within a certain error. The error in

x is bounded by equation (5.8)

llegll = [l1xll consea|2ll  _11%I (5.8)
la || b ||

5.3 Conclusion

In this theoretical error analysis the difficult
question of error propogation through matrix operations has
been evaluated using methods from numerical analvsis.

Within a given accuracy in DM the screw axis analysis is
particularly sensitive to small rotation angles. This sen-
sitivity cannot be reduced by using sin¢ instead of cos¢.
The limit of accuracy in determining U is the size of ¢. To
find values of ¢ on the order of 19 to within + .5° requires
that the accuracv of DM be better than +.0002, and that all
four significant figures be retained. The next chapter
shows how the addition of error to "perfect data"™ actually

changes the screw axis parameters.

P e e o




CHAPTER 6

EVALUATION OF THE ACTUAL EFFECT OF ADDING ERRORS

6.1 Introduction and Descripntion of Procedure

The results of Chapter 5 indicate that screw axis

analysis is inaccurate for small rotation angles. To

gain insight into how an actual error in the position data

effects the entire screw axis algorithm, including coordinate

system determination and computation of DM, "perfect"

error free position measurements were computed.

Selected errors were then added to the measurements and

the effect on the screw axis was evaluated. The data

were created with a set of points in a geometrical

arrangement, and at distances (in cm) typical of

targets on a human femur. The "perfect" data is created

by specifying:

1)

2)
3)

4)
5)

The number of significant digits in the position
measurements '

A point in space which fixes the screw axis

Three components of a unit vector in the direction
of the screw axis

A rotation around the screw axis

A translation parallel to the screw axis

The data points created are then used in a computer

41
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program which preforms a screw axis analysis, prints out the
results, and then adds an error of +.10 cm to a single data
coordinate. The analvsis then starts over again, including
the creation of the coordinate system at each position.
This is followed by removing the error added in the previous
step, and then adding an error of +.10 cm to another data
coordinate. This process is repeated until all 18 coordin-
ates specifying two rigid body positions have been perturbed.
To simulate the effect of random error, it is also
possible to add different random errors to each coordinate
of the "perfect” position measurements. This is

accomplished by specifying:

1) The number of significant digits
2) A scale factor bounding the random error. If a

digitizer accurate to +.0l cm is to be
modeled, the scale factor would be .01

The results of this error adding routine are then passed to
the screw axis analysis program. 1In this manner the effect

of random errors in position data is evaluated.

6.2 Results

In view of the sensitivity of screw axis analysis to
small rotation angles¢ , a number of different rotation
angles were analvzed. The rotations were varied from 1° to
60°. 1In each case the screw axis was the same, both in

location and direction. The translation s was specified as

0.0 in order to see how s varied positively and negatively.
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Tables 6-1 through 6-5 display the results. In addition to
perturbing each coordinate by +.10 cm, three random error
cases were analvzed. The digitizer used in SAL is
accurate to +.013 cm, thus the first random error
case was +.0l1. The second and third random cases are of
+.05 cm and + .10 cm. Table 6-6 summarizes the five
Tables preceeding it, but the random error cases are not
included. The inputs and the maximum and minimum values

of the screw axis parameters are detailed in Table 6-6.

6.3 Discussion

Tables 6-1 and 6-2 show that small angles were com-
puted more accurately than Chanter 5 would have indicated.
For rotations as small as 1° the range of calculated values
for was +.410, -.11°9. It is interesting to note that
increasing the number of significant digits did not decrease
the affect of an error. It should be kept in mind however,
that the error added was .10 cm. With that large of an
error it is doubtful that 5 significant figures could be
claimed.

The real effect of adding significant figures is seen
in comparing Tables 6-1 and 6-2 for the case of no error
added (first line). 1In Table 6-1, which is the case of
¢=1° and 4 significant figures, there is considerahle error

J in ¢, and particularly U, even though there is no error in

the input data. 1Increasing the accuracy of DM to 5 signifi-

cant figures, as in Table 6-2, results in no error in the
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screw axis parameters when no error is added to the "perfect

e A el

data."

Table 6-6 shows that while ¢ could be determined with
some accuracy, the determination of the components of U was
%‘ not possible for a rotation angle of 1°, This is consistent
V with the findings of Chapter 5. The problem is that the

sine of a small angle is a small number, and dividing by

é that small number will magnify an error. ' L
b
As would be expected, Table 6-6 reveals that as the 1 ;

rotation angle ¢ increases so does the accuracv of the screw

axis parameters. Interestinglv enough, errors in the

translation, s, do not change as the rotation angle
increases. 1In Table -6 it is seen that s is determined to
within +.10 cm. i :
Examining Tables 6~1 through A-5 reveals that the
worst errors occurred when point 2 was perturbed. This is
not surprising since point 2 is the closest of the three
position data points to the origin of the created axis

system. Recall that Chapter 4 indicated that the further a

data point is from the origin of the axis system created

based on the data points, the less effect an error in the
data point has on the created axis svstem. The first data
point is 38.9 cm from the origin, the second data point is 1

0.72 cm from the origin, and the third is 8.47 cm. Since

eemtas

point 2 is so close to the origin, an error in one of its

coordinates will have a much greater effect on the coor-

dinate system, thus on DM and the resulting screw axis
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parameters.

The piercing point selected for this test was an
arbitrary point. The screw axis direction was selected so
that there would be equal components in all three
dimensions. If a different screw axis orientation or loca-
tion was selected the error effects might be different.

This chapter is mainly to illustrate the effects of
error, and give some idea of their magnitude. It should
not be used as an indication of the maximum errors for a par-

ticular value of ¢ .

6.4 Evaluating Cond (Pl)

The first point of interest is that cond(Pl) changes
very little as error is added. It also does not change as
the rotation angle is increased, for increasing the rotation
angle does not effect the initial position, only the second
position., Adding significant figures to the data does not
change cond(Pl). It would seem on this basis that cond(Pl)
is a function of the geometry of the targets. Using
Table 6-1 and equation (5.9) it is now possible to evaluate
the effects of an error in Pl on the error in DM. Since
there are four significant figures (2 bevond the decimal

point) assume

ep] = ep2 = .005 ver element




o ,_.‘_.’;'.;_'.-_—-1

From equation (5.10)
llep1 1] = llepa |l = .005 12 = .0173

From eqguation (5.9)

(=]

[

~

W

+

*

o

[

~
-

||eDM [l = || pM || cond(Pl) .

[e)]
.

[o0)
[
~
~
.

[/

| 2

5

= |lpm || 4080 x .00045 = 1.835

In this particular example |[(DM|| = 2
so
||epM|| = (1.835) (2) = 3.47

If it is assumed that epym is evenlv distributed over all 16

elements of DM then the error in DM per element is

3.67

\ie

Obviously, DM is known better than .9175. The assump-

= ,9175 or a 91.75% error (6.1)

tion that the error is evenly distributed among all of the
elements of DM may be unrealistic. It should also be kept
in mind that Forsvthe and Moler {11}, who developed the

equations which equation (5.9) is based on, were not trying
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to define the error propogation, only to put an upper bound
on the resulting error in a solution to a set of equations.
In view of the answer in equation (6.1), does equation (5.9)
have any real use in this error analvsis? This question

will be addressed in the final chapter.
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CHAPTER 7

EXAMPLE OF SCREW AXIS ANALYSIS USING ANTOMICAL DATA

7.1 Introduction

This Chapter presents the results of a screw axis ana-
lysis performed using data collected from a cadaver in SAL.
The joints analvzed are the hip, and the sacro-iliac joint.
The bone movements analyzed are the femur moving relative to
the left inominate for hip motion, and the sacrum moving
relative to the inominate for the sacro-iliac joint.

The cadaver used was a Caucasian male who was 80 years
old. The primary cause of death was a brain tumor and
diagnositic radiographs revealed no abnormalties in the
lumbar/pelvis/femur linkage system. During the studied
motions the cadaver was supported bv an overhead assemblvy
which held the subject upright in a standing position.

Table 7-1 summarizes the screw axis analvsis for the
hip, and Table 7-2 summarizes the analysis for the sacro-
iliac joint. 1In all cases the motion was from the same ini-
tial position of a supported erect posture with both feet
on the floor. The motions analvzed were abduction, abducto-
flexion (approximately equal amounts of abduction and
flexion), and flexion. The final position was the extreme

position of the indicated movement.
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The motions studied were to the extreme positions.
Since no intermediate positions were analvzed it is not
possible to see the motion of the piercing point and/or
screw axis. When joint mobilitv is studied, motions must be
broken up into a number of small displacements. In this

manner the motion of the screw axis may be studied.

7.2 Discussion

A summary of the screw axis analvysis for hip motion is
presented in Table 7-1. Note the large amount of transla-
tion which occurs. As much as 1.4 cm is seen in flexion.
The analysis of Chapter 6 would indicate that these values
are accurate to within +.10 cm. Since these motions were to
the extreme positions, the movements of the femur were
large, and the accuracy should be good. The classic model
of the hip is a ball and socket joint. TIf the hip is a true
ball and socket no translation should be observed. Note
also that the range of wvalues of cond(Pl) is 7800 to 2800.

This Chapter reveals that anatomical motions, such as
those of the sacro-iliac joint, occur in the range where
screw axis analvsis is most sensitive to error. Table 7-2
presents the screw axis analvsis for displacements between
the extreme positions, yet the rotation angle is between
10 and 29, and the translation is less than +.15 cm.
Chapters 5 and 6 showed that the requirements for accuracy

and the retention of significant digits, are most stringent

for motions of the magnitide in Table 7-2.
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Though these motions are small, thev are important.
Common engineering practice when modelling the human body,
as with an anthropometric dummv, is to treat the pelvis as a
rigid body and assume there is no motion in the sacro-iliac
joint. The anatomical screw axis analvsis presented in this

Chapter indicates that motion occurred in the pelvis at the

sacro-iliac joint.




CHAPTER 8

SUMMARY, REVIEW, AND RECOMMENDATIONS

8.1 Summary and Review

Present models of the human bodv generally make some
simplifying assumptioné to reduce the DOF present in a
joint. However, human joints have a full six DOF, and any
assumption which reduces these DOF artificially constrains
the joint model or analysis.

The Displacement Matrix fully describes a three-
dimensional displacement. DM maps a rigid body from one
position to another. Screw axis analysis is a technique of
making DM more easily understood. By svecifying a vector U
which is the screw axis, a translation, s, parallel to the
screw axis, and a rotation, ¢ ,around the screw axis, anv
three-dimensional six DOF Adisvlacement can be described.

Chapter 4 discussed the data used to compute DM. 1In
SAL the data consist of position coordinates of three points
on a bone at two different positions Pl and P2. A
coordinate system is set up based on the data points,
and four new points on this coordinate system are used to
compute DM. A coordinate system approach is used in order
to insure an orthogonal RM. The coordinate system approach

is effected by error, leading to the coordinate axes being

59
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in the wrong location, or having the wrong orientation.
The errors in the coordinate svstem are minimized bv
locating the data points used as equidistant from each other
as possible, and by making the angle formed at the intersec-
tion of the relative position vectors as large as possible.

Given that there will be some error in the coordinate
system, how does this error affect DM? And how does an
error in DM effect the screw axis parameters? These
questions were dealt with in Chapter 5. The problem of
error propogation through matrix operations was discussed
first. This is a complicated question, and a detailed
analysis is outside the scope of this thesis. However,
Chapter 5 developed a method for bounding the error propoga-
tion based on the condition number of a matrix.

An error in DM effects the screw axis analvsis most
when the rotation angle is small. While the determination
of the rotation angle is sensitive to errors in DM, it is
the determination of the components of U, the unit vector in
the direction of the screw axis, which is most sensitive to
error.

Chapter 6 illustrates the theoretical error analysis
of Chapter 5. By creating and then perturbing "perfect”
position measurements it was possible to see how the screw
axis parameters were effected. As expected the error for
small rotation angles was large, and the error for large

rotation angles was small. 1In general, rotation angles were

determined with greater accuracv than Chapter 5 had
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indicated, but the determination of U was not possible at
small angles. For small rotation angles, on the order of
19, a minimum of four significant figures are needed to find
¢ to within an uncertaintv of +0.41°

In Chapter 6 an example indicating how the condition
number could be related to expected errors in DM resulted in
an exceedingly high error bound. The use of condition num-
bers is discussed in the next section.

This thesis describes a method cf analyvzing anatomical
joint motion, and evaluates the limits of this method.
As an illustration of what these anatomical studies might
produce for screw axis parameters, Chaoter 7 contains
some analysis of joint mobilitv for a cadaver studied
in SAL. The need for being able to accurately model small
rotations was illustrated bv the small rotations which ocucr

in the sacro-iliac joint.

8.2 1Is the Condition Number of a Matrix of Any Use?

From Chapter 6 it appeared that equation (5.9) produ-
ces an error bound which is too high to be useful. DM is
known better than the +92% computed using equation (5.9).
Does this indicate the method is of no use? The interplay
between measurement error and condition numbers is an area
worthy of further study. This section presents some ideas
which might serve as an introduction to such study, but for
now equation (5.9) is not useful.

This thesis has used Euclidean norms in computing the

condition number. This is in line with what Forsythe and
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Moler {11} use, however, other norms can be used and are
discussed by Forsvthe and Moler. They also discuss methods
of reducing the condition number, though they unfortunatelv
conclude, "...it is quite unclear to us how to program a
reasonable scaling of a general matrix." Scaling is a
method of reducing the condition number. Two methods of
scaling are discussed in Forsvthe and Moler, the first
involving pre-and post- multiplving bv two different scaling
matricies. The second method attempts to equilibrate the
matrix in question.

The point of both scaling and equilibrating is to make
the norms of the columns and rows of a matrix as close in
value as possible. The closer the norms, the smaller the
condition number, and the more accurately a solution is
determined. The norms of the rows of one of the position

matricies from Chapter 6 are given below.

Row 1 norm = 15.82
Row 2 norm = 3.45
Row 3 norm = 75.23
Row 4 norm = 2.0

Because the norm of the third row is so much larger
than the other rows the condition number is large. The
third row is composed of the 2z coordinates of the four

points used to compute DM (refer to equation 3.4). The

coordinates of the points are related to the location of the

NN i e nh v e e Y S8 em YRR - - befympe e amm A e P . . EIFSETLT 2 att
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origin of the coordinate system set up based on the anatomi-

cal data. While the x and y coordinates, in the inertial

E axis system, of the four points are close to the origin of
the inertial system, the 2z coordinate is much further awav.

By relocating the origin of the anatomical axis svstem so

1 that the z coordinate is closer in value to the x and y

coordinate values, the condition number is reduced. This

indicates that the condition number is a function of the

e ——

geometry of the data used (the anatomical axis system) to

solve for DM.

[PPSR

8.3 Recommendations for Future Work

Screw axis analvsis is sensitive to errors at small

JUDNY RPN SRR

rotation angles. It would seem then that whenever possible
large rotation angles should be used. This is not a prac-
tical restriction for two reasons. First of all, as was
seen in Chapter 7 much of the desired data are at small ;
rotation angels.

The second reason might be termed the paradox of screw
axis analysis. While small rotations and translations are i

prone to error, large rotations and translations yield a less

than accurate description of the motion. If an air traveler
catches a plane in New York, and is later seen in Los
Angeles, the motion description would be from New York to
Los Angeles. But what if the traveler went to Florida
first, then London, then Chicago, and finally Los Angeles.

His motion would be much different in this second case, but

i{‘ L EEPERNIET IS £ FXPT PR T W‘ .
3 e e T LD N — . B P T P AT R ) Sy e LR WLy PR MR- .
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if all that was available was a beginning and ending point,
the path in hetween is not well known. It seems that the
only wav to use screw axis analysis is to acquire accurate
data for small motions and retain five significant figures.
In Chapter 5 it was observed that even with no error
in the data, when onlv four significant figures are

available, a rotation angle of 1°© can onlv be found to

within +0.40, Chapter 6 showed that for this same case the

components of U were adversely affected when onlv four
significant figures were available, even when there was no
error in the data. Increasing to five significant figures
removed the error in the determination of the screw axis
parameters. Chapter 7 pointed out that rotation angles on
the order of 1° are to be expected in anatomical studies.

The algorithm for creating an axis system based on
anatomical data does so without regard for the most accurate
resulting coordinate svstem. It would bhe useful to create
an algorithm which would compromise between placing the
three data points as far from each other as possible, and
making the included angle between the relative position vec-
tors as close to 90° as possible. An approoriatelv selected
coordinate svstem might reduce the effect of measurement
error present in the position data.

There has been considerable discussion in this thesis
of evaluating the error propogation through matrix
overations. The ideas presented are only a beginning. The

relationznip between the condition number and the coordinate
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system may lead to a method of reducing the error propogation
through the matrix operations used to find DM. An optimiza-
tion study where the function to be minimized is the con-
dition number, might provide the optimum anatomical
coordinate system for reducing error propogation. The inde-
pendent variables would be the coordinates of the origin of
the anatomical axis system, and two scaling matricies.

Another mathmatical technique for reducing error pro-
pogation involves the use of surfaces. There should be much
interest in screw axis surfaces. By passing a surface
through all of the screw axes produced by a series of
displacements the beginning of a joint model is created.

Two surfaces are needed, one for the fixed object (the ino-
minate in the analysis of Chapter 7) moving relative to the
moving object (the femur in the analysis of Chapter 7). The
second surface results from the motion of the moving object
relative to the fixed object. The two surfaces produced
would appear to roll in the direction normal to the axis
common to the two surfaces, and to slide along the common
axis {13,27}. 1If the geometrv and location of the two sur-
faces is known, along with a definition of the amount of
sliding, the spatial motion is uniquelv defined {13,27 .

The second and initiallv more useful feature of screw
axis surfaces is that a surface smoothes data. An outlier
from a screw axis surface could be in error, thouah actual
slippage in the joint mav also appear as an outlier. It

would be interesting to select a screw axis from a smoothed

reec s s T
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screw axis surface, and then recontruct DM.

In a similar manner it would be useful to construct a
surface based on all of the anatomical position data for one
target. This surface would then represent a surface in
space that is the locus of motion of a target on a bone.

The smoothing effect of the surface should be an aid in
dealing with measurement error, and the possibility of
selecting positions not measured exists. The shape of the
surface would also be of interest, If the hip is a ball and
socket joint, all points of the femur should move on a
svhere around the hip. It would be interesting to locate
the center of such a sphere. If, as is more likely, the hip
is not a perfect ball and socket, the shape of the surface

would contain interesting and useful information.

If three points are the minimum needed to specify
rigid body position could not many points be used? The %

points would be put into a position matrix and an

overdetermined set of equations would result, allowing the
use of a least squares analysis. Lennox and Cuzzi {16}
report that this method does not improve the accuracy of
screw axis analysis, but this question is still worth exa-
mining because of possible different measurement techniques
used in SAL. Lennox and Cuzzi do report on a method of
improving position data for use in screw axis analvsis.
Their method relies on photographic centers and might be

worthwhile exploring for use in SAL. The author feels that

an improved coordinate system algorithm would incorporate
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some of Lennox and Cuzzi's ideas.

8.4 Conclusions

1) In order to contain measurement error to position data

an anatomical axis system approach for computing DM

should be used.

The origin of an anatomical axis system should be

equidistant from all of the data points used to compute

the anatomical axis system.

The bound on the error propogation due to the matrix

operations used to find DM as developed in equation

(5.9) is too high to be useful, Study of the propoga-

tion of measurement errors through matrix overations is

an area worthv of future investigation.

five signi-

If small rotation angles are to be analvzed,

ficant figures are needed in the data.

As the rotation angle decreases the error propogation

increases. This is not a linear function. If rotation

angles on the order of 1© are to be studied, the ele-

ments of DM must be accurate to within +.0002 for an

error in b of less than +0.59.




6)

7)

68
Screw axis analysis requires accurate data. Either
sbphisticated measurement techniques must bhe used, or
mathmatical technigues must be developed to reduce the

uncertainty in DM to less than +.0002.

Of the two methods suggested in Conclusion 6, it is
recommended that mathmatical techniques be used in the
near future. Specifically, improved selection of an
anatomical axis svstem for use in computing DM, and the

use of surfaces are the most fruitful areas to explore.
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