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TECHNICAL PROGRESS REPORT

April 1, 1979 - March 31, 1980

The present report summarizes the research effort by the

Materials Sciences Corporation on the analysis of temperature-

dependent stress-strain relations of metal-matrix composites

(MMC) during the period April 1, 1979 through March 31, 1980.

The work done is part of a comprehensive program to provide ana-

lytical tools for the evaluation of thermomechanical properties

and internal stresses of u. *directional MMC and their laminates.

This program consists of the following parts:

1. Analytical determination of one-dimensional temperature

dependent stress-strain relations on the basis of micro-

mechanics.

2. Determination of temperature-dependent stress-strain

relations for combined states of stress in terms of

one-dimensional stress-strain relations on the basis

of macro-incremental theory.

3. Establishment of laminate analysis methods incorporatina

the stress-strain relations for combined states of stress.

This report is concerned with part (1) of the proaram.
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INTRODUCTION

The usual metal-matrix composite consists of an aluminum

alloy matrix and carbon or graphite (sometimes boron) fibers.

The metal matrix is a temperature dependent elasto-plastic mat-

erial. The fibers are anisotropic and elastic throughout the whole

temperature range and may be described as transversely isotropic

with respect to their longitudinal axes. In view of the large

longitudinal stiffness of the fibers, it may be assumed that no

significant average plastic strain can develop in fiber direction

and the Poisson induced transverse strain associated with uni-

axial stress in fiber direction is also elastic. It follows that

the loadings which are most significant in terms of macro-plasti-

city and non-linearity are: stress transverse to fibers; trans-

verse shear; and axial shear. Consequently, the chief concern

will be to evaluate temperature dependent macro stress-strain

relations for these cases.

The problem of the prediction of the macro stress-strain re-

lations of such a composite is one of very great difficulty.

General treatments such as those for elastic and viscoelastic

composites are not available. Treatments given in the literature

are generally concerned with the isothermal case. Unless other-

wise stated, all work to be cited below is of such nature.

A general qualitative discussion of elasto-plastic composites

has been given in reference 1. Limit analysis treatments which

are only concerned with prediction of ultimate loads for ideally

plastic matrix have been given in references 2 and 3. A numerical

treatment to compute the stress-strain relation for transverse

uniaxial stress for a limited strain range has been given in ref-

erence 4, based on the idealized geometry of a square array fiber

model. A similar approach but including interaction between shear

and transverse load has been given in reference 5. A micromechan-

ics stress analysis for a square array has been given in reference

6. The self consistent scheme approximation has been utilized in

reference 7 for the case of rigid fibers and elasto-plastic matrix

characterized by isotropic J2 deformation theory. This was



generalized in reference 8 to include fiber elasticity; all this for

transverse loading only. Significant work to predict initial yield

surfaces has been given in references 9, 10, and 11, including tem-

perature change but primarily for axisymmetric states.
All of the treatments available describe important special

cases but they are not sufficient to define the needed one-dimen-

sional temperature dependent stress-strain relations of a unidirec-

tional MMC.
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MODELING AND APPROACH

The unidirectional composite may be considered transversely

isotropic in the macro sense since the fibers are randomly placed.

For the purpose of micromechanics analysis, it is necessary to

represent the MMC by some suitable model. Two models which comply

(CCA) (refs. 12,13) figure 1, and the periodic hexagonal array,

figure 2. Both of these models have been used to compute elastic

properties of fiber composites, the first in terms of analytical

results and the second by numerical analysis. Available results

show that the predictions of these models are numerically very

close and agree quite well with experimental data. It is there-

fore believed that either one of them can be used in the present,

much more complicated situation. However, in the present elasto-

plastic case, the CCA model can be utilized analytically only for

axisymmetric states of applied stress; i.e., uniaxial stress com-

bined with transversely isotropic stress. This loading does not

exhibit significant plastic strains. For other loadings, analyt-

ical solution of the CCA model is not feasible. It is therefore

necessary to turn to numerical analysis and in this respect the

hexagonal array of equal fibers is a more attractive model than

the CCA. Therefore, the present analysis will be based on the

hexagonal array model.

In this respect it should be noted that the frequently em-

ployed square array model is not suitable since it is not trans-

versely isotropic.

For the purpose of evaluation of the stress-strain relations,

we consider a prismatic specimen of square cross section (fig. 3)

in which the fibers are in the generator direction and arranged

in a hexagonal array (fig. 2). Loadings to be considered are uni-

axial transverse stress a22 (or d33 ) , transverse shear a23' and

axial shear a12, as illustrated in figure 4; all of these at vari-

ous temperatures.

The one-dimensional effective stress-strain relations may be

written as:
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da 22d '22 = 
(1

d 23 (2)de22 2 G (2)2Tt 
I!

da 1 2

de 12 2G (3)
2 GAt

where ETt, GTt, and GAt are temperature-dependent effective tan-

gent moduli and overbars denote averages.

If the specimen is heated without load, the free effective

tangent thermal expansion coefficient a Tt is defined by:

de2 2 = d 33 = aTtdo (4)

where do is temperature increment.

In order to compute the constitutive relations (eqns. 1-4)

it is necessary to compute average strain increments produced by

average stress increments (eqns. 1-3) and temperature increments

(eqn. 4). For this purpose it is necessary to determine the micro-

strain fields in the fibers and matrix of the hexagonal array

model, thus to solve a succession of elasto-plastic boundary value

problems for successive load and temperature increments. In these

boundary value problems the fibers are transversely isotropic

elastic and the matrix is elasto-plastic. Displacement and trac-

tion continuity must be satisfied at fiber/matrix interfaces at all

times. Once the displacement field is known, the strain field is

obtained by differentiation and the average strain increments can

be determined.

For the purpose of the analysis performed here, it is suffi-

cient to consider the cases of generalized plane strain and anti-

plane strain. These are defined as follows:
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GENERALIZED PLANE STRAIN

Traction Boundary Conditions
oV

T1 (S) = 01n 1

o c

T2 (S) = 2 2 n2 + a2 3 n3  (5)

o oT3 (S) =0 2 3n 2 +0 3 3 n 3

where ni are the components of the normal to the surface and 1 is

fiber direction. These boundary conditions include uniaxial

stress in fiber direction, uniaxial stress in direction transverse

to fibers, and transverse shear.

The internal displacements have the forms:

u 1  Cox1

u2 = u 2 (x 2 , x 3) in fibers and matrix (6)

u 3 = u 3 (x2 ,x3)

ANTI-PLANE STRAIN

Traction Boundary Conditions

T1 (S) =o 1 2n 2 +o1 3n 3

T2 (S) =cl 2 n (7)

T3 (S) 13 1

These boundary conditions are suitable for axial shear.
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The internal displacements have the forms:

U =U 1 (x 2 'x 3)

u= e 2X1  in fibers and matrix (8)

U 3  •131

NUMERICAL ANALYSIS

Analytical treatment of the problem is not feasible and

therefore numerical analysis is performed. It is recalled that

the matrix is elasto-plastic and temperature dependent. Only a

small number of computer programs which are suitable for such a

situation are available. Of these the most attractive appears

to be the ANSYS (ref. 14) finite element program which was selec-

ted for the present analysis.

In view of the periodicity of the problem, it is sufficient
to carry out the analysis for a typical repeating element. Such

an element is shown in figure 5. The boundary conditions on its

faces can be determined by symmetry considerations and the type

of external loading applied. Such boundary conditions suitable

for finite element analysis are shown in figure 6 for transverse

extension (compression) and in figure 8 for axial shear. In add-

ition, displacement and traction boundary conditions at fiber/

matrix interfaces must be satisfied at all times.

It should be noted that all of the boundary value problems
are two-dimensional, thus requiring only two-dimensional finite

elements. The ANSYS program, however, requires that the model

be created utilizing three-dimensional elements. The model is

the constrained in such a fashion that a two-dimensional problem

is formed. Division of the repeating element into finite ele-

ments is shown in figure 9.

The fibers (carbon or graphite) are transversely isotropic

elastic. Their thermo-elastic stress-strain relations are:
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11 VA VA

EA EA 22 EA 3 3 +A

VA +22 VT
£22 E A +  ET ET  33 T

VA VT 033
£33 E 11 E 022 +E T T

(9)

012
12 2GA

023
£23 2GT

013

£13 2GA

where

EA - axial Young's modulus;

ET - transverse Young's modulus;

VA - axial Poisson's ratio;

VT - transverse Poisson's ratio;

GA - axial shear modulus;

GT - transverse shear modulus

aA - axial thermal expansion coefficient;

a T - transverse thermal expansion coefficient.

In the generalized plane strain formulation (eqn. 5),

012 = 013 = 0; while in the anti-plane strain formulation

(eqn. 7), 011 = 22 = a33 = a23 =0.



The matrix (aluminum) is elasto-plastic and its general in-

cremental stress-strain relations are not precisely known. Two

important extreme cases are isotropic hardening and kinematic

hardening. In both cases the initial yield surface is described

by the Mises condition:

SijSij = 23 (10)

where S.. is the stress deviator and a is the (temperature depen-
1) y

dent) yield stress in simple uniaxial stress. Isotropic hardening

assumes that the yield surface expands in stress space retaining

its initial shape; kinematic hardening assumes that the yield sur-

face translates in stress space retaining its initial shape and

dimensions. The ANSYS computer program has the capability to

handle both of these cases.

The incremental solution procedure is as follows: At a given

loading specified by tractions To and temperature 0, the internal
stresses and strains are ij and cij" Now loads and temperature
are changed by amounts AT? and AO. The corresponding stress and

strain increments Aai. and Aci are determined by a sequence of

iterations so as to satisfy equilibrium, compatibility, plasticity

stress-strain relations, traction and displacement continuity at

fiber/matrix interfaces and external loading boundary'conditions.

The increments Auij and Aei. are dependent on the current states

of stress and strain. Once these increments have been determined,

their addition to the current stresses and strains produces a new

current state and the next increments are computed. The initial

states of stress and strain are the elastic fields at first occur-

rence of plastic strains. A summary of the ANSYS plasticity pro-

cedure for isotropic and kinematic hardening is given in the ap-

pendix. The procedure is also illustrated by the flow chart of

figure 10.

The plasticity input into the ANSYS procedure is the one-di-

mensional elasto-plastic stress-strain relation. For the purpose

of the numerical analysis, it is necessary to approximate the

-8-



curved stress-strain relations by linear segments. This is

shown in figure 11 for temperature dependent simple tensile

stress-strain relations of aluminum 2024, approximated by three

linear segments.

APPROXIMATE TREATMENT

As has been mentioned before, a successful analysis of elas-
tic properties of fiber composites has been given on the basis of

the composite cylinder assemblage (CCA) model (refs. 12,13). The

analysis has been generalized to the case of transversely iso-

tropic constituents (ref. 15) which is of importance for carbon

and graphite fibers.

For the case of transversely isotropic fibers and isotropic

matrix, some of the relevant CCA results are:

Transverse Shear Modulus

G , G 1 l + vf ( + m)

T m 223v2 2

f m-vf [1+ 3 mm
avf -

0m

%here

I + YBf

Y +
- 1 fY+ m

G
_ TF

m

1 kF
m 3 - 4Vm f kf + 2GTf
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where MmMf indicate matrix and fiber elastic moduli. The assump-

tion is made that when the matrix deforms plastically, the tangent

effective modulus is given approximately by:

M* = FM Mvf] (16)
t mt m) Mf,

where a is the matrix average of the stress component correspond-

ing to the applied stress component (e.g., pure transverse shear

when dealing with effective transverse tangent shear modulus) and

Mmt(Zm) is the matrix tangent modulus at value am.

It may then be shown that the matrix average stress incre-

ment dom and the applied average stress increment da are related

by:

do Mf/Mt (m =v-(7m Mf/Mmt (jm) - 1

where Mt is the function (eqn. 16). The relation (eqn. 17) de-

fines the stress increment do in terms of current average

stress a
m

In order to evaluate the tangent modulus (eqn. 16) a m is

first computed for the beginning of plastification. Then as the

applied external load is increased, successive dom are determined

by equation 17. Thus the value of - for every applied j is* m
known and Mt is then defined by equation 16.

The approximate treatment outlined has been applied to the

prediction of the effective axial shear stress-strain relation.

Since the aluminum stress-strain relations have been approximated

by linear segments (see fig. 11) equation 17 also gives a linear

segment approximation. The comparison is shown in figure 12 and

it is seen that the approximation is excellent.

-10-.



Transverse Young's Modulus

. % 4kG(
ET k* * (12)

k + GT

where k is the effective transverse bulk modulus given by:

k (kf+Gm)v + kf(km+Gm)vf
k (kfGm)vm + (km+GmV (13)

Axial Shear Modulus

G Gmvm + GAf(l+vf) (14)A m Gm(l+vf) + G Afv m

In these expressions,

m - indicates matrix

f - indicates fiber

v - volume fraction

G - matrix shear modulus
m

km - matrix plane strain bulk modulus

GTf - fiber transverse shear modulus

GAf - fiber axial shear modulus

kf - fiber transverse bulk modulus.

Let any of the effective elastic moduli (refs. 11-14) be

denoted:

M = F(M Mf'v f )  (15)

-ii- flvf)
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RESULTS

ELASTIC ANALYSIS

The numerical procedures for generating one-dimensional

elasto-plastic temperature dependent stress-strain curves

for metal-matrix composites are quite time consuming. As a

result, it is impractical to utilize these non-linear results

to check the accuracy and validity of the finite element model.

It was deemed appropriate, therefore, to perform a series of

elastic analyses to verify the finite element model.

It is very important to choose a proper finite element

mesh size. If the size is too large the results will not be

accurate; if the size is too small too much computer time

will be expended. The finite element scheme shown in

figure 9 consisting of 212 elements, has been utilized

to obtain effective elastic moduli of the unidirectional

composite. The same computations were then performed with

a finer mesh consisting of 322 elements. Effective moduli

obtained with the two meshes gave a maximum difference of

0.4%. This verifies the accuracy of the mesh chosen.

The elastic properties which were used in the generalized

plane strain and anti-plane analyses are listed in table 1.

The properties correspond to a 2024-T4 aluminum matrix

material and T-50 graphite fibers. The aluminum alloy was

chosen simply because the most complete set of properties

were available for it. The T-50 fiber was used as this is

the fiber most commonly used in graphite/aluminum material

systems.

The elastic moduli predicted for the composite based

upon the properties in table 1 are listed in table 2. Two

different computational schemes were used in the calculations.

These were the finite element analysis and models described

previously, and the composite cylinder assemblage (CCA),

see references (12, 13). It is well known that hexagonal

array results-and CCA results are numerically very close.

-12- - - -- -1. tl'-



This is also verified by the present results as seen from

table 2. This may be considered as a demonstration of the

accuracy of the finite element model and analysis.

INELASTIC THERMOMECHANICAL ANALYSIS

The finite element model developed and verified in the

previous sections was utilized to predict one-dimensional,

temperature dependent, elasto-plastic, stress-strain curves

for the metal-matrix material system under consideration.

The predictions were made with the elastic constants defined

previously for the graphite fibers and with temperature

dependent stress-strain curves input for the aluminum matrix.

Analyses were performed under both isotropic and kinematic

hardening assumptions for the matrix material.

Isotropic Hardening

The initial series of analyses of metal-matrix composites

were performed under the isotropic hardening assumption with

regard to the matrix material. The input data consisted of

linearly segmented stress-strain curves for the aluminum.

Curves of this type were input for each of five different

temperatures ranging from 210C to 377 0 C. The set of curves

input representing the aluminum matrix are shown in figure 11.

The thermal expansion data used for the aluminum are plotted

and shown in figure 13.

The program used for these analyses was ANSYS, which is

a multi-purpose finitevelement code. The assumptions and

conditions utilized in the computerized analyses are very

significant for evaluation of the predicted curves and for

comparisons of the curves generated under the two hardening

assumptions. For this reason, a brief description of the ANSYS

plasticity calculations is included in an appendix.

Thermal Expansion

The first analyses performed under the isotropic hardening

assumption were free thermal expansions. Figures 14 and 15

depict the transverse and axial response of the graphite/alum-

inum system, respectively. Included in these figures are the

-13-



cooldown from the stress-free temperature to room temperature

and a re-heat to the stress-free temperature. In addition,

elastic, temperature dependent free thermal expansion curves

are presented in the figures. The plastic analyses involved

six temperature increments in both the cooling and heating

paths.

Examination of the data in the curves indicates that

no significant yielding occurs during cooling until the

temperature drops to nearly 1500C. The re-heat curves in

both figures are totally elastic, thus explaining their

similarity in shape to the elastic predictions. At the

room temperature state, considerable plastic yielding was

predicted by the analysis. The matrix stresses in the axial

direction averaged over 350 MPa, while the fiber axial stresses

averaged over -830 MPa. These are very high stresses, in-

dicating considerable plastic deformation and expansion of

the yield surface.

In each of the predicted stress-strain responses pre-

sented in this report, the prior load history began at the

stress free temperature, unless otherwise stated. Thus,

curves presented as room temperature response include the

effects of cooling the material from the stress free temperature.

Curves which represent elevated temperature response include

not only the initial cooldown but also the effects of re-

heating to the stated temperature. Only those curves noted

as having no processing stresses correspond to loadings

from a microscopically stress free state.

Transverse Normal Loading

The material response to transverse normal loadings is

shown in figures 16, 17 and 18. Figure 16 presents the normal

stress-strain response, while figures 17 and 18 show Poisson

induced strains in the transverse plane and axial directions,

respectively. Each of the three figures includes tensile

and compressive loadings with the previous room temperature

stress and strain field as the initial state. In addition,

-14-



a tensile loading curve with no thermal processing stresses

is included for comparison.

The three figures demonstrate the significance of the

residual thermal effects upon the stress-strain response.

Comparison of the tensile and compressive curves at room

temperature reveals considerable differences which are direct-

ly attributable to the processing stresses. The stress-

strain curves of figure 16 indicte that the compressive

response is more flexible than the tensile response. This

is readily explained at the micromechanics level. Under

tensile loading, significant portions of the model undergo

unloading at low stress levels while the compressive

loading produces further yielding at all load levels. When

no initial yielding or stress is present, as in the tensile

no processing stress run, the response was significantly stiffer.

The axial strain predictions demonstrate a curious

respoise. The axial strain produced during transverse tensile

loading from room temperature reverses direction. Again,

the explanation lies within the micromechanics regime. As

the material begins to yield significantly in tension, the

large axial processing stresses begin to relieve themselves.

Thus, the initial contraction due to the Poisson effect is

followed by an expansion which tends to relieve the internal

stresses. The compressive loading at room temperature produces

the same axial effects but here the strains are additive and

do not produce a reversal.

Temperature Effects on Transverse Loadings

In figures 19 and 20 the elevated temperature effects

on the tensile stress-strain response is presented. The

figures contain the room temperature response presented

previously, as well as the tensile response at 204°C.

The transverse stress-strain response in figure 19 indicates

that significant yielding occurs at a higher stress at this

elevated temperature. This is definitely contrary to what

-15-



would normally be expected. Considering the initial state
of stress at room temperature resolves the quandary, however.

The initial, large internal stresses at room temperature
are relieved at the elevated temperature but the yield

surface remains greatly expanded. In addition, the elastic
modulus of the aluminum matrix material is only slightly (10%)

reduced at 204°C. The combination of these effects produces
a high temperature response with a slightly reduced initial

slope but increased yield stress.

The Poisson induced strains in figure 20 show a similar

effect. The two elevated temperature curves are nearly

linear while the room temperature curves show the phenomenon

described in a previous section.

The effects just described for the tensile response
are also present in compression. Figures 21 and 22 present

the compressive response at 2040C and the previously pre-

sented compressive curves at room temperature. Again, the
elevated temperature stress-strain curve is slightly more
flexible initially, but yields at a significantly higher

load than the room temperature curve. The Poisson induced

strains at elevated temperature are nearly linear while the

room temperature curves are not.

Loading Effects Qn Thermal Expansion

The effects of mechanical loading on the thermal expansion
response of the graphite/aluminum system is demonstrated in

figures 23 and 24. In these figures, the free thermal ex-
pansion curves are those presented previously in figures 14
and 15. The curves generated with the applied mechanical

stress have load histories consisting of the thermal cooling,

followed by transverse tensile loading and finally, the re-heat

shown in the figures.

The transverse expansion data are very interesting in

that the material is not responding as a transversely isotropic
body. The expansion in the direction of the mechanical load

is much larger than in the direction perpendicular to the load.

In addition, the mechanical loading has caused an increase

-16-



in the expansion in the loading direction and a decrease

perpendicular to it with respect to the free thermal ex-

pansion case. The effects in the axial direction (figure 24)

are simply a moderate decrease in the expansion due to temp-

erature. In both figures, the applied mechanical load has

reduced thermal expansions perpendicular to it due to

Poisson induced strains associated with it. As the temp-

erature increases and the elastic matrix modulus decreases,

the strains are increased. Thus, the expansion in the loeiing

direction increases and the perpendicular expansion decreases.

Load Path Effects

Since the effects of material plasticity are path de-

pendent, comparisons of various load paths were made. The

loadings involved included combinations of temperature and

tensile transverse loads and combinations of temperature and

compressive transverse loads. To facilitate these comparisons,

two analyses were made where the loading was a simultaneous

proportional variation of mechanical load and temperature.

The tensile results of these runs are presented in figures

25 and 26 and the compressive results are shown in figure 27.

Comparisons of identical load states, arrived at along

different paths, are presented in tables 3 and 4. The loadings

of table 3 include transverse tension and temperature while

the loadings in table 4 are transverse compression and temper-

ture. In table 3., the data indicate that relatively

low loadings produce less path dependence than higher loadings.

This is of course to be expected, since the higher loadings

produce more plastic effects. The data presented also

indicate that in the range of loadings considered, super-

position of mechanical and thermal loadings would produce

reasonable accuracy. This would be of tremendous significance

in simplifying the analysis of this material.

The data in table 4 demonstrate similar trends to the

table 3 data. Here, as in the higher tensile loads data,

the axial strain data show significant path dependence. The

-17-
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magnitudes of the strains are very small, however, and the

differences may be exaggerated by the numerical errors

inherent in the solution process.

Shear

The shear response of the graphite/aluminum system under

analysis is demonstrated in figures 28 through 30. The

transverse shear response is depicted in figures 28 and 29

and the axial shear response is shown in figure 30.

The transverse shear stress-strain response is typical

of the other room temperature transverse loadings. The

interesting feature is the axial strain produced during the

shear loading. This effect is due to the large, axial stresses

developed during the initial cooldown. As the material

yields in shear, the axial stresses relieve themselves causing

the axial strain.

The axial shear response shown in figure 30 is not

typical of the other curves presented. As was stated pre-

viously, the inclusion of the processing effects in the axial

shear analysis would have required a three-dimensional analysis

and was therefore not done. Since the axial shear loading

originated on virgin material, the response is different.

The most significant difference is the definite yield point

present. All of the previous, room temperature solutions,

yielded over a range of loading while the axial shear results

indicate that most of the matrix material yields simultaneously.

Kinematic Hardening

The one-dimensional stress-strain responses of the graphite/

aluminum system presented to this point have included the

assumption of isotropic hardening with the aluminum matrix.

Since the reversed loading behavior as modeled in ANSYS

isotropic hardening is based upon an extension of one-dimensional

plasticity (see Appendix) certain of the previous analyses were

repeated utilizing a kinematic hardening assumption. These add-

itional analyses also allow comparisons of the effects of the

two hardening assumptions within the aluminum matrix, thus bracket-

ing the reversed loading response of the composite.
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Immediately, a difficulty arose in that the classical

kinematic hardening utilized in ANSYS requires bi-linear

stress-strain curves rather than the linearly segmented

curves used for isotropic hardening. The only remedy was

to model only the elastic and first plastic slopes of the

isotropic input with the bi-linear kinematic input data.

The stress-strain input curves for kinematic hardening

are shown in figure 31. The thermal expansion data was

identical to that used in the isotropic hardening. The

mathematical constraints and conditions relating to the

kinematic hardening used in ANSYS are discussed briefly

in an included appendix.

Thermal Expansion

The first predictions of the composite response ob-

tained with the kinematic hardening assumptions were the

thermal expansion curves shown in figures 32 and 33.

These figures also contain the curves predicted with the
isotropic hardening assumption for comparison. The loading
consisted of a cooldown from the stress-free temperature

to room temperature, followed by a re-heat to the stress-

free temperature. The data in the curves show two interesting

phenomena. First, the cooldown curves are not identical,

and secondly, at approximately 325*C in the re-heat analysis

the kinematic hardening curves diverge significantly from the
isotropic hardening curves. The first discrepancy is directly

attributable to the differences in the isotropic and kinematic
hardening input curves. The divergence at the higher temp-

eratures during the process of re-heating can only be attribut-

ed to the difference in the hardeninq assumptions since the

thermal loading is prono.'. :o:al.

In the isotropic hardening case, the yield surface was

greatly expanded by the large internal stresses generated

by the initial cooling process. For the kinematic process,

the yield surface was greatly shifted during this cooling

process but not expanded. The result of this difference

is that while the isotropic hardening curves are well within
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the yield surface at temperatures as high as the stress-

free temperature, the kinematic hardening curves are not

and therefore, yielding is occurring. This fundamental

difference in the nature of the changing yield surface will

manifest itself in most of the comparisons of isotropic

hardening and kinematic hardening curves.

Transverse Normal Loading

The effects of the two hardening assumptions on the

predicted transverse stress response curves are demonstrated

in figures 34, 35 and 36. Due to the different input

curves required, the results are only comparable to approx-

imately 138 MPa. Beyond this stress, the average strains

are above the second knee on the isotropic data and thus

the results based on the two hardening assumptions begin to

diverge.

Up to the point of divergence, both the stress-strain

response of figure 34 and the transverse, Poisson induced

strain curve of figure 35 are nearly identical for each type

of hardening. The curves respond similarly as the internal

stresses during the loading are predominantly increasing

with respect to the thermal induced stresses already present.

Therefore, the curves should be identical.

The Poisson induced axial strain response in figure 36

demonstrates the same effects as the other strain components,

the difference being the stress level where the divergence

occurs. The lower stress level here is undoubtedly due to

the large axial residual stresses. These stresses magnify

the differences in the hardening input curves as the material

begins to yield.

Temperature Effects on Transverse Loading

Transverse tensile loading response, predicted at 2040 C,

is presented in figures 37, 38 and 39. These curves de-

monstrate a marked difference between the two hardening

assumptions. The kinematic curves have a significantly re-

duced yield stress as compared with the isotropic curves.
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This effect is strictly a function of the differing yield

surfaces at the initial temperature state.

The isotropic hardening assumption causes the yield

surface to expand in all directions in the stress space

when yielding occurs while the kinematic assumptions shift

the yield surface in the direction of the yielding stress

component. Therefore, at room temperature, the kinematic

hardening yield surface is shifted in the axial stress

direction but not in the transverse stress direction, while

the isotropic hardening yield surface is expanded in all

stress directions. The results of this, coupled with the

reduced axial residual stresses due to the elevated temp-

erature, is the effect seen in these figures.

Load Path Effects

In order to evaluate the path effects upon the kinematic

hardening results, simultaneous proportional tensile and

thermal loadings were evaluated and the results are seen

in figures 40, 41 and 42. These figures also have the

comparable isotropic hardening data plotted on them. The

lowered yield stress in the kinematic case has the explan-

ation presented previously for the elevated temperature tensile

data.

The comparison of the load path effects is listed in

table 5. The differences here tend to be larger than for

similar comparisons made for isotropic hardening (table 3).

The difference of 15% in E 2 is significant in that super-

position of mechanical and thermal effects is probably

not reasonable for this kinematic data.

The comparisons made here have shown significant de-

pendence of the composite material response to the hardening

assumptions for the matrix material.

The isotropic hardening results have been shown to be

entirely consistent with the kinematic results.
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CONCLUS ION

It has been demonstrated that effective thermo-mechanical

Stress-strain relations of metal-matrix composites consisting

of an elasto-plastic hardening matrix (aluminum alloy) and

anisotropic (graphite or carbon) fibers can be obtained by

finite element numerical analysis taking into account the

significant temperature dependence of the matrix, three

dimensional plasticity effects and residual stresses due

to cooldown.

Use of isotropic hardening versus kinematic hardening

plasticity has led to numerical differences in predicted

stress-strain relations especially in the larger strain

range. But it should be remembered that the nature of the

computer program utilized, ANSYS, required different piece-wise

linear approximations of plasticity stress-strain relations

for isotropic and kinematic hardening. It is therefore felt

that the question of the significance of numerical differences

between effective stress-strain relations based on these

different hardening assumptions merits further investigation.

An encouraging result of the analysis is seen in that the

average strains produced by thermal expansion in the presence

and in the absence of load are numerically close. This implied

that for the materials and range of loadings considered the

concept of the effective free thermal expansion coefficient remains

valid for the composite having an elasto-plastic matrix, a result

of extremely important practical significance.

A unique feature of the analyses performed here is their

careful treatment of residual stresses. The specimens are

actually only stress free at high temperature. When cooled

down to room temperature they develop significant residual

stresses and plastification of matrix. This has a significant

effect upon stress-strain relations at room temperature.

In addition to the finite element analysis a simple

approximate method for computation of effective stress-strain

relations has bee devised. Comparison of the results pre-
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dicted by it with finite element analysis results for effec-

tive stress-strain relations in axial shear has shown excel-

lent agreement. Consequently, the implications and utility

of this approximation should be further investigated.

The work completed during this phase of the proaram has

demonstrated the ability to compute one-dimensional stress-

strain relations for metal-matrix composites under various

combinations of thermal and mechanical loadinqs. The results

obtained allow for significant insight and understanding of

the one-dimensional response of the metal-matrix composite

system under consideration.

Utilizing the composite material data predicted in the

current effort, temperature dependent stress-strain relations

for combined states of stress will be devised in the subse-

quent effort. These relations will be based upon a macro-

incremental theory. Thus, the complete characterization of

the mechanical and thermal response of a uni-directional

metal-matrix lamina will be obtained. Followin this, methods

will be devised for incorporating these combined stress state

relations into a laminate analysis methodology.
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APPENDIX A

ANSYS PLASTICITY

The finite element analysis code utilized in the current

study was ANSYS. This is a proprietary computer code developed

and maintained by Swanson Analysis Systems, Inc. ANSYS is a

general multipurpose finite element code with many capabilities.

Two different hardening rules were used in the metal-matrix

composite analysis. Both isotropic hardening and classical bi-

linear kinematic hardening were considered for the aluminum ma-

trix material. The development of these two hardening rules

is fundamentally different in ANSYS, even though the yield con-

ditions (von Mises) and flow rules (Prandtl-Reuss) are identi-

cal. A brief synopsis of the pertinent elements of the deriva-

tions of the two plasticity approaches is given here. A more

detailed description can be found in reference 14.

ISOTROPIC HARDENING

In ANSYS, isotropic hardening in two or more dimensions is

developed as an extension of a one-dimensional case. The pro-

cess involves computing equivalent, one-dimensional stresses

and strains for evaluating the yield condition. The procedure

is as follows.

First, a one-dimensional strain which includes plasticity

effects is computed at iteration i.

e i 1 (E -E )2 + (Et- Et) + (Et.Et) + (yxy) 2
Ce,i V'7 (i+Ve ) Ixyyz zx 2x

+ ) 2 1/2

twhere . = total strain-thermal strain-origin shift strain.*)

An artificial strain which accounts for stress reversal,
defined later.
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This strain is compared to the previous maximum e max and loading

is occurring if e,i > Cmax* If this is the case, then cmax is

set equal to c e,i* Based on e,i and the input stress-strain

curves, a one-dimensional equivalent stress, ae,i , is computed.

In equation A-l, Ve is defined as:

1 1Ue,i

V = - _ ) e __ (A-2)E Ce,i

thus, ve,i and ce,i are related and the computation must be made
iteratively. A quantity (do e/dep)i-1 is now computed:

do e 1
(a- (A -3)
p i-i e,i e,i-1 1

Ge,i a e,i-1 E

which is the rate of change of equivalent stress to plastic

strain. Utilizing this, the plastic strain increment can be

calculated.

E 2 l+v

AC et E e,i-l (A-4)
P 21 doeT(1-v) (.,+if[ TCa-p, i

CPori-l1

where

Cet =  (C'-'Y)2 + (1y-cz)2 + (c:-C)2 + 2(y2
et 3 ~xy z x X

3 ' 2 3 ( 2 1/2 (A- 5 )+ (Yyz) xz
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' t
and el. = plastic strain.) )

With ALt LetI and L defined, the plastic strain com-et' a
ponents are computed from the Prandtl-Reuss flow rules.

Ac x = P (2c C - C
x 3c et x z

Ac
= P- (2c' - c' - c'

y 3cet Z x

ALp = -ACe - ACP
z x y

(A-6)
AL

AyP = .P
xy et  xy

Ayp = I
yz = Yyz

etAc

Ayp =
xz TC-Yxz

If unloading is occurring, based on cmax comparisons,

then another equivalent, elastic, strain is computed.

1 ( e e 2  (Ce e) 2 + e_,e) 2=s ,/ (l+v) (Lx-LY) + " y -c z- + (L z-
S 17(+) xyy z z x

3 e 2 3 e 2 3 e ) 2 1/2+(xy + Y z + yz (A--7)

where ce are elastic strains.
1

The equivalent stress during unloading is simply:

oe,i = E s  (A-8)
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If Emax < 0, the unloading logic is complete. The condi-

tions required for the negative c max are described later.

Since the equivalent stresses and strains used in the

derivation are all positive, special provisions are made for

evaluating load reversal during the unloading process. Specif-

ically, the largest elastic normal strain component is compared

to its corresponding plastic strain component. If they have

opposite signs then the material is assumed to be unloading.

To account for this, certain corrections to the strains are
made. These include:

max - lmaxl

Current origin shift strains = previous origin shift

strains + 2 previous plastic strains

Current plastic strains = -previous plastic strains

re, i = s, i (A9

The effects of these adjustments is to convert the unload-

ing into loading by shifting the origin and reversing the sign

of the plastic strains. As was stated previously, the isotropic

hardening used is an extension of one-dimensional plasticity.

This manifests itself in the stress reversal evaluation and

therefore the isotropic hardening is not recommended for general
three-dimensional plasticity. The analyses made under the iso-

tropic hardening rules have been shown to be consistent within

themselves and with the kinematic hardening analyses, however.

KINEMATIC HARDENING

The classical bi-linear kinematic hardening used in ANSYS

does not suffer the reversed loading difficulties found in the

isotropic hardening behavior analysis. This is because it is
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not developed as an extension of a one-dimensional case.

For the kinematic hardening, the plastic strain increment

is defined differently. Specifically, the et (eqn. A-5) term issh

defined in terms of E. - C instead of c. and the yield stress

is used instead of a The strain sh is defined such thate,i" )
Ec. h equals the increase in stress above the yield stress. In
J

additioa, the term (do e/d p)i_ 1 is defined as E(S)/l-S, where

(S)E is the slope of the second line on part of the input bi-

lineaz stress-strain curves. When the computed value of AcP
(eqn. C-4) is greater than zero, yielding is occurring. Other-

wise, unloading is occurring. A specific example given in

reference 14 for the various strain calculations is:

e|
().= ().-
xi x i x

p1 = p1 + (A-l0)

sh = (h + ACp 2(1+v) S
x i x i-I x 2 1-S

The term Es h is the amount that the yield surface is
3

shifted within the stress space, in the j-direction. Since the

relations do not use the equivalent stresses or strains for

evaluating the plasticity effects, reversed loading behavior is

handled directly and adjustments required for isotropic harden-

ing are not needed.
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Table 1. Elastic Constants (Room Temoerature)

Elastic
Constant T-50 Graphite Fiber 2024-T4 Al Matrix

S A(GPa) 388.2 72.4

E T (GPa) 7.6 72.4

GCA (Cpa) 14.9 27.2

GCT (GPa) 2.6 27.2

T 04 03

V TT0.41 0.33

a A m/m/*C -O.68xl10 6  22.5xl10 6

atT m/m/*C 9.74x10-6  22.5xl10 6

A = Axial (Longitudinal)

T = Transverse
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Table 2. Elastic Results (Room Temperature)

Elastic **%
Constant CCA F.E. Difference

ET (GPa) 41.78 42.26 1.1

GTT (GPa) 14.99 15.13 0.9

GA  (GPa) 22.87 23.20 1.6

VTT 0.394 0.396 0.5

VAT 0.338 0.340 + 0.6

*A m/m/OC 6.36 6.36 0.0

aT m/m/*C 25.65 25.69 0.2

A = Axial (Longitudinal)

T = Transverse

Composite Cylinder Assemblage

Finite Element

+Computed using EA from Rule of Mixtures

and F.E. Results
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Table 3. Transverse Tension and Temperature,
Isotropic Hardening V-.

E ELoad Path 2 3 1

1-2-3 -0.205 -0.616 -0.074

1-4 -0.190 -0.619 -0.073

% Difference 7.6 0.5 1.4

1-5-6 0.373 -0.506 -0.010

1-7 0.336 -0.465 -0.030

% Difference 10.4 8.4 NA

Load Steps

1. Stress Free Temperature to Room Temperature

2. Room Temperature to 204 0C

3. 02 - 0 to 113.8 MPa

4. Simultaneous c2 - 0 to 113.8 and Room Temperature to 2040C

5. 02 - 0 to 172.4 MPa

6. Room Temperature to 299 0C

7. Simultaneous a2 - 0 to 172.4 MPa and Room Temperature

to 299 0 C
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Table 4. Transverse Compression and Temperature,
Isotropic Hardening

Load Path £2 % E3 % Cl %

1-2-3 -0.790 -0.382 0.008

1-4 -0.794 -0.371 -0.018

% Difference 0.5 2.9 NA

Load Steps

1. Stress Free Temperature to Room Temperature

2. Room Temperature to 2040C

3. a2 - 0 to -113.8 MPa

4. Simultaneous a2 - 0 to -113.8 and Room Temperature

to 204 0C
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Table 5. Transverse Tension and Temperature,
Kinematic Hardening kj

Load Path £2 % £3 % EI %

1-2-3 -0.201 -0.614 -0.079

1-4 -0.234 -0.616 -0.077

% Difference 15.2 0.3 2.6

Load Steps

1. Stress Free Temperature to Room Temperature

2. Room Temperature to 204 0C

3. a 2 - 0 to 113.8 MPa

4. Simultaneous a2 - 0 to 113.8 and Room Temperature

to 204*C
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equivalent stresses
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I

Figure 10. ANSYS Plasticity Procedure (After Swanson
Analysis, Inc., ref. 14)
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Element Solution, Hexagonal Array and
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Isotropic Hardening
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Figure 25. Proportional Simultaneous Variations of a2
and T From R.T., Isotropic Hardening 2
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Figure 26. Proportional Simultaneous Variations of a 2
and T From R.T., Poisson Induced Strains,
Isotropic Hardening
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Figure 28. Transverse Shear Stress-Strain Response at R.T.,
Isotropic Hardening
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Figure 29. Axial Strain vs. Transverse Shear Stress
at R.T., Isotropic Hardening
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Figure 30. Axial Shear Stress-Strain Response With No
Processing Stresses
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Figure 34. Transverse Stress-Strain Response at R.T.,
Isotropic vs. Kinematic Hardening
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Figure 35. Transverse Normal Strain vs. Transverse Stress
* at R.T., Isotropic vs. Kinematic Hardening
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Figure 36. Axial Strain vs. Transverse Stress at R..T.,
Isotropic vs. Kinematic Hardening
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Figure 37. Transverse Stress-Strain Response at 2040C,
Isotropic vs. Kinematic Hardening
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Figure 38. Transverse Normal Strain vs. Transverse Stress

at 2040C, Isotropic vs. Kinematic Hardening
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Figure 39. Axial Strain vs. Transverse Stress at 2040C,
Isotropic vs. Kinematic Hardening
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Figure 40. Proportional Simultaneous Variations of
Transverse Tension and Temperature, Isotropic
vs. Kinematic Hardening
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Figure 41. Proportional Simultaneous Variation of
Transverse Tension and Temperature, Poisson
Induced Transverse Strains, Isotropic vs.
Kinematic Hardening
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Figure 42. Proportional Simultaneous Variations of
Transverse Tension and Temperature, Poisson
Induced Axial Strains, Isotropic vs. Kinematic
Hardening

-77-



FILMEI


