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I. BALLISTICS OF TRANSVERSELY IMPACTED FIBERS*

Introduction

Although impact of single fibers or fiber assem-
blies is an important subject in its own right, being
relevant to climbing ropes, aircraft carrier arrest
cables, high-spzed weaving, etc., the principal develop-
ments in this area have been made by workers whose

major interests have been in the impact resistance of

woven or ncn-woven textile structures. The most notable

of these structures have been the iightweight armor vests
used by police and military personnel, but among other
important applications can be listed aircraft engine
containment shrouds, flak blankets, and vehicle seat
belts. Ballistic nylon has been used successfully for
these vests since the Second World War, although

current developments have emphasized the du Pont aramid
fiber marketed as Kevlar**, Although, as will be shown
below, excellent single-fiber bazllistic response does
not necessarily guarantee a superior vest, any under-

. standing of textile structure ballistics must be pre-

* From Reference 1 (see Page 109). Used by permission

of Textile Research Journal

**Trademark of E.I. du Pont de Nemours & Co., Inc.




ceeded by an understanding of single-fiber response.
'gé A strong motive for discussing fibers is that
iﬂé single fiber tests are often used as screening tests
for ballistic protection materials. As an example,
one often encounters tabulations of "transverse

critical velocity", that ballistic velccity at which

W amh e s e AL e

a transversely impacted yarn experiences nearly
instantaneous failure. Typical data is shown below.
Transverse critical velocities of textile

. [23*
fibers.
Vcr' m/sec
Nylon 616
Polyester 472
Nomex 442

Fiberglass 274

Kevlar 29 570

Such tests are often indicative of relative
ballistic resistance, but perfect correlations cannot
be guaranteed. In the akove tabulation Kevlar 29 proves
to be the best ballistic material when put into a panel,

in spite of its having a lower transverse critical

* Numbers in brackets refer to references listed on

pages 109-110.
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Longitudinal Wave Propagation

Wave propagation phenomena in fibers and thin

pe:

R

rods are considerably less complicated than in a
- general medium, since the possibility of unrestrained
transverse contraction in fibers eliminates (to a

good approximation) the simultaneous propagation

Bvssisehetoieiiay

=
3

e

of independent dilatational and distortional waves

e

R

:
sy

v
A

which are present in general. The equation of motion

for fibkers or rods is simply [3]:

o

. St E " %
| e W

3

GO

where u is the longitudinal particle displacement, P

g

is the material density, E is the longitudinal Young's

modulus, and x and t are the space and time coordinates.

st

This is the well-known wave equation, whose solution

.
i

Soidasihs

e

10

L

represents a disturbance traveling at a velocity

C= VE-/€ (2)

- -,ii‘ 3
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Conventional textile units employing stiffness per unit

linear density are very convenient in wave propagition

analyses, since the factor P is included implicitly

T b CEM ISR

in the modulus. For modulus expressed in grams per

denier and wavespeed in meters per second, Equation 3

becomes:

.
u
&

3

il

T

>

&

C = VkE (3)

b

G

M)

3

where k = 88,260 is the necessary units-conversion

-

A

factcr. In these equations, as well as those to
follew, the modulus is taken to be the "dynamic"
stiffness relevant to the high strain rates corres-

ponding to wave propagation tests. The development of

)

. N
Ao RN

such dynamic constitutive relations from experimental ‘

fiber-impact data has been described elsewhere [4,5].

Cousider a fiber fixed at one end whose free end

i

A

3

is suddenly subjected to a constant outward velocity :
V in the longitudinal (fiber) direction. After a time
it ,the strain wave,will have propagated into the fiber

a distance ct, while the free end will have displaced

outward an amount Vt. The strain resulting from the

impact is then the displacement Vt divided by the
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affected length ct:

Vtu_\_/_ %

€= i (4)
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The corresponding stress is

o =Ee= VVE/kL (5)

The above relations have assumed a linear

1

I

AT

elastic material whose stiffness E is independent of

oty I
hAR Tk

the strain. 1In this case the wavefront will propagate

%

as a sharp discontinuity (a shock wave) at which the

strain rises instantaneously from zero to the value

3
gk
&
=
:

o

o

1

given by Equation 4. Many ballistic fibers are

o

nonlinear, however, and the effect of material non-

Ir

i

linearity leads to some complication of the above

)

description. A nonlinear fiber can be characterized

as having a strain-dependent modulus E = E{(e& ), so

i

g
o5y

~.\’;~7’$|

that Equation 3 becoumes:

c= c(e) = ’\/lcE,Ce\ (6)
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The shape of the wavefront is now dependent on the

o

2y

shape of the dynamic stress-strain curve. If the curve

L

«
)

w,

is concave toward the strain axis, so that the modulus

decreases monotonically with strain, each suceeding

PRy Y

increment of strain in the propagating wave travels

o ot

Ry,

more slowly than the previous increment. The wave is

LA s

then dispersive, and broadens as it travels. If on

the other hand portions of the stress-strain curve

Wby e .
ILATLLI,
P PR e T W IO TR S

are away from the strain axis, then portions of the

o

strain wave will overtake more slowly propagating

increments of lesser strain, and the wave will contain

shock components. In general, a wave may contain both

dispersive and shock components.

In the region behind the wave, material flows in

the direction of the imposed velocity with a "particle

Ay T o A P RS A L S0t YL 5 D X3

velocity" w. This motion is fed by the strain

. Pﬁ*\af‘

¥,

A A

developed in the propagating wave, and the particle

velocity is related to the wave to the wave speed by:

TR
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g
&

i

éﬁ)‘ﬁm 'y g 3
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o= X cceoa)e=& kE () de (7)
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where € is the ultimate value of strain generated

e

by the impact. Since the particle velocity must match :

the imposed velocity, we have %

3

¥

] Se E

F

V= S VLEE ey de (8) 3

-

:

4 The strain e:o developed by lonqitudiﬁal impact is f%

AR

(etd]

found by solving Equation 8, perhaps nurerically.
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Transverse Impact of Fibers

As the transverse impact of fibers seems intuitive-
ly germane to impact of woven textile panels, the

technical community interested in lightweight ballistic

Ui oo
st i e

protection has devoted intensive effort to this problem

L
&

since World War II. Following the pioneering works of
Taylor [6] and von Karman [7] during the war, valuable
contributions have been made by Peterson et al. [8],

Shultz et al. [9], Wilde et al. [5], among others, but

by far the most prolific of these efforts has been

N " 4 s 1, o, L
Siad st b D oh st bR A ot

that of Jack C. Smith and his colleages at the National

Bureau of Standards. Reference [10] provides a review

A

of most of this work, which contains a wealth of
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experimental and theoretical contributions ranging over

a period of approximately ten years in the fifties

and sixties.

WAVE SPEEDS: PARTICLE VELOCITIES:
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Figure 1. Wave Propagation in a transversely impacted fiber.
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The rate-independent theory of transverse fiber

impact as developed by Smith can be stated with refer-

P!

ence to Figure 1. This illustrates a fiber, originally

vy

)

straight in the horizontal direction, which has been
impacted by a projectile traveling vertically upward.

Upon impact, longitudinal waves of the type described

Cubsnbaliatue

in the previous section are propagated outward from the f%
point of impact. Behind these waves material flows N =

inward toward the point of impact at a constant

velocity w, strain €4 and stress c‘o. In
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addition to the longitudinal waves, transverse "kink"

waves are also propagated outward from the impact point.

bt

il

&

At the transverse wavefront the inward material flow

ceases abruptly and is replaced by a transverse

“;&m’g’? .

particle velocity equal in magnitude and direction to

2 L ﬁ““f

that of the projectile. The strain and tension are un-

2
/,.;»;\

changed across the transverse wavefront, but hoth the

longitudinal and transverse particle velocities ex-

Sy A

perience discontinuities ‘here; in this sense the trans-

¥ verse wave is a geometrical shock. The apprently un-

balanced tensions on either side of the transverse

wavefront are compensated by the change in particle i

momentum as the wave propagates. Behind the trans-

verse wavefront all particle velodcitiés are equal in

magnitude and direction to the projectile velocity,

and the fiber configuration is a straight line at a

constant inclination © from the longitudinal direction.

The inward particle velocity is found, as in the

longitudinal case, as

€, €,
o= J cCceddg = ]/kE.ce\ ae (9

(]

P T

The final strain € is unknown as yet, but E{ € )

P

is known as the slope of the dynamic stress-strain
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curve. The outward velocity U of the transverse kink %
wave, measured relative to a Lagrangian frame attached ‘%
2
to and extending with the fiber, is: %
] g
(.um/&,k/(ﬂ- €D (10) °
To a fixed observer the transverse wave appears to
propagate in a "laboratory" frame of reference at
U= (1+ed d -2 (11)
Finally, the above variables are related to the impact
velocity V through the relation:
|
3
&
1 ‘&f\
[ E
Zz ,.C =z : =
V= \/(1-”-:,,\ -4 (12) .
.
. . “oi
Equations 9-12 constitute four relations between, V, =
w, € o Syr U, and U. The material dynamic stress-~ z;:
strain curve relates 6‘0 and € o1 SO that once one %
&
of the parameters (say V) is specgified, the other four . %
;f independent parameters (w, & 0’ U, U) can be found. =
For nonlinear stress~strain curves, numerical solu-

tions will likely be more convenient.
Certain limitations to the Smith analysis

described above must be mentioned. First, it is

18
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rate-independent. Most polymeric fibers exhibit
strong rate dependencies, and these effects are beyond
the capacity of this analysis to describe. Perhaps

a more severe limitation is that the Smith analysis is

not applicable to late-time effects in the wave propa-

gation process. In real situations the outgoing
longitudinal wave soon collides with an obstacle: a
clamp, in the case of single-fiber tests, or a fiber
crossover, in the case of impact in woven textile
panels. Upon such a collision a reflected wave is
propagated from the collision point in the direction
opposite that of the original wave. This reflected
wave in turn soon collides with the outward-traveling
transverse wave, and this collision generates another
two waves which travel away from the collision point.
These waves in turn eventually collide with the clamps,
or the projectile, or other waves. The result of
‘hese wave reflections and interactions is a situation
which becomes intractable by closed-form mathematical
methods, and this late-time intractability is a
principal reason for the development of numerical

computer solutions.

Use of the Rate-Independent Theory in Preliminary Design

In spite of the limitations of the Smith theory

outlined above, the rate-independent analysis provides

19
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a highly useful means of assessing approximate relations

between fiber material properties and ballistic

response. These relations are of considerable value
in performing preliminary design steps in development
of textile ballistic-protection devices.

Assuming the material to be linear in stress-

strain response (E = constant), the Smith analysis can

be cast in the simple form:

: [
V = -\/e.e‘LE “z \/eb(u.g;, - e,b] (13)

which provides a relation for the strain €, developed
by impact at a velocity V in terms of the fiber modulus.
; The relation can be solved numerically if one wishes to
compute €, for a given V, or it can be used directly
to plot € , versus V for the purpose of developing
design curves (see Fig. 2). Once 6‘0 is known, ther

S g U, ﬁ, and w can be found from either the stress-

strain relation or Equations 9 - 12. Figqure 3 shows

such a plot of tension, Cy versus Vywith modulus as a

parameter.
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Figure 2. Predicted impact strain for linear rate-independent fibers.
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cince the above curves rise monotonically with

gyt 1 240 M

velocity, one can observe the influence of modulus more

easily by plotting ballistic response at a constant

Cax raq

velocity, and Figure 4 shows such a plot at V = 400

m/sec. Here are plotted the strain and tension from

PO T R o e R AT L P

the above methods, along with the strain energy

developed behind the wave and

1
(‘_7 o, &,

the rate of energy absorption ¥c of the fiber.
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(The term, «'c,is shown in mixed units, but it could

be converted to joules/sec once the density and denier

55

3 2 & Y
iREsny @‘ﬁ%‘v
EAks

Lt

of the fiber are specified.) The rate of energy

s
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ek
3

absorption at the wavefront must equal the rate at
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which the fiber extracts kinetic energy from the

projectile, and it is a reasonable measure of ballistic
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efficiency. Note that this energy absorption rate
rises monotonically with fiber modulus, although with

less dramatic improvements after approximately 500 g/den.
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Of course, one cannot improve ballistic efficiency
indefinitely by continuing to seek stiffer fibers. 1In
general, increases in stiffeness are accompanied by de-
creases in breaking s%rain, and a point may well be

reached where this reduced ductility overshadows the

e B Y KA TR

23
&

e

beneficial reduction in impact-generated strain shown in

Figure 2. This effect may be quantified by means of 2

b ger 8 G

Equation 13, where one may calculate the critical trans-
verse velocity by determining the velocity which just

generates the dynamic breaking strain on impact. If one

23
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knows the variation of breaking strain with stiffness,
these calculations may be used to select approximately
an optimum fiber stiffness for ballistic efficiency.
This process is carried through for illustrative pur-

poses in Figure 5.
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Figure 5. Prediction of optimum stiffness for nylon fibers.

7

The dashed line in this Figure is the relation %
between dynamic stiffness and breaking strain as
determined from fiber-impact tests on a series of

nylon yarns that had been subjected to various




drawing treatments by the manufacturer [5]. The solid

line is the the calculated transverse critical

velocity, considering the effect of stiffness on both
3 impact-induced strain and on breaking strain. An ;?
ﬁfi optimum is observed near 60 g/den, which is in fair ?g
,j l agreement with experimental observation. All this is ‘é
i% ) a quantification of the often-quoted guideline in armor §
fg % . design that one seeks the highest possible modulus in ?g
%ﬁ } order to spread the impact over a wide area via in- ég
ff % creased wavespeed, but that the process must not be 'g
A : carried so far as to induce excessive brittleness. In %

hard armor this reasoning has led to the use of é
ceramic faceplates to give high wavespeed, backed by A%

a fiberglass laminate to provide the needed toughness.

Selection of a Failure Criterion

The use of simple ultimate breaking strain as a

failure criterion in the above example is overly

Y

—y,
8 &r or o Thy 3l

simplistic, since it does not incorporate the strong
temperature and rate dependencies that are known to

exist in polymeric material. A versatile fracture model

[PPIPS—

which does incorporate these dependencies and is still

computationally convenient is that due to Zhurkov {117, .

K
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*

which states that the lifetime % of a solid subjected

to a uniaxial stress ¢ is of the form
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time, U* is an apparent activation energy for the

2t

e

. fracture process, ¥* is a factor with urits of

volume, R is the gas constant (8.314 J/mole °K), and

T is the absolute temperature. For constant tempera-

[&
-

ﬁé ture, Equation 14 reduces to %
. e
= T= o amwp (- FO‘\ (15) k.

2

where

6 Ay
%a i

&=, exp (¥ /2T (16)
p=¥"/e2T

i
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When stress and temperature vary during the loading
process, one can assume linear superposition and write

the Zhurkov criterion in the form:

T
/ at /%‘tb eq&(d*-&‘*c-ﬁ/lZTR =1 an

In a constant-stress-rate experiment at constant

temperature, for instance,




o Y2 Ct
S
fcl-t/{ocwr(- BCE) | =1

[wf (%CEB]/Cx[scu =1
T = \otCH-oLEC\ /EC

To illustrate the order of rate dependency provided by
Zhurkov's model, Figure 6 shows a plot of Equation 18
for the case of drawn nylon fibers. In this figure

O = 2.20 x 10'® sec, ana > = 5.13 (g/den)
these are the values obtained by Zhurkov'[ll] by

fitting Equation 15 to creep-rupture data. Such

a plot can be used to depict the time-to-break for a
fiber, and the tenacity-at-break, as a function of

the loading rate.
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Figure 6. Variation of breaking tenacity with loading rate — Khurkov
model.

As a more direct example of the utilization of

N T RN ST A e

Zhurkov's model in fiber ballistics, the stress pre-

.dicted by the Smith theory for a given impact velocity

and fiber modulus can be used in Equation 14 to pre-

dict the time after impact at which the fiber will

rupture. This analysis predicts that there is no :
unique critical transverse velocity, but rather a

range of velocities over which the fiber will fail in

R Oy T s e R LA S

experiﬁentally cbservable times. Figure 7 shows the

predicted results for drawn nylon fibers, using an

assumed dynamic modulus of 80 g/den with the same

values of & and F used in Figure 6. This figur:=
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shows that at velocities above approximately 775 m/sec,
rupture occurs in less than fifty microseconds and
would be counted in most high-~speed photographic
records as having occurred instantaneously upon impact.
The times-to-break become exponentially longer at
lower velocities, and failure will occur at the clamp
due to wave reflection at times dependent on the

wavespeed and fiber length. This variation in what
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may be termed critical velocity for impact may make up
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., a large part of the scatter observed experimentally in
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determining critical transverse velocities.
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Figure 7. Variation in transverse critical velocity due to fracture rate
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An important advantage to Zhurkov's model is that

it is derivable in terms of basic reaction-rate

o rwed AR ara

fracture analysis. As such, it provides a means

whereby the materials scientist can predict materials

Semt A S LE s L

and processing modifications so as to manipulate the

fracture parameters and improve bailistic performance.
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o

A recent review [12] describes the basic implications

FORIYY

b

of reaction rate models such as Zhurkov's, as well as

their limitations znd experimental corroboration.

The development of these models is somewhat controver-
sial, with several quite divergent approaches having
strong advocates. Zhurkov's model in particular is
often criticlzed as being simplistic, but is convenient
for use in impact by virtue of its computational con-
venience and its ability to model a wide range of
materials behavior, if only phenomenologically. Finally,
it should be cautioned that the experiments Zhurkov used

in corroborating his model were no faster than the milli-
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second time scale, some three orders of magnitude

slower than ballistic impact fractures. Such an extra-

I

;, .
AN LR AT b

polation is clearly dangerous and should be verified by
additional experimentation. The plot given in Figure

7 is in reasonable but not excellent agreement with )

experimental data given in Smith's papers, indicating

that the approach is promising but needing of further
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corroboration.
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II. NUMERICAL ANALYSIS OF IMPACT ON WOVEN PANELS

il

lm

)

Method of Analysis

gt

The method of analysis used in this study is a
direct numerical approach which attacks the governing
dynamic equations of the problem through a computer-

aided iterative scheme. It may be considered as a

hybrid of the finite element method in selecting
control volumes and the finite difference in establish-

ing recurrence formulas.

o3 € S '.A:\‘,.," 2 PO T e S
St T R T

Figure 8. TIdealization of impacted fabric panel as an essemblage
pin-jointed tension members.
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The fabric of.dimension L by L shown in Figure 8
is modeled as a network of interconnected fiber
elements impacted at zero obliquity by a rigid missile
of mass.Mp with an initial striking velocity Vp. The
network model rather than a continuous membrane is
e@ployed here, for it is not only more consistent

with the discrete fabric structure but also leads to

better agreement with the physical deformation con-

figuration (pyramidal cone rather than hemisphere) as

N

s PR otpres

observed by Wilde [13] in high speed photographs.
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The elastic continuum supporting the fabric deformation

(R

e

is generally very flexible in transverse direction:

LA
Y

L

I

{ bending effects are neglected. The constituent fibers i

s
e

Y
ok b b

are considered to have a slender and uniform cross

section that only plane waves propagate uniaxially.

A

Furthermore, crossovers are modeled as hinged connec-

tions; then, slippage is assumed to be negligible.

Mathematical Pormulation 2

Considering a typical crossover in the panel,

as shown in Figure 9, the impulse-momentum balance
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Figure 9. Free-body diagram of forces acting at a fabric crossover
point, showing the influence of the fcur fiber elements
meeting there and the elastic resistive force provided by
the fabric backing.
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Auring time dt may be written as

Aw. o =T - 4t (19)

o)

where dv is an incremental velocity, T is the resultant

o)

tensile force, and Anm is the lumped mass of a

33
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fabric element. This relation provides a means of
calculating current velocity from field variables in

previous time increment. For instance, at node (j+1,

P AN

k+1l), the velocity at time tm+l may be expressed in a

finite difference form as '

At U_—m . M At
~ et ker s lesn 3+, ket zé{s AL

(20)
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where e is the linear fiber density, AQ . the

{isbay

&
i

Al

- T

length of an orthogonal fiber element, ¥ , a numer-

5%,

R
2

ical factor asscciated with the crimping and wave of

Lo

the fabric structure, and the tensile force I’ is given

as

AR

A

i

i

——

“m M
’-WL = T-“:’. 1 —T10°
(21)
. m M
Ton, ~Ton,
{8 L 3+1,\<.-»1 ~ 3+1,\¢

b v(’:i( A1, kaa

NS R LY, 8

in which kb is a backup spring constant and '} is the

displacement vector. TIO and TOl are tensile vectors

o e )

in the deformed orthogonal fibers running through the

e

crossover as shown in Figure 9. The Lagrangian
* The .. underline is used to denote a vector quantity.
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coordinates of the node are then evaluated by

WA m M A‘\:

. = “ . 22
fj-\-'l, ke L\ 3+ Kad +A"J:3+1, kar (22)

The up-to-date strain defined as e(j+1l, k+l; m+l) =
{elo, eoﬁ may now be determined from a continuity

condition;

MAA “m

1o, = Cuo.
=1 F41, ket =19 31, kaa

- WA Lt
_- “*‘“t:‘n,kﬂ =L :\.H,ku_l/ (23)
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Tensile stresses for the fibers at the crossover

-
et

may be computed from material's dynamic constitutive

relationship. For the case of a simple elastic fabric,

T may be calculated by

e+ w1 '
(25)
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Current missile velocity Vp(t) may be obtained by

V‘M:‘r‘\ M w1

e = Vo 4+ 4Tioe)

P o0 (26)
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where the fabric inclination P b at the impact

point may be evaluated from

-~ A WA
9‘?:qu Y_(M%?'* - CMgd '\AJ& (27)
O, "3

o

The total kinetic energy loss of the missile
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during penetration can be computed from

A A 2z
AE.P-;ZMF (VF-\/P> (28)

where Vr is the residual velocity of the missile upon
penetration. The fabric energy absorption and parti-
tion are of great interest, since they provide a means
of evaluating the performance of the material. The
kinetic and strain energy, AEk(t) and AE?(t) ’
obtained hy the panel during impact may be calculated

by

L
AE (4 =
§

YA

Z- A U- 1™ dadt )
X ’WLl 4& (29

E

AE> ) =

A
¢ X\T\ (1/ze) dAJk (30)

M

Where A is the area of the fabric. The above formula-
tions have been coded in FORTRAN, and the computation
algorithm proceeds from one node to the next along a
wave front propagating through the Fa*riz, Due to

geometric symmetry, only half of onz quadrant is con-
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sidered. At each time increment, the code begins at
the origin (the impact point) and works outward until
the wavefront is reached. The space progression con-

sists of a series of passes along lines diagonal to

ﬁ%ﬁﬁﬁ%&@ﬁ%ﬁ&&ﬁ&ﬁm@ﬁﬁﬁ

5
S

R

the orthogonal fibers, indicated by dashes in Figure

}aF

2
4

10. The algorithm begins at the x-axis (a subroutine

i

"
A

is employed to handle the slightly different condi- i

tions along this symmetry boundary), and progresses

i

along the diagonal until reaching the end of the

gﬁ octant. For reasons of stability, the rate at which

;;‘

iy the code progresses outward from the impact point is

% related to the fabric wavespeed; these stability con-

i
i)

fo

siderations will be discussed in a later section.
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Figure 10. Propagation scheme for the iterative wave propagation
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The numerical method requires appropriate initial

and toundary conditions in order to proceed with the

computation. The initial condition is that all nodal

points are at rest except that the initial projectile

velocity is imposéd at the center of the panel, i.e.

g2 =lewVy} o

(=¥ =)

e e A DT Tt D S s 1

P2
el

The boundaries of the fabric are assumed to be

TN

4%

rigidly clamped during impact, thus

c ¥ -0 .
~ &:L/z,ﬁ& (32) %
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Solution Stability, Tonvergence and Accuracy
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Solution stability and convergence are directly

H s
AN L T

related to the theory of characteristics for the hyper-

. bolic system. The Von Neumann stability criterion [14]

o
7

for the probem may be written as
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where ¢, is the wave velocity in the fabric. Hence

the selection of At and A cannot be arbitrary.
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The value of c, is not known prior to the analysis, but
a preliminary study by Roylance [15] indicates that it ﬁ
is a fixed fraction of the wave velocity ir a single
fiber, Cer i.e. }

c = C (24 34
= %/ . {
where o is a numerical factor. It generally hacs

value greater than unity, which may be attributed .o

the effective increase on lineal density caused by %

H

fiber crossovers. In a square-woven fabric, the lineal

density of a fiber along which a wave is propagating

is effectively doubled. This retards the wave velocity :

according to Equation 2 by a factor of & = V2. The

stability condition is then of the form

.“ ]
cg At /(aaRY <t (35) @

In the current analysis, al is obtained by physical L

5

considerations; therefore At is constrained by Equation g

(35). The parameter & has its optimum value obtained . ;

' t

: from stable solutions and is defined as E

; — ;
A x = CAR/c.) /at (36) d
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In the absence of a complete theory for finding

the exact value of this parameter, it is a common

practice in the use of numerical methods to have the

computer determine it. The optimum & may be obtained

by changing its value continuously in test cases until

a known solution is matched and a variation of the

quantity will not yield any appreciable difference in
the results. Unfortunately, there is no existing sclu-
tion for this problem and one must resort to numerical
tests of smoothness or of conservation laws for this
purpose. A convenient measurement of stability and
convergence is to study the rate of energy conserva-
tion of the system. In this study, an energy discrep-

ancy parameter M is introduced for the purpose, and is

defined as

=I(E.F-E.)/E;P\ (37)

§
where Ef is the total energy absorption by the fabric,
and Ep is the projectile energy loss defined previously.
Figures 11 and 12 give illustrations of the dependence
of solution stability and convergence on the values of

» parameter. An optimum value o =V 2 is obtained

Y W PO PR

from these results, in agreement with physical reasoning.
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Figure 11. Stability of the numerical scheme as indicated by a minimum
in the discrepancy between energy lost by the projectile and
energy absorbed by the fabric. These data were obtained from
a similation of a 400 m/sec impact on Kevlar 29 fabric at times
after impact as shown, and for various values of lhe stability
ratio ol defined by Equation 36.
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discrepancy ratio. Note that nonoptimum values of
the stability ratio (¥ in this figure) lead to diver-
7 gence at longer times. :
A Assessment of accuracy of the numerical analysis I
;5 is somewhat problematical, as no closed-form mathematic-
;;3 - al analyses are available against which to check the
. 7
g’; i code results. Certain experimental observations are :
’f“é available, however, one of which is shown in Figure 13. ;
= o This figure is a plot of residual projectile velocity
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Figure 13. Illustration that the numerical scheme predicts values of

final projectile velocity after penetration in agreement
with experimental observation.

-
KEVLAR 29
600  ONE LAYER
400
i —{1— EXPERIMENTAL
----O---- FABRIC CODE
200} /
e/
I ,/ o]
S
/ o
oL 1 l'l ] 1 1 1 1 1 (- e
o 200 400 600 800 1000

MISSILE IMPACT VELOCITY, M/SEC

after penetration of a Kevlar panel, as a function of
initial velocity. The good agreement of the predicted
and observed results is important, since it provides
some assurance that both the transient response and
the final fracture processes are being modeled reason-
ably. It might also be mentioned that this particular
plot is one which plays an important role in the design
process, so that the ability to generate it numerically
without prior ballistic data or any idealizing assump-

tions is of considerable practical importance.
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Another result of the numerical calculations which

N SRR e

may be checked against experiment has to do with the
shape of the transverse deformation cone, since the
cone may be followed by high-speed photography during

the impact event. It should be mentioned that this

Jutr MRS 2

photgraphic evidence provided the initial impetus to

the development of the present pin-jointed fiber

ik s vt

model, as opposed to various membrane approaches which

have been attempted in the past. The photographs

sy WARLT L 7P i D

clearly show a pyramidal deformation cone which re-

flects the orthogonal nature of the woven structure, as

IR

'ﬁi

opposed to the circular cones which would be predicted i

by axy-symmetric membrane analyses. The present g

i

4 numerical treatment predicts this pyramidal shape By
|
B ) e a . . $h
23 correctly. A convenient indicator of deformation 1is 31
'éw the size of the cone at the time of projectile ;F
5 . . &1
33 penetration, as this parame  :r also reflects both tran- i
mE
sient and fracture properties of the panel. Figure 14 ;5

shows the predicted and observed cone size at penetra-
tion for a Kevlar panel, and again it is seen that

. agrzement is satisfactory.
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Figure 14. Computed and experimentally observed values of cone
' deformation cone size at time of projectile penetra-
tion. The V., is that value of impact welocity at
which penetrggion occurs nearly instantaneously.
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Parametric Materials Study

The utility of the numerical model will be
illustrated by means of a number of computer experiments

in which the influence of fabric materials properties

on ballistic resistance is assessed. These results help
validate the reliability of the model in that it can

be shown to generate data in agreement with experimental
observations. It also provides a means of illustrating
certain phenomena, such as transient wave propagation,
which are not generally observable experimentally; in
this regard one's intuitive understanding of the impact
even is improved considerably.

Numerical results have been obtained for a

series of four simulated orthogonally-woven square
panels 203 mm on a side, impacted at zero obliquity by

a 0.22-caliber projectile weighing 1.10 gram. Such a

projectile is commonly used in experimental work to
simulate the effect of fragment impact. The edges of
the panels were assumed to be clamped, although penetra-~
tion generally occurred before the arrival of stress
waves at the clamps; the nature of the edge boundary
conditions is therefore relatively unimportant. Rather
than perform straightforward parametric tests in which
one variable, such as fiber modulus, is varied while

others are held constant, it was decided to simulate
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a series of actual fabrics for which input data was
available either from the weaver or from laboratory
measurement. The computer results can thus be compared
directly with laboratory ballistic tests, although in
general, more than one variable is changed in each
simulation. In particular, the fabric panel weight
varies slightly for each material type, although this
effect was expected to be small relative to the large
change resulting from the markedly different fiber
moduli.

For the purpose of these parametric tests, only
very simple constitutive and fracture models were
employed. Although more realistic models are available
as described elsewhere in this report, the numerical

data necessary for input into these models are generally

not available. For this reason the fiber stiffness was
set to a constant value obtained from handbook quasi-
static stress-strain data, and the failure criterion

was a simple maximum~breaking-strain check, where the

maximum allowed was also taken from quasistatic tensile

test results. 1In spite of these questionable choices,

the results of the computer simulations are of con-
siderable interest.
The data for the four fabric types are shown

below:
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GEOMETRIC AND MATERIALS PROPERTIES USED IN
FABRIC STUDIES

™ ™
Kevliar 29 Kevlar 49  Graphite

Fiber Nylon

Tensile

modulus,gpd 80 550 990 2650
Fracture

Strain, % 14,0 4,0 2.2 1.1
Fabric

Mass, am 19.53 17.38 25.75 27.08
Yarn denier]0s0 1167 1485 1500
Yern/cm 17 16 16 16

Figure 15 shows typical computer predictions of

strain wave profiles obtained at various times after a

400 m/sec impact on the various fabrics. Unlike impact

on a single fiber, in which a constant level of strain

is propagated outward from the impact point, the

array of fiber crossover junctions around the impact

point in a fabric serves to reflect a portion of the

outward-propagjating wave back toward the impact point.

As a result, the strain is always greatest at the point

of impact, and grows continuously with time (unless

the projectile is slowed appreciably by the panel).

Both the level of strain and the rate of propagation

i
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are governed by the fiber modulus and density. As
shown in the figure, graphite fibers have the highest
modulus of the four materials, and thus propagate the
lowest level of strain at the highest rate. As the

modulus is decreased, the strain level is increased and

the wavespeed is decreased.

Single Layer, &'x 8"

Vp = 400 m/sec

o o]

s Nyion, 11.59 microseconds

Strain, %

Kevlar 29, 5 80 microseconds

e 9.02 microseconds
e 12 25 microseconds

~— Graphite, 5.87
oL\ N\ .
0 2 4 6

LCistance from Impact, cm
Figure 15, Distribution of strain along orthogonal fibers pass::.ng
through the impact point. Curves are drawn for various
fabric types, at various times after a 400 m/sec impact.
50

ot o kT IR SO A BRGNS, R 4w T

i~

e R o S T

err 45 B o

ar b e B A,

b B ar Ve Fb g hnt

iR

e T T T T Ty T s ey

47 nenitd

Eoy e

e s

R R s

AR S T

s
(v

A
PANGILE £




e el e et aade o - R,
e AT SR B ST L AT FETPRIRIRISTY o oS TN RS S e TSRS

The strain history in the fabric is directly

related to missile striking velocity as indicated in
Figure 16. When the velocity is greater than a

critical impact velocity Vc strain at the impact point

rl
¢ontinuously rises until penetration, due to the. con-

tinual arrival of wavelets reflected from crossovers

and boundaries. In contrast, if the -relocily is
smaller than Vcr’ the impact strain develops to a
leve} below the breaking strain and remains relatively

constant for the rest of the dynamic process. Here

e N B N N T T M R i S A d U Em St i s B T

the effect of unloading due to projectile deceleration

RSN K
3

s
'

is able to balance the increase of strain due to wave

£

reflection. The wavy strain history in the figure may

be caused by the dispersion and interaction ¢f the

SRR

traveling and reflected wavelets, and perhaps, some

A

s
el

numerical fluctuation.
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Figure 16. Effect of initial projectile welocity on the development
of strain at the point of impact for nylon fabric.
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Penetration dynamics can also be illustrated by
the missile deceleration as shown in Figure 17, where

reductions of missile velocity by various fabric

PP

materials are given. Note that the ability of the

various fabrics to decelerate the projectile increases

VIR e L sk Vi

monotonically with the fiber modulus.

S tun

1.00

i NYLON
GRAPHITE

-
LA AR b b Tt B V-

0.96 +

KEVLAR 49 o
" KEVLAR 294 >

094}
Vp = 400 M/SEC

) S

0] 2 4 6 8 10 12
TIME AFTER IMPACT, MICROSECONDS
Figure 17l Relative ability of the various fabric types of slow the

projectile during impact. Ordinal values represent the
ratio of current to initial projectile wvelocity.
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The energy extracted from the projectile is
partitioned into strain and kinetic energy in the panel. .
This energy partition is easily computed, and Figure 18

indicates that approximately half the total fabric

Vet ¢ b x ARSI 4 W0 nnkfiede wes 30T RS

enerqgy absorption is stored in the form of strain

S tiotuidiso

energy. The kinetic energy associated with transverse
velocity is approximately equal to that associated with
in-plane velocity components. Energy absorption is a
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Figure 18. Energy absorbed by a Kevlar 29 panel after a 400 m/sec
impact, illustrating the partition of impact energy
into kinetic and strain energy in the panel.
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Figure 19. Illustration of the relative ability of the four fabric
types of absorb impact energy. The curves are termin-
ated at the right by projectile penetration, as indicated
by a maximum-breaking strain failure criterion.
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convenient indicator of panel ballistic performance,
and Figure 19 illastrates the relative energy absorp-
tion capabilities of the four panel materials studied.
It is seen that the high fiber modulus of the

graphite panel leads to a rapid rate of energy absorp-
tion, but that fracture occurs before the panel has
been able to extract as much of the projectile's
impact energy as the lower-modulus fabrics. Conversely,
nylon recuires a long time to penetration, but the
energy absorption rate is too slow to lead to a large
total energy absorption. The Kevlar 29 panel exhibits
the best combination of energy absorption rate and
long time to penetration, and is thus predicted to be
the superior ballistic material of the four types

studied.
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It should be mentioned that the accuracy of these
results is limited by the questionable assumptions
which had to be made due to the present lack of know-

ledge as to dynamic fiber properties which could be used

as input data for the code. For these rather stiff

fibers, the use of a linear elastic constitutive law
is probably not a serious error; however, the use of
maximum-bresking-strain failure critrion is almost

. » . » > '
certainly tc blame for some inconsistencies in the

results. In particular, Kevlar 49 is known to be

essentially as good as, if not superior to Kevlar 29

as a ballistic material. The authors feel the shape

of the energy absorption curves in Figure 19 is

accurate, but that the location of the failure point

is poor in the case of Kevlar 49. This points out the

need for more complete dynamic fracture data on these
fibers, so that more realistic models such as that

described by Equation 17 may be employed.
It is natural to seek some simple relationship

between fiber material properties and fabric ballistic

resistance. The preceeding results lead one to expect

that the most important parameter governing the stress

history in the fabric before fracture is the fiber

modulus. The modulus controls wavespeed through the

relation c=\f§E, and thus the distance the impact dis-~

turbance will have traveled in a given time. The
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modulus also controls the level of strain which will be

generated by impact at a given velocity. The relation

R R T 1o R R ey

L i, 5

is not known explicitiy for fabrics, but can be deter-

©

mined by performing computer experiments using the %
numerical code. é

Figure 20 depicts the computed strain history at %
the point of impact for 400 m/sec impacts upon the four %
model fabrics. It is clearly seen that an increase in %

fiber modulus decreases the strain for a given time, in

correlation with the same result for single fibers.

The fabric impact is considerably more complex than

single-fiber impact, however; the point of impact feels

a0t only the continuing influence of the projectile,
but is also continually bombarded by wavelets reflected

and diverted from adjacent fiber crossovers. The

situation is too complex to permit simple generaliza-

tions, but the nonlinear form of the strain histories

. M -0 N « s . ~ 5
AR O G B Cno0, K s an e S e s 0SS M

for the various fabrics can be taken to reflect the

';Q‘?

. influence of wave interactions occurring in a region
whose size increases guadratically with time. Note

also that the shape of the strain histories varies

E L TR L I S

consistently with fiber modulus: the time for arrival

%

of the first peak, for instance, decreases monotonically

Y,

R

with modulus.
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Figure 20. Development of strain at the point of impact in the
various fabric types after a 400 m/sec impact.

S D R A B el S

If one normalizes the magnitudes of the ordinal
values in Figure 20 by the value of strain which would
be developed in a single fiber by transverse impact at
the same projectile velocity, the strain magnitudes of
the four curves achieve comparable values. This pro-
cedure essentially compensates the curves for the

. effect of the fiber modulus on the impact-induced strain.
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The shift of the curves along the abscissa, however,
is less clear. The rate at which the strain increases
at the impact point is governed by the complex inter-
actions of waves traveling about within the constantly
expanding region of influence, and is beyond simple
visualization. On average, the time necessary for a
wave to reflect and return eventually to the impact
point should decrease inversely with the wavespeed,
i.e. inversely with the root of the modulus. However,

the size of the region in which stress waves are

A S R AN n e S R P S o e e R R

Y

35

)

traveling at any given time also depends on the wave-

T

speed, and one would expect that a larger region of

influence would decrease the rate at which reflected

N R

Ly

and diverted wavelets are able to return to the impact

]

LR

point.

LR

iy

It is found that the time after impact at which

TS

the first peak in the strain occurs varies linearly,
with good correlation, with the fourth root of the
fiber modulus (or the square root of the wavespeed).
Using this observation, which is likely related to the
geometry of the region of influence, one can compensate
the abscissal values of Figure 20 by the factor E0'25.

The result of the ordinal and abscissal normalization

is shown in Figure 21, where a curve valid for all four

fabrics is developed.
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Figure 21. "Master" curve for impact-induced strain at the point of
impact. Ordinal values represent strain normalized on
the basis of the strain which would be generated in a
single fiber by impact at the same velocity, while abscissal
values are adjusted by a factor equal to the fourth root of
the fiber modulus.

This master curve represents an improved means
of performing preliminary armor design. Since the
normalizing factors are known once the dynamic modulus
of the fiber is specified, one can generate a strain
vs. time curve from Figure 21 applicable for a particu-
lar fabric and impact velocity. The time for rupture

is the time at which the impact-induced strain exceeds
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the fiber's dynamic breaking strain. As in the fiber
case, we then see that ballistic resistance is a
balance between high fiber modulus leading to high
wavespeeds and lower strains, and fiber breaking strain.
This approach is approximate in severa. respects,
however, and is thus limited to preliminary design.
First, it is seen in Figure 21 that perfect correlation
among all four test fabrics is not attained, the nylon

showing a deviation at high strain. Similar deviations

SRS XK MR SRS 0 A LA Lot ® U AF b P s 2
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in other fabrics might be observed as well. Second,
the curve of Figure 21 was generated from computer

experiments at relatively high velocity, so that pro-

% jectile slowdown was not an appreciable factor. At
b low impact velocities, the fabric is able to decelerate
; the projectile and even bring it to rest. The effect of

projectile slowdown is to generate unloading waves in

the fabric which travel simuitaneously with those

& previously described. This unloading would have a
strong influence on the curves such as that in Figure
21, causing the curve to pass through a maximum and
decrease thereafter in those cases in which the fabric

. is able to defeat the projectile. For these cases,

st g

complete treatment using the numerical code would be

A

o

necessary.
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ITII. EFFECT OF VISCOELASTIC MATERIALS RESPONSE

Viscoelastic Constitutive Relations

In the course of the iterative calculations
described earlier, a constitutive material law must
be evoked at each element in order to compute the
element tension from its strain (or strain history).
One would expect that a model incorporating viscoelastic
effects would be necessary for proper simulation of
polymeric materials, and in fact there is considerable
direct evidence [16] that relaxation does indeed occur
in the ballistic time frame. This is also to be
expected in light of the dynamic mechanical spectrum of
nylon, for instance, in which a beta relaxation is

observed having an apparent activation energy of

approximately 60 kJ/mole [17]; this relaxation is

calculated to occur in approximately five microseconds

at room temperature.
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Figure 22. Wiechert spring-dashpot model for linear visco-elastic
fiber response.
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A general viscoelastic model well suited for
computing tensions from pres :ribed stirains is the P
Wiechert model, depicted schematically in Figure 22,
This model takes the polymer response to be analogous
to that of an array of Newtonian dashpots and Hookean

springs. The differential tension-strain law for the

. jth arm of the model is
é=-1l:.3+1— o3 (38)
3 15
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where the dots indicate time differentiation,

Zor et

s is the

tensile stress and & is the strain. Casting this

equation in finite difference form relative to a %
discrete time increment At and solving: :%
]
ke, é%
”’ §e‘.
.: “ _'g‘g
= .): Y 4
3 o \“ €-e ) 5 l (39) &
J &w ce.J: 7ed] :
where the superscripts t and t-1 indicate values at the t.ﬁ
current and previous times ,respectively,and . = )2&
i b1
Y| j/kj is a relaxation time for the jth arm. The total @
tension at time t is the sum of all the t plus the 3
f
tension in the equilibrium spring k_: .
§)
L 3; -1 *: 1 ;
z ks e
< 64:___ P > (40)
k - LG
3 1+ (A% /2D 4
This tension-strain calculation is performed at each - g
f element node. In addition to storing all the k. and :
* T 5 the computer must also store the previous strain 2“;
, and tension values at each node. 72
- The choice of the kj and “'cj should be such as 1;
to model the polymer viscoelastic response in a time
Bs
o
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scale comparable to the ballistic event, which takes
place on a microsecond time scale. It is of course
difficult to conduct such conventional tests as creep
or stress relaxation on this time scale, but guidance
as to proper model parameter selection can be obtained
from dynamic mechanicui spectra, using the activation

energies of the appropriate low-temperature relaxations

to effect a temperature~rate conversion. For nylon
fibers, for instance, one would fit the Wiechert mol:l
to the beta relaxation, ignoring the alpha and gamma
relaxations as not being appropriate to the ballistic

time scale at room temperature.

Results for Single Fibers

As a means of developing a proper context for
the study of viscoelastic response of a woven textile
panel, some results obtained in an earlier study [18]
which used a direct numerical simulation of visco-
elastic relaxation in a transversely impacted single
fiber will be reviewed briefly. The numerical approach
for this study was identical to that described for
fabric structures, except that it considered a single
fiber discretized as a series~connected assemblage of

pin-jointed finite elements. As in the fabric case,

65

v::;im . g’“:;ggn}-éé’m ff"w M«“Gf:ii& K“*A’-fﬁk&h‘ﬁw Rt $F (UL A B el




e i I T
e T N R TR e R S B e e o T S T R A TR TRl ey e
R e e et o L AR "

%

v,

- i | SO Y S—
£

this treatment producéd numerical values for the
position, veloci y, strain, and tension of each finite
element of fiber as a function of time after impact.

A variation of this treatment will be cescribed in some

detail in Chapter IV of this report.

Figures 23 and 24 show the distribution of
nondimensionalized strain and tension along the fiber
at various times after impact, plotted against the
Lagrangian fiber coordinate. These distributions were
obtained from the Wiechert model using only a single
spring-dashpot arm in parallel with the equilibrium
spring; this *hree-element model is commonly known as
the "standard linear solid"”, or tie "Zener solid" fThe
distributions for these two fiqures are for a choice
of model parameters ke = 80 gm/den, k, = 20 gm/den,,

1
and QKl = 50 /aSec. The values of the ordinates

have been normalized by the strain or tension which
' the rate-independent Smith theory predicts for a linear

elastic material at the same impact velocity.
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Figure 24. Normalized tension distribution along fiber.

The distributions in figures 23 and 24 demonstrate
several features typical of viscoelastic wave propaga-
tion:the magnitude of the wavefront attenuates as it
propagates along the fiber, the strain ata given
position increases with time from its original value,
and the tension decays with time. Smith [19] used the
method of characteristics to show that the wavefront

attenuation is given by:
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Tk AN =T exp (-Xt/z1) (41)

e (k1) = g, exp (-X /2T (42)

where >\= kl/(kl + ke) is the relative strength of
the viscoelastic relaxation. The wavefront tension
magnitude predicted by Equation 41 is shown in Figure
25, which also serves to illustrate the numerical
accuracy of the direct analysis. (Here a 0.15 m
fiber was divided into 200 finite elements). Some
numerical overshoot is evident at the discontinuous
wavefront, but the distribution extrapolates to the
analytically-predicted value.

By means of Laplace transforms, Smith [20] also
obtained approximate expressions for the strain and
tension distributions in a longitudinally impacted
fiber. These expressions predict that the tension and

strain at the point of impact will approach the

limiting values

T Coyotsd =—V,1/ G-\ =0.894 1o (43)
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Where the numerical coefficients are for >\ = 0.2.
At x = 0, the distributions in Figures 25 and 23
approach limiting values greater than Equation 43 for
tension and greater than Equation 44 for strain. Thus
stress relaxation is slightly less and creep slightly
greater for transverse impact than for longitudinal

impact; Smith [19] reached this same conclusion in his

work on transverse impact.
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Figure 25. Numerical values for tension distribution for t = 41.08
microsec after impact.
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Results for Woven Panels

The three-element Wiechert model (the standard

linear solid) used in the previous section was also i

]
employed to examine the influence of viscoelastic 3
S
E
relaxation during ballistic impact of woven panels. ¢
e The model parameters were chosen to simulate ballistic §
N 3
% . = = = 3
f nylon: kl 20 gm/den, ke 80 gm/den, Qfl 5 /asec. :
= ; Results have been obtained for a simulated 0.2 m x 0.2-1 ?
By © ' £
S panel weighing 19.5 gm, impacted with a 0.22-caliber :
o fragment simulating projectile weighing 1.10 gms at §
%f . various impact velocities. E
; 14
- b
—11.2
; Hi0
[ E
= ~
+
4 2 y
g & 8
. A 108 £
: (/)] <
: a %
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(%] n o
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% 2
: =
L “10.4 o
E
A %
e {é 0.2
3 g’t: o) 1 I 1 1 t 0
A 0 [ 2 3 4 5 6 7

DISTANCE FROM IMPACT POINT, c¢m

Figure 26, Stress distributions along orthogonal fibers running throngh
impact point for linear elastic and viscoelastic fabrics (i «

30.4 microsec).
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Figure 26 shows the distribution of stress along

the orthogonal fibers running through the point of

S A ey i
SRR TR

impact at t = 30.4 psec after an impact at Vp = 300

e

m/sec. The results for the viscoelastic fab:ic are

TR

ATAAISTS

compared with those of an ideally elastic fabric .

FRERS

having a stiffness equal to that of the unrelaxed
viscoelastic material (100 gm/den). The nonuniform
distributions along the fiber are due as described

earlier to the continual reflection of wave components

& from fiber crossovers, resulting in a maximum in stress

Py SRRk
ST

at the impact point. An appreciable difference in
stress levels between the linear elastic and visco-

elastic cases is observed, especially near the wave-

RN TR T

front. Relaxation of the stress due to the rate-

v

’

dependent material behavior may be expressed by the

.

ratio of the viscoelastic and the elastic and the

peplpumamtingt ¢

elastic stress, T/To’ as shown in the figure. It is
found that a large amount of relaxation occurs near ‘

the wave front while an equlibrium state of relaxation

S R R R S R R ST

is reached in the region away from the disturbance front.
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Figure 27. Distribution of strain along orthogonal fibers running
. through impact point.
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The wave attenuation during this 300 m/sec impact

is also demonstrated in Figure 27, where relative strain

Tk g

distributions € /& are given for various times

after impact. As illustrated in this figure, the

magnitude of the wavefront attenuates significantly as

it propagates along the orthogonal fibers, and the

i strain at a given position increases with time after

impact from its original values.
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Figure 28. Stress histories at impact point for linear elastic and
viscoelastic materials.

The stress and strain histories at the point of
impact shown in Figure 28 give another indication of
viscoelastic dissipation in the response of the panel.

: They increase continuously with time due to the re-

flection of wavelets from crossovers; however, stress
relaxation and strain creep of the viscoelastic material
occur simultaneously with this general increase; The
viscoelastic stress at a given time is smaller than the
elastic case as shown in the figure. The relative
relaxation at the point of impact, denoted by the ratio
of the viscoelastic and elastic case, develops gradually
and reaches a steady state at long times. The relaxa-~

tion histories for different missile striking velocities
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are given in Figure 29. The similarity of their magni-
tudes is a manifestation of the 1linear material res-
ponse. Again, these stresses approach an asymptotic
equilibrium state at times longer than the craracteris-

tic material relaxation time.

Iy -
*®000ceccs
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\ 0.8}
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Figure 29. Stress relaxation at impact point for various impact
velocities,

Nonlinear Viscoelastic Response

The use of the Wiechert model as described in

the previous sections is sufficient to illustrate the

B P

most important features of rate-dependent ballistic

materials. However, most materials do not meet the
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rigid requirements of lin;arity necessary for a truly
rigorous application of concepts of linear viscoelasti-
city. For more detailed simulations of fabric and fiber
response, one must turn to general constitutive rela-
tionships which more accurately model the behavior of
these materials. Unfortunately, there does not exist a
general concensus of the most realistic means of
achieving this goal. At present, the subject of non-
linear viscoelasticity is being pursued actively by
several groups, several of which are employing highly
divergent approaches to this problem. It is not
possible here to select any single approach as having
significantly greater merit than certain others.
However, the ease with which various constitutive
laws may be incorporated into the direct analysis scheme
makes it possible to assess relatively easily the in-
fluence of various assumed material models. As an

illustration of this capability, some results using

— e —

Eyring's model of thermally-activated nonlinear
viscoelasticity will be presented.

The computationally-convenient Wiechert model
can be extended to include the effect of material non-
linearity by rendering the springs and/or the dashpots
nonlinear. If, for instance ,0one uses a power-law spring

and a nonlinear Eyring dashpot [21], defined as
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then the finite-difference equation relating tensions

and strains in the jth arm of the model is:

A
- v -1 -
' et-ei qz A (9_‘?)5 o*%-o-i‘ 4)
At bikﬁ k& At

- x

(46)

L A relation such as this requires an iterative numerical Z
3 : t .
k. solution for er at each element and at each time

step; the computer effort is increased but the princi-

ples of the impact algorithm are straightforward. The

; principal obstacle to the use of nonlinear models in
the direct analysis is not the incorporation of the
models into the computational scheme, but rather the
determination of the material parameters (the b's,
k's,A’'s ,and ol's in FEquation 46) applicable to the
microsecond time scale of polymer relaxations.

To illustrate the effect of nonlinear constitutive
models on panel ballistic response, a series of computer
experiments was performed on three different simulations

of nylon fabric: one using only linear elastic response
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(only the equlibrium spring in the Wiechert model), one
using the standard linear solid model for linear visco-
elastic response (the equilibrium spring plus one 3pring-
dashpot arm), and the last being a standard linear
solid but with the dashpot made a nonlinear Eyring
element. The intial modulus was taken as 100 gm/den,
the relaxed modulus as 80 gm/den, and the relaxation
time for the standard linear solid as five /Ksec (the
same as in the previous section). The concept of rela-
xaticon time (the time to complete 63.2% of the total
relaxation) has no meaning for the nonlinear element,
since the rate of relaxation changes nonlinearly with
the stress. Lacking any experimental data in this time

scale, the A and ¢ were arbitrarily chosen so as to

cause relaxation in approximately the same time scale
as the standard linear solid. A and Q& were set at
103 sec -1 and 0.7 den/gm,respectively. The nonlinear
constitutive equation was solved at each element using
Muller'smethod [22], which increased the computation

time relative to that of the standard linear solid by

roughly one-third.
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Figure 30. Stress distributions along orthogonal fibers running
through impact point for linesr elastic and nonlinear
viscoelastic fabrics.

One means of comparing the various constitutive
models is in terms of the distributions of strain along
the orthogonal fibers running through the impact point,
at various times after impact. Figure 30 shows the
distributions for the elastic and nonlinear viscoelastic
materials 20 psec after a 300-m/sec impact. Also
shown is the ratio between the nonlinear and the
elastic cases. This ratio is a measure of the stress
relaxation in the fabric; it is greates: at the wave-
front, as the large gradient of strain there produces a

similarly large rate of relaxation.
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Figure 31. Comparisor. of stress relaxation in linear and ronlinear
viscoelastic fabrics.,
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The nonlinear stress relaxation is compared in
Figures 31 to that produced by the standard linear i

solid. Although the equilibrium value far from the

)

wavefront is approximately the sawme in both cases,

R 2TAL

strong differences are evident near the wavefront. These

are due to the relatively more rapid response to higher

strain gradients in the nonl‘-<ar material. Another
indicator of viscoelastic fabric re:ponse is the stress
at the point of impact. The stress and strain at the
impact point increase with time due to the continual

arrival there of wavelets reflected from fiber crsss-

e S et Y

overs, but in viscoe.astic materials both stress relax-
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ation and creep strain are superimposed on this over-
all increase. In Figure 32 the point-of-impact stress
histories for the three materials are plotted, as well

as the stress relaxation ratio defined as before as

the ratio between the viscoelastic and elastic stress.

As in the earlier two figures, the linear and non-

linear viscoelastic models approach essentially identical
equlibirum values at long times, but are markedly
different near the wavefront due to the more rapid

response of the nonlinear material to large gradients.
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Figure 32, Stres: histories at impact point for linear elastic,
linear viscoelastic, and nonlinear viscoelastic fabrics.
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IV. NUMERICAL ANALYSIS OF WAVE PROPAGATION

IN TWO CROSSED FIBERS

Introduction

This chapter describes study of the dynamics of a
special but highly important physical system: that of )

two fibers, one having been transversely impacted at

zero obliquity by a high~speed projectile, and the
other crossing the first perpendicularly at some

distance from the impact point. This system is germane

to the understanding of impact and wave propagation

phenomena in woven textiie panels used for ballistic

T B B e
st Sy Cirthen

protection. The wave propagation phenomena occurring at

- the fiber crossover have a strong influence on the
R

3

o response of a woven panel to impact, since these panels

typically have on the order of forty crossovers per

inch. The nature of these crossover interactions may

N T L B AV TP L Y3 eadoa

be one of the factors causirg what appears to be an
excellent fiber in single-fiber ballistic tests to

exhibit less ballistic protection when woven into a

textile panel structure than a nominally inferior fiber.

As mentioned earlier, this situation obtains in the )

e B
P I S R RN AN LS

case of the Kevlar ballistic protectio:. vests now

being used by military and police personnel: the Kevlar

(S IR

vest outperforms the older nylon vest, in spite of
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nylon's having a higher transverse critical velocity.
The inability to predict vest performance from single-
fiber test data is a matter of considerable concern to
the armor design community, and this study of fiber
crossover dynamics was begun to clarify this situation.

Method of Solution
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Figure 33. Schematic of model for numerical analysis of two crossed
fibers.
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System Idealization. The system of two crossed

s
X

fibers is modeled as in Figure 33, where the origin of

b

ke

coordinates is placed at the midpoint of the clamped
primary fiber, which extends along the x-axis. The

projectile moves along the y-axis only, and impacts the

i,

primary fiber at the origin. From symmetry, only half

the primary fiber need be considered. The secondary -

fiber extends along the z-axis and intersects the

Sk

S

primary fiber at some a' - .:rary distance from the

)

origin. At the crossover point, the secondary fiber is

wih et

assumed to follow the motion of the primary fiber in

S

o

“

ng

the direction perpendicular to the primary fiber (in

Ve

the x-y plane), but is allowed some measure of slip in

i

ol

the direction parallel to the primary fiber. Motion of

the primary fiber is assumed to occur in the x-y plane

only, while the secondary fiber may move in all three

directions.
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Figure 34. Discrete element of fiker.
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To proceed, the fibers are discretized as a series

of n pin-jointed finite elements of equal length as

I P

shown in Figure 34. The masses of the el:ments are

W

taken to be lumped at the nodal end points of these

elements, and at these nodes are defined vector co-

- ordinates X3 velocity Vi and tension Ei' The

i
A T R AT Btdtm

Sy

R LEAE

scalar strain €, at each element will be computed

NF,

TR
o t

‘{é.

from the coordinates of the nodes at either end of

oy

<
225

the element. The tension Ei has the same direction
as the element itself (approximating the element's

assumed inability to support a bending moment), while

AR

%

L
&

Yi is not constrained in direction. These elements are
now described as in the fabric analysis by simple

governing equations: impulse-momentum balance, strain-

e oy 5‘ i
: PR

RIS

displacement relation, constitutive relation, etc.

| These relations are cast as a recursive algorithm for

&

i

proceeding from one element to the next along the

fiber length, and then repeating the process at a new

i Sty

increment of time. The computer solution thus is re-

ferenced to a Lagrangian frame of reference attached

VN

1

to and extending with the fiber, which effectively

IR

reduces the problem to one dimension.

1]

. Momentum Balance. A consideration of impulse-
momentum balance at the i + ISt node provides a means

of computing the current velocity at that node in terms

bR AT e
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of its velocity in the Previous time increment and the

tensions acting on it during that time increment. (In

the folle ing, subscripts on a variable refer to the

node at which it ig defined ,while Superscripts t and

t-1 refer to values at the current and previous times

respectively). The impulse-momentum balance can be

written in finite difference form as

(47)
At
_r":~1 _ {-1=A~V\. ”_'!: _ '.h-‘\ (48)
~ b4 o~ At it S R R |

Letting A = Am/ At, a fixed parameter, equation 48

may be solved for ,Y.ati+1:

t Loa

34 Kian

L-1 +

-1
+A<I1,+‘\—Ii j

o~
>
\O
S

This vector expression can be written in scalar form

by reference to the inclination angles Bi and ‘91+

1
of the Ei and Ei+l vectors respectively:
- -1
1- -1 Yz, Y
6. A ._-_‘r&:“‘ f&*ﬂl‘“ ‘43. (50)
1) x{"‘ - %.t‘1
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86

T T e e et e

i

i ‘
i

i

H -

BRI

SRR R

o

.

Ty

:}3;7‘{;&. Py

%

Moo

i

0 :zﬁirz

Yoreszoco LA
e

SIS

TR SO,

5

s o
T T Y G WS - oy




R Y G BT AR S L I S S R B A e FR RS

AT TANIL TNty mirrai

"1 = T -1 ‘4’1.1-2. ‘1’ 141 ;

12 144

gt

E
4
38
5‘.
3

Then the x and y components of velocity are:

EWTRIT)
2,3

N

+ -4

TR SR M Ry

. = JL- 5
MH1 i * A (T. ( A ¢:¢:>s,©‘b‘M (52) :
11 - s
—:Ti s Dy .> %
t '\‘- 44 E
A, . )
1 =~ Yimm + A (T % B (53) 2
LA %
- _\".:.L =" 9 3 3

where T = )Ellis the tension magnitude. The Loundary

conditions are easily incorporated into the impulse-

iy R A B

>
3

momentum balance: at the first mode, the velocity is

-

x\’t{

set equal to the current projectile velocity (z; = Vt), %
3

) . . =
and at the clamp the velocity is set to zero (XE = 0). ﬁ
%

Strain-displacement Relation. Having computed 2

=

£} . - '*

the velocities at the 1th and i+lSt nodes, the strain in %

the element between these nodes is computed- as

A M NI NS
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Li
where L, is the element length. Continuing:
£
S Y
(—:.:6..1-\— LI (55)
3 1 L-\-.-*\
i
where
"‘1 - l % 141 X 1
and
t L Y
L. = | X - % (57)
i l ~ 1 T 1 1
: . £
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Constitutive Relation. Knowing the strain EE,

t.
i

the tension magnitude T is computed from the material's
dynamic stress-strain law. These relations are as
described earlier, and currently available constitutive

models include linear elastic, nonlinear elastic (cubic
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polynomial and exponential strain hardening), linear
viscoelasticity (Wiecherc model), and nonlinear visco-

elasticity (Eyring model).

Computation of New Projectile Velocity. The

algorithm described above proceeds from one element to

1% ‘{“Sﬁ*j”f*ﬁ%‘f@“i'ﬁ 'ﬁhff?j g’g’ rg ;’f_auw&-'«

Gen

’ the next along the length of fiber, and i~ started by

imposing the initial projectile velocity on the first

node. At the end of the first time increment, a strain

will have developed in the first element due to the

ke
velocity difference between the first and second ncdes. ?%
(Initially, all velocities, tensions,and strains are %
set to zero.) This strain produces a tension as cal- -§
culated from the constitutive relation, and this tension %

¥

R AT

produces a velocity in the second node beginning at

the next time increment.

P

Tt

After each time increment, at the completion of

the lengthwise recursive calculations, a new projectile

t
P

. balance using the tension at the first node:

velocity v can be computed by means of a momentum

S
Ve -0

A
-z =K =% =M
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where Mp is the projectile mass, 'I'y is the component of
fiber tension in the projectile travel direction, and
the factor 2 accounts for the other half of the primary

fiber extending in the -x direction. T _ is:

Y
Yo %
t t t -1 %4 "%
= = (59) .
~E% -T1 aoe»E% -T: cosd lam ﬁat -ﬁd&

Crossover Fiber Calculations. Computation of f
field variables along the secondary fiber proceeds in a
lengthwise manner exactly as described above, although é
the vector resolutions become slightly more complicated
due to the motion.in three rather than two dimensions.
The secondary algorithm is started by imposing on the
first node of the crossover fiber the velocity imparted
to it by the primary fiber. As stated earlier, the
secondary fiber is allowed a measure of slip along the ;
primarv fiber but is constrained to follow it in the :
direction normal to the primary fiber. Denoting the
node on the primary fiber nearest the crossover point as
ix, the velocitv of this node resolved in directions

parallel and perpendicular to the primary fiber there :

.
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(61)

s
Har

(62)

In equation 62, the notation of the form yl or y2
indicates field variables for the primary and secondary
fibers ,respectively. The velocity imposed on the first

(crossover) node of the secondary fiber is:
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where Aks is a slide factor which permits no sliding
when set to 1 and unrestrained sliding when set to
zero,

The crossover node ix will change with time if the
tangential slip along the primary fiber is sufficient.
After each time increrm.nt, a new position of the first
nrode on the secondary fiber is computed, and ix is
assigned to the nearest node on the primary fibker.

The momentum-~balance calculation of X§+l in the
primary fiber must be modified when the i+ls? node is
also the crossover node ix, since the secondary fiber
applies its own tension to that node. Denote the direc-
tion angles of the primary and secondary fibers at that
node as $1*,Q>1%,&’1% and 4>za,d>z‘£d>z% ,respect-
ively ( cb\a = 0). Then the components of tension
applied by the secondary fiber, resolved along directions

parallel and perpendicilar to the primary fiber, are:

t +
Pa‘ra.n-rz1 [Ccs d’Zx:as chx-f cos &Z%wd>1%-] (66)

+ ki
pere = Z.“[cos &%ws 1*— cos 8pz%¢o,d;1‘&'l (67)
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Tz
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where the direction cosines are computed from the

current nodal ccordinates. The primary fiber is allowed
to feel the impulse of the i1m:rpendicular component

fully, but the parallel component is reduced by the
t

slide variable Ms. The usual computation of vy
i+l

is the adjusted as

L
JM:’: -— 4

1 XY

re, k
‘+Z-A\.TZ.?Q¥P cos ¢1,‘k

R (68)
FASTE coea com Sy

t = £
vl - .+ [ cos
i+4 'U;.ﬂ cA TZP”? L ¢1M. (69)
T 1
tiy para c—c‘sc‘"ﬂa]
where the -=— symbol indicates a computer replacement
operation; i.e. the additional impulse from the

secondary fiber is added to that already computed from

equations 63 and 64.

Stability, Accuracy,and Efficiency. Criteria fer

stability and accuracy of the above method are related
as in the fabric case to the theory of charactzaristics
for hyperbtlic systems of partial differential equationa
and are similar to those for finite-difference solutions
of wave propagation problems [14]. Given a wave

equation of the form
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which is to be solved by approximating a9t and ox
by finite differences At and Ax, a stability

ratio & can be defined as

&=/ an (71)
Ak

The finite difference scheme is stable and accurate for
& = 1, stable but increasingly inaccurate for &K1,
and unstable for X > 1. The choices for Ax and
At are thus not independent, but are related by the
wavespeed for the choice of & = 1.

In the direct analysis of the fibers described
above, this stability criterion is equivalent to adjust-
ing the rate of march of the computer solution along
the fiber to match the rate of propagation of the
strain wave. Conceptually, this requirement is related
to the necessity of programming the finite governing

equations so as to model the actual continuous dynamic

process as accurately as possible. If a major disturb-
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ance - such as the passage of a strain wave with its

accompanying energy input -~ takes place in a finite
element which is not considered explicitly "in the
computational scheme, divergent numerical results are
very likely.

Once a stable computational scheme has been .
developed, one usually attempts to increase its accuracy
to whatever limit is desired by decreasing the size of
the elements; 1.e. py increasing the number of nodes.
Since for A& = 1 a decrease in AX requires a corres-
ponding decrease in At, the computaéion time - and
therefore the expense - required for analysis of a
given impact event increases as the square of the
number of nodes. The element size is therefore chosen
so as to balance the conflicting requirements of
economy and accuracy. As an example of computation
time, the CPU requirement for the IBM 370/168 system
was 0.168 minutes for a problem in which the strain wave
propagated 0.2 m along the primary fiber and 0.1 along
the secondary fiber, with a length increment of 2.0 wm.
As a means of improving code efficiency, the program
employs logical flags which terminate the length loop
computation when the computer passes the point along the

fiber length corresponding to the wavefront.
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Accuracy assessment for the case of two crossed

fibers is difficult, since no experimental or closed-

form mathematical analysis of this problem is available,

4

i

"3
¥

s o
Fr

but some assurance of accuracy is derived from computer

)
A

runs in which the secondary fiber is placed at the
origin (the impact point). In this case, response of

both the primary and secondary fibers is found to be '

e

,j’

that predicted by independent analyses. Data such as

Y

,
2

o

N

that previously presented in Figure 23 is obtained along

the primary and secondary fibers. In certain cases to

be discussed below, the numerical overshoot and

/3

'
)

oscillation observed near wavefrcnts cause problems in

L L 22

“r

interpretation of results. Thesoscillations are a

result of the imability of the discrete difference

equations to model discontinuities accurately. Although

¥
!

i

L
F

Al

the method is conditionally stable and the oscillations

12
%

2

are damped out away from the discontinuity, problems

i

Yt
g

"2

of interpretation remain near the discontinuity. The

bttt

4

oscillation at the wavefront is diminished by the

material viscosity, and in some cases an "artificial®

i

viscosity may be included solely for the purpose of

smoothing the numerical results.

S
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Figure 35. Strain distributions in two crossed fibers of Kevlar 29,
28,7 microsec after impact at 40O m/sec.

Figure 35 shows typical results obtained from the

above described computer treatment, in this case for

two crossed fibers of Kevlar 2%, the crossover point

being 10 cm along the primary fiber from the impac*:

point. The fibers were assumed to respond elastically,

and no sliding was permitted at the crossover ( & s=1) .
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The figure shows the distribution of strain in each

1

R T R T

fiber 28.7 psec after impact at 400 m/sec, where the

abscissa measures the distance along the secondary
fiber from the crossover point. The dotted line at

strain = 1.45% depicts the level of strain which would

o e e 53k i

re

be generated in a single fiber at this impact velocity.

¢ £ e e

»r

In this example no viscosity has been included, and the

Ae

large overshoot at the wavefront causes problems in

interpretation of results. In spite of this oscillatory

behavior, however, an increase in strain in the primary
fiber behind the crossover due to the wavelet reflected

from the crossover is evident, as is a reduction in the

B el L R LTI R ey

T I P —

strain intensity in the region of the primary fiber

w2t gl

beyond the crossover. More easily measured is the level

ALY
——d
RETT AL

of strain intensity propagated along the secondary fiber.

i

Computer experiments were conducted on the

TR

ORI

Ccrossover system for a range of fiber moduli and slide

Vs s A aa

*
N AL SR L, R TR B

factors, and graphical output similar to Figure 35 used

Je

to determine coefficients of wave reflection, trans-

mittance, and diversion. These coefficients are defined

as that fraction of the outward-propagating strain wave

which is reflected backwards by the crossover, the

fraction which passes through the crossover and continues

its outward Propagation, and the fraction which is

diverted and begins pPropagating along the fiber passing
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transversely through the crossover. BAs 2 means of
obtaining these coefficients in spite of the uncertain-~
ties caused by the numerical fluctuations near the
wavefronts, the computer was asked to determine the
average strain level over a portion of the fiber length
away from the oscillation region. In order to guarantee
conservation of energy, the sum of the squares of the
above three coefficients should equal unity; this was

in fact obtained and offers some assurance as to the

accuracy of the numerical values.
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Figure 36. Influence of the fiber modulus on the fraction of stress
wave intensity which isinensmitﬁaithrongh a fiber
crossover, in the absence of fiber-fiber sliding.
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The variation in the transmission and diversion E:

%

cocefficients with fiber modulus is shown in Figure 36. %
%

%

The coefficient of reflection was near 1% over this §
B

, 3

[ 3 L3 \‘Q

range of moduli, but showed considerable scatter. It is %
‘ S

P

seen that the diversion coefficient is of a much larger 3

magnitude than the reflection coefficient, and that it varies

more strongly with the fiber modulus. The major

ain ‘Vns-tﬁm.:ww&‘_"::wﬁ:m

portion of the crossover influence on wave propagation

is thus ascribed to diversion rather than reflection.
This observation is of significance, since an
approximate treatment of fabric impact by Freeston and
Claus [23] sought to predict the increase of strain at
the impact point by considering wave proragation along
a single fiber which reflects a certain portion of the
outward-propagating wave at a series of discrete points

along its iength. The analysis is then reduced to a

bookkeeping procedure in which one keeps track of
inward and outward-propagating waves in each of the
elements between these reflection points. This scheme
leads to a very simple computer code and one would hope

that it could provide at least approximate guidance in

design.
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Figure 37. A comparison of the reflection-only bounce model for wave
propagation in an impacted fabric, in comparison with the
fabric model of this report.

Unforturately, it appears that the reflection-only
model predicts much too high a strain level, except at
times very early in the ballistic event. Figure 37 T
shows the impact-point strain history as predicted by
the reflection-only model for a 400 m/sec impact on a

Kevlar 29 panel with 1575 yarns/m (the curve developed

by the "BOUNCE" code). This prediction is compared
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with that of the more general code described earlier
(the curve labeled "FABRIC"). At very short times, the
BOUNCE code results are likely superior, as they give
strains equal to that developed in a single transversely-
impacted fiber; the Fabric code shows a numerical lag
in the development of strain. The two codes achieve
similar values at near 1.5 microseconds, but after this
the bounce code increases rapidly to unreasonably high
values of strain and thus predicts penetration too
early. It is interesting, however, that the value of
the reflection coefficient chosen by Freeston and Claus
in order to bring their model into line with experiment
was very nearlv that found explicitly in the crossover
study (0.01).

As the slide factor 6, decreases from-umity toward
zero, representing less fiber-fiber friction at cross-

over points, one would expect that the reflection and

i

diversion coefficients would approach zero and that
the transmission coefficient would approach unity. At
oL = 0, there is no coupling between the two fibers
(until the arrival of the transverse kink wave, which
generally occurs later than the arrival of the longi-
tudinal wave). As seen in Figures 38, 39 and 40,

respectively for Kevlar 29 fibers, this trend is

quantified by the results of the crossover computations.
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Figure 39. The influence of fiber-fiber sliding on the extent
to which a portion of the propagating stress wave i
is diverted from the primary fiber to begin pro-
pagating along the transverse secondary fiber.
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Figure 4O. The influence of sliding on the extent of stress wave
intensity propagated beyond fiber crossovers.

In principle, it would be possible to include the
effects of fiber~fiber slippage in the two-dimensional
fabric code by incorporating the formulae of this
present chapter into the general code. Such an in-
corporation, however, would likely render the fabric
code so much slower as to be uneconomic. In addition,
one has at present no real means of assessing the slide
parameter &g needed for the computation. It might be

possible, however, to adjust the viscosity of the
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material model artificially in order to produce results

Y7
.

similar to those causel by fiber slippage. This method

R

e
ACH

7

would be similar to that employed during wave propaga-

tion calculations in geometrically dispersive composites l

AN B

[24]). 1If this approach is pursued in the future, the

MO

data Of Figures 38-40 will be useful in providing

»,

& g

Kt

guidance as to the desired effect. As a final comment

on this work, it may be stated that the FABRIC impact :

VRSN Bk ha R
1p

: code provides a simulation of impact on textile fabrics

:r/ﬁ:'é,v /;\3; s r-w
Sl At 3

which is already of sufficient accuracy that inclusion
: of the fiber crossover effects would not be considered

necessary, at least in the case of tightly woven panels

“;‘:‘g;:‘\’u'? IO
@& 4

which do not exhibit extensive fiber slippage during

3
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=
i

impact.

i
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1 é CONCLUSIONS

—
S

The numerical analyses described in this report
offer a means whereby the designer of personnel armor
may perform computer-aided design and analysis of what
up until now has been an impossibly intractable
problem. Perhaps as useful as the ability to perform
such analyses, however, is the extent to which the

armor designer's intuition of the mechanics of penetra-

tion is enhanced by this tool. These numerical codes
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are easily implemented on any modern computer system,

: and run very economically. They are also extremely

% amenable to user modification in order to permit easy
; implementation of various constitutive laws, fracture
models, etc.

Certain areas still exist, however, for significant
improvement in this treatment. First, the codes are
presently limited to zero-obliquity impact by a
projectile whose lateral dimensions are small compared
with the region of influence during impact. Relatively
minor code modifications would be necessary to include
obligue impacts by large and arbitrarily shaped
projectiles. 1In this manner the influence of projectile
geometry could be modeled. Second, and more important,
is the necessity.to incorpoarate more acccurate models
of material response. As was demonstrated within this
report, rather sophisticated constitutive and
fracture algorithms can be implemented within the
codes with no serious difficulties. More work is
needed, however, to determine the extent to which these

or other models are applicable to fabric response in

Y

the ballistic time frame, and to determine the numerical
parameters to be used in the models.
Two examples of this latter problem may be repeated

here. First, recall that the treatment of nonlinear

Ay Lt
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Alnd

viscoelastic effects was limited not by the code
capability, but by the present lack of understanding

as to which of several possible nonlinear constitutive

laws would most accurately model ballistic response.

Regardless of the model selected, work is required to

obtain experimentally the numerical data required as

'_:5‘;‘"";_ RPN T 1%

input parameters.

L

Second, the ctherwise very successful materials

™

e . Y
o AR R AP A 80 90 AT S O

parametric study described in the report is deficient

Sk otk

in that it predicts that Kevlar 29 should far outperform

1

g BN
i o

Kevlar 49. 1In fact, the two aramid fabrics perform

almost equally well, and some evidence suggests that

o V). “,»'l,-‘

%5

pEl

Kevlar 49 is actually superior. The authors have no }g
doubt that this discrenancy lies not in the wave- %ﬁ
:a«’ﬂ

propagation aspects of the code predictions, but in the §

G

dynamic failure criterion used. Micrographs of

ballistically-fractured fibers show extensive

et o

8,

. v,i‘g 1, ;ﬁl’,’

fibrillation, and evidence exists which suggest that

Kevlar 29 and 49 differ primarily in their extent of

fibrillation during fracture. Experimental work aimed ’

at elucidating the nature of the fracture mechanism
is needed; incorporation of the resulting information

into the penetration codes should follow without

difficulty.

This document reports research undertaken in
cooperation with the US Army Natick Re-

search and Development Command under 108
Contract No. DAAG 17-76.¢.0013 and has

been assigned No. NATICK/TR-80 /021

ip the series of reports approved for publica-
tion.
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APPENDIX A - The FABRIC Code

General. FABRIC is a FORTRAN coding of the
numerical analysis of fabric impact which was
described in Chapter II. 1In its present jorm, the
code is restricted to zero-obliquity impact on an
orthogonal fabric mesh consisting of only one fiber
type. These constraints could be relaxed through
suitable code modifications. The code was developed
and implemented on MIT's IBM 370/168 computer system,
but was later implemented without difficulty on the
NARADCOM computer. The code was run at MIT in a batch
mode, but could easily be modified for interactive
terminal operation: this would likely consist primarily
of adding terminal queuing for data input and graphical
display for output data.

Code input and output. The input data needed by

FABRIC is detailed in a series of comment lines at the
beginning of the code listing. Briefly, these include
specification of the impact velocity and projectile
mass, the fabric idealization (principally the number
of fibers per unit length), the constitutive and frac-
ture properties of the fibers, and such run paramaters

as maximum alloted time and printing increment.
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A typical data input set, for a 300-m/sec impact ,é
on a nylon panel is given below: g

;
Lh Ot

P

et

LINEAR VISCOELASTIC FABRIC (BALLISTIC NYLON)

et i A
S

1.1 300. 19.533 10.16 5280 =2
E?;

0.14 0.0 2. 1.4142 1. x
3 5
c'%‘

100. 0.2 5. E
2

36 1 1 3
&

2

i

Code output consists first of a series of values

R iaE.

relative to the initial conditions which were read in

RN

and which the computer requires in order to begin the

A

recursive. calculations.

o,

HE

€33

After each time increment -(or less often, depending

£+

sty

on the value used for the print skip increment INC), the

code prints-the current values of the field variables :§
at each node in the fabric octant. Currently, these 3%
are simply dumped in order of the calculation scheme as 'ﬁ%
defined by Figure 10. This presentation of data has ,§§

been sufficient for the research studies discussed in
this report, but for production design work, graphical

or some other high-order output would likely be prefer-
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able. The output for the first time increment of the

« above 300 m/sec nylon impact is given below for

illustration. T10 and T0l are the tensions in the two

orthogonal fibers passing through a node as shown in

Figure 9, EPS10 and EPSOl are the corresponding strains,
. VZ is the transverse velocity and XCD and ZCD are the

x- and z-coordinates of the i,j node. This print also

LR

o

A

presents the current time after impact, the current

ST

projectile velocity, the energy lost by the projectile
annd the partition of impact energy into a strain and
kinetic components within the fabric. Clearly, a great
deal of data is made available by the code, and the user
should modify the output format so as to provide the

most convenient display of results for his needs.
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EXECUTION REGINS. ..
1LINEAR VISCOELASTIC FARRIC (RALLISTIC NYLON)

INFUT FARAMETERS:

YARN DENIER» DENYRN (DEN)= 0,52800E+04

INITIAL PROJECTILE VELOCITY VFROJ (M/SEC)= 0+30000E+03
FROJECTILE MASSy FMASS (GM)= 0.11000E4+01

FARRIC PANEL LENGTH XL (CM)= 0.,10160E4+02

ELEMENT LENGTH DXL, (CM)= 0.29029E400

MAXIMUM IMPACT DURATION TMAX (MICROSEC)= 0.20000E+01
STABILITY COEFFICIENTy CDOTM= 0+14142E4+01

INCREMENTAL TIME ITM (MICROSEC)= 0.69116E+00

NUMEERS OF LAYERSy CLYRs= 0.10000E+01

STRAIN WAVE VELOCITY CWAVE(M/SEC)= 0.294698E+04
INITIAL MODULUS OF YARNy EYRN(GR/DEN):= 0.10000E+03
BACK UF ELASTIC SFRING CONSTANT XK (GR/CM/CM)= 0.0

NUMEBER OF NODES ALONG MODEL FANELy JT= 36
NUMERER OF TIME INCREMENT STEFSy NTINC= 2
FRINTING FREQUENCYyINC= 1

ACTUAL FABRIC MASS,FMASSA (GM)= 0.19533E+02

MODEL FABRIC MASS, FMASSM (GM)= 0+16489E402
CRIMF=FMASSA/FMASSM= 0.11704E4+01

UNIT ELEMENT MASS X9.E08 (UNITM)= 0.35877E4+04

HALF UNIT ELEMENT MASS X%.E 03 (HUNITM)= 0.17938E+04

INITIAL FROJECTILE KINETIC ENERGYs XKE (JOULE/GM)= 0.25342E+01

MATERIALS FROFERTIEG?
OFTION--MATERIAL MOLEL» IFT= 3
INITIAL MODULUSy EYRNC(GR/DEN):= 0.10000E+03

VISCOELASTIC MOLDEL---STANDARD LINEAR SOLID FARAMETER
MODEL GLASSY MODULUS (GFID)= 0.10000E+03

MODEL VISCOUS FRACTION= 0, 20000E+00

MODEL RELAXATION TIME(MICROSECONDS)= 0.,50000E+01

RUFTURE STRAIN OF INDIVIDUAL FIRERyEFSE= 0+14000E+4+00
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Program Requirements. In its present form, the

FABRIC code is self-contained, needing no external
software support. All its subroutines, for instance,
are contained within the listing given below. One
qualification to this statement however, is the inclu-
sion of a call to Subroutine UERTST within the nonlinear
equation-solving subroutine ZNOLNR. UERTST is an error-
handling routine available through the proprietary
"International Mathematics and Statistics Library"
{IMSL). 1If IMSL is not available at the user's location,
the call to UERTST could be removed with little risk:
no error-handling capability was needed during any of

« the computer experiments described in the body of this
report.

FABRIC needs no tape or disk support; all compu-
tations are performed directly within core. Core
requirements and run times are dependent both on problem
specifications and on the computer system, but by way
of illustration some parameters observed during a typi-

cal run on the IBM 370/168 system will be‘mentioned.
During an impact simulation of a Kevlar 29 single layer

at 300 m/sec, the computed time-to-penetration was

116
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42.87 /Lsec. The panel was idealized as having a
fiber spacing of 0.3175 cm, and the time step for
optimum code stability was 0.32234 ‘/Léec. A total of
133 time increments was therefore necessary for the
run, with each time increment involving an additional
node relative to the previous step. The total run

time for this job was 1.089 minutes ($12.92 at weekend
rates), and a total of 182 kilobytes of CPU core was
required. When this same problem was run at NARADCOM,

3 min 50 sec of CPU time was required, which illustrates

the system dependency of such job parameters.
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FLOW DIAGRAM AND LISTING

‘
/ Read Problem Parameters: %
MoV Mg, %, den ) f%
eb'xk'tmax’ o, # layers %;

ipt (.eq. 1,2,3, or 4)

sl

gg

e

/ﬁead Material Properties :

ipt =1 : EO'ElEZ'E

3
=2 : E,b
=33gl>\l't

1l
o
.

EllEzlAl “ 14

Compute Auxilliary Parameters:

c =yfkE

At = ( Ax/C)/ &L

Y

Print Output Data

————
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Initialize Arrays:

Yj,k (k-1)dx

set velocity, tension

strain energy at

node g,k to zero

i,k = 1,40

- -

Begin Time Loop

Vz(l,l) = Vp

Space Loop

New Projectile Velocity

Eq. 26,27

IPrint Field Varigbles |

loop until

t. ge. tmax

orxr

€ .ge. éb
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Space Loop

N - Aot

(In subroutine BNDRY if i = j)

; !

compute new velocities

B &w@%&ﬁﬁmﬁm“'%ﬁmﬂﬁmm@ﬁmmgﬂgﬁ

R SR

.

Eq. 20-21

!

compute new coordinates

Bq. ‘?

compute element strain

£ g oyt O 3 b A R e AT A

A AR T BN Sl P MR Wta

3 SIREGHIG

Eq. 23-24

o

compute element tension

{subroutine TENSN)

Eq. 25,40,46

!

compute kinetic and

 Semprve—

t

strain energies

: Eq. 29,30
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APPENDIX B - The XOVER Code

General. XOVER is the FORTRAN program written to
carry out the calculations described in Chapter IV
of this report. It is identical in concept to the
FABRIC code, differing primarily in the dimensionality
of the problem. XOVER is essentially a treatme: .. of
transverse ballistic impact on @ single fiber as
described earlier by Roylance [18], but it has been
modified to include a second fiber, transverse to the
first, which receives its loading from the motion of
the first (primary) fiber. The code is made more
complicated than the single-fiber case by the necessity
of allowing motion in all +t+hree directions for the
secondary fiber, and in computing the initial values of
‘ the secondary fiber in terms of the primary fiber
motion. As described in the text, allowance is made
for slippage of the secondary fiber along the primary.

Code requirements. As was true for the FABRIC

code, XOVER :equires little hardware or software
support. At present, the .code includes a call to an
MIT library subroutine PRTPLT for the purpose of
obtaining a rough plot of the nodal variable values

on the system line printer. This subroutine call could
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be removed without sffecting the performance of other

parts of the code. For a typical run, in which two

£
3

crossed Kevlar fibers were impacted at 300 m/sec, the
job run time was 0.305 minutes and 170 kilobytes of

core was reserved.

S e A 2
ot R 0 R0k AP ST

Definition of program variables. XOVER is

conveniently described by means of a listing of the

S A Xl T
i

principal program variables: (* denotes input data)

Gkt b gy
APYETL

6

A 8.826 x 10~ (dt/dl) ;

CROSS* Initial crossover position (fraction of XL1) 2‘3
0J// Wavespeed (m/sec) E%
DEN* Fiber denier g%
DL Length increment (cm) %é

= i DT Time increment (sec) %

f?’ E1(J), E2(J) Strain at jth node in primary and secondary g

fiber

%} g%ggggg;' Strain at previous time increment

%% . EMAX* Maximum strain permitted

;? EEMAX Maximum strain in fibers

%i % ‘ G* Instantaneous modulus (gm/den)
IPLOT* .EQ. 0 if no printer plot is desired

I1,12,1I3* Node numbers at which plot desired (I3 on
secondary)

T
LR IR

5

B T Y o o ek

XAt
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e e TR e, SRR e
e = 7 A g e R L R R R T R S LA
: Jx Crossover node on primary fiber »%
; JIX Initial crossover node ;§
KMAX Maximum number of time increments é7
LPSKIP* Length print skip 3
LTSKIP* Time print skip ko
NLINC* Nunber of length increments on primary ¢ ?
fiber §
PMASS* Projectile mass (gm) . %
PVELOC* Projectile velocity (m/sec) §
g
SLIDE* Slip factor (l-no slip, 0-no friction) %
TAU* Viscous relaxation time (sec) %
3
TITLE* Alphanumeric title (80 characters max.) o
g%sg;' Tension in primary and secondary fibers ?5
N (gm/den) H
T1OLD (J) , . . 0
72) LD (J) Previous tension (gm/den) B
! TMAX* Maximum time (sec)
g;gg;' L-component of velocity in primary and
secondary fibers (m/sec)
V1i{(J), - :
V2 (3) Y-component of velocity
VLAMDA* Viscous fraction (0-elastic, l-purely

viscous)
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ko,
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Wi(J), _ .

W2 (J) Z-component of velocity

XL1, XL2 Half-length of primary and secondary

fibers (cm)

X1(J3), .

X2 (J) X~coordinate of jth node on primary and
- secondary fibers

Y1(J), _ s

Y2(3J) Y-coordinate

z1(J3), - ;

22 (J) Z-coordinate

Note that in its present form, XOVER is written
explicitly for viscoelastic material response of the
standard linear solid type. For elastic fibers, the

user should set VLAMDA to zero and G to the Young's

2
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bR AL

modulus; TAU could be any nonzero .value. The variables

4

e

required by the code are indicated as input information

and are specified in the above list by an asterisk; an

example of a typical input data set is given below.
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EXAMPLE :

VELOCITY STUDY, V = 300 m/sec KEVLAR 29

1.0E+06 300 20. 10. 0.5 1.0
1500 550 0.14-0.4 0.
100 5 5 287E 0.05
1 25 75 25

1) 204a TITLE
2) 6E10.3 PMASS, PVEL@gC, XLl1l, XL2, CR@SS, SLIDE
3) 4E10. DEN, G. TAU, VLAMPA

4) 3I 10, 2E 10.3 NLINC, LPSKIP, LTSKIP, TMAX, EMAX

5) 41 10 IPL@T, I1, I2, I3

Typical Output. Typical output from the XOVER code

for impact on two crossed Kevlar 29 fibers at 300

m/sec is given below:
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2 Do 37 ¢

174 sL Sc 4 = SNOIWdI Lvla

66 = SINIWIaONI dWIL dJdwlN WiwliVw
b9 = JJ{H ddAuSSial

48 90-ulul 'y = lHaWid8INL dnld

J4S/W ¥ eLvby = ddduddavam

Ly = AUVJHCIuS AI LaUOH daBhub

t0L = AdVW1lY¢ NI SIdu’ safnlN

WD 0G+adid®y = LNAWIEINL HudNal

USU'y = NIVUIS RiAiX¥n

JAS Hu=aLdl D = 3hld diwlita

vb 2 dULOVa dads Jnzo

b = BuiJIV oINS wnlde

0L - SINAWJEOHL ieHud ] adumbll

UL = ROUILD¥Za SuLdsSsiA

ddo wu=dEnL*y = dWwie NullVaVilaa
NdQ/RD 0°06S = SuTuGIWN SHO4dVeIVLSK]
V'udal = B4INAA dduid

viv't = duidida JAllS

(AdVNIEd 40 NGIEDVLA) wus'y = LNIOd ddhusSvau
WO 0°0L = dadld AdVUHCDIES dv HLYNa1~dTVH

KD v0°0Z = dduld XaVklad dv HudAdI-dTVH
4570 0*Jut = ALID0T4A ITILO&LCE

SRYLY Lu+d0)e®0 = SSVN dllisalved

6 dVTA3N D45/K vut= A ‘Auben Auloliaa
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