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PREFACE

The work reported herein was conducted by the Arnold Engineering Development
Center (AEDC), Air Force Systems Command (AFSC), at the request of the Air Force
Rocket Propulsion Laboratory, AFSC. The results of the research were obtained by ARO,
Inc., AEDC Division (a Sverdrup Corporation Company), operating contractor for the
AEDC, AFSC, Arnold Air Force Station, Tennessee, under ARO Project Numbers
V34S-R9A, V34S-B3A, V32S-11A, V325-51A, and VF449. The final project manager for
AFRPL was Lt. Eric Lund, and Captain Stanislaus L. Ludwig was the final Air Force
project manager for AEDC. The data analysis was completed on May 25, 1979, and the
manuscript was submitted for publication on March 13, 1980.
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1.0 INTRODUCTION
1.1 PROGRAM BACKGROUND

Extensive work has been devoted to the development of infrared detection systems for a
variety of orbital surveillance functions. Various thrusters are used aboard satellites for
attitude control and station-keeping purposes, and interest in condensation phenomena
within the plumes of these thrusters was stimulated by the realization that gaseous plume
constituents could condense into conglomerates of larger particles which could ultimately
pass within the field of view of the infrared detection system. These conglomerates could
affect the satellite-borne sensors by several mechanisms:

1. The conglomerates can a) emit or b) absorb electromagnetic radiation within the
spectral region to which the infrared detection system is sensitive.

2. The conglomerates can provide large electromagnetic radiation scattering
centers which can scatter radiation to the detector from a source normally out of
the field of view.

As a result, the sensor’s background noise can be increased, false target information can be
provided, and the sensitivity of the detector can be decreased.

In FY73 initial experimental studies of plume condensation were begun under the Air
Force Rocket Propulsion Laboratory (AFRPL) CONSCAT Program. The objectives of this
program were to determine the amount of Rayleigh scattered radiation from the
homogeneous nucleation of nitrogen (N,) in a supersonic flow from a conical nozzle for a
known incident radiant energy at a particular visible wavelength. Infrared scattering was to
be inferred by using the Rayleigh scattering relations (Refs. 1 through 3).

The axial profiles of Rayleigh scattered intensity were in good agreement with the
intensity levels expected for an isentropic, uncondensed N, expansion for low reservoir
pressure and the dimensionless axial position x = x/D, where D is a characteristic throat
diameter for the gas source. The scattered intensity showed a subsequent sharp increase with
X at low-to-intermediate reservoir pressures, which was interpreted as indicating that
condensation onset was occuring. With continued increasing X, the scattering signal went
through a maximum and then decayed. This behavior was interpreted as indicating
condensate growth followed by cessation of the condensation process. An analytic method
was developed to calculate condensation and cluster growth. Knowledge of the experimental
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scattering results enabled selection of initial nucleation conditions for the calculation such
that the calculated properties of condensed Na nozzle flow such as gas density, temperature,
spatial locations of onset and cessation of condensation, and Rayleigh scattered intensity
were in satisfactory agreement with the experimental results. Condensate mass fractions of
10-2 or less produced experimentally observable increases in the rotational temperature of
the gas. However, no noticeable change in the monomer number density was detected.
Estimates of condensate cluster diameter (=100 A) supported the validity of the application
of Rayleigh scattering for the study of the condensation process in expansion flows.

1.2 OBJECTIVES

It was concluded in Ref. | that in order to develop an a priori condensation calculation
procedure for a wide range of flow conditions one must have knowledge of the scaling laws
of condensation for flow source geometry, reservoir conditions, and molecular parameters.
Consequently, the CONSET Program was formulated with the objective of determining
experimentally the onset and growth properties of condensate clusters in typical exhaust
plume flow fields and the dependence of the condensation process on nozzle geometry,
reservoir conditions, molecular parameters, and flow composition. The program was
initially divided into three task areas. The first task was to investigate the effects of variation
of reservoir pressure and temperature, throat diameter, and nozzle expansion angle on the
spatial laws of condensation onset and growth for Na flowfields. The second task was to
extend the condensation scaling law study to other species such as argon (Ar), oxygen (0,),
carbon monoxide (CO), nitric oxide (NO), carbon dioxide (CO2), ammonia (NH3), water
vapor (H20), and hydrogen chloride (HC1), as well as some binary mixtures of these species.
The third task was to investigate the condensation process in both an actual thruster plume
and a simulated thruster plume. The actual thruster to be used was a 0.l-1bf
monopropellant hydrazine engine.

The experimental investigations were conducted using four noninterfering,
nonperturbing flow diagnostic techniques. Laser-Rayleigh scattering was used to
characterize the distribution and growth of clusters as well as condensation onset. Laser-
Raman scattering was used for measurement of plume species number density and
temperature in the higher density, near-field region of the expansion, and electron beam
fluorescence was used for measurement of N, gas density and temperature in the far field of
the expansion. The mass spectrometer probe was used for far-field measurements of the
monopropellant thruster relative species concentrations.
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1.3 RAYLEIGH SCATTERING TECHNIQUE

The basic equations and rationale for the application of Rayleigh scattering to the study
of condensing gas flow fields have been given in detail in Refs. 4 and 5. Therefore, only a
brief summary need be given in this report.

For an incident laser beam of wavelength A\, and intensity I, focused within a flowing
pure gas sample of number density n with species polarizability «, the scattered intensity, I,
which is normalized by I, is given by

I = Kna2/a? ey

in which K is a coefficient containing transmission and calibration factors. For a scatterer of
radius ““a’ which is characterized by bulk properties, it is known that « is proportional to
a3, which indicates the sensitivity of Rayleigh scattering to scatterer size. Assuming the
condensing flow field to be composed of a collection of gas phase monomers and molecular
clusters, or i-mers, where i is the number of molecules per cluster, the single Rayleigh
scattering intensity with polarization vector parallel to the incident beam’s plane of

polarization is
vy - § ()Y 2
- EI(:: (z) @

where n, is the reservoir number density of the flow field. The scattered intensity I'(l)
includes the further normalization provided by the scattered intensity from a collection of
monomers of number density n,.

For an uncondensed, isentropic expansion,

I'u)=<}) - I°(1) 6]

Super- and subscript zeros denote isentropic and reservoir conditions, respectively. The axial
variation of I°(ll) is provided by the method-of-characteristics solution (MOCS) (Ref. 6) for
nozzle flow and by the Sherman-Ashkenas theory (Ref. 7) for sonic orifice flow.
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Deviation of the measured 1’ (Il) from 1°(ll) indicates, for these studies, the existence of
condensation. A direct measure of the existence of clusters within the flow is given by the
scattering function, f, which is written as

-
[ < (ny 4)

" (n)
Although the scattering function, f, is an ambiguous measure of the simultaneous increase in

the mean cluster size and condensate mole fraction, the axial variation of f as a function of
reservoir conditions and nozzle geometry yields empirical condensation scaling laws.

1.4 RAMAN SCATTERING AND ELECTRON BEAM FLUORESCENCE

Laser-Raman scattering and electron beam fluorescence were the diagnostic techniques
used for plume static property measurements in the near and far fields, respectively. The use
of the electron beam-induced fluorescence radiation resulting from inelastic electron-
molecule collisions for the measurement of N, gas density and temperature in flow fields has
been discussed and demonstrated in detail in Refs. 5 and 8. Briefly, a high-energy beam
of electrons produces excited electronic states upon impact with N> molecular species. By
radiative decay these states produce a fluorescence, and, assuming no collisional quenching
effects, the intensity of the fluorescence is directly proportional to the N3 gas density. The
electron beam technique is normally used at total gas number densities of less than 105cm-3
(Ref. 9) to avoid collisional quenching effects, and for that reason the technique is general-
ly a far-field plume diagnostic. The molecular fluorescence consists of vibrational-rotational
band structure within the electronic transition systems, which, upon spectral dispersion,
yields the temperature of the rotational energy mode (Ref. 8).

As a result of nonresonant, inelastic collisions between laser beam photons and gas
molecules, radiation is scattered from the beam at frequencies other than that of the laser
light. This phenomenon, spontaneous Raman scattering, is discussed in detail in Refs. 10
through 13, and details of application to measurement of species number density and
temperature are fully discussed in Ref. 14. Briefly, a high-energy laser beam interacts with
gas molecules and causes changes in the rotational and vibrational energy levels. As a result,
the Raman scattered radiation consists of molecularly specific pure rotational lines as well as
vibrational-rotational band structure from which rotational and vibrational temperatures
can be determined. The intensity of the lines and bands is also directly proportional to the
molecular species number density. Because it is a scattering process, the Raman intensity is
not subject to collisional quenching effects; therefore, the Raman technique is useful in the
near-field plume. However, the low Raman scattering cross section ( = 10-2cm?2/sr) generally
prevents use of the technique for far-field measurements.

10
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1.5 MASS SPECTROMETRIC SAMPLING

The direct-sampling mass spectrometer probe developed at AEDC (Ref.15) was used for
species mole fraction measurements on the axial centerline of the monopropellant hydrazine
thruster. In reality, the probe is merely a miniature molecular beam system which uses a
quadrupole mass spectrometer as the detector. Immersing the probe in the exhaust plume of
a rocket engine forms a molecular beam of exhaust products which is directed into the
sampling volume of the mass spectrometer ion source. Subsequently, ions are created,
extracted, and directed through a mass discriminator and then into an electron multiplier.
The result is a set of measurable signals that are proportional to the number densities of
molecules in the exhaust plume which (after ionization) possess particular charge-to-mass
ratios. The interpretation of the signals is dependent upon a reliable calibration, a
knowledge of the additional daughter mass peaks (cracking patterns) created in the ion
source from plume parent constituents, and the ability to maintain the very stringent
vacuum conditions necessary to operate a molecular beam system.

2.0 DESCRIPTION OF EXPERIMENTAL SETUP FOR SCALING
LAW AND SIMULATED THRUSTER STUDIES

2.1 RESEARCH VACUUM CHAMBER

The experiments reported herein were conducted using the 4- by 10-ft Research Vacuum
Chamber (RVC), a stainless steel vacuum chamber nominally 4 ft (1.3 m) in diameter and 10
ft (3.3 m) long. The chamber, shown in Fig. 1, is constructed in two sections: a movable
section approximately 4 ft (1.3 m) long and a stationary section approximately 6 ft (2 m)
long. An additional spool piece 1.5 ft (0.49 m) long was used to provide eight
instrumentation ports.

Initial pumping capabilities were supplied by a 300-cfm mechanical pump for rough
pumping and a 6-in.-diam oil diffusion pump with a baffle refrigerated by liquid nitrogen
for intermediate pumping. Pumping during experiments was provided by a finned, gaseous
helium cyroliner at 20 K with a liquid nitrogen cryoliner radiation shield located in the
stationary section of the RVC. The blank-off chamber pressure achieved was approximately
1077 torr.

2.2 GAS FLOW SOURCES
The flow generators were sonic orifices and conical nozzles attached to a GTE-Sylvania

heated source. This assembly was mounted on a motor-driven, three-dimensional traversing
mechanism located in the movable section of the RVC. The sonic orifices were 1.325, 3.2,

11
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and 3.05 mm in diameter with a diameter-to-thickness ratio greater than 20. The conical
nozzles had a nominal throat diameter and nozzle length of 1.0 and 5.334 mm, respectively.
The four nozzle half-angles were 14.5, 10.5, 9.0, and 5.63 deg. Schematics of the sonic
orifice and conical nozzle are shown in Fig. 2. The conical nozzle for the simulated thruster
studies was fabricated to duplicate the nozzle of the monopropellant thruster. The half-
angle was 15 deg, and the throat diameter was 0.03 in. (0.76 mm). The length from the
throat to the exit plane was 0.356 in. (9.04 mm), and the expansion ratio was 55.3.

The gas reservoir was instrumented with standard, calibrated pressure and temperature
gages. Gases were supplied from high-pressure bottles, and two 25.0-nanometer (nm) filters
were installed in the inlet line to minimize effects of particulate matter.

2.3 OPTICAL SYSTEM

An argon-ion laser operating at a wavelength of 514.5 nm provided excitation for the
Rayleigh/Raman scattering measurements. As shown in Fig. 1, the incident laser beam
polarization was rotated along the x-direction, expanded, and focused onto the chamber
centerline. Light scattered from the focal volume was collected by an f/2 lens system,
collimated, and focused onto the input slit of a 0.85-m, double-grating spectrometer. For
the Rayleigh scattering measurements, HN-22 Polaroid® material was placed in the
collimated light path, and a polarization scrambler was placed immediately in front of the
spectrometer entrance slit. During scaling law studies the entrance slit aperture setting,
collection optics magnification, and laser beam focusing together resulted in observation of
a 1.5-mm-long, 50- to 100-pm-diam cylindrical scattering volume. For the simulated thruster
measurements a 2.75-mm long, 600-pm-diam cylindrical scattering volume was observed
using an f/4 collection lens system.

The radiation detector was a thermoelectrically cooled photomultiplier, and the output
was processed by an Ortec® photon-counting system for either digital display or strip chart
recording.

For the electron beam measurements, the laser dump and laser input aperture assembly
shown in Fig. 1 were removed and replaced by an RCA Model VC2126V4 electron gun
assembly and cylindrical Faraday cup assembly, respectively. The beam was injected into the
chamber and flow field through a 1.0-mm-diam orifice which provided the necessary
pressure drop to maintain the electron gun pressure at less than 6 x 10 torr under nominal
chamber vacuum conditions. For number density and temperature measurements the beam
current was 1.0 mA at 30keV energy. The collection optics/spectrometer/data acquisition
system was the same as that used for the laser scattering measurements.
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3.0 DESCRIPTION OF EXPERIMENTAL SETUP FOR
MONOPROPELLANT THRUSTER STUDIES

3.1 RESEARCH YACUUM CHAMBER

Figure 3 is a schematic of the monopropellant thruster installation in the RVC. For the
thruster experiments the RVC was reconfigured by using the 4-ft-long movable section to
house a 37-liter capacity, liquid helium-filled cryopump. The section was placed directly in
line with the fixed section housing the cryoliner. Another movable section, approximately 3
ft (0.99 m) long, was connected to the spoolpiece, and it was in this section that the thruster
was mounted on the same traversing table as was used for the scaling law experiments.

3.2 THRUSTER

The thruster used in the experimental program was a Hamilton Standard REA/CTS
10-18 monopropellant hydrazine thruster which employed a 30-35 mesh Shell 405 ABSG
spontaneous catalyst with a preloaded, packed bed design. The exhaust was provided by a
conical nozzle with a 0.76-mm-diam throat and an exit area ratio of 55. The thruster was
operated over a thrust range from 0.44 to 1.10 N (0.1 to 0.25 Ibf) with a nominal 0.14-sec-
on/9.86-sec-off duty cycle using initial catalyst bed temperatures of 367 K (200°F), 478 K
(400°F), and 589 K (600°F). The engine was always operated without its heat shield. A
complete description of the engine, its properties, propellant system, and method of
operation may be found in Ref, 16.

3.3 DIAGNOSTIC SYSTEMS

Exhaust plume diagnostic systems employed included a mass spectrometer probe, a
quartz crystal microbalance (QCM), a laser Raman/Rayleigh scattering system, an electron
beam fluorescence system, and a particle collection network. The QCM and particle
collection network were for providing information on the contamination properties of the
exhaust plume rather than for condensation diagnostics; therefore, they are not discussed in
this report.

Figure 4 is a schematic diagram of the special diagnostic instrumentation. Laser
scattering excitation was provided by a conventional mode ruby laser with a pulse width of
approximately 1 msec. The electron beam system was the same as that used for the scaling
law studies. A 0.5-m double grating spectrometer was used for spectral dispersion for both
laser scattering and electron beam measurements. The quadrupole mass
spectrometer/skimmer system was located on the centerline at the axial position 450 < X
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=<650. The probe face was conical with a cone half-angle of 30 deg, and a 15-deg conical
half-angle, pure nickel skimmer with a 0.020-in.-diam orifice was soldered to the probe
body. The forward section of the probe was cooled with gaseous helium at =20 K.

Mass specirometer data were displayed on an oscillograph as well as acquired digitally.
Electron beam and laser scattering data were acquired using a cooled photomultiplier tube
and photon counting. Data processing and initial analysis of all data were performed using
an online PDP-8 computer system with line printer output.

4.0 DISCUSSION OF SCALING LAW DATA

4.1 RAYLEIGH SCATTERING RESULTS FROM THE SCALING
LAW EXPERIMENTS

Figures 5 through 8 show the axial profiles of I'(l) for the N;, O, CO, and Ar
expansions from sonic orifices. Figures 9 through 24 show the axial profiles of I1'(ll) for the
Na, 0,3, CO, NO, HCl, H;0, CO,, and Ar expansions from conical nozzles. Theoretical
predictions as obtained from the Sherman-Ashkenas theory or the MOCS are also shown. It
is observed that the onset of condensation is manifested by a dramatic increase of 1'(ll)
relative to the isentropic prediction. The onset of condensation moves nearer the saturation
point as P, increases or T, decreases, and, with the exception of the region of discontinuity
in the MOCS nozzle calculations, 1'(ll) is in good agreement with the calculated values prior
to condensation onset. Furthermore, with the exception of H>O and NO, it can be seen that
for the lowest P, values or highest T, values the metastable gas sample supports a
supersaturated state for approximately 30 nozzle throat or sonic orifice diameters before
condensing. It is also noted (generally) that the massive condensate growth for the nozzle
flows is rather abrupt, whereas the massive condensate growth region for the sonic orifice
flow is preceded by a gradual deviation from the isentropic prediction. The magnitude of the
Rayleigh scattering intensity in the condensate growth regions is seen to increase rapidly with
increasing P, and to decrease extremely rapidly with increasing T,.

Radial profiles of 1'(ll) for N are shown in Figs. 25 through 27. In Figs. 25 and 26 the
x = 17.35 and 17.9 positions, respectively, are interesting in that two scattering peaks are
symmetrically located off the axial centerline. Similar observations have been reported by
Beylich (Ref. 17) in a study of CO, condensation in a nozzle flow. From Figs. 11 and 19, it is
seen that condensation on the axial centerline has not begun at x = 17.35 and 17.9,
respectively. However, Figs. 25 and 26 show that onset has already begun for r/D,; > 0.
Photographic observations of the §., = 14.5-deg nozzle flow field are presented in Ref. 18,
and the nozzle, a dark, isentropic expansion zone, and a bright, hemispherical onset zone
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are clearly evident, as is filimentary structure within the condensation growth region. These
photographs substantiate the radial profile results of Figs. 25 and 26. The radial profiles of
Fig. 27 are interesting because they demonstrate the sensitivity of the condensation process
to reservoir temperature. An increase of 67 K in T, has completely suppressed the off-axis
condensation at X = 17.9. At X = 55.4, off-axis peaks can again be observed, however.

Figures 28 and 29 are axial variations of I’ (#) for 95-percent N»/5-percent CO, and
90-percent N»/10-percent CO, mixtures, respectively. As demonstrated in Ref. 19,a simple
computation of reservoir partial pressures and reference to the pure gas axial variations of
I'(l) for the appropriate nozzle reveal that 1'() has been greatly enhanced relative to the
level expected based on the pure gas expansions. Saturation locations, X,, are indicated in
Figs. 28 and 29 for both CO; and N,. Obviously CO; is the initiator of the onset, because N5
is not supersaturated in the region of onset. These results demonstrate the important role of
mixed clusters in gas mixture condensation processes.

Figures 30 through 32 demonstrate the axial variation of the scattering function, f, for
N, gas for conical nozzles (Figs. 30 and 32) and a sonic orifice (Fig. 31). These plots are
rather typical of all the f-versus-x plots obtained in the scaling law study for those gases
which exhibit condensation onset external to the nozzle. It is noted that in these
semilogarithmic plots the f values for a given P, (or T,) and nozzle (or orifice) form straight
lines, and it is the intersection of these straight lines with the x-axis that is used to determine
the onset of condensate growth. These axial onset locations are denoted by x;. The rapid
increase in f following onset is obvious, as are the orders of magnitude increase in f as the
reservoir pressure increases or reservoir temperature decreases.

The vapor pressure data compiled in either Ref. 20 (Hilsenrath et al.) or Ref. 21 and the
isentropic solution for each particular flow field investigated are used to obtain the
saturation values of pressure and temperature, P; and T, respectively, as well as similar

values at consensation onset, denoted by Py and Ty. The isentropic supersaturation pressure
ratio, (sp)°, is defined as

(se )° = PS/PG (&)

and the isentropic degrees of supercooling, (sg)°, are defined as

(s5) - T.~Tg (6)
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It should be noted that the supersaturation ratio defined here is not the normal definition of
the ratio of the pressure at onset to the equilibrium vapor pressure at onset, Pg/P,g. The
definition of Eq. (5) is used because of the unreliability of P4 values at the low temperatures
at condensation onset in the expansion flows of these experiments. The (sz)°® values are
orders of magnitude lower than the normally defined supersaturation ratios for the flow
fields investigated here. These supersaturation parameters are illustrated in Fig. 33, which is
a diagram of the expansion process.

Table 1 is a tabulation of the saturation, condensation onset, and supersaturation
parameters for the various gases and sources. It is readily observed that X, approaches X, as
P, increases or T, decreases, and supercooling is seen to range approximately from 30 to
200 K.

4.2 DESCRIPTION OF SCALING ANALYSIS
Empirical functional relations of f with X, X9, Py, To, and D or D, were obtained (Refs. 22

and 23) using the results of the axial variation of the scattering function data. These
variations in the condensate growth region were represented by

% = Rget )

and by graphical determination it was found that

b « P ™1 ®)
B« (P2D g )" T4 ©)

The quantity Deq is D and (D, cot 6.,)C(y) for sonic orifices and conical nozzles,
respectively. The expression C(y) is a parameter dependent upon specific heat ratio and is
defined in Ref. 24. The sonic orifice scaling constants are tabulated in Table 2, and the
conical nozzle constants are given in Table 3.

By using the well-depth and range parameters, € and o, respectively, of the Lennard-

Jones 12-6 intermolecular potential function, reduced onset pressures (Pg) and
temperatures (T;) have been determined using

Py - Pg/le o) (10)
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Ty = To/le/0) (1

where k is Boltzmann’s constant. The reduced onset parameters are also given in Table 1,
and the intermolecular potential constants which were used are given in Table 4. The loci of
condensation onset are shown in Figs. 34 through 37. The common locus for the
homonuclear diatomic molecules N, and O, is observed. In addition, the difference between
the Ar results and the results for N; and O; is noted to illustrate the effect of specific heat
ratio upon the location of the onset locus. Not unexpectedly, the loci of polar diatomics such
as CO and HCI are found to be substantially different, and this illustrates the inadequacy of
the two-parameter Lennard-Jones potential for describing the interaction of polar
molecules. As is well known, the interaction of polar molecules includes important
contributions from dipole-dipole forces, and the three-parameter Stockmayer potential is
more accurate for this description.

4.3 CORRELATION OF STATIC PROPERTY MEASUREMENTS, RAYLEIGH
SCATTERING MEASUREMENTS, AND THEORETICAL PREDICTIONS
WITH CONDENSATION

Figures 38 and 39 show the measured axial variation of I’(}l), n(N;)/n,, and T/T, for
two P, values for N> nozzle flows. Number density and temperature were obtained using
laser-Raman scattering and also by electron beam fluorescence. A more complete exposition
of the static parameter measurements of N> and other gas species’ flows can be found in
Refs. 5, 14, 18, and 19, but the measurements shown in Figs. 38 and 39 well illustrate the
results of the measurements. As shown in Figs. 38 and 39, the monomer number density is
little affected by the condensation process; however, the static temperature can be increased
by as much as 50 per cent above the isentropic prediction due to the heat release in the
condensation process. It is also observed that the increase in temperature correlates very well
with the onset of condensate growth. Not shown in either Fig. 38 or 39 are the far-field
measurements of n(N,)/n, made with the electron beam system; however, these results are
given in Ref. 4 and show excellent agreement with the MOCS prediction.

Predictions of Rayleigh scattering intensity, condensate mass fraction, and static
temperature generated using the liquid drop, monodisperse condensation model are also
shown in Figs. 38 and 39, as well as in Fig. 19. This model is described in detail in Ref. 18.
Briefly, this calculation assumes the condensing flow field to be inviscid, adiabatic, and one-
dimensional, with no mass transfer across the stream tube boundary. The gas and
condensate are assumed to obey the perfect gas relation. The condensed phase is assumed to
be of the form of monodisperse spherical drops or particles which are characterized by bulk
properties and to be in the free molecular flow regime relative to the uncondensed phase.

17



AEDC-TR-80-16

Condensate-gas velocity slip effects are ignored, and the condensate growth rate is
determined by gas-condensate interaction only. The mass accommodation coefficient is
assumed to be unity. Initial size and number density of spontaneous nucleation sites are
adjustable parameters and may be selected so as to reproduce as closely as possible the
experimental Rayleigh scattering results. For the predictions shown in Figs. 38, 39, and 19
the initial nucleation sites were chosen to be dimers with mole fractions on the order of 1073,
and the starting point for the calculation was the saturation point, X.. The model can make
adequate (+50 percent) predictions for pure gas expansions of the Rayleigh scattering
intensity variation and the location of the condensation onset if the initial nucleation sites
are assumed to be dimers with a concentration equal to the equilibrium dimer mole fraction
at saturation. The predictions of the model are observed to agree more closely with the
experimental measurements as degree of condensation increases. As can be best observed in
Fig. 38, the model-predicted temperature increase that results from the condensation process
agrees well with the experimentally determined temperatures. Condensate mass fractions on
the order of 10-2 to 10-! are predicted for the cases shown in Figs. 38, 39, and 19. As noted in
Figs. 38 and 39 the number of molecules per cluster is 100, and the size of the clusters is on
the order of 10 A.

Also shown in Figs. 25 and 38 are measurements of the Rayleigh scattering
depolarization ratio, p, which is defined as

p=1"W/T°(n) (12)

The axial value of p (Fig. 38) does indeed decrease rapidly from its room temperature
monomer value as the cluster growth region is entered. Furthermore, the radial value of p
(Fig. 25) decreases rapidly as the off-axis cluster growth region is entered. This behavior is
intuitively expected, because as the linear N molecules cluster together they should form
more spherical scatterers that contribute a larger portion to the scattered intensity than do
the monomers.

5.0 DISUCSSION OF THRUSTER AND SIMULATED THRUSTER DATA
5.1 THRUSTER RESULTS
The large quantity of data accumulated during the thruster experiments is presented in
detail in Refs. 16 and 25; therefore, only data pertinent to the phenomenon of condensation
will be discussed here. Rayleigh scattering levels, 1'(l), measured in the aged and new

thruster plumes are compared in Table 5 for two test conditions (2A and 2S; see Ref. 16).
The scattering function, f, was evaluated for a y = 1.2 plume expansion and is tabulated in
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Table 5. As observed in Table 5, the f factors for the aged thruster are approximately a
factor of 50 greater than those for the new thruster. It is believed that the high Rayleigh
scattering levels for the aged thruster are a result of raw hydrazine traveling down the axial
centerline. This belief is supported by the high mass deposition rate measured on the axial
centerline by a QCM, particle sampling measurements, and radial Rayleigh scattering
profiles which reveal the extremely high levels only on the axial centerline (see Ref. 16).

The Rayleigh scattering levels for the new thruster are an order of magnitude or more
greater than expected for a noncondensing, particulate-free plume expansion as can be
observed in Tables 5, 6, and 7 and in Fig. 40, which demonstrates the axial variation of 1’ (})
for the new thruster. It can be seen in Fig. 40 that the measured values of I1'(ll) exceed the
predicted values by a magnitude which increases with increasing X, and this is well illustrated
by the axial variation of the scattering function, f, plotted in Fig. 41 for thruster test
conditions 2S and 2C. Both of these conditions possess an axial coordinate dependence
which exhibits a rapid increase at the lower X values and becomes asymptotic at f = 100 for
the far-field plume. Although the 1'(ll) values for the thruster were obtained using
calibration factors appropriate for pure N, the analysis in Ref. 25 has shown that f should
be zero with an uncertainty on the order of + 0.1 for a noncondensing plume expansion of
N3, Hz, and NH; with 1.2 < y < 1.3. The possible presence of either particulate matter or
raw fuel droplets cannot explain the Rayleigh scattering results, for if such flow-borne
particulates followed the expansion, then f would be approximately constant; if the material
were concentrated along the axial streamtube, then f would increase continually with x.

The Raman measurements of temperature and total density in the plume are also shown
in Fig. 40; assuming the expansion to have frozen vy and chemistry and using the isentropic
relation between temperature and total number density, a plume -y of 1.22 is determined
(Ref. 25). The Raman and mass spectrometric measurements of species mole fractions
enable the inferential determination of a plume y of approximately 1.30 (Ref. 25). These
results demonstrate that the ¥ = 1.3 expansion curve should be followed but that y = 1.22is
the actual heat capacity ratio. This situation is indicative of significant condensation in the
flow field, and Fig. 13 of Ref. 18 shows a similar expansion history and behavior regarding
N, condensation. Therefore, the Raman and mass spectrometric measurements as well as the
measured magnitude and variation of the Rayleigh scattering function support the
contention that significant condensation is occuring in the thruster plume.

Using the results tabulated in Tables 6 and 7, one can scale I'(ll) as a function of
reservoir pressure and temperature for an initial catalyst bed temperature of 478 K and for X
= 45.2. The scaling is

I'(1) « P25 TS
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with a correlation coefficient of -0.994. Unfortunately, a change in initial catalyst bed
temperature with the average reservoir parameters remaining the same destroys the scaling
as shown in Fig. 42. Therefore, it is not possible to use only the reservoir parameters P, and
T, for scaling of I’(ll) in the thruster plume.

5.2 SIMULATED THRUSTER RESULTS

In an additional effort to investigate the large levels of Rayleigh scattering in the thruster
plume, the thruster plume expansion was simulated in the RVC. A nozzle assembly was used
that duplicated the nozzle of the thruster, and a set of three gas mixtures was prepared by the
AEDC Chemical Laboratory to simulate the thruster plume composition. The first two
mixtures were prepared to simulate a plume y of 1.2, and the third mixture simulated a
plume v of 1.25. The first mixture was a binary mixture of N> and NH;. The NH; mole
fraction was equal to that predicted by CONTAM 11 for the thruster test condition 2S, and
the N1 mole fraction was equal to the sum of the H, and N> mole fractions predicted by
CONTAM Il for the 2S condition. For the second mixture, the Na, H,, and NH3; mole
fractions were those predicted by CONTAM 11 for test condition 2S. The mole fractions of
N2, Ha, and NHj3; for the third mixture were determined using Fig. 90 of Ref. 16.

The mixtures were permitted to flow steadily through a heated source/nozzle assembly,
and the reservoir pressure and temperature were set to equal the values of the 2S condition as
given in Ref. 25. The flow could be maintained for approximately 60 sec when H; was a
mixture constituent before the RVC pressure reached a level of 10 mtorr.

The results of these experiments are shown in Fig. 40 and are listed in Table 5 for
X = 78.5. It can be observed that the y = 1.2 and 1.25 mixutres of Na-H,-NH; have
Rayleigh scattering levels that bracket those observed for the new thruster. The f factor for
the v = 1.2, N>-H>-NH; mixture is approximately a factor of 2 higher and the f factor for
the y = 1.25, N>-H,-NH3 mixture is approximately a factor of 2 lower than the f factor for
the new thruster at the 2S condition. An axial variation of Rayleigh scattering for the y =
1.2, N2-H2-NH3 mixture is also shown in Fig. 40, and it can be observed that the behavior is
very similar to that observed for condensation in the pure gas and binary mixture expansions
in the scaling law experiments. As X decreases, the Rayleigh scattering is observed to
approach the level expected for an isentropic, noncondensing expansion. It is speculated
that the same behavior would have been observed for the thruster if reliable measurements
could have been made for X < 20.

Analysis of the intersection of NoHy4, H.O, NH3, and N» vapor pressure curves withy =
1.2 and 1.3 isentropes for test condition 2S reservoir conditions (Ref. 25) shows that NH;
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saturation will occur from X = 9.5 to 34 and that H,O and N,H, will saturate much earlier.
The previous experiments with N>/CO, mixtures indicate that the H,O and NoH,
condensate will provide nucleation sites that will bring about NH3 condensation near the
saturation point. This would explain the lack of a pronounced peak in the Rayleigh
scattering axial profiles for the thruster and the presence of the peak for the simulated
mixture profile. It is therefore believed that the high levels of Rayleigh scattering in the new
thruster plume are a direct result of condensation of gas mixture species in the flow field.

6.0 SUMMARY
6.1 CONCLUSIONS
A multi-year experimental program for characterization of the onset and growth of
condensation in expansion flow fields with regard to nozzle geometry, reservoir conditions,
molecular parameters, and flow composition has been completed. This report has reviewed
the experimental results; a number of conclusions can be made and are listed as follows:

1. The scaling law for the pure gas scattering function can be written as

f « PMo T.™1 D2 / cot 0, (Conical Nozzles)

f « Pllo D™2 (Sonic Orifice)

2. The scaling law for axial centerline location of condensation onset for pure
gases can be written as

-mg
&0 « (P?2 Deq) Ty

3. Intermolecular parameters were used for normalization of the pure gas
condensation onset pressure and temperature values, and the condensation
onset loci were plotted in the P*-T* plane. These loci represent the practical
limit to which a pure gas can be expanded (supercooled) before massive
homogeneous condensation begins. The loci are as follows:

Py - 7.12x 1073 T;4-24 Sonic Orifice 1
Argon

P% = 2.10% 1073 T53-66 Conical Nozzles
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P - 3.68> 10-2']‘55-94 Sonic Orifice
Nitrogen (N),
\ Oxygen (O3)
Py = L02. 10'2'1‘55.16 Conical Nozzle
o508 ] Carbon
Py - 149> 107 Ty™ Conical Nozzle - Monoxide (CO)
_ Carbon
P";) _ 8.63~ 103 '1';5'95 Conical Nozzle Dioxide (CO»)
‘0.2 ) ' Hydrogen
Pf) = 512 Tpl0-2 Conical Nozzle ' Chloride (HCI)
o1 ’ Water
P"é = 0191 Ty Conical Nozzle '. Vapor (H;0)

4. The condensation onset loci results imply that classes of molecules well
described by the 12-6 Lennard-Jones potential will have common onset loci
depending upon the specific heat ratio. However, polar molecules better
represented by the 12-6-3 Stockmayer potential do not show common onset loci
for common specific heat ratios.

5. A liquid-drop, monodisperse distribution condensation calculation for flow
fields of pure gases was developed. This model can make +50-percent
predictions of the axial variation of observed Rayleigh scattering by choosing
the initial nucleation sites to be dimers and by choosing the initial dimer
concentration to be the equilibrium dimer concentration at the saturation
point. Furthermore, the model predicts the observed static temperature rise
caused by condensation within +20 percent. Cluster size and condensate mass
fraction are also predicted by the model.

6. Rayleigh scattering radial profiles of pure gas flows have shown that off-axis
condensation has significantly preceded the axial phenomenon.
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7. Rayleigh scattering axial profiles of binary gas mixtures(N2/CO; and NH3/N5)
indicate that the nucleation of the easily condensable species (CO, and NH3)
will provide nucleation sites that will cause N3 condensation near the saturation
point rather than permitting the large degrees of supercooling observed for the
pure gas expansion.

8. Rayleigh scattering measurements as well as Raman scattering and mass
spectrometric measurements indicate a significant quantity of condensate in the
new (refurbished) thruster plume, and this was subsequently verified by
Rayleigh scattering measurements in a particulate-free simulated thruster
plume,

9. The Rayleigh scattering intensity from the new thruster plume scales as P;2-5T3
for a given initial catalyst bed temperature in dramatic contrast to the scaling
observed for pure gases. Because of a significant dependence upon initial
catalyst temperature, Rayleigh scattering intensity cannot be scaled using only
reservoir parameters P, and T,,.

10. Monopropellant thruster plumes can be successfully simulated using gas
mixtures for the purpose of studying condensation phenomena in the plume.

6.2 RECOMMENDATIONS FOR FUTURE WORK

The primary objective for future work concerning flow-field condensation should be to
develop an accurate computer code for predicting the effects of condensation in expansion
flows. It is recommended that the development of the code proceed in the following fashion.

a. The present liquid-drop, monodisperse condensate growth model developed at
AEDC for predictions of pure gas axial centerline condensation effects should
be expanded for the purpose of prediction of off-axis condensation. The results
should be compared to the experimental results of this report.

b. The classical capillarity theory for calculation of the number density of initial
nucleation sites and their size should be added to the condensate growth model
developed at AEDC. The results should be compared to the experimental results
of this report to quantitatively assess the shortcomings of the classical
condensation theory.
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10.

c. An alternate approach for calculation of the number density and size of initial
nucleation sites should be developed, and it should be strictly kinetic in nature.
That is, the kinetic formation of dimers, trimers, etc. must be calculated and
subsequently used with the condensate growth model. Again, the results should
be compared to the experimental results of this report to assess the validity of the
model.
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Figure 11. Axial variation of I’({l) for all N,
reservoir pressures investigated,
6y = 14.5 deg.
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Table 1. Saturation and Condensation Onset Parameters
R RVILERX ENE RN /,}5 Por | T Qe Por | Tor PE T | (s9)° ()",
deg mm K atm torr K torr K K
Nz N/A 1.325 291 7.44 2.65 20.6 58.0 10.8 | 0.29 16.9 1.49 x 10_: 0.178 71.1 41,1
292 5.59 2.7 12.9 55.5 12.5 ]0.125 14.9 6.44 x 10 0.157 103.3 40.6
289 3.72 2.8 7.0 53.0 14.2 0.063 13.3 3.25 x 10_7 0.140 125.4 39.7
290 2.79 2.95 4.9 51.0 16.4 0.0314 11.9 1.62 x 10-7 0.125 156.0 39.1
3.05 285 5.24 2.6 14.6 56.4 9.64 ] 0.274 18.2 1.41 x 1.0-6 0.191 53.3 38.2
3.05 285 3.95 2.7 9.11 54.0 11.754§ 0.110 15.1 5.67 x 10_7 0.159 82.7 38.9
5.63} 1.00 284 6.19 9.3 16.5 56.0 21.9 0.162 15.1 8.35 x 10-7 0.159 101.9 40.9
286 4,13 9.4 9.4 54.0 27.7 0.045 11.7 2.32 x 10"7 0.123 209.0 42.3
285 2.97 9.5 5.8 51.0 | 31.5 | 0.0176 9.9 9.07 x 10"8 0.104 329.5 42.1
283 | 2.07 | 9.7 3.6 | 50.0 | 39.5 {o0.0064 | 8.0 | 3.30 x 107 | 0.084 | s63.0 | 42.0
9.0 1,00 285 7.85 9.8 22.5 57.5 22.6 0.459 18.8 2.37 x 10_6 0.198 49.1 38.7
283 6.03 10.1 15.5 56.0 | 24.8 | 0.275 17.4 1.42 x 10_6 0.183 56.7 38.6
286 5.23 10.6 12.8 55.0 27.2 0.16 15.6 8.25 x 10_7 0.164 81.3 39.4
287 3.77 12.0 8.0 53.0 31.4 0.0579 12.9 2,98 x 10"7 0.136 140.0 40.1
283 2.9 12.2 5.6 51.5 37.0 0.0222 10.6 1.14 x 10-7 0.112 250.0 40.9
281 2.01 12.4 3.4 49.5 41.0 0.0106 9.5 5.46 x 10-'8 0.0999 323.0 40.0
10.5 1.016 286 7.85 8.5 20.8 56.7 24.4 0.309 17.02 1.59 x 10-6 0.179 67.3 39.7
323 10.5 12.0 54,7 32.4 0.0990 13.89 5.10 x 1()-7 0.146 121.2 40.8
350 12.6 8.34 | 53.2 | 40.0 |o0.0461 | 12.08 | 2.38 x 1077 | 0.127 | 180.9 | 41.1
400 14.7 4.60 51.3 50.0 0.0211 11.04 1.10 x 10-7 0.116 218.0 40.3
14.5 1.04 288 10.2 6.3 27.1 58.5 22.4 1.19 23.9 6.13 x 10_6 0.251 22.7 34.6
287 6.80 6.6 18.3 56.8 27.6 0.40 19.1 2.06 x 10_6 0.201 45.5 37.5
286 5.05 7.1 11.3 54.8 3L.5 0.138 15.4 7.11 x 10_7 0.162 81.9 39.4
284 3.40 7.4 7.0 52.8 37.8 0.046 12.5 2.37 x 10-7 0.132 152.2 40.3
285 2.66 7.9 4.85 | 51.0 | 42.0 | 0.0235 11.2 1.21 x 1.0_7 0.118 206.0 40,1
285 1.93 8.3 3.1 49.4 —_— —— — —_— — —— —_—
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Table 1. Continued
Gas 8472°| D oF Dpo| T Por Qs Par Ter Qe P Tgs Pk T3 (se)° (8g)%
deg mm K atm torr K torr K K
02 N/A 1.325 283 3.72 2.24 16.6 65.0 8.65 | 0.256 19.8 9.66 x 10:;’ 0.169 64.8 45.2
285 2.79 2.3 11.1 63.5 10.3 |0.116 17.2 4.38 x 10 0.146 95.7 46.3
283 1.85 2.38 8.18 | 61.4 12.5 10.051 14.4 1.92 x 10-7 0.123 160.5 47.0
281 1.0 2.55 3.05 58.0 —_— — — - — - ——
10.5 | 1.016 294 6.12 7.1 25.7 66.2 | 22.6 |0.338 19.4 1.27 x 10--6 0.165 76.0 46.8
325 8.4 16.8 64.6 | 25.4 |0.193 18.2 7.27 x 10--7 0.155 87.0 46.4
353 10.0 11.1 62.6 | 30.3 |o0.101 16.6 3,81 x 10-7 0.141 109.9 46.0
501 12.6 6.33 | 60.5 | 40.8 {0.0343 | 13.4 1.29 x 10--7 0.114 184.5 47 .1
291 4.76 7.1 19.2 65.2 { 24.8 [0.168 16.9 6.34 x 10-7 0.144 114.3 48.3
291 3.72 1.3 14.3 63.8 | 25.7 jo.112 16.2 6.23 x 10—7 0.138 127.7 47.6
co N/A 1.325 291 3.72 2.65 9.4 58.0 5.75 ) 0.81 29.1 —_— —_— 11.6 28.9
284 2.79 2.6 7.7 57.5 5.96 { 0.57 27.5 —— -— 13.5 30.0
285 1.31 2.79 3.2 54.0 6.05] 0.147 27.2 —— — 21.8 26.8
283 0.66 2.9 1.38 | 52.0 — ] - —_— — —— —-— -—
283 0.26 3.1 0.46 | 49.0 —] — — — —_— —— —
10.5 1.016 285 4.76 7.9 14.9 59.3 | 20,5 | 0.402 21.1 2.07 x 10--6 0.211 3741 38.2
324 10.0 8.69 | 57.4 | 27.8 | 0.107 16.5 5.52 x 10—7 0.165 81.2 40.9
353 11.7 5.70 | 56.1 33.6 {0,0525 14.8 2.71 x 10-7 0.148 108.6 41.3
402 14.4 3.24 54.1 40.0 0.0279 13.9 1.44 x 10-7 0.139 116.1 40.2
283 3.72 8.0 11.5 58.3 | 23.5 | 0.167 17.5 8.61 x 10-7 0.175 68.9 40.8
284 2.79 8.2 7.76 57.1 26.8 | 0.073 15.1 3.76 x 10—7 0.151 106.3 42.0

91-08-4.L-0a3av



Table 1. Continued

cas | D172'| P P2 Tor | o fz‘s Por | Tor Qe Por | Tor Py 1 |@ge | 0%
deg mm K atm torr K torr K K
Ar N/A 3.20 280 | 0.987 1.18 19.5 64.0 3.141 0.84 18.2 2.68 x 10-6 0.152 23.2 45.8
281 0.658 1.20 12.0 62.0 3.56] 0.375 15.5 1.19 x 10_6 0.129 30.9 46.5
277 | 0.461 1.22 8.0 60.0 3.88] 0.176 13.6 5.61 x 10-7 0.114 43.9 46.4
275 | 0.329 1.24 5.6 59.0 4.951 0.056 9.56 1.78 x 10-7 0.0798 | 96.5 49.4
276 | 0.263 1.25 4.25 ——— —-— — -— —-— —-_— —_— —
10.5 1.016 291 | 0.987 | 0.37 17.3 63.5 | 11.0 | 0.816 18.6 2.6 x 10-6 0.155 21.2 44.9
324 0.41 12.2 62.3 | 13.8 | 0.415 15.7 1.32 x 10_6 0.131 29.4 46.6
356 0.45 9.36| 61.1 | 15.9 | 0.270 14.2 8.6 x 10“7 0.119 34,7 46.9
405 0.48 6.34| 59.9 19.0 | 0.0656 9.32 | 2.09 x 10“7 0.0778 | 96.6 50.6
288 | 0.658 0.37 10.8 62.1 13.1 0.333 14.9 1.06 x 10-6 0.124 32.4 47.2
286 | 0.461 0.38 7.13] 60.1 14.6 | 0.169 13.2 5.38 x 10_7 0.110 42.2 46.9
CO2 10.5 1.016 279 | 0.789 1.55 112.14} 173.2 6.1 4.74 69.22 1.50 x 10:: 0.338 23.66 103.98
0.658 1.58 89.96] 171.2 6.9 | 2.97 64.17 | 9.43 x 10 0,313 30.12 107.03
0.526 | 1.63 68.67{ 168.1 7.761 1.79 59.43 1 5.68 x 10"6 0.29 38.36 | 108.67
0.395 1.65 48.83 ] 165.4 8.721 1.01 54.13} 3.21 x 10'-6 0.264 48.35 111.27
0.263 1.73 29.61] 161.3 10.4 | 0.425 47.43 1.35 x 10-6 0.231 69.67 113.87
0.132 1.83 12.92{ 155.8 - —— -— —_— — —_— ———
0.066 1.95 5.64 | 149.0 —-— —-— _ —_— —_— — ——
324 | 0.789 | 2.05 60.17] 167.9 10.8 1.2 54.43 | 3.81 x 10-6 0.266 50.14 113.47
355 | 0.789 | 2.43 40.951 164.0 | 13.0 | 0.784 52.9 2.49 x 10—6 0.258 52.23 | 111.1
HC1 10.5 1.016 301 0.072 1.86 2.66 | 127 11.4 | 0.0975 | 48.8 1.09 x 10—7 0.149 27.3 78.2
297 | 0.145 | 1.60 7.0 | 134 11.2 | 0.210 49.3 2.35 x 10—7 0.150 33.3 84.7
299 | 0.333 1.33 19.3 142 9.8 | 0.650 53.82 | 7.26 x 10-7 0.164 29.7 88.2
299 0.459 1.25 28.6 145 9.7 0.922 54.12 1.03 x 10'-6 0.165 31.0 90.9
303 | 0.678 1.13 44.0 149 8.8 1.72 58.8 1.92 x 1()-6 0.179 25.6 90.2
298 | 0.333 1.33 19.3 142 10.1 0.539 53.34 | 6.02 x 10“7 0.163 35.8 88.7
323 1.42 13.5 139 10.8 | 0.525 54.91 5.86 x 10-7 0.167 25.7 84.1
374 l 1.60 7.0 134 12.2 | 0.395 58.34 | 4.41 x 10_7 0.178 17.7 75.7
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Table 1. Concluded

Gas 01/2’ D or D, To’ 1,o’ Qs Ps’ Ts' ;l\e Pe' Tge Pg Tg (se)° (’(;)'
deg mm K atm torr K torr K K

NO 10.5 1.016 | 289 | 0.340 | 4.25 4,71 92 9.05 | 0.805 54.9 1.89 x 10"6 0.419 5.84 37.1
0.680 | 4.0 10.7 ] 95 4,89 | 6.9 83.8 1.62 x 10"5 0.64 1.55 11.2

1.02 3.9 17.8} 97.5 | -— — — —_— —_— — —

1.36 3.8 24.6 | 99 —— -_ -— —-— —— —_— ———

1.70 3.75 31.0 | 100 —— -_— - —— -— —-— ——

2.04 3.7 39.5 | 101 — —-— —_— —-_— — _— —

H20 10.5 1.0t6 | 390  0.071 | 0.178 | 16.9 ] 290 12.2 0.0902 | 81.5 4.28 x 10"8 0.215 187.4 208.5
384 ] 0.137 }<0.08 43.5 } 309 8.7 0.371 95.6 1.76 x 10-7 0.252 117.3 213.4

394 [ 0.199 |<0.08 61.5 | 315 8.0 0.647 | 102.8 3.07 x 10"7 0.271 95.1 212.2

391 ] 0.139 |-0.08 41.0 | 308 8.4 0.418 99.7 1.98 x 10_7 0.262 98.1 208.3

386 ) 0.081 | 0.146 | 21.0 | 295 10.8 0.137 85.7 6.49 x 10"8 0.226 153.3 209.3

388 | 0.678 |<0.08 ¢ 360 354 7.0 3.03 108.6 1.44 x 10"6 0.286 118.8 245.4

409 1 0.138 | 0.109 | 31.0} 301 8.5 0.395 |102.7 1.87 x 10-'7 0.270 78.5 198.3

407 | 0.130 | 0.115| 29.5 | 300 8.8 0.343 | 100.9 1.63 x 10_7 0.266 86.0 199.1

404 0.121 0.115 28.2 | 300 9.5 0.269 96.2 1.28 x 10-'7 0.253 104.8 203.8

404 | 0.114 | 0.129 | 25.5 ] 298 10.3 0.215 92.9 1.02 x 10_7 0.245 118.6 205.1

405 | 0.107 | 0.141 } 23.5( 296 11.2 0.167 88.7 7.93 x 10“8 0.233 140.7 207.3

386 | 0.878 |<0.08 |[525 363 7.3 3.52 105.4 1.67 x 10-6 0.277 149.1 257.6

386 { 0.475 [<0.08 | 220 342 8.7 1.29 96.1 6.11 x 10-'7 0.253 170.5 245.9

389 | 0.225 [~0.08 78.0 § 320 6.6 1.19 112.8 5.43 x 10-'7 0.297 65.5 207.2

390 | 0.157 |<0.08 45.1 ] 309 8.9 0.407 96.3 1.93 x 10-7 0.254 110.8 212.7
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Table 2. Sonic Orifice Scaling Constants

Gas D, m0 m2 m3
mm
—— I NN SN

NZ 1.325 2.94 1.84 0.25
N2 3.050 2.93 1.84 0.25
02 1.325 2.98 2.05 ——
Cco 1.325 2.87 —_— -
Ar 3.200 3.03 1.96 -

Gas Dt’ O, » m m, m, m, m,
mm dég

N, |1.04 14.5 | — — | = - -
NZ 1.00 9.0 2.98 - 2.10 | 0.25 —
N2 1.00 5.63 | —— - - — -
N2 1.016 10.5 -— 9.59 | —- e 2.12
02 2.98 9.33 1 1.06 | —- 2.03
Ar 3.21 11.0 1.73 | -— 1.6
co 2.87 10.5 1.95 | — 1.97
002 2.8 13.6 1.73 | —- 2.75
HC1 2.67 | 15.4 0.48 | ——- 0.83
H,0 2.69 | — | 0.64 | — | -
NO { ! 2.46 | == | === [ ——- —
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Table 4. Lennard-Jones 12-6 Intermolecular Potential Constants

Gas | T = e/k, €, D’ =g, p’ = 8/0’3,
K ergs cm torr
N, 95.05 | 1.31 x 10°'% | 3.70 x 1078 1.9 x 10°
o, 117.50 | 1.62 x 10°* | 3.58 x 10°° 2.65 x 10°
co 100.20 | 1.38 x 10°% | 3.76 x 107% 1.94 x 10°
co, | 205.00 | 2.83x 107" | 4.07 x 107° 3.15 x 10°
Ar 119.80 | 1.65 x 10°'% | 3.40 x 1078 3.14 x 10°
NO 131.00 | 1.81 x 10°"* | 3.17 x 1078 4.26 x 10°
HCL | 328.00 | 4.53 x 10 % | 3.36 x 10°° 8.96 x 10°
H,0 | 380.00 | 5.26x 107'* | 2.65x 107° 2.11 x 10°
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Table 5. Comparison of Rayleigh Scattering Data for the Aged,
New, and Simulated Thruster Plumes

Test

MOCS

. MOCS _ A
Plume Condition D n/no, y=1.2 n/no, vy=1.3 £ (vr=1.2) X
Aged 28 1.04 x 1071 | 5.40 x 107 1.1 x 1074 1.92 x 10° | 78.5

Thruster
New 25 2.08 x 1073 3.75 x 100 | 78.5

Thruster

Simulated _

Thruster, | 2% | 6.06 x 107 1.11 x 10?

y = 1.2 9~ NH,
Simulated 28, -3 1
Thruster, N ~NH_-H 3.94 x 10 7.19 x 10

y = 1.2 o~ NH5—H,
Simulated
Thruster, | . _NES;H 1.29 x 1073 Y \ 2.29 x 10° Y
y = 1.25 | Np~NHs-H,

Aged 24 4.06 x 101 | 1.03 x 1073 1.3 x 103 3.93 x 102 | 28.5

Thruster
New 24 8.14 x 1073 | 1.03 x 1073 1.3 x 1073 6.90 28.5

Thruster
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Table 6. Rayleigh Scattering Intensity, New Thruster Plume,
Test Period No. 25, x = 45.2

AEDC-TR-80-16

Conrgiiion - ( H ) TO ’K no ? cm— Yn7n1 2
25 3.71x 10> | 653 | 7.00x 10'? | 4.3 x 107%
24 3.61 x 10 | 710 | 9.67 x 10"°
28 3.06 x 107> | 739 | 1.186 x 10%°
2c 2.78 x 10> | 757 | 1.326 x 1020
1A 5.07x 107> | 679 | 1.013 x 1020
1c 2.49 x 1070 | 730 | 1.372 x 10%° |
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Table 7. Rayleigh Scattering Intensity, New Trhuster Plume,
Test Period No. 26

A Test Test Test Test Test Test
X Condition Condition Condition Condition Condition Condition
25 24 2B 2¢ 1A 1c

278.5 | 3.35 x 10°% | 3.55 x 107* | 2.32 x 107 | 1.96 x 10™* | 2.48 x 107™% | 2.17 x 107%
211.8 | 5.36 x 107 | 4.12 x 1074 | 3.71 x 107% | 3.80 x 107™* | 4.11 x 107% | 2.35 x 107%
145.2 | 8.29 x 1074 | 6.38 x 107% | 5.97 x 107™* | 4.81 x 10™* | 6.51 x 107 | 3.95 x 107%
111.8 | 1.57 x 1073 | 8.47 x 107 | 1.26 x 1073 | 9.67 x 1074 | 1.28 x 1073 | 5.95 x 1074
78.5 | 2.08 x 1072 | 1.21 x 107> | 1.50 x 10> | 1.68 x 1073 | 1.99 x 107> | 1.17 x 1073
45.2 | 3.83 x 1073 | 3.10 x 107> — — — _—
28.5 | 1.12x 1072 | 8.14 x 107> | 8.15x 107> | 5.75 x 107> | 7.98 x 10> | 4.80 x 107>
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AEDC-TR-80-16
NOMENCLATURE

Radius of scatterer
v -dependent parameter

Computer code for predicting plume contamination from liquid
monopropellant and bipropellant rocket engines on spacecraft surfaces

Sonic orifice diameter
Conical nozzle throat diameter

Equivalent diameter defined as D for sonic orifices and C(y) D, cotf.,
for conical nozzies

Rayleigh scattering function defined by Eq. (4)
Condensate mass fraction

Relative Rayleigh scattering intensity defined by Eq. (1)
Laser beam intensity

Relative Rayleigh scattering intensity, normalized to the relative
Rayleigh scattering intensity of a gas sample of number density n,,
polarized parallel and perpendicular to the plane of polarization of the
incident laser beam, respectively

Constant in Eq. (1)
Boltzmann’s constant
Method of characteristics solution

Scaling constants

Number density of gas species and i-mer number density, respectively
N> number density

Reservoir number density

Local total number density

Reservoir pressure
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P
Pvﬂ

Py, Py

QCM

RVC

Saturation pressure

Equilibrium vapor pressure at condensation onset

Pressure at condensation onset and Py normalized by the intermolecular
potential parameter €/¢*

Quartz crystal microbalance

Research Vacuum Chamber

Radial distance from flow-field centerline
Isentropic supersaturation

Isentropic degrees of supercooling

Static temperature

Reservoir temperature

Saturation temperature

Temperature at condensation onset and Ty normalized by the
intermolecular potential parameter e/k

Axial position in the flow field; normalized axial position in the flow
field (8 = x/D for sonic orifices and X = x/D, for conical nozzles)

Axial location of saturation

Axial location of condensation onset

Electronic polarizability and i-mer electronic polarizability, respectively
Specific heat ratio

Well depth of Len;lard-Jones intermolecular potential function
Expansion half-angle of conical nozzle

Wavelength of incident laser beam

Depolarization ratio of Rayleigh scattering

Range parameter of Lennard-Jones intermolecular potential function
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