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i TECHNICAL PROGRESS REPORT i
April 1, 1979 - March 31, 1980 e

TR T e

_ The present report summarizes the research effort by the

£ Materials Sciences Corporation on the analysis of temperature-

; dependent stress-strain relations of metal-matrix composites

; (MMC) during the period April 1, 1979 through March 31, 1980.

1 The work done is part of a comprehensive program to provide ana-
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2 lytical tools for the evaluation of thermomechanical properties
and internal stresses of u i‘directional MMC and their laminates.

TS

This program consists of the following parts:

Ny

1. Analytical determination of one-dimensional temperature
dependent stress-strain relations on the basis of micro-
mechanics.

2. Determination of temperature-dependent stress-strain

ST A W Th UYL

relations for combined states of stress in terms of
one-dimensional stress-strain relations on the basis
of macro-incremental theory.

3. Establishment of laminate analysis methods incorporatina
the stress-strain relations for combined states of stress.
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INTRODUCTION

The usual metal-matrix composite consists of an aluminum
alloy matrix and carbon or graphite (sometimes boron) fibers.

The metal matrix is a temperature dependent elasto-plastic mat-
erial, The fibers are anisotropic and elastic throughout the whole
temperature range and may be described as transversely isotropic
with respect to their longitudinal axes. In view of the large
longitudinal stiffness of the fibers, it may be assumed that no
significant average plastic strain can develop in fiber direction
and the Poisson induced transverse strain associated with uni-
axial stress in fiber direction is also elastic. It follows that
the loadings which are most significant in terms of macro-plasti-
city and non-linearity are: stress transverse to fibers; trans-
verse shear; and axial shear. Consequently, the chief concern
will be to evaluate temperature dependent macro stress-strain
relations for these cases.

The problem of the prediction of the macro stress-strain re-
lations of such a composite is one of very great difficulty.
General treatments such as those for elastic and viscoelastic
composites are not available. Treatments given in the literature
are generally concerned with the isothermal case. Unless other-
wise stated, all work to be cited below is of such nature.

A general qualitative discussion of elasto-plastic composites
has been given in reference 1. Limit analysis treatments which
are only concerned with prediction of ultimate loads for ideally
plastic matrix have been given in references 2 and 3. A numerical
treatment to compute the stress-strain relation for transverse
uniaxial stress for a limited strain range has been given in ref-
erence 4, based on the idealized geometry of a square array fiber
model. A similar approach but including interaction between shear
and transverse load has been given in reference 5. A micromechan-
ics stress analysis for a square array has been given in reference
6. The self consistent scheme approximation has been utilized in

reference 7 for the case of rigid fibers and elasto-plastic matrix
characterized by isotropic J2 deformation theory. This was
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generalized in reference 8 to include fiber elasticity; all this for
transverse loading only. Significant work to predict initial yield
surfaces has been given in references 9, 10, and 11, including tem-
perature change but primarily for axisymmetric states.

All of the treatments available describe important special
cases but they are not sufficient to define the needed one-dimen-
sional temperature dependent stress-strain relations of a unidirec-
tional MMC.
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. MODELING AND APPROACH

The unidirectional composite may be considered transversely
isotropic in the macro sense since the fibers are randomly placed.
For the purpose of micromechanics analysis, it is necessary to
represent the MMC by some suitable model. Two models which comply
with transverse isotropy are the composite cylinder assemblage
(CCA) (refs. 12,13) figure 1, and the periodic hexagonal array,
figure 2. Both of these models have been used to compute elastic
properties of fiber composites, the first in terms of analytical
results and the second by numerical analysis. Available results
show that the predictions of these models are numerically very
close and agree quite well with experimental data. It is there-
fore believed that either one of them can be used in the present,
much more complicated situation. However, in the present elasto-
plastic case, the CCA model can be utilized analytically only for
axisymmetric states of applied stress; i.e., uniaxial stress com-
bined with transversely isotropic stress. This loading does not
exhibit significant plastic strains. For other loadings, analyt-
ical solution of the CCA model is not feasible. It is therefore
necessary to turn to numerical analysis and in this respect the
hexagonal array of equal fibers is a more attractive model than
the CCA. Therefore, the present analysis will be based on the
hexagonal array model.

In this respect it should be noted that the frequently em-
ployed square array model is not suitable since it is not trans-
versely isotropic.

For the purpose of evaluation of the stress-strain relations,
we consider a prismatic specimen of square cross section (fig. 3)
in which the fibers are in the generator direction and arranged
in a hexagonal array (fig. 2). Loadings to be considered are uni-
axial transverse stress 522 {oxr 333), transverse shear 323, and
axial shear Gy,s @S illustrated in figure 4; all of these at vari-
ous temperatures.

The one-dimensional effective stress-strain relations may be
written as:
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0 pp = —F | (2) -k
ZGTt
do 4
g€, = —32 (3)
2GAt
* * * ]
where ETt’ GTt' and GAt are temperature-dependent effective tan-

gent moduli and overbars denote averages.

If the specimen is heated without load, the free effective
*

tangent thermal expansion coefficient Uy

is defined by:
.. = dt., = an.d 4
dezz = de33 = Oq ¢ (4)

where d¢ is temperature increment.

In order to compute the constitutive relations (eqns. 1-4)
it is necessary to compute average strain increments produced by
average stress increments (egqns. 1-3) and temperature increments
(egqn. 4). For this purpose it is necessary to determine the micro-
strain fields in the fibers and matrix of the hexagonal array

model, thus to solve a succession of elasto-plastic boundary value
problems fnr successive load and temperature increments. 1In these
boundary value problems the fibers are transversely isotropic
elastic and the matrix is elasto-plastic. Displacement and trac-
tion continuity must be satisfied at fiber/matrix interfaces at all
times. Once the displacement field is known, the strain field is
obtained by differentiation and the average strain increments can
be determined.

For the purpose of the analysis performed here, it is suffi-
cient to consider the cases of generalized plane strain and anti-
plane strain. These are defined as follows:




GENERALIZED PLANE STRAIN

Traction Boundary Conditions

I

= ~© iq

Ty (8) = oM B

= g° c :

T,(5) = og,,n, + 05303 (S) p
T.(S) = do.n, + o%un
3 2372 3373

where n; are the components of the normal to the surface and 1 is
fiber direction. These boundary conditions include uniaxial
stress in fiber direction, uniaxial stress in direction transverse
to fibers, and transverse shear.

The internal displacements have the forms:

ul onl

[+
|

2 = uz(xz,x3) 3 in fibers and matrix (6)

u3 = u3(x2,x3)

ANTI-PLANE STRAIN

Traction Boundary Conditions

_ o o

Tl(s) = 012n2 + °13n3
_ [e]

TZ(S) = 01,M (7)
_ 0

T3(S) 013n1

These boundary conditions are suitable for axial shear.
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The internal displacements have the forms:

Uy =y (xp.xy)

u, = eile } in fibers and matrix (8)
_ o

Uz T €y13%) « )

NUMERICAL ANALYSIS

Analytical treatment of the problem is not feasible and
therefore numerical analysis is performed. It is recalled that
the matrix is elasto-plastic and temperature dependent. Only a
small number of computer programs which are suitable for such a
situation are available. Of these the most attractive appears
to be the ANSYS (ref. 14) finite element program which was selec-
ted for the present analysis.

In view of the periodicity of the problem, it is sufficient
to carry out the analysis for a typical repeating element. Such
an element is shown in figure 5. The boundary conditions on its
faces can be determined by symmetry considerations and the type
of external loading applied. Such boundary conditions suitable
for finite element analysis are shown in figure‘G for transverse
extension (compression) and in figure 8 for axial shear. In add-
ition, displacement and traction boundary conditions at fiber/
matrix interfaces must be satisfied at all times,

It should be noted that all of the boundary value problems
are two-dimensional, thus requiring only two-dimensional finite
elements. The ANSYS program, however, requires that the model
be created utilizing three-dimensional elements. The model is
the constrained in such a fashion that a two-dimensional problem
is formed. Division of the repeating element into finite ele-
ments is shown in figqure 9.

The fibers (carbon or graphite) are transversely isotropic
elastic., Their thermo-elastic stress-strain relations are:
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axial Young's modulus;

A
ET - transverse Young's modulus;
Va - axial Poisson's ratio;
Vp — transverse Poisson's ratio;
GA - axial shear modulus;
GT - transverse shear modulus
op - axial thermal expansion coefficient;
Ap - transverse thermal expansion coefficient.

In the generalized plane strain formulation (egn. 5),
012 = 013 = 0; while in the anti-plane strain formulation
(egqn. 7),

Q

11 = %22 T 933 = 9,3 = 0.

(9)
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The matrix (aluminum) is elasto-plastic and its general in- 1

cremental stress-strain relations are not precisely known. Two
important extreme cases are isotropic hardening and kinematic
hardening. In both cases the initial yield surface is described
by the Mises condition:

. 2
Sijsij = Oy/3 (10)

where Sij is the stress deviator and °y is the (temperature depen-
dent) yield stress in simple uniaxial stress. Isotropic hardening
assumes that the yield surface expands in stress space retaining
its initial shape; kinematic hardening assumes that the yield sur-
face translates in stress space retaining its initial shape and
dimensions. The ANSYS computer program has the capability to
handle both of these cases.

The incremental solution procedure is as follows: At a given
loading specified by tractions Tg and temperature ¢, the internal

stresses and strains are 045 and eij' Now loads and temperature
are changed by amounts AT? and A¢. The corresponding stress and
strain increments Acij and Aeij are determined by a sequence of
iterations so as to satisfy equilibrium, compatibility, plasticity
stress—-strain relations, traction and displacement continuity at
fiber/matrix interfaces and external loading boundary ‘conditions.

are dependent on the current states

The increments Aoij and Aeij
of stress and strain. Once these increments have been determined,
their addition to the current stresses and strains produces a new
current state and the next increments are computed. The initial

states of stress and strain are the elastic fields at first occur-
rence of plastic strains. A summary of the ANSYS plasticity pro-

cedure for isotropic and kinematic hardening is given in the ap-

pendix. The procedure is also illustrated by the flow chart of
figure 10.

The plasticity input into the ANSYS procedure is the one-di-
mensional elasto-plastic stress-strain relation. For the purpose
of the numerical analysis, it is necessary to approximate the




curved stress-strajin relations by linear segments. This is
shown in figure 11 for temperature dependent simple tensile
stress~-strain relations of aluminum 2024, approximated by three
linear segments.

APPROXIMATE TREATMENT

As has been mentioned before, a successful analysis of elas-
tic properties of fiber composites has been given on the basis of
the composite cylinder assemblage (CCA) model (refs. 12,13). The
analysis has been generalized to the case of transversely iso-
tropic constituents (ref. 15) which is of importance for carbon
and graphite fibers.

For the case of transversely isotropic fibers and isotropic
matrix, some of the relevant CCA results are:

Transverse Shear Modulus

| v (148 )
Gr =G 1+ f m ] (11)

T m 2,2

3vm6m
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where Mm'Mf indicate matrix and fiber elastic moduli. The assump~
tion is made that when the matrix deforms plastically, the tangent
effective modulus is given approximately by:

* —
M, = F[Mmt(om). Me, vf] (16)

where Eﬁ is the matrix average of the stress component correspond-
ing to the applied stress component (e.g., pure transverse shear
when dealing with effective transverse tangent shear modulus) and
Mmt(sﬁ) is the matrix tangent modulus at value Em.

It may then be shown that the matrix average stress incre-
ment dEm and the applied average stress increment do are related
by:

%*
— M /M -1
a5 =92 L ¢t (17)

m v -
m Mf/Mmt(om) -1

where M: is the function (eqn. 16). The relation (eqn. 17) de-
fines the stress increment dGm in terms of current average
stress om.

In order to evaluate the tangent modulus (egn. 16) %m is
first computed for the beginning of plastification. Then as the
applied external load is increased, successive dEm are determined
by equation*17. Thus the value of Em for every applied T is
known and Mt is then defined by equation 16.

The approximate treatment outlined has been applied to the
prediction of the effective axial shear stress-strain relation.
Since the aluminum stress-strain relations have been approximated
by linear segments (see fig. 1ll) equation 17 also gives a linear
segment approximation. The comparison is shown in figure 12 and

it is seen that the approximation is excellent.
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Transverse Young's Modulus

*
S e (12)

*
where k 1is the effective transverse bulk modulus given by:

* km(kf+Gm)vm + kf(km+Gm)vf

k (13)
(kf+Gm)Vm + (km+Gm7vf

Axial Shear Modulus

ot =g omm’ Sar (M) (14)
A m Gm(1+vf) + GAfVm

In these expressions,

m - indicates matrix

Hh
1

indicates fiber
v - volume fraction
G_ - matrix shear modulus

k_ - matrix plane strain hulk modulus
GTf - fiber transverse shear modulus
G - fiber axial shear modulus

kf - fiber transverse bulk modulus.

Let any of the effective elastic moduli (refs. 11-14) be
denoted:

*
M, = F(M M., ve) (15)
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RESULTS

ELASTIC ANALYSIS

The numerical procedures for generating one-dimensional
elasto-plastic temperature dependent stress-strain curves
for metal-matrix composites are quite time consuming. As a
result, it is impractical to utilize these non-linear results
to check the accuracy and validity of the finite element model.
It was deemed appropriate, therefore, to perform a series of
elastic analyses to verify the finite element model.

It is very important to choose a proper finite element
mesh size. If the size is too large the results will not be
accurate; if the size is too small too much computer time
will be expended. The finite element scheme shown in
figure 9 consisting of 212 elements, has been utilized
to obtain effective elastic moduli of the unidirectional
composite. The same computations were then performed with
a finer mesh consisting of 322 elements. Effective moduli
obtained with the two meshes gave a maximum difference of
0.4%. This verifies the accuracy of the mesh chosen.

The elastic properties which were used in the generalized
plane strain and anti-plane analyses are listed in table 1.
The properties correspond to a 2024-T4 aluminum matrix
material and T-50 graphite fibers. The aluminum alloy was
chosen simply because the most complete set of properties
were available for it. The T-50 fiber was used as this is
the fiber most commonly used in graphite/aluminum material
systens.

The elastic moduli predicted for the composite based
upon the properties in table 1 are listed in table 2. Two
different computational schemes were used in the calculations.
These were the finite element analysis and models described
previously, and the composite cylinder assemblage (CCA),
see references (12, 13). It is well known that hexagonal
array results.and CCA results are numerically very close.

-]l2~




This is also verified by the present results as seen from
table 2. This may be considered as a demonstration of the
accuracy of the finite element model and analysis.

INELASTIC THERMOMECHANICAL ANALYSIS

The finite element model developed and verified in the
previous sections was utilized to predict one-dimensional,
temperature dependent, elasto-plastic, stress-strain curves
for the metal-matrix material system under consideration.
The predictions were made with the elastic constants defined
previously for the graphite fibers and with temperature
dependent stress-strain curves input for the aluminum matrix.
Analyses were performed under both isotropic and kinematic
hardening assumptions for the matrix material.

Isotropic Hardening

The initial series of analyses of metal-matrix composites
were performed under the isotropic hardening assumption with
regard to the matrix material. The input data consisted of
linearly segmented stress-strain curves for the aluminum.
Curves of this type were input for each of five different
temperatures ranging from 21°C to 377°C. The set of curves
input representing the aluminum matrix are shown in figure 1l1.
The thermal expansion data used for the aluminum are plotted
and shown in figure 13.

The program used for these analyses was ANSYS, which is
a multi-purpose finiteeelement code. The assumptions and
conditions utilized in the computerized analyses are very
significant for evaluation of the predicted curves and for
comparisons of the curves generated under the two hardening
assumptions. For this reason, a brief description of the ANSYS
plasticity calculations is included in an appendix.

Thermal Expansion

The first analyses performed under the isotropic hardening
assumption were free thermal expansions. Figures 14 and 15
depict the transverse and axial response of the graphite/alum-
inum system, respectively. 1Included in these figures are the

-13-




cooldown from the stress-free temperature to room temperature
and a re-heat to the stress-free temperature. 1In addition,

elastic, temperature dependent free thermal expansion curves 3
are presented in the figures. The plastic analyses involved
six temperature increments in both the cooling and heating

paths. ;

Examination of the data in the curves indicates that 1
no significant yielding occurs during cooling until the ¢
temperature drops to nearly 150°C. The re-heat curves in g
both figures are totally elastic, thus explaining their %
similarity in shape to the elastic predictions. At the %
room temperature state, considerable plastic yielding was %

predicted by the analysis. The matrix stresses in the axial
direction averaged over 350 MPa, while the fiber axial stresses
averaged over -830 MPa. These are very high stresses, in-
dicating considerable plastic deformation and expansion of

the yield surface.

In each of the predicted stress-strain responses pre-
sented in this report, the prior load history began at the
stress free temperature, unless otherwise stated. Thus,
curves presented as room temperature response include the
effects of cooling the material from the stress free temperature.

SR ST 1 VR NP . T B 5

Curves which represent elevated temperature response include
not only the initial cooldown bhut also the effects of re-~
heating to the stated temperature. Only those curves noted

e T By S

as having no processing stresses correspond to loadings
from a microscopically stress free state.

Transverse Normal Loading

The material response to transverse normal loadings is !
shown in figures 16, 17 and 18. Figure 16 presents the normal ¢
stress-strain response, while figures 17 and 18 show Poisson
induced strains in the transverse plane and axial directions,
regspectively. Each of the three figures includes tensile
and compressive loadings with the previous room temperature

stress and strain field as the initial state. In addition,




a tensile loading curve with no thermal processing stresses
is included for comparison.

The three figures demonstrate the significance of the
residual thermal effects upon the stress-strain response.
Comparison of the tensile and compressive curves at room
temperature reveals considerable differences which are direct-
ly attributable to the processing stresses. The stress-
strain curves of fiqure 16 indicte that the compressive
response is more flexible than the tensile response. This
is readily explained at the micromechanics level. Under
tensile loading, significant portions of the model undergo
unloading at low stress levels while the compressive
loading produces further yielding at all load levels. When
no initial yielding or stress is present, as in the tensile

no processing stress run, the response was significantly stiffer.

The axial strain predictions demonstrate a curious
response. The axial strain produced during transverse tensile
loading from room temperature reverses direction. Again,
the explanation lies within the micromechanics regime. As
the material begins to yield significantly in tension, the
large axial processing stresses begin to relieve themselves.
Thus, the initial contraction due to the Poisson effect is
followed by an expansion which tends to relieve the internal
stresses. The compressive loading at room temperature produces
the same axial effects but here the strains are additive and
do not produce a reversal.

Temperature Effects on Transverse Loadings

In fiqures 19 and 20 the elevated temperature effects
on the tensile stress-strain response is presented. The
figures contain the room temperature response presented
previously, as well as the tensile response at 204°C.

The transverse stress-strain response in figure 19 indicates
that significant yielding occurs at a higher stress at this
elevated temperature. This is definitely contrary to what

-15-
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would normally be expected. Considering the initial state

of stress at room temperature resolves the quandary, however.
The initial, large internal stresses at room temperature

are relieved at the elevated temperature but the yield
surface remains greatly expanded. 1In addition, the elastic
modulus of the aluminum matrix material is only slightly (10%)
reduced at 204°C. The combination of these effects produces
a high temperature response with a slightly reduced initial
slope but increased yield stress.

The Poisson induced strains in figure 20 show a similar
effect. The two elevated temperature curves are nearly
linear while the room temperature curves show the phenomenon
described in a previous section.

The effects just described for the tensile response
are also present in compression. Figures 21 and 22 present
the compressive response at 204°C and the previously pre-
sented compressive curves at room temperature. Again, the
elevated temperature stress-strain curve is slightly more
flexible initially, but yields at a significantly higher
load than the room temperature curve. The Poisson induced
strains at elevated temperature are nearly linear while the
room temperature curves are not.

Loading Effects Qn Thermal Expansion

The effects of mechanical loading on the thermal expansion
response of the graphite/aluminum system is demonstrated in
figures 23 and 24. 1In these figures, the free thermal ex-
pansion curves are those presented previously in figures 14
and 15. The curves generated with the applied mechanical
stress have load histories consisting of the thermal cooling,
followed by transverse tensile loading and finally, the re-heat
shown in the figures.

The transverse expansion data are very interesting in
that the material is not responding as a transversely isotropic
body. The expansion in the direction of the mechanical load
is much larger than in the direction perpendicular to the load.
In addition, the mechanical loading has caused an increase
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in the expansion in the loading direction and a decrease
perpendicular to it with respect to the free thermal ex-
pansion case. The effects in the axial direction (figure 24)
are simply a moderate decrease in the expansion due to temp-
erature. In both figures, the applied mechanical load has
reduced thermal expansions perpendicular to it due to

Poisson induced strains associated with it. As the temp-
erature increases and the elastic matrix modulus decreases,
the strains are increased. Thus, the expansion in the loziing
direction increases and the perpendicular expansion decreases.

Load Path Effects

Since the effects of material plasticity are path de-
pendent, comparisons of various load paths were made. The
loadings involved included combinations of temperature and
tensile transverse loads and combinations of temperature and
compressive transverse loads. To facilitate these comparisons,
two analyses were made where the loading was a simultaneous
proportional variation of mechanical load and temperature.

The tensile results of these runs are presented in figures
25 and 26 and the compressive results are shown in figure 27.

Comparisons of identical load states, arrived at along
different paths, are presented in tables 3 and 4. The loadings
of table 3 include transverse tension and temperature while
the loadings in table 4 are transverse compression and temper-
ture. In table 3., the data indicate that relatively
low loadings produce less path dependence than higher loadings.
This is of course to be expected, since the higher loadings
produce more plastic effects. The data presented also
indicate that in the range of loadings considered, super-
position of mechanical and thermal loadings would produce
reasonable accuracy. This would be of tremendous significance
in simplifying the analysis of this material. .

The data in table 4 demonstrate similar trends to the
table 3 data. Here, as in the higher tensile loads data,
the axial strain data show significant path dependence. The

-17-
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magnitudes of the strains are very small, however, and the
differences may be exaggerated by the numerical errors
inherent in the solution process.

Shear

The shear response of the graphite/aluminum system under
analysis is demonstrated in figures 28 through 30. The
transverse shear response is depicted in figures 28 and 29
and the axial shear response is shown in figure 30.

The transverse shear stress~strain response is typical
of the other room temperature transverse loadings. The
interesting feature is the axial strain produced during the
shear loading. This effect is due to the large, axial stresses
developed during the initial cooldown. As the material
yields in shear, the axial stresses relieve themselves causing
the axial strain.

The axial shear response shown in figure 30 is not
typical of the other curves presented. As was stated pre-
viously, the inclusion of the processing effects in the axial
shear analysis would have required a three-dimensional analysis
and was therefore not done. Since the axial shear loading
originated on virgin material, the response is different.

The most significant difference is the definite yield point
present. All of the previous, room temperature solutions,
yielded over a range of loading while the axial shear results
indicate that most of the matrix material yields simultaneously.

Kinematic Hardening

The one-dimensional stress-strain responses of the graphite/
aluminum system presented to this point have included the
assumption of isotropic hardening with the aluminum matrix.

Since the reversed loading behavior as modeled in ANSYS

isotropic hardening is based upon an extension of one-dimensional
plasticity (see Appendix) certain of the previous anélyses were
repeated utilizing a kinematic hardening assumption. These add-
itional analyses also allow comparisons of the effects of the

two hardening assumptions within the aluminum'matrix, thus bracket-
ing the reversed loading response of the composite.

18~
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Immediately, a difficulty arose in that the classical
kinematic hardening utilized in ANSYS requires bi-linear
stress-strain curves rather than the linearly segmented

curves used for isotropic hardening. The only remedy was
to model only the elastic and first plastic slopes of the
isotropic input with the bi-linear kinematic input data.
The stress-strain input curves for kinematic hardening
are shown in figure 31. The thermal expansion data was
identical to that used in the isotropic hardening. The
mathematical constraints and conditions relating to the
kinematic hardehing used in ANSYS are discussed briefly
in an included appendix.

Thermal Expansion

The first predictions of the composite response ob-
tained with the kinematic hardening assumptions were the
thermal expansion curves shown in figures 32 and 33.

These figures also contain the curves predicted with the
isotropic hardening assumption for comparison. The loading
consisted of a cooldown from the stress-free temperature

to -room temperature, followed by a re-heat to the stress-

free temperature. The data in the curves show two interesting
phenomena. First, the cooldown curves are not identical,

and secondly, at approximately 325°C in the re-heat analysis

the kinematic hardening curves diverge significantly from the
isotropic hardening curves. The first discrepancy is directly

attributable to the differences in the isotropic and kinematic
hardening input curves. The divergence at the higher temp-
eratures during the process of re-heating can only be attribut-
ed to the difference in the hardening assumptions since the
thermal loading is pronc.' ional.

In the isotfoéic hardenihg case, the yield surface was
greatly expanded by the large internal stresses generated
by the initial cooling process. For the kinematic process,
the yield surface was greatly shifted during this cooling
process but not expanded. The result of this difference
is that while the isotropic hardening curves are well within
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the yield surface at temperatures as high as the stress-
free temperature, the kinematic hardening curves are not
and therefore, yielding is occurring. This fundamental
difference in the nature of the changing yield surface will
manifest itself in most of the comparisons of isotropic
hardening and kinematic hardening curves.

Transverse Normal Loading

The effects of the two hardening assumptions on the
predicted transverse stress response curves are demonstrated
in figures 34, 35 and 36. Due to the different input
curves reguired, the results are only comparable to approx-
imately 138 MPa. Beyond this stress, the average strains
are above the second knee on the isotropic data and thus
the results based on the two hardening assumptions begin to
diverge.

Up to the point of divergence, both the stress-strain
response of figure 34 and the transverse, Poisson induced
strain curve of figure 35 are nearly identical for each type
of hardening. The curves respond similarly as the internal
stresses during the loading are predominantly increasing
with respect to the thermal induced stresses already present.
Therefore, the curves should be identical.

The Poisson induced axial strain response in figure 36
demonstrates the same effects as the other strain components,
the difference being the stress level where the divergence
occurs. The lower stress level here is undoubtedly due to
the large axial residual stresses. These stresses magnify
the differences in the hardening input curves as the material

begins to yield.

Temperature Effects on Transverse Loading

Transverse tensile loading response, predicted at 204°C,
is presented in figures 37, 38 and 39. These curves de-
monstrate a marked difference between the two hardening
assumptions. The kinemaéic curves have a significantly re-
duced yield stress as compared with the isotropic curves.
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This effect is strictly a function of the differing yield
surfaces at the initial temperature state.

The isotropic hardening assumption causes the yield
surface to expand in all directions in the stress space
when yielding occurs while the kinematic assumptions shift
the yield surface in the direction of the yielding stress
component. Therefore, at room temperature, the kinematic
hardening yield surface is shifted in the axial stress
direction but not in the transverse stress direction, while
the isotropic hardening yield surface is expanded in all
stress directions. The results of this, coupled with the
reduced axial residual stresses due to the elevated temp-

erature, is the effect seen in these figures.

Load Path Effects

In order to evaluate the path effects upon the kinematic
hardening results, simultaneous proportional tensile and
thermal loadings were evaluated and the results are seen
in figures 40, 41 and 42. These figures also have the
comparable isotropic hardening data plotted on them. The
lowered yield stress in the kinematic case has the explan-
ation presented previously for the elevated temperature tensile
data.

The comparison of the load path effects is listed in
table 5. The differences here tend to be larger than for
similar comparisons made for isotropic hardening (table 3).
The difference of 15% in €, is significant in that super-
position of mechanical and thermal effects is probably
not reasonable for this kinematic data.

The comparisons made here have shown significant de-
pendence of the composite material response to the hardening
assumptions for the matrix material.

The isotropic hardening results have been shown to be
entirely consistent with the kinematic results.
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CONCLUSION 1

It has been demonstrated that effective thermo-mechanical i

Stress-strain relations of metal-matrix composites consisting
of an elasto-plastic hardening matrix (aluminum alloy) and ﬁ
anisotropic (graphite or carbon) fibers can be obtained by L
finite element numerical analysis taking into account the

significant temperature dependence of the matrix, three
dimensional plasticity effects and residual stresses due
to cooldown.

Use of isotropic hardening versus kinematic hardening
plasticity has led to numerical differences in predicted
stress-strain relations especially in the larger strain
range. But it should be remembered that the nature of the
computer program utilized, ANSYS, required different piece-wise
linear approximations of plasticity stress-strain relations
for isotropic and kinematic hardening. It is therefore felt

that the question of the significance of numerical differences
between effective stress-strain relations based on these
different hardening assumptions merits further investigation. }
An encouraging result of the analysis is seen in that the #
average strains produced by thermal expansion in the presence :
and in the absence of load are numerically close. This implied
that for the materials and range of loadings considered the
concept of the effective free thermal expansion coefficient remains
valid for the composite having an elasto-plastic matrix, a result
of extremely important practical significance.

A unique feature of the analyses performed here is their
careful treatment of residual stresses. The specimens are
actually only stress free at high temperature. When cooled
down to room temperature they develop significant residual
stresses and plastification of matrix. This has a significant
effect upon stress-strain relations at room temperature.

In addition to the finite element analysis a simple
approximate method for computation of effective stress-strain
relations has beer devised. Comparison of the results pre-
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dicted by it with finite element analysis results for effec-
tive stress-strain relations in axial shear has shown excel-
lent agreement. Consequently, the implications and utility
of this approximation should be further investiaated.

The work completed during this phase of the proaram has
demonstrated the ability to compute one-dimensional stress-
strain relations for metal-matrix composites under various
combinations of thermal and mechanical loadings. The results
obtained allow for sianificant insight and understanding of
the one-dimensional response of the metal-matrix composite
system under consideration.

Utilizing the composite material data predicted in the
current effort, temperature dependent stress-strain relations
for combined states of stress will be devised in the subse-
quent effort. These relations will be based upon a macro-
incremental theory. Thus, the complete characterization of
the mechanical and thermal response of a uni-directional
metal-matrix lamina will be obtained. Followina this, methods
will be devised for incorporating these combined stress state
relations into a laminate analysis methodoloqgy.
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APPENDIX A
ANSYS PLASTICITY

The finite element analysis code utilized in the current
study was ANSYS. This is a proprietary computer code developed

-

and maintained by Swanson Analysis Systems, Inc. ANSYS is a , ﬁ
general multipurpose finite element code with many capabilities.
Two different hardening rules were used in the metal-matrix
composite analysis. Both isotropic hardening and classical bi-
linear kinematic hardening were considered for the aluminum ma-

trix material. The development of these two hardening rules
is fundamentally different in ANSYS, even though the yield con-

BN ol

ditions (von Mises) and flow rules (Prandtl-Reuss) are identi-
, cal. A brief synopsis of the pertinent elements of the deriva-
tions of the two plasticity approaches is given here. A more
detailed description can be found in reference 14.

ISOTROPIC HARDENING

L g v Ty

In ANSYS, isotropic hardening in two or more dimensions is
developed as an extension of a one-dimensional case. The pro-
cess involves computing equivalent, one-dimensional stresses
and strains for evaluating the yield condition. The procedure ;

e

is as follows.
First, a one-dimensional strain which includes plasticity

! effects is computed at iteration i.

2 2 i
_ 1 t_t t__t t__t 3,.t k
et " Ty (e gD ¢ e+ Foy |
. ,
5 2 2)1/2 ;
! 3, t 3.t
+ 7(sz) * 3! } (A-1)

where e§ = total strain-thermal strain-origin shift strain.*

[
An artificial strain which accounts for stress reversal,
defined later.




This strain is compared to the previous maximum ¢ and loading

max

. > € . If i i case, then ¢ i
e,i max this is the se, the max 18

e.i* Based on ¢ _ . and the input stress-strain
’ e’l

curves, a one-~dimensional equivalent stress, Co i
’

is occurring if ¢
set equal to ¢
, is computed.

In equation aA-1, v_ is defined as:

e

(A-2)

thus, Ve j and ¢ i are related and the computation must be made

el e,
iteratively. A gquantity (dce/dep)i_1 is now computed:
do
1
(3e) = — (A-3)
*p i-1  fe,i T fe,i-1 1
E

. = 0 .
ce,1 e,i-1

which is the rate of change of equivalent stress- to plastic
strain. Utilizing this, the plastic strain increment can be
calculated.

- =_— 0 .
Aep - et 3 go e,i-1 (A-4)
2 1 e
(1-v) (1+x[ ] )
3 Elde i1

where

et 3

+ 3002+ 30y, )2:1/2 (A-5)
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' t
and €., = €
n j

J

Wwith Ae

pr €

- plastic strain.

et’ and e% defined, the plastic strain com-

ponents are computed from the Prandtl-Reuss flow rules.

Ae

Ae

< g

Ae

N T

P

Any

p
Asz

Mz

If unloading is occurring, based on ¢

®K'o
|

Aap .
(2¢

3eet X

Aep

(2¢'

3(—:et y
-Aei - A€
Aep '

= 3€et ny
Aep '

= 3eet sz
Aep '

= §€et Yxz

then another equivalent, elastic, strain is computed.

£ =
S

where ef

1
V2 {(1+v)

3, e 2 3
70gx) "+ 5ly

are elastic strains.

2
e e
) + (sy-cz)

The equivalent stress during unloading is simply:

(A-6)
max comparisons,
2
e e
+ (ez-ex)
(A-7)
(A-8)




If € max

tions required for the negative €max 2re described later.

< 0, the unloading logic is complete. The condi-

Since the equivalent stresses and strains used in the
derivation are all positive, special provisions are made for
evaluating load reversal during the unloading process. Specif-
ically, the largest elastic normal strain component is compared
to its corresponding plastic strain component. If they have
opposite signs then the material is assumed to be unloading.

To account for this, certain corrections to the strains are
made. These include:

€ = - |€ |
max max

Current origin shift strains = previous origin shift

strains + 2 previous plastic strains
Current plastic strains = -previous plastic strains

€ . = €_ . (A-9)

The effects of these adjustments is to convert the unload-
ing into loading by shifting the origin and reversing the sign
of the plastic strains. As was stated previously, the isotropic
hardening used is an extension of one-dimensional plasticity.
This manifests itself in the stress reversal evaluation and
therefore the isotropic hardening is not recommended for general
three-dimensional plasticity. The analyses made under the iso-
tropic hardening rules have been shown to be consistent within
themselves and with the kinematic hardening analyses, however.

KINEMATIC HARDENING

The classical bi~linear kinematic hardening used in ANSYS
does not suffer the reversed loading difficulties found in the
isotropic hardening behavior analysis. This is because it is
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not developed as an extension of a one-dimensional case.

For the kinematic hardening, the plastic strain increment
is defined differently. Specifically, the ¢

' sh

et (egqn. A-5) term is

]
defined in terms of Ej - Ej instead of ej and the yield stress
is used instead of Oe. i* The strain e?h is defined such that
sh !
Ee.

equals the increase in stress above the yield stress. 1In

addition, the term (doe/dep)i-l is defined as E(S)/1-S, where

(S)E is the slope of the second line on part of the input bi-
linear stress-strain curves. When the computed value of Aen
(egn. C-4) is greater than zero, yielding is occurring. Other-
wise, unloading is occurring. A specific example given in
reference 14 for the various strain calculations is:

e _ ' - P
(ex)l (ex)l Aex
pl, _ (.pPl P -
(e )y = (7)1 + Beg (A-10)
sh _ sh p 2(1+v) ]
(e )y = (e )5 * Bey =3 1-s

The term Ee?h is the amount that the yield surface is
shifted within tge stress space, in the j-direction. Since the
relations do not use the equivalent stresses or strains for
evaluating the plasticity effects, reversed loading behavior is
handled directly and adjustments required for isotropic harden-
ing are not needed.
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Table 1. Elastic Constants (Room Temperature)

Elastic

Constant T-50 Graphite Fiber 2024-T4 Al Matrix
EA (GPa) 388.2 72.4
ET {GPa) 7.6 72.4
GAT (Gpa) 14.9 27.2
GTT (Gpa) 2.6 27.2

.4 .
VAT 0.41 0.33
vTT 0.45 0.33
a, m/m/°C -0.68x107° 22.5x10~6
o -6 -6

O m/m/°C 9.74x10 22.5x10

Transverse

Axial (Longitudinal)
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Table 2. Elustic Results (Room Temperature)

(o
L
Elastic . s % . |
Constant CCA F.E. Difference ‘
t
ET (GPpa) 41.78 - 42.26 1.1
GTT (Gra) 14.99 15.13 0.9
GA (Gpa) 22,87 23,20 1.6
Vepep 0.394 0.396 0.5
v 0.338 0.340 * 0.6
AT : ) :
o m/m/°C 6.36 6.36 0.0
G m/m/°C 25.65 25.69 0.2
A = Axial (Longitudinal)

Transverse

*
Composite Cylinder Assemblage

**
Finite Element

+Computed using E, from Rule of Mixtures

A
and F.E, Results




Table 3. Transverse Tension and Temperature,
Isotropic Hardening

Load Path 52 % 63 $ e, %
1-2-3 -0.205 -0.616 -0.074 g
‘ 1-4 -0.190 -0.619 -0.073 :
i % Difference 7.6 0.5 1.4
!
;
2 1-5-6 0.373 -0.506 -0.010
1-7 0.336 -0.465 -0.030
% Difference 10.4 8.4 NA ;
Load Steps

l. Stress Free Temperature to Room Temperature
2. Room Temperature to 204°C
3. Oy - 0 to 113.8 MPa

A SRR NS

4. Simultaneous 0, -~ 0 to 113.8 and Room Temperature to 204°C ¢

5. 0, - 0 to 172.4 Mpa

6. Room Temperature to 299°C

7. Simultaneous 6, = 0 to 172.4 MPa and Room Temperature

oo e

to 299°C
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Table 4.

Transverse Compression and Temperature,

Isotropic Hardening

Load Path €, % €3 % €
1-2-3 ~-0.790 -0.382 0.008
1-4 -0.794 -0.371 -0.018

% Difference 0.5 2.9 NA

Load Steps

1. Stress Free Temperature to Room Temperature

2. Room Temperature to 204°C
3. 0y - 0 to -113.8 MPa

4. Simultaneous 0, - 0 to -113.8 and Room Temperature

to 204°C
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Table 5. Transverse Tension and Temperature,
Kinematic Hardening

Load Path €2 % €3 % €1 %
1-2-3 -0.201 -0.614 -0.079
1-4 -0.234 -0.616 -0.077

% Difference 15.2 0.3 2.6

Load Steps

Stress Free Temperature to Room Temperature
Room Temperature to 204°C

3. 05 = 0 to 113.8 MPa

4. Simultaneous 0, - 0 to 113.8 and Room Temperature

to 204°C
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Figure 5. Repeating Element
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Initialization

Set all strains

and stresses to
zero. Set v

e
to v.

[ ]

Generate
Stiffness
Matrix

S B

Generate Load

Reformulaté

Vector Using
Plastic Strains

]

Solve for
Displacements

Finished
oad Steps

Finished
terations

Element Stress Pass

Compute €'

and then subtract

thermal and previous
non~-linear material
effects (egn. A-5).

(modified
total strains) from
nodal displacements

Compute and print
stresses based on

e

e, if desired

Plasticity Calculations

Modify strains and
equivalent stresses
as required

Figure 10.

ANSYS Plasticity Procedure (After Swanson
Analysis,

Inc., ref. 14)

-45-~




butuspael otdoxjosi ’‘sar3radoig XTIjew andur -171 aanbrg

§ v 3
VT 1 0°T 8°0 9°0 t-°o Z°0
T 1 T f 1 1
__

DoT°TLE = &

D00°092 = &

do¥°¥02 = &
De6°8VT = &

ba-¥2oc
DeT°TC = &

v

00T

002

00¢

BdW ~ O

-46-




250
T50/2024
Vf = 30%
-
200 - ==
150 |-
&
=
4
<
w 100 |-
Finite Element
= — = Approximate
50
0 L ] |
0 0.4 0.8 1.2 1.6 2.0
Ya W

Figure 12. Axial Shear Stress~Strain Relation, Finite
Element Solution, Hexagonal Array and
Approximate Treatment
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Figure 1¢. Transverse Stress-Strain Response,
Isotropic Hardening
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Figure 34. Transverse Stress-Strain Response at R.T.,
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Figure 37. Transverse Stress-Strain Response at 204°C,
Isotropic vs. Kinematic Hardening

~72~




250
T50/2024
Ve = 30% §
\ £
200} ?
3
i
3
§
150 } ;
i
o ]
> f
e
N
o
100 |- -
Isotropic
Hardening
Kinematic
— — — -Hardening _
..
50 i
il
18
:"
0 A |
) 0 -0.05 -0.10 -0.15 -0.20 -0.25
€, Vv %

Figure 38. Transverse Normal Strain vs. Transverse Stress
at 204°C, Isotropic vs. Kinematic Hardening
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Figure 39. Axial Strain vs. Transverse Stress at 204°C,
Isotropic vs. Kinematic Hardening
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