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FOREWORD

This document is a coll.ectlon of Internal working

notes produced by members of the Computer Securlty.Branch,
Directorate of Information Systems Technology,.Deputy for
Command and Management Systems, during the period of
August - November 1972.

Although the preliminary nature of these notes Is
emphasized, we hope they will be an aid to understanding
the direction of ongoing computer security efforts, until
such time as more complete results are available. Three
efforts now underway have been Influenced by the Ideas
expressed here, and future products can be anticipated:

a. ESD-TR-73-51, Computer Security Technology
Plannlng Study,-by Jarnes P. Anderson, dated October 1972.

b. ' ITRE-MTR-2547, "Secure Computer Systems:
Mathematical Foundations", by D. E. Bell and L. J.
LaPadula.

c. Final report from Case Western Reserve University
under the ESD(MCI) Statement of Work, "Abstract Model for
Secure Computer Systems".

REVIEW AND APPROVAL

Publication of this report does not constitute Air
Force approval of the report's finding or conclusions. It
Is published only for the exchange and stimulation of
Ideas.

MELVIN S. EMNONS, Colonel, USAF
Director, Information Systems Technology
Deputy for Command & Management Systems
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NOTES ON AN APPROACH FOR DESIGN OF SECURE
MILITARY ADP SYSTEMS

Introduction

The military has a heavy responsibility for
protection of Information In Its shared computer systems.
The military must insure the security of Its computer
systems before they are put Into operational use. That
Is* the security must be "certified", since once military
Information Is lost it Is irretrievable and there are no
legal remedies for redress.

Most contemporary shared computer systems are not
secure because security was not a mandantory requirement
of the Initial hardware and software design. The military
has reasonably effective physical, communication, and
personnel security, so that the nub of our computer
security problem Is toe Information access controls In the
operating system and supporting hardware. We primarily
need an effective means for enforcing very simple
protection relationships, (e.g., user clearance level must
be greater than or equal to the classification level of
accessed Information); however, we do not require
solutions to some of the more complex protection problems
such as mutually suspicious processes.

Based on the work of people like Butler Lampson we
have espoused three design principles as a basis for
adequate security controls:

a. Comglete M.-il lo -- The system must provide
comlete U.ltl of Information references, I.e., must
Interpose itself between any reference to sensitive data
and accession of that data. All references must be
validated by those portions of the system hardware and
software responsible for security.

b. . la.tLLLqn -- These validation operators, a
"security kernel", must be an Isolated, tamper-proof
component of the system. This kernel must provide a
unique, protected Identity for each user who generates
references, and must protect the reference-validating
algorithms.

i-i
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c. SimJpli -" The security kernel must be simple
enough for effective certification. The demonstrably
complete logical design should be Implemented as a small
set of simple primitive operations and system data base
structures that can be shown to be correct.

These three principles are central to the
understanding of the deficiencies of present systems and
provide a basis for critical examination of protection
mechanisms and a method for insuring a system is secure.
It Is our firm belief that by applying these principles we
can have secure shared systems In the next few years.

Deficlencles of Present System

m Most current computer systems exhlb!t a complex, ad
hbi- security design with diffuse implementation that
violates our third principle of simplcLty. Large
portions of complex operating systems execute in an
aWl-powerful supervisor state, so that the entire
operating system has potentlel security Implications.
Whatever nominal security controls exist In such bug-prone
monoliths are not effectiveli isolated (in violation of
our Isolation principle) and s.o can be tampered with
through errors or trap door,; in other parts of the
operating system.

The significance of these Inherent security weakness
has been amply and repeatedly demonstrated by the ease
with which contemporary systems (such as OS/360 and GCOS)
have been penetrated. Unfortunately, this lack of an
underlying design methodology cannot be effectively
overcome by ad hoc "fixes" and "security features" built
on an uncertain foundation.

Certlflcatlon

A naive (but occasionally attempted) approach to
Insuring the security of a complex operating system-is to
have a penetration team of "experts" test the system, It
Is supposed that repeatedly unsuccessful penetration
attempts demonstrate the absense of security "holes".Such a test approach Is primarily limited to penetration
attacks in areas Indicated by the particular background

and experience of the Individuals Involved. A security
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e evaluation through such attempts may reveal weaknesses of
...sys tern but provide no Indication of the presence or

*absence of trap doors or errors In areas unnoticed by the
*attack team. The failure of an attack team to notice a

-pa -r ticular penetration route does not prove or. certify
that an actual penetration attempt will overlook It at a
later date. The underlying concern Is that an active
hostile penetrator Is not Particularly thwarted by the
-various flaws found and fixed through testing so long as
.there remains iu=aL = vulnerability that he can find and
-effectively exploit.

On the other hand our three principles lead to a
simple, well-defined subset of the system, totally
--responsible for Information protection. We expect that
the primitive functions of this small, simple-kernel can
be tested by enumeration, and other parts of the system
are not relevant to security. As a result most system
changes will not affect the kernel, so routine system
'maintenance will not require repeated recertification.

- LrUact l Mechanisms

*An abstract security model Is needed In order to
* evaluate the adequacy of protection mechanisms. Lampson's

capability (i.e., access matrix) model has proven a useful
* departure point, and we have applied two design techniques

for developing a specific secure design:
a. The model Is represented In various levels of

abstraction. The design process transforms an Initial
abstract model of all the system's protection
:relationships (derived directly from the system's specific
definitions of security, thus leading to a model that Is
secure by hypothesis) Into subsidiary levels of
abstraction. As the design progresses from level to level
the representations of the model become more specific and
-culminate In specific hardware features. The Inter-level
transformations, chosen for reasons of efficiency as well
as utility, can ultimately -be Implemented as primitive
operations of the kernel, and since the Inter-level
transformations preserve the Initial protection
relationships, we can prove that the resulting design Is
secure.

b. The kernel design Is simplified by Including only
* those relevant operations that modify access control data

bases, but not those that merely read this control



Information that Is not itself being protected against
disclosure. Consider as an Oxample a demand paging
system. At some level of abstrnetion page table entries
represent capabilities that muut be carefully controlled,
so the kernel will have a Priiltive for changing page
table entries; however, the Bage replacement selection
algorithm should not be In the kocurity kernel.

Using this model, debcriptor.based addressing
available In advanced processor hardware Is seen to offer
a most promising basis for a so 1rity kernel design. In
terms of our first design princ.lple (complete mediaton),
this addressing hardware valldal.s eah memory reference
by a user's process: It Inte"Ilrets the required access,
specified In the applicabie 1,scriptor. The security
kernel Insures security througil Its primitive operations,
whtch are Invoked by the remain,ir of the operating system
to maintain the descriptors. B.U:ause access control Is
vested In the well-definOel and bounded descriptor
mechanism, kernel software funclIons are few enough and
simple enough to make certification tractable, as required
by ImD .L rtX, our third design i)rInciple.

Descriptor-based Isolatil,. mechanisms (such as
Schroeder's hardware ImplementOli rings for Multics) can
provide effective as well as hfficient protection of the
security kernel. Thus, as impllnd by our second design
principle (ilaion), an ant,onist could have complete
freedom within the remainder of the system without
compromising the protection Provided.

prs1c- f= jthe Future

Irifthe Air force we are Purquing a development effort
for prd'viding secure shared Syslnms In the next few years.
In cooperation with the MITRE Corporation, we are already
appying our three design principles to shared
communications processors In 1he laboratory, and we have
begun to extend these Ideas to n design for a shared,
general purpose computer systenl*

We are confident that from the standpoint of
40 technology there is a good Chance for secure shared

systems in the next few years. However, from a practical
standpoint the security problem' Will remain as long as
manufacturers remain commitled to current system
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-architectures, produced without a firm requirenent for
-security. As long as there Is support for ad hoc fixes
-and security packages for these Inadequate designs, and as
-ong as the Illusory results of penetration teams are
-accepted as a demonstration of computer system security,
proper security will not be a reality.

p?-
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- ON THE DESIGN OF SECURE SYSTEMS

* SECTION I PHILOSOPHY

-- our Intent Is to provide a basis for the -design of
* multiuser computer systems In which there exist security

mechanisms that provide: 1) a useful degree of flexible
security and 2) a high degree of confidence In the
integrity of the mechanisms.

The problem of computer security Is well recognized
and a number of systems and system designs have been
proposed. However, It Is often difficult to evaluate
these efforts without understanding the assumptions
Implicit In the system design or recognizing what portion
of the security problem the system purports to solve.

Hence, we briefly state In general terms our
conception of that part of the current military computerI
security problem that we will consider# and later restate
this general conception more exactly. The kind of

* security that Is currently desired Is not complex In Its
functional capability. We do not demand the ability to
handle the problems of aggregation, Inference, or mutually
suspicious subsystems. We do not attack those problems
which seem to require a monitoring and general
understanding of the 1= to which Information will be put,
excepting rather simplistic controls like read, write and
execute, and hence are satisfied by a set of simple
decision rules which operate on Information recorded In
the system, not unlike the class of facilities that a
number of timesharing systems provide today.

The critical requirement Is extremely high tntertijy:
great confidence that the specified design of the security
facilities of the system. are- In fact guaranteed. We
recognize, of course, that the system must provide useful
capabilities, since otherwise a guaranteed design or

-* implementation Is vacuous. That Is, the proposed security
controls must allow the Implementation of a multiuser
computer system with functional capabilities not unlike a
number of today's common commercially available time
sharing systems.



In an attempt to fulfill these goals, the following
strategy Is proposed: develop a simple logical design
whose correctness can be verified, and whose elements are
both simple enough and close enough to real system
features so that Implementation of the model Is reasonably
straightforward.

As the abstract model Is developed, we shall be guided
by the Idea of a kernel. We Ihtend to Isolate that
portion of the system responsible for security and place
it In a protected part of the system, in a manner
analogous to the way In which current supervisors are
segregated from user programs. It will be necessary to
demonstrate that this segregation is performed In a-way
that guarantees the kernel's Integrity and also guarantees
that the kernel Is always Invoked to arbitrate attempted
references. These tasks are eased by the fact that we
will design our security model so that It can aid In
protecting Itself.

By segregating the responsibility for security, the
problem of verifying the system's security mechanisms-
becomes that of: 1) demonstrating that the kernel is
always Invoked, and 2) verifying that the kernel operates
properly. The problem has been greatly reduced from that
of verifying properties of an entire operating system to
that of verifying a (presumably) small portion of It.

The design model should consist of several levels of
abstraction. The top level is a logical description of
security systems; the lowest level closer to a possible
machine Implementation. Higher levels are more machine
Independent than lower levels. The Intent Is to prove the
correctness ot an upper level machine Independent model,
and demonstrate that translations to lower, more specific
levels preserve the relevant properties of the top level.
Through the use of this top down Informal structure, we
hope to demonstrate the correctness of an Implementable
design for a secure system. Lest readers labor under any
misconceptions, it should be pointed out that while the
##proof" structure Is top down, the system design certainly
Is not. Fairly well defined Ideas of the desired end
product exist. The top down approach is primarily tor
purposes of description and proof.

A remark should be made concerning the meaning of
"correctness", and "proofs of correctness". A system

11-2
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cannot, In a vacuum, be proved correct. It may, however,
be possible to demonstrate that a system design agrees
with, or fulfills, certain eAternal criteria, that Is,
conditions which are not explicitly part of the design.
These external criteria specifically characterize that
"computer security problem" which we consider.

We -will demonstrate that In certain cases these
explicit, external criteria can be made part of the system
design, in such a manner that they are always applied,
reducing the problem of an Informal correctness proot.

A last constraint Is placed on the design by.the'need
for efficiency. The security mechanisms should not
markedly degrade the price/performance characteristics of
a system. The effect of this constraint is more apparent
as discussion moves closer to Implementation.

11-
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SECTION 2 - A SECURITY META-MODEL

Introduction

The following approach Is intended as a guide for thelogical design of computer security systems. The
description applies to a wide class of security systems,
Including most of those In practice or proposed today.

Naturally, then, the meta-model does not provide an
Instance, or Implementation, of a useful secure system.
Using the meta-model, for example, one can provide
Inappropriate standards for correctness, or one can design
a- system that Is not useful. As a case In point, whether
or not provision Is made for the operation of
'cooperating, mutually suspicious process", Is Irrelevant
to the meta-model.

However, the security meta-model allows one to relate
various specific models, and provides a specific guide to
those actions necessary to guarantee the correctness of a
security design.

In the following discussion, some non-standard
notation Is used to linearize formats. Several
conventions should be pointed out. Subscripts are
enclosed in square brackets. Sets are labelled by capital
letters, and elements of that set are generally labelled
by the same letter, but In lower case and subscripted.
Hence aCjj refers to the J-th element of the set A.

It Is occasionally necessary to speak of the names of
members of a set, rather than the members themselves. The
set of names which corresponds to a set of elements Is
denoted by an underline. So, for example, the set A, with
elements ijL] Is a set whose elements are names,
corresponding to the set A.

Last, the power set of a set X Is written P(X).

11-4i
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The model Is described In set theoretic language, and
-has six major components. First Is the set 0 of security
obj.le : the elements of the model, reflecting those
physical or logical parts of a computer system that need
to be controlled, protected, or whose status needs to be
,guaranteed. The objects are partitioned into disjoint
classes, each containing objects of similar
characteristics. An Incomplete list of examples Includes
terminals, communication lines, processes and files.

Second, a set A of L g.types is presented. . Each
access type Is a program which effects a particular
,variety of access, such as read, write, or execute. An
:attempted access operation Is then completely specified by
an access type and some meaningful collection of objects,
AI.e. a particular pro.cess being directed from a given

J.Da3 attempting to reference a specified 2auM In
memory.

Third, a collection of A;scr ytiv data DCk3, from
the set of all possible descfiptive data collections D is
required. DOk] specifies the Information that forms the
basis by which security decislons will be made. The
subscript k Indicates a time ciependency.

Fourth, an eax.lu.atio.n kR.rrM, 9 decides, for any
meaningful grouping of objects, what operators are to be
allowed.

Fifth, an upda 2 0 Is characterized
separately. This program Is the means by which the

-descriptive data are changed. Operationally, this is the
manner by which access decisions may be altered.

in many real Implementations, the distinction between
the evaluation program and update program may not be

-clearcut, since the descriptive data Is likely to be
-stored and protected like any other security object. Both
:programs are treated here so that their similar nature Is
apparent. Nevertheless, the distinction will be useful
since Implementations of the two programs may differ. t,
while likely to be software Implemented, calls upon access
programs to do its actual work, and these may be at least
partly If not wholly built In hardware. 0 on the other
hand In many cases will be almost exclusively software and

I I-5



actually changes the formatted descriptive data.

Last, U.Latie.J M criteria are required.
These are a set of rules, or standards T, by which the
system Is to be adjudged correct. These standards must be
external to the system description up to this point In
order to be meaningful.

A security system S Is then specified by the
slrtuple:

"-S (0, A, D, , W, T).

1a £Mnaala gL I Mhodel

The first component of the model, the security
objects, Is a finite set 0:

o atori], o[2], ... , orz]3.

These are the only objects to which access will be
controlled by the model, and by a resulting
Implementation.

The second component of the model is a set of access
types:

A u taCo], a[f], a2], ... , arw3

Each al] Is a program whose effect will be to provide a
particular variety of access, read, write, or execute for
example. The list of arguments for each aVt3 must be
finite and contain names of security objects. In
addition, afol Is designated as the n&LL access program.
This program will be Invoked when access Is to be denied.
It' can keep audit trails, set up warnings to
administrators, etc.

11-6



ad~ascriapti Dt

The third component, the descriptive data, Is merely
a set of tuples:

o D Ok]- wfdrk,1], d[k,2], ... d~k,v] [

:.ith some finite upper bound set an v. We depart somewhat
from our strict set theoretic notation by speaking of the
structure of a tuple.

Each tuple is only assumed to have a bounded number of
entries, the first of which acts as a "data descriptor" to
distinguish among tuples of different formats and content.

- For example, one type of tuple might be an encoding
_of a matrix entry In Lampson's model P43; the entry
expressing an access relation between two security
objects. Another might express a property: user x belongs
to project y, or has clearance z. A property may also be

Cvalid only for several users jointly. Such circumstances
do not fit naturally Into a matrix representation of the
descriptive data, so tuples are preferred here.

Explicit use of the structure of the descriptive data
will not be made In the following discussion of
correctness, although It is necessary In the more detailed
proof. The finiteness of both the length and number of
tuples will be useful here, however.

Let X* be the set of all allowed tuples, and D -
P(X*) the power set of X*. Then Dfk] Is some member of
PCX*).

LvlainProgram

The third portion of the model is an evaluation
program 9 which uses descriptive data to make decisions
.concerning access. For any evaluation program, the list
of arguments is composed of some fixed number of objects
from each partition of the security objects 0, and an

.access type; the name of an element In A. For
-convenience, those objects are denoted by 9.

The task of the evaluation program Is to decide
-whether or not the specified objects may be associated In
the manner expressed by the access type and to Indicate an

11-7



appropriate action. That Indication Is done by selecting
the appropriate access program and specifying Its proper
arguments.

' The evaluation program I takes a list of object
names, a particular descriptive data configuration, and
the n= of an access type (names of elements are
underlined); and returns the allowed access Jr.wuiam
to~ether with the argument list for that access program.

Is composed from an access rule E. E Is a fairly
arbitrary program that is assumed only to 1) terminate,
returning tru or false, and 2) be read only.

The Intent Is that E describe conditioni to be
fulfilled In order to allow access. It may be an
arbitrary function of Its arguments, although often such
programs are fairly simple.

Then the program I may be written as follows:

S : arcn (6, Drk], AriJ) .j-.t.urns list;
lock;
. ECS* DkJ, A")
±hen .eg unlock; call Ar:J(e) and;
XlsAk alr unlock; call AE)](9) lad;mid;

The list which is returned specifies an access type
and the argument list for that program. The arguments for
E are the same as for 9 itself.

The functions J.gk and unlock are understood to act
on a single semaphore, as Dlikstra s operators P(x), V(x).
It Is necessary to coordinate the operation of I and 0 so
that I Is not reading D(k] while 0 is updating DCkJ.
Otherwise, It would not be possible to prove that I and 0
perform in all cases as claimed.

Upnte Prorram

The update program Is the means by which descriptive
data Is changed. Hence It Is the manner by which
decisions that the evaluate program makes can be affected.
Let 91 denote the set of arguments for the update program
which are security objects, Dry] Is the current
descriptive data, and Drzi Is the data to which It Is

i1-8



,esired to change. Id yields either the original data,
prohibiting the change, or the new data, having allowed

,.the change.

- The update program, -too, Is composed from some
. effective procedure U, similar In purpose to E, and so the
update program I may be written as:

"- -. U I Droc (1, D(y], Drz]) reuLrn element of D;
lock;
.1f UCS', Dry, DEzJ)
1M begin unlock; return DzJ end

- Ae bein unlock; return D ryJ And

The arguments for U are the same as for the procedure
Itself.

= The security objectives of the access control system
are the qualities that It Is necessary to guarantee. For
a certain well defined class of criteria, there Is a
straightforward method of taking a logical description of
a security system and altering that model to provide a
derived system model In which the given correctness
criteria hold.

The correctness criteria are expressed as a set T of

predicates:

T a ftC1, t[23, ... , t~qJJ.

These are the predicates that must be proven true for the
system.

In this model, predicates may be expressed In one' of
two forms, and so T Is partitioned Into two subsets TI and
'T2 corresponding to the two alternatives.

If tCi] Is In T1 then It may be any predicate
expressible In the following functional form:

t[il : 0 x D x A-> [Iue, falsel.

The Interpretation of predicates In TI Is that the object 1
list from 0 may be associated with access type arji in A
and a given D(k] In D .nL ift I.U JI r.u1 .

II-I.
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- if t(ll is In T2, then it may be any predicate
expressible In the following functional fornA:

-tril : 9' x DC12 x DCkJ -> &..riw, IALU3

The interpretation is that the descriptive data DCjI may
be changed to DOkJ by the objects expressed by 01 only If
till Is true.

Let

71 And (tCI3) for all tCi] In Ti and

let

72 - And (tril) for all tfj] in T2.

71 and 72 take the same arguments as the t[l] and t j],.respectively.

" To demonstrate that a system is correct, it is
necessary to guarantee the truth of 71 and 72. Below, a
simple way Is shown to take any security system S and
derive from It a system S' for which the given 71 and 72
are =rue.

DLrivain 2f Correct Syastm

Avatem Soeciflcatlon

As described, a security system S Is a tuple:

S a (0, A, DCo, 9, V, T)

o Is the object set, A is the set of access types, DCo2 Is
taken as the set of tuples which comprise the Initial
descriptive data, is the evaluation program, 0 is the
update program, and T Is the, set of predicates to be
guaranteed.

For a particular system S, the entries A, 1, W, and T.. are fixed. The descriptive data DOk may be varied by use

of 0. Then the s of a security system S can be
completely expressed by Its descriptive data DCkJ, for

11-10 L
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*some k. The update program Is the means by vwhich a syrstem
S may change states and the compound.._ pred ica tiC 72

expresses the constraints on allowed state changes. The
evaluation program 9 "Interprets" a particul-ar state, and

* 71 expresses the constraints on 9.

*Given a security system S * (0, A, DroJ, K# 'P, T),
*system S'O (0, A, Doo, If* 0', T) Is produced by the

following Inlusio 1=a.

91 Is derived froir. I by the following change.
Replace "IE( ... )" by "IEC...) .an 71(6A D, aCj3)0.

0' Is derived from 0 by the following change:
Replace IOUC... by 11UC.. Aad 72(0', D~y], Dfzj)".

First It Is helpful to define a few terms.

A state D~n3 of a system
S - (0* A, Drol, to 0, T)1:

Is valid If and only If DCn3 can be obtained from 0103 by
a finite number of applications of 0 and, for each such

* transition from state DCk3 to D~k+13,
T2010, Dtkj, D~k+13) - tu

* for some 0'.

Second, a state Drk] Is a. urn.Zmx Interrete if and
only If for any 6 and any j:

O(6', D~k3, DODI - (8', aro)) whenever
71(6, D~k3, arj3) a false~ (where aCol Is the null access
type).

Then to say that a system S Is SgX Is meant the
folowing:

1) Every state obtainableo from Do0 Is valid, and

7 2) Every valid state is accurately Interpreted.



We now state the following (system correctness)
theogm;
Given a security system

S a (0, A, DCoI, V[, 0'. T) with T partitioned

Into Ti and T2;

and S' a (0, A, DCoJ, 9', 0', T) derived from S

by the .aIns. 1 .jL=

hen S' Ii correct.

Proof S e c

An easy way to prove the theorem Is by contradiction.
Suppose the theorem false. Then, by definition of
£Dorsi= S' reaches an Invalid state, or a valid state Is I
Inaccurately Interpreted.

Cae 1: Assume an Invalid ;tate. Label that Invalid
state D~kJ. Then there must exist a sequence of states ii
DCo, Dj DC2, ... , DCk3 sich that 0 (0(1J, 0013,
DOE131) - DE13i. for all I<k, since 0 makes the transition
from state to state.

Now D0o3 Is valid by definition. Drk] Is Invalid by iI
assumption. Then there must exist a non-negative interger iI
j, less than k, such that DCJ3 Is valid and DCj 13) Is
Invalid. Hence, by definition of valid, 72(9, DJJ,,
DLj IJ) Is false. But V(9, DEPJ, Dj+1J) - Drj I3. By J
Inspection of 0, these two conditions cannot hold, and
hence a contradiction is reache,.

.fa : Assume an inaccurately Interpreted valid
state. Call that valid state DEkJ. Then by definition of
an accurate interpretation, for some *e13 and aCjJ, the
following Is true.

O71(11, DLk3, a~jl) w false and

I (0113, DCk, adj3) A (0, ado3)

11-12
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By Inspection of i, this Is a contradiction. Hence every
valid state Is accurately Interpreted.

Both cases are Impossible. Hence the theorem cannot
be false.

qed

This proof Is of course nearly tautologic In nature.

This security meta-model and the Inclusion technique
are Intended as an aid In the design of secure multluser
computer systems. Hence some of the assumptions and
Implications Inherent In the choice of language, model,
and technique ought be made explicit.

The primary Influence in this meta model was the
realization that Its value is solely in its ability to aid
the Imolementation of a demonstrably secure system. Hence
the model and Its elements must conform to the modules and
capabilities of computer systems not unlike those in
existence today. At the same time, a simplicity and
coherence was desired, reasonably free of implementation
questions, that would provide some understanding of the
contemporary security problem. It is felt that the basic
concepts explicated here are a reasonable start toward
these goals, although it is freely admitted that
exposition, notation and other details may require
Improvement.

o number of Implementation Implications of this meta

model can be mentioned.

First, It should be pointed out that effective
procedures exist for the update and evaluation programs, ji --

the predicates from which they are composed, and the
predicates which make up the correctness criteria. This
fact is a result of the finiteness of all the sets
Involved In the meta-model. That effective procedures
exist for all the predicates in the theorem set T makes
the Inclusion technique actually useful. in certain
actual implementations of course, It may be possible to
demonstrate the truth of some of the correctness criteria
without dynamically verifying them at run time.

11-13
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No claim of efficiency is made In this model, since
for any particular system the predicates may be complex
and the descriptive data specified In a manner that
requires a great deal of work to check the given
predicates. On the other hand, as will be demonstrated in
a companion paper, the correctness criteria predicates for
certain real problems are rather simple, and careful
design of the descriptive data can greatly aid efficiency
while remaining faithful to this meta-model. It Is this
fact which really guarantees the effectiveness of the
fncluslon step.

....- The next abstract level is sketched In a companion
paper in order to demonstrate that a useful security
system can be described with the language of the
meta-model, showing that the meta-model Is not vacuous.

1 J is JhA. thkrnel of lys L am
IncLude Sve.Zhng JLU this meta model ontains, And
nJoth ls. Hence the meta model defines the boundaries
of the kernel, and the ability to use the kernel to
protect parts of itself will allow one to provide "
carefully controlled access to the kernel Itself.

4

The meta model provides a language for describing a
useful class of security systems. It easily lends itself
to the use of a technique which guarantees that the
objectives of the system are fulfilled by the model. The
concepts of the model are relatively simple and bear a
reasonably close relation to the kinds of computer systems
In existence today, suggesting the possibility of
providing, with high confidence, a faithful Implementation
of the model. An accurate Implementation of a desired
security design is, after all, the primary goal of all of
this work. 'I

I i-il.
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MUSINGS CONCERNING A SPECIFIC SECURITY MODEL

(The following thoughts were sketched under
significant time constraints and are released in their
present form only with considerable reluctence.
Nevertheless, It Is hoped that a useful partial
explication Is provided of the applicability of the Ideas
previously presented, specifically the kernel and the meta
model design approach.)

With the general outline of the security meta-model
In mind, we sketch a model of a particular security
system. It is not an extremely general one, but rather Is
Intended as a statement of current military needs In a
context that both provides a basis for a proof of
correctness and can lead fairly directly to an
implementation. To make It clear that implementation is
possible, the flavor of the structure is taken from the
existing file system of Multics.

A few notes should be made concerning the Intended
environment of this model. An on line multluser computer
Installation is expected, where the mechanisms proposed In
this model, directly or Indirectly, check every reference
made to information contained in the system.

The object set 0 might be partitioned Into four

subsets:

Ot = a set of terminals

Ou - set of users

Od- set of data objects

Os " set of security objects liii

Terminals are meant to be representative of the entire
class of I/0 devices, and could Include teletypes,
printers, tape drives and the like. For every user
recognized by the system, there is an object in Ou; the

Ili

*1



"user process". Data objects include both executable and
non-executable objects; the Items that the system is
Intended to protect. Lastly there are security objects.
Security objects contain the Information upon which
security decisions will be made. There are two

* distinctions between data objects and security objects.
First, security objects will have a rigidly enforced
Internal structure necessary for proper operation of the
security system, while data objects are format free -
completely free form Internally. Second, security objects
will be accessed directly only by the decision and update
programs.

Names of objects will be required distinct, of
course.

The Descriptive Data

'As already mentioned, the descriptive data Is
contained in the security objects. This containment
provides a manner by which access to the descriptive data
itself can be controlled by the mechanisms of the model.

Any security object os(i) Is an ordered list of
descriptors

os(i)- Id(1), d(2), ... d(n)

where a descriptor is an n-tuple, and n>5

_- d(I) - Crg, m, q, , ril), r(2), ... , r(k)J

In any descriptor, g is the name of a member of the
object set 0.

The second element, m is a member of the mode set M.

1lmul, 2, 3, 4, 5, 6, 7J

The compartment list Is the third entry.

It Is useful to be able to label an object as a
member of any number of several areas, or compartments.
Hence a set of compartments ;s defined:

111-2

Lo -ids"- p.



C, fc(1), C(2), ... , C(17)]

-and for convenience we also define

- c a P(c) , the power set of c'.

* Any compartment list Is the name of an element lnC.

- The remaining entries except for P are relations;
::there will be an arbitrary number of them. To describe
. relations, define first the access type set A'.

At '[copy, write, execute, read, update3

::and also A - P(A').

Then any relation Is a 2-tuple rou, a] whose first entry
is a user name: of an object from Ou, and whose second
entry Is the name of an element of the set A

.. Each member of the access.set can be thought of as a
--program whose effect Is to provide a particular variety of
access. The necessary parameters are specified later, but
It Is assumed in this sec:ion that these programs are
correct. What such programs actually do, of course,

- provides the semantics for their names.

It is Intended that the access types copy, write, and
execute apply to data objects: write and execute have the
usual Interpretation, while copy Is synonomous with the
usual definition of read. Copy Is a better mneumonic for
the actual ability provided. Read and update are access 1:;!
types that refer to security objects, and will have the
suspected meaning. The last entry In the descriptor not
yet mentioned is p. This entry Is a specification of the
actual, machine dependent location of the object whose
name is the first entry in the descriptor.

The format of the security objects' Internal
structure has now been Informally defined. Some additions
will be required like Indicators of the number of
relations In a descriptor and the number of descriptors In
a security object. Additional restrictions, on the actual
Content of security objects, will be Imposed by Initial
conditions and the updating procedures.
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A Brief Discussion

Before continuing* It may help to discuss the
motivation for the format selected, and the Intended use
to which the data will be put by the access and update

'programs. one will be able to represent the total
*descriptive data by a tree, where the nodes are security
objects, and the edges from father to son are Indicates by

* descri 'ptors whose mode entry Is ., for security object. A
tree link Ilies between a security object named by the
entry. Descriptors with other modes specify terminal
leaves: the other objects, terminals, users, and data In
the model. This tree structure provides the manner by.
which access to descriptive data can be controlled, since
each -node contains the Information relevant to access
control for each of Its sons. Access to the root node Is
treated differently - It will be free for read, but not
possib-le to change.

The update program will guarantee that the name
actually stored In a descriptor Is unique: no two
descriptors will have the same name entry.

The totality of Information about objects that the
security system will employ to make access decisions Is

-contained In the descriptor.

The Evaluate ProxrAM

The program Is the manner by which the descriptive
data Is Interpreted to control access to data objects.

First, we assume the existence and correctness of the
programs which make up the access set.

Each such procedure takes as arguments a user name, a
terminal name, and a data object name, Its action Is to
perform those hardware and/or software operations
necessary-for the access to take-place. 'f

In addition, we assume the existence of two correct
Procedures, use and temnl which return the name of j1

-the user object which has Initiated the current access 4
request, and the terminal from which the request wasX

*Initiated, respectively, In addition, we assume the
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existence of a access type program, that returns the kind
of access requested: the name of an element in A; and a
r frence program that returns the name of the data object
to be referenced. (These two programs need not be proven
correct.) tie also assume the existence of a program njLU.
which may be a nop, but may also Initiate recording of
certain parameters for later Inspection. NiMJ.U is only
guaranteed not to grant any access.

The evaluate program in Its Initial state Is
relatively simple. To keep questions of Implementation
buried for the moment, we assume the existence of another
correct program.

Relion (b, c, d) has arguments b-data name, c-user
name, and d-access type name, the name of a program in A'.
This program returns true lff: 1) there exists a
descriptor entry specified by b, and 2) there Is a
relation tuple Cc, kJ In that descriptor, where k
specifies a subset of the access types which Includes d.

An Initial evaluate program might then be written
following the outline In the security meta model, but with
rlation (efer. nc, user, access-te ) replacing E In the
evaluate program 9. Note that while the terminal Involved
In this activity has not been Included in the check, it
would be a simple matter, given the existence of the
routine termLnal.

The Uodate Program

To more easily describe the update program at this
level we again assume the existence of several programs:

andadd sa, 21) creates the object with name g

and adds a descriptor in og with default sensitivity and
compartment list.

deLL&= (Q, go) destroys the object q and removes
Its descriptor from o1.

-read (os, i, J) returns the value of the j-th
entry In the i-th descriptor In security object os.

il-



writg.-(nj., 1, , val) sets the contents of Cie
j-th position in the I-th descriptor In security object DA
to val, If there exists an I-th descriptor.

We assume that the above programs are correct. We also
assume that there Is some mechanism, not required correct,
by which a user program may communicate Its wishes to the
update program. The set of arguments with which the
update program must be Invoked are: 1) the name of the
object whose descriptive data It Is wished to change, 2)
the name of the security object to which the object
belongs, 3) the operation that is desired (which program
to Invoke), and 4) the relevant Input parameters to that
program (the desired new values In a descriptor). I

-It should be fairly straightforward to sketch an
update program, given the outline In the meta model and
the above correct routines.

Ibzores

It Is now necessary to specify the objectives of the
system design. These, In some reasonably specific
language, are the criteria to which It Is desired the
system conform. We first state the requirements, as
currently understood, In rather Informal English, and then
begin to formalize them In terms of the specific model at
hand. These requirements are relatively simple, and do
not provide some of the guarantees that are currently
desired by some segments of the computer community.
However, at this point, It Is believed that current and
short range future military requirements would be
satisfied. Informally, there are four requirements. 1)
No user shall have any access to an object If the
sensitivity rating of the user, at the time that Initial
access Is attempted, Is less than the sensitivity rating
of the object. 2) No user shall have any access to an
object If the set of compartments associated with the
object at the time of Initial attempted access Is not
contained by the set of compartments associated with the
user. 3) No user shall have any access to an object
unless authorized by a "need to know" specification at the
time of Initial attempted access.

*The problem of demonstrating that these criteria are
always applied In this model can be approached In the
following way. First prove that the format, or structure
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of the data base will have the properties ,that are
'described in the descusslon earlier. This amounts to
proving a number of assertions about the effect of the
update program.

. Then state theorems one through three
algorithmically. Modify the decision process In the
access program to Invoke the above algorithms as part of
the decision process Itself in such a manner that a) It Is
-simple'to show that the algorithms are always applied in

"-the decision process, b) the parameters they are supplied
are appropriate, and c) the result of the algorithms has a
controlling effect on whether or not access Is granted.

As an example, we restate the first two requirements
below, using the notation: sensitivity (x) and
-compartment (x) to mean the sensitivity and'compartment
.entry in the descriptor for object x, respectively.

proc label-check (user, object);
check <- sn i y e
'if sensitivity (object) > sensitivity (user)

then check <- fall&;
If compartment (object) 4 compartment (user)

then check <- JaJl;
return check;
end;

in the above, the symbol > means the binary
arithmetic operator "greater than". The symbol is the
negation of the set theoretic property of "contained in".
It Is presumably clear that programs for all of the
operations and checks required for the procedure
IabLIchack are straightforward in light of the data base
provided by the security objects.

The decision program-is then. modified by replacing
relation( ) by

".relation (.refereng, user, access type) and
label"check (user, object)".

The truth of the three requirements can be guaranteed
In this manner, If in addition a consistent data structure
Is assumed for the security objects.

111-7
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This approach Is equivalent to dynamic checis at run
* time of the state of the system. Certainly It Is possible

that careful construction of the logical structure of the
system could obviate the need for some run time checks, in
a fashion analagous to certain programming languages.
While that approach might be more efficient, these checks
do not appear particularly costly. Also, the logical
correctness of the system probably could be more easily
demonstrated under these circumstances, particularly in
the face of changes to the system.

The preceding sketch has been Intended oy as a
resonability argument In support of the viability of the
security meta model. There Is no claim here of the
accuracy of the detail. Rather, It Is only argued that
the highly modular, tree structured proof structure for a
security kernel Is a viable and effective manner to deal
with the task of correct security system design.

:l1
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CHAPTER 1 INTRODUCTION

1.1 Secure Operating Systems - General Goals

The security aspect of shared computer systems has in
the past not received preeminent concern. Questions of

officiency and flexibility have forced It Into the
background of the design process.

The military, however, Is faced with the spectre of
irrevocable compromise of classlfled Information, should a
flaw exist In the system's security. A single cunning and

Mlicious user may employ a bug to penetrate or degrade an
essential system, which, once penetrated in secrecy may
even be covertly-and continuously tapped for intellIgence.

As an example, Goheen and Flske (4) report a
successful penetration of an IBM System/l;50 operating In a

classified environment. At the end of the study, the
entire system was essentially open to the penetrators in
complete secrecy.

In the past the military has Insured protection of a
sensitive computer facility by segregation of the
g4uipment, limiting physical iccess to the equipment, and
forcing on-site usage. Today the problem Is to Insure
security In a modern time-shared multi-access,
muitiprogrammed system In %hich remote users with
different clearance levels can run concurrently with data
flies and programs of varying clearance levels.

The military will adopt In the near future
extraordinarily high standards for security certification
of equipment and software. Some steps have recently been
taken toward analysis of the military computer security
problem, and toward articulating methodology for designing
certifiable security systems (8), (9), (10).

Schell (10) has proposed three design principles for
security mechanisms: comolel' medlat', solation and

(1) The system must provide Immediate and camnlut,
.diptio between reference to and retrieval of

information, validating all such references using a
special subsystem.
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(2) 'This subsystem, the "security kernel", must
thwart any attempt at forgery of Identity, and must
protect its own validation algorithms.

(3) The security kernel must be simple enough for
effective logical certification, and Implemented in a
small set of simple primitive operations.

In. addltlon, Schell stated a .robtl UosU criterion for
adjudging the effectiveness of kernel operation: it must
be...so designed that even an antagonist could provide
the remainder of the system without compromising the Ii
protection provided."

The need for these principles can be seen from -the
findings of the 0S/360 penetration study (4), where lack V
of, a centralized, simple and certifiable kernel was
adjudged to be the source of the system's vulnerability.

In Chapter 2 of this paper we propose a conceptual
model of the kernel's operation and organization, and In
Chapter 3 we particularize the model to the military
security problem. Our main objective is to design a
logically verifiable kernel subsystem to guarantee
operating security.

1.2 Design Methodology

We Imagine the design process to move from needs to
Implementation In a series of levels of a _strats, each
level moving closer to a concrete machine realization.
The topmost level, level zero, consists of a mathematical
model of general protection mechanisms, Independent of
particular security requirements. The mathematical
objects In the level zero model are f ions which are
expressed In terms of (virtual) primitives unanalyzed at
level zero. That Is, at level zero, the security kernel
Is factored Into a number of components (modules). Some
components remain to be analyzed further In lower levels
of abstraction; level zero describes how the components
synthesize to achieve the system goal. At the same time,
subgoals are established for each of the unanalyzed
modules.

At level 1, the process Is repeated on each of the
modules unanalyzed at level zero. Level 1 codifies the

IV-



specific requirements of a military security kernel, "and

identifies still "smpller" unanalyzed prJnitIve components
to be analyzed and factored at still lower levels.

The term factorization is appropriate for this
process# since at each level the unanalyzed components do
indeed compose with other functions in order to realize
the goal for that level.

This top-down design approach allows us to make
. design- decisions In an orderly manner -- the choice of
'factors or modules at each level, and the scheme of
synthesis amount to design decisions, and determine

constrained subgoals. The approach allows us to separate
Issues germane to protection from those which are
particular to a machine or system.

By far the most Important advantage of this approach
Is that it allows for orderly verJfigaton of each level.
Verification proceeds in a "bottom up" manner at each
level: assuming that the unanalyzed modules behave as
hypothesized, then the synthesized function at the level
does such-and-such. Having verified the level, the
Inductive subgoal Is now to factor and verify the modules.

At level 2 we envision describing level 1 in terms of
a MULTICS-like file directory hierarchy. The notions of
directory, segment descriptor and process descriptor are
introduced, but "paging" is Invisible at this level. Our

.task at level 2 will be to show that a file directory
hierarchy structure realizes the access retrieval function
defined at level 1.

Levels zero and one are described In detail In the
following chapters. We believe that the utility of the
chosen design methodology is illustrated in these
chapters.

IV-5
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CHAPTER 2. LEVEL ZERO

2.1 A Kernel Model

2.1.1 IM Acualon Rlation Compnnta IU Moe

We employ a protection model based on the work of 4
Lampson (7) and Graham and Denning (6). We have a set of
security oblects 0 (files, programs, devices, etc.) a
subset S of the set 0 of sukicts (processes) and a set ofA of a±.tJL.LuLnJ. J. ('read, write', 'control',

'owner etc.). Access of subjects to objects Is
controlled by an ajceJlQ.WioLLiLLQ R which is a subsdt of
S it 0 x A. For example, R (s,o,a) or "(s,o,a) In R" Is
Intended to convey that s has attribute a with respect to
object o. Lampson regards R as C dX in the form of
a matrix.

m: S x 0 -> P(A) 4

with entries in the power set P(A) of A. We wish to
postpone questions of representation until later.

In this model we assume that the accession relation
Involves a single subject and a single object. That is,
we allow in our system a relation like
(1) "si can 'read' ol"

-but not
(2) "sl can 'read' ol only from device o21
which would Involve three objects.

Associated with each type of object is a monitor, a
program which actually performs the desired accession.
Here we wish to Illustrate the difference between our
visualization of the security system and that of Graham
and Denning.

In their model, depicted In FIGURE 1, when a subject
s Initiates access a to object o, the system supplies the
triple (s,o,a) to an appropriate monitor. The monitor
Interrogates the accession "matrix" to determine whether s
has a access to o and, If so, the monitor performs the
requested function.
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':'We wish* on the other hand, to propose a picture
which Isolates the process of access attribute checking,
and which separates this process from the monitor
functions. This effectively factors out the following
processes: the Interpretation of a subject request with
attendant system mediation, the search for and retrieval
of access attributes (which depends upon the way In which
the Information of R Is stored), the checking of retrieved
attributes against the accession request, and finally the
operation of Individual monitors. The situation Is
depicted In FIGURE 2.

Below we address the questions of design and
certification of the Access Evaluator CE), the Attribute
Retriever (F) and the Update Monitor (U).

-We do not Investigate the operation of G, the Access
Request Generator. It Is the mechanism which guarantees
system mediation In all requests for protected objects.
As the entryway Into the kernel, G must provide a
requesting subject with a nonforgeable Identification
Interpreted by the kernel.

*Neither can we consider the operation of the
monitors. Being concerned with security, we are
fundamentally Interested In forl-idding unauthorized access
to any supervisory module. Thu!. we do not address the
possibility of faulty operation of the monitors
themselves. The correct operation of the security
checking mechanism should guarantee that no program can
access the ill-gained fruits of a monitor bug.

2.1.2 Ac.cession

When a program requests an access to a monitor, It
requests that a service be perfo'rmed for It by the system.
As such It actually requests an entry to the monitor
program.

We Imagine the kernel to Interpose itself between the
requesting program and Involved monitor. The kernel must
Interpret the type of request, Identify the objects
Involved, and perform the requested action or a violation
recovery action. It Is the function of the Access
Evaluator E to retrieve appropriate data, grant or deny
the request, and transfer to the appropriate monitor (the
violation handler Is considered a separate monitor). In
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our description of the function performed by E, we say
that functign e returns a function mx, where mx Is the
function performed by monitor fx. We use upper case to
denote programs (system modules); corresponding lower case
to denote the actions (functlons) which they perform.

Let e be the function realized by program E, and let
f be the function accomplished by the program F which
fetches the accession data. Then

e: SxOxA -> "m(O,m(1,..,m(x)3

f: SxOxA-> B (1)

tells us some Information about e and f -- their toiU.
It does not explain the details of their action, but shows
at least the nature of their Inputs and outputs..

Given the required accession relation R, F operates
,gr.rcly. if vie can guarantee that

(1) Vs.Vo.Va. f(s,o,a) -l
Iff R (so,a).

This just states that F has correctly stored and correctly
retrieves the accession data.

Suppose ho,a) retrieves the Index of the proper
monitor function m(h(o,a)) among m(l),...,m(x). For
example, If o Is a data file and a is 'read', then h(o,a)
is the Index of the file system manager.

Assuming f,h are verified to operate correctly, then
e can be correctly realized by

e(s,o,a) - if f(s,o,a) - 1 .tba.ri
mh(o,a)) else m(O).

1lotice that m is a mapping which takes the name of a
rnonitor program and returns the ma.loA realized by this
program. In an Implementation this might mean: fault to
an appropriate location In a protected program.

(1) B [1t,o3 or friin,Ifnisi Is the set of J.j
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Summarizing, we have the maps

f: SxOxA -> B

h: OxA -> 11,2,...,xl

M: .fl,2,0.oxJ -l (m(1),ooom(x)i

m(i): unspecified functions

The'arguments and values of the m(I) (their JY.y.M.)
depend upon their respective duties, and clearly Involve
data external to the kernel. For example, the memory
addressing hardware monitor will need to know where In the
requesting program to return the contents of an address.
By leaving these details unspecified, the most we can say
Is'that e returns one of a finite set of explicit
functions. Further analyses may now enumerate, factor and
describe the Implementation of the m(i). What we have
done Is to get them out of the access-checking game,
concentrating on their "natural" roles.

Returning to the question of certification, what If
(1) Is violated, i.e., f does not adequately reflect the
desired accession relation R? Popek (9) has suggested
(the .uJlU1siign bJLc.i ) that we add to the antecedent of
e

If f(s,o,e) t 1 a...

all of the extra checks demanded by R, after writing a
suitable routine d to store and retrieve these checks. We
will then have another program

el(s,o,e) - It f(s,o,e) -1 and d(s,o,e) -1

which will now operate correctly. But this amounts to
constructing a retrieval function f0 satisfying

f'(s,o,e) w f(s,o,e)jAad d(s,o,e).

". What Is evidently needed Is a correct retrieval function f
satisfying (1). In a practical system, It Is the
structure of f which is of utmost Importance anyway.

IV-12



In a later section we analyze the function f with
particular emphasis on a military security model, and
Introduce the notions of locks and keys in the operation
of f.

2.1.3 Undatlon,

As the system evolves over time, the securictX aeLI,
represented by the accession relation R, Is modified by
the attentions of the update monitor U. Available for the
use of subjects are various security state upjlatJn
gommanda (delete, grant, destroy, etc.) which request
changes to attributes, destruction of subjects and
objects, etc.

A destroy subect s2 command by subject sl Is, for
example, Interpreted by G as a request to write to the
(protected) accession data F. The Information (sl, F,
$write') Is passed to the Access Evaluator E which
determines whether sl Is allowed to change any items at
all In F. If control Is passed to U, U must now do
further careful checking to:

s(a) retrieve the name of the particular subject

s2 which Is to be destroyed;

b) determine whether sl Is allowed to destroys2;

(c) perform the desired action, or else refuse,
with attendant action.

Operation (a) Is performed with no difficulty, but
operation (b) requires some explanation. The internal
logic of U determines the type of access attribute sl
needs vis-a-vis s2 In order to destroy s2, say 'owner'. U
then Interrogates F with the request (sl,s2,'owner'), and
If this triple is part of the current security state, U
then updates F In the required fashion (deleting s2 from
the data base) and passes control to further non-kernel
systems for housekeeping duties.

The monitor U, being Inside the kernel, Is "trusted"
* by E, and there Is no need for U to go through G or even E

In order to access F. Hence U may successfully "disguise"
Itself as sl for purposes of reading sl's privileges.

IV-13
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Other types of updatlon can be handled In a similar
fashion.

Notice that In this model the detailed study of
F-updation privileges is done by U, which must take into
consideration a larger context of Information than E; but
U has F at Its disposal.

The correctness of an Implementation of U depends
upon a full description of the circumstances under which
the system Is to honor a request to alter the security
state. These circumstances are Imposed on the design from
without, In the form of a set of uodation constraints. it
must be demonstrated that.any change which U makes reiults
In an acceptable security state within the updation
constraints.

Updation constraints are described In a logical
language, and codify just those rules which the designer
wishes to place upon U in its making of updatlon
decisions.

Associated with each updation command Is a jrJ.iLt
true if and only If the command can legally be executed by
the requesting process.

Example: delete C'read',s2,o) is a command uttered by s
and asking that attribute 'read' be withdrawn from s2
vis-a-vis o. There is an associated predicate

DEL 2SxAxSxO.

DEL(s1,'read',s2,o) Is true if and only If sl is allowed
to delete s2's 'read' privilege to o.

An example of an updation constraint Is:

Vsl.Vs2 [R(sl,s2,1control') ->

Vo.Va DEL (sl,a,s2,o))

which says In words "For every sl and s2, If sl has
'control' access to s2, then for all objects o and
attributes a, sl can delete s21s a-access to o." Or
better: "If sl has 'control' of s2, then sl can delete
any of s2's privileges to any object."
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Other examples follow which may readily be translated

by the reader:

Vsl.Vo.CR(s1,o,'owner') ->

Vs2.Va.GRANT(sl,as2,o)]

Vs.VorR(s,o,'owner') -> DESTROY (so)3

Within U are a series of programs, called Jup.Q.tj,
Wl,...,Wz. These effect the actions requested in the
command. by users. The actions they perform are denoted
wl,..,wz. U also has as a factor a program V, the
Constraint Checker, which matches an updation request
against the updation constraints, suitably Internalized.
FIGURE 3 Illustrates the situation, and FIGURE 3a shows
the parallel nature of E and U.

V employs the retrieval program F to make its
decisions. Its Internal logic should be designed from the
(fixed) updation constraints as outlined above. Obviously
Its operation cannot be illustrated without a Predefined
set of constraints to work frum. However we can give an

Examole Suppose we have tie updation constraint

Vs.Vo.R(s~o,'owner') -> DESTROY(s,o)

and let W2 be the "destroyer" program. Then the
description of V will Include in part the line

J.. f(s,o,lowner')
.Lhmnw2 ...

As In the case of e, v outputs one of a set of functions
wi,...,wz.

Now providing that V operates according to the given
constraints and provided that the Individual updators
perform their assigned tasks correctly, U will operate
correctly, and the system will never enter a state which

. compromises security. Why? A correct, satisfactory, or
secure system Is defined by the set of updation
constraints. U merely enforces them.
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All the above assumes that the constraints form a
consaLLtEU n set. For an example of an Inconsistent
constraint set, Imagine both

"sl may never a-access o3"
andi

VsCGRANT(sO,s,ao3)J.

Then It Is clear that sO could, quite Innocently, grant sl
access a to o3.

No kernel or system will ever be able to enforce an
Inconsistency.

Clearly a design grereguisite Is a complete
description of commands and their logical
Inter-relationships, expressed In the updatlon
constraints. This requirements" list must first be
checked for consistency. Provided It Is so, V may be
encoded to check that each constraint is satisfied for
each updation request. This provides another example of
Popek's (9) Inclusion Technique.

2.2 Modeling Access Data Retrieval

In this section we focus upon the operation of the
retrieval program F. We give some attention to the
possibilities of factoring this program into (perhaps)
more simply verifiable components.

The function of F Is to represent and retrieve the
Information contained In the accession relation R - the
security state of the system. Since the numbers of
subjects S, objects 0, and access attributes A are all
finite, R Is In principle "just a big table" and F "just
a big table look-up". This might satisfy an automata
theorist but not a systems designer.

(1) First, there is an enormous amount of
Information contained In R -- the triples (so,a) in R
are as Important as those In R.

(2) Second, R Is 12ars= as a table, or even as a
matrix

r: SxO -> P(A),
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suggesting that In practical cases a great dealf of
structural constraint obtains among the entries.

(3) Third, the amount of Information Is so large
that present-day systems employ both dynamic and static
storage techniques In Its retrieval. For example, In the
NULTICS segmented memory, with Its dynamic linkage
facility, part of the protection Information Is stored In
the environment of a process; the rest Is distributed
throughout the storage system and available for later
dynamic recall. In future systems there may well be a
requirement to segment this Information base.

(4) Fourth, people group and use Information
according to behavior patterns and In established
structures. For example, very few systems development
programhmers call a linear regressions package, and many
data files group naturally together with the associated
project which developed them.

For all these reasons, we believe In careful
structuring of the program F with a view toward certifying
Its operation. Below we make a start toward this
analysis.

2.2.1 A Model for Data Confizuration

2.2.1.1 Mathematical Lanzuaze

In this model we do not discuss Issues of
Implementation, but do wish to develop a theory for the
structuring of data used In the security kernel.

From our point of view, set theory Is not
an adequate tool for the expression of notions In
computing. The most primitive semantic notion for
programing Is that of ftuncg.tion or mapping. A set, as a
primitive, orderless collection can never be realized on a
computer, whereas a function, the characteristic function
of the set, SM be so Implemented. That Is, set S cannot
be "in" the machine, but a map c: S->B can be realized as
a bit string If the size of S Is small; as a linked list
If 'large, etc.
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If S,T are finite sets, (S-)T) represents
the set of all possible maps from S to T. The statement

C: S->B

means that c is Jn (S->B), a set. Whenever we write
f: (A-)B)->C or say 'f In ((A->B)->C)", we are expressing
the Iy= of f as a mathematical object. This gives only a
limited amount of Information about f -- Its domain and
range -- but is frequently useful.

Another concept used all the time Is that
of cross-product of two sets SxT. Since this is just a
set and not representable on a machine, we think of it as
a function

p: SxT->B

defined to give I for all pairs In SxT.

On a machine we cannot really make sense of
an ordered pair. Pairs must be stored, and In some order.
We adopt the fact that

(SxT->U) - (S->(T->U)).

That Is, by convention an S,T matrix of U-values is stored
as an S-list of T-lists of Uls.

2.2.1.2 Examples

We give here some examples of the way in
which F might be arranged as a program.

gx. .., A security system using Access Control Lists
(ACLs).

The accession relation Is stored by object,

then subject, then attribute. The accession function Is

f: 0-> (S->(A->B))

Given an o In 0,

f(o): S->(A-)B)
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Ui an ACL -- the ACL of o -- and Is Itself a function.
* Given a subject s, f(o) finds an access attribute'list

(funtin)

* f(o)Cs): A->4

associated with o and s. This list might be represented
as a bit string. The point Is that f(o)Cs), given an a,
returns a bit. HM~ It does this Is Implementation. A
pictorial diagram of the above might be given for MULTICS
In FIGURE 4.

ACU e
Si
S2a

01 
r 0

02 S1 ACL2e

02 W

0a

00J

FI G. 4
The bundles of linking arrows represent the funcinsn

f, f(o), f(o)(s), and may not be simple pointers, but some
complex hashing scheme.

Notice that In MULTICS, the object collection Itself
has a further structure, the jJJ A bietr.hierarg.b, not
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shown here.

Ex. b. A System with Capability Lists (C-lists)

R Is stored by subject, then object, then
attribute:

f: S->(O->(A->B))

The C-list for subject sl Ii a map

fMsl): O->(A->B)

which returns, for an object o2 a map

f(sl)Co2): A->B

the attribute list.

An oversimplified example is given from MULTICS In
FIGURE 5.

Multics actually consists of a complex of both
techniques. Initially the system checks the descriptor
segment for an object. If It Is not present, a missing
segment fault occurs, the file directory hierarchy Is
searched for the object and the descriptor segment Is
updated with the object Identification and access
Information.

2.2.2 Generalized Locks and Keys

2.2.2.1 Definitions

Frequently the sparse structure of R or any
of Its representations discussed above can be exploited to
factor the retrieval problem. Indeed, both natural
groupings of subjects (think of projects) and natural
groupings of objects (think of master files) may exist.
The Idea of key and lock exploits this observation: why
treat each subject or object as a separate security
entity, when coarser groupings may be more efficient?

Let K be a finite set of keys, L a finite
set of locks. The only thing we require Is that these
sets consist of distinguishable objects (e.g., bit
positions In a word). A key assitnment is a maR
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may be opened by a hierarchy of passkeys of varying power.

Subject s has access a to object o If and only if
there are k1,12 such that

k(s) (Md) -1,
1(o) (12) -1
and
t (k1,12) (a) -1.

k t *

al

SUBJECTS KEYS LOCKS OBJECTS

FIG 6.

We may depict: an accession relation as in FIGURE 6.

Notice that any accession relation represented using
"" intermediate locks and keys can of course be reatlized by

an accession matrix~
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m: SxO-> (A->B)

merely by defining m(s)(o)(a)-1 if and only if there are
k1,12 such that k(s)(kl)-1, l(o)(12)-l and t(kl,12) (a)-1.
But this misses the point. Locks and keys, which look
like a fatuous complication in the abstroct, are
Introduced in practice for natural reasons leading to
greater efficiency. In an application it may prove more
efficient to calculate k, 1, and t than to look up entries
in a tree structure such as those of 2.2.1.2.

_.2.2.2.2 Examole: A M ilitary Securltv Model

In an application, the notions of lock and key rqay be
used to store one component of the accession Information,
while other techniques are used for the remainder.
Possibly complex overlays of various storage
representations may be used if efficiencies result. The
problem of a military security data base is a good
example.

Three factors govern the control of access to
protected Information.

(a) clearance/classljL, c.Ln., A document, file 1
or program (Information) Is sild to be classifLe U,C,S or ,
TS. A urser or subject Is said cleared for U,C,S,TS.
Below we represent these security levels by Integers 't
001,2,3. ;

Cb) comoartmentalization. As a refinement of
(a), Information and users are further assigned one or
more compartments, reflecting the kinds of classified
Information to which they belong or have access. The
military employs 16 compartments P-L1,..,16 , e.g.,
cryptographic, AEC, etc.

) need to know. The finest resolution of the
security question occurs at this level. For each subject
s and object o, the military requires that some authority
grant s an "a-need to know" for o before s can a-access o.
Examples might be "need to read", "need to execute", etc.
From our point of view, the various "needs to know" are an
application of the notion of access attribute for a
subject/object pair. The Information is stored in the
underlying accession relation for the system.
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Clearance/classification may be modeled by the
following lock/key arrangement (the key/lock functions are
denoted by the same symbol In this example).

Cl S)>C
c: 0->C
to C X C ->1

where CsEO,1,2,31 and

tCI,j)-1 If and only If 12.j.

Compartmental ization Is represented by

p: S->CP->B)
p: O-)CP->B)
z: (P->B) x(P->B) ->B

where z~p(s),p(o))w1 If and only If p(s) jng P~o) *P(s).
Here 10g represents the bit mask of lists.

Finally, as noted above, need-to-know must be handled
by explicit retrieval, structured however Is convenient.
We depict the situation In FIGURE 7.
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CHAPTER 3 A MILITARY SECURITY MODEL

The purpose of this chapter Is to propose the
requirements of a military time-sharing system operating
in multilevel security mode. DOD 5200.28-H defines
multilevel security mode as:

"A mode of operation under an operating system
... which provides a capability permitting various levels
and categories or compartments of material to be
concurrently stored and processed In an ADP system. In a
remotely accessed resource-sharing system, the material
can be selectively accessed and manipulated from variously
controlled terminals by personnel having different
security clearances and access approvals..."

The model will be Independent of Implementation in
the sense that it will be possible to Interpret the rules
of the kernel as being enforced by a human security
officer handling documents, not necessarily by a computing
system. The model will be formulated using existing
military security requirements for document control (AFH
205-1), as well as requirements which have been
established for existing military computer systems (WlIMCCS
GCOS, DOD 5200.28-1). Below, in referring to the
Manual system, we shall mean present military procedures
for physically handling classified documents, as specified
In AFM 205-1.

3.1 General Considerations.

3.1.1 Three DImensions of Security

In the military three factors control access to
protected Information, as discussed in section 2.

3.1.1.1 Clearance/Classification

Possible clearances arefCa 0,1,2,31. With each
object Is associated a clearance or classification via the

* rmap.

c:O->C
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3.1.1.2 Comoartmentaltzation

Compartments are P-f1,2,...,16J. Each object Is

assigned to a list of compartments by the map.

p:O->(P->B)

Thus If o is In 0, p(o): P->B Is o's compartment
list.

3.1.1.3 Needs-to-Know

We regard this as equivalent to the notion of
access attribute. Given an attribute set A (discussed
below) the function f:O->(S->(A->B)) assigns to each
object o:O a list of needs-to-know f(o):S->(A->B)
classified by subject. Notice that we are proposing an
Access Control List structure for f (Cf. section
2.2.1.2).

Evidently clearance and compartment Information
could be stored Implicitly In the access retrieval
function f (Cf section 3.2.3). However, for purposes of
access checking and updating this would neither be
efficient nor would It model the existing military manual
system. As a consequence we factor the accession data as
indicated.

3.1.2 System vs. User ResoonsibilItv

In designing requirements for a military multilevel
security system, we must decide at the outset the role of
the kernel In transactions Involving secure data.

a) The Responsible Kernel

The kernel Itself Is responsible for the
control, classification, declassification and manipulation
of Information within the system. It employs automatic
rules to assign classifications to newly created files,
maintains a history of each user's security environment
and watches each user to maintain operatir:g consistency.
This approach is Illustrated in Welsmann's paper (11).
The kernel from this point of view becomes a super
bureaucrat.
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b) The Responsible U=e

The assumption Is that an authorized user of
classified Information has full responsibility for its
control while operating with It. Thus destruction of
copies, reclassification of altered files, etc., become
duties of the user which must be performed before he logs
off. The kernel, after granting Initial access, makes no
attempt to monitor the use to which data Is put.

Whichever role the kernel Is designed to
play, the system of rules which the kernel enforces must
be simple enough and so clearly stated that each user
understands the full Implications of each security state
updation command, and his responsibilities In employing

- - The assumption of use~r -responsibility Is the
6n6 which agrees most readily with the present manual
system, and will underlie the design discussed here.

As a consequence of the "responsible user1'
assumption* certain possible "security copomss of
concern to Lapadula and Bell (1) are neither detected nor
prevented by our proposed systzm. To use their example,
suppose si Is cleared for TS, 32 for S and let file o3 be
classified S. Suppose si writss some top secret
Information In o3, but fails to explicitly upgrade o3's-
classification. The kernel cannot detect the "violation".
At some future time, s2 could be granted 'read' access to
o3, and s2 would be reading "forbidden" Information.

-. - Our feeling Is that any attempt to make the
kernel responsible for detection and prevention of such
occurrences would either (1) Involve the kernel In
deciding complex questions of sensitive data aggregation,
or would (11) require the adoption of an arbitrary
"high-watermark" rule (e.g., si operating under a TS
clearance can only write TS files). The latter approach
Is adopted by Weissman (11), who does not allow for the
possibility of declassifying files.

Here we only require the kernel to enforce
9xisting manual security regulations which place the onus
of responsibility upon the user of a document to make
necessary chances to Its classification or compartments.
Since vie demand that the kernel allow reclassification on
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some authority, compromises of the kind Illustrated above
will always be possible on some level. We have chosen to
trust completely every Mut.or.z user. The kernel Is

:non-suspicious -- if a subject is granted access rights by
-the kernel, the subject has the full implications and
-responsibilities attendant on those rights.

Another, more technical, way of phrasing this
-Is-that the kernel uses only subject/object ID's,
classifications, compartment lists, and access attributes
In reaching Its decision. The kernel does not Interpret

:or deduce any Implications from an authorized access or
update request.

-or example, If sl accesses an object o2 for
which It has Inadequate clearance, a security violation
occurs. But If sl obtains upward reclassifica-tion from an
"Incompetent u but authorized subject s2, and then accesses

"o2, no violation, from the system standpoint, has
occurred.

3.1.3 Separation of Accession and Updation

As discussed in the previous chapter, the processes
of granting "normal" access, and the granting of updates
must be kept distinct, since the latter action is more
complex. It follows that the data used and modified by
the updation procedures, the accession relation R, should
be kept distinct from ordinary protected data files. For
one thing, it will have to be maintained in a rigid format
Interpretable by the kernel. For another thing, It is
part of the kernel Itself, since its compromise would
compromise the entire system. Lastly, It may be stored In
a radically different manner - perhaps in special
hardware.

In our model this data is stored in the access data
retrieval program (F). le see no reason to treat it as an
object (compare Popek's (9) scrt objects), since it
deserves such special status.

3.1.4 'Controll and 'Owner' Access Attributes

The notions of 'control' and 'owner' access
attributes occur in Lampson (7) and Graham and Denning
(6). One subject sl 'controls' another, s2, if si can
read from and wirite in s2s X.rg of the matrix m:S ->
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O-)CAM>B), i.e. If sl can read and modify s2'Rtr
capabilities. If, in addition, sl may destroy...s2 or grant
to other subjects any access to s2, then sl Is said to
have 'owner' access to s2. Thus sl 'owns' s2 when sl may
read from and write in s2's column of the access matrix.
Issues Immediately arise concerning multiple 'owners' and
the transferability of 'control', which are surveyed by
Grahan (5).

We shall not Introduce these attributes. The
relation of sl 'owning' s2 can be replaced by granting sl
all possible attributes for s2. Obviously then, multiple
@owners# are possible.

If sl can 'control' s2, this Implies that sl~can-
obtain and modify all s21s capabillties - the list of all
objects I& which s2 has access. In our model, access
attributes will be stored in ACL form (Section 2.1.2,
example a). There is no way for sl to conveniently learn
s21s privileges, short of listing all objects and
requesting the ACL of each. (This is exactly the
situation in MULTICS.) We see no apparent reason for
Introducing the 'control' facility.

Furthermore, in the military manual system,
possession of document Implies "control" of it and
responsibility for It. A possessing subject can give it
away, garble it, etc.

We choose to Introduce the simple attribute 'update'.
Subject sl with 'update' attribute for o2 (subject or
not), may modify the security data concerning o2 (access
attributes t o2, clearance, compartments). There will be
no facility for one subject sl to affect a second
subject's attributes vis-a-vis an object o2, unless si has
'update' permission for o2. When sl has 'update'
permission for s2, sl can only limit accesses by other
subjects t s2.

Update permission may be passed to other subjects
like any other attribute.
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3.2 Elements of the Model

3.2.1 Aecess Attributes (A)

The set A consists of five attributes

A=fr, eswou, 13

with the following meanings:

t.riJb.u. if f(o)(s)(a)-I then

r s can X&@A the contents of object o,
..- Implying that s can copy o.

e s can exeute the (executable) object
o. s must know the calling sequence
for o, since s cannot read o.

w .s can wite to o, altering It, adding
to it, even zeroing it out.

u s can uate (write on) the descriptor
(see section 3.2.4 below) of o, adding

to it or deleting from it.

s can .19a at the contents of the
descriptor (see section 3.2.4 below)
of o, without affecting its contents.

3.2.2 M (K)

The mode (1) of an object Is an Indicator of the kind
of object It is -- terminal, process, data file,
directory, etc. Depending on the characteristics of the
computer system, there may be different modes, each
usually associated with a special subsystem or monitor for
handling objects of the same mode. We choose a mode set

(1) Called by Burke (2) a Jy. . We have used type in a
more technical sense, so we employ Popek's (9) term mode.
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KNftpf,dJ til

and a function k:O->K assigning to each object an unique
mode, with the following meanings:

Hade KI If K(o)'K1 then 2 Is

t a terminal

-P p 5rcs, I.e., a subject

f a file, I.e., a protected block of
data not Interpretable by the
system.

d a directory, a specially formatted
file which may be Interpretable by
the system.

Other modes may be Introduced depending upon the
particular system.

3.2.3 Access Data Retrieval (F)

In the military security model, the data used by the
kernel to determine privileges Is stored In a factored
accession matrix, as In section 2.2.2.2. We represent It
by the three functions

f:O->(S->(A->B))

c:O->C

-p:O->( P->B)

where CmfO01,2,35

A* (r,e~w.u, 13

There are three iffezrent relations, all devoted by 1,
whtch will be useful below:

(I) 1: C x C-)B
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denotes the usual inequality on Integers.

(11) t:(P->B) x (P->B) -> B

* denotes the subset rel'ation on the cmnartment lists;
object r is a member of (P->B). (1)

(III) J: (A->B) x (A->B) -> B

denotes the subset relation on AgrU lists; object
a Is a member of (A->B).

A convenient abuse of notation will allow us to
identify sets in P(A) with functions In (A->B). For-
example, Cu, which usually denotes the singleton fl u?
In P(A), will mean for us the func t ion fu3:A->B given by

fu3(x)ul if x.UI

Either point of view is seen to be equivalent, but we
believe that the "list" notation (A->B) is more
suggestive.

3.2.4 Descrip~torsa4

A useful auxiliary notion is that of dsit of an
object, as used by Popek (9). For each o in 0, d(o), the
desc.LLp orf JQ, is a quadruple of functions

d(o)-(cWo), p(o), f(o), k(o))

or, equivalently

d(o)(l)-c(o)

d(o)C2)-p(o)

d(o)(3)-f(o)

d(o)(4)-k(o)

(1) The notations P(A), 2 exp A, and (A->B) may all be
considered equivalent. We use (A->B) because It reminds
us we are dealing with .unLLDia.
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Thus d has type

d:O->C x (P->B) x (S->(A->B)) x K

This Is one way to model the storage of access data. A
descriptor Is a sort of generalized Access Control List
(ACL), and Is particularly appropriate when a MULTICS-lke
file directory hierarchy is contemplated. Descriptors are
then naturally stored as elements of directory segments.

While at this stage nothing forces us to Introduce
the notion of descriptor, It will be convenient.

3.2.5 The Access Evaluator (E)

Normal accession requests, not Involving updation,
pass through E, whose function is easily described. In
our informal programming language, we shall be sure to
declare the types of all functions mentioned In the
program. Let Matm(O), m(1),...m(x)? be the set of
monitors, m(O) the violation hendler, m(1)-V the access
checker. Let h:O x A->fl,2,...x3 be such that h(o,u)-I
for all o In 0.

e(sl,ol,b)
e: S x O x A->4

s1: S i
cl: 0
b: A
f: 0->(S->(A->B))
c: 0->C
p: 0->(P->B)
h: 0 x A->(102,...?
m: [0,1,2,... ->M
J:C x C->B
1:(A->B) x (A->B) ->B
2:(P->B) x (P->B) ->B
if c(sl)jc(ol) and p(sl)jp(ol)

and f(ol)(sl)jtb?
then W(h(ol,b))
else m(O)

end e

3.2.6 Uodation Commands

A user program desiring to effect changes to the
descriptors requests the kernel to perform the service for
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him by Issuing an updation command. The updation program
verifies the user's authority to make the change, and
performs the service for him using Its updators.

The commands and their Intents are:
Comand Intent

write (o,s,a) sets the access list f(o)(s)
to a:A->B, destroying the previous
list.

read (o,w) writes clearance, compartment,
access list and mode of o In w,

• .- . . . ..... . ... .. .

clear (o,n) sets the clearance of o to n,
destroying the previous value.

compt (o,r) sets the compartment list of o to
the list r:P->B, destroying the old
list.

create (o,z) creates an unique ID for o and
associated descriptor with C(o)-O,
p(o)-p full access privileges for
creating subject and K(o)-z.

destroy (o) nullifies the descriptor of o,
erases the ID and the object
contents.

3.2.7 Uodators (WI)

These are the kernel programs which actually perform
operations on the descriptors, and which call any further
system monitors needed for allocation, garbage collection,
etc. There will be an updator corresponding to each
command:

wr, rd, cl, cp, cr, and ds

The constraint checker V calls the updators, as
4 Illustrated in the next section.
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-3.2.8 The UgdatM Monitor (U)

.,.tn the programs below we shall not again declare
* C,f.f,I,m(0). Two functions mentioned below make~o) and

break~o) are left undefined. They are responsible for
housekeeping duties associated with creation and
destruction of objects

V(sl, request o1,s2,al.w~n..zr)
52:S
s2:.S
01:0

request: (write, read~clear, compt, create, dest roy?
al:A->B
w:C x (P->O) x (S->CA->B)) x K
n:C
r:P->B
z:a.K

If requesta'write'then
begin

If c(sl)Zc~ol) and p(sl)2p(ol) and
f(ol)(sl)I~uJ and c(s2)Jc(ol) and

-. PWs2p(ol) and not Colus2 and alltul)
then wr(s2ool~al)

else m(O)
end

else If request a 'read' then
begin
If c~sl)Zc~ol) and p(sl) .p(ol)

and f(ol)Csl)2f1
then rd(ol,w)

- else MCO)
end

else If request = 'clear' then
begin
If c(sl)Zn and c(sl)Jc(ol)
and p(s1)2p~ol)
and f(ol)(sl)lrul

then cl (ol,n)
* else mCO)

end
else If request a 'compt'* then

begin
If p(sl)lr and c(sl)>.c~ol) and f~o1)Csl)JtuJ
then cp Col,r)
else m(O)

and
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else If request , Ocreatel then cr(al#sl#Z)

else If request a-'destroy# then
begin

* If c(sl)>_c~ol) and p~sl)2p~o1
and f (ol) (sl)ZUM
then ds~ol)

* end
else m(0)

end V

wr (s,ol~a1)
s2: S
ol:O->

f(ol)(s2)(al
end wr

rd (ol,w)
ol :0
w: c x CP->B) x (S->(A->B)) x K
w <- (c(ol),p(ol)Of(ol)*mCol))

end rd

cl (ol,n)
01: 0
n: C

c(ol)(-n
end ci.

cp (ol,r)
01: 0
r: P->B

end cp

cr (ol,sl,z)
01: 0
si: S
z: K

make (o1)

C~OD <- 0
* p(ol) <- 0

kMol) <- z
and cr
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ds(ol)
S 01: 0

t(ol)<-9
c(ol)(-O
p(ol)<-0
break(el)

end ds

3.3 Requirements of Military Security

.3.3.1 Proofs of Correctness

The suty state (1) of the system at any timeji is
described by the classifications, compartments and
attributes of all the objects

q(I) - (c,p,f)

The system Is Initialized In some state q(o), (2) and by
servicing updation commands evolves to security states
q(1),q(2),...etc.

Given certain security criteria to be discussed
below, our problem is to show that the system maintains
these criteria. This entails two demonstrations

(c) Accssiow e Between changes in security
state, I.e., while the system occupies security state
AMi, the kernel enforces security requirements based upon

privileges (and prohibitions) Implied In q(I). (e.g., "nos can read o unless f(s)(o) I frJ11).

(11) Uodation. In honoring a command and
updating from q(i) to q(i1), the kernel observes any
updation constraints required by the performance criteria
(e.g., "no subject may alter its own security
classification",)

(1) This is Identical to Lapadula and Bell's (8) notion of
security state (p. 18) except for their component b.

(2) A typical q(O) would have one subject sO the system
administrator with full privileges to all system objects.
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If (1) and (11) can be demonstrated, then by
Induction on i, the system remains secure over time -- no
sequence of access requests and updation commands can
Induce the kernel Into a "security compromise." (1)

Before we can demonstrate (i) or (11), we must
delimit the criteria or rules which the kernel must
enforce. Another way to say this Is that we must define
secur I ty compromi se".

It Is here that debate will occur over what
requirements to properly put upon the kernel. Based upon
the tenet of "user responsibility" discussed above, we
will list a reasonable set of rules demanded by military
users. In section 3.3.2 we discuss the implicatipns-of
our rules, and In section 3.3.3 we discuss possible
alternatives.

The dichotomy (I),(ii) shown above breaks the
criteria naturally into two parts - those regarding normal
accession, and those regarding updation.

3.3.1.1 A.ession.

Let q - (c,p,f) be a security state of thekernel. The rules are

(a) No s shall have any access to an o
unless when access is requested

c(s)jc(o) and p(s)jp(o)

(b) No s shall be able to read, write on,
execute, update the descriptor of or look
at the descriptor of an object o unless

f~o).(s)jfr?, NJ?, tel,

fuI or (11, respectively.

(1) The notion of compromise, and the picture of the
system as an automation evolving over time with command
Inputs, Is due to Lapadula and Bell (8).
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ProposJtio Provided

(I) all requests for access by subjects to
- objects are directed to the kernel

(1) the kernel correctly retrieves and
- Interprets the arguments of a request

S(III) !the kernel correctly Identifies the
subjects and objects Involved In a request

-- then

the system satisfies rules (a) and (b).

Proof. Consider the Access Evaluator program e. Subject
s cannot access object o unless a system monitor performs
the function for it. But e is Interposed between all
calls by s and the monitor. If (I), (1i) and (iti) hold,
e blocks access of any kind unless c(s)Jc(o) and
p(s)lp(o), showing (a) holds. Given a request b 6
1frwoeuIT, access to m(h(o,b)) is blocked unless
f(o)(s)ZlbJ, so (b) holds.

Q.E.D.

3.3.1.2 Udto

We list the updation constraints which
should operate in a military environment

(c) No s may alter the descriptor of an object
o unless f(o)(s)zruI.

(d) No s may alter or read the descriptor of an
object o unless c(s)Jc(o) and p(s)Jp(o).

(e) No access attriautes may be granted by s2
to s2 for o unless

c(s2)Zc(o) and p(s2).p(o)

Cf) No s may alter Its own descriptor.

er.JUlaio.. Under the provisos (i) (ii) (111) above and
provided that in the Initial security state q(O) we do not
have f(s)(s)Zful for any s, then the system satisfies
rules (c), (d), (e), and f).
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Proo. Consider the Update Constraint Checker program V.
We take each rule in turn:

(c). Descriptors may only be altered via the
updators wr, ci, cp, ds, The only calls to these
functions occur from clauses preceded by an explicit check
for f(o)(s)Z.ul,

(d). Descriptors may only be altered or read by wr,
cl, cp, ds, rd. Each Is called from a clause which
explicitly checks for c(s)Zc(o) and p(s)2p(o).

(e).- sl can grant s2 attributes for o only by a call
to wr(os2,-). This call occurs only In a clause preceded
by the explicit check c(s2)Zc(o) and p(s2)2p(o).

Cf). s could alter Its own descriptor only by
calling wr, cl, cp, or ds on o-s, but each such call Is
preceded by an explicit check for f(s)(s)1uI. Therefore
If we can show that It Is never possible to enter a
security state with f(s)(s)> Xu for any s, we are done.
By hypothesis In q(O) we have no s with f(s)(s)1(ul.
Suppose it were to occur In some q(I), and let I be the
first such I. Then In q(i-1) not f(s)(s)j fuj. Hence V
must have serviced a command at I resulting In wr(s,s,al)
with alZfuj. But the call to wr(s2,olal) is preceded by
an explicit-check not (olus2 and a121ul) which is
violated by ol-s2-s and alZfuj. Thus we cannot have
f(s)(s)ltuj in q(i) or In any successor state of q(O).

(f) follows.
Q.E.D.

3.3.2 Implications. External Breaches.

In stating requirements (a) to (f) we have In
effect defined the notion of Internal security compromise
- a compromise caused by the system's failure to meet
responsibilities. Certain compromises of security In a
larger sense can still occur through actions not under the

*control or scrutiny of the kernel. Examples of such
external breaches are:

(1) A 3-cleared user sl with r access to
3-classified file ol copies ol to 02, classifies o2 at 0
level, and grants read access to s2. User s2 Is cleared
only to 0. Even if the system could prevent direct
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"moving" of files in such circumstances, sl could still
bypass the system by processing ol into an altered form
before copying to o2, could aggregate sensitive totals
from ol and copy them in o2, etc. No system could
Interpret all such possible evasions. Even if it could,
sl could still act by collusion as the direct agent of s2.
Evidently, If sl has privileged access to ol, no kernel
can keep him from abuse of his trust.

An alternative to this approach Is to force created
files to 'be classified at the high watermark level of the
is prohibited, or, if not, this precaution is vacuous and
at best a default convenience.

We choose to accept the axioms of complete trust in a
priviliged user within the limits of his privileges and
complete responsibility of the user in assinning
classifications, compartments and attributes to files to
which he has [u] privilege.

(2) A user sl with clearance, compartments
and [w] access for ol can, even without 'ul access, alter
ol beyond repair, in effect destroying it. There is
therefore a good case for identifying the &I and JuS
attributes, merging them Into a single Sw attribute. The
design of e and V could be easily altered to accomodate
this design decision, with essentially no changes In the
arguments of section 3.1.

Another argument In favor of w=u is from user
responsibility. If s1 can write In ol, sl ought to be
able to reclassify ol, since sl may well have appended
sensitive Information to ol.

(3) A user si with u to o3 can provide
another (suitably cleared) user s2 with any privileges to
o3 he himself possesses, except sl cannot grant ful for s2
to s2. Prodigal use of this facility by sl may result in
an external breach, but the system cannot be responsible
for making such distinctions.

3.3.3 Alternative Kernel Designs.

Certain other design possibilities can be
handled with case In our framework, In each case they
entail slight alterations of the e and V programs.
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(1) Identifying w with u. This was
discussed in section 3.3.2.,

(2) Allowing any subject sl with tb3
attribute for ol, but without tuf attribute, to p b.
to other subjects. This is similar to the 'transfer'
ability of Graham and Denning (6). First we declare the
function

U : (A->B) x (A->B) -> (A->B)

as the bitwise "or" of attribute lists. Then we alter the
first conditional of V to read

If request='write' then
begin

if c(sl).c(ol) and p(sl)>_p(ol)
and f(ol)(sl).ru? and
c(s2).c(ol) and p(s2)2p(o2)
and not (ol=s2 and ai _(u?).

then wr (s2,ol,al)
else If c(sl).c(ol) and p(sl)2p(ol)

and f(ol)(sl)>al and c(s2)2_c(ol)
and p(s2).p(ol)

then
begin

al<-al U f(ol)(s2)
wr(s2,ol,al)

end
else m(O)

end
else If request = 'read' then

(3) Allowing more limited tiPdation
privileges than those implied by CuS. Thus f(o1)(sl) fn
night allow sl to change only access attributes to, but
not clearance or classification of, object ol while
f(ol)(s1)>fj. would he needed to reclassify.

(4) Enforcing a requirement that each
object ol have an unique 'owner' (Graham and Denning (6),
p. 120.). We can capture this Idea by allowing only one

* sl to have ful to ol. Assuming this is the case in the
Initial security state q(O), we build into V the check

If request = 'rite then
begin
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It C--s1)Jc(o1) and p(s1)Jp(ol)
and f(ol)sl) .tuj and
c(s2). c(ol) and p(s2)Z.p(ol)
and not allluj.

then wr (s2,ol,al)
else m(O)

end

Then an inductive argument shows that, since fu? can never
be "Passed", no ol ever has more than one s with
f(ol)(0s) u]. Since every created object has a default
"owner" (its creator), the uniqueness requirement is
proved.

(5) In the view of Burke (2) access
privileges granted to si for ol should depend upon the
niode m(ol). For example It Is meaningless to grant ft.?
access to a data file. Thus he proposes that the kernel
at update time check Mol) and grant only the appropriate.
attributes.

By adding further conditionals to the updators we can
accomodate this constraint. For example wr may be altered
to

wr (s2,ol,al)
If m(olUMp

then f(ol)(s2)(- aln~fe,u,lI
else If m(ol)=f

then f (ol)(s 2)<-al n r,W, u, 1
etc
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