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STABILITY AND CONVERGENCE OF ADAPTIVE CONTROL ALGORITHMS:
A SURVEY AND SOME NEW RESULTS.*

Lena §. Valavani - .
%..I.D.S., Massachusetts Institute of Technology

ABSTRACT

Although adaptive controllers have been designed
for a number of years, the central question of global
ssymptotic stability of the overall feedback adaptive
loop and its associated error equations remained open
until recently. The two main approsches used to
design controllers from a stability viewpoint -
Lyapunov's Direct Method and Popov's Hyperstability
Theory -~ cnly assure boundedness of the (augmented)
state and parameter errors. The difficulties
encountered in both approaches are analyzed and
shown to be exactly analogous.

Subsequently, a generic model for an adaptive
controller is proposed from which already existing
adaptive algorithms can be derived with minor modi-
fications. The model unifies various algorithms,
under the essential requirement for positive reality
of the associated error transfer function,and its
proof of stability contains others suggested to date
as special cases. Finally some general comments are
made regarding rates of convergence, performance of
the algorithms in the presense of disturbances and
unmodeled dynamics, ease of implementation, etc.e.

I INTRODUCTION

Adaptive coi:trol has witnessed some very
important theoretical developments in recent years.
Although the state of the art is still far from being
satisfactory for most practical applications, the
progress made so far is encouraging and suggestive of
new directions for the improved performance of adap-
tive algorithms.

In the past few years various adaptive control-
lers were proposed reflecting different philosophical
viewpoints, such as direct and indirect control, and
based on different methodologies, motivated either
from a stability approach to the problem or from
optimization considerations. Quite recently, the
mathematical equivalence between direct and indirect
control was established [1,2], -at least for certain
parameterizations of the plant - while it has become
increasingly evident that cthere is considerable over-
lap of the problems encountered using either the
optimizacion or the stability approach for designing
adaptive controllers with inaccessible process states,
particularly as the latter relate to the question

*
This research was supported in part by the Air
Force Office of Scientific Research under contract

number “NQERNNL . 'rll‘;'Q-:’:'-J,;l!"

of global asymptotic stability of the resulting
feedback adaptive loop. In fact, this question became
of crucisl importance in the study of adaptive systems
and was not resolved until very recently {3,4,5].

Even so, the results pertain only to the case of
"deterministic" adaptive systems! while no proof of
the stability in the global sense is available for
"stochastic" adaptive schemes, where disturbances are
present in the form of observation and/or process
noise. The most gigorous results along these lines
were obtained by Ijung [6,7], who used the (by now)
well-known method of the "associated differential
equation” corresponding to the stochastic adaptive
problem. However, these proofs are valid only
locally.

The two major aspects of the general control
problem were,first, the design of a controller for an
unknown plant from input-output data alone, with no
accessibility to any other points in the plant; and
second, because of noise considerations, the exclusion
of explicit use of differentiators. Since adjustment
of the parameters is not possible due to restricted
accessibility of the plant, such a controller would
have to be realized by synthesis of its input. This

difficulty was enhanced by the generation of nonlinear

time~varying differential (difference) equations for
the adaptive loop, due to feedback. Thus, the
adaptive control problem turned out to be considerably
more complex than that of the adaptive observer,
where not only every point in the adaptive system
(observer) was accessible but also its open-loop
scheme resulted in linear differential equations.
first clear exposition of all complications arising
in the adaptive control problem was given in (8].

The

From the mathematical point of view, the
inaccessibility of any point in the plant other than
its input and output could be translated as the
difficulety in realizing a positive real output error
transfer function (Ref. Section I1l). An important
contribution along these lines was made by Monopoli
[9], who suggested an ingenious scheme, for control,

1 We note, here, that our ensuing discussion will
be primarily concerned with the on-line control of
linear, time-invariant, SISO plants under Insufficient
knowledge of their parameters and/or state variables.
There are very few results - if any at all - that arc
rigorous pertaining to the more general cases of
time-varying and/or multivariable plants,

2 This problem was well understood and completely
resolved by the first half of the decade.
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by making use of an augmented error lignnl.3 However,
vwhile error augmentation maintained boundedness of
the state and parameter errors, it could no longer

be assumed that either the plant or the model states
remoined bounded (Ref. Section II). Motivated by
Monopoli's approach, Narendra and Valavawi [10]
succeeded in designing a simple controller structure
which realized a positive real output error transfer
function during adaptation. The stability problem
of the overall adaptive loop was also clarified in
that work and its solution was presented in the form
of a conjecture. A modified version of the
conjecture involving an additional feedback term was
recently verified [3]. At about the same time,
Feuer and Morse {11] suggested an alternative
controller but its extreme complexity precludes its
use in practical applications. Since then, several
authors [(5,2,12,13] have also attempted this problem
for both discrete and continuous systems. In [2]
both discrete as well as continuous-time controllers
are discussed and compared. In [12] and [13] the
continuous adaptive problem is treated - using indirect
control ideas - when the input to the system is
"sufficiently rich." Proof of asymptotic stability
here heavily hinges on the assumption of coanvergence
of the parameters. However, simulation studies of
any of the adaptive control algorithms available

to date, consistently show that the above assumption
almost never holds, despite the fact that the output
errors tend to zero; this fact should not be
surprising, since the control objective - i.e., output
error tending to zero - is nonetheless satisfied.

Finally, in [5] the authors present three very
simple adaptive controllers for discrete time systems
using both a direct as well as an indirect control
approach. The motivation for the schemes they propose
comes from optimization considerations rather than
the explicit use of the stability approach in the
design, since two of their algorithms are projection
algorithms on the (estimated) parameter space and a
third algorithm employs recursive least squares.

After careful study of the algorithms in {5] and
contrary to what was initially believed, it is
interesting to find out that they also implicitly
realize a positive real output error transfer function.
This is an important observation, since positive
reality has been a key requirement in the analysis

and design of adaptive controllers using either
Lyapunov's Direct Method or Popov's Hyperstability
Theory. With either method, adaptive laws that
guarantee the global stability of the overall scheme
are derived. Unfortunately, however, neither one
alone can allow the conclusion of asymptotic stabiliey
for all cases of control and, therefore, special
analysis is further required.

In Section II we discuss an error model which
is most frequently (almost invariably) used in
adaptive control under limited state information.
In Section 1II we present briefly the main features
of both Hyperstability Theory and Lyapunov's method
and point out the difficulties encountered in the
proofs of asymptotic stability of augmented error
systems. Section IV contains the main contribution
of this paper which is a generic model for the design

3Use of an "augmented error"” became necessary
whenever the relative degree of the plant transfer
funcefon (i.e., excess of poles over zeros) was
greater than or equal to three.

of stable adaptive controllers. This model captures

in a unified manner all the essential features of
already existing adaptive control algorithms. The
latter can be derived from this general model with minor
modifications. This is discussed in Section V for a
representative number of algorithms. Moreover, the
model clarifies the role of relative degree and
positive reality of the error transfer function and
shows quite convincingly that the latter is one of

the two main underlying factors in the already exist-
ing asymptotically stable adaptive schemes; the second
is that the parameter -djustmfnt law satisfy some
conditions such as being an L* function, which 1is the
only case for which a proof is available at present. The
asymptotic stability proof is presented briefly - rather
outlined - in Section VI. In retrospect, some of

the atability proofs given to date are seen to

be special cases of the (outline of) proof in VI.
Section VII contains general comments on adaptive
algorithms, i.e., regarding their rates of

convergence, their behavior in the presence of
disturbances and unmodeled system dynamics, etc.

The conclusion is given in Section VII.

Due to space limitations, presentation of the
results is kept concise and proofs are only outlined
in most cases instead of given in detail. Whenever
necessary, reference is made either to already existing
proofs or to a more expanded - hence complete - version
of this paper (Sections IV, V and VI in particular)
in which the proofs are included. The discussion is
carried out for continuous time systems and the easier
cases of discrete-time systems are mentioned whenever
appropriate, (It is much easier to derive results
going from continuous to discrete-time rather than
vice versa).

II AN ERROR MODEL IN ADAPTIVE CONTROL

The error model described in this section is also
known as Prototype III in the adaptive control liter-
ature [14]. It applies to the case where only the
plant output is accessible and, therefore, neither
the entire error nor plant state vectors can be used
in the implementation of the adaptive algorithm.
Stability of such algorithms is then difficult to
ensyre, unless the adaptive system tan be para-
meterized in a specific form. It is quite oftemn the
case that the error differential equations of
adaptive systems whose entire state vector is not
accessible can be put in the following form [14]:

&(t) = Ae(t) + bOT(r) u(r) (1)
el(t) = cTe(t)

where e(t) is an (nxl) state vector, $(t) and u(t)

- are m-dimensional vectors with the elements of u(t)

piecewise continuous and uniformly bounded. A is

a stable (nxn) matrix, b and ¢ are (nxl) constant
vectors, with (A,b) completely iontrollable, and
the transfer function cl(3I-A)"*b is strictly
positive real (SPR). The elements of the vector
é(t) are unknown but the time deghmtive $(t) can be
adjusted using the signals u(t) and el(t) which can
be measured. The aim of this adjustment is to make
1im el(t) -0,

t+o®

If the adaptive law

6(t) = = Tult)e (t) T ~TT>0 o3

u;*m-uw.cmg-u P
'




is chosen, it can be shown easily using the Kalman~
Yakubovich Lemma that

(1) e(t) and ¢(t) are bounded

(11) lim e(t) = O

t > @

and (141) 1if u(t) is "sufficiently rich” [15]

lim ¢(t) = 0

t* o

Proof: Choosing V(e,$) = 1/2 [cTPe4-¢Tr'lo] >0 as
a Lyapunov function candidate, the time derivative
t(e,4) can be written as

V(e,8) = 1/2¢T[ATP + PAJe + eTPbTu + 077715

By the Kalman-Yakubovich Lemma, a matrix P = l"r >0
exists such that

T T
AP +PAs=-qq =-E€L

Pb s ¢
for some vcitot q, matrix L = KN 0, and >0 {ff

eT(sT - A)~1b is strictly positive real (SPR). 1In
suchicase,

V(e,8) = -1/2¢7(qq" + eLye + e 87u + 6717}

By choosing the adaptive law according to (2), ¥
becomes

V(e,6) = -1/26"(qq" + el)e < 0

so that the system is stable and ({) holds. V,
furthermore, is a nonincreasing function of time
which is bounded from below and hence converges
to a finite value V.

We first consider the case where the input u(t)
is uniformly bounded. In such a case we have

1im f© ¢(t)de = Ve ~V(0)

]
which is a finite number and {(t), is uniformly
continuous since &(t) and hence V (t) are bounded.
Hence by s well known lemma [18)

lim ¥(t) = lim -1/2 eT(qqT + eL)e(t) = O

t >+ t+ o

or lime(t) =0 and lim ey(t) =0
t*

t* =
By (2), since u(t) is bounded, it follows that
lim §(t) = O

[

It hasalso been shown [15] that 1if u(t) s
"sufficiently rich,”

1lim ¢(t) = O

t+®

The results stated so far may now be summarized as
follows:

a. 1f V(e,¢) is positive definite and {(e,$) is
negative semidefinite, e(t), ¢(t) are bounded if
e(0), ¢(0) sre bounded.

b. If the input u(t) is bounded.i) (e,d) is also
bounded and hence

1im e(t) = 0 lim 6(c) = 0

t+® t > ®
e¢. If u(t) is bounded and "sufficiently rich"

lim ¢(t) = O

t>®

The problem becomes considerahbly more complicated
vhen any finite time truncation of u(t) is bounded,
{i.e., u(*)e I: but u(t) 1is not uniformly bounded.

It is now no longer possible to conclude from the
above analysis that e(t) and $(t) behave as in b.
However, it was recently shown (16] that even when
the inputs are unbounded, the error system can be
uniformly asymptotically stable provided the inputs
are “"uniformly exciting” in the sense of (16]. Some
of the principal difficulties in the resolution of
the adaptive control problem have been related to
these questions that arise when the controi input

u(t) to the plant cannot be assumed bounded and, further

"uniform excitedness" is not assured. Hence an
alternate rcute had to be taken in the proof.

A. A Modified Error Model for Use in Asymptotic
Stability Proofs in "Augmented Error” Systems.

Perhaps the most important step in achieving
asymptotic stability of the adaptive system in [(10]
was in introducing an extra feedback term in the
error model described by equation (1). Figure 1
is a schematic representation of the modified error
model.

SPR

e;(v)
(e, A, b)

¥

FIGURE 1

The state equations describing the above system are
given by:

&(t) = Ae(t) + B¢ (Bu(t) - au’ (Tu(e)e, (1]
a0, T=T">p (3)
ey(t) = cTe(t)

and the adaptive law is given as before by

4(e) = ~Tu(t)ey(e) T = T >0 (&
Choosing as a Lyapunov function candidate the same
v(e,$) as before, we obtain its time-depivative
according to equations (3) and (4) ax

v(es) = 1/2eT(e) (TP + PAJe(t) + ¢T(OIPHLET(B)u(t) -

auF(ITu(e) ()] + ¢Teor-téqu.




e

Uslng- the K~-Y Lemma and equation (4)
V(e,0) = ~1/2e7(qq" + €Lye - 47114 (5)

From the fact that V(e,$) is bounded for bounded
initial values of e agd ) agd from (5) we can, 2
conclude that (i)e €L”, §eL<. The fact that ¢cL

is crucial in the stabilaty proof of Section Vi
The rest of the stability arguments follow exactly
as in the first part of this section.

II1 LYAPUNOV'S METHOD AND HYPERSTABILITY THEORY IN
ADAPTIVE CONTROL

Lyapunov's Direct Method and,relatively more
recently, Popov's Hyperstability Theory have provided
the principal framework for the analysis and design
of adaptive systems using a stability approach.

Using this approach, adaptive problems are formulated
as stability problems of multivariable nonlinear
nonautonomous systems. When Lyapunov's method is
employed, the asymptotic stability of a set of error
differential equations is studied using a suitable
choice of a Lyapunov function candidate (as in
Section II). While the theory has been applied
effectively to autonomous systems, it has been less
decisive in the adaptive context where the equations
are nonautonomous. The difficulty lies in the fact
that always the choice of the adaptive law for the
updating of the parameters is such that the time
derivative of the Lyapunov function is invariably
negative semidefinite, rather than definite. This
together with the fact that in the more general case
of time-varying (rather than autonomous) differential
equations, which arise in adaptive control, a
correspondence between their limiting sets and
invariant sets has not been established, precludes
use of LaSalle's theorem for proof of asymptotic
stabilicy.

The hyperstability approach [17-20] which has
been increasingly used as an alternative to Lyapunov’s
method, requires the problem to be recast as the
stability of a feedback loop with a linear time-
invariant operator in the forward path and a passive
operator in the feedback path. This structure
provides the designer with greater flexibility in
choosing the adaptive laws, since it 1s merely
required to make the feedback block satisfy some
passivity conditions for the system to be hyper-
stable. However, as will be seen in the sequel,
this approach too meets with the same analytical
difficulties when unbounded signals are present.

Since the stability of the error model in
Section II was analyzed using Lyapunov's method,
we will present in this section only the hyper-
stability approach. Consider now a completely
controllable and completely observable system B,

%(t) = Ax(t) + bu(t)
System Bj

y(t) = ch(:)

where A is an (nxn) matrix, x(t) an (nxl) vector,
u(t) a piecewise continuous input and y(t) the
output.

Ryperstability of By is then defined by the
property which requires that the state x(t) be
bounded for a certain class of inputs u(t). This
class 1s defined by those u(-) which satisfy for all T

f u(t)y(t)de < (g x(O) U Isup Wx(e)}
° 0<ctsT
where § 1is a positive constant. For the purposes

of our discussion it is adequate to limit ourselves
to the class of inputs which sacisfy

u(t)y(e) ¢ 12 independent of T (6)
°

as suggested by Lamdau (19 ], where 1 is an
arbitrary constant, independent of T.

Definition: The system B; is hyperstable with respect
to any u(t) which satisfies (6) if there exists a
positive constant k such that

Ix(e)§ < k(g x(O) + 1] for all ¢t (7) ;

Definition: The system B; is said to be asymptotically
Ryperstable with respect to any u(t) satisfying (6)
which is also bounded if the inequality (7) holds
together with

1im x(t) = 0 (8)

t > w

The main theorems of Popov may now be stated as
follows.

Theorem 1. (Hyperstability): A necessary and sufficient
condition for the system Bi to be hyperstable is that
the transfer function

Ws) = cT(s1-a)"1b ©

be positive real (PR).

Proof: See [17].

Theorem 2. (Asymptotic Hyperstability): A necessary
and sufficient condition for the system B] to be
asymptotically hyperstable is that W(g) in (9) bve
strictly positive real. (SPR).

If By is SPR, it can be shown [18]) that a
positive definite function p(x) exists such that

T T
j p(x)dx f_/ u(t)y(e)de (10)
o (]

When u(t) is bounded, the function p{x(t)] can also
be shown to be uniformly continuous. Hence, from
(10) and (6) and a well known lemma (Barbalat's
Lemma in [ 18]), it follows that

1lim p[x(t)] = O or lim x(t) = 0

t =+ gL > >
Remark: Uniform continuity of p[x(t)]) land of
{(x,t) analogously], is only a sufficient condition
in these proofs.

We now apply the above theorems to the error
model discussed in Section II. Figure (2) is a
schematic representation of system (1) and (2)

in the form suggested in theorems 1 and 2.




T
Since ;T v(t)e, (t)dt = -; ¢T(t)r-16(t)dt -

] (]
loo)ifa -loemltds < fooNigt
2 2

by Theorem 2 the state vector e(t) of By is bounded.
Similarly, by considering B; in which 1/s 1s a
positive real transfer function, the state vector
¢(t) can be shown to be bounded. This corresponds to
condicion (i) in Section II. If u(t) is bounded,
then so is the input u(t) to Bj. Since B} has a SPR
transfer function, by Theorem 2, e(t) and hence
e1(t) tend to zero as t +*. This corresponds to
condition (ii) in the previous section. The rest

of the analysis is identical to that in Section 1II.

Note: In many adaptive control situations it may be
easier to check conditions (6) and (10), rather than
searching for a Lyapunov function and trying to
assure at least negative semidefiniteness of its
time derivative. In fact, the integral conditions
(6) and (10) may provide the designer with more
flexibility in choosing the adaptive laws, rather
than the pointwise condition required of v(e,t).

1t is obvious from the discussion that hyperstability
theory offers design advantages rather than analyti-
cal ones.

IV A GENERIC MODEL FOR ADAPTIVE CONTROLLER STRUCTURES

Before we proceed to describe the general con-
troller model, we give a brief statement of the
problem below.

A. Statement of the Problem

The plant P to be controlled is completely
represented by the input-output pair [p(t).yp(ti]and
can be modeled by a linear time-invariant system

ip = Apxp + bpu(t)
T,
¥p = hp *p(t)
where Ap, bp, L, are a matrix and vectors of constants

and are of compatible dimensions and such that the
transfer function

kpp(s)
q(s)

Wo(s) = hpT(s1 = Ap)~Iby ¢ an

is strictly proper; p(s) i{s a monic Hurwitz poly-

SRS [n ANy B B o

nomial of degree m(<n-1), q(s) a monic polynonial
of degree n and kp a constant gain parameter. We
further assume that only m, n and the sign of k

are known for use in the design of an adaptive
controller and only one output of the plant, i.e.,
thT = (1,0...0) 1s accessible for measurement.

n* = (n-m) is referred to as the relative degree

of the plant and plays an important role in the
parametrization of the controller in this section.
We note here, that since the only points of access
to the plant are its input and output, any internal
structure representation (hp,A »bp) can be assumed
which satifies (11). However, the "specific para-
metrization"” chosen is an essential ingredient in
the subsequent development of the controller-reference
model structure.

A reference model M represents the behavior
desired from the plant when it is augmented with a
suitable controller. The model has a reference
input r(t) which is uniformly bounded and an output
Yo(t). The transfer function of the model, denoted
by Wp(s) may be represented as

ip(s) & iy Pal®)
qp(s)

where ﬁm(s) is a monic Hurwitz polynomial of degree
m) & m, % qgn(s) is a monic Hurwitz polynomial of
degree n and ky 1s a constant gain. Wp(s) is
completely specified and the aim of the design is
to generate suitable bounded inputs u(t) to the
plant, so that the deviation of the plant from the
desired behavior as measured by an error signal
€1(t) where

teg¢el & lyple) = yo(e))
tends to zero as t+ =,

B. Plant and Controller Representation.

Here, we present a general observer-controller
structure which yields a simple relation between
observer and controller parameters (similarly as in
[1]). In fact, since the mathematical equivalence
between direct and indirect control was proven (1,2],
the general structure presented here could be viewed
as either. The following Lemma and Corollaries
are needed to justify what will follow.

Lemma 1: Given the relatively prime polynomials

p and q of degrees m(<n-1) and n respectively, with
q monic, a monic polynomial T and a polynomial A

of degree n exist such that the polymomial

I'q+8p=M

where M is any 2n degree monic polynonial.
P€: Given in {10].

Corollary 1: If My is any monic polvmomial of
degree (2mtm) such that M)} = MC, where ¢ is a monic
polynomigl of degree m, polynomials [yand \; of
degrecs (mim) exist which satisfy

Since the controller structure to be describoed
in the sequel fs motivated by the indircet control
representation in [14], we will assume, with no loss
of generality, that m; = m. When mp > m, r(t) has
to be suitahly prefiltered.

TRIS D/ -0 ST SRR TRV SV 8. 1
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T1q + 410 = My
This follows directly from Lemma 1 by choosing I'1=l'c

A IOt ¥ Wl O 53 S5 SRR, 331 o856 S

Corollavy 2: Given two polynomials L(s) and A(s) of

1 degrees (n-m) and n respectively, if p(s) and q(s)
’ are relatively prime polynomials of degrees m and n,
then the rational function p(s)/q(s) can be expressed

(s} o
q(s)

T(s)
A(s)L(s) + A(s)

(12)

by the proper choice of the polynomials I'(s) and
4(s) of degree n.

Proof: Equation (12) implies I'q - Ap = pAL and
since the RHS is of degree 2n, Lemma 1 applies

directly.

Figure 3b is an equivalent nonminimal representa-
tion of a plant with an irreducible transfer function
p(8)/q(s), according to Corollary 2 and with
A(s) = pp(s)L(s).
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FIGURE 3b

In figure 3 the only condition on L(s) is that its
degree be the same as the relative degree of W_(s)
and that it be a Hurwitz polynomial and L(s) = L(sYs+a)
where L(s) is of degree (n*-1) and a>0.

From the representation of the plant above,

and following, in an exactly analogous manner the
developments in [10), we are motivated to represent
an observer as shown in Figure 4.

FIGURE &

In Figure 4, the block representing the plant
is realized in the nonminimal representation shown
in Figure 3b and (the parameters in) the poly-
nomials [(s) and A(s) are adjusted using input and
output data, so that I' + I'* and A =+ A* asymptotically.

The above representation of the plant and observer
motivate the basic structure for the model reference
controller, which is derived in an exactly analogous
manner as in [ 1l ]. Figure 5 is a schematic
diagram of the controller.
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Since it can he shown as in [1] that the (yxl) -
vectors & =y and the ((n+l)xl) vectors d' = §!

the input to 1/L(s) in block B is O in this case.
However, block B will be seen later to account for

the augmentation to the output error, when deg (L(s)»2.

Note: The above diagram corresponds to the case
where the gain k_ of the plant Is known and can,
therefore, witﬁout loss of generality,be assumed
that k= ky = 1, When k, is unknown, the basic
structure remains the sage; an extra adjustable
parameter ¢, multiplies the reference input to the
plant and kp multiplies 1/f(s) in irs forward path,
as shown in dotted circles on Figure 5. If
A(s) = L(s)pm(s). the controller in Figure 5 can
match any transfer function fkml Pm(s). (The proof
o qm(s)

follows from Corollary 2 after substituting for
bhoth for kp known and unknewn.)

(=)

Note 2: The reference model is incorporated into
the schemc of Figure 5 as shown, because we ultimagely
want to focus attention on the transfer function G
which can be shown {21 ] to describe the reduced (=)
state error dynamics.
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The state equations for the state variable
filters F; and Fz are described by

(1) (8))

- = Av + bt}
F
m(l) - c‘l'v(l) 1

¥ o W@ gy, } £
)

0(2) = doypt dr'v(2

(13)

vhere A is an (nxn) stable matrix (*n companion
form, usually), © = [0, 0,...,1), c' = (€1, €2:4.4¢q)
and dT = (do, dj...dy)
Defining
5T(e) & [eole), 87(e)] & (col®), 20D, -n.\ cnle),
do(t), d1(), ...dy (BB () 2 [r(e), W (E)]
2 tr(w, v, v, v

the input to the plant, as shown in Figure 5 is
uw(e) & 8%(vrace
and, using the modified model of Section II,

u(e) = 8T(6)E(e) - ae, (D)ET(OTA(D) T =T7>0
o >0
When the gain of the plant is known, w.l.0.g. kp-km-l
and cg = 0
& we) & e¥(eruce) - aey (e)aT(0)Ta(E)

We shall examine this case first.
(1) kP = kp = 1 (known)

Following the results of [10 ] (also surmarized

by the Lemma and Corollaries in the beginning of
this section), a constant control parameter vector

0* exists such that, if 6(t) = 8*the transfer
function of the plant together with the controller
matches that of the model exactly. If €(t) repre~-
sents the state error between comparable represent-
ations of model and plant, the error differential
equations are:

E(6) = AcE(t) + be [P T(1)0(e) - ae ()T ()W (L))

€(t) = hle(t) (14)
where Wg(s) = h.T(sI - Ac)~1bc = Wn(s) and

d(e) = 6() - O#
is the parameter error vector.

a. a* =1
1f the relative degree of the plant is equal to one,
w.l.0.8. the model transfer function can be assumed
positive real (10]. Hence, according to the results

in Section 11, the adaptive laws

() = -€ (t)u(t)

assure the boundedness of $(t) and €(t). Since the
states of the model are bounded, boundedness of the
plant states follows snd further analysis is
identical to that in Section II, for u(t) bounded.
(u(t) = w(e) here).

It is shown in [21] that the error equations
(14) can be expressed in reduced form as

E(e) = AE(t) + bIpT(vw(e) -aE (T (e)Tu()]  (15)

g (t) = nTE(e) b7 = (0,0,4,1) b= (1,000
and that €,(t) and €)(t) are equivxle t. A is an
(n* x n*) stable matrix and Wz(s) 2 h'(s1-A)-1b =
1/L(s), “(t), 9(t) as defined before. Note that
with n* = 1, (15) is a scalar differential equativn
and hence its transfer function is always SPR.

The form of equations (15) is particularly useful
in the analysis of the controller in Figure 5.

b, n* 2 2,

If the relative degree n* 2 2, Wg(s) is a second
or higher order (n*order) transfer function, so that
it is not SPR. However, since L(s) is known, and
arbitrary, a Hurwitz polynonial L*(s) = AL(s) or
L*(s) = AL(s)}>g » can be defined such that L*(s)
Wz(s) = L*(s)L™"(s) is SPR. If every parameter
6{(t) in the controller in Figure 5_is replaced by
an operator PA81i(t)) = L*(s) 84L*"1(s), the
adaptive laws can be derived according to the error
model in Section II as G(t) =re;z(t), where
g(t) = L*"*(s)Iw(t). However, if the controller is
to be differentiator free, such a procedure is not
possible through the plant, and, more specifically,
through the transfer function 1 (s) in its forward
path. Following then the approach in [10], correspond~
ing to every feedback signal 8i(t)ei(t) to the plant,
a signal [8,(t) - PRA@4i(efJwi(t) is realized through
the transfer function L™*(s) in box B which now forms
part of the "augmented model."” Hence the positive
reality of the error transfer function is preserved,
and so are the adaptive laws thus derived. The
augmented error controller is shown in Figure 6.

The quantities in dotted circles should be ignored
(set equal to 1) for the case where kp is known.

Note that the particular representation of the
reference model in Figure 6 is for mathematical
convenience only, so as to derive the error equations
in the reduced form given by (15). yg(t) is the
augmentation to the model output (block A of Figure 5)
and

ya(t) = Wg(s)L*(s) (L L(s)a(e) - 6(OIL*r 1 (s)) () +
+ aep(£)ZT(e)Tz(e)] (16)

The total output of the model y(t) is the sum of the
desired output y,(t) and the augmented output v,(t);
the augmented error e;(t) is defined as

e1(6) & yo(6) - y(&) = E1(2) - yo(0) an
and given by
e1(8) = U=(8)L*(s) (67 ()5(£) = aey ()T (OIIG(D]  (18)

(18) has the same form as (14) with w(t) and el(t)
replacxd_gx w(t) and ej(t) respectively. Also
Wg(s) = L “(s) throughout this scction

(i) kP unknown

This i{s the case shown in Figure 6, with the
quantities in dotted circles included. Following the
analysis in [3], the aug mentcd error cquation is now
given by
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e;(t) -E[w;u)u(s)]iat(:)a:) + \y(t)E(t)] -

-ae, (03(6) 5 (o) a9
and the adaptive laws are
5(t) = - leg(e)Z(e)
(20)

¥(e) = -yvey(t)E(L)
where
T = 1 Ha)15(e) 5 Eee) = (1A L(a)d(0) - S tindco
and ¥(t)=1 -E:‘f&(t) with ¥ (t) +ky

The stability problem that arises is the same in both
cases (1) and (i1), with n* > 2, 1In a schematic form,
the modified conjecture for kp known in [3,10] is
represented as shown in Figure 7,

FIGURE 7

Notice that the error transfer function in Figure 7
1s at most of first order if L*(s) = AL(s) = x4,.
This is a generalization to the model considered

in [3,10].

V OTHER ADAPTIVE ALGORITHMS

The special parameterization used for the plant
and the controller in the preceding section resulted
in a very simple structure for the adaptive system
and its associated error equations. The model
suggested in IV is the simplest controller realization
so far and at the same time provides a very precice
exposition of the functions of the most essential
features ~i.e., relative degree, positive reality -
in the design of stable adaptive control systems.

By choosing difﬁggent representations for the transfer
function Tpa(s)=\isiin the forward path of the plant -
whose relative degree has to be n*, same as the
plant's - various controllerscan be derived. This
choice, in turn, affects the "realization" of the

SPR transfer function W, that describes the error
dynamics in the transientstate of the adaptation
process. We mention a few representative algorithms
below:

1. Monopoli's Scheme (9]
Tax(8) = py(8)/ap(s) = Wy(s)
We(s) = pp(s)/qp(s) - L(s) = Wy(s)L(s),
vwhere L(s) is chosen such that We(s) is SPR. Contol
laws are as follow from use of the error model
in Section II.

2. Narendra and Valavani's Schemes: (Both Direct
and Indirect Control) [1,10]

Taa(8) = pn(s)/qy(s) = Up(s)
We(s) = Wp(s)L(s), where L(s) is chosen as in 1.
3. Bénéjean's Scheme [22]

Choices of transfer functionsare identidal
to Monopoli's.

4. Narendra and Lin's Discrete Control Scheme {23]

[23] is the discrete version of {1,10] in 2
above, and therefore the transfer functions are the
discrete-~time analop® of those in 2.

5. Goodwin, Ramadge and Caines's Scheme [5]

The algorithms here represent the only adaptive
controllers listed so far that were not designud
using a scabilicy approach, but are rather projection
algorithms - o of them (one each for direct and
indirect control) and a third one which is a recursive
least squares algorithm, all in discrete-time. Sincoe
they are all similar, we mention just one of them
here.

GRC Projection Algorithm I1
a. Discrete-time
A~ A T
ekgok_1+’\;k()"\ ‘k ‘\) -—p
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vhere €1, and elE are the output and augmented errors

respectively, and &y is the "delayed" (fillered)
state vector, all defined in an analogsmanner as
in Section IV,

ey " 1
T+,

b. Continuous-time

Though the authors in [5] described discrete
time algorithms only, the continuous time analog of
their algorithm above, can be expressed in terms of
the general model in IV, with

1
Tax(s) :T;T
Wa(s) = Lx(s)L~1(s), where L*(s) = AL(s).
the only difference from the model in IV is in
realizing the augmented error equation, which is now
given by

Hence,

e1(t) = oT(e)5(e)/ A +agT(e)rz(e)] (22)
where ¢(t) is the parameter error vector, {(t) as
defined in Section IV and everything else the same
as in the model of section IV. (There is no basic
difference from the discrete algorithm described in
(21), if the scaling factor I' is included in (22).
This is only to make the error equation analogous

in form to that described hy equation (18Y.

VI OUTLINE OF PROOF OF ASYMPTOTIC STABILITY FOR THE
CLASS OF CONTROLLERS IN SECTION IV

In this section we present the key ideas in the
proof of asymptotic stability of the model described
in IV. The nature of the problem is identical to
that resolved in [3], the only difference being in
the description of the augmented error. Hence, the
augmented error is described by a first order
differential equation (when L*(s) :AL(s)), or by an
algebraic equation (when L*(s) = AL(s)). The
arguments used here, however, are analogous - 1f not
jdentical - to those in [3]. The interested reader is
referred to [3] or [21] for a rigorous and complete
proof. We merely highlight here the important points
in its evolution. We list in the appendix key
definitions and lemmas in the construction of the
stability arguments. We again refer to [3] for a
complete discussion and proofs.

A. Statement of the Stability Problem

Using the modified error model in Section II,
it is easy to show that ej, ¢ in equations (17) and
(18), or alternatively, ej, ¢ and ¥ in (19) and (20)
are bounded, Moreover. it also follows that e(t),
ep(t)n(e), (t)EL The stability problem i{s then
to show that the plant feedback loop with ¢(t)
adjusted according to equation (20) and 3(t)cl
is stable in the large.

B. Proof of Stability

(1) k.P known.

We only need to show that yp(t) is uyniformly
bounded. Uniform boundedness of all the signals in
the loop follows by Lemma 4.

Considering the reduced error model, we can write
yp(e) = Un(s)r(c) + L7 H(e)eT(t)ule) (23)
where Wp(s)r(t) is a uniformly bounded signal. The
second term in the RHS of equation (23) can be
expressed as

T 1(s)eT(t)u(e) = [I'-'I(S)L*(S)][L*'l(S)¢T(t)L*(S)]C(t)
By lemmas 4 and 5

L@ (Bu(e) = E-LmLrs)] o715 + olsuply, ()] ]
t>"

Further, since by (18)
#T(e)T(t) = V(&) + aez(£)ET(e)rLLe)

vhere v(t) 2 ¢T(e)z(t) - aer(e)cT(e)PZ(t) 1s the
input to the error equation

oT(e)E(e) = W) + abT(e) T(r)
vhere

(Ll (s)Lx(s)IVCe) = e (v)
and

[£-1(s)L*(5)1(a8T(£) £(t)) = olsup)yp()l ] by Lemmas
t> .

3 and 4 and by 5€L2.

& Yplt) = Wn(s)r(t) + ep(e) + ofsuplyp(: )]

t>T

is bounded, since el(t) is bounded from (18), f
any choice of L*(s). ¢ The plant feedback loop
is stable in the large.

(11) kp unknown

In this case,
yp(0) = (Bin(e)] (2 r(e) +3 (E(0)] »
Tp(E) = Un()T(e) + (2 Tl 1Ll L) 1
Analogously as in (1)

2 T3 i = (2 o) {FoTo +
m

+ofsuply ('r)l].
spizpeon

From Figure 6
g =+ Tz - v
But F(t) e [La-l()ET(t) = ETen* 1017 =

L*-1(a)FT (L (IT(0) = FTOFW) = Lsupdv (1]
t>t

And since ¥(t) is uniformly bounded, again we conclude
that Jp(t) is also bounded.




(1i1) discrete~time model

For the discrete~time case, with v(t) replaced
by (k) it follows immediately {3] that v(k) ~ O,
A¢(k) + 0 and hence stability followstrivially.

Since we established that w(t) is bounded, then
7(t), the input to the error model is bounded, and
from the analysis in Section II,

lim G(t) = 1lim e(t) = lim $(t) = ©

t+® £+ e t >
& the augmented input signal into the error model
[L*"2(s)0T(e) - ¢ T(£)L*-1(s) lu(t) and aey(t)T(E)IE(L)
also tend to zero as t + = i

t >

S ey(t) = yp(t) = yu(e) = 0  as
VII GENERAL COMMENTS

(i) The model presented in Section IV represents
a very simple controller structure vequiring a minimal
number of integrations. This translates into faster
response and error dynamics and hence the potential
for applications to real world problems. The part-
icular structure described shows clearly the role of
the relative degree of the plant in determining the
underlying speed of adaptation. This is suggestive
and is to be compared with the sensitivity models
as in [24] used for optimization.

(11) The transfer function L-1(s) is arbitrary
and hence the designer can choose it to improve
any one of relevant quantities such as error response
of the adaptive system, avoiding to excite unmodeled
system dynamics, filtering out disturbances, etc..
These questions have to be investigated thoroughly
and systematically in light of this new model. The de-
signer still has no control over the convergence
rates of the adaptive control algorithms but this
new representation of the adaptive system seems
promising. Current research efforts [25] are directed
systematically toward understanding closed loop adapt~
ive processes and defining analytically the domains
in which they evolve, in terms of relevant design
quantities, so that optimization could then take
place.

(1ii) The fact_c?at the error dynamics are in
effect governed by L™ (s),which can be chosen
arbitrarily, could have further implications on the
robustness properties of the adaptive system.

(iv) We observe that positive reality of the
error equations is ultimately only coanected with
the adjustment of the parameters and can be viewed
separately from the rest of the plant-model adaptive
configuration.

(v) Proof of the original conjecture formulated
in [10] suddenly seems important and morc tractable

in light of the new representation and as encompassing g,

a larger class of adaptive problems, without the
limication that 4 has to be adjusted so that ¢ L°.

VIII CONCLUSION

Stability questions that arise in the deter-
ministic adaptive control of SISO systems and methods

11.

for their anslysis have been reviewed, with special
emphasis given to the "augmented error" systems.
"Augmented error" systems arise when the relative
degree of the plant transfer function is greater than
or equal to two. The question of asymptotic stability
of this type of an error system, even in the deter-
ninistic case, remained unresolved for a long-time.
Recently, various proofs were proposed for specific
adaptive controller designs. In Section IV of the
paper, a general model for a controller structure is
proposed, using a specific parameterization. Other
existing algorithms are seen to be special cases of
this general model, regardless of which approach

was used as a basis for the design. An outline of

a proof for the model in Section IV was given,

which is the most general proof for asymptotic
stability, that holds for all the existing determin-~
istic adaptive controllers. However, no specific
close form theoretical results are available for

the convergence rates of these algorithms or their
behavior (in a global sense) in the presence of
disturbances. Such questions are the subject of
current research.
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APPENDIX
Definition 1:
L3 = {£:R"+Risup) £(T)l< =, Mecr*}
ti‘l’
Definition 2: Let x(t), y(t) € Le. Let B(t) be a

continuous function such that 8(t)+0 as t + =,
If y(t) = B8(t)x(t), we denote

y(t) = o[x(t)])
Remark 1:
(1) If y(t) = o[y(t)]), the y(t)+0 as t+ =

(11) If Jy(t)] = o[supl y(1)|], then y(t)+0 as

t »

(111) If (y(t)) = x(t) + o[supl¥(Tl]) and x(t) is
t >T
uniformly bounded, them y(t) is also
uniformly bounded.

Definition 3: Let x(t), y(t)ely. If thére exists
a constant M > 0 such that Jy(t)} < Mix(t),
then we denote

y(t) = o[x(t)]
Remark 2: If the input to a linear exponentially

stable system is x(t)eL; and the correspond-
ing output is y(t), then

y(t) = Olsup| x(7)i}
t>1

Definition 4: Let x(t), y(t)eL:. If y(t) = O[x(t)]

and x(t) = Ofy(t)], then we sav that x(t) and ¥(t}
are equivalent and denote this by

x(t) ~ y(¢)

Definition 5: Let x(t), y(t)el®. 1f supiy(T)l e
sup/x(T)) , we say that x(t) and y(t) grow at the
same rate.

Remark &4:

(1) If x(v), y(t)cL:. one and only one of the
following three conditions can hold:

supix(T) A~ supiy(t)i, supiy(i)' = olsup'x(z)],
:: T t:r t>7 t2>T

or supix(T) = o{sup'v(t)i)
€21 e 21

(1) isuplx(1)l = o[supiy(T)h] or supix(t) -
t>1 t>1 t>1

suply(TNg =) {suplx(T)l - Olsuply(?\tf
t>T €27 L7

(111) Let an n-dimensional veetor x(t)eld be
unbounded, then there exists at least a
component xio(t) such the

sup | x1g(IN ~  suplix(1) L ae
t>T t>T -t
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