AD-A089 433 FLECTRONIC SYSTEMS DIV HANSCOM AFB MA 9/2
PRELIMINARY NOTES ON THE DESIGN OF SECURE MILITARY COMPUTER SYS-—EYC(U)
JAN 73 R R SCHELLe P J DOWNEY: G J POPEK

UNCLASSIFIED ESO-TR-80-127

o |
o
\

-!IWIIII ANEN
BEEERE NN DN N
]

__Unclasgsified

$ZCURMKY CLASSIFICATION OF THIS PAGE (When Data Entdl

REPORT DOCUMENTATION PARE § ,- i B BEFORE. COMPLETING FORM

AD 'AOECH?B (9,

-

o prELIMINARY }\]OTES ON THE DESIGN OF } || Technical epest . [
H Aup - Névommiowmt® 72 q -
%ECURE MILIT ‘hY QQMPU_T_]:]‘B SYSTEMS N L Trr < N
BN
7 8. CONTRACT OR GRANT NUMBER(s)
O | Roger R./Schell{ Maj, USAF
m Peter J./Downeyj 1/Lt, USAF
Gerald J/ Popekf 2/Lt, USAF
m “ON NAME AND ADDRESS 10. :ROGR‘AM ELEMENT, ROJECT TASK
Electronic Systems Division (TOIT) REA & WORKUNIT NuMBERS 1
< Hanscom AFB
m Massachusetts 01731 :

It. CONTROLLING OFFICE NAME AND ADDRESS e L s

w Electronic Systems Division (TOIT) (/ / l| Januewsd®73 |

Hanscom AFB ™13 NUMBER OF PRTES
Massachusetts 01731 79

14. MONITORING AGENCY NAME & ADORESS(ifd Qffice) 1S. SECURITY CLASS. (of this report)

Unclassified

15a, DEC{. ASSIFICATION/DOWNGRADING
SCHEDULE

AD AO

1. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited. : , - ~ :
p! 9
4 _
DTIC |
ELECTE
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) i »
> SEP 241980 f
R b
; m“-f b
E
18. SUPPLEMENTARY NOTES
4
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Secure computer
Military computer S
Multi-level security
—~4 Security meta-model 4
' , Computer security
.)_ 20/ ABSTRACT (Continue on reverse side {f necessary and identify by dlock number)

Ne) This document is a collection of working papers produced by the members .]
' ()| of the Computer Security Branch, Directorate of Information Systems : 3
Technology, Deputy for Command and Management Systems., These .

-uj papers identify the direction of ongoing computer security efforts.

. / i
[-
Q

L2720

ECURITY CLASSIFICATION OF THIS PAGE ('hcn Data Entered)

DD ,:2:';3 1473 EoiTion OF 1 NOV €8IS OIsOLﬁz Unclassified

TR b i S v R o
AR 12 PRI S gy g

SECURITY CLASSIFICATION OF THIS PAGE(When Bata Entdred)

-8

~

dictat by

SECURITY CLASSIFICATION OF Tu'c pAGE(When Date Entered)

X

- - PR -
r ’.‘f?(u? iw ':,.‘ ,’*‘r -.\. WY
) P co 2 e

(‘5‘(‘1\14\&" [\

ac»-..n—u -

N 4 1(‘1\

MCI -73-1

4) ' |
i PRELIMINARY NOTES J
| ON THE DESIGN OF SECURE
| WMIILITARY COWPUTER SYSTIELMS
ROGER R. SCHELL, MAJOR, USAF
PETER J. DOWNEY, st LT, USAF |
| GERALD J. POPEK} 2nd LT, USAF
: Approved for public release;
! distribution unlimited
{ o DL.LCTORATE OF LirOOWIATION S‘(STEMS |
) TECHNOLOGY |
| pepu80 7 2 099
! FO‘:! CONMMAND AND MAMNAGEMENT SYSTEN
NN . | ’
PR SRz =5 e

r r LEGAL_NOTICE

3 R .

When U.S. Government drawlngs, speciflcations or other S
' data are used for any purpose otier than a definitely 3
F related government procurement operation, the government B -
thereby Incurs no responsibllity nor any oblligatlion

whatsoever; and the fact that the government may have

. formulated, furnished, or 1In any way supplied the sald

E ‘ drawings, specificatlons, or other data Is not to be

regarded by Iimplication or otherwise as In any manner

licensing the holder or any other person or conveylng any

rights or pocrmlssion to manufacture, use, or sell any

patented Invention that may In any way be related thereto.

Do not return thils copy. Retaln or destroy.

Accession For

NTIS GRA&I 7
DDC TAB .
Unanncunced

Justification_

By
Distributien/

Svailedsitty Codes
: 3 . Availand/orx
["] . : _|Pist. special

P YR

|

PRELIMINARY NOTES

ON

C .

THE DESIGN OF SECURE MILITARY
COMPUTER SYSTEMS

ROGER R, SCHELL, Major, USAF
PETER J. DOWNEY, 1LT, USAF
GERALD J. POPER, 2LT, USAF

- R R e YTRET AT T

i aamar T e

- . FOREWORD ‘

. This document Is a collection of Internal working

* N notes produced by members of the Computer Security Branch,

. Directorate of Information Systems Technology,.Deputy for

. Command and Management Systems, during the period of
August - Noveinber 1972. :

Although the preliminary nature of these notes Is
emphasized, we hope they will be an ald to understanding
the dlirection of ongolng computer security efforts, until
*_ such time as more complete results are avalilable. Three
' efforts now underway have been Influenced by the ldeas
expressed here, and future products can be anticlipated:

a. ESD-TR-73-51, Computer Security fochnoloiy
Planning Study, by James P. Anderson, dated Nctober 1972,

b. “MlTRE-MTR-ZShf{ "Secure Computer Systems:
Mathematical Foundations", by D, E. Bell and L. J.

LaPadula.

Ce Flnaf report from Case Western Reserve University
under the ESD(MCI) Statement of Work, "Abstract Model for
Secure Computer Systems",

REVIEW AND APPROVAL

Publication of this report does not constitute Alr
Force approval of the report's finding or concluslons. It
:: published only for the exchange and stimulation of

eas.

iy
‘e .

)

MELVIN B, EMMONS, Colonel, USAF
Director, Information Systems Technology
Deputy for Command & Management Systems

4

AN ¥

R v i o e R s e b . , e Liat & eyt Y L SO R
" - g Lt gt ey S i O T O M C L

TABLE OF CONTENTS K

s.ctlon Title
A :7:‘1 Notes on an Approach for Design of sgéure
Cemmzi-2 - Military ADP Systems .
Aol ot ROGER R. SCHELL, Major, USAF
‘ ' 1 .i On the Deslign of Secure Systems
{ . emzTif o GERALD J. POPEK, 2LT, USAF
§ Y Musings Concerning a Speclific Secur!ty Model
P GERALD J. POPEK, 2LT, USAF
Erhe T e -
IV Secure Millitary Computing Systems

e . PETER J. DOWNEY, 1LT, USAF

i

N A i

K, T E T P P A R X0 e e v, e L
Y ARG R AE T R T SRR TN TR o ¥

S WIF RIS PR O

T A A Y (N e e NS IOV ZYRTY 1N)

NOTES ON AN APPROACH FOR DESIGN OF SECURE .
MILITARY ADP SYSTEMS

PR
- - -

€

dntroduction

The mitlitary has a heavy responsibllity for
protection of Information In Its shared computer systems.
The military must Insure the securlty of Its computer
systems before they are put Into operational use. That
Is, the securlty must be "certifled", since once military
Information 1Is 1lost It Is Irretrievable and there are no
legal remedies for redress. ' -

Most contemporary shared computer systems are not i
secure because securlty was not a mandantory requlrement
of the Initlal hardware and software design. The military
has reasonably effective physical, communication, and
personnel securlty, so that the nub of our computer
securlty problem Is tie Information access controls In the
operating system and supporting hardware. We primarily
need an effective means for enforcing very simple
protectlion relatlionships, (e.g., user clearance level must
be greater than or equal to the classification 1level of 1]
accessed Information); however, we do not requlre
solutlions to some of the more complex protection problems
su¢h as mutually suspiclous processes.

-~ o g

r memer < nns

e -

Based on the work of people 1lke Butler Lampson we
have espoused three deslign principles as a basis for i
adequate security controls: : :

fr et et or— + ———

a. Complete Medlatlon =-- The system must provide
medlation of Information references, l.e., must
Interpose itself between any reference to sensitive data
and accession of that data. All references must be
valldated by those portions of the system hardware and
software responsible for security.

b. |§g|a:|gn =~ These validation operators, a
“gecurity kernel', must be an Isolated, tamper-proof
- component of the system. This kernel must provide a
unique, protected Identity for each user who generates
references, and must protect the reference-validating

algorithms,

T AR

P e >
R R PN o8 L e it ki e nion DO

i €
Vo %

c. .Slmpllcity -- The securlity kernel must be simple
enough for effective certiflication. The demonstrably
complete loglcal deslgn should be implemented as a small
set of simple primitive operations and system data tbase
structures that can be shown to be correct.

=~ wr -

These three principles are central to the
understanding of the defliclencles of present systems and
provide a basis for critical examination of protection
mechanisms and a method for iInsuring a system 1Is secure.
It Is.our firm belief that by applying these principles we
can have secure shared systems In the next few years.

- . e

peficlencies of Present Svstems :

c-- Most current computer systems exhlib!t a complex, ad
hoc securlty design with diffuse Implementation that
vlolates our third principle of gsimplicity. Large
portions of complex operating systems execute in an
all-powerful supervisor state, so that the entire
operating system has potentiezl! security Implications.
Whatever nominal securlty controls exist In such bug=-prone
rmonoliths are not effectively isolated (in violation of
our lsolation principle) and £0 can be tampered with
through errors or trap door: In other parts of the
operating system. -

The significance of these inherent security weakness
has been amply and repeatedly demonstrated by the ease
with which contemporary systems (such as 05/360 and GCOS)
have been penetrated. Unfortunately, this lack of an
underlying design methodology cannot be effectively
overcome by ad hoc "fixes" and "security features" bullt
on an uncertain foundation.

< _‘::'

A nalve (but occaslionally attempted) approach to
Insuring the securlity of a complex operating system-is to
have a penetration team of "experts" test the system, It
s supposed that repeatedly unsuccessful penetratlon
attempts demonstrate the absense of securlity "holes'.
Such a test approach Is primarily limited to penetration
attacks In areas Indicated by the particular background
and experlence of the Individuals involved. A security

1=2

e el BN A A 2 e b % a1y

R

evaluation through such attempts may reveal weaknesses of
f,df“System but provide no Indlication of the presence or
. T 'absence of trap doors or errors In areas unnoticed by the
. T attack team. The fallure of an attack team to notice a
" particular penetratlon route does not prove or certlfy
3 that an actual penetration attempt will overlook It at a
later date. The underlying concern 1Is that an actlve
_hostile penetrator 1Is not particularly thwarted by the
_varlous flaws found and flxed through testing so 1long as
there remalns just one vulnerablllty that he can find and
- effectively exploit,

On the other hand our three principles lead to a
simple, well-defined subset of the system: totally
—responsible for Information protection. We expect that
the primitive functions of thls small, simple. kernel can
be tested by enumeration, and other parts of the system
are not relevant to securlity. As a result most system
. changes will not affect the kernel, so routlne system
:malntenance will not requlire repeated recertiflication.

- Pragtical Mechanlsms
An abstract security model s needed In order to
‘evaluate the adequacy of protectlon mechanisms. Lampson's A |
capabllity (l.e., access matrix) model has proven a useful b
departure point, and we have applied two design techniques y: '
for developing a specific secure deslgn:
a. The model Is represented In varlous levels of . }
abstraction. The design process transforms an Inltial . :
‘ abstract model of all the system's protection !
f -relationshlps (derlved directly from the system's specific 1
.definltlions of securlty, thus leading to a model that Is
"secure by hypotheslis) Into subsidlary levels of : :
abstraction. As the deslgn progresses from level to level v 1
the representations of the model become more speciflic and 1
-culminate In specific hardware features. The Inter-level
transformations, chosen for reasons of efflclency as well
as utllity, can ultimately be Implemented as primitive
operations of the Kkernel, and since the inter-level

S -
LY

transformatlions preserve the Initial protection ’ 1
relatlonships, we can prove that the resulting design Is
secure, Y ;

b. The kernel design is simplifled by including only
those relevant operatlions that modify access control data : .
bases, but not those that merely read this control)

1=3

':@WﬁbeWfﬁﬂﬁﬁvm&ﬂ—ﬁﬂﬁhﬂﬁﬂ

‘compromising the protection Provided.

-
.

information that Is not Itself being protected against
disclosure, Consider as an oayample a demand paging
system. At some level of abstrnct]on page table entries
represent capabllities that muay pe carefully controlled,
so the kerne! will have a primiegyve for changing page

table entrles; however, the (370 replacement selection
algorithm should not be In the wecyrity kernel.

 Uslng this model, dongpjpeor-based addressing
avallable In advanced processar phardware Is seen to offer

a_most promising basls for a S@curity kernel design. in
terms of our flrst design principle (complete mediation),
thils addressing hardware valldatng gach memory reference
by a wuser's process: It Interrets the requlred access,
specifled in the applicabie ageriptor. The security
kernel Insures securlty throurgl, Its primitive operations,
which are Invoked by the remaindg,e of the operating system
to malntain the descriptors. Bocause access control Is
vested In the well-deflned ,snd bounded descriptor
mechanism, kernel software funci |gns are few enough and
simple enough to make certiflicat g tractable, as required
by simpliclty, our thiid design nrincliple.

Descrlptor-based 'so‘at"ln mechantsms (such as
Schroeder's hardware Implemented rings for Multles) can
provide effective as well as wfficlent protection of the
securlty kernel. Thus, as Implind by our second deslign
principle (lsolatlon), an antauonist could have complete
freedom wlithin the remalnder of the system wlthout

prosoect for the Future

lgsthe Alr force we are pursying a development effort
for providing secure shared Sysinmg |n the next few years.
In cooperation with the MITRE (yrporation, we are already
applying our three deslen .jinciples to shared
communlicatlions processors In ihe 1aboratory, and we have
begun to extend these ldeas to , design for a shared,
general purpose computer systen,

We are confldent that ¢,.4m ¢the standpoint of
technology there 1Is a good (phance for secure shared

systems In the next few years, However, from a practical
standpolint the security problem yj1y remain as 1long as
manufacturers remain commit)qg to current system

i=-4

i
)
4
¢
H
B
M
7
-
B

O 3o Sy

P e 7y oyt
¥ " .. *] ‘,;,__ fV*, AI.?’:"',’G;',':_I?’%—.:‘ ' T Bl

intcr .o

- ‘archltectures, produced without a flem requlrement for

‘securlty. As long as there Is support for ad hoc flixes

: .and securlty packages for these inadequate desligns, and as

: e ‘long as the Il1lusory results of penetration teams are

! _.accepted as a demonstration of computer system securlty,
“proper security will not be a reallity. r

1w

o ON THE DESIGN OF SECURE SYSTEMS '

o™
]
s
[

SECTION 1 PHILOSOPHY

RN K] Y
R '

{

="<- - 0ur Intent Is to provide a basis for the .design of
multiuser computer systems In which there exist security
mechanisms that provide: 1) a useful degree of flexible
security and 2) a high degree of confldence Iin the

integrlity of the mechanisms.

The problem of computer security Is well recognlzed
and 3 number of systems and system designs have been
proposed. However, It Is often difficult to evaluate
these efforts without understanding the assumptions

implicit In the system design or recognlizlng what portion .

of the security problem the system purports to solve.

Hence, we brlefly state In general terms our
conception of that part of the current mlilitary computer
securlity problem that we will conslider, and later restate
thls general conception more exactly. The kind of

- securlty that 1Is currently desired Is not complex In Its
functional capablllity, We do not demand the ablllity to
handle the probliems of aggregation, Inference, or mutually
susplcious subsystems. Ve do not attack those problems
which seem to requlire a monitoring and general
understanding of the use to which Information wlll be put,
excepting rather simplistic controls llke read, write and
execute, and hence are satlisfled by a set of simple
declsion rules which operate on Information recorded In
the system, not unllke the class of faclillities that a
number of timesharing systems provide today. -

The critlcal requlrement s extremely high Integrigy:
great confldence that the specifled design of the security
facllitles of the system are In fact guaranteed. We
recognlze, of course, that the system must provide useful
capabllities, since otherwise a guaranteed deslign or
implementation Is vacuous. That s, the proposed security
controls must allow the Implementation of a multluser
computer system with functlonal capabllities not unllke a
number of today's common commercially avallable time
sharing systems.

= s

L PR SRR

- ” g " ? e L BNy S -
Romb i Ll . o agar T o Pl i A AR L "l‘f'.“.?" o] AR, G IA-VT?;-JL..."", S TR RN

In an attempt to fulfill these goals, the following
strategy 1Is proposed: develop a simple logical design
whose correctness can be verified, and whose elements are

both simple enough and close enough to real system -
features so that Implementation of the model Is reasonably
stralghtforward.

As the abstract model Is developed, we shall be gulded
by the lIdea of a kernel. We Ihtend to Isolate that
portion ‘of the system responsible for securlty and place
It In a protected part of the system, In a manner
analogous to the way In whlch current supervisors are
segregated from user programs. It will be necessary to :
demonstrate that this segregatlon Is performed In a-way ;
that guarantees the kernel's Integrlity and also guarantees :
that the kernel Is always Invoked to arblitrate attempted
references. These tasks are eased by the fact that we ;
will deslign our securlity model so that It can aild In
protecting ltself, '

DAV A s ey gnens

By segregating the responslblllty for security, the r
problem of verlfying the system's securlty mechanisms:
becomes that of: 1) demonstrating that the kernel Is
always invoked, and 2) verifying that the kernel operates
properly, The problem has been greatly reduced from that
of verlfyling properties of an entire operating system to
that of verlfying a (presumably) small portion of It.

The deslgn model should conslist of several levels of
abstraction. The top level Is a 1loglcal description of :
securlty systems; the lowest level closer to a possible '

. machine Implementation. Higher levels are more machine
Independent than lower levels, The intent is to prove the
correctness ot an upper level machine Independent model,
and demonstrate that translations to lower, more speclflc
levels preserve the relevant properties of the top level,
Through the use of this top down Informal structure, we
hope to demonstrate the correctness of an Implementable !
deslign for a secure system. Lest readers labor under any '
misconceptions, it should be pointed out that while the
“proof" structure Is top down, the system deslign certainly
Is not. Falrly well defined Ildeas of the deslred end
product exlst. The top down approach is primarlily tor '
purposes of descriptlion and proof. .

A remark should be made concerning the meaning of
“correctness", and ‘“proofs of correctness". A system .

11=2 i

i BT —————
s e R et BSOS 1S o DZob S 1 -3 A

cannot, In a vacuum, be proved correct. It may, however,
be possible to demonstrate that a system design agrees
~with, or fulfills, certaln gxternal criterfa, that Is,
conditions which are not explicitly part of the design.
These external crliteria specifically characterize that
“computer securlty problem" which we conslder.

We - will demonstrate that I[In certaln cases these
explicit, external criterla can be made part of the system
design, Iin such a manner that they are always applied,
reducing the problem of an Informal correctness proof.

A last constraint Is placed on the design by .the need
for efficliency. The security mechanlisms should not
markedly degrade the price/pertormance characteristics of
a system. The effect of thls constraint Is more apparent
as discussion moves closer to Implementation.

" BIR e s g T R

SECTION 2 - A SECURITY META-MODEL

lntroduction
The following approach Is intended as a gulde for‘the
“loglcal design of computer security systems, The

description applles to a wilde class of security systems,
Including most of those In practlce or proposed today.

Naturally, then, the meta-model does not provide an
Instance, or Iimplementation, of a useful secure system.
Using the meta-model, for example, one can prevlde
Inappropriate standards for correctness, or one can design
a8 system that ls not useful., As a case In point, whether
or not provision Is made for the operatlion of
“cooperating, mutually susplclous process", ls {rretevant
to the meta-model.

However, the seci:rity meta-model allows one to relate
varlous specliflc models, and provides a speclfic gulde to
those actions necessary to guarantee the correctness of a
sacurlty design.

Notatlon

In the following discussion, some non-standard
notatlion 1s used to 1inearlze formats. Several
conventions should be pointed out. Subscripts are
enclosed In square brackets. Sets are labelled by capltal
letters, and elements of that set are generally labelled

"by the same letter, but In 1lower case and subscripted.
Hence alj] refers to the j-th element of the set A,

It Is occasionally necessary to speak of the names of
members of a set, rather than the members themselves. The
set of names which corresponds to a set of elements Is
denoted by an underline. So, for example, the set A, with
elements a(j] Is a set whose elements are names,
corresponding to the set A.

Last, the power set of a set X Is written P(X).

11=4

- Brilef Description

The model |s described In set theoretic language, and

_has six major components. "Flrst Is the set 0 of
i ¢ the elements of the model, reflecting those
physical or logical parts of a computer system that need

K to be controlled, protected, or whose status needs to be
;guaranteed. The objects are partitioned Into disjoint
classes, each contalning objects of similar

characterlistics. An Incomplete list of examples Includes
terminals, communication llnes, processes and files,
Second, a set A of access tvpes Is presented. . Each
\ access type Is a program whlch effects a particular
.variety of access, such as read, write, or execute. An
; -attempted access operatlon Is then completely specifled by
f an access type and some meaningful collection of objects,
: :{.e. a partlcular process being directed from a glven
serminal attempting to reference a specified page In
memory. '
: . Third, a collection of descriptjve data OCk], from
:the set of all possible descriiptive data collections D Is
required. DLK] specliflies the Information that forms the
basis by which security declisions will be made. The
subscript k Indicates a time uependency.

Fourth, an evaluation program, E decldes, for any
'm$?nln§ful grouping of objects, what operators are to be
.allowed.

) Fifth, an update program ¥ Is characterlzed

separately. Thls program Is the means by which the
-descriptive data are changed. Operatlionally, this Is the
manner by whilch access decislons may be altered.

- in many real Implementations, the distinctlion between
- the evaluation program and update program may not be
-clearcut, since the descriptive data Is 1llkely to be
- stored and protected llke any other securlty object. Both
-programs are treated here so that thelr similar nature Is
apparent. Nevertheless, the distinction will be useful
since Implementations of the two programs may differ. E,
while 1ikely to be software Implemented, calls upon access
programs to do Its actual work, and these may be at least
partly 1f not wholly bullt In hardware. P on the other
hand In many cases will be almost exclusively software and

ti=5

actually changes the formatted descriptive dafa.

-
b e - -

Last, external correctness criteria are required.
These are a set of rules, or standards T, by which the
system |s to be adjudged correct. These standards must be
external to the system description up to this point In
order to be meaningful. o

. A security system S |Is then speclifled ‘by the
six-tuple:

*"sw (0, A, D, E, B, T).
Ihe Components of the Modal

SI:F.ITI Ill“ gbiects

. The flrst component of the model, the securlty
objects, Is a finite set 0:

._’f;o = {of1], of2], ..., o[z]3.

These are the only objects to which access will be
controlled by the model, and by a resulting
Implementation. ;

{ : .
Access Jvpes ! | _ ‘
. The second component of the model is a set of access
types: .

&A - {Qcoj: 3[111 a[i]o cene a[wj3

Each afl]l 1s a program whose effect will be to provide a
particular varlety of access, read, write, or execute for
example. The 1list of arguments for each a[l] must be
finilte and contaln names of securlty objects. in
addition, afo] 1Is designated as the pyll access program,
This program will be Invoked when access Is to be denled.
it can keep audlt tralls, set up warnings to
administrators, etc.

P iy

S L R i b G LT g

i o o e T e e e =

-ar

-

afescriptive Data - ,

- The third component, the descriptive data, Is merely
a set of tuples:

ofk] = fdik,1], d[k,2], ..., d[k,v] ¢,
with some filnite upper bound set on v. We depdrt somewhat

from our strict set theoretlic notatlon by speaking of the
structure of a tuple.

I. Yy

[14]

Each tuple Is only assumed to have a bounded number of
entries, the flrst of which acts as a "data descriptor" to
distinguish among tuples of different formats and content,

- For example, one type of tuple might be an encoding
_of a matrix entry iIn Lampson's model f4]; - the entry
expressing an access relation between two security
objects. Another might express a property: user x belongs
1 to project y, or has clearance z. A property may also be
—valld only for several users jolntly. Such clrcumstances
do not fit naturally Into a matrix representation of the
descriptive data, so tuples are preferred here.

-,

Expllcit use of the structure of the descriptive data

will not be made In the following discussion of

correctness, although It Is necessary In the more detalled

proof. The flniteness of both the length and number of
: tuples will be useful here, however.

Let X* be the set of all allowed tuples, and D =
; PfX*; the power set of X*, Then D[k] Is some member of
P(X»),

- Eyaluation Program | .

The thlird portion of the model Is an evaluatlion
program E which uses descriptive data to make declslons
. concerning access. For any evaluation program, the list
: of arguments |s composed of some flxed number of objects
. from each partition of the securlty objects 0, and an
- access type; the name of an element in . A, For
_conveniencae, those objects are denoted by 8.

The task of the evaluation program Is to declde
-whether or not the speciflied objects may be assoclated In
the manner expressed by the access type and to Indicate an

11=7

e e m

- e

e im i T R T

' . appropriate actlon. That Indication Is done by selecting
the appropriate access program and speclfying 1Its proper |

arguments. }
The evaluation program E takes a list of object :
names, a particular descriptive data configuration, and
x the pame of an access type (names of elements are .
. underlined); and returns the allowed access program . ﬁ

to;ether with the argument 1ist for that access program.

£ Is composed from an access rule E. E Is a fairly
arbltrary program that Is assumed only to 1) terminate,
returning true or false, and 2) be read only.

The Intent 1Is that E describe conditlions to be
fulflilled In order to allow access. it may be an
arblitrary functlion of its arguments, although often such
programs are falirly simple.

> Then the program E may be written as follows:

<< £ ¢ proc (6, D[k}, ali]) returns 1ist;
- -~ lock
1f Ete, DLk1, ali])
then begin untock; call a[:](e) end:
gﬁg bagln unlock; call a[>](e) end;

The list which Is returned speclifles an access type
and the argument list for that program. The arguments for
E are the same as for E ltself, i

1 The functions lock and ynlg$k are understood to act

; on a single semaphore, as Dijkstra's operators P(x), V(x).
It Is necessary to coordinate the operation of £ and ¥ so
that f Is not vreading D[k] while ¥ Is updating DCk].
Otherwise, It would not be possible to prove that £ and ¥
perform In all cases as claimed.

Update Program

The update program Is the means by which descriptive
data 1Is changed. Hence [t 1Is the manner by which
decislons that the evaluate program makes can be affected. -
Let ©' denote the set of arguments for the update program
which are security objects, DLyl is the current -
descriptive data, and D[z2] 1Is the data to which It Is .

Se
Ve e SYRGRTTTIEL T S - i o

AT IO T W TR T YR, g . s e 1 S BRSO cak o Ak e L

-

) --deslired to change. Y ylelds elther the original data,
- prohlbiting the change, or the new data, having allowed
xhe change. :

- The update program, -too, s compesed from some
. affective procedure U, simllar In purpose to E, and so the

N .update program ¥ may be written as:
‘ - ? =k2£9£ (', DLyl, D(z]}) returns element of D;
- -) oco

-1t ute', bCyl, 0[z1)
| - hggln unlock; return 0 (z] end
; s ‘ :ﬁig begln untock; return D[y] end
; " The arguments for U are the same as for the procedure
y itself. L

Ihe Correctness Criteria

The securlty objectives of the access control system
are the qualltles that it Is necessary to guarantee. For
a certaln well defilned class of criteria, there Is a
stralghtforward method of taking a logical description of
a securlity system and altering that model to provide a
derived system model In which the glven correctness
criteria hold. v

|||a L

T et s S TS

The correctness criteria are expressed as a set T of

; predlcates'
‘ T = {tf1], t02], ..., tlal3.
"These are the predicates that must be proven true for the
S system.
% ’ In this model, predicates may be expressed in one of

two forms, and so T Is partitioned Into two subsets Tl and
‘T2 corresponding to the two alternatives.

If tCi] s in Tl then It may be any predicate
_expresslble in the following functional form:

tf1]: @ xDxA-> ftrue, falsel.

.The Interpretation of predicates In Tl Is that the ob;ect
‘Tist from 6 may be assoclated with access type aljl In A

and a given DCk] In D only 1f £[li] Is true.

g

e Vi ialimanbbhanca s MGt o mans e ed el

~

e e —

---- Vf t[1} Is In T2, then [t may be any predicate
expressible In the following functlonal forni:

TT el ¢ @' x 0L x OCK] => ftrue, falsed
The Interpretation Is that the descriptlve data 0C;] may
be changed to Dfk] by the objects expressed by O' only |If
tll] ts true.
Let .

71 = And (t[1]) for all t[1] In T1 and
tet

J7 72 = And (e[31) for atl t[3] in T2,
71 and 72 take the same arguments as the t[I] and t[j],

"respectively.

- To demonstrate that a system Is correct, It Is
necessary to guarantee the truth of T1 and T2. Below, a
simple way Is shown to take any security system S and
derive from It a system S' for which the given 71 and 72

are trug.

mmnsimnmum

System Specification
~ As described, a security system S fs a tuple:
S = (oo Ao DCOJ' !, ”o T

0 Is the object set, A Is the set of access types, DLo] Is
taken as the set of tuples which comprise the Initial
descriptive data, E Is the evaluation program, ¥ ls the
update program, and T |Is the. set of predicates to be
guaranteed.)

For a particular system S, the entrles A, £, ¥, and T
are fixed. The descriptive data DLk] may be varied by use
of V. Then the state of a security system S can be
completely expressed by Its descriptive data DLk], for

ti-10

T Al "\ LU

o i o1

some k. The update program Is the means by which a sy ystem
S may change states and the compound ‘predicate' €72
expresses the constralnts on allowed state changes. The
evaluation program E “Interprets'' a partlcu}ar state, and
71 expresses the constralnts on E.

Given a security system S = (0, A, D[o], E, ¥, T),
system S' = (0, A, D[ol, E', V', T) Is produced by the
following Inclusion step. B

o l'. is derived fron. E by the follow]nk éhange.
Replace "E(...)" by "E(...) and 71(e, D, a[i])".

¥' Is derived from ¥ by the following change:

Replace "U(...)" by "U(...) and 72(e', D(y], 0(z}". -

-

Correctness Proof
First It Is helpful to define a few terms.

A state D[n] of a system
S = (0; A, DtOJo E, ¥, T)
Is yalld If and only If DCn] can be obtained from D[o] by
a finlte number of applications of ¥ and, for each such

‘transition from state DLk] to D(k+13,

T2¢(6', OCk], DLk+1l1) = true
for some 0',

Second, a state D[k] Is accurately 1n;g;n;g;gg If and
only If for any @ and any j:

v(e', D[kI, D(;1) = (8', alo]) whenever

71(0s 0Ck], a[il) = false (where afo] Is the null access
type). .

Then to say that a system S Is gg;;gg; Is meant the
followling: ,

1) Every state obtalnable from DLo] is valid, and

~ 2) Every valid state Is ‘accurately interpreted.

We now state the following (system correctness)
theorem:;
Glven a security system

S = (0, A, DCol, E', ¥', T) with T partitioned

into T1 and T2; ' .7

and S' = (0, A, D[o], ', V', T) derived from S

by the Inclusion step
then §' ls correct.

Proof Sketch
An’eas& way to prove the theorem ls by contradiction.
Suppose the theorem false, Then, by definitlon of

sorrect, S' reaches an Invalld state, or a valld state Is
Inaccurately interpreted.

hd

Lase 1: Assume an invalld ;tate. Label! that Invallild
state Dfk]. Then there must exlst a sequence of states
Dfol, Dr1J, DC21, ..., DCk] such that VY (ecli, O[],
DCl+1]) = DLCi+1] for all 1<Kk, since ¥ makes the transition
from state to state.

Now Dfo] Is valld by definition. D[k] 1s invalld by
assumption. Then there must exlst a non-negative Interger
Jo 1ess than k, such that D[j] Is valld and DLj+1]) s
Invalld, Hence, by definition of wvalild, 7T2(e, DC;],
DLj*1]) is false. But ¥(®, DLCjI, D[j+1]) = DLi+1]1. By
Inspection of ¥, these two conditlons cannot hold, and
hence a contradiction Is reached.

Lase 2: Assume an Inaccurately Interpreted valild
state. Call that valld state D[k]. Then by definition of
an accurate Interpretation, for some 6LI] and arj], the
following Is true. :

71(0(']0 D[k]‘ aCj]) - mﬁﬂ and

B (68Cil, DEkl, atjl) A (0, alod)

i1-12

e R LR P Vel ol AL R TR TRERY TV T D

-

By Inspectlion of E, this Is a contradiction. Hence every
valid state Is accurately Interpreted. ‘

" 'Both cases are Impossible. Hence the theorem cannot
be false. .
qed

This proof Is of course nearly tautologlic In nature.

Discussion

This securlty meta-model and the Inclusion technique
are JIntended as an ald in the design of secure multluser
computer systems. Hence some of the assumptlions and
Implications Inherent In the cholce of language, model,
and technlique ought be made explicilt.

The primary Influence In this meta model was the
reallzation that Its value Is solely in fts ablitity to ald
the Implementation of a demonstrably secure system. Hence
the model! and [ts elements must conform to the modules and
capabllitles of computer systems not unllke those In
exlstence today. At the same time, a simpllicity and
coherence was deslred, reasonably free of Implementation
questlons, that would provide some understanding of the
contemporary security problem. It Is felt that the basic
concepts expllicated here are a reasonable start toward
these goals, although It Is freely admitted that
exposition, notatlon and other detalls may requlre
Improvement.

. A number of lmplementatlon Implicatlions of thls meta
model can be mentlioned.

Flrst, It should be polinted out that effectlve
procedures exist for the update and evaluation programs,
the predicates from which they are composed, and the
predlicates which make up the correctness criterla. Thls
fact- Is a result of the flinlteness of all the sets
Involved In the meta-model. That effectlive procedures
exist for all the predicates in the theorem set T makes
the Inclusfion technlique actually useful. in certaln
actual Implementations of course, It may be possible to
demonstrate the truth of some of the correctness criteria
without dynamically verlfying them at run time.

11-13

- 5 . a0
gL L,

) .No clalm of efficlency Is made In thls model, since
for any partlcular system the predicates may be complex
and the descriptive data specified In a manner that
requlires a great deal of work to check the glven
predicates. On the other hand, as will be demonstrated in
a8 companion paper, the correctuness criterla predicates for
certaln real problems are rather simple, and careful
design of the descriptive data can greatly ald efflclency
while remaining falthful to this meta-model. 1t 1Is thls
fact which really guarantees the effectiveness of the
tncluslon step.

.. The next abstract level Is sketched In a companion
paper In order to demonstrate that a useful securlty
system can be described with the language of the
meta-model, showing that the meta-model Is not vacuous.

1t Is m&mmmmmuammmm

evervthing that this medel gcontalns, and

glse. Hence the meta model deflines the boundaries

of the kernel, and the ablllity to use the kernel to

protect parts of Itself wlll allow one to provide
carefully controlled access to the kernel itself.

summary

The meta model provldes a language for describing a
useful class of securlty systems. It easlily lends Itself
to the use of a technlque which guarantees that the
objectives of the system are fulfllled by the model. The
concepts of the model are relatively simple and bear a
reasonably close relation to the kinds of computer systems
In exlstence today, suggesting the possiblility of
providing, with high confldence, a falthful Implementation
of the model. An accurate Implementatlion of a desired
securlty design ls, after all, the primary goal of all of
‘this work.

‘s v o»
oy

"

(14

AR & I SRR

s

(A}

:COnway, R. W., et.al., "On the Implementation of Security

Measures in Information Systems," Comm. ACM 15, &

;(Aprll, 1972), pp. 211-220.

l

Elspas, Levitt, waldlnger, Waksman, "“An Assessment of

- Technlques for Proving Program Correctness," ACM

Survevs, Vol. 4, No. 2, June 1972, pp.
97-147.,)

Frledman, T., "The Authorlzation Problem in Shared Flles,"
JBM Systems Journal 9, 4, 1970, pp. 258-280. N

- Graham, G.S. and Denning, P.J., "Protection - Princlples

and Practice," AFIPS Conf. Proc. 40, (SJCC 1972),
pp. 417-429.

Graham, R.M., "Protectlion In an Information Processing

CuUtltity,” Comm, ACM 11. 5 (May, 1968), pp. 365-369.

Hoffman, L., “Computers and Privacy: A Survey,"
Survevs, Vol. 1, No. 2, June 1969, pp.
85-103,

RN
5 3
Hoffman, L.F., "The Formulary Model for Flexible Privacy

and Access Controls," AFIPS Conf. Proc.39,)FJCC 1971),
pp. 587-6010

Lampson, B.W., "Dynamlc protection structures,”" AFIPS
m. .Emt ﬁo (FJCC 1969)' pp. 27-38,

Lampson, B.W., "Protectlion," Proc. 5th Princeton
on ﬂﬂ&.ﬁ!ﬁ&smi' (March, 1971),
pp. 437-L43.

i
b le 9

11=15

S T
TR R

MUSINGS CONCERNING A SPECIFIC SECURITY MODEL

- ;

(The followling thoughts were sketched under N
significant time constraints and are released In thelr 4“&
present form only wlith considerable reluctence. If
Hevertheless, it Is hoped that a useful partlal ¥
expllication Is provided of the applicablility of the Ideas |
previously presented, speclflically the kernel and the meta !
model deslgn approach.) -

S i
o ' : T i
.-]
With the general outline of the securlty meta-model
tn mind, we sketch a model of a partlicular securlty
- system. It Is not an extremely general one, but rather Is
intended as a statement of current military needs In a D
context that both provides a basls for a proof of Uy
correctness and can lead falrly directly to an i o
implementation. To make It clear that Implementation s !
possible, the flavor of the structure Is taken from the
existing flle system of Multics. !

A few notes should be made concerning the Intended ‘ "
environment of this model. An on line multluser computer s
Iinstallation Is expected, where the mechanlsms proposed in ! {
this model, directly or Indirectly, check every reference "
made to Information contalned In the system. ‘ K

Ihe Obiects | ‘s

PThé object set O might be partitioned Into four |
subsets: o g

Ot = a set of terminals _ fﬁ“
Oy = set of users - ' ?F
0d = set of data objécts : ' -
Os = set of securlty objects it

Terminals are meant to be representative of the entire
class of 1/0 devices, and could Include teletypes,

printers, tape drives and the 1lke. For every user B
recognlized by the system, there Is an object In Ou; the b
i

-1 - i

s

< e e mo e e R s P T s
TR TR T PR v-‘-»wr

PO (9,5 W T A TR

wyser process'. Data objects Include both executable and
non-executable objects; the (Items that the system Is
{ntended to protect. Lastly there are security objects.
Security objects contaln the Information upon whlich
securlty declislons wlill be = made. There are two
distinctions between data objects and security objects.
Flrst, securlty objects wlill have a rigidly enforced
internal structure necessary for proper operation of the
securlty system, whlle data objects are format free -~
completely free form Internally. Second, security objects
will be accessed directly only by the declsion and update
programs, :

Names of objects wlll be vrequlired distinct, of
COU"SE. N . -

M-MM'M.L o

P

. As already mentloned, the descriptive data |Is
contalned In the securlty objects. This contalnment
provides a manner by which access to the descriptive data
Itself can be controlled by the mechanisms of the model.

Any sécurlty object os(l) 1s an ordered 1llst of
descriptors ' .

_ os(l). = §d(1), d(2), ... d(n)?
where a descriptor Is an n-tuple, and n25
— = d(') Ll [Q, m' S' R' r(l)' r(z)' eo ey I‘(k)J

In any descriptor, 9 Is the name of a member of the
object set O,

The second element, m Is a member of the mode set M.
M=f1, 2, 3, 4,5, 6, 73
The compartment tist Is the third entry.
It Is useful to be able to 1label an object as a

member of any number of several areas, or compartments.
Hence 2 set of compartments ,5 defined:

-2

- e . e et e s

e i eds o SRl L adial oAl amfmmﬁ,ww PR

ot b it Lot b g [OSRVIRPIEPY S

oene omoos C. - £C(1)p C(Z). esey C(17)3

-l

r —ﬂb‘-

—and for convenlence we also define

A R c = P(¢) , the power set of c'.

T Any compartment list Is the name of an element In C.

- ﬂ

i * Q- The remalning entriles except for P are relatlons;

b . .-

--there will be an arbltrary number of them. To describe
. relatlons, deflne flrst the access type set A',

-

' ={copy, write, execute, read, update3
--and also A = P(A'). - L

__Then any relatlon Is a 2-tuple fou, a] whose first entry
“Is a user name: of an object from Ou, and whose second
entry Is the name of an element of the set A

e Each member of the access set can be thought of as a
--program whose effect Is to provide a particular varlety of
access. The necessary parameters are speclified later, but
It Is assumed In this sec:lon that these programs are
correct. What such programs actually do, of course,

- -provides the semantics for thelr names,

It Is Intended that the access types copy, write, and
execute apply to data objects: write and execute have the
-usual interpretation, whille copy Is synonomous with the
usual definltion of read. Copy Is a better mneumonic for
the actual ablllty provided. Read and update are access
types that refer to security objects, and will have the
suspected meaning. The last entry In the descriptor not

- yet mentlioned s p. Thils entry Is a speclflcatlon of the
actual, machine dependent 1location of the object whose
name Is the flrst entry In the descriptor.

The format of the securlty objects' Internal
structure has now been Informally deflned. Some additlions
Wil be required 1like Indicators of the number of
relations In a descriptor and the number of dascriptors In
a securlty object. Additional restrictlons, on the actual
soantent of securlty objects, will be Imposed by Initlal

- condlitlons and the updating procedures.

=3

e R

B R

o . -
~ e IawE

RSN A B 1) 0

-

Before continuing, It may help to discuss the
motivation for the format selected, and the Intended use
to which the data will be put by the access and update

‘' programs. One will be able to represent the total

" descriptive data by a tree, where the nodes are security .
objects, and the edges from father to son are Indlcates by
descriptors whose mode entry Is §, for security object. A
tree link lles between a security object named by the
entry. Descriptors with other modes speclfy terminal

] leaves: the other objects, terminals, users, and data In
? the model. Thls tree structure provides the manner by.
which access to descriptive data can be controlled, since

e

each node contalns the Information relevant to access
control for each of Its sons, Access to the root node 1is
treated differently - It will be free for read, but not
possible to change.

The update program will guarantee that the name
actually stored In a descriptor Is unlque: no two
descriptors will have the same name entry.

The totality of Information about objects that the
securlty system will employ to make access decislons Is
contained in the descriptor.

X 4 ‘ﬁ

The program Is the manner by which the descriptive b
data is Interpreted to control access to data objects. !ﬁ

First, we assume the existence and correctness of the - f
programs which make up the access set. ‘F
. }

i

Each such procedure takes as arguments a user name, a
terminal name, and a data object name. Its action Is to
perform those hardware and/or software operatlions
necessary for the access to take place. :

. l

In addition, we assume the existence of two correct %
procedures, user and termipal, which return the name of - |
|
|

A i

". the user object which has Initlated the current access
request, and the terminal from which the request was
Initiated, respectively. in addition, we assume the .

iR

=4

v,

—re

i
-

"

existence of a access tvpe program, that returns the kind
of access requested: the name of an element In A; and a
reference program that returns the name of the data object
to be referenced. (These two programs need not be proven
correct.) \le also assume the existence of a program pull
which may be a nop, but may also Initlate recording of
certaln parameters for later Inspection. Null Is only
guaranteed not to grant any access. '
i

The evaluate program In 1Its Initia}l state Is
relatively simple. To keep questlons of Implementation
burled for the moment, we assume the existence of another
correct program,

(b, ¢, d) has arguments b=data nane, c=user

name, and d=access type name, the name of a program in A'.
Thls program returns true Iff: 1) there exlists a
descriptor entry specifled by b, and 2) there 1Is a
relation tuple [c, kI In that descriptor, where k
speclifles a subset of the access types which Includes d.

An Inlitlal evaluate program might then be written
following the outline In the security meta model, but with
(reference, user, access-tvoe) replacing E In the
-evaluate program E. Note that white the term!nal involved
In this activity has not been Included In the check, It
would be a simple matter, given the existence of the

routine terminal.
Ihe Update Program
To more easlily describe the update program at thls

level we agaln assume the exlistence of several programs:

create (9, 9s) creates the object with name o
and adds a descriptor In.gg with default sensitivity and
compartment list. '

o delete (o, 95) destroys the object g and removes
its descriptor from gs.

read (gs, I, j) returns the value of the j-th
entry In the I-th descriptor In security object gs.

It

"o

-

wrlte (os, 1, J, val) sets the contents of ¢(-ae

j=th position In the [-th descriptor in security object o5

to val, If there exists an |-th descriptor.

We assume that the above programs are correct. We also
assume that there is some mechanism, not required correct,
by which a user program may communlicate its wishes to the
update program. The set of arguments with which the
update program must be invoked are: 1) the name of the
object whose descriptive data it Is wished to change, 2)
the name of the securlty object to which the object
belongs, 3) the operation that Is deslred (which program
to invoke), and 4) the relevant Input parameters to that
program (the deslired new values in a descriptor).

- It should be falrly stralghtforward to sketch an
update program, given the outline In the meta model! and
the above correct routines,

Jheorems

It 1Is now necessary to speclfy the objectives of the
system deslgn. These, {n some reasonably speclflic
language, are the criteria to which It Is deslred the
system conform. We first state the requirements, as
currently understood, I{n rather informal English, and then
begin to formallze them In terms of the speclific model at
hand. These requirements are relatively simple, and do
not provide some of the guarantees that are currently
desired by some segments of the computer community.
However, at thls polnt, It Is belleved that current and
short range future military requirements would be
satisfled, Informally, there are four requirements. 1)
No user shall have any access to an object If the
sensitivity rating of the user, at the time that Initlal
access |Is attempted, Is less than the senslitivity rating
of the object. 2) No user shall have any access to an
object If the set of compartments assoclated with the
object at the time of Inltlial attempted access ls not
contalned by the set of compartments associated with the
user, 3) No user shall have any access to an object
unless authorized by a "need to know" speciflcation at the
time of Initial attempted access.

The problem of demonstrating that these criteria are

always applled In thls model can be approached In the
following way. First prove that the format, or structure

AR NV E R SIS s S e R R | |

PR fa PSR L SRR TS S RE PR o (PP T TP RRARY ”""‘&“"’w“*‘“t’?’ﬁ'“ Pr s MAT el v e g s on o l‘
' N Dutetles o0 A P E
W

of the data base will hava the propertles . that are
- described In the descussion earlier. This amounts to
-'proving a number of assertions about the effect of the

“ update program,
“--- Then state theorems one through - three
: - algorithmically. Modify the declision process In the
’ - access program to Invoke the above algorlithms as' part of

- the declislon process itself in such a manner that a) It Is
-'simple " to show that the algorithms are always appllied in |
- the declslion process, b) the parameters they are supplied

- are approprliate, and c) the result of the algorithms has a
_controlling effect on whether or not access Is granted.

As an example, we restate the flrst two requirements

below, using the notatlion: sensitivity (x) and

-'compartment (x) to mean the sensitivity and compartrent
‘entry In the descriptor for object x, respectively.

—— - proc label-check (user, object); ;3

check <~ true;
1f sensltivity (object) > sensitlvity (user) i

then check <~ false: y
If compartment (object) ¢ compartment (user) ‘ il

then check <- 131§g _ ' f
return check; 5 !
end; A ' A !

tn the above, the symbol > means the ©blnary "
arlthmetic operator '"“greater than". The symbol ¢ is the ERE
" negation of the set theoretic property of "contained in" ,
It Is presumably clear that programs for all of the i
operatlons and checks required for the procedure i
: are straightforward in light of the data base I
_ provlded by the securlty objects.

The declslion program:is then. modified by replacing
“"relation (...)" by ' '

: "relation (reference, user, access type) and |
_ " label check (user, object)", , -{
o . The truth of the three requirements can be guaranteed i;

in this manner, If in addition a conslistent data structure i
Is assumed for the securlty objects. . h

-7 | i

- i g o Al ”e 2 ol Bobrd dro i Aaiots 0 s en e A A L DR, Gl L e B, NS Ly el @ }t

o Thls approach Is equivalent to dynamic checlks at run
time of the state of the system, Certainly It Is possible
that careful construction of the loglcal structure of the
system could obviate the need for some run time checks, In
a fashlon analagous to certaln programming languages.
While that approach might be more efficlient, these checks
do not appear particularly costly. Also, the 1loglcal
correctness of the system probably could be more easily
demonstrated under these clrcumstances, particularly in
the face of changes to the system.

The preceding sketch has been Intended gonly as a
resonabllity argument Irn support of the viabllity of the
security meta model. There Is no clalm here of the
accuracy of the detaljl. Rather, It Is only argued that
the hilighly modular, tree structured proof structure for a
securlty kernel Is a viable and effective manner to deal
with the task of correct securlty system deslign.

11 -8

RN G
o

SECURE MILITARY COMPUTING SYSTEMS

s OUTLINE
- CHAPTER ONE _ INTRODUCT 1 ON

T g
‘

~ 1.1 Secure Operating Systems - General Goals

" 1.2 Design Methodology
' CHAPTER TWO | LEVEL ZERO
2.1 A Kernel Model

et {10y (0

2.1.1 The Accession Relatlon. Model! Components
1 2.1,2 Accesslon ' ' ‘
2.1.3 Updation

Modeling Access Data Retrleval

2.2.1 A model for Data Confliguration
2.2.1.1 Mathematical Language
2.2.1.2 Examples

2.2.2 Generallzed Locks and Keys
2.2.2.1 Definitions
2.2.2,2 Example: A Millitary
Securlity Model

CHAPTER THREE LEVEL ONE
General Conslderations

3.1.1 Three Dimenslions of Security
3.1.1.1 Clearance/Classiflication
3.1.1.2 Compartmentallzation
3.1.1.3 Needs~-to-know
3.1.2 System vs User Responsibility
3.1.3 Separation of Accesslion and Updatlion
3.1.4 'Control! and 'Owner' Access Attributes

Elements of the Model
3.2.1 Access Attributes (A)

3.2.2 Modes (K)
3.2.3 Access Data Retrieval (F)

v-1

3.2.4 Descriptors

3.2.5 The Access Evaluator (E) '
3.2.6 Updatlon Commands

3.2.7 Updators (Wl})

3.2.8 The Update Monlitor (U)

3.3 Requirements of Military Securlty
+ 3.3.1 Proofs of Correctness
- 3.3.1.1 Accesslion
3 . 3.3.1.2 updation
3.3.2 Implications. Externa) Breaches
3.3.3 Alternative Kernel Desligns

1

1v=2

e bl . b e AREARMRMOE 1.1 3 oy 3t i

o A e 7y 4 TIVO J - P

IRPPLE PRRRPNIE AT TREET 1L P LAY TORDRERT. » "o

. PPN
5 'm&:‘a +

s

P aRERG |

CHAPTER 1 INTRODUCT I ON

’,

k1,1 Secure Operating Systems - General Goals

The security aspect of shared computer systems has In
' the past not recelved preeminent concern. Questions of
e officiency and flexibllity have forced It Into the
packground of the design process,

The millitary, however, Is faced with the spectre of
{rrevocable compromise of classiflied Informatlion, should a
flaw exist In the system's security. A single cunning and

galiclous user may employ a bug to penetrate or degrade an:

essentlal system, which, once penetrated In secrecy may
sven be covertly-and contlinuously tapped for intelligence.

As an example, Goheen and Fliske (4) report a
successful penetration of an IBM System/360 operating In a
classifled environment. At the end of the study, the
entire system was essentlally open to the penetrators In
complete secrecy.

In the past the military has Insured protection of a
sensitive computer facllity by segregation of the
equipment, 1imiting physical 1iccess to the equlpment, and
forcing on-site usage. Today the problem is to Insure
securlty In a modern time-shared multl-access,
mitiprogrammed system in which remote wusers with
different clearance levels can run concurrently with data
¢j1es and programs of varylng clearance levels.

The millitary will adopt In the near future
extraordinarily high standards for security certiflication
of equlpment and software. Some steps have recently been
taken toward analysls of the military computer security
problem, and toward articulating methodology for designing
certifiable security systems (8), (9), (10).

Schell (10) has proposed three design principles for
security mechanisms: gcomolete mediati.on. lsolation and

(1) The system must provide Immedlate and gcomplete

between reference to and retrieval of

information, validating all such references using a
speclal subsystem.

Iv=3

(2) :Thls subsystem, the "security kernel", must
thwart any attempt at forgery of Identcity, and must
protect Its own valldation algorithms.

.. (334_ The security kernel must be simple enough for
effective logical certification, and Implemented In a
smal) set of simple primitive operations.

in additlon, Schell stated a robustness criterlon for
adjudging the effectiveness of kernel operation: it must
be.",..so designed that even an antagonist could provide

the remainder of the system without compromising the

protection provided."

The need for these principles can be seen from ~the
findings of the 0S/360 penetration study (4), where lack
of a centrallzed, simple and certifiable kernel was
adjudged to be the source of the system's vulnerability.

~. In Chapter 2 of thls paper we propose a conceptual
model of the kernel's operation and organization, and In
Chapter 3 we particularize the model to the military
securlity problem. Our main objective Is to design a
loglcally verlflable kernel subsystem to guarantee
operating security.

1.2 Design Methodology

We Imagine the design process to move from needs to
Implementation In a serles of levels of abstraction, each
level moving closer to a concrete machine reallzation.
The topmost level, level zero, consists of a mathematical
model of general protection mechanisms, Independent of
particular securlty requirements. The mathematical
objects In the level zero model are fupctions which are
expressed In terms of (virtual) primitives unanalyzed at
level zero. That Is, at level zero, the security kernel
Is factored into a number of components (modules). Some
components remain to be analyzed further in lower levels
of abstraction; level 2ero describes how the components
syntheslze to achleve the system goal. At the same time,
subgoals are established for each of the unanalyzed
modules.

At level 1, the process Is repeated on each of the
modules unanalyzed at level zero. Level 1 codifles the

IV=4

o mee e e TS

PRRURRPE. * V.
. oo

P -

2. .
& m———

ka3

- 1
e

)
B

By s

"I

£

4
L

)

;:'s that It allows for orderly

f gpeciflic requlirements of a milltary securlty kernel, and
% (dentifles still "smaller" unanalyzed primitive components
B to be analyzed and factored at still lower levels.

.The term factorlzatlon Is appropriate for this
rocess, since at each level the unanalyzed components do
f indeed compose with other functions in order to realize
> the goal for that level. '

[This top-down design approach allows us to make
b design’ decislons in an orderly manner -- the cholice of
r gactors or modules at each level, and the scheme of
t gynthesis amount to deslgn declislons, and determine
constrained subgoals. The approach allows us to separate
|ssues germane to protection from those which are
particular to a machine or system. '

By far the most Important advantage of thls approach
of each level.
verification proceeds In a "bottom up" manner at each
Jevel: assuming that the unanalyzed modules behave as
hypothesized, then the synthesized function at the 1level
does such-and-such, Having verified the 1level, the
Inductive subgoal Is now to factor and verify the modules.

At level 2 we envislion describing level 1 in terms of
a MULTICS-11ke file directory hlerarchy. The notions of
directory, segment descriptor and process descriptor are
introduced, but “paging" Is Invisible at this level. Our
task at ‘level 2 will be to show that a flle directory
hierarchy structure reallzes the access retrieval functlon
deflned at level 1. :

Levels zero and one are descrlbed In detall iIn the
following chapters. We belleve that the utillty of the
chosen design methodology Is {1lustrated in these

" chapters.

)
i
l
!
!
: .
i

-

,...4...____,.4_

e

Left Blank Intentionally

CHAPTER 2. LEVEL ZERO

2.1 A Kernel Model .
2.1.1 The Accession Relation Comoonents of the Model

We employ a protection model based on the work of
Lampson (7) and Graham and Denning (6). We have a set of ¥
securlty gbiects O (files, programs, devices, etc.) a 8
subset S of the set 0 of i (processes) and a set of '%
A of agcess attributes ('read', 'write', 'control', ‘ !
fowner', etc.). Access of subjects to objects Is i
controlled by an accession relation R which is a subset of ‘
$ x 0 x A. For example, R (s,0,a) or "“(s,0,a) In R" Is ;
intended to convey that s has attribute a with respect to ‘
object'o. Lampson regards R as represented in the form of '
a matrix. o

m: S x 0 => P(A) : i

with entries In the power set P(A) of A. We wish to ;
postpone questions of representatlion untll later.

in this model! we assume that the accession relation
Involves a single subject and a single object. That ls,
we allow In our system a relatlion like 4
(1) sl can 'read' ol"]
- but not
(2) "s1 can 'read! ol only from device o2" i
which would involve three objects.

. L
" e
Rl S st

Assoclated with each type of object Is a monltor, 2
program which actually performs the deslired accession. o)
Here we wish to lllustrate the difference between our ‘
visuallzation of the securlty system and that of Graham B)
and Denning. ‘ i

in thelr model, depicted In FIGURE 1, when a subject
s Initiates access a to object o, the system supplies the
triple (s,o0,a) to an approprliate monitor. The monitor
Interrogates the accession "matrix" to determine whether s
has a access to o and, If so, the monlitor performs the !
requested function.

Iv=7

2’2" We wish, on the other hand, to propose a plcture
which Isolates the process of access attribute checking,
and which separates thls process from the monitor
functlions. Thils effectively factors out the following
processes: the Interpretation of a subject request with
attendant system mediatlion, the search for and retrieval
of access attrlbutes (which depends upon the way In which
the Information of R Is stored), the checking of retrieved
attributes against the accesslon request, and finally the
operation of individual monlitors. The sltuation Is
deplcted In FIGURE 2,

: Below we address the questlons of deslign and
certification of the Access Evaluator (E), the Attribute
Retrlever (F). and the Update Monlitor (U).

-+ We do not {nvestigate the operatlion of G, the Access
Request Generator. It Is the mechanlsm which guarantees
system medlation In all requests for protected objects.
As the entryway Into the kernel, G must provide a
requesting subject with a nonforgeable ldentification
Interpreted by the kernel.

s Nelther can we consider the operation of the
monitors. Belng concerned with securlty, we are
fundamentally Interested In forl:idding unauthorlzed access
to any supervisory module. Thu: we do not address the
possiblility of faulty operatlon of the monlitors
themselves. The correct operation of the securlty
checklng mechanlsm should guarantee that no program can
access the il11-galined frults of a monitor bug.

2.1.2 Accession

When a program requests an access to a monlitor, it
requests that a service be performed for It by the system.
As such |t actually requests an entry to the monltor
program. -

We Imagine the kernel to Interpose Itself between the
requesting program and Involved monitor. The kernel! must
Interpret the type of request, identify the objects
Involved, and perform the requested actlon or a violation
recovery action. It Is the function of the Access
Evaluator E to retrieve appropriate data, grant or deny
the request, and transfer to the appropriate monitor (the
violation handler !s considered a separate monlitor). In

iv-8

MNGR
WKELp REQUEST | ™)
DELETE GEN T N
READ : M =

<4 ACCESSION
MATRIX

DATE READ

: — wae |

FIG. 1. GRAHAM-DENNING MODEL

r - = w.n.(s - e e Ly e RS e b o 2T g e - Tl

e

o
L 4

wo
FILE _

SYS |||a_
MNGR

k3
¥
3
£
&
3
-
Fa
4
H
3

. PRI o § 2T T
e 1~ OB 2 ot

o

(9

G " | pro-

CESS fcd)
WRITE | REQUEST | access -[—"1 mner
waKeup . ———s REQUE
DELETE . EVALUATOR

ADD, . :

:

1

| W ETC.
4 ‘

Iv-10

READ

ACCESS u

A
ATTRIBUTE READ UPDATE

. RETRIEVER w%:m MON, |||.._

FIG. 2 SECURITY KERNEL ORGANIZATION

ar mrbatmh

PR

S T T PR s

- . . R A |
e R WRTo «x N 0~ A XU A DR T L IR B S WP T ART O AL VG TRt gt NPT, Wt DG WL v rw ¢ g 1 N b S sy - |
» n ; ’ L ¥ s

: our descriptlon of the function performed by E, we say
. that function e returns a function mx, where mx s the
function performed by monitor Mx. We use upper case to
denote programs (system modules); corresponding lower case
to denote the actlions (functions) which they perform.

‘ Let e be the function realized by program E, and let
. f be the function accomplished by the program F which
fetches the accesslion data. Then
" e: SxOxA => {m(0),m(1),..,m(x)$

f: SxOxA -> B (1)

OSSN

ﬂ tells us some Informatlon about e and f -- thelr types.
‘ It does not explain the details of thelr actlon, but shows
at least the nature of thelr Inputs and outputs.

Given the requlred accession relatlon R, F operates
correctly If we can guarantee that

(1) Vs.Vo.Va, f(s,0,a) =1
i1ff R (s,0,a).

Thls just states that F has correctly stored and correctly
retrleves the accesslion data.

Suppose h(o,a) retrleves the Index of the proper b
monitor function m(h(o,a)) among m(1),...,m(x). For X:
example, If o Is a data file and a Is 'read', then h(o,a) 5
Is the index of the flle system manager. .

]
I

Assuming f,h are verlfled to operate correctly, then i |
e can be correctly reallzed by . & |

e(S.O,a) = li f(S,O.a) a]
m{h(o,a)) glse m(0).

flotice that m Is a mapping which takes the name of a
monitor program and returns the mapping realized by this
program. In an implementation this might mean: fault to
an approprlate location In a protected program.

. (1) 8 = t1,o3 or ll;ug,ial;gs Is the set of bits. ' N

1v-11 H

Summarlizing, we have the maps

f: SxOxA -> B
hg OXA -> {1.2,...,)&3
f1,2,000,x8 => fm(1),...,m(x)3

m(1): unspeclfied functlons

The ‘arguments and values of the m(1) (thelr Ltypes)
depend upon thelr respective dutles, and clearly Involve
data external to the kernel, Ffor example, the memory)
addressing hardware monitor will need to know where In the
requesting program to return the contents of an address.
By leaving these detalls unspecifled, the most we can say
I1s "that e returns one of a finite set of expllicit
functlons. Further analyses may now enumerate, factor and
describe the Implementation of the m(i). What we have
done Is to get them out of the access-checking game,
concentrating on thelr "natural"™ roles.

Returning to the question of certiflicatlion, what If
(1) Is violated, l.e., f does not adequately reflect the
deslred accesslon relatlion R? Popek (39) has suggested
(the Incluslon technlgue) that we add to the antecedent of
e

1f f(s,o,e) = 1 then ...

all of the extra checks demanded by R, after writing a
suitable routine d to store and retrleve these checks., We
wlll then have another program

e'(s,o,e) = If f(s,o,e) =1 and d(s,o,e) =1

which will now operate correctly. But thls amounts to
constructing a retrieval function f' satisfying

f£'(s,0,e) = f(s,o0,e) and d(s,o,e).
What Is evidently needed Is a correct retrieval function f

satisfying (1). In a practical system, It s the
structure of f which Is of utmost Importance anyway.

Iv-12

P

in a Yater section we analyze the function f with i
? g § particular emphasis on a military security model, and '
E ‘ l:t:oduce the notions of locks and keys in the operation
: of f.
!
|

'2.1.3 updatlon

b ST

As the system evolves over time, the State,
represented by the accession relation R, is modified by
the attentlions of the update monltor U. Available fer the
use of subjects are varlous security state ypdation !
: . sommands (delete, grant, destroy, etc.) which request
3 13 changes to attributes, destructlon of subjects and
; g objects, etc.

et ——

e

-
A

A dg;;;nx_anhigs;_;z command by sub;ect sl Is, for
example, interpreted by G as a request to write to the)
(protected) accesslion data F. The Informatlion (sl, F, ‘
! ‘write') Is passed to the Access Evaluator E which
determines whether sl Is allowed to change any items at
all In F, |If control Is passed to U, U must now do
further careful checking to:

(a) retrlieve the name of the partlicular subject
s2 which Is to be destroyed;

i

6

{

|

i

|

’ v i3
. (b) determine whether sl Is allowed to destroy W
$2; ‘
(c) perform the desired action, or else refuse, l

with attendant actlon. e

Operation (a) Is performed with no diffliculty, but
operation (b) requires some explanation. The internal :
logic of U determines the type of access attrlbute sl i
needs vis-a-vis s2 In order to destroy s2, say ‘owner'. U
then Interrogates F with the request (sl1,s2,'owner'), and
if this triple Is part of the current security state, U
then updates F In the requlred fashion (deleting s2 from
the data base) and passes control to further non-kernel
systems for housekeepling dutles.

The monitor U, being Insida the kernel, Is "trusted"
by E, and there iIs no need for U to go through G or even E
In order to access F. Hence U may successfully "disguise"
Itself as sl for purposes of reading sl's privileges.

1v-13

.t . . . - g " L) - - s .. Iy - PR oy . oo - . T P N
CRLrh el o L gl o L b 2 o ML i N el Blrnes. s (&5 AR St § N
R R e e - ” sy P vy PP oy, T
2 P~ . 3 gy v RN -) "

Other types of updation can be handled In a slml!ar
fashlon.

Notlice that In this model the detalled study of
F-updation privileges Is done by U, which must take Into
conslderation a larger context of Information than E; but
U has F at Its disposal.

The correctness of an Implementation of U depends
upon a full description of the clrcumstances under which
the system Is to honor a request to alter the security
state. These clrcumstances are Imposed on the design from
without, In the form of a set of updation constraints. It
must be demonstrated that.any change which U makes results
in an acceptable securlity state within the updatlion
constraints. .

" Updatlon constralnts are described In a loglcal
language, and codify just those rules which the designer
wishes to place upon U In its making of updation
decisions.

Assoclated with each updation command Is a
true If and only If the command can legally be executed by
the requesting process.

: delate ('read',s2,0) Is a command uttered by s
and asklnz that attrlibute 'read' be withdrawn from s2
vis-a-vls o, There is an assoclated predicate

DEL € SxAxSx0.

DEL(sl,'read!,s2,0) Is true If and only If sl Is allowed
to delete s2's 'read! privilege to o.

An example of an updation constraint Is:
vsl.vs2 [R(sl,s2,'control’) ==>
Vo.Va DEL (sl, a,sz,o)]
whlch says In words "For every sl and s2, If sl has
‘control' access to s2, then for all objects o and
attributes a, sl can delete s2's a-access to o0." Or

better: "If sl has 'control' of s2, then sl can delete
any of s2's privileges to any object."

IV=1k

Taie I 0 S NP ~ . LN B L A - D¥r- s

R . .
T T N B .. L G T 2 O TN RGN YR T IR S SR ANE S T e o
i s Jadhor = v

Other examples follow which may readily be translated
by the reader:

V¥sl.Vo.LR(sl,0,'owner!) =)
Vs2.Va.GRANT(sl,a,s2,0)]
V¥s.Vo[R(s,o0,'owner') => DESTROY (s,0)]

“Within U are a series of programs, called updators,
Wi,...,Wz. These effect the actlons requested In the
commands by users. The actlons they perform are denoted
wl,..,wz. U also has as a factor a program V, the
Lonstralnt Checker, which matches an updatlon request
agalinst the updation constralnts, sultably Internallzed.
FIGURE 3 1llustrates the sltuation, and FIGURE 3a shows
the parallel! nature of E and U. .

V employs the retrlieval program F to make Its
declslions, Its Internal loglc should be designed from the
(flxed) updation constraints as outlined above. Obviously
Its operation cannot be illustrated without a predefined
set of constraints to work frum. However we can give an

.

" Example Suppose we have tie updatlon constraint
Vs.Vo.R(s,o,'owner') =-> DESTROY(s,0)

and let W2 be the “destroyer" program. Then the
description of V will Include in part the line

ees 1f f(s,0,'owner') = 1

then w2 ...

As In the case of e, v outputs one of a set of functions
wWl,...,wz,

Now providing that V operates according to the glven
constralnts and provided that the Individual updators
perform thelir assigned tasks correctly, U will operate
correctly, and the system wlll never enter a state which
compromises security. Why? A correct, satisfactory, or
secure system Is deflned by the set of updation
constraints., U merely enforces them.

V=15

_ ACCESS
EVALUATOR

READ

4

ACCESS |o-READ

U: UPDATE MONITOR

-

vV

UPDATE

i i ot A SE O 4
iom e
n

O
AR 4 S

DATA
RETRIEVER

R T XN
.
>

EEERAT WA B
~

\

WRITE

- ——

[T

CON-
STRAINT
CHECKER

wl

DELETER

W2

p

—

DESTROYER

v

wz

GRANTOR

W~

s contadim M 7 i »...'_q-:a-ﬁ-‘..mwh.wuwum
I3
.

FIG3. UPDATE MONITOR

v

lv-16

TOFTIR

A AT e R Pa? AR S 2 RN 4T T RN R O RPE P IIBY c k- Sy e - e - i 1

.4

ﬁ*r
All the above assumes that the constraints form a R

. gonslstent set. For an example of an Inconslistent
constraint set, Iimagine both

sl may never a-access o3" .

and

k
E
¢
3
i
:
?

Then It Is clear that s0 could, quite Innocently, grant sl
access a to o3.

No kernel or system will ever be able to enforce an |
Inconsistency. :

Clearly a design prerequisite Is a complete - !
description of commands and thelr logical '

lnter-relatlonshlpsr expressed In the updation

constralnts, This "requlrements" list must flirst be

checked for consistency. Provided It Is so, V may be

encoded to check that each constralnt Is satlisfied for

each updation request. This provides another example of
, Popek's (9) Inclusion Technlique.

T L SR A SO SO NI WA, EKHIIY MR BB TS GV e S Y

Y

2.2 Modellng Access Data Retrlieva)l

In this section we focus upon the operation of the
retrieval program F, We glve some attention to the
possibilitles of factoring this program into (perhaps)
more simply veriflable components.

The function of F Is to represent and retrieve the
Informatlon contalned In the accession relation R - the i
securlty state of the system. Since the numbers of
subjects S, objects 0, and access attributes A are all
finite, R Is In princlple "just a big table" and F "just
a big table look-up". This might satisfy an automata
theorist but not a systems designer.

ey PSS v s map e ey T

(1) First, there Is an enormous amount of
Informatlon contalned In R == the triples (s,0,a) not In R
are as Important as those ln R.

(2) Second, R Is gparse as a table, or even as a
matrix

rs Sx0 => P(A),

Iv=18

. cw .J’me'ﬁl‘:’?,\ e e O RRE AN 1) Gt AN e N

- —— -

!
E
z

‘structuring of the program F with a view toward certlfyling

suggesting that In practlical cases a great deals of o
structural constralnt obtailns among the entries.

(3) Third, the amount of Information Is so large
that present-day systems employ both dynamic and static
storage techniques In Its retrieval. For example, in the
MULTICS segmented memory, with Its dynamic linkage
facllity, part of the protection Information ls stored In
the environment of a process; the rest Is distributed
throughout the storage system and avallable for later
dynamic recall, In future systems there may well be a
requirement to segment this Information base.

(k) Fourth, people group and use Informatlon
according to behavior patterns and In established .
structures. For example, very few systems development
programmers call a linear regressions package, and many
data flles group naturally together with the assoclated] i
project which developed them. ' !

Its operation. Below we make a start toward this ,
analyslis, 4 | 1

2.2.1 A Model for Data Conflguration
2.2.1.1 Mathematlcal Language
"In thls model! we do not discuss lssues of

implementation, but do wish to develop a theory for the
structuring of data used In the securjty kernel,

For all these reasons, we belleve in careful ‘ E
|
i
|

From our point of view, set theory Is not
an adequate tool for the expresslion of notlons In
computing. The most primitive semantlic notlon for
programming Is that of function or mapping. A set, as a
primitive, orderless collection can never be reallzed on a
computer, whereas a function, the characteristic function
of the set, gcan be so Implemented. That Is, set S cannot
be "In" the machine, but a map ¢: S~>8 can be reallzed as
a8 bit string If the slze of S Is small; as a linked 1llist
If large, etc.

. e e R PN "
T et v v W W, WO PPy e A W&Mu’% ""‘"’-W""’"”“F""ﬂ« '
. o

[3

i If S,T are finlte sets, (S-)T) represents
; the set of all possible maps from S to T. The statement
4 c: S=>B

means that c¢ Is ln (S->B), a set. Whenever we wrlite

1 f: (A->B)=>C or say "f In ((A=>B)~>C)", we are expressing

B the tvpe of f as a mathematical object. This glves only a .
1imited amount of informatlon about f =-- its domaln and

range =-- but s frequently useful,

Another concept used all the time is that »
of cross-product of two sets SxT. Since this Is just a
set and not representable on a machine, we think of It as
a functlion -

p: SxT->B

o T T e - T

defined to glve 1 for all palrs In SxT.

On a8 machine we cannot really make sense of
an ordered palr. Palrs must be stored, and In some order.
We adopt the fact that

(SxT=3U) = (S->(T=>U)). - ')

That Is, by convention an S,T matrix of U-values Is stored - i
as an S~1ist of T-lists of 0's. :

2.2.1.2 Examples
We glve here some examples of the way in i 1
which F might be arranged as a program.

%ﬁ‘_i? A securlty system using Access Control Llists
CLs).

The accesslon relation is stored by object, b
then subject, then attribute. The accession function |s i

f: 0-> (S=>(A=>8))

Glven an o In O,

f(o): S->(A->8B) : : !

1v=20

ot i L T e . . Y’ . 1 W ¥ 1 o sy ¥ nd & .9
By A LTV AL NI - S SRR A = ‘,.,g*..‘\;"; ».w&%g»,{,\‘:un\ r«ww : ‘Wﬂf\";, PR T b SN
T P b " DUTRELAR S W T A M" “’"‘ IR

ls an ACL -- the ACL of o == and Is Itself a functlo&.
Glven a subject s, f(o) flnds an access attribute ‘list

(function)
f(o)(s): A->B

assoclated with o and s. This 11st might be représented
as a bit string. The point Is that f(o)(s), glven an a,
returns a bit., How It does this is Implementation. A

pictorial dlagram of the above mlight be glven for MULTICS
In FIGURE &.

ACL fi0

S1
f S2 -

.
olsl o=
"]

ol

]
NN
. : :
OBJECTS -2 ‘
- 0

02

ACL2

u-‘_\.‘—gl

52

il =
F—i:’f/”://'
(=]

FIG. 4

The bundles of linking arrows represent the functions
f, f(o), f(o)(s), and may not be simple pointers, but some
complex hashing scheme.

Notlice that In MULTICS, the object collection lItself
has a further structure, the flle ., Ot

iv=21

RN Py

msiliniing

[

-

JOE o

R shown here,
Ex. b, A System with Capabllity Lists (C-1ists)
R Is stored by subject, then object, then -

attribute:
a f: S=>(0=>(A=>B)) . o)
The C-11st for subject sl 1ls a map | ..;
f(sl): 0->(A->B) : - i
which returns, for an object o2 a map |
. f(sl)(o02): A->B
the attribute 1ist. . ' i W

An oversimplifled example Is glven from MULTICS In
FIGURE S,

. Multlcs actually conslists of a complex of both
technligues. Initlally the system checks the descriptor .
segment for an object. If It Is not present, 2 missing @
segment fault occurs, the flle dlrectory hlierarchy Is i
searched for the object and the descriptor segment Is X
updated with the object ldentlflcation and access *
Information. "

2.2,2 Generallzed Locks and Keys
2.2.2.1 pefinitions

Frequently the sparse structure of R or any
of Its representations discussed above can be explolited to
factor the retrlieval problem. Indeed, both natural
groupings of subjects (think of projects) and natural
grouplings of objects (think of master files) may exlst.
The ldea of key and lock explolts thls observatlion: why
treat each subject or object as a separate securlity
entity, when coarser groupings may be more efflclent?

Let K be a finite set of keys, L a finlite
set of locks. The only thing we require is that these
sets consist of distingulishable objects (e.g., bIt

positions In a word). A kay assignment Is a map

o e ——— e Br— e

Iv-22 | | i

.

e T S T

DESCRIPTOR

| f(S1)(01)

SEGMENTS -
L MENTS 15 e
w
a
ACTIVE
PROCESS
TABLE -
3 - '
8
32 f(s2) W \(:
. . is102
FIG. 5

k: S => (K=>B)

and a lock assignment a map
1: 0 => (L=>B).

A subject may thus be issued several keys; and an

object may have several lndependgnt locks.,

We also have an
keys are adequate to which locks

t: KxL <> (A->B).

which tells which

Thils Is not a one-to-one relatlion, nor even a function;
for a passkey may open many different locks, and a lock

1V=23

TR '.,‘lm?‘-‘:" TIEYTE ar O R A T S e I VR ST M I VO g e TR e e qas e T ' “ i

g

i

g may be opened by a hierarchy of passkeys of varying power.).
Subject s has access a to object o If and only If

there are kl,12 such that

k(s) (k1) =1, , g
1(o) (12) =1 _ - ‘
{

!

{

and
t (k1,12) (a) =},

e

- SUBJECTS KEYS LOCKS OBJECTS

FIG6,

We may deplct an accession relatlon as In FIGURE 6.

Notice that any accession relatlion represented using
Intermedlate locks and keys can of course be reallzed by .)

an accesslon matrix

V=24 :

ot .ﬁvm.‘b,-,__u.-. - SR 1"="“- “ s ey w{’;;‘v..‘.p:}&:.-.nr-. < dgnhern s,.AE.-' .'~l.:s~ . Yol e o el L e

N T L s 2 e g

"”wa:" ;.;‘Aywv -

1 " m: Sx0 =-> (A=->B) ;

3 3 merely by defining m(s)(o)(a)=1 If and only if there are
k1,12 such that k(s)(kl)=1, 1(0)(12)=1 and t(k1,12) (a)=1.

! But this misses the polnt. .Locks and keys, which look

1ike a fatuous complication in the abstract, are .
Introduced in practice for natural reasons leadlng to

K greater efficiency. In an application it may prove more
efflicient to calculate k, 1, and t than to look up entrles
In a tree structure such as those of 2,2.1.2.

~2,2,2.2 Example: A Milltary Secyritv Model

In an application, the notlons of lock and key may be
used to store one component of the accession information,
while other techniques are used for the remainder,
Possibly complex overlays of various storarge
representations may be used If efficiencles result. The
problem of a military securlty data base is a good
example.

L

Three factors govern the control of access to
protected Information.

(a) glearance/classification., A document, flle i
or program (Informatlon) Is sald to be clagsified U,C,S or i
TS. A user or subject Is said gleared for u,C,S,TS. i\
Below we represent these security levels by lntegers .
0,1,2,3. :

(b) gompartmentalization, As a refinement of o
(a), iInformation and users are further assligned one or
more gompartments, reflecting the kinds of classiflied
information to which they be long or have access., The -
millitary employs 16 compartments P={1,..,16¢, e.g., :
cryptographic, AEC, etc. v : ‘ :
(c) pneed to know. The flnest resolutlon of the
securlty question occurs at this level. For each subject
s and object o, the military requires that some authority
grant s an "a-need to know" for o before s can a-access o.
Examples might be '"need to read", "“need to execute', etc.
.. From our point of view, the various "needs to know" are an
. application of the notion of access attribute for a
subject/object pair. The Informatlion Is stored In the
underlying accesslon relation for the system.

'hﬁﬂ&ﬁﬁﬂmﬂﬁﬁﬂﬁﬁwmfiv!%ﬂ??vwf’”"“l ;
.:

¢

L g
Clearance/classification may be modeled by the
following lock/key arrangement (the key/lock functlons are ;
denoted by the same symbol In this example). .
cs S->C . °
c: 0->C .
. ts C x C ->B
where c=£0,1,2,35 and

t(i,i)=1 1If and only If 12].

COmpartmentallzatlon Is represented by

i ps S=>(P->B)
, z: (P->B) x(P->B) =>B

| where z(p(s),p(0))=1 If and only If p(s) and p(o) = p(s).
Here and represents the blit mask of lists.

3 . Finally, as noted above, need-to-know must be handled
b by expllicit retrieval, structured however Is convenlent. ;
We depict the slituatlion In FIGURE 7, J

lv-26

IN

NEED TO KNOW

AND

FIG7. MILITARY SECURITY DATA BASE

iv=217

CHAPTER 3 A MILITARY SECURITY MODEL

The purpose of this chapter Is to propose the
requirements of a military time-sharing system operating .
in multilevel security mode. - DOD 5200,.28-M defines
multlilevel securlty mode as: o

"A mode of operation under an operating system
«ees Which provides a capabllity permitting varlous levels
and categorles or compartments of materlal to be
concurrently stored and processed In an ADP system., !n a
remotely accessed resource=-sharing system, the material
can be selectlively accessed and manipulated from varlously
controlled terminals by personnel having dlfferent -
securlty clearances and access approvals..."

The model will be independent of Implementation In
the sense that It will be possible to Interpret the rules
of the kernel as being enforced by a human securlty
offlcer handling documents, not necessarily by a computing
system. The model wlll be formulated using existing
military security requirements for document control (AFM
205-1), as well as requlrements which have been
established for exlIsting military computer systems (VYWVMCCS
GCOS. DOD 5200.28-M). Below, In referring to the

, we shall mean present military procedures
for physically handling classlifled documents, as specified
in AFM 205-1.

3.1 General Conslderations. .
5.1.1 Ihree Dimensions of Securjty | ‘

in the milltary three factors control access to
protected Information, as discussed In section 2.

3.1.1.1 gClearance/Classificatlion

Possible clearances are{b- 0,1,2,3}. With each
object ls associated a clearance or classiflication via the
nap.

5.1.1.2 Compartmeptallzation ,

Compartments are P=§1,2,...,16}. Each object Is

assigned to a list of compartments by the map.
p:0=>(P=->8B)

Thus If o Is In O, p(o): P=>B Is o's compartment
1ist. ‘

3.1.1.3 Needs-to-Know

e We regard thls as equivalent to the notlion of
% access attribute. Glven an attrlbute set A (discussed
: below) the function f:0->(S->(A->B)) assigns to each

object 0:0 a 1ist of needs-to-know f(0):S->(A->B)
classlfled by subject. Notlce that we are proposing an
Acgess ?ontrol List structure for f (Cf. sectlon
2.2.1.2).

Evidently ciearance and compartment Informatlion
could be stored Implicitly In the access retrieval
function f (Cf section 3.2.3), However, for purposes of
access checklng and updatling this would nelther be
afficient nor would It model the existing millitary manual
system. As a consequence we factor the accesslon data as
indlicated.

3.1.2 System vs, User Responsibillty

In designing requirements for a military multilevel
securlty system, we must declde at the outset the role of
the kernel In transactions Involving secure data.

a) IThe Responsible Kernel
o t
The kernel Itself Is responsible for the

control, classliflcatlon, declassification and manipulation
of Information within the system. It employs automatlc
rules to assign classiflcations to newly created files,
maintains a history of each user's securlty environment
and watches each user to maintaln operatir.g conslistency.
This approach Is Il1lustrated In Welsmann's paper (11).
The kerne!l from this polnt of view becomes a super
bureaucrat.

"

b) Ihe Responsible User ,
The assumption Is that an authorlzed user of
classifled Informatlon has full responsibility for Its
control while operating with It, Thus destruction of
coples, reclassificatlion of altered files, etc., become
dutles of the user which must be performed before he logs

off. The kernel, after granting Initlal access, makes no
attempt to monltor the use to which data is put.

’

Whichever role the kernel Is designed to
play, the system of rules which the kernel enforces must
be simple enough and so clearly stated that each user
understands the full Implications of each security state

updation command, and his responsiblilities ln employling
lt.

:° The assumptlon of user Lgsggnslhlllsx Is the

one whlch agrees most readlly with the present manual
system, and will underlie the deslgn discussed here.

As a consequence af the "responsible user"
assumptlon, certaln possible "security compromises" of
concern to Lapadula and Bell (!) are nelther detected nor
prevented by our proposed syst:m. To use thelr example,
suppose sl Is cleared for TS, 52 for S and let file 03 be
classifled S. Suppose sl wrlitas some top secret
Informatlion In 03, but falls to expliclitly upgrade o3's-
classiflcation. The kernel cannot detect the "vilolation".
At some future time, s2 could be granted 'read' access to
03, and s2 would be reading "forbldden" Information.

. Our feellng Is that any attempt to make the
kernel responsible for detection and preventlon of such
occurrences would elther (1) Involve the kernel in
decliding complex questions of sensitlve data aggregation,
or would (1) require the adoptlion of an arbltrary
“high-watermark" rule (e.g., sl operating under a TS
¢learance can only write TS files). The latter approach
s adopted by Welssman (11), who does not allow for the
possibllity of declassifylng flles.

Here we only requlre the kernel! to enforce
exlsting manual securlty regulations which place the onus
of responsibjllity upon the user of a document to make
necessary changes to Its classification or compartments.
Since we demand that the kernel allow reclassiflication on

Iv=-30

sogme authority, compromlses of the kind illustrated above !

wlll always be possible on some level. We have chosen to ‘

trust completely every authorized user. The kernel Is P
:non-susplclous -~ If a subject Is granted access rights by

. 3 -the kernel, the subject has the full implications and

" -responslbllltles attendant on those rights.,

W—
(1

~e . e

z Another, more technlical, way of phraslng this

-Is that the kernel uses only subject/object ID's,
classificatlions, compartment lists, and access attributes
In reaching Its decislon. The kernel does not Interpret

cor deduce any Iimpllcations from an authorlzed access or
update request,

For example, If sl accesses an object o2 for
whlch it has Inadequate clearance, a securlty violation
occurs. But If sl obtains upward reclassification from an
“"incompetent" but authorlized subject s2, and then accesses

102, no violation, from the system standpoint, has
.occurred.

'3.1.3 Separation of Accession and Updation

: As discussed In the previous chapter, the processes)
of granting "normal" access, and the granting of updates [
must be kept distinct, since the latter actlon is more _
complex. It follows that the data used and modifled by {ie
the updation procedures, the accession relatlion R, should

] be kept distinct from ordinary protected data flles. For

A "one thing, It will have to be maintalned in a rigid format

I " Interpretable by the kernel. For another thing, It Is _
part of the kernel ltself, since Its compromise would !
compronise the entlre system. Lastly, It may be stored In

-a radlcally different manner - perhaps In special

" hardware.

- R eafipie il

in our model this data is stored In the access data
retrleval program (F). lle see no reason to treat it as an

object (compare Popek's (9) security objects), since It
deserves such special status, |

3.1.4 Jcontrol' and 'Owner' Access Attributes

The notlons of 'control' and 'owner' access]
attributes occur In Lampson (7) and Graham and Dennling
(6). One subject sl controls' another, s2, If sl can
read from and write In s2's roy of the matrix m:S =)

Iv-31 j

P et e gl

0->(A->B), l.e. If sl can read and modify s2's.:,

to other subjects any access to s2, then sl Is sald to
have ‘owner' access to s2. Thus sl 'owns' s2 when sl may
read from and write In s2's column of the access matrix.
Issues Immedlately arlise concerning multiptie 'owners' and
the transferabllity of 'control', which are surveyed by
Graham (5).

WC shall not Introduce these attributes. The
relation of sl ‘owning' s2 can be replaced by granting ‘sl
all posslble attributes for s2. Obviously then, multiple
‘owners' are posslible.

if sl can ‘control' s2, this Implies that sl can"
obtaln and modify all s2's capab]llitles -~ the list of all
objects to which s2 has access. In our model, access
attributes will be stored in ACL form (Section 2.1.2,
example a). There Is no way for sl to convenlently learn
s2's privileges, short of listing all objects and
requesting the ACL of each. (Thils Is exactly the
situation In MULTICS.) We see no apparent reason for
introducing the ‘control! facllity.

Furthermore, in the mllitary manual system,
possession of document Implles "control™ of It and
responslibility for it. A possessing subject can glve It
away, garble It, etc.

We choose to Introduce the simple attribute 'update'!.
Subject sl with 'update' attribute for o2 (subject or
not), may modify the securlty data concerning o2 (access

attributes to 02, clearance, compartments). There wlll be

no facl\lty for one subject sl to affect a second
subject's attributes vis-a-vis an object 02, unless sl has
'update' permission for 02, When sl has 'update'
permlssion for s2, sl can only 1Imit accesses by other
subjects to s2.

Update permission may be passed to other subjects
like any other attribute.

capabllilities., If, In additlon, sl may destroy.s2 or grant

e e - ————

., RS, 3B ST AT TN 2

3.2 Elements of the Model
3.2.1 Access Attribytes (A)

The set A conslsts of flve attrlbutes

A={fr,e,w,u,13

with the following meanlngsi

Attribute a 1f f(o)(s)(a)=1 then

r 's can read the contents of object o,
-~ -lmplylng that s can copy o.

e s can execute the (executable) object
o, S must know the calling sequence
for o, since s cannot read o.

w ‘ .S can yrite to o, altering It, adding
to It, even zeroling It out.

u s can update (write on) the descriptor
(see section 3.2.4 below) of o, adding
to It or deleting from it.

1 s can look at the contents of the
: descriptor (see section 3.2.4 below)
of o, without affecting its contents.

3.2,2 Modes (K) ‘

The mode (1) of an object Is an Indicator of the kind
of object it is -- terminal, process, data flle,
directory, etc. Depending on the characteristics of the
computer system, there may be different modes, each
usually associated with a special subsystem or monitor for
handling objects of the same mode. We choose a mode set

1

(1) Calied by Burke (2) a tvype. We have used type in a
more technical sense, so we employ Popek's (3) term mode.

V=33

. Sl ain o et s - D 7 i

K={t,p,f,d} . ‘ ,

B . and a functlon k:0->K assigning to each object an unique
: mode, with the followlng meanlngs:

t a terminal
P a process, l.e., a subject
a flle, l.e., a protected block of

data not Interpretable by the
system. -

; . d a dlirectory, a speclally formatted
; file which may be Interpretable by
the system.

Other modes may be Introduced depending upon the
particular system.

3.2.3 Access Data Retrieval (F)
) : Iin the military securlty model, the data used by the
ﬁ kernel to determine privileges is stored In a factored

accesslon matrix, as In sectlon 2. 2 2.2. We represent It
by the three functlons

t
[
|
3 £:0->(S->(A=->B))
% : c:0=->C

.

L

P:O-)(P-)B)
where c=£0,1,2,38
p={1,...,16%
A=fr,e,w,u,13

There are three different relatlons, all devoted by S,
which will be useful below:

(1) £: C x C->8B

.

i dwaa e

denotes the usual lnequallty on Integers.

(11) L:(P=>B) x (P=>B) -> B

'. denotes the subset relhiﬁon on the compartment llsts:;

object r Is a member of (P->B). (1)
’
(1§1) £: (A=->B) x (A->B) => B
déenotes the subset relatlon on access llsts: object

a Is a member of (A->B).

= A convenlient abuse of notatlon will allow us to

- identify sets in P(A) with functions in (A->B). For-

- example, fuS, which usually denotes the singleton set Fuf
In P(A), will mean for us the function {u}.A-)B glven by

{u}(x)-l 1f xmu
~ 0 If xpu

Either point of view Is seen tb be equivalent, but we

j believe that the "1ist" notation (A->B) Is more
' suggestive.

3.2.4 Descripotors

A useful auxliliary notlon Is that of descriptor of an
object, as used by Popek (9). For each o in 0, d(o), the
descriotor of 9, Is a quadruple of functions

9] d(o)=(c(0), plo), f(o), k(o))

i i; or, equivalently
d(o)(1)=c(o)
d(o)(2)=p(0)
d(o)(B)-f(o)

d(o)(4)=k(o)

(1) The notations P(A), 2 exp A, and (A->B) may all be
considered equivalent. We use (A->B) because It reminds

us we are dealling with functlons.

1V=35

iina AR T TP R sl e S . gy

Thus d has type : ' ' ,' ‘
 d30-3C x (P=>B) x (S->(A->B)) x K !!

This 1s one way to model the storage of access data. A
descriptor Is a sort of generallzed Access Control List
(ACL), and Is particularly appropriate when a MULTICS~-1]lke
flle directory hlerarchy Is contemplated. Descriptors are
then naturally stored as elements of dlrectory segments. -

Whlle at this stage nothing forces us to Introduce
the notlon of descriptor, It will be convenient, 1

3.2.5 JIhe Access Evaluator (E)

Normal accesslon requests, not Involving updation,
pass through E, whose functlon Is easlly described. iIn
our Informal programming language, we shall be sure to
declare the types of all functions mentioned In the
program, Let Msfm(0), m(1l),...m(x)$ be the set of
monitors, m(0) the violatlion hendler, m(1)=V the access
checker. Let h:0 x A->{1,2,...x% be such that h(o,u)=1 1
for all o In O,

! e(sl,ol,b)
C e: S x 0 x A=>4

sl: S

cl: O

b: A

: 0=>(S=>(A->B))

0->C

0->(P=->8)

0 x A->{1,2,...°%

{0,1,2,...3 ->M

C x C->8 :

(A->B) x (A->B) =>8B

(P=>B) x (P->B) =>B
If c(sl)>c(ol) and p(sl)zp(ol) 1
~ and f(o1)(s1)2%b3 1
then m(h(ol,b))
else m(0)

end e

3.2.6 Updatlion Commands -§

A user program desiring to effect changes to the
descriptors requests the kernel to perform the service for .

-

c
P
h
m
2
2
2

Iv=36

g

Sommand

nrlte (o,s,a)

read (o,w)

- . s

clear (o,n)

i

compt (o,r)

create (o0,2z)

destroy (o)

3.2.7 Updators (WI) | | i

These are the kernel programs which actually perform

him by Issuing an updation command. The updation program ,
verifles the user's authority to make the change, and :
performs the service for him using Its updators.

. The commands and thelr Intents are:

..

lntent

sets the access 1lst f(o)(s)
t? a:A->B, destroying the previous
list. .

writes clearance, compartment,

access llist and mode of o In w»

sets the clearance of o to n,
destroyling the previous value.

sets fhe compartment list of o to
the 1list r:P->8, destroyling the old
list.

creates an unique ID for o and
assoclated descriptor with C(o)=0,
p(o)=p full access privileges for
creatlng subject and K(o)=z.

nullifles the descriptor of o, '
erases the ID and the object ;
contents.

operations on the descriptors, and which call any further
system monitors needed for allocatlon, garbage collection,
etc. There wlll be an updator corresponding to each

command:

wr, rd, ¢l, cp, cr, and ds

The constraint checker V calls the updators, as
N [1lustrated In the next sectlon. .

" NOTPNA > W

SRS P TP

3.2.8 The Uodate Monltor (U)

,,.ln the programs below we shall not agaln declare
- , c,p.£,{,m(0). Two functions mentioned below make(o) and
3 ‘ break(o) are left undeflined. . They are responsible for
; housekeepling dutles assoclated with creatlon and
destruction of objects

V(sl.request ol,s2,al,w,n,z,r)
< 8):S o
st :
ol:0
request°fwrlte,read,clear.compt create,destroyf
al:A->B
w:C x (P->B) x (S=>(A->B)) x K . -
) - . . mC :
r:P=->8 o
2:K
If request='write'then
beglin
| If c(sl)2c(ol) and p(sl)2p(ol) and
f(0l1)(s1)2{ul and c(s2)2c(ol) and
p(s2)2p(ol) and not (ol=s2 and alful)
then wr(s2,0l,al)
else m(0)
end |
else If request = 'read' then
_ begln
If c(sl)2c(ol) and p(sl)2p(ol)
and f(ol)(s1)271}
then rd(ol,w) !

t

: else m(0)
end
else If request = 'clear' then
begin

If c(sl)2n and c(sl)2c(ol)

and p(sl)2p(ol)

and f(ol)(sl1)2fus i
then <t (ol,n)

else m(0)
. end .
o else If request = 'compt' then
. begin
o if p(sl)2r and c(sl)2c(ol) and f(ol)(s1)2{u}
then cp (ol,r) ;
else m(0)

end

. else 1f request = 'create' then cr(ol,sl,z)

else 1f request = 'destroy'! then
» beglin
. (if c(sl)dc(ol) .and p(sl)2p(ol)
4 : and f(ol)(s1)2ful
3 - " then ds(ol)
end
4 : " else m(0)
end V

wr (s2,0l,al)
§2:S
ol:0
al:A->8
f(ol)(s2)<-al
end wr

rd (ol,w)
ol:0 ‘
) ' w: C x (P=>B) x (S=>(A->B)) x K
1 , w <= (c(ol),p(o0l),f(0l),m(01))
' end rd

¢l (ol,n)
ol: O
n: C
c(ol)<-n
end cl

cp (ol,r)
ol: O .
r: P->B
p(ol)<-r
end cp

cr (ol,sl1,2)
ol: O
sl: S
1 2: K
. f make (ol) .
: f(o1)(s1) <~ {r,e,w,u,13
N c(ol) <~ 0 .
g . p(ol) <~ 9
k(ol) <= 2z
end cr

1v=39

4

ki

oo adullt,

3.3 Requirements of Milltary Securlty S } f

dstfél)

[

ol: O
f(ol)<-p
c(ol1)<~0 .
p(ol)<~p . - 1
break(ol) : oL

end ds

3301 ' Proofs of Correctness

The gsecurlty state (1) of the system at any time_i Is
described by the classifications, compartments and
attributes of all the objects

q(l) = (c,p,f)

The s&stem Is Initlalized In some state q(o), (2) and by
servicing updation commands evolves to securlty states
q(1),q(2),...etc. | i

‘Given certaln security criterla to be discussed
below, our problem Is to show that the system malntalns
these criterlia. Thils entalls two demonstrations

(1) Accesslon. Between changes In securlty
state, i.e., while the system occupies securlty state o
‘q(l), the kernel enforces seairlty requlrements based upon '
privileges (and prohibitions) Implied in q(i). (e. g., "no .
s can read o unless f(s)(o) 2 {rf™M,

(11) Updation. In honoring a command and
updating from q(i) to q(i+l), the kernel observes any
updatlon constraints required by the performance criterla
(e.g., "no sub;ect may alter Its own security
classification".

(1) This Is ldentical to Lapadula and Bell's (8) notlon of
security state (p. 18) except for their component b, -

(2) A typical q(0) would have one subject s0 the system
administrator with full privileges to all system objects, .

V=40

e AR ™ % AN 4 e it S NGRSO 0 T A TS LR

if (1) and (iIl) can be demonstrated, then by
Inductlion on I, the system remalns secure over time == no
sequence of access requests and updation commands can
Induce the kernel Into a "security compromise.”" (1)

Before we can demonstrate (l) or (11), we must
delimit the criteria or rules which the kernel must
enforce. Another way to say thils Is that we must define
“securlity compromise'.

lt is here that debate will occur over what
requirements to properly put upon the kernel. Based upon
the tenet of "user responsib flity" discussed above, we
wlll list a reasonable set of rules demanded by military
users. In section 3.3.2 we discuss the Implications of
our rules, and In section 3.3.3 we dliscuss possible
alternatives.

The dichotomy (1),(1i) shown above breaks the

criterla naturally Into two parts - those regarding normal
accesslion, and those regarding updation.

3.3.1.1 Accession.

Let q = (c,p,f) be a securlity state of the
kernel. The rules are

(a) No s shall have any access to an o
unless when access Is requested

c(s)2c(o) and p(s)rp(o)
(b) No s shall be able to read, write on,

execute, update the descriptor of or look
at the descriptor of an object o unless

(o) (s)21rd, Twi, {el,
fuf or 013, respectively.

(1) The notlon of compromise, and the‘plcture of the
system as an automation evolving over time with command
inputs, Is due to Lapadula and Bell (8).

1v-41

~ Proof. Consider the Access Evaluator program e. ‘Subject

'f(o)(s)z{bS, so (b) holds.

Bzﬂnnalxlnn Provided

'f¢ (l) all requests for access by subjects to
. ob;ects are directed to the kernel

1

(ll) the kernel correctly retrlieves and
Interprets the arguments of a request
' s
g(!ll) : the kernel correctly ldentifles the
subjects and objects Involved in a request
]] .

“r then . \

the system satisfles rules (a) and (b).

-

S cannot access object o unless a system monitor performs
the function for iIt. But e Is Interposed between al} ;
calls by s and the monitor. If (1), (i1) and (I11) hold, '
e blocks access of any kind unless c(s)c(o) and ﬁ
p{s)2plo), showing (a) holds. .Given a request b 6 \
fr,w,e,u,13, access to m(h(o,b)) Is blocked unless }

Q.E.D.
3.3.1.2 Updation

we llst the updatlion constraints whlch
should operate In a milltary environment

3
]
4

(c) No s may alter the descriptor of an ob;ect
o unless f(o)(s)2fug.

(d) No s may alter or read the descriptor of an
object o unless c(s)2c(o) and p(s)2p(o). .

(e) No access attrlbutes may be granted by sl |
- to s2 for o unless ‘

c(sz)zc(o) and p(s2)2p(o)
(f) No s may alter its own descriptor.
Proposition. Under the provisos (i) (1l) (ill) above and
provided that In the Initial security state q(0) we do not

have f(s)(s)2fuf for any s, then the system satisfles
rules (c), (d), (e), and (f).

‘ ', V=42

e . ’-,4 ,;. .
Broof. Conslder‘%he Update Constraint Checker program V.,

Vle take each rule in turn:

(c). Descriptors may only be altered via the
updators wr, cl, cp, ds, The only calls to these
functions occur from clauses preceded by an explicit check
for f(o)(s)2fuf. '

(d). Descriptors may‘oniy be altered or read by wr,
cl, cp, ds, rd. Each Is called from a clause which
explicitly checks for c(s)2c(o) and p(s)2p(o).

(e). sl can grant s2 attributes for o only by a call
to wr(o,s2,-). This call occurs only In a clause preceded
by the explicit check c(s2)2c(o) and p(s2)ip(o).’

(f). s could alter Its own descriptor only by
calling wr, cl, cp, or ds on o=s, but each such call lIs
preceded by an expliclt check for f(s)(s)>fu3. Therefore
If we can show that It Is never possible to enter a
securlty state with f(s)(s)2fu3 for any s, we are done.
By hypothesis In q(0) we have no s with f(s)(s)>fuZ.
Suppose it were to occur In some q(i), and let | be the
flrst such I, Then In q(i-1) not f(s)(s)) ful. Hence V
must have serviced a command at | resulting In wr(s,s,al)
with al2fug. But the call to wr(s2,0l,al) is preceded by
an explicit-check not (ol=s2 and alz{ur) which Is
violated by ol=s2=s and alfuf. Thus we cannot have
f(s)(s)2fu? in q(1) or In any successor state of q(0).

(f) follows.
. Q.E.D.

3.3.2 Implicatlons. External Breaches.

In stating requlrements (a) to (f) we have In
effect defined the notlon of Internal securlty compromise
- a compromise caused by the system's fallure to meet
responsibilities. Certaln compromlses of securlty In a
larger sense can still occur through actions not under the
control or scrutiny of the kernel., Examples of such
external breaches are:

(1) A 3-cleared user sl with r access to
3=-classifled flle ol coples ol to 02, class!ifles 02 at 0
level, and grants read access to s2. User s2 Ils cleared
only to 0. Even If the system could prevent direct

IV=43

-

“moving" of files In such clrcumstances, sl could stil)
bypass the system by processing ol into an altered form
before copying to o2, could aggregate sensitlve totals
from ol and copy them in 02, etc., MNo system could
interpret all such possible evaslions. Even If It could,
sl could still act by collusion as the direct agent of s2.
Evidently, If s1 has privileged access to ol, no kernel
can keep him from abuse of hls trust, .

An alternative to thls approach Is to force created
flles to be classifled at the high watermark level of the
anvironment of sl. Then elther expllicit declassification
is prohibited, or, if not, this precaution is vacuous and
at best a default convenlence.

ile choose to accept the axloms of complete trust in a
priviliged user within the limits of his privileges and
complete responsibility of the user In assigning’
classiflcations, compartments and attributes to files to
which he has fu? privilege.

(2) A user sl with clearance, compartments
and fwf access for ol can, even without ful access, alter
ol beyond repair, In effect destroying it. There is
therefore a good case for ldentifying the {w¥ and fus
attributes, merging them Into a single fw§ attribute. The
design of e and V could be easlily altered to accomodate
this design decislon, with essentlally no changes In the
arguments of sectlon 3.1, '

Another argument In favor of w=u is from user
responsibility. If sl can write in ol, sl ought to be
able to reclassify ol, since sl may well have appended
sensitive information to ol.

(3) A user sl with u to o3 can provide -
another (sultably cleared) user s2 with any privileges to
05 he himself possesses, except sl cannot grant fuf for s2
to s2. Prodigal use of this facility by s1 may result In
an external breach, but the system cannot be responslble
for making such distinctions.

3.3.3 Alterpative Kaernel Designs.

Certain other deslgn possiblilities can be
handled with case In our framework. In each case they
entall siight alterations of the e and V programs.

V=4t

IR TR A AR

[

(1) tdentifying w3 with ful. This was
discussed In section 3.3.2, °

(2) Allowlng any subject sl with fb}
) attribute for ol, but without Fuf attribute, to pass {b§
; to other subjects. This Is similar to the 'transfer'
' abllity of Graham and Denning (6). First we declare the
] _ functlion

U : (A->B) x (A->B) =-> (A->B)

as the blitwise Yor'" of attribute lists, Then we alter the
first conditional of V to read

If request='write' then
begin :
i1f c(sl)>c(ol) and p(sl)rp(ol)
and f(ol)(s1)>fu? and
c(s2)2c(ol) and p(s2)>plol)
and not (ol=s2 and al){fug)
then wr (s2,0l,al)
else 1f c(sl)>c{ol) and p(s1)>p(ol)
and f(ol)(sl)2al and c(s2)2c(o0l)
and p(s2)2p(ol)

. then
begin
al<-al U f(ol)(s2)
wr(s2,0l,al)

end
else m(0)
end
else If request = 'read then ...

(3) Allowing more 1imited updation
privileges than those implied by fuf. Thus f(ol)(sl)>fnf
might allow sl to change only access attrlbutes to, but
not clearance or classification of, object ol while
f(01)(s1)>fj% would be needed to reclassify.

bk e nadite,

(L)Y Enforcing a requirement that each
object ol have an unique ‘owner' (Graham and Denning (6),
p. 420.). Ye can capture this idea by allowing only one
sl to have {uf to ol. Assuming this is the case In the }
Initial security state q(0), we bulld into V the check

If request = 'write' then
begin

It 2(s1)2c(ol) and p(sl)2p(ol)
and f(ol)(sl1)2fu¥ and
c(s2)2c(ol) and p(s2)2p(ol)
and not al)fuy.

then wr (s2,0l,al)

else m(0)

end

Then an inductive argument shows that, since fu¥ can never
be "passed", no ol ever has more than one s with
f(ol)(s)>fuf. Since every created object has a default
“owner" (its creator), the uniqueness requirement is

proved,

(5) In the view of Burke (2) access
privileges granted to sl for ol should depend upon the
mode m(ol). For example It is meaningless to grant {c?
access to a data flle. Thus he proposes that the kernel
at update time check m(ol) and grant only the appropriate .
attributes,

By adding further conditionals to the updators we can
accomodate this constraint. For example wr may be altered
to

wr (s2,0l1,al)
If m(ol)=p
then f(0l1)(s2)¢~ aln fe,u,1§
else If m(ol)=af
then f(ol)(s2)<-alNnir,w,u, 1%
. o0 etc

IV-46

s —r——— = Y L G e e e A AT

e
g

-

S AN At s i il S 8 S5 Cmnass e

R

A

2 LA e pie WO

Aandin

LTI i,

I e : REFERENCES)
l 1. AFR 205-1, d fled Inf .
{ ; , Dept of the Alr Force, 2 Jan 68.
o <-2, Burke, E. L., Private Communlication ,
3. Dol 5200.28-M. Ma f Technl d ad f
) a T d }
e Secure Resqurce-Sharing ADP Systems, 15 Aug 72.
- 4. Goheen, S, M, and R, S. Flske. 0S/360 Computer Securlty
. MITRE WP-k467, The MITRE Corporation,
16 Oct 72.

- 5. Graham, G. S. Protection Structures In Operating Svstems.

Haster‘s Thesis, Dept of Computer Science, Unlv of
Toronto, Aug 71.

6. Graham, G. S. and P. J. Denning. Protectlion=-Princlples
and Practice. AFIPS Proc Soring Jolnt Computer Conf
(1972), 417-429,

7. Lampson, B. W, Protection. h
m d stems. Princeton
Dept of Elec Engineering (March 1971), L37-443,

8. La Padula, L. J. and D, E. Bell. Secure
Computer Systems: Mathematical Foundations.
Draft MTR, The MITRE Corporation, 2 Oct 72.

9. Popek, G. J. 0On the Deslgn of Secure Systems.
elsewhere In this volume.

10. Schell, R. R, Hotes on an Approach for Deslgn of
Secure MIlitary ADP Systems, elsewhere in this volume.

il. C. Welssman. Securlty‘controls in the ADEPT=50 tlime-
sharing System. Pro¢c FJCC (1969), 119-133,

V=47

o BT S 0 ksl

