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S'arILlTy AmD CONVZ = Or ADAPTIVE CONTROL ALGORITHMS:

A SORVZY AND SOME NEW RISULTS.*

Lena S. Valavani

L.I.D.S., Massachusetts Institute of Technology

ABSTRACT of global asymptotic stability of the resulting
feedback adaptive loop. In fact, this question became

Although adaptive controllers have been designed of crucial importance in the study of adaptive systems
for a number of years, the central question of global and was not resolved until very recently [3,4,51.
asymptotic stability of the overall feedback adaptive Even so, the results pertain onl1 to the case of
loop and its associated error equations remained open "deterministic" adaptive systemsT while no proof of
until recently. The two main approaches used to the stability in the global sense is available for
design controllers from a stability viewpoint- "stochastic" adaptive schemes, where disturbances are
Lyapunov's Direct Method and Popov's Hyperstability present in the form of observation and/or process
Theory-only assure boundedness of the (augmented) noise. The most gigorous results along these lines
state and parameter errors. The difficulties were obtained by IJung [6,7], who used the (by now)
encountered in both approaches are analyzed and well-known method of the "associated differential
shown to be exactly analogous, equation" corresponding to the stochastic adaptive

problem. However, these proofs are valid only
Subsequently, a generic model for an adaptive locally.

controller is proposed from which already existing
adaptive algorithms can be derived with minor modi- The two major aspects of the general control
fications. The model unifies various algorithms, problem werefirst, the design of a controller for an
under the essential requirement for positive reality unknown plant from input-output data alone, with no
of the associated error transfer functionjand its accessibility to any other points in the plant; and
proof of stability contains others suggested to date second, because of noise considerations, the exclusion
as special cases. Finally some general comments are of explicit use of differentiators. Since adjustment
made regarding rates of convergence, performance of of the parameters is not possible due to restricted
the algorithms in the presense of disturbances and accessibility of the plant, such a controller would
unmodeled dynamics, ease of implementation, etc.. have to be realized by synthesis of its input. This

difficulty was enhanced by the generation of nonlinear
I INTRODUCTION time-varying differential (difference) equations for

the adaptive loop, due to feedback. Thus, the
Adaptive co,:?rol has witnessed some very adaptive control problem turned out to be considerably

important theoretical developments in recent years. more complex than that of the adaptive observer,
2

Although the state of the art is still far from being where not only every point in the adaptive system
satisfactory for most practical applications, the (observer) was accessible but also its open-loop
progress made so far is encouraging and suggestive of scheme resulted in linear differential equations. The
new directions for the improved performance of adap- first clear exposition of all complications arising
tive algorithms, in the adaptive control problem was given in [8].

In the past few years various adaptive control- From the mathematical point of view, the
lers were proposed reflecting different philosophical inaccessibility of any point in the plant other than
viewpoints, such as direct and indirect control, and its input and output could be translated as the
based on different methodologies, motivated either difficulty in realizing a positive real output error
from a stability approach to the problem or from transfer function (Ref. Section III). An important
optimization considerations. Quite recently, the contribution along these lines was made by Monopoli
mathematical equivalence between direct and indirect 9], who suggested an ingenious scheme, for control.
control was established [1,2], -at least for certain
parameterizations of the plant -while it has become 1 We note, here, that our ensuing discussion will
increasingly evident that there is considerable over-
lap of the problems encountered using either the lerim ari n t er ctnouf n

optimization or the stability approach for designing linear, time-nveriant, er plants under in.suffrcient

adaptive controllers with inaccessible process states, knowledge of their parameters and/or state variables.

particularly as the latter relate to the question There are very few results -if any at, all- tlut arerigorous pertaining to the more, general cases. of

This research was supported in part by the Air time-varying and/or multivariable plants.

Force Office of Icientific Research under contract 2 This problem was well understood and completely J
nuberWi .AP Rresolved by the first half of the decade.
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by making use of an augmented error signal. 3 However, of stable adaptive controllers. This model captures
while error augmentation maintained boundedness of in a unified manner all the essential features of
the state and parameter erro3% it could no longer already existinq adaptive control algorithms. The
be assumed that either the plant or the model states latter can be derived from this general model with minor
remained bounded (Ref. Section II). Motivated by modifications. This is discussed in Section V for a
Monopoli's approach, Narendra and Valavaiet (10] representative number of algorithms. Moreover, the
succeeded in designing a simple controller structure model clarifies the role of relative degree and
which realized a positive real output error transfer positive reality of the error transfer function and
function during adaptation. The stability problem shows quite convincingly that the latter is one of
of the overall adaptive loop was also clarified in the two main underlying factors in the already exist-
that work and its solution was presented in the form ing asymptotically stable adaptive schemes; the second
of a conjecture. A modified version of the is that the parameter adjustmnt law satisfy some
conjecture involving an additional feedback term was conditions such as being an L' function, which is the
recently verified (3]. At about the same time, only case for which a proof is available at present. The
Feuer and Morse [11] suggested an alternative asymptotic stability proof is presented briefly-rather
controller but its extreme complexity precludes its outlined-in Section VI. In retrospect, some of
use in practical applications. Since then, several the stability proofs given to date are seen to
authors [5,2,12,13] have also attempted this problem be special cases of the (outline of) proof in V1.
for both discrete and continuous systems. In [2] Section VII contains general comments on adaptive
both discrete as well as continuous-time controllers algorithms, i.e., regarding their rates of
are discussed and compared. n [12] and (13] the convergence, their behavior in the presence of
continuous adaptive problem is treated -using indirect disturbances and unmodeled system dynamics, etc.
control ideas-when the input to the system is The conclusion is given in Section VII.
"sufficiently rich." Proof of asymptotic stability
here heavily hinges on the assumption of convergence
of the parameters. However, simulation studies of Due to space limitations, presentation of the
any of the adaptive control algorithms available results is kept concise and proofs are only outlined
to date, consistently show that the above assumption in most cases instead of given in detail. Whenever
almost never holds, despite the fact that the output necessary, reference is made either to already existing
errors tend to zero; this fact should not be proofs or to a more expanded-hence complete-version
surprising, since the control objective-i.e., output of this paper (Sections IV, V and VI in particular)
error tending to zero-is nonetheless satisfied. in which the proofs are included. The discussion is

carried out for continuous time systems and the easier
Finally, in [5] the authors present three very cases of discrete-time systems are mentioned whenever

simple adaptive controllers for discrete time systems appropriate. (It is much easier to derive results
using both a direct as well as an indirect control going from continuous to discrete-time rather than
approach. The motivation for the schemes they propose vice versa).
comes from optimization considerations rather than
the explicit use of the stability approach in the II AN ERROR MODEL IN ADAPTIVE CONTROL
design, since two of their algorithmvs are projection
algorithms on the (estimated) parameter space and a The error model described in this section is also
third algorithm employs recursive least squares. known as Prototypt III in the adaptive control liter-
After careful study of the algorithms in [5] and ature [14]. It applies to the case where only the
contrary to what was initially believed, it is plant output is accessible and, therefore, neither
interesting to find out that they also implicitly the entire error nor plant state vectors can be used
realize a positive real output error transfer function, in the implementation of the adaptive algorithm.
This is an important observation, since positive Stability of such algorithms is then difficult to
reality has been a key requirement in the analysis ensure, unless the adaptive system can be para-
and design of adaptive controllers using either meterized in a specific form. It is quite often the
Lyapunov's Direct Method or Popov's Hyperstability case that the error differential equations of
Theory. With either method, adaptive laws that adaptive systems whose entire state vector is not
guarantee the global stability of the overall scheme accessible can be put in the following form 114]:
are derived. Unfortunately, however, neither one T
alone can allow the conclusion of asymptotic stability &(t) a Ae(t) + b$ (t) u(t) (1)
for all cases of control and, therefore, special T
analysis is further required. el(t) - c e(t)

In Section II we discuss an error model which where e(t) is an (nxl) state vector, 4(t) and u(t)
is most frequently (almost invariably) used in are m-dimensional vectors with the elements of u(t)
adaptive control under limited state information, piecewise continuous and uniformly bounded. A is
In Section III we present briefly the main features a stable (nxn) mktrix, b and c are (nxl) constant
of both Hyperstability Theory and Lyapunov's method vectors, with (A,b) completely iontrollable, and
and point out the difficulties encountered in the the transfer function cT(sI-A)- b is strictly
proofs of asymptotic stability of augmented error positive real (SPR). The elements of the vector
systems. Section IV contains the main contribution 0(t) are unknown but the time derlative (t) can be
of this paper which is a generic model for the design adjusted using the signals u(t) and el(t) which can

be measured. The aim of this adjustment is to make

3Use of an "augmented error" became necessary lim el(t) - 0.
whenever the relative degree of the 

plant transfer

function (i.e., excess of poles over zeros) was If the adaptive law
greater than or equal to three. i(t) r -"u(t)e 1 (t) r (2)

- - +, ... . _.
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is chosen, it can be shown easily using the Kalman- b. If the input u(t) is bounded,* (0,0) is also
Yakubovich Lema that bounded and hence

(i) e(t) and 0(t) are bounded
(ii) lin e(t) - 0 lim e(t) = ) la 0(t) - 0

t - * t .t
and (III) if u(t) is "sufficiently rich" (151

c. If u(t) is bounded and "sufficiently rich"
li 0(t) - 0
t b a lm 0(t) - 0

Proof: Choosing V(e,) - 1/2 eTPe +,Trl 0 1 > as t-a

a Lyapunov function candidate, the time derivative The problem becomes considerably more complicated
l(e,O) can be wrritten as when any finite time truncation of u(t) is bounded,

TATP T T] T - i.e., u(')t T but u(t) is not uniformly bounded.
(e,b) - 1/2eT[ATP + PA]. + e pbTu + 0T rl' It is now no longer possible to conclude from the

above analysis that e(t) and 0(t) behave as in b.
By the Kalan-Yakubovich Lea, a matrix P - PT > 0 However, it was recently shown (16] that even when
exists such that the inputs are unbounded, the error system can be

T T uniformly asymptotically stable provided the inputs
ATP + PA - -qq - eL are "uniformly exciting" in the sense of (16]. Some

of the principal difficulties in the resolution of
Pb a c the adaptive control problem have been related to

these questions that arise when the control input
for some vetor q, matrix L- LT>O, and >£0 iff u(t) to the plant cannot be assumed bounded and, further
cT(sI - A)L1b is strictly positive real (SPR). In "uniform excitedness" is not assured. Hence an
suchicase, alternate rcute had to be taken in the proof.

V(e,0) - -1/2eT (qqT + CL)e + 10 Tu + OT- A. A M*odified Error Model for Use in Asymptotic
Stability Proofs in "Augmented Error" Systems.Dy choosing the adaptive law according to (2), ;

becomes Perhaps the most important step in achieving

T T asymptotic stability of the adaptive system in (10]
a(,) - -1/2e (qq + cL)e < 0 was in introducing an extra feedback term in the

error model described by equation (1). Figure 1
so that the system is stable and (i) holds. V, is a sche atic representation of the modified error
furthermore, is a nonincreesinS function of time model.
which is bounded from below and hence converges
to a finite value Ve0.

We first consider the case where the input u(t) SPR

is uniformly bounded. In such a case we have ut ~ lt

ii.ft J(t)dt - V.-V(o)

which is a finite number and t(t), is uniformly
continuous since 6(t) and hence V (t) are 

bounded.

Hence by a well known lems (181
FIGURE 1

lim 1(t) = lir -1/2 eT(qqT + cL)e(t) = 0

t- t- as
The state equations describing the above system are

or lim e(t) - 0 and lim el(t) - 0 given by:

AM - Ae(t) + bj (t)u(t) - au T(t)ru(t)e (t)]
By (2), since u(t) is bounded, It follows that t O r rT>0(3>>,r=r• 0 (3)

lim $(t) a 0
" el(t ) =cTe(t)

It hasalso been shown [15] that if u(t) is and the adaptive law is given as before by
"suff iciently rich,"

4(t) -ru(t)e 1 (t) r - r > 0 (4)

t Choosing as a Lyapunov function candidate the san
V(e,O) as before, we obtain its timt,-derivative

The results stated so far may now be summarized as according to equations (3) and (4) as
follows:

a. If V(e,i) Is positive definite and 
(e,o) is (eO) /2eT(t)IATp + PAj(t) +

negative somidefinite, *(t), 4(t) are bounded if QuT(t)ru(t) el(t)] + j1,(t);"l4(to.

a(O), b(0) are bounded.



Using the K-Y Lama and equation (4)

V(e,-) l/2eT(qqT + CL)e - $T-fl$ (5) -u(t)y(t)dt < 6(a x(0)1 ]sup WO
0 <t <T

From the fact that V(e, ) is bounded for bounded where 8 is a positive constant. For the purposes
initial values of e aid * ad from (5) we can. 2 of our discussion it is adequate to limit ourselves
conclude that (i)e cL , L The fact that icL to the class of inputs which satisfy
is crucial in the stability proof of Section V. 2
The rest of the stability arguments follow exactly u(t)y(t) < 1 independent of T (,)

as in the first part of this section.
as suggested by Landau (19 ], where 1 is an

III LYAPUNOV'S METHOD AND HYPERSTABILITY THEORY IN arbitrary constant, independent of T.
ADAPTIVE CONTROL

Definition: The system B1 is hyperstable with respect

Lyapunov'a Direct Method andsrelatively more to any u(t) which satisfies (6) if there exists a
recently, Popov's Hyperstability Theory have provided positive constant k such that
the principal framework for the analysis and design
of adaptive systems using a stability approach. Ix(t) < k[g x(O)II + 1] for all t (7)
Using this approach, adaptive problems are formulated
as stability problems of multivariable nonlinear Definition: The system Bl is said to be asymptotically
nonautonomous systems. When Lyapunov's method is hyperstable with respect to any u(t) satisfying (6)
employed, the asymptotic stability of a set of error which is also bounded if the inequality (7) holds
differential equations is studied using a suitable together with
choice of a Lyapunov function candidate (as in
Section 11). While the theory has been applied lim x(t) - 0 (8)
effectively to autonomous systems, it has been less t - 0

decisive in the adaptive context where the equations
are nonautonomous. The difficulty lies in the fact The main theorems of Popov may now be stated as
that always the choice of the adaptive law for the follows.
updating of the parameters is such that the time
derivative of the Lyapunov function is invariably Theorem 1. (Hyperstability): A necessary and sufficient
negative semidefinite, rather than definite. This condition for the system BI to be hyperstable is that
together with the fact that in the more general case the transfer function
of time-varying (rather than autonomous) differential W(s) - cT(sI-A)lb(
equations, which arise in adaptive control, a (9)
correspondence between their liniting sets and
invariant sets has not been established, precludes be positive real (PR).
use of LaSalle's theorem for proof of asymptotic
stability. Proof: See [17].

The hyperstability approach [17-20] which has Theorem 2. (Asymptotic Hyperstability): A necessary
been increasingly used as an alternative to Lyapunov's and sufficient condition for the system B1 to be
method, requires the problem to be recast as the asymptotically hyperstable is that W(s) in (9) be
stability of a feedback loop with a linear time- strictly positive real. (SPR).
invariant operator in the forward path and a passive
operator in the feedback path. This structure If B1 is SPR, it can be shown [18] that a
provides the designer with greater flexibility in positive definite function p(x) exists such that
choosing the adaptive laws, since it is merely T T
required to make the feedback block satisfy some u(t)y(t)dt (10)
passivity conditions for the system to be hyper- Jo Ju t
stable. However, as will be seen in the sequel, When u(t) is bounded, the function px(t)] can also
this approach too meets with the same analytical be shown to be uniformly continuous. Hence, from
difficulties when unbounded signals are present. (10) and (6) and a well known lemma (Barbilat's

Lema in [18]), it follows that
Since the stability of the error model in

Section 1I was analyzed using Lyspunov's method, li p[x(t)] - 0 or lim x(t) - 0
we will present in this section only the hyper- t . W t -* a

stability approach. Consider now a completely Remark: Uniform continuity of p[x(t)] land of
controllable and completely observable system ar (x,t) analogously], is only a sufficient condition

in these proofs.

f(t) - Ax(t) + bu(t)

T System Bl We now apply the above theorems to the error

y(t) - c x(t) J model discussed in Section II. Figure (2) is a
schematic representation of system (1) and (2)

where A is an (nxn) matrix, x(t) an (nxl) vector, in the form suggested in theorems 1 and 2.
u(t) a piecewise continuous input and y(t) the
output.

Hyperstability of BI is then defined by the

property which requires that the state x(t) be
bounded for a certain class of inputs u(t). This
class is defined by those u(*)which satisfy for all T



SPiR nomial of degree m(<n-l), q(s) a monic polynonialof degree n and kp a constant gain parameter. Wev(t) eofurther assume that only m, n and the sign of kp

(,Ab)are known f or use in the design of an adaptiveI
controller and only one output of the plant, i.e.,

B 1 T (1, .. Oj s acessbleformeasurement.
. .. . . . . . . . . .n* - (n-m) is referred to as the relative degree

of the plant and plays an important role in the
I_ parametrization of the controller in this section.

IWe note here, that since the only points of access

ru(t) I to the plant are its input and output, any internal
! ._...u | - structure representation (hpApbp) can be assumed

U!Xl .u-which satifies (11). However, the "specific para-
B metrization" chosen is an essential ingredient inFIGURE 2 2 the subsequent development of the controller-reference

model structure.

Sn Af rl A reference model H represents the behavior
Since 1 " desired from the plant when it is augmented with asuitable controller. The model has a reference

k(o)l. -1:,(") < I0(O)U1 -, input r(t) which is uniformly bounded and an output
2 2 ym(t). The transfer function of the model, denoted

2 2 by Wi(s) may be represented as

by Theorem 2 the state vector e(t) of B is bounded. We(s) = km Pm(s)
Similarly, by considering B2 in which i/s is a q3 (s)
positive real transfer function, the state vector
t(t) can be shown to be bounded. This corresponds to where P. (s) is a monic Hurwitz polynomial of degree
condition (i) in Section II. If u(t) is bounded, ml 4 m,, qM(s) is a monic Hurwitz polynomial of
then so is the input u(t) to Bl . Since Bl has a SPR degree n and km is a constant gain. Wm(s) is
transfer function, by Theorem 2, e(t) and hence completely specified and the aim of the design is
el(t) tend to zero as t -00. This corresponds to to generate suitable bounded inputs u(t) to the
condition (ii) in the previous section. The rest plant, so that the deviation of the plant from the
of the analysis is identical to that in Section II. desired behavior as measured by an error signal

cl(t) where
Note: In many adaptive control situations it may be Al(t)l a lyp(t) - YM(t)l
easier to check conditions (6) and (10), rather than
searching for a Lyapunov function and trying to tends to zero as t- .

assure at least negative semidefiniteness of its
time derivative. In fact, the integral conditions B. Plant and Controller Representation. 3
(6) and (10) may provide the designer with more
flexibility in choosing the adaptive laws, rather Here, we present a general observer-controller
than the pointwise condition required of V(e,t). structure which yields a simple relation between
Itis obvious from the discussion that hyperstability observer and controller parameters (similarly as in
theory offers design advantages rather than analyti- [1]). in fact, since the mathematical equivalence

cal ones. between direct and indirect control was proven 11,2],
the general structure presented here could be viewed

TV A GENERIC MODEL FOR ADAPTIVE CONTROLLER STRUCTURES as either. The following Lemrna and Corollaries
are needed to justify what will follow.

Before we proceed to describe the general con-
troller model, we give a brief statement of the Lmma 1: Given the relatively prime polynomials
proble below. p and q of degrees m(<n-1) and n respectively, with

q monic, a monic polynomial r and a polynomialA. Statement of the Problem of degree n exist such that the polyuonal

The plant P to be controlled is completely rq + Ap = M
represented by the input-output pair Eu(t),yp(t)3and
can be modeled by a linear tine-invariant system where M is any 2n degree monic polynonial.

Pf: Given in [10].
p .ApXP + bpu(t) Corollary 1: If M, is any monic polynomial of

yp . hpTXp(t) degree (2n+m) such that Ml I MC, where C is a monic
polynomial of degree m, polynomials rTand A. of

where AT, bp, hP are a matrix and vectors of constants degrees (n4m) exist which satisfy
and are of compatible dimensions and such that the

transfer function 4 Since the controller structure, to be" described
hpT(s Ap)b kp (s) in the sequel is motivated h the indirect control

Wp(s) - - b (s) (11) representation in 1141, we will assume, with no lus.
q(s) of generality, that ml m. 10then ml > m. r(t) ha..

to bc suitably prfiltered.

is strictly proper; p(s) is a manic 
Hurwitz poly-

T* F_ I Y
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+ ai~p ml In Figure 4, the block representing the plant
is realized in the nonminimal representation shown

This follows directly from Lemma 1 by choosing ri-ra in Figure 3b and (the parameters in) the poly-
and A- nomials r(s) and A(s) are adjusted using input and

output data, so that r - r* and A - A* asymptotically.
Corollary 2: Given two polynomials L(s) and A(s) of
degrees (n-m) and n respectively, if p(s) and q(s) The above representation of the plant and observer
are relatively prime polynomials of degrees m and n, motivate the basic structure for the model reference
then the rational function p(s)/q(s) can be expressed controller, which is derived in an exactly analogous
as manner as in 1 1 ]. Figure 5 is a schematic

-) (12) diagram of the controller.

q(s) M (s s) + L(s) (hTAb)

by the proper choice of the polynomials r(s) and r(t ult) 't)

A(s) of degree n.

Proof: Equation (12) implies rq - Ap a pA1 and r - -
since the EJIS is of degree 2n, Losa 1 applies I
directly. b) F (Ab) 2

Figure 3b is an equivalent nonminimal representa-

tion of a plant with an irreducible transfer function 
VW I

p(s)/q(s), according to Corollary 2 and with
A(s) =,SE$.--_ lt

T T

u(t) " -F .() .

FIGURE 3 a A

t) r*(s) Ls))s(

FIGURE 3b FIGURE 5

In figure 3 the only condition on L(s) is that its Since it an e shown as in [1] that the (nxl) -
degree be the same as the relative degree of Wy(s) vectors C -y and the ((n+l)xl) vectors d s 61
and that it be a Hurwitz polynomial and L(s) =- L(sls+a) the input to l/L(s) in block B is 0 in this case.
where L(s) is of degree (n*-l) and a >0. However, block B will be seen later to account for

the augmentation to the output error, when deg (E(s)).2.From the representation of the plant above,

and following, in an exactly analogous manner the
developments in [10], we are motivated to represent Note: The above diagram corresponds to the case
an observer as shown in Figure 4. where tgain k of the plant is known and can,

therefore, without loss of generality~be assumed
that kp" km - 1. When k is unknown, the basic
structure remains the sae; an extra adjustable

--t) Y M parameter co multiplies the reference input to the
Plant plant and kp multiplies 1/(s) in its forward pat:h,

as shown in dotted circles on Figure 5. If
A(s) - L(s)pm(s), the control;er in Figure 5 can

+ match any transfer function-., Im P,,(s. (The proof

r (s) E Wqrn(s)

A~s) 5) follows from Corollary 2 after substituting for .'.0,,
both for kp known anA unkn-n.)

Note 2: The reference model is incorporated into
the scheme of Figure 5 as shown, because we ultirtel"
want to focus attention on the transfer function 1 "

9 "which can be shown f 21 ] to describe thte reduced [(s)
state error dynamics.

FIGURE 4'T r.

I'1'



7

The state equations for the state variable It is shown in (21] that the error equations
filters Fl and F2 are described by (14) can be expressed in reduced form as

(1) . (1) 4.T T() Av + bu (t) - AE(t) + b[O (t)u(t) -OL() (t)rw(t)] (15)

WM . CTV(1) j (13) Z1 (t) 1 hTE(t) bT . (0,.,,) hT. (1,q-.C)

*(2) Av (2) + byp Ft and that El(t) and Cl(t) are equivilent. A is an

(2) .T 1  (n* x n*) stable matrix and We(s) . hT (I-A)-lb -

-doy+ d v'I l/(s), (O(t), 0(t) as defined before. Note that
with n* a 1, (15) is a scalar differentWa .-

where A is an (nxn) stable matrix (An companion and hence its transfer function is always SPR.
form, usually), i7 - 0, 0,...,l),€c= (cl, c2...,cn) The form of equations (15) is particularly useful
and dT - (do, d1 ...dn) in the analysis of the controller in Figure 5.

Defining b. n* t 2.
T(t) .[co(t).. (t)j T (c(t). cl(t) ,... c(t), If the relative degree n* - 2, We(s) is a second

do(t) , dl(t), .. T(t) 0 [r(t) J(t)1 or higher order (norder) transfer function, so that
A [r(t) v)T(t), ypM. V(2)T it is not SPR. However, since L(s) is known, and

Srvarbitrary , a Hurvitz polynonial L*(s) - XL(s) or

L*(s) - XL(s)>? , can be defined such that L*(s)
the input to the plant, as shown in Figure 5 is W-(s) = L*(s)L- (s) is SPR. If every parameter

Af(t) in the controller in Figure 5 is replaced by
u(t) T(t) (t) an operator IL*Ai(t)] = L*(s) 8iL*-'(s), the

adaptive laws can be derived according to the error
and, using the modified model of Section II, model in S ction II as 0(t) =rel(t), where

-(t) = L* (s)lw(t). However, if the controller is
u(t) = gT(t)Z(t)-_aet1 T(t)ru(t) - r T> 0 to be differentiator free, such a procedure is not

a > n possible through the plant, anymore specifically,
When the gain of the plant is known, w.l.o.g. kp-kml through the transfer function ?-;s) in its forward
and co = 0. path. Following then the approach in [10], correspond-

0 - 8(t)u(t) - l(t)uT(t)r_(t) ing to every feedback signal 6i(t).i(t) to the plant,
cc a signal [6i(t) -PLit]wi(t) is realized through

We shall examine this case first. the transfer function E- (a) in box B which now forms
part of the "augmented model." Hence the positive

(i) kp = km = 1 (known) reality of the error transfer function is preserved,
and so are the adaptive laws thus derived. The

Following the results of [10 ] (also sunsarized augmented error controller is shown in Figure 6.
by the Lmsa and Corollaries in the beginning of The quantities in dotted circles should be ignored
this section), a constant control prameter vector (set equal to 1) for the case where kp is know.

e* exists such that, if 8(t) B8 the transfer
function of the plant together with the controller Note that the particular representation of the
matches that of the model exactly. If c(t) repre- reference model in Figure 6 is for mathematical

sents the state error between comparable represent- convenience only, so as to derive the error equations
ations of model and plant, the error differential in the reduced form given by (15). ya(t) is the
equations are: augmentation to the model output (block A of Figure 5)

T T and
j(t) - AcC(t) + bcO (t)(t)- (t)T (t)r(t)]

,. ~t - T )(4 yo,(t) = Wr(s)L*(s) [(L*-l(s)O(t)- 8(t)L*-I(s))T(t) +

and h ()(14)
where We(s) c hcT(sI - Ac)'Ibc 

=
Wn(s) and+ e(Ctr t]16

The total output of the model y(t) is the sum of the
s()-(t) - e* desired output ym(t) and the augmented output y,(t);

the augmented error 
el(t) is defined as

n*el(t) A yp(t) - y(t) - FI(t) - yc(t) (17)

and given by

If the relative degree of the plant is equal to one,
w.l.o.g, the model transfer function can be assumed el(t) =WF(s)L*(s)[(T(t);(t) -zel(t) t)mr(t)] (18)
positive real (10). Hence, according to the results
in Section II, the adaptive laws (18) has the same form as (14) with W,(t) and c (t)

replacid by -,(t) and el(t) respectivwly. Also
() ,-El(t) (t) Wf(s) M EL (a) throughout this section'

assure the boundedness of 1(t) and C(t). Since the (ii) kp unknown

states of the model are bounded, boundedness of the This is the case shown in Figure' 6, with the.
plant states follows and further analysis is quantities in dotted circles included. Following the
identical to that in Section II, for u(t) bounded. analysis in [3], the aug'mented error equation is now
(u(t) - '(t) here). given by

T111 S rA
-'.~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~w L [ ...., _ -. '.. ... / ,..... ..,



UM 0 pctiNotice that the error transfer function in Fig~ure 7
YpCUis at most of first order if L*(s) a )%L(s) -

US) This is a generalization to the model considered
in [3,10].

(A~b)(A~b)V OTHER ADAPTIVE ALCORITI*IS

The special parameterization used for the plant
and the controller in the preceding section resulted

CV VMin a very simple structure for the adaptive system
and its associated error equations. The model
suggested in IV is the simplest controller realization

46"T (so far and at the same time provides a very preciae
exposition of the functions of the molt essential
features -i.e., relative degree, positive reality -

+ in the design of stable adaptive control systems.
L* WI) L*1 () t (t By choosing different representations for the transfer

1 function Tne(s)s:WA~n the forward path of the plint -
whose relative degree has to be n*, same as the

6 t- plant's -various controllerscan be derived. This
+el(t) choice, in turn, affects the "realization" of the

'I SPR transfer function We that describes the error
L* (a aC~ t F dynamics in the transientsiate of the adaptation

process. We mention a few representative algorithms
SPR ~' below:

r .. k Z s _5 1. Monopoli's Scheme (91

LJ C 1,IL-1(slTn*(s) -p,(s)Iqm(s) - Wn(s)

tryt where L(s) is chosen such that Wt(s) is SPR. Contol
V-8) laws are as follow from use of the error model

FIGURE 6in Section II.

2. Narendra and Valavani's Schemes: (Both Direct

e1 (t)- k! W-(s)L*(s)J4iT(t)Z(t) + T1)-f)) and Indirect Control) 110]

km- T roTn*(s) - pM(s)qM(s - We(s)

1t~t ~t (19) Wt(s) - Wm(s)L(s), where L(s) is chosen as in 1.

and the adaptive laws are 3. Bene~jean 's Scheme [221

(t - - rel(t)Z(t) Choices of transfer functionsare identidal

4
(t * ye1 t) ~ t)(20) to on o po l i 's .
i~t)- -Yl~t)(t)4. INarendra and Lin's Discrete Control Scheme [23]

where 131 is the discrete version of [1,10] in 2

Z~~t- -*l()Lt;&t above, and therefore the transfer functions are the
LL~s$(t)$(t)~s)1(t) discrete-time analo~s of those in 2.

and 'Y(t) -1 - kMT1(tM with 41 (t) =k~Z 5. Goodwin, Ramadge and Caincs's Scheme (51
p km

The stability problem that arises is the same in both The algorIthns here represent the only adaptive
cases (i) and (ii), with n* > 2. in a schematic form, controllers listed so far that were not designvd
the modified conjecture for kp known in 13,101 is using a stability approach, but are rather projection
represented as shown in Figure 7. algorithmis- wo of them (one each for direct and

Indirect control) and a third one which is a re~cursive
least squares algorithms, all in discrete-time. Since

el(t) they are all similar, we mention just one of tliem

WMWs 0*lIt Z WSL*(s CRC Projection Algorithm 11

a. Discrete-time

FIGURE 7 
ki- W
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I k I +  lk~kElk_ We only need to show that yp(t) is uniformly

+ ;T 4 "kk-1 +  tk~kelk bounded. Uniform boundedness of all the signals in
I+ k~k the loop follows by Lemma 4.

where elk and el are the output and augmented errors Considering the reduced error model, we can write
respectively, and 1k is the "delayed" (filtered)
state vector, all defined in an analo&A'nanner as yp(t) - Wm(s)r(t) + ls)Tt)t (23)
in Section IV.

e tlk where W,(s)r(t) is a uniformly bounded signal. The
elk 1+-- second term in the RHS of equation (23) can be

%expressed as

b. Continuous-time E-1 (s) T(t)w(t) T (t)L*(s)
]r (t )

Though the authors in [5] described discrete By lemas 4 and 5

time algorithms only, the continuous time analog of -l(s) T(t)w(t) [E-l(s)L*(s)) T)
their algorithm above, can be expressed in terms of * (t),,(t) + o[sup -y~(rI

the general model in IV, with

Tn*(s) - 1 Further, since by (18)
LT(tg(t) - v(t) + ael(t) T(t)rFt)

We(s) - L*(s)L-l(s), where L*(s) - XL(s). Hence,
the only difference from the model in IV is in where v(t) - *Tct).(t) - mel(t)gT(t)1 (t) is the
realizing the augmented error equation, which is now input to the error equation
given by OT(t) (t) - ,(t) + 0,;T(t) C(t)

el(t) _ T(t)g(t)/[X+ +CT(t)m(t) (22)

where
where 0(t) is the parameter error vector, C(t) as
defined in Section IV and everything else the same [E-l(s)L*(s)]v(t) = el(t)
as in the model of section IV. (There is no basic
difference from the discrete algorithm described in and
(21), if the scaling factor r is included in (22). T
This is only to make the error equation analogous [L-l(s)L*(s)](zT(t) (t)) - o[suplyp(:) I by Lernas
in form to that described hy equation (18]. t>

.2
VI OUTLINE OF PROOF OF ASYMPTOTIC STABILITY FOR THE 3 and 4 and by EL

CLASS OF CONTROLLERS IN SECTION IV 0% yp(t) - Wm(s)r(t) + el(t) + o[suplyp(:-.)

In this section we present the key ideas in the t >T

proof of asymptotic stability of the model described
in IV. The nature of the problem is identical to is bounded, since el(t) is bounded from (18), for

that resolved in [3], the only difference being in any choice of L*(s). oo The plant feedback loop

the description of the augmented error. Hence, the is stable in the large.

augmented error is described by a first order (ii) kP unknown
differential equation (when L*(s) -AL(s)), or by an
algebraic equation (when L*(s) = XL(s)). The
arguments used here, however, are analogous - if not In this case,
identical - to those in [3]. The interested reader is k -T -

referred to [3] or [21] for a rigorous and complete yp(t)- ,[ "(s)] [-k r(t)+vT(t)w(t) 
-

proof. We merely highlight here the important points• W,(S)r(t) m m - ,*(s) -

in its evolution. We list in the appendix key yp(t) L (s)L*(s)(L*](), L ](t(

definitions and lemas in the construction of the
stability arguments. We again refer to [3] for a Analogously as in (1)

complete discussion and proofs. k -I (t)(t) - k -+

A. Statement of the Stability Problem 
k,

Using the modified error model in Section II, t> T
it is easy to show that el, $ in equations (17) and
(18), or alternatively, el, * and T in (19) and (20) From Figure 6
are bounded. Moreover, it also follows that e(t),
el(t)(t), A(t)EL; The stability problem is then -T(t) (t)-v(t)+ ,T( ),.t)-
to show that the plant feedback loop with 0(t) 

-

adjusted according to equation (20) and 4(t)cL
2  But (t)-[L*-(s)T(t) -,7T(t).*-(, l:(t) =

is stable in the large. L , _
L*-I(s) T(t)L (s)t(t) _- T(t)t t) "I ~ r l

B. Proof of Stability t>t

(i)k known. And since '(t) is uniformly hounded, again we conclude

that Jp(t) is also bounded.

_ _ _ _ _lI ,. . . • . ... .. ../-
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(iii) discrete-time model for their analysis have been reviewed, with special
emphasis given to the "augmented error" systems.

For the discrete-time case, with v(t) replaced "Augmented error" systems arise when the relative
by v(k) it follows immediately [3] that v(k) - 0, degree of the plant transfer function is greater than
A(k) - 0 and hence stability followstrivially, or equal to two. The question of asymptotic stability

of this type of an error system, even in the deter-
Since we established that w(t) is bounded, then ministic case, remained unresolved for a long-time.

;(t), the input to the error model is bounded, and Recently, various proofs were proposed for specific
from the analysis in Section II, adaptive controller designs. In Section IV of the

paper, a general model for a controller structure is
lim V(t) - lim e(t) a (t) = 0 proposed, using a specific parameterization. Other
t o " t -I- t b 0 existing algorithms are seen to be special cases of

0 athis general model, regardless of which approach
o te augmented input signal into the error model was used as a basis for the design. An outline of

IT a proof for the model in Section IV was given,
()L*-(s](t) and ael(t)IT(t)r (t) which is the most general proof for asymptotic

stability that holds for all the existing determin-
also tend to zero as t * w istic adaptive controllers. However, no specific
0 close form theoretical results are available for
o el(t) = yp(t) - ym(t) * as t 4 the convergence rates of these algorithms or their

behavior (in a global sense) in the presence of
VII GENERAL COMENTS disturbances. Such questions are the subject of

current research.
(i) The model presented in Section IV represents

a very simple controller structure requiring a minimal REFERENCES
number of integrations. This translate% into faster
response and error dynamics and hence the potential 1. K.S. Narendra and L.S. Valavani, "Direct and
for applications to real world problems. The part- Indirect Model Reference Adaptive Control,"
icular structure described shows clearly the role of Automatics, vol. 15, November 1979, pp. 653-664.
the relative degree of the plant in determining the
underlying speed of adaptation. This is suggestive 2. B. Egardt, "Unification of Some Continuous-Time
and is to be compared with the sensitivity models Adaptive Control Schemes," IEEE Trans. Auc. Ccntr.,
as in [24] used for optimization. vol. AC-24, no. 4, August 1979, pp. 588-592.
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VIII CONCLUSION 11. A. Feuer and A.S. Morse, "Adatt-',' Control of a
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