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1. Introduction

Random field (RF) models have many applications in image
processing and analysis. Typ»ically, an image is repre-
sented by a two-dimensional scalar array, the gray level varia-
tions defined over a grid. One of the important characteristics
of this data is the statistical dependence of the gray levels
within a neighborhood. For example, y(sl,sz), the scalar gray
level at position (sl,szL might be statistically dependent on
the values of gray levels over a neighborhood that includes
{(s)-1,s,), (s;+1,s,), (s;,8,-1), (sl,sz+1)}. This is in con-
trast to the familiar time series models where the dependence
is strictly on the past observations. An image represents a
statistical phenomenon on a plane and hence the notion of past
and future as understood in classical time series analysis is
not relevant.

Prior to the use of RF models for images, one of the basic
problems to be tackled is the choice of an appropriate model.
Suppose we are given a set of observations {y(s), s€&Q}, Q =
{s = (i,3), 1si,jsM}, defined over a square lattice and it is
required to identify an appropriate two-dimensional RF model
to fit the given data. In such situations not only do we have
all the usual problems of model specification that arise in time
series analysis but in addition we have problems that arise from
the possible existence of directionality of dependence. Even
when only the 8 nearest neighbors are allowed there are 28 pos-

sible neighbor sets to be considered. If some inference regarding




directionality of dependence can be made, many savings can be
achieved in the search for appropriate models.

Secondly, the neighbor set selection procedure developed in
[1] assumes that a basic set of "good models" is available and
chooses the best model from the given set. Usually, the basic
set of "good models" is chosen by intuition or by using some
ideas regarding the underlying physical processes that might have
generated the data. As it is often difficult to understand the
underlying physical processes, some empirical tools are necessary
to make a reasonable choice of good models.

In this paper we suggest some empirical methods using the
autocorrelation function (ACF) for the inference of a basic set
of two-dimensional RF models. Such methods are gquite popular in
time series analysis [2]. For instance, if the sample ACF of the
given one-dimensional (weakly stationary) time series is very small
after a few lags (say) p, then one might use a moving average model of
order p. The ACF is a useful tool in the inference of basic models
since it together with the mean and variance possesses all the
information about the underlying probability distribution under a
Gaussian assumption. It might be expected that such methods
should find use in inferences regarding two-dimensional RF
models.

We first analyze the correlation structure of two-dimensional
RF models and subsequently discuss their use in the inference of

models.
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We consider three different classes of two-dimensional
RF models, the simultaneous models [3-6], the conditional Markov
models [4,6-7], and the moving average (MA) and the auto-
regressive and moving average (ARMA) models. Our main
concern is focussed on the so-called nearest neighbor (NN) modes,
i.e. the dependence is restricted to the 8 neighbors. The three
classes of models mentioned above are non-equivalent. For a
given simultaneous model an equivalent (in second order properties)
conditional Markov model can always be found but the converse is
not true. The underlying probability structures of the NN
simultaneous models and NN conditional models are different.

The conditional expectation E(y(s)|all y(sl), s, €Q ,sl#s) depends

1
only on the members of the neighbor set of dependence for the
conditional models, but tﬁis is not true for the simultaneous
models. The class of spatial MA models falls outside the classes
of finite simultaneous and conditional models and seems to be of
a basically different structure.

The ACF can be used in two ways for the inference of models.
First by matching the numerical values of the theoretical ACF
for different models and the sample estimate of ACF,
useful inferences may be drawn. This assumes the availa-
bility of theoretical ACFs for the different models mentioned
above. The expressions for the ACF can be written down easily for
spatial moving average models and simultaneous RF models with

unilateral or causal neighbor set dependence as in (8]. When

bilateral dependence is introduced along either or both of the
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axes, the recursive method used in (8] is not applicable. How-

ever the ACF can be computed for both simultaneous models and
conditional Markov models for any arbitrary neighborhood by
using RF representations on torus lattices [6].

Secondly, the specific structure of the ACF at lower lags,
viz., whether it is convex downwards or concave downwards, can
be used in making additional inferences about the model. This
can be understood by considering the ACFs of spatial and temporal
autoregressions in the one-dimensional case. It is well known
that the ACF R (t) for a stationary Gaussian Markov process depends
on distance and is given by R(t) = e_at, t20, where o is some

constant. This function is downward convex to the right of the

origin (i.e. é%R(t)lt=o<0). Consider the spatial autoregression

X, = alxg _ +x, )+ (1.1)
Using the central difference operator (l.1) can be written as
_ 2
(1 2a)xt = alA xt+ut (1.2)

where A2 is the second order central difference operator. Now,

consider the continuous analog of (1.2), namely

2

(G - Y¥Hx(v) = uw) (1.3)

dv
where y2 = (l1l-2a)/a. The ACF for this model can be shown to be
(9] .

R(v) = (l+yv)e ~YY (1.4)
and é% R(v)| = 0. The spatial autoregression possesses an ACF

v=0

that is downward concave at the origin, unlike the Gaussian-Markov




processes, and it appears that directionality can be inferred
by studying the behavior of the low-order correlation structure.
Similar behavior of the ACF for continuous RF models has been
noted in the literature [3]. Thus in the two-dimensional conti-
nuous case, depending on whether or not bkilateral dependence is
introduced along the axes, concave (flat) or convex (nonflat)
behavior is noted. Using a discrete equivalent of the nonflat /
flat condition, inferences about the directionality can be made,
for the discrete RF models.

Our approach to the analysis of ACF structure is as follows:

We first consider the structure of the ACF of continuous RF
models corresponding to discrete simultaneous and conditional
models. The former models yield linear two-dimensional stochastic
partial differential equations (SPDE) while the latter correspond
to a spatial temporal model. By identifying the appropriate
Green's functions the flat/nonflat structure of the ACF is
analyzed and a case is established for its use in the inference
of models.

Using the RF representations on torus lattices we compute
the ACFs for different neighbor sets for the discrete simultaneous
and conditional models and analyze their structure. Some of the
interesting observations are: (1) The simultaneous models have
high correlation values compared to the conditional models for
the same neighbor set and parameter values. (2) When bilateral
dependence is introduced the NN simultaneous models exhibit a

flat structure along the axes for certain ranges of parameter
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values. For instance, when the isotropic dependence is on the

east, west, north, and south neighbors, flat structure along the
i,j axes is observed, followed by flat structure along the i,j,k
axes (see Fig. 1) as the parameter value is increased. (3) The
NN conditional models do not exhibit flat structure for the

same neighbor set of dependence and parameter values as in the
simultaneous models.

To check whether real image patterns exhibit flat/nonflat
behavior, experiments were performed with texture and terrain
samples. The sample ACFs of 64x64 windows were computed and the
ACF structures at lower lags were examined. The samples of
sand, grass, and wool exhibit flat structure along all axes,
while the samples of raffia exhibit flat structure only along
the i and j axes. On the other hand, the sampes of Lower Penn-
sylvanian shale and Mississippian limestone and shale exhibit
nonflat structure in all directions. The samples of Pennsyl-
vanian sandstone and shale exhibit flat structure along the i
axis alone and nonflat structure along the other two axes.

The organization of the paper is as follows: Sections 2 and
3 consider the correlation structures of continuous and discrete
RF models respectively. In Section 4, experimental results
with real texture images are given. By matching the sample ACF
and theoretical ACF, inferences regarding the appropriate model

are given. Discussion is given in Section 5.




2. Correlation structure of continuous random fields

In this section we begin with discrete, two-dimensional RF
models, consider their continuous counterparts, and discuss the
correlation structure of the continous RF models. Simultaneous
RF models are classified as causal models (unilateral dependence
along i,j), semicausal models (unilateral along j and bilateral
along i), and noncausal models (bilateral along i and j). The
continuous equations corresponding to these models are hyper-
bolic, parabolic, and elliptic SPDE [10], respectively. The
continuous model corresponding to the conditional Markov model
with neighbor set dependence on the east, west, north, and south
is a spatial-temporal model {[4]. By constructing the Green's
function using transform techniques [l11] the ACF is derived for
each of these models.

It turns out that the ACF of the hyperbolic equation is non-
flat along all directions; that of the parabolic equation is
flat along the i axis and nonflat along the j axis; that of the
elliptic equation is flat along all directions; and that corre-
sponding to the spatial temporal model mentioned above is nonflat
along all axes. Based on these observations a prima facie case
is established for using the structure of the ACF for drawing
inferences about RF models.

We first establish some framework for the computation of the
ACF of an SPDE [12] and consider the different cases separately.

Consider the general second-order linear SPDE




32 32 52 5 3
(a——2-+b—2-+2h-5;3—-+2g-é¥+2fa—+c)
ax dy Y y
u(x,y) = e(x,y) (2.1)
or equivalently
] -
Plpgray) 80 Y) = clx,y) (2.2)
where P is the polynomial in g%,g% and ¢(+) is uncorrelated

noise, with zero mean and variance 02. The solution to (2.2)

can be written as

u(x,y) = [ [G(x-u,y=-v) e(u,v)dudv (2.3)

where G(x,y) is the Green's function satisfying

3 3
P('a—x'la—y‘)G(XIY) = (S(er) (2.4)
and
S{x,y) =1 ifx=y =20
=0 otherwise

When ¢(u,v) are entirely uncorrelated random impulses, we have

for the autocorrelation of the process u(x,y),

0

(xnh(x,y) = 02 f fG(u,v)G(u—x,v-y)dudv

- =0

and the normalized correlation function of u(x,y) is

& 00
I J6(u,v)G(u-x,v-y)dudv
p(x,y) = (2.5)

(<M

J f“cz(u,v)dudv

-0 -
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Case i: (Hyperbolic)

Consider the causal or unilateral RF model

y(i,3) + 0,y(i,3-1)+6,y(i-1,3) + 0,y (i-1,j-D=/Au(i,j)  (2.6)
where w(i,j), (i,jX Q, is an independent and identically distri-
buted zero mean, unit variance noise sequence. When 03=0162,
we obtain the popular separable model widely used in the imace
processing literature [13].

The continuous counterpart of (2.6) is

(v a vy auley) = cx) (2.7)

axay alm 8.25—}7 a3 ux,y = eilX,y .
When ay = aja,, we obtain a separable hyperbolic equation. The
Green's functiion G(x,y) corresponding to (2.8) can be written

as [11]

-a,x-a,y
G(x,y) = e 2 L

J0(2/(a3—ala2)xy)u(x)u(y) (2.8)
where Jo(-) is the Bessel function of the first kind and
zeroth order and U(.) is the unit step function. As the result-
ing ACF structure is tedious to analyze we consider the separable
model, i.e., az=aja,. Using this assumption and JO(O) = 1, we
have
-ajX~a;y

G(x,y) =e u(x)ul(y) (2.9)
Substituting (2.9) in (2.5)

o({x,y) = exp(~a|x|-aly]) (2.10)

Before proceeding further we give a formal definition of the

flat/nonflat structurec.
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. -
Definition: The ACF is flat along the X axis if -ii%}'?ﬁ- = 0 and i
x=0 E
is nonflat if —gi%§11 < 0 to the right of the origin, i.e.,
~§1%iXL <0, for &0 and arbitrarily close to the origin.
x={

ot

(This particular definition of nonflat structure is used to get

over some singularities at the origin.)

From the definition and eq. (2.10) it is clear that the
ACF for the hyperbolic case is nonflat along the x and y direc-
tions.

Case ii: (Parabolic)

Consider the semicausal model

y(i,j) = a(y(i-1,3) + y(i+l,3) + y@,j-1))+/vw(i,3) (2.11)
where |a|«< % to ensure stationarity and w(i,j) is as in eg. (2.6).
Eq. (2.11) can be written as
v(i,j)-3ay(i,j) = aly(i~1,3)+y(i+1l,3)-2y(i,])
- y(i,3)-y(i,3-1)} +w(i,J)

Using the continucus approximation we have the parabolic

o’ 2w g TP WA Vs oo (AR PO 1 A NERIREEN, e g YR oA - I M, | e S Y

equation
3 32 2
(3; - 5;7 + Y u(x,y) = c(x,y) (2.12)

where Y2 = (1~3a}/a.

e sy, N =

The Green's function corresponding to this equation can be

3
i
i
H
3

written as [11]

2
X

(3%

- exp(-Yzy - yul(y) (2.13)

Z/ﬁ—y

G(XIY) =




Eqn. (2.13) shows that an impulse at the origin only has

an effect at positive values of y. Thus the y axis is a time-
like axis whereas the x-axis is a space-like axis. Substituting

(2.13) in (2.5) (we are omitting the manipulation details), the

ACF is

- Y
p(x,y) = e o (X - y/2Zy) + e *(1-0(—% + ¥v/2¥)) (2.14)
v2y /2y

where ¢(x) is the probability that a standardized Gaussian random
variable X is <x.
We now show that p(x,y) in (2.14) is flat along the x-axis

and nonflat along the y-axis. Differentiating (2.14) w.r.t. x,

dplx,y) -ye Xo (X - v/Iy) + e Y¥p 2 (X -Yv/2y)

X /2—§ X )/E
+ye*(1-0 (== + v/Z))-eTT* 2 o (- —y/27) (2.15)

2y 2y

b (x) 2

since ¢(b(x)) = —1_ / et/ 2a¢
21 e
vo | -tbx)?
V2 dx :

Using (2.16) and ¢(-x) = 1-¢(x) we have %%(x,y) =0
x=0

Similarly, differentiating with respect to y, it can be

shown that
2
ap(x,y) - _ X _xT 2 1/2
3y ﬁexp( Iy - YY)/

which by definition is not flat along the y axis.
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Case iii (Elliptic):

Consider the discrete model
y(i,3) = aly(i,j=-1)+y(i,3+1)+y(i-1,3)+y(i+1,3))+Nwli,j) (2.17)
Proceeding similarly to the parabolic case, the continuous

counterpart of (2.17) is
2 2

d ) 2
(—5 + —3 - aDulx,y) = c(x,y) (2.18)
8x2 Ay

where az = (1-4a)/a

The Green's function for this equation is [3]

G(s) = 3% KO(aS) (2.18)

where s = /x’+y? and KO(-) is the modified Bessel function

Eri. o iesas

of the second kind. Substituting (2.18) in (2.5), the ACF for
the elliptic case is
p(s) = (as)Kl(as) (2.19)
Both the axes are space-like and the function p(s) is flat

in all directions.

Case iv (Conditional Markov):

Consider the isotropic conditional model where the observa-

tion at (i, j) depends on the east, west, north, and south neigh-
bors. The basic equation of this model is
E(y(s)|all y(sl), sltﬂ, sl#s)
= Bly(s+(i-1,3))+y(s+(i+l,3j))+y(s+(i,j-1))+y(s+(i,j+1))] (2.20)
Equivalently, (2.20) can be written as

y(i,3) = Bly(i~1,5)+y(i+1,3)+y(i,j-L)+y(i,3j+1))1+/vnii,j) (2.21)




where n(i,j), (i,j) &2 is a correlated noise sequence with zero

mean and variance unity. In the Gaussian case, it can be shown
[4] that the spectral density function of the RF model in (2.21)

is similar to the marginal spectrum of a spatial temporal model,

dyi,j,t = —XW(E)yi'j'tdt + dzi,j,t (2.22)
where
¥ - =
(Y (E) l)yi,j B(yi—l,j+yi+1,j+yi,j-l+yi,j+l) (2.23)
and dzi i, t are homogeneous independent terms with zero mean.

In the limiting case, the continuous counterpart of (2.22),

(2.23) is
2 2
[%F + k2_(_§§ + —35)]u(x,y) = z(x,y) (2.24)
ax ay
which is the well known diffusion equation. An appropriate

Green's function [11l] for (2.24) is

1 2, x%4y?
G(x,y,t) = yeT exp{-k“t - —ZEX—}, t>0 (2.25)
= 0, otherwise

For this case, we have the covariance function

oy wr )

Rix,y) = ) f / G(u,v, 1)G(u-x,v-y, 1)dudvdr (2.26)
IT=0 y=-o» y=-x

Substituting (2.25) in (2.26) and performing the integration

with respect to u,v co-ordinates (the manipulative details are

omitted),

bl s
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al 2 2
R(s) = [ T exp{-2k“t- %E at}
t=0
1 -
= 37 Kolks), s = VXZ+y (2.27)

where KO is the modified Bessel function of the second kind.

For small values of s, Ko(s) behaves like -{ns and hence R{(s) E
is nonflat along all axes. (Note that since Ko(s) is —w at s=0,

we have avoided discussing the normalized ACF p(s). .




3. Correlation structure of discrete random fields

In the preceding section the flat/nonflat structure of the
ACFs for the continuous RF models was analyzed. It is a natural
question to ask if such behavior is exhibited in the discrete
space. To analyze the structure of the lattice ACFs we need to
obtain expressions for the correlation values for different
models, viz., the causal, semicausal, and noncausal simultaneous
models, the noncausal conditional Markov models, and the MA models.
The ACF for the causal neighbor set can be easily obtained by
using the recursive method [8]. This approach is not valid when
a bilateral dependence is introduced along any of the axes. An
alternate procedure would be to consider the corresponding
spectral density function in the discrete space and use numerical
integration techniques to obtain the ACF. This procedure becomes
tedious for different neighbor sets and also the resulting numer-
ical values are only approximate.

To compute the ACF for simultaneous and conditional models
for different neighbor sets we use RF representations on torus
lattices. Such representations for conditional Markov models
have been suggested in [6,7) and for simultaneous models in
(5,6]. The advantage of the torus representation is that the
expressions for the ACF can be written in closed form for an
arbitrary neighbor set. For large values of M, the edge effects

due to the torus representation can be ignored.

-




We first consider the ACF for causal neighbor sets defined
on a plane lattice and then consider senricausal and noncausal
representations on torus lattices. Our interest is not only
to obtain the correlation values but also to analyze the flat/
nonflat structure at lower lags. The discrete equivalents of
the criteria considered in Section 2 are defined below:
Definition; The discrete ACF p(i,j) is flat along the i-axis if

1-p(1,0) <p(1,0)~p(2,0) (3.1)
flat along the j-axis if

1-p(0,1) =~ p(0,1)- pi0,2) (3.2)
and flat along the k-axis if

1-p(1,1) <p(l,1)~p(2,2) (3.3)

The ACF is nonflat along an axis if the reverse of the

ineguality is true.




3.1 cCausal separable model

Consider the RF model

y(i,j) = 9 y(i,j-1) + 6 y(i-1,3j) - 6 0 y(i-1,3-1)
0,-1 1,0 0,-1 -1,0

+N wii,j) (3.4)

It is well known that the ACF is

o i '
p(i, i = 0_{,A 00!1{ , 100'_1| < 1'|O-1,o| <1 (3.5)

Equation (3.1) requires

, 2
1-6_3,0 =%1,0 = 1,0

or (1-8_y o) = (1=6_y )0y ¢

or 1 < 0_1’0

which are not true due to the constraint on 8 in (3.5) to

-l,o
ensure stationarity. Similarly, it can be shown that the ACF
is nonflat along the j and k axes.

To compute autocorrelations for neighbor sets with bilateral

dependence, we use the RF representation on torus lattices

which are defined below.




3.2 Simultaneous models on torus lattices

The basic equation is

y(s)-§ = L i .{y(s+(i,j))-6} = Aw(s), s (3.6)
(i,j)en *J

In (3.6), {w(s), s€Q} is a sequence of independent random varia-
bles with zero mean and unit variance. Note that w(s) is cor-
related with y(s+sk) if the neighbor set includes bilateral de-
pendence along any axis. The coefficients Oi,j must satisfy the

following condition to ensure homogeneity of the RF model:

1230 <1 if |z l=lz,]=1 (3.7)

) Oi’jzlz2

(i,j)eN
Typical examples of neighbor sets N are
i) {(0,1),(1,0),(0,-1),(-1,0)} (noncausal)
ii) {(1,0),(0,-1),(-1,0)} (semicausal)
Note that the notation we use for indicating the neighbors is
the same as the notation used in specifying Q. The representation
on torus lattices is introduced by imposing the condition
yl(i,j)+(il,jl)] = y((i+ij-1)mod m+1, (j+jl-1)mod m+1] (3.8)
for all (i,3j)cs.
This particular representation lcads to the following expression
for the ACF:
p(k,2) & cov[y(il,jl), y(il+k,j1+£)]

. : 2
I Agli=Dk+(5-1187] |y, |

-~ i'J=1 (3.9)
VAN
) ij




2

" 1- I 0 A (i=-1)k+(j-1) ¢, (3.10)
ij (m,n) €N m,n"0
- /T 2m
and Ao = exp{/~1 - (3.11)

Comments: (1) The details of the derivation of egn. (3.9) can
be found in [6].

(2) Given any arbitrary neighbor set N, and the parameters
Ui,j’ (i,j) €N, the correlation function at a specified lag can
be computed easily.

We give below the computed correlation values for different
neighbor sets and parameter values. The corresponding structure

at lower lags is also given.

Case i: Semicausal simultaneous models

Consider the neighbor set N = {(1,0),(0,-1),(-1,0)}, corre~
sponding to the model

y(s)=6 = I 0, :ly(s+(i,3)-81+/wl(s) (3.12)
(i,j)en **J

The lower order correlations computed using (3.9) and the
structure along each axis are given in Tables 1 and 2. The
following observations are of significance:

1) For the isotropic case, for a range of parameters .31-.33,
the ACF has a flat structure along the i-axis.

2) The ACF has a nonflat structure along the j-axis for the

complete range of parameter values.




3) By making 6

o, -1 as large as possible the actual corre- +
, 3
lation values p{0,1),p(0,2) can be increased but the structure
is still nonflat along the j-axis.

Case 1ii: Noncausal simultaneous models

Consider the neighbor set N = {(0,1),(1,0),(0,-1),(~-1,0)1

corresponding to the RF model

y(s)-8 = ) 0, Ay (s+(i, ) ~81+/vw(s), s&& (3.13)
(i,j)exn *7J

The numerical values of the ACF and the structure at lower
lags along the different axes are summarized in Tables 3 and 4.
Table 3 corresponds to the isotropic case and Table 4 to the
nonisotropic case. The following observations are of interest:

l) The ACF in the continuous case is flat in all directions.
In the discrete case flat structure along the i,j and k axes is
exhibited at values of 6 close to .245 and above.

2) Flat structure along the i and j axes is exhibited for
the range of parameters =z.2350.

3) Introducing nonisotropy changes only the rate of decay
of the correlation function, but the flat/nonflat behavior is
unaltered.

Case iii: Noncausal 8-neighbor models

Consider the neighbor set N = {(0,1),(1,1),(1,0),(1,-1),(0,-1),

(-3,-1),(-1,0),(~-1,1)} corresponding to the RF model

y(s)-§ = & B, .ly(s+(i,j))-81+/Vu(s), s&Q (3.14)
(i,3)en 173




!
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The numerical values and the structure at lower lags along
the different axes of the correlation function are tabulated in
Table 5. The relevant observations are:

1) For sufficiently high values of the parameters flat
structure is displayed along all axes.

2) By making different neighbors strong, flat structure can
be obtained along any desired axes.

3) For 0=.1220, though the correlation values are high,

the structure is still nonflat along all axes.
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3.3 Conditional Markov models on torus lattices

The basic equation of the conditional Markov model is

E(y(s)|all y(s)), s, €, s #s) -u

= I 8, sly(s+(i,3))+y(s-(i,3))-2u] (3.15)
(i,3) &Ny rJ
where N1 is an appropriate neighbor set. Equivalently, (3.15)

can be written as

y(s)-u = & 0, j[y(s+(i,j))+y(s-(i,j))—2u]+/3e(s) (3.16)
(i,J) &N, 7
where {e(s), st} is & correlated noise sequence with zero mean

and unit variance. Note that a symmetric structure is imposed

on the basic equation of a conditional RF model, i.e., when a

neighbor (i,j) is included the neighbor (-i,-j) is automatically

included. Thus it is sufficient to characterize the neighbor set

by using the set Nl' which includes only half of the symmetric
neighbor set. Thus if the dependence is on the neighbors
{(0,1,(1,0),(0,-1),(-1,0)}, we denote this by using the set
N, = {(0,1),(1,0)}. For stationarity of y(*), the coefficients

must satisfy the condition

. k 2 -k_ -
P ) (z, 2z, +z, "z, )| <1, when |z |=|z,|=1 (3.17)
(k,Z)ﬁNl k,L 1 72 1 2 1 2

The representation on a torus lattice is obtained by imposing

condition (3.8). This representation leads to the following

expression for the ACF:

p(k,2) = cov[y(il,jl),y(il+k,jl+£)]
M 2
Ao[(i-l)k+(j-l)£]/||p£j||‘

T 5 (3.18)
L/l
i,j=1

X
i,j=1

P
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where

u' o= 142 cos AOKi-l)m+(j-l)n] (3.19)
ij (m,n)tN1

and
A, = explv/~1 2n (3.20)
0 m ’

Comments: The details of the derivation of (3.17) can be found
in {6]. Given an arbitrary neighbor set N, and the parameters
Ui,j' (i,j)&Nl, the ACF at a specified lag can be computed
easily.

We consider the computation of the ACF for some conditional

models.

Case a: Noncausal conditional model

Consider the neighbor set Nl = {(0,1),(1,0)}, corresponding
to the RF model
y(s)-u = Go’l[y(s+(0,l))+y(s+(0,-l))]

+ 8 o ly(s+(1,0)+y(s+(~1,0))] + /ve(s) (3.21)

The lower order correlations and structure of ACF
along the axes are given in Tables 6 and 7. Some of the
interesting observations are:

1) The values of the correlation are much lower compared to
the correlation values of simultaneous models in Tables 3 and 4.
The ACF is monotonically decreasing and the p(0,4), p(4,0) (not
shown in the table) are very close to 0.

2) Even at the high values of the parameter the ACF does not

possess flat structure along any axis.




k.
parameter and the correlation values. Even when the parameter f

[
‘ 3) There is a tradecoff in the numerical values of the 4
i
1 is increased to .475 in Table 7, p(0,1) is only 0.7673.
i

Case b: Noncausal conditional models

Consider the neighbor set N, = {(o,1),(1,0),(-1,1),(1,1) 1},

corresponding to the RF model

y(s)-u = 04 1 [y (s+(0,1))+y(s+(0,-1))]

+

elloly(s+(l,0))+y(s+(~l,0))]

+

81,1 [y (s+(-1, 1)) +y (s+(1,-1))]

+

Bl l[y(s+(l,l))+y(s+(--l,-1))]

’

+/ve(s) (3.22)
The lower order ccrrelations and the structure along the

axes are tabulated in Table 8, The relevant observations are:

1) The correlation values are much lower compared to the

simultaneous model with the same neighbor set.

2) The ACF always has nonflat structure (compare with Table 5).

3) The correlation values are higher when compared to the

four-neighbor conditional model in (3.21).
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3.4 sSpatial moving average model

Moving average models have been found to be very useful in
time series studies and hence their two-dimensional generaliza-
tions should also be useful in modeling the observations from
a grid. The ACF of MA models falls off very rapidly. Specifi-
cally, the isotropic four-neighbor model considered here has zero
correlation values beyond lag 2 and has nonflat structure along
all directions.

Assume that the observations {y(s), s€Q} obey the MA model

y(i'j) = 0((u(i-l’j)+(U(i+l’j)+lﬂ(i,j-l)+u\(i'j+1)+w(i,j)), ‘9!%

(3.23)
where {w(i,j), (i,j)€Q}lis an i.i.d. noise sequence., The two-
dimensional spectral density function Sy(wl,wz) is given by

- 42 2
Sy(ml'wZ) = 0“(1+26 cos ml+29cos w2) (3.24)
Using the Fourier relationship between the ACF and the
spectral density function, the correlation function is
1 LI

p(k,8) = ————~ _ [ [ cos kw, cos 2w, (l+26cos w
4(1+46) 2n2 - -7 1 2 1

+20c0S w2)2dwldw (3.25)

2
Performing the integration in (3.25) to evaluate a few low
order correlation values we obtain the results shown in Table 9,
It can be easily checked that the ACF has nonflat structure
along all axes, in the allowed ranges of 6. The actual values

of the correlations are tabulated in Table 10. The correlations

r-5a




decay rapidly, and in fact the theoretical correlations p(2,3),
p(3,3) are zero. The nearest correlations ;,(1,0)=p(0,1) are
bounded above by .4.

The above method of evaluating the ACF values becomes tedious
for an isotropic MA model. However by considering the MA model
on a torus lattice closed form expressions can be obtained for
the ACF.

Assume that the observations obey the MA model in (3.26) and
the torus conditions in (3.8):

y(s) = Zei'jw(s+(i,j»+w(s), s € (3.26)
To ensure stationarity the following condition should be satis-
fied:

)

jl <1 if |z ]=lz,|=1
(i,3) €N 12

i
i,3%1 %2
where N is the neighbor set of dependence.

The torus representation for MA models leads to the follow-

ing expression for the ACF:

m 2
. § Ao[(p-l)k+(j—l)£]||uij||
p(k'£)= l’l::l m 5 (3.27)
RN
i,j=1
where
w.. = 1+ 0 A (i-1)m+(j-1)n]) {3.28)
ij (m,n) N ,n°0
and

Ag = exp(/:T%£} (3.29)




: The derivation of (3.27) is given in the appendix.

1 ] The ACF values computed using (3.27) and N={(0,1),(1,0),
(0,-1),(-1,0)} are given in Table 1ll1. Note that the ACF values

are slightly different (see the row corresponding to 6=.24)

from the exact values in Table 10. This is due to the torus

assumption introduced. However the error due to the approxima-

tion is negligible.




3.5 Spatial autoregressive and moving average models

For the sake of completeness we consider the correlation
structure of gspatial ARMA models. We assume that the given
observations {y(s), s&Q} obey the RF model

y(s) = p) B, .y(s+(i,3)) + z B. .wls+(i,3i))

(i,jren 3 (i,j)en *rd
+/vw (s) (3.30)

To ensure stationarity the following condition should be

satisfied:

E6, Loz b2. 9] <
|(i.j)eN i3 7%
and i
l(i?j)tNBi'j 2, z, | <1 whenever |zl|=|22|=l

The torus representation leads to the following expression

for the ACF:

P Ao iol ‘ v 112 2
. N 0 1- )k+(3‘1)8]||“i'[| /llulll
) 1 le J ]
pik,t) = ~ p
.12 2 \
R A N (3.31)
ilj=1 - )
where
W .= 14 L 8 A-[(i-1)m+(§-1)n] (3.32)
1,3 (m,n)tNm’n 0
and
“ij =1 - z ] nXO[(i—l)m+(j—l)n] (3.33)

{m,n) <N

R,

-
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Equation (3.33) can be derivedsimilarly to (3.27) and is

not given here. The ACF values computed for some parameter

values in the allowed region are given in Table 12.




4. Experimental results

In the previous sections the correlation structure was
analyzed for the different models. To determine if this struc-
ture matches with real data, experiments were done using 64x64
windows from real image patterns. Four windows, each from four
Brodatz textures, sand, wool, grass, and raffia, and from three
terrain textures, lower Pennsylvanian shale (LP), Mississippian
limestone and shale (ML), and Pennsylvanian sandstone and shale
(PS), were used in the experiments. The sample correlation

function, r(s,t), defined below was computed for each window.

N-s N-t
. , . N
-E -E (y (i, 3)-f) (v (i+s, 3+t) -1
r(s,t) 1 i=1 j=1 (4.1)
! (N-s) (N-t) L N N A2 .
3 b I (Y(llj)—U)
N i=1 j=1
A1 ¥ N
where y = = L L y(i,J) (4.2)
N® i=1 j=1

The computed sample ACFs for the Brodatz textures and the terrain
samples and the corresponding correlation structures are given
in Tables 13 and 14.

By matching the sample correlation structures and the theo-
retical correlation structures useful inferences may be drawn
about the types of models that are appropriate for given images.

Consider, for instance, the windows of the Brodatz sand texture.

RS

B A

i T T IS AN KT s

|
§1




P

The correlation functions exhibit flat structure along all axes

and the correlation values are quite high.. Noncausal simulta-
neous models with neighbor sets (east, west, north, and south)
or (east, west, north, south and the four diagonal neighbors)
seem appropriate, since the causal and seimcausal simultaneous
models, the conditional Markov models, and the MA models do not
have flat structure along all axes. Similar conclusions can be
drawn feor the grass and wool textures. All the windows from
raffia have flat structure along the i and j axes

and nonflat structure along the k-axis. The noncausal simul-
taneous models in (3.13) possess this structure for some ranges
of parameter values. By manipulating the parameter corresponding
to different neighbors the RF model in (3.14) can be made to
have this structure.

The windows of terrain types LP and ML have nonflat structure
along.all axes and the correlation values are quite .low. For
these windows, the causal, semicausal, and noncausal simultaneous
models and the conditional Markov models can be considered.

Since some of the windows (2 and 4 of LP) have nearly equal
values of p(1,0) and p(0,1), the semicausal models can be dropped
out of consideration.

The windows of terrain type PS exhibit flat structure along
the i axis and nonflat structure along the j and k axes. The
semicausal and noncausal simultaneous models in equation (3.12)

and (3.16) possess this structure (see Tables 1, 2, and 5).




As another illustration consider the classical Mercer and
Hall wheat data mentioned in [3]. The data presents the results
of a uniformity trial on wheat. The ACF values of this data
at lower lags is given in Table 15 (taken from [3]) together with
the structure along each axis. Since the structure is nonflat
along all axes, our inference method suggests that it is appro-
priate to consider the causal simultaneous models, conditional
Markov models, and MA models. The MA models can be avoided since
the ACF has large values at lags of 3 and 4. So the choice is
between causal simultaneous models and conditional models.

Our conclusion that causal simultaneous models are preferable to
noncausal simultaneous models agrees with Whittle's observation
[3], that unilateral models fit better than the noncausal models.
The final choice between the conditional models and the simul-
taneous models can be made by using the theory developed in [1]

and [6].




5. Discussion

We have considered the correlation structure of some NNRF
models. Specifically, we considered two classes of RF models,
simultaneous models and conditional Markov models. We make a
brief comparison of the models below. |

Of the 4-neighbor noncausal simultaneous models (3.13) and
the conditional Markov models (3.21) the former always account
for higher correlations than the latter, Also, the simultaneous
models exhibit a different structure (which is observed in some
real textures) that is not possessed by the conditional Markov
models. Even when the neighbor set is as in (3.22) (four more
diagonal neighbors added), the correlation values are lower
(Table 8) compared to the simultaneous model with four neighbors
(Tables 3 and 4). To account for the same correlations as in a
4-neighbor non-isotropic simultaneous model, a conditional model
which includes the nearest neighbors and 4 additional neighbors
on the east, west, north, and south is required [4]. This
necessitates the use of a 6~parameter model. One of the well-
known rules in model building is to keep the parameters to a
minimum. Thus, the simultaneous model with 4 neighbors is pre-
ferable to the conditional model with 6 parameters.

Secondly, the conditional models defined by the conditional
probability structure (3.15) are subject to some unobvious and
highly restrictive consistency conditions. When these conditions

are enforced, the conditional probability structure becomes

R e B T
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degenerate [14] with respect to the joint probability structure
implicit in the definition of simultaneous models.

Thirdly, the reflection-symmetric condition on the parameters
of the conditional Markov model is not required in the simul-
taneous models.

The conditional models with 4 neighbors have correlation
values between those of the simultaneous models and MA models
with the same neighbor sets. The MA models have a rapidly
decaying ACF, and are appropriate for patterns which have
strong local dependence.

The possible structures of the ACF that can be accounted
for by the simultaneous models are quite varied compared to the
conditional models (see Tables 3, 4, and 5). The particular
flat structure observed in the simultaneous models is due to
the bilateral dependence introduced. When the neighbor set
{(0, 1), (0,-1), (~1,0)} is considered, flat structure only
along the j axis is observed (not tabulated here) for ranges of
parameter values. A similar behavior is shown in Table 5, where

by making particular neighbors strong (high parameter value),

flat structure along the desired axis is obtained. [For no
explicable reasons, the neighbors {(-1,1), (+1,-1)} do not
contribute to the flat structure along any axis.] Note that

the causal separable simultaneous model does not possess flat
structure throughout the allowed ranges of the parameter values.

Also, in the semicausal simultaneous model, the structure is




always nonflat along the j axis. The 4-neighbor set conrnditional

Markov models also possess nonflat structure along all axes as
their continuous counterparts suggest.

The empirical inference method discussed in this paper
for identifying the models is not necessarily exact. It is

inexact, because the question of what types of models occur in

practice and in what circumstances, is a property of the behavior

of the physical world and cannot be decided by purely analytical
argument. However, the preliminary identification commits us to
nothing except to tentatively entertaining a class of plausible
models.

The analysis of ACF structure undertaken here is relevant
to studies of texture. It is known that the rate of falloff of
the ACF is related to the size of tonal primitives [15]. If the
tonal primitives are relatively large, the ACF drops slowly,
while if the tonal primitives are small, the ACF drops quickly.
Also, it is known that tonal primitives of larger size are indi-
cative of coarser textures and tonal primitives of smaller size
are indicative of finer textures. It has been experimentally
verified that there is a very high positive correspondence {[16]
between the grading of textures from fine to coarse by human
viewers and the % distance of the ACF. Thus, the usefulness of

the ACF as an inference tool need not be overemphasized.
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Appendix
We derive equation (3.27). Equation (3.26) can be eguiva-

lently written as

y = VVB(8)u (1)
where y& = {y(1,1), y(1,2),...,y(L,M),...,y(1,1),...,v(14,;,
wT = {w(l,1),...,w(M,M) ] and B{(0) is a block circulant matr.x

By,1 B2 Bi,w
By By, oo By
B = (2
P12 By - By
Lo —J

For example, when N = {(0,1),(1,0),(0,-1),(-1,0)}, we have

Bl,l = circulant (1,60,1,0,...,60,_1)
Bl,2 = circulant(ﬁllo,o,...,o)

Bl,M = circulant (0—1,0'0" ., 0)
By 4 =0 37,2,

Hence the covariance matrix Q = E(yYT) can be written as

Q = B(0)BT(0; (3)

From the theory of circulant matrices, the eigenvectors of

’

M-1, )
i <3 .

B(Uy) are the Fourier vectors iij 1=i,jsM  where

gii = column(tj,kigj,...,x.

tj = column(l,Aj,Ag,...,X

and Ai = Xo(x-l)

and the corresponding eigenvectors are




1=2i,jsM defined as

I
{Aoi(i-l)m+(j-lim}

1)

u,. = 1+ I 6 (4)
13 (m,n) €N m,n
Since Q is a symmetric block-circulant matrix, Q can be

~

expanded in terms of its eigenvectors as

M T
1 * 2
Q = HUNEE S SR I RO (5)
~ M i,j=l~1]~lj 1]

Using (5) and the definition of p(k,¥)

M1 -1)+3 ), M +k-1) +5 +L-1

plk, L) =
ML -1 +3 ), M(i-1)+],

where q; j
’

denotes the (i,j)th element of Q, we arrive at (3.27).
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Table 9. Lower order correlations of moving average model

in (3.23).
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Fig. 1 Convention for co-ordinate axes.




