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e m e i mPREFACE I
The mathematical modeling of aircraft structures (for instance by finite elements) is

used, from the very beginning of a design, to determine the flutter boundaries and the
dynamics of the aircraft. Once the prototype is built, extensive vibration tests take place
in order to compare the theoretical prediction with the actual natural modes and frequencies.
Discrepancies then appear, especially for wing-store configurations, that must be explained
and the mathematical model must be modified to fit the experimental results.

The authors addressed two different aspects of the problem in their presentations at
the Spring 1980 Meeting of the Structures and Materials Panel in Athens: In his paper,
Zimmermann proposes adjustment algorithms for improving the theoretically obtained
flexibility and mass distributions of a structure by dynamic or ground resonance tests.
On the other hand, De Ferrari, Chesta, Sensburg and Lotze deal with the non-linear
behaviour of wing-store configurations and its analytical representation. They draw clear
conclusions on the excitation amplitudes at which flutter could occur.

The two papers provide a very important contribution to the understanding of some
difficult aeroelastic problems and will be very useful to the NATO community.

G.COUPRY
Chairman,
Aeroelasticity Sub-Committee
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OPTIMIZATION OF THE MATHEMATICAL MODEL
OF A STRUCTURE

by
Helmut Zimmermann

Vereinigte Flugtechnische Werke GmbH, D-28oo Bremen,
Germany

SUMMARY

For the design and certification of aircraft and spacecraft structures the dynamic
and flutter behaviour must be well known. Usually the response of such a structure will
be represented as a series of the eigenmodes of the structure. The eigenmodes of such a
structure will be measured in ground resonance test, but not for all configurations for
which calculationlresults are necessary. Therefore, calculated modes are used for repre-
senting the dynamic and flutter behaviour of the structure, which can be improved by the
results of the ground resonance test. In this paper adjustment algorithms are presented
for improving the theoretically obtained flexibility- or stiffness- and mass distribution
of such a structure by dynamic test or ground resonance test results. The necessary
assumptions for the adjustment and the mathematical formalism for the adjustment proce-
dure are given. Experiences gained and adjustment results obtained with these algorithms
are reported on concentrating especially on one which uses only the measured and calcu-
lated eigenfrequencies. Proposals for improvements on the procedures and in the algorithms
are also given.

LIST OF SYMBOLS

A dot over a letter means differentiation with respect to time,
an underlined letter means a vector or a matrix,
a dashed vector or matrix means its transpose,
values of the "Theoretical model" are without index,
values of the "Test Model" have a superscript index M,
values of the "Adjusted Model" have a superscript index K.

M Inertia matrix A Matrix of eigenvalues

K Stiffness matrix ar  Adjustment parameters

C Flexibility matrix W Eigenfrequency in radians

Cq Flexibility matrix of a substructure A,G Weighting matrices

Z Vector for the displacement Unit matrix

Amplitude of the vector for displacement n number of degrees of freedom of

f Vector of input forces the "Theoretical Model"

X Eigenvector m number of measurement points

X Matrix of the eigenvectors N number of degrees of freedom of
the "Test Model"

jj Eigenvalue Kronnecker Delta

p parameter for perturbation

1.o INTRODUCTION

For design and certification of aircraft and spacecraft structures, the dynamic and
flutter behaviour must be well known. For describing the dynamic behaviour of a structure
the stiffness or flexibility, the structural damping and the mass distribution and the
environmental input are necessary. The stiffness and mass distribution of a structure can
be calculated more or less exactly from the design drawings. With these calculated distri-
butions the eigenmodes, the eigenfrequencies and the generalized masses of the conserva-
tive structure can be determined. Using these eigen-vibration-characteristics and the
estimated overall structural damping values the dynamic response of the structure to
different environmental inputs can be calculated by the so-called mode methods. With the
same methods the dynamic stability problems e.g. flutter are solved.Therefore the eiaen-
vibration characteristics must be improved by measurements results. Measured eigenvibra-
tion characteristics are obtained e.g. by the ground resonance test. This test 'ill be
done only for certain weight configurations. By improvement of the stiffness- or flexi-
bility- and the mass distribution e.g. by measured eigenvibration characteristics the
characteristics for the confiqurations which are not measured are also improved.
In the past the calculated characteristics were adjusted to the measured ones by trial
and error methods. In the last ten years a number of papers were published which give
mathematical procedures for adjusting the eigen-vibration-characteristics. Most of them
present procedures for improving the calculated stiffness and mass-distribution and only
such procedures and the experienceswhich were gained with these will be discussed in this
paper.



Two different test results are used to improve the stiffness or flexibility and mass
distribution of the structure:

1. the measured eigenvibration characteristics of the structure

2. the measured dynamic response of the structure on a well-defined
environmental input

But first the basic conditions and the assumptions made for adjusting theoretical values

to measured ones will be mentioned.

2.0 THEORETICAL AND EXPERIMENTAL MODELLING

To get the mathematical equations for calculating the eigen-vibration characteris-
tics of a structure many abstractions must be made in the theoretical model. (see Fig.1):

Continuum

Physical Model

Mathematical
Model

Numerical computation] Analytical treatment

(Discretization)Ft

Fig.: 1 Theoretical Model

Usually the present structure, for which the vibration characteristics are to be
estimated, is a continuous one. A "Physica. Model" for estimating the vibration charac-
teristics of the structure must be extracted by neglecting all details which do not
significantly influence the vibration estimation in the required frequency domain.
The "Mathematical Model" will be deduced from the "Physical Model" by a mathematical
description of this model neglecting unessential details. This "Mathematical Model"
is usually solved by numerical computation, which means that a discretization of the
continuous structure in the form of a lumped mass system or development of the solution
vector in a finite series of well fitted functions must be performed.

The "Test Model" starts with the same "Continuum" as the "Theoretical Model".
(see Fig. 2):

Continuum

Measurement
System

Physical
Model

Mathematical
Model

FParameterIdentification

F Test Model



3

But this "Continuum" is changed by environmental influences, such as measuring and
exciting systems, and therefore this will be called the "Measurement System". As in the
"Theoretical Model", a "Physical Model" and a "Mathematical Model" are abstracted from
the "Measurement System". With this "Mathematical Model" it is possible to do the
"Parameter Identification" which means the ascertainment of either the eigenvibration
characteristics or the frequency response. A comparison between the theoretical results
and the parameter identification results is meaningful only if the "Physical Models" of
the "Theoretical"and the "Test Model" are the same. With these assumptions it is possible
to improve the theoretical results by parameter identification using the test results.

In this parameter adjustment the disturbances acting on the test model or the
sensors play an important role. In Figure 3 the procedure necessary for parameter adjust-
ment is represented. A main point of this paper will be deriving the parameter adjust-
ment algorithms and comparing the possibilities not only for the vibration characteris-
tics such as eigen-frequencies, eigen-modes and so on but also for the structural para-
meters such as stiffness and masses.

FaContinuum]

Test Model oThefretical ateanc

Disturbances'

Parameter Estimated
Identification Vibration

Characteristics

SComparison

P arameter

Adjustment
Algori hm

Fig. 3 o Parameter Adjustment Configuration

3.o MATHEMATICAL DESCRIPTION

3.1 DESCRIPTION OF THE COMPUTATIONAL MODEL

The computational model is the equations of motion of a discretzed elastomechancal
system. The system is linear in the sense of classical elastic theory. The structural/ parameter are assumed to be steady in time and without gyroscopic effects. The structural

/ damping is assumed to be zero or the eigenmodes of the damped system are equal to the
eigenmodes of the undamped system. Therefore, only the undamped system will be considered
since the damped system will produce no additional because of the assumptions above.

The equations of motion are: MZ + K Z = f I

with:

M mass matrix, symmetrical, positive definite, real

K: stiffness matrix, symmetrical, positiv definite or semidefinite, real

Z: vector of the displacements

f : vector of the input forces

n : order of matrices

A dot over a letter means differentiation with respect to time.

An underlined letter means a vector or a matrix.

A dashed vector or matrix means its transpose.



To equation (1) there corresponds the eigenvalue equation

C MXj = AjX (2)

where C - - is the flexibility matrix,
I

X* Z j withwi the eigenfrequency in radians and Xjthe eigenvector.

With A = diagki

X " (XI, .... ,Xn) matrix of eigenvectors and

s =X' M X = I the matrix of generalized masses equation (2) becomes:

X'M C M X = A (3)

The structural matrices, as mass-, stiffness or flexibility matrices of the defined
system, can be represented by the eigenmodes and eigenvalues of the eigenvalue equation
(2) as follows:

mass matrix: M (XX)-1 (4)

inverse mass matrix: M = X X Xi a Xj (5)

stiffness matrix: K (XT'- A' X-' (6)

flexibility matrix: C X A X' a I" XjXj (7)

3.2 COMPARISON OF VALUES OF THE "THEORETICAL" AND "TEST MODEL"

With equation (4) to (7) it is possible to calculate the mass and stiffness matrices
with the measured eigenmodes and to compare the matrices obtained in such a way with the
structural matrices used in the "Theoretical Model". It even seems possible to replace
the structural matrices calculated from the design drawings by the above-mentioned ones,
gained from measured eigenvalues and eigenmodes.

But that is only possible with the following assumptions:

a) The measured and calculated modes must be known at the same
positions

b) There must be a one-to-one correspondence between the calculated
and measured degrees of freedom.

c) The one-to-one correspondence of the measured and calculated
degrees of freedom must be in ascending eigenvalue order.

d) n=m=N

with: n : degrees of freedom of "Theoretical Model"

N : degrees of freedom of "Test Model"

m : number of measuring points of the "Test Model"

These assumptions will be fulfilled very rarely. Nevertheless it is possible to com-
pare the structural matrices derived from measured eigenvalues with the theoretical ones.
This procedure can be found in [i]. Here only the following should be mentioned:
If all the lower eigenvalues are measured the inverse mass matrix and the flexibility
matrix derived from the measured ones give a reasonable approximation because these de-
grees of freedom are dominant in M -1 and C. Therefore, with those assumptions these
values could be used for comparison with the theoretical ones.

For the adjustment procedures shown in this paper only the items a) and b) will be
assumed, which can be obtained very easily.

a) by suitable selection of the calculated points or by suitable interpolation

and

b) by neglecting those degrees of freedom without one-to-one correspondence
between the calculated and measured ones.
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3.3 MATHEMATICAL PREPARATIONS

The "Theoretical Model" desribed by equations (1), (2) and (3) shall be improved
by the measured result of the "Test Model". For this reason the structural matrices
M and K or . have to be adjusted. That is only possible if the structural matrices arefunctions of the adjustment parameters a ; r = 1 .... R. Here some relations are derived,
which are necessary for setting up the a~justment algorithms the scalars and vectors:

6 riand 6U_

6 ar bar

Here the eigenvalue equation will be used with the flexibility matrix. In a more gene-
ral way these scalars and vectors are considered in [2], [3], [4].

From Xit_ Ai = I it follows that:

6- kiMX M X Xi MM 6Xi 0 (9)
bar -- - -

r - 0 (

From (2) it follows that:

6C 6M 6X 6xi x (- M X.i * C •i + A = X - #x X(l)
bar - -br - -- 

6
r 6 0-r - 6*C

6 0r

By premultiplication of (1o) with X1 M and using the transpose of (2) gives:

56,i z X'I. 6g M , 6M! X6aOr _,_M - -Ec~r - 6 a,-'

One simple way of representing -X is to develop this vector in a series of the eigen-
vectors of the system: 60r

6Xi N
60 rij X j (12)

By multiplying equation (Iol X M_ with ji from the left, it follows that:

6C 6M aXi
x, _M _ Xi _C< X, = X M CXi- Xi  (13)

With (12) the right side of (13) will be:

(-Xj*,i )) aij

or:

S"t CXi X- 6
ai 6-r _j LC - r X i (14)

with i j

From (9) and with (12) for j = i it follows that:

2 Xi =- r - (15)

With (14) and (15) the a in (12) are determined.

Equation (11) and (12) give the wanted expressions for:

Hi6xi
bar 6

or

Corresponding expressions can be obtained by replacing the flexibility matrix C with
the stiffness matrix K.
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3.4 PARAMETER ADJUSTMENT ALGORITHMS

There are two different methods for inproving the "Theoretical Model" by "Test Models".
The first is to compare calculated and measured dynamic responses of a dynamic system and
to adjust the mass matrix and the stiffness matrix of the system directly without usina
the eigenvalues of the system. This way of improving the flexibility and mass matrix of a
structural dynamic system corresponds to the problem of measuring loads and improving
calculated loads of an aircraft from its response to known control inputs. These methods
are reported for example in [5) , [6 .

Here a similar method is reported which does not work in the time domain as the
previously mentioned methods but in the frequency domain [7] .

The algorithm is derived from equation (1), with the force f sinusoidal in time.
With f e iwt f and Z = e one obtains from (1):

-w
2 M K) Z = (16)

With Z", 2 the measured and calculated responses respeztivell' of the dynamic
system for different irequencies w , i: 1, ... S , one obtains with the least square
method:

2 ( _ - M )10 (2K _2" M Mi (Or) (17)

With a weighting matrix G assumed to be positive definite; a are the parameters
for adjusting the matrices M and K; S the number of the used exci ing frequencies.

Expressing Z in (17) in terms of (16) one obtains:

(_W? (- M
K
- KK 

)"- )2G i - MK - KK ) -1_ M Min(ar) (18)

Equation (18) means that the parameters ar must be chosen in such a way, that the
expression becomes a minimum.

The second method for improving the "Theoretical Model" by the "Test Moudl" is to
compare calculated and measured eigenfrequencies and eigenmodes and to find algorithms
on this basis. One can obtain cost functions containing measured and calculated frequen-
cies and modes, but those cannot be developed using logic similar to equation (17). Here
two different cost functions shall be mentioned:

The first [8] is:
N[(XK)AXK KY(XM)'AX ] 2 g Min (Or) (19)

ii - - -J i -j

A and G with the elements Oij and gii are weighting matrices assumed symmetrical and
positive definite. The other values are defined on page 4 . The physical dimension of the
expression is power.

The second [9) is:
N" K KK M,2

r ( XJ1 -M) gj (XX 1 ) X M. ( I Min (Or) (20)

Where the g.are the elements of a diagonal weighting matrix assumed to be semidefi-
nite and N t N' N'.

In [4] Natke discusses different cost functions for an adjusting algorithm for dynamic
systems. The different cost functions were compared with respect to computational expense
and other advantages or disadvantages.

A second method for comparing and adjusting calculated and measured eigenfrequencies
and eigenmodes is the statistical system identification [1o] , [11] . Definitions for the
variances of the parameter a of the "Theoretical Model" and variances for the measured
eigenvalues leads to an optikal estimation of the parameters a with the assumption of
normally distributed values for the parameters and normally diltributed measured values.
The latter adjusting algorithm is comparable to that of the cost function but better
founded mathematically.

Several different methods for finding the parameters a , which minimize the equations
or cost functions (18), (19) or (2o) are commonly used. Weli known are the "Steepest
Descent Method" and the "Newton-Raphson Method". For the latter different versions exist.
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If the cost function is denoted by J( a,... OR)' it is necessary for each method
to know the derivatives:

6 J (21)60r r: 1.. .R

and often also the second derivatives:

r~s: 1... R (22)

The derivatives of (21) and (22), can be expressed in terms of

6i and 6Xi
6a, 0a,

The first term is given by equation (11) and the second term by equation (12) in
combination with (14) and (15). Therefore the paper contains all formulas to express the
gradients for a given cost function and with the methods indicated it is possible to ob-
tain the required parameters ar.

Normally the matrices M and K or C are linear functions of ar, the system of equa-

6 J
- = 0 r : I .. R (23)6Qr

is linear in a . By solving this system of equation one obtains a set of the parameters
ar. But equations (11) and (12) show that the eigenvalues and eigenvectors are indirectly
functions of the parameter a . Therefore the actual parameters ar can only be obtained
by an iterative process as shown in Figure 4. This Figure contains the whole mathematical
procedure for adjusting the structural matrices to measured frequency responses or eigen-
values of the dynamic system.

Establish Last
a IEigenvalue and

Costfunction Eigenmode

Spthe Problem Calculation

yes

Eigenfrequencies, -- Cost Function Cost Function 4 factory'
Eigenimodes - Parameter a " i - Conver-/

Mass-and Stiffness Eigenfreuencies

Matrices Eigenmodes

I i: iteration step

Fig. 4: Computational process for Adjusting the Dynamic System to Test Results

4.0 APPLICATION WITH A SPECIAL COST FUNCTION

4.1 MATHEMATICAL INTRODUCTION

For the application of this adjustment method we have used the cost function (19)
with A = M and gij = gi 6ji. With this simplification the cost function in (19) becomes:

J ((111'' 0 , E (XK - g 2 Min (O• ~ im i i = M n ,}

With this simplification we only use the measured eigenfrequencies and not the measured
modes for adjusting the theoretical dynamic system.
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Because of the fact that the mass matrix can be calculated nearly exactly, only the
flexibility matrix C was a function of the parameters ar. That means:

6.M 0 (25)
60r

To find the parameter dependency of the flexibility matrix, we divided the structure
into a number of substructures and multiplied the flexibility matrix of each substruc-
ture with the parameter ar, as:

R

C = E Or Cr r : I R...RV- I - "(26)

The matrices C have the same order as C. Rows and columns are filled up with zeros.
With these assumptigns, we get the following system of equations for determining the pa-
rameters ar.

K _Kagr (27)1: ( X, .i - 0 r : I .. R ( 7

With the assumptions above and taking into account equations (3) and (11), equation
(12) becomes:

g, a.xC.] MXK - . c M K (28)

i' i- )' M__ aw m C, M 0

With the definitions:

B j , X ) M C i RM_ ,i • . X

o : diagonal matrix with the elements g;, i: I... N'

_ : vector with the elements ) , i I ... N'

a : vector with the elements ar f ... R

equation (28) becomes:

(29)
B G Bo - B G _" 0

Equation (29) is a system of R equations for the parameters a . R must be smaller
than N'and also smaller than the number of the structural element1 and their linear inde-
pendent displacements.

The adjustment of the "Theoretical Model" to measured eigenfrequencies is performed
as shown in Fig. 4. For several examples we did not obtain convergence for this procedure.
Therefore we used the parameter perturbation method. We replaced the measured eigenfre-
quencies XM by an expression equal to:

X (3o)

P

where p is a natural number and s takes sequentially the values 1, ... ,p . For s = 1 the
value of (3o) is close to A' and for s = p the value of (3o) is equal to X .

With a suitable p we obtained a mathematical convergent procedure according to the sche-
matic in Fig. 4 with a second iteration process for s * ,paccording to equation (3o).

In this paper the flexibility matrix is adjusted. For the stiffness matrix there
exist a similar procedure. By definition of Xi = d1 - in the cost function (24) for the
flexibility matrix the lower elgenfrequencies are more highly weighted. For a statically
undefined structure the stiffness matrix is more advantageous. With a similar procedure,
using a cost function for improving the stiffness matrix, adjustment calculations were
made for the skylab structure [12)
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4.2 SYSTEM WITH 14 DEGREES OF FREEDOM

Sample calculations are shown for a system with 14 degrees of freedom, consisting
of 14 masses and springs (see Fig. 5), where the spring stiffnesses ki and the masses
m have been set to unity for all i = 1, ..., 14.

FIG.5 14-degree-of-freedom oscillator

Let the total system be divided into three substructures (R = 3), which consist of
masses mI to m4 , m to mand m to m1 A. Let their flexibility matrices be called C1,
C and C Thif sphng-mlss osci~latorliepresents the "Theoretical Model". The corres-
pnding 3Test Model" is made up of masses mi = 1, and the flexibility matrix.

C = 0,6 C1 + 1.3 C2 + 0,8 C3

In the adjustment calculations four as well as eight degrees of freedom are consi-
dered for the cost function. The results are the same for the correction factors a of the
flexibility matrices.The introduction of large weighting factors did not affect tfe
results. Nor did the choice of a substructure correction factor that was applied a priori
to the value to be corrected bring about any changes in the results. The solid curves in
Fig. 6 show the dependence of the correction factors on the number of iterations.

Oj

/ 
X Substr II

20 / - Substr 2

8 / ASubstr. 31." I

1.5 I

.2

1.0

0.4

0

FIG. 6 Convergence of ai values of the

14-degree-of- freedom oscillator for
two different measurement models



In order to simulate measurement errors in the eigenfrequencies for this example,
the second eigenfrequency was arbitrarily raised by 15% and the third lowered by 15% in
the "Test Model". The dotted lines in Fig. 6 represent the variation of the a values
with number of iterations. Because of this maladjustment the measurement model and the
mathematical model are no longer compatible physically.

Because of the changed "Test Model" the correction values change, and the results
of the corrected "Theoretical Model" converge toward the falsified "Test Model". In this
simple example this incompatibility shows up as follows:

1. The results of the example did not converge without the application of the
perturbation iteration. In order to attain convergence, the number of
iterations p in Eq . 30 had to be pa 2 for the changed system of equations.

2. The number of iterations to attain convergence is larger than in the
examples, where mathematical and measurement model are compatible.

3. The eigenvalues resulting from the optimization deviate up to 17% from

the initial values.

4.3 APPLICATION TO THE VFW 614

With the same method calculations were made for the adjustment of the eigenmode
shapes of the Short Haul Aircraft VFW 614.

In the mathematical model substructures such as fuselage, wing, horizontal and ver-
tical tail were approximated by beams. (see Fig. 7). Attaching these beams to each other
was accomplished by means of attachment stiffnesses from Finite Element calculations.

ZI

Rigi-body reta e pnl X

\

FIG. Idealization of the VFW614 structure without control
surfaces by a beam mod.l

For the adjustment calculation the aircraft was divided into ten substructures, i.e.
RUV - front fuselage, RUH - rear fuselage, FLA - wing attachment, Fl - wing bending,
Flit - wing torsion, HLFA - horizontal tail attachment, HLF, - horizontal fin bending,
HLFr - horizontal fin torsion, TRW - engine attachment, SLA - vertical tail attachment
(for vertical-tail in-plane oscill'n).

Before results are described, the following terminology will be defined: "Variable
Substructures" are those for which the factors a of Eqs. (29) are calculated. "Constant
Substructures" are characterized by given fixed Galues of ar in the solution of Eqs. (29).

In order to get a better insight into the method a simulated "Test Model" was used
at first; i. e. for the adjustment calculations eigenmode values were used obtained from
eigenmode calculations in which the flexibility matrix for the substructures mentioned
above were multiplied by factors not equal to unity. Further adjustment calculations were
based on eigenfrequencies measured in the ground vibration test. If the simulated "Test
Model" is used the physical models of the "Theoretical" and the "Test Model" are compa-
tible.

--..A.. . ....--



Firstly, an adjustment calculation with a simulated "Test Model" is presented. In
this calculation all listed substructures except vertical tail and engine attachment are
kept variable. From the measurement model 2o eigenfrequencies are known. Figure 8 shows
the values of a for the various substructures vs. the iteration steps. The a values
converge to therdesired values. The convergence is monotonous except for the horizontal
tail attachment. The non-linear system of equations was solved by the parameter pertur-
bation method. The number p-1 of the iterations with altered systems of equations was
four just as in the following example. In the diagrams p is marked by an arrow.

---- Sub stHLFA
S--*--Substr. HLF .

20 2.0 W

pred vani duuired ve~w "red V"&
/ .-*-*- ubst RUN

ISL Subauf tz l.s -",- SL~lNSubst FL .
dired vau T Subst FLA

f.0 10 05I

FIG.8 Convergence of the ai-volues for the VFW614 with an
input of 20eigenfrequencies of the compatible measurement
model

By reducing the number of the measured eigenfrequencies to ten for the adjustment
calculations convergence difficulties appear, because the values for the eigenfrequencies
which must be adjusted are much higher than the values of the eigenfrequencies of the
"Test Model".

Since arbitrarily high eigenfrequencies cannot be measured during ground vibration
tests for reasons of time as well as because of experimental difficulties, the example
presented so far and the following one show that one has to be very careful in the choise
of the variable substructures, making the most of the available frequency spectrum of the
measurement model.

In the following example the eigenfrequencies measured in the ground vibration test
were chosen. This example again illustratesthe necessity of a sufficiently large frequency
spectrum, and beyond this it also showsthe problems that occur if the physical models of
the measurement and the mathematical model are not compatible.

The examples indicate the sensitivity of the results of the adjustment calculation
against the experimentally determined eigenfrequency of the 4-node bending of the wing.
Setting the frequency of the 4-node wing bending mode to 18.5 Hz yields the following
results:

In the first calculation Flz , Fl, , and HF12 are variable substructures. Figure 9
shows the variation of the a and the significant frequencies against the numver of
iterations'. It can be seen hire that the eigenfrequency of the 4-node wing bending mode
converges toward 19.o Hz away from the measured value of 18.5 Hz. In a calculation with
the variable substructures RUV and RUH the wing frequencies do not vary with the number
of iterations. The factors a for the substructures RUV and RUH however deviate so much
from unity that ultimately flexibilities are produced that appear to be unrealistic
(see Fig. 8). When setting the 4-node wing bending frequency to 18 Hz the adjusted fre-
quency converges toward 18.2 Hz, and the ar values for the fuselage substructures differ
only insignificantly from unity.
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Substruktur
1,3!  x FIz
1,2 • Flo

1 £I HLFz

0,8r

HZt
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To sum up: If the physical systems of the mathematical and measurement models are not
compatible, or if the initial corrections are improperly chosen, then convergence may not
occur, or the results of the extremum problem do not make sense.

5.0 CONCLUSIONS

The results of the adjustment calculation for symmetrical vibration modes show:

1. There should be a one-to-one correspondence between the degrees of
freedom of the mathematical and the measurement model, that are used
in the adjustment calculation. If uncertainties exist about the
correspondence of certain degrees of freedom, these should be omitted.

2. The frequency spectrum of the measurement model must cover all frequencies
to be adjusted. A substructure may be made variable only if an eigen-
frequency significant for the substructure is taken from the measurement
model.

3. The simultaneous treatment of substructures, during which alterations
in their flexibilities lead to different orders of magnitudes in the
eigenfrequency shift, result in convergence difficulties.

4. Major incompatibilities between the physical systems of the mathematical
and measurement models should be avoided, since they lead to convergence
problems.

Further research and considerations give following answers:
Convergence difficulties did appear mainly for attachment substructures. Sometimes

if attachment are changed the corresponding eigenfrequencies are changed very little,
but the alterations in the nodal line are very big.
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Therefore, if substructures for the adjustment procedure are selected, variation
calculations for the parameter a of each substructure show their influence on the eigen-
frequences and nodal lines of thl degrees of freedom of the "Theoretical Model*. If there
is no influence of one substructure either on the eigenfrequency nor on the nodal line
of each degrees of freedom, the corresponding parameter a can be set to unity. If there
are bigger influences on the nodal line and lesser influenges on the eigenfrequency of
a certain degree of freedom, for these degrees of freedom the eigenmodes must be taken
into account in the adjustment algorithm.
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ABSTRACT

The effects of structural nonlinearities,in particular friction and backlash,on the
dynamic behaviour of airplanes can be very important for flutter. Large nonlinearities
do exist on sweepable wing airplanes with sweepable wing mounted stores because a con-
siderable amount of joints (with possible play) and bearings (with play and friction) is
necessary but the problem is also present for fixed wing airplanes. A major problem is
the interpretation of linear ground resonance and flight flutter tests and their compari-
son with analytical predictions.

In this paper findings from ground resonance tests and .flight flutter tests are pre-
sented and an explanation for these test results is given. Calculations with linear
assumptions (parameter variations) were made and the method of "harmonic balance" for
finding these parameters was applied. It is shown that certain levels of excitation must
be reached in order to make flight flutter tests reliable for establishing flutter clear-
ance speeds. Some of the analytical work presented in this paper was sponsored by the
ZTL-Research Program of the German Ministry of Defense.

INTRODUCTION

Nonlinearities and their effects are usually considered when dealing with aerospace
structures, for many years. The intrcduction of airplanes with sweepable wings has stimu-
lated increased interest as nonlinearities in this case are quite remarkable and effective
on the general aircraft's dynamic behaviour and, therefore, on flutter (particularly the
wing-store flutter case).

Adopting the terminology of Ref. 1, it is possible to distinguish between distri-
buted and concentrated nonlinearities. The first case refers to the slightly nonlinear
behaviour of complete structures, due to the nature of the internal damping of structural
components and to the friction in their attachments, with rivets or other fasteners. The
second case refers to the lumped sources of backlash and friction, leading to hysteresis
type energy absorption, usually found in actuators and other items of control systems.
The wing sweep-underwing stores alignment mechanical system discussed here represents
the second case.

A schematic view of the system is given in Fig. 1 taken from Ref. 2. This system
deserves further investigations because in this case, nonlinear effects cause, if a
certain amplitude is exceeded, a complete change of the dynamic behaviour or, in other
words, a change of the corresponding idealized spring-mass-damper representation, and,
finally, a change of flutter characteristics. This can be explained using Fig. 2 which
applies the same schematics as the test model of Ref. 2 to the real structure of a sweep-
able wing aircraft and refers exclusively to the store's and wing's symmetric yaw motion.
At low amplitude, the store yaw motion is involving the pylon and wing fore and aft
stiffnesses (the pylon behaves as if it was clamped to the wing). Exceeding a certain
amplitude at which the friction preload in the pylon bearings is overcome, there is a re-
lative motion of the pylon in respect to the wing, and also the control rod stiffness is
involved after the backlash is exceeded.

Similarly in the wing pivot there is the possibility of a relative yaw motion of
the wing in respect to the carry-through box structure if the friction is broken and the
stiffness of the wing sweep actuation system is involved after the backlash is exceeded.
The following paragraphs present the vibration and hysteresis measurements made on an
existing aircraft and the corresponding analytical investigations. These are based on
both the usual way to represent a nonlinear behaviour with different linear mathematical
models and on the new method of setting up a single nonlinear mathematical model using
the so called "harmonic balance".

GROUND RESONANCE TESTS RESULTS

After the small amplitude resonance tests quoted in Ref. 2 , another series was done
on a similar aircraft in which many powerful shakers were used in order to exceed the
friction forces in the bearings of the wing-pylon attachment. Fig. 3 presents the results



obtained exciting the stores' symmetric yaw mode. The left part of the plot shows the
usual frequency and damping trends due to small distributed nonlinearities. The pylon
behaves as if it was clamped to the wing in the bearings. Fig. 4 shows the corresponding
mode shape (mainly store pitch + store yaw), practically invariant in this range of
amplitudes. The damping value (2 to 4 per cent of critical) is typical for materials
and attachments with distributed fasteners.

After a certain increase of the input power, both frequency and damping values show
a sudden and large variation revealing a completely different dynamic behaviour, con-
firmed also by the significant mode shape change (see Fig. 5). The pylon cannow rotate
in the bearings with a friction leading to a considerable energy loss as it is shown
by the very high damping level (10 to 11 per cent). The mode is practically store yaw
only.

The presence of a zone in which both behaviours can exist is explained the following

way:

The two cases, having different mode shapes, require not only different input power
but also different relative setting of the shakers to be properly excited. Conversely,
it is possible to force each of the two behaviours for some while in the range in which
the other response is expected, maintaining its proper shakers setting.

Similar nonlinearities affect also the stores pitch modes but the phenomenon is
much more evident on yaw modes. Moreover, the wing store flutter is often mainly domi-
nated by the coupling of these three symmetric modes: wing bending, store pitch, store
yaw. A different relative frequency position of pitch and yaw modes like we have in the
two ranges of Fig. 3 affects, therefore, the flutter mechanism.

LINEAR CALCULATIONS

To represent the two ranges, two linear mathematical models were set up according
to the very simplified schematics of Fig. 6 which shows on the left side the clamped
pylon case (rigid control rod) and on the right side the rotating pylon case (elastic
control rod).. The corresponding mode shapes for symmetric store yaw are shown in Fig. 4
and 5 in comparison with the previously mentioned experimental ones.

HYSTERESIS MEASUREMENTS

In order to set up a single nonlinear mathematical model, some hysteresis measure-
ments were made on the same aircraft for the store yaw and wing yaw. The results are
reported in Fig. 7 and 8. For the wing two cases were considered: the normal situation
in which the wings generate friction forces in the pivot due to their weight and the
case in which these forces are partially avoided, supporting part of the wings weight
in such a way, to compensate the bending moment on the pivot.

ANALYTICAL INVESTIGATION OF STRUCTURAL NONLINEARITIES USING THE METHOD OF
HARMONIC BALANCE

In principle, the measured force-deflection diagram with hysteresis (Fig. 9
which has to be represented in calculation is defined by the force necessary to over-
come the static friction, the effective backlash and the nearly frictionless deforma-
tion at large force amplitudes.

For investigations discussed in this chapter, the calculations of nonlinear
flutter boundaries are based on the method of the "harmonic balance" which was
proved in Ref. I and 3 to be very suitable to represent the physical behaviour of non-
linear structures in conventional flutter calculations.

Fig. 10 illustrates in principle the linear approximation of hysteresis type de-
flection curves which has to be performed for different amplitudes. Assuming sinusoidal
motions, the moment of force can be transformed to a periodical representation. The
first harmonic is used to describe the equivalent linear stiffness coefficient C(S) and
damping less angle jv(B)

C ( 43 f (3cos -i SOiyO costr d~p

~~'CiS)~ ~Jr(I cosy, -j$r.w alr,0 sun1 dop

which can be introduced into conventional flutter calculations.
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Results of flutter calculations, using this method, will be demonstrated now for
three different cases of wing external store flutter. The stores are mounted on in-
board and outboard pylon stations of a sweepable wing which incorporates backlash and
friction in the wing pivot and also in the pylon bearings. The mechanism of flutter for
the store configurations investigated here exhibits the wing bending-store pitch type of
large wing mounted stores.

The first example is based on a configuration with inboard and outboard wing
stores considering a nonlinear stiffness in the wing pivot yaw degree of freedom. The
resonance modes which affect the flutter behaviour are depicted in Fig.11 . For the
nominal linear wing pivot yaw stiffness as measured at large amplitudes, the wing yaw
frequency is well separated from the store pitch mode, and the flutter conditions are
defined only by the store pitch mode at 4.1 Hz and the wing bending mode at 3.47 Hz.

Measurements of the hysteresis curve and the moment of force-deflection diagram
which were used for the harmonic approximation are shown in Fig. 12 whereas the equi-
valent linear stiffness and the equivalent damping loss angle as derived from the har-
monic approximation are plotted in Fig.13 versus wing yaw amplitude. Starting with
large stiffness and zero damping at small deflections, the stiffness reaches the lowest
and the damping the largest value when the deflection achieves the hysteresis amplitude
at 8 = 8° (Fig. 14). At high amplitudes, the curves tend to the values of the linear system.

For amplitudes below the critical slip-stick point, the force-deflection curve is not
well defined due to difficulties arising from stiffness measurements at very small ampli-
tudes. In this case, it is assumed that more solid friction is effective at smaller
amplitudes, and, therefore, the stiffness tends to infinite values at zero amplitude.

The results of flutter calculations, using the linearized coefficients of Pig. 13
are plotted in Fig. 14 versus wing yaw amplitude. The lowest flutter speeds were found
for very small and for very large amplitudes where the stiffness reaches about the
linear value. In both cases, apparently no damping is introduced by the wing pivot yaw
mode.

For amplitudes inside the hysteresis curve, high flutter speeds have been found
which could either be explained by the influence of the hysteresis damping or by fre-
quency changes of the wing yaw mode due to decreasing stiffness.

For comparison with the nonlinear flutter boundary,results of flutter calculations
for the linear system but various wing pivot yaw stiffnesses are shown in Fig. 15 .
Flutter points with corresponding values of wing yaw stiffness are marked with the
letter A to D . Comparison of flutter speeds at equal stiffness values reveals that
hysteresis damping of the wing yaw mode hardly affects the store pitch flutter.

Having a value of 6.5 Hz at 100 % stiffness,with decreasing stiffness the wing
yaw frequency crosses the store pitch frequency of 4.1 Hz at about 43 % wing yaw stiff-
ness (Point C) thus creating a change of the critical flutter mode resulting to high
flutter speeds inside a certain region of wing yaw stiffness.

Although for this configuration the lowest possible flutter speed was found al-
ready by linear flutter calculations, the results are important in view of flight flut-
ter testing, indicating that flight testing may not yield the lowest possible flutter
speed if the flutter excitation is insufficient. These results could also indicate that
the low flutter speed limits of linear calculation are not applicable if excitation
amplitudes are required which are outside the design specifications.

By the second example, the influence of structural nonlinearities caused by the
pylon bearing and store attachment are investigated on an inboard wing store configura-
tion. The important modes involved in the store pitch flutter mechanism are depicted
in Fig. 16 . Assuming linear stiffness, the frequency of the store yaw mode was found at
3.7 Hz. Fig.17 shows the measured hysteresis for the store yaw degree of freedom which
has been introduced into the analysis.

Fig. 18 illustrates the results of the harmonic balance, and Fig. 19 shows the
variation of the flutter speed with amplitude for the nonlinear structure whereas in
Fig.20 the results of a conventional flutter calculation are plotted for different
values of store yaw stiffness.

Comparing flutter speeds obtained for linear and nonlinear stiffnesses, signifi-
cant flutter conditions will be discussed now.

In both diagrams, the lowest flutterspeed is related to a very high stiffness
value, marked by A . From the nonlinear plot, it can be seen that this large stiffness
value is only existent for small amplitudes if a large amount of solid friction is
assumed.

The nominal linear stiffness value (close to point B ) is achieved twice in the
nonlinear calculation at about 8/B = 0.5 and B =a4. Although there is a considerable
amount of damping at the small amplitude B/B = 0.5, the nonlinear calculation results
to similar flutterspeedsas obtained by the lTnear analysis. This proves that the
hysteresis damping has only a minor influence due to the small coupling between store
yaw and store pitch mode.
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At the stiffness condition C ,the store pitch and store yaw mode are exchanging
their characteristics thus causing high flutter speeds. The store yaw amplitude at this
condition is close to the slip-stick amplitude which is related to zero damping. The
linear and the nonlinear calculation, therefore, results to identical flutter speeds.

For the maximum damping condition at point D , the store yaw and store pitch
frequencies are well separated which means that the hysteresis damping is not effective.

No structural damping has been considered in the nonlinear calculations for the
store pitch mode. The effect of g = 2 % structural damping in the store pitch mode is
shown by the results of linear flutter calculations in Fig. 20.

From this investigations, it is obvious that significant influence of structural
nonlinearities on the flutter behaviour can only be expected if the mode which exhibits
the nonlinearities shows a strong coupling with the flutter mode at amplitudes inside
the hysteresis or if the structural nonlinearity is related directly to the flutter
mode. This case will be discussed by the next example.

No hysteresis measurements could be made available by test for the store pitch
degree of freedom. A hysteresis curve was defined, therefore, using the largest possible
value for the backlash in store pitch and assuming a realistic amount of friction. To
account for uncertainties arising from the assumed amount of friction, the investi-
gated moment of friction was varied from 30 % to 100 % as indicated in the hysteresis
plot of Fig. 21.

To illustrate the influence of a nonlinear degree of freedom associated with the
flutter mode, the same inboard store configuration was chosen as discussed in the pre-
ceeding example. From the frequency plot in Fig.22, as calculated for different ampli-
tudes using equivalent linearised stiffnesses, it becomes obvious that the influence
of the structural nonlinearity on flutter is primarily a stiffness effect. The wing
bending frequency is matched at very small and at very high amplitudes, resulting in
low flutter speeds. This is demonstrated by Fig.23 , showing the change of the flutter
speed with variation of the store pitch amplitude. The low flutter speed at the smaller
amplitude associated with zero damping is practically not important for flutter because,
according to "he rapidly decreasing stiffness, it disappears if the amplitude is in-
creased by small amounts. Assuming 30 % friction only, the loss in stiffness inside
the hysteresis is even more violent, causing larger numbers of damping as
indicated in Fig. 22 . But the flutter trend in Fig. 23 is almost unchanged due to
identical values of linearised stiffness and zero damping in amplitude regions impor-
tant for flutter.

Following the results of the calculations shown here, structural nonlinearities
seem to have minor effect on the critical flutter speed because the lowest possible
values occur always at the nominal linear stiffness related to large deflections. But
these investigations also show that flutter margins obtained by flight testing could
exhibit a considerable risk if sufficient amplitudes of excitation could not be
reached. As shown by the flutter speed trend of Fig. 23 , an amplitude of at least
0.006 radians refering to about 1 g acceleration at the store nose is required to get
safe flutter clearance speeds whereas in common flight testing, it is not always
possible to achieve 1 g. It should be mentioned also that structural nonlinearities
including hysteresis damping could be even more important in coherence with dynamic
response problems and for flutter with limited amplitudes. Due to the level of amplitude
usually being excited, the change of stiffness and damping inside the hysteresis can
affect dynamic responses considerably.

FLIGHT TEST MEASUREMENTS

An example of different flutter behaviour is given by the curves in Fig. 24. They
represent the critical mode damping versus airspeed measured in flight for a critical
store configuration. The two recognizable trends correspond to two different excitation
manoeuvres: longitudinal and lateral stick-jerks. The former gives a slightly higher
flutter speed and is represented by the computed curve obtained with the linear mathe-
matical model of the clamped pylon case. The latter, more critical one, fits better to
the computed curve in which the linear model represents the case of the pylon free to
rotate.

CONCLUSIONS

It could be confirmed by analytical and experimental results of flutter investiga-
tions that structural nonlinearities, involving hysteresis type damping, usually connect
the most critical flutter with large amplitudes, describing the linear range of the
stiffness distribution. In these cases, therefore, linear flutter calculations using
large amplitude stiffnesses would be able to represent the most critical flutter condi-
tion.

As it was shown also, however, structural nonlinearities can create considerable
problems if sufficiently large amplitudes are not achievable in flight flutter test and
testing at low amplitudes would result to unsafe flutter clearance speeds. In these cases,
nonlinear calculations using measured stiffness curves are indispensable, and the flutter
clearance procedure has to be based on analytical results, using flight flutter test re-
sults for checking purposes only.
A low speed flutter condition at small amplitudes inside the hysteresis could generate
flutter with limited amplitude thus creating fatigue problems rather than a stability prob-
lem.
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