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ABSTRACT

This paper discusses the correlation structure of some
two-dimensional nearest neighbor random field models of images.
The correlation structure of two nonequivalent random field
models, the so-called simultaneous model and the conditional
Markov model, are analyzed in continuous as well as discrete
space. Analyses of two-dimensional moving average models
and autoregressive and moving average models are also included.
Based on the structure of the correlation function at lower laqs
an empirical test is suggested for the inference of image
models. Examples from real textures are given.
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1. Introduction

Random field (RF) models have many applications in image

processing and analysis. Ty2ically, an image is repre-

sented by a two-dimensional scalar array, the gray level varia-

tions defined over a grid. One of the important characteristics

of this data is the statistical dependence of the gray levels

within a neighborhood. For example, y(sls 2), the scalar gray

level at position (Sl'S2), might be statistically dependent on

the values of gray levels over a neighborhood that includes

{(sl-l s2), (sl+I,s 2), (sl,s2-l), (sls 2+l)}. This is in con-

trast to the familiar time series models where the dependence

is strictly on the past observations. An image represents a

statistical phenomenon on a plane and hence the notion of past

and future as understood in classical time series analysis is

not relevant.

Prior to the use of RF models for images, one of the basic

problems to be tackled is the choice of an appropriate model.

Suppose we are given a set of observations {y(s), sEn}, 0 =

{s = (i,j), ii,jsM}, defined over a square lattice and it is

required to identify an appropriate two-dimensional RF model

to fit the given data. In such situations not only do we have

all the usual problems of model specification that arise in time

series analysis but in addition we have problems that arise from

the possible existence of directionality of dependence. Even

when only the 8 nearest neighbors are allowed there are 28 pos-

sible neighbor sets to be considered. If some inference regarding



directionality of dependence can be made, many savings can be

achieved in the search for appropriate models.

Secondly, the neighbor set selection procedure developed in

[1] assumes that a basic set of "good models" is available and

chooses the best model from the given set. Usually, the basic

set of "good models" is chosen by intuition or by using some

ideas regarding the underlying physical processes that might have

generated the data. As it is often difficult to understand the

underlying physical processes, some empirical tools are necessary

to make a reasonable choice of good models.

In this paper we suggest some empirical methods using the

autocorrelation function (ACF) for the inference of a basic set

of two-dimensional RF models. Such methods are quite popular in

time series analysis [2]. For instance, if the sample ACF of the

given one-dimensional (weakly stationary) time series is very small

after a few lags (say) p, then one might use a moving average modelof

order p. The ACF is a useful tool in the inference of basic models

since it together with the mean and variance possesses all the

information about the underlying probability distribution under a

Gaussian assumption. It might be expected that such methods

should find use in inferences regarding two-dimensional RF

models.

We first analyze the correlation structure of two-dimensional

RF models and subsequently discuss their use in the inference of

models.

L . ...... ...... ..... ... ........ .. ........ ....... . ...



We consider three different classes of two-dimensional

RF models, the simultaneous models [3-6], the conditional Markov

models 14,6-71, and the movinq averaqe (MA) and the auto-

reqressive and moving average (ARMA) models. Our main

concern is focussed on the so-called nearest neighbor (NN) modes,

i.e. the dependence is restricted to the 8 neighbors. The three

classes of models mentioned above are non-equivalent. For a

given simultaneous model an equivalent (in second order properties)

conditional Markov model can always be found but the converse is

not true. The underlying probability structures of the NN

simultaneous models and NN conditional models are different.

The conditional expectation E(y(s)jall y(s1 ), s ,Sl s) depends

only on the members of the neighbor set of dependence for the

conditional models, but this is not true for the simultaneous

models. The class of spatial MA models falls outside the classes

of finite simultaneous and conditional models and seems to be of

a basically different structure.

The ACF can be used in two ways for the inference of models.

First by matching the numerical values of the theoretical ACF

for different models and the sample estimate of ACF,

useful inferences may be drawn. This assumes the availa-

bility of theoretical ACFs for the different models mentioned

above. The expressions for the ACF can be written down easily for

spatial moving average models and simultaneous RF models with

unilateral or causal neighbor set dependence as in (8]. When

bilateral dependence is introduced along either or both of the



axes, the recursive method used in (81 is not applicable. How-

ever the ACF can be computed for both simultaneous models and

conditional Markov models for any arbitrary neighborhood by

using RF representations on torus lattices [6].

Secondly, the specific structure of the ACF at lower lags,

viz., whether it is convex downwards or concave downwards, can

be used in making additional inferences about the model. This

can be understood by considering the ACFs of spatial and temporal

autoregressions in the one-dimensional case. It is well known

that the ACF R (t) for a stationary Gaussian Markov process depends

on distance and is given by R(t) = e-  , tO, where a is some

constant. This function is downward convex to the right of the

origin (i.e. tR(t) t=O<0). Consider the spatial autoregression

xt = a(xt 1 +xt+l)+ut (1.1)

Using the central difference operator (1.1) can be written as

(l-2 a)x t = aA
2x t+u t  (1.2)

where A2 is the second order central difference operator. Now,

consider the continuous analog of (1.2), namely
(d2  2
( 2 - )x(v) = u(v) (1.3)

dv

where y2 = (l-2a)/a. The ACF for this model can be shown to be

[91

R(v) = (l+yv)e-yv (1.4)

and A R(v) j = 0. The spatial autoregression possesses an ACFv=0

that is downward concave at the origin, unlike the Gaussian-Markov



processes, and it appears that directionality can be inferred

by studying the behavior of the low-order correlation structure.

Similar behavior of the ACF for continuous RF models has been

noted in the literature [31. Thus in the two-dimensional conti-

nuous case, depending on whether or not bilateral dependence is

introduced along the axes, concave (flat) or convex (nonflat)

behavior is noted. Using a discrete equivalent of the nonflat/

flat condition, inferences about the directionality can be made,

for the discrete RF models.

Our approach to the analysis of ACF structure is as follows:

We first consider the structure of the ACF of continuous RF

models corresponding to discrete simultaneous and conditional

models. The former models yield linear two-dimensional stochastic

partial cifferential equations (SPDE) while the latter correspond

to a spatial temporal model. By identifying the appropriate

Green's functions the flat/nonflat structure of the ACF is

analyzed and a case is established for its use in the inference

of models.

Using the RF representations on torus lattices we compute

the ACFs for different neighbor sets for the discrete simultaneous

and conditional models and analyze their structure. Some of the

interesting observations are: (1) The simultaneous models have

high correlation values compared to the conditional models for

the same neighbor set and parameter values. (2) When bilateral

dependence is introduced the NN simultaneous models exhibit a

flat structure along the axes for certain ranges of parameter



values. For instance, when the isotropic dependence is on the

east, west, north, and south neighbors, flat structure along the

i,j axes is observed, followed by flat structure along the i,j,k

axes (see Fig. 1) as the parameter value is increased. (3) The

NN conditional models do not exhibit flat structure for the

same neighbor set of dependence and parameter values as in the

simultaneous models.

To check whether real image patterns exhibit flat/nonflat

behavior, experiments were performed with texture and terrain

samples. The sample ACFs of 64x64 windows were computed and the

ACF structures at lower lags were examined. The samples of

satnd, grass, and wool exhibit flat structure along all axes,

while the samples of raffia exhibit flat structure only along

the i and j axes. On the other hand, the sampes of Lower Penn-

sylvanian shale and Mississippian limestone and shale exhibit

nonflat structure in all directions. The samples of Pennsyl-

vanian sandstone and shale exhibit flat structure along the i

axis alone and nonflat structure along the other two axes.

The organization of the paper is as follows: Sections 2 and

3 consider the correlation structures of continuous and discrete

RF models respectively. In Section 4, experimental results

with real texture images are given. By matching the sample ACF

and theoretical ACF, inferences regarding the appropriate model

are given. Discussion is given in Section 5.



2. Correlation structure of continuous random fields

In this section we begin with discrete, two-dimensional RF

models, consider their continuous counterparts, and discuss the

correlation structure of the continous RF models. Simultaneous

RF models are classified as causal models (unilateral dependence

along i,j), semicausal models (unilateral along j and bilateral

along i), and noncausal models (bilateral along i and j). The

continuous equations corresponding to these models are hyper-

bolic, parabolic, and elliptic SPDE [10], respectively. The

continuous model corresponding to the conditional Markov model

with neighbor set dependence on the east, west, north, and south

is a spatial-temporal model [4]. By constructing the Green's

function using transform techniques [111 the ACF is derived for

each of these models.

It turns out that the ACF of the hyperbolic equation is non-

flat along all directions; that of the parabolic equation is

flat along the i axis and nonflat along the j axis; that of the

elliptic equation is flat along all directions; and that corre-

sponding to the spatial temporal model mentioned above is nonflat

along all axes. Based on these observations a prima facie case

is established for using the structure of the ACF for drawing

inferences about RF models.

We first establish some framework for the computation of the

ACF of an SPDE [121 and consider the different cases separately.

Consider the general second-order linear SPDE



a 2  a2  a2

(a - + + 2h + 2g + 2 f + c)
ax7 ay Y

U(x,y) = C(x,y) (2.1)

or equivalently

P(L,-)u(XY) = C(x,y) (2.2)

where P is the polynomial in -,-a and c(.) is uncorrelated

2noise, with zero mean and variance a2 . The solution to (2.2)

can be written as

u(x,y) = f fG(x-u,y-v) e(u,v)dudv (2.3)
-0 - (XI

where G(x,y) is the Green's function satisfying

= S(x,y) (2.4)

and

'S(x,y) = 1 if x = y = 0

= 0 otherwise

When c(u,v) are entirely uncorrelated random impulses, we have

for the autocorrelation of the process u(x,y),

-2

cor (X,y) = J 2 G(u,v)G(u-x,v-y)dudv

and the normalized correlation function of u(x,y)is

OD 00

Jr JG(u,v)G(u-x,v-y)dudv

P(x,y) = (2.5)
f W 1 G2 (uv)dudv

.. . . .. . .. ... I II I II.. .. . .. . ... . .. ... .. .. . . . . . . .. . . . .. .. . .. .. . .. . . . . . .. . . . .. . .. ....



Case i: (Hyperbolic)

Consider the causal or unilateral RF model

y(i,j) + 61 y(i,j-l)+0 2 y(i-l,j) + 03y(i-l,j-l)=rw(i,j) (2.6)

where w(i,j), (i,j)C Q, is an independent and identically distri-

buted zero mean, unit variance noise sequence. When 030

we obtain the popular separable model widely used in the image

processing literature [13].

The continuous counterpart of (2.6) is

2 + a +a + a + a3)u(xy) = L(x,y) (2.7)

When a3 = a a2, we obtain a separable hyperbolic equation. The

Green's functiion G(x,y) corresponding to (2.8) can be written

as [11]

G(x,y) = e 2 (2,(a 3 -a.a 2 )xy)u(x)u(y) (2.8)

where J0 (-) is the Bessel function of the first kind and

zeroth order and U(.) is the unit step function. As the result-

ing ACF structure is tedious to analyze we consider the separable

model, i.e., a3=ala 2. Using this assumption and J 0 (0) = 1, we

have
-a x-alYu x

G(x,y) =e u(y) (2.9)

Substituting (2.9) in (2.5)

p(x,y) = exp(-ajxj-aly) (2.10)

Before proceeding further we give a formal definition of the

flat/nonflat structure.



Definition: The ACF is flat along thie x axis if a(x,y - 0 and

ax x=O

is nonflat if a(x,y) < 0 to the right of the origin, i.e.,
ax

3(x,y) <0, for C>0 and arbitrarily close to the origin.
x I x=

(This particular definition of nonflat structure is used to get

over some singularities at the origin.)

From the definition and eq. (2.10) it is clear that the

ACF for the hyperbolic case is nonflat along the x and y direc-

tions.

Case ii: (arabolic)

Consider the semicausal model

y(i,j) = a(y(i-l,j) + y(i+l,j) + y(i,j-l))+/ w(i,j) (2.11)

where Ial <  to ensure stationarity and w(i,j) is as in eq. (2.6).

Eq. (2.11) can be written as

y(i,j)-3ay(i,j) = a{y(i-l,j)+y(i+l,j)-2y(i,j)

-y(i,j)-y(i,j-1)} +W(i,j)

Using the continuous approximation we have the parabolic

equation

a 2
( + Y2 )u(x,y) = t(x,y) (2.12)

ax

where Y = (l-3a)/a.

The Green's function corresponding to this equation can be

written as [111

2
G(x,y) = 1 exp(-y 2y _ )u(y) (2.13)

-4



Eqn. (2.13) shows that an impulse at the origin only has

an effect at positive values of y. Thus the y axis is a time-

like axis whereas the x-axis is a space-like axis. Substituting

(2.13) in (2.5) (we are omitting the manipulation details), the

ACE is

P (x, y) = e-YX(P- -- - y,/'2j) + e X(1-4(,(-x + y/Ty-)) (2.14)

where O1x) is the probability that a standardized Gaussian random

variable X is <x.

We now show that p(x,y) in (2.14) is flat along the x-axis

and nonflat along the y-axis. Differentiating (2.14) w.r.t. x,

ap(x,y) - _yeYxO( X~ - yv12jy) + e'rxc _L x-. _y/Ty-j)
ax ax

+ yeYX(1-( + y/7y))-eYX x -.. -Y/7jy) (2.15)

Since 'Nb(x)) f b~x et 2 /2 dt

= -bx) e 2 db(x) (2.16)
v27r dx

Using (2.16) and 0(-x) = 1-0(x) we have .5-(xly) 0
x X=0

Similarly, differentiating with respect to y, it can be

shown that

ap(x 'Y) ex - 2 2 1/2
ayxP(- T- Y y)/y

which by definition is not flat along the y axis.



Case iii (Elliptic):

Consider the discrete model

y(i,j) = a(y(i,j-l)+y(i,j+l)+y(i-l,j)+y(i+l,j) )+,/vw(i,j) (2.17)

Proceeding similarly to the parabolic case, the continuous

counterpart of (2.17) is
2 2
a+ a2 - a 2 )U(xY) =(x,y) (2.18)
2

where a 2= (1*-4a)/a

The Green's function for this equation is [3]

G (s) - K (aLs) (2.18)2'a 0

where s ''y and K 0 (-) is the modified Bessel function

of the second kind. Substituting (2.18) in (2.5), the ACF for

the elliptic case is

P(s) (cs)K 1 (as) (2..-9)

Both the axes are space-like and the function p(s) is flat

in all directions.

Case iv (Conditional Markov):

Consider the isotropic conditional model where the observa-

3 tion at (i,j) depends on the east, west, north, and south neig~h-

bors. The basic equation of this model is

= ~y(s+(i-l,j) )+y(s+(i+l,j) )+y(s+(i,j-l) )+y(s+(i,j+l)) ] (2.20)

Equivalently, (2.20) can be written as

y(i,j) = iOy(i-l,j)+y(i+l,j)+y(i,j-l)+y(i,j+l) I+/7-n(i,j) (2.21)



where n(i,j), (i,j)US is a correlated noise sequence with zero

mean and variance unity. In the Gaussian case, it can be shown

[41 that the spectral density function of the RF model in (2.21)

is similar to the marginal spectrum of a spatial temporal model,

dYi,j, t = -XY(E)y i  tdt + dz.it (2.22)i,j,tlj~

where

(T(E)-l)Yi, j = O(Yi-l,j +Yi+l,j +Yi,j 1 +Yi,j+l) (2.23)

and dz i~jt are homogeneous independent terms with zero mean.

In the limiting case, the continuous counterpart of (2.22),

(2.23) is

+ k 2 22+ k-( 2 + --2 )]u(x,y) = z(x,y) (2.24)

which is the well known diffusion equation. An appropriate

Green's function [11] for (2.24) is U

1 2
G(x,y,t) = -t exp{-k t - I t>0 (2.25)

4t

= 0, otherwise

For this case, we have the covariance function

R(x,y) = f f f G(u,v,T)G(u-x,v-y,T)dudvdT (2.26)T=O U=-- V=--o

Substituting (2.25) in (2.26) and performing the integration

with respect to u,v co-ordinates (the manipulative details are

omitted),



22

R(s) 1 exp{-2k 2t- s dt}t=0

- K (ks), s = r (2.27)

where K0 is the modified Bessel function of the second kind.

For small values of s, K0 (s) behaves like -Zns and hence R(s)

is nonflat along all axes. (Note that since K0 (s) is-.at s=0,

we have avoided discussing the normalized ACF p(s).



3. Correlation Structure of discrete random fields

In the preceding section the flat/nonflat structure of the

ACEs for the continuous RF models was analyzed. It is a natural

question to ask if such behavior is exhibited in the discrete

space. To analyze the structure of the lattice ACFs we need to

obtain expressions for the correlation values for different

models, viz., the causal, semicausal, and noncausal simultaneous

models, the noncausal conditional Markov models, and the MA models.

The ACF for the causal neighbor set can be easily obtained by

using the recursive method [8]. This approach is not valid when

a bilateral dependence is introduced along any of the axes. An

alternate procedure would be to consider the corresponding

spectral density function in the discrete space and use numerical

integration techniques to obtain the ACF. This procedure becomes

tedious for different neighbor sets and also the resulting numer-

ical values are only approximate.

To compute the ACF for simultaneous and conditional models

for different neighbor sets we use RF representations on torus

lattices. Such representations for conditional Markov models

have been suggested in [6,71 and for simultaneous models in

(5,61. The advantage of the torus representation is that the

expressions for the ACF can be written in closed form for an

arbitrary neighbor set. For large values of M, the edge effects

due to the torus representation can be ignored.



We first consider the ACF for causal neighbor sets defined

on a plane lattice and then consider semicausal and noncausal

representations on torus lattices. Our interest is not only

to obtain the correlation values but also to analyze the flat/

nonflat structure at lower lags. The discrete equivalents of

the criteria considered in Section 2 are defined below:

Definition: The discrete ACF p(i,j) is flat along the i-axis if

l-p(1,0) < p(l,0)-p(2,O) (3.1)

flat along the j-axis if

1-1) (0,1) I , (0, )- p0,2) (3.2)

and flat along the k-axis if

i-p (i,i) < p (l,l)-p (2,2) (3.3)

The ACF is nonflat along an axis if the reverse of the

inequality is true.



3.1 Causal separable model

Consider the RF model

y(i,j) = %0,_ly(ij-l) + 8_1 0 y(i-lj) -0 0 y(i-l,j-l)

+V/-wli, j) (3.4)

It is well known that the ACF is

1)(ij) = 0 8 100 I 1 1,0 1 <  1 (3.5)' -i,0 ,-i1 - ' - ,

Equation (3.1) requires
1-0 < o - 8

-1,0 -1,0 -1,0

or (i-6-_i,0) < (1-0_,0)0_i,0

or 1 < 0l
1,0

which are not true due to the constraint on 6-_1,0 in (3.5) to

ensure stationarity. Similarly, it can be shown that the ACF

is nonflat along the j and k axes.

To compute autocorrelations for neighbor sets with bilateral

dependence, we use the RF representation on torus lattices

which are defined below.



r

3.2 Simultaneous models on torus lattices

The basic equation is

y(s)-6 = E{ i jy(s+(i,j))-6} = /VVW(s), st.Q (3.6)
(i,j)N '

In (3.6), {w(s), s } is a sequence of independent random varia-

bles with zero mean and unit variance. Note that w(s) is cor-

related with y(s+sk) if the neighbor set includes bilateral de-

pendence along any axis. The coefficients 0i, j must satisfy the

following condition to ensure homogeneity of the RF model:

0. .ijZlZ2( <. I if lzI {= I z2 j= 1 (3.7)
(i,j)N 1

Typical examples of neighbor sets N are

i) {(O,1l),(l1,0),(0,-1l),(-,)} (noncausal)

ii) {(i,0),(0,-i),-i,0)} (semicausal)

Note that the notation we use for indicating the neighbors is

the same as the notation used in specifying 0. The representation

on torus lattices is introduced by imposing the condition

y[(i,j)+(ilJI )] = y[(i+il-l)mod m+l, (j+jl-l)mod m+l] (3.8)

for all (i,j)CZ.

This particular representation leads to the following expression

for the ACF:

P(k,t) A cov[y(iljl), Y(i1 +k,jl+t))

. A10 [i-l)k+2(j-l)Q/jjpijl 
2

i=~ (3.9)
M 1/ 1 I2

i,j=l



where
A

ij = I- E 0 mnA 0[(i-1)k+(j-1)e]' (3.10)

and A0 = exp{[ /vT } (3.11)

Comments: (1) The details of the derivation of eqn. (3.9) can

be found in [6].

(2) Given any arbitrary neighbor set N, and the parameters

Ii.,f (i,j)tN, the correlation function at a specified lag can

be computed easily.

We give below the computed correlation values for different

neighbor sets and parameter values. The corresponding structure

at lower lags is also given.

Case i: Semicausal simultaneous models

Consider the neighbor set N = {(i,0),(O,-l),(-i,O)}, corre-

sponding to the model

y(s)-d = E 0 [y(s+(i, j)-6]+Vrw(s) (3.12)
(ij)LN '

The lower order correlations computed using (3.9) and the

structure along each axis are given in Tables 1 and 2. The

following observations are of significance:

1) For the isotropic case, for a range of parameters .31-.33,

the ACF has a flat structure along the i-axis.

2) The ACF has a nonflat structure along the j-axis for the

complete range of parameter values.



3) By making 0, as large as possible the actual corre-

lation values p(0,i),p(0, 2) can be increased but the structure

is still nonflat along the j-axis.

Case ii: Noncausal simultaneous models

Consider the neighbor set N {(0,l ),(1,0),(0,-1),(-1,O)}

corresponding to the RF model

y(s)- = 7 0 i [y(s+(i,j)-61+ /w(s), s (3.13)
(i,j) EN

The numerical values of the ACF and the structure at lower

lags along the different axes are summarized in Tables 3 and 4.

Table 3 corresponds to the isotropic case and Table 4 to the

nonisotropic case. The following observations are of interest:

1) The ACF in the continuous case is flat in all directions.

In the discrete case flat structure along the i,j and k axes is

exhibited at values of 0 close to .245 and above.

2) Flat structure along the i and j axes is exhibited for

the range of parameters ?.2350.

3) Introducing nonisotropy changes only the rate of decay

of the correlation function, but the flat/nonflat behavior is

unaltered.

Case iii: Noncausal 8-neighbor models

Consider the neighbor set N =

(-I,-i), (-i,0),(-ii)} corresponding to the RF model

y(s)-6 F .[y(s+(i j))-6]+/VW(s), s( (3.14)
(i,j)N (-'



The numerical values and the structure at lower lags along

the different axes of the correlation function are tabulated in

Table 5. The relevant observations are:

1) For sufficiently high values of the parameters flat

structure is displayed along all axes.

2) By making different neighbors strong, flat structure can

be obtained along any desired axes.

3) For 0=.1220, though the correlation values are high,

the structure is still nonflat along all axes.

4



3.3 Conditional Markov models on torus lattices

The basic equation of the conditional Markov model isE (y (s) Iall y (Sl), s S , Sl/S) -I i

= E . .[y(s+(i,j))+y(s-(i,j))-2i] (3.15)

where N is an appropriate neighbor set. Equivalently, (3.15)1

can be written as

y(s)- = Z 0. .[y(s+(i,j))+y(s-(i,j))-2p]+/ e(s) (3.16)
(i,j) EN1

where {e(s), su6 is a correlated noise sequence with zero mean

and unit variance. Note that a symmetric structure is imposed

on the basic equation of a conditional RF model, i.e., when a

neighbor (i,j) is included the neighbor (-i,-j) is automatically

included. Thus it is sufficient to characterize the neighbor set

by using the set N1 , which includes only half of the symmetric

neighbor set. Thus if the dependence is on the neighbors

{(0,i),(i,0),(0,-i),(-i,0)}, we denote this by using the set

N1 = {(0,1),(1,0)). For stationarity of y(-), the coefficients

must satisfy the condition

Z )N 0k,/ ( z2 I Z1 z2  )I < 1, when Iz ll=z 21= 1 (3.17)
(k ,/I) (N 1

The representation on a torus lattice is obtained by imposing

condition (3.8). This representation leads to the following

expression for the ACF:

p(k,e) = cov[y(il,jl),y(il +k,j l + / )]

M 2EMXo[(i-l)k+(j-l)e]/l Ip' 11 2

ij=lM  (3.18)

M2

i,j=l



where

= 1+2 : cos A0[(i-l)m+(j-l)n] (3.19)
ij (m,n) N

and
2-f

A0 = exp{ v-i -2-} (3.20)

Comments: The details of the derivation of (3.17) can be found

in (6]. Given an arbitrary neighbor set N1 and the parameters

0*ij, (i,j)(Nl, the ACF at a specified lag can be computed

easily.

We consider the computation of the ACF for some conditional

models.

Case a: Noncausal conditional model

Consider the neighbor set N1 = {(0,i),(1,0)},corresponding

to the RF model

y(s)-P = 80,1 [y(s+(0,l))+y(s+(0,-l))]

+ 01,0 [y(s+(l,0)+y(s+(-l,0))] + /ve(s) (3.21)

The lower order correlations and structure of .CF

along the axes are given in Tables 6 and 7. Some of the

interesting observations are:

1) The values of the correlation are much lower compared to

the correlation values of simultaneous models in Tables 3 and 4.

The ACF is monotonically decreasing and the p(0,4), p(4 ,0) (not

shown in the table) are very close to 0.

2) Even at the high values of the parameter the ACF does not

possess flat structure along any axis.



3) There is a tradeoff in the numerical values of the

parameter and the correlation values. Even when the parameter

is increased to .475 in Table 7, p(0,1) is only 0.7673.

Case b: Noncausal conditional models

Consider the neighbor set N1 ={(0,1),(1,0),(-ii),(ii)},

corresponding to the RF model

y(s)-P = 00,1 [Y(S+(0,1))+y(s+(0,-l))]

+ 1,0 [Y(s+(l,0))+y(s+(-l,0))]

+ 0-l [Y(S+(-l,l))+y(s+(l,-l)),]
1,

+ 01,1 [y(s+(l,l))+y(s+(-l,-l))]

+V/e (s) (3.22)

The lower order correlations and the structure along the

axes are tabulated in Table 8. The relevant observations are:

1) The correlation values are much lower compared to the

simultaneous model with the same neighbor set.

2) The ACF always has nonflat structure (compare with Table 5).

3) The correlation values are higher when compared to the

four-neighbor conditional model in (3.21).



3.4 Spatial moving average model

Moving average models have been found to be very useful in

time series studies and hence their two-dimensional generaliza-

tions should also be useful in modeling the observations from

a grid. The ACF of MA models falls off very rapidly. Specifi-

cally, the isotropic four-neighbor model considered here has zero

correlation values beyond lag 2 and has nonflat structure along

all directions.

Assume that the observations {y(s), sEQ} obey the MA model

y(i,j) = O(u(i-l,j)+,w(i+l,j)+ (i,j-l)+(,(i,j+l)+w(i,j)), 16L1

(3.23)

where {w(i,j), (i,j)EQ}is an i.i.d. noise sequence. The two-

dimensional spectral density function Sy(Wlw2) is given by

Soj 02 1+6Cos+6co sw)2(3.24)
y , (1+20 o i+20cos 2 2 )

2

Using the Fourier relationship between the ACF and the

spectral density function, the correlation function is

1 7t 'IT

p(k,.C) 2 2 f f cos kwI cos tw2(l+2cos w1
4(1+46) 7F -- 1 2 1

+20cos w2 )
2dwldw 2  (3.25)

Performing the integration in (3.25) to evaluate a few low

order correlation values we obtain the results shown in Table 9.

It can be easily checked that the ACF has nonflat structure

along all axes, in the allowed ranges of 0. The actual values

of the correlations are tabulated in Table 10. The correlations



decay rapidly, and in fact thetheoretical correlations p(2,3),

p(3, 3 ) are zero. The nearest correlations 4 (i,0)=((0,l) are

bounded above by .4.

The above method of evaluating the ACF values becomes tedious

for an isotropic MA model. However by considering the MA model

on a torus lattice closed form expressions can be obtained for

the ACF.

Assume that the observations obey the MA model in (3.26) and

the torus conditions in (3.8):

y(s) =  E6i .jW(s+(i,j)) FW(s), sQ2 (3.26)

To ensure stationarity the following condition should be satis-

fied:

( 1 0 ZlZ 2 3 < 1 if lzI =iz2 l= 1(i j) ENij

where N is the neighbor set of dependence.

The torus representation for MA models leads to the follow-

ing expression for the ACF:

Z X0 [(-1)k+(j-l)lj I ij t

p (k,e)= i'j =2 (3.27)
Z 11p~ijl

i,j=l

where

+ i +E 0 m'n [ (i-l)m+ (j-l)n] (3.28)
ad1) =ep-(mn) N m

and A eXp(/CT0-1 (3.29)



The derivation of (3.27) is given in the appendix.

The ACF values computed using (3.27) and N={(0,1),(I,0),

(0,-l),(-1,0)} are given in Table 11. Note that the ACF values

are slightly different (see the row corresponding to 6=.24)

from the exact values in Table 10. This is due to the torus

assumption introduced. However the error due to the approxima-

tion is negligible.



3.5 Spatial autoregressive and moving averakle models-

For the sake of completeness we consider the correlation

structure of spatial ARMA models. We assume that the given

observations {y(s), stQ} obey the RF model

y(s) = 0. y(s+(i,j)) + E wi jw(s+(i,j))(i,j) tN i j(i,j) CN '

+ V"V,) (S) (3.30)

To ensure stationarity the following condition should be

satisfied:

E 0. z 11z 2 I <1

(i,j)tN i l 3

and
IE iJ ZllZ2J1 1 whenever 1zl=1z2 1=l

The torus representation leads to the following expression

for the ACF:
m22
E t0  [ (i-l)k+(j-l)tl I KI 1  2/ 11 j I 2

p(k,C') = m~
Y IiK 11 2/ Ii 1 2 (3.311

i,j~l

where

S= 1+ )0 X [(i-l)m+(j-l)n (3.32)

and

P. 1 - n 0m, nX0[(i-l)m+(j-l)nl (3.33)
(m, n)l m N 0



Equation (3.33) can be derivedsimilarly to (3.27) and is

not given here. The ACF values computed for some parameter

values in the allowed region are given in Table 12.



4. Experimental results

In the previous sections the correlation structure was

analyzed for the different models. To determine if this struc-

ture matches with real data, experiments were done using 64x64

windows from real image patterns. Four windows, each from four

Brodatz textures, sand, wool, grass, and raffia, and from three

terrain textures, lower Pennsylvanian shale (LP), Mississippian

limestone and shale (ML), and Pennsylvanian sandstone and shale

(PS), were used in the experiments. The sample correlation

function, r(s,t), defined below was computed for each window.

N-s N-t

r(s,t)l l (y(i+s,j+t)-()(N-s) (N-t) N N (4.1)S(y(i,j)-)N i=l j=l

A 1 N N
where p N2 E E y(i,j) (4.2)

N i=l j=l

The computed sample ACFsfor the Brodatz textures and the terrain

samples and the corresponding correlation structures are given

in Tables 13 and 14.

By matching the sample correlation structures and the theo-

retical correlation structures useful inferences may be drawn

about the types of models that are appropriate for given images.

Consider, for instance, the windows of the Brodatz sand texture.



The correlation functions exhibit flat structure along all axes

and the correlation values are quite high. Noncausal simulta-

neous models with neighbor sets (east, west, north, and south)

or (east, west, north, south and the four diagonal neighbors)

seem appropriate, since the causal and seimcausal simultaneous

models, the conditional Markov models, and the MA models do not

have flat structure along all axes. Similar conclusions can be

drawn for the grass and wool textures. All the windows from

raffia have flat structure along the i and j axes

and nonflat structure along the k-axis. The noncausal simul-

taneous models in (3.13) possess this structure for some ranges

of parameter values. By manipulating the parameter corresponding

to different neighbors the RF model in (3.14) can be made to

have this structure.

The windows of terrain types LP and ML have nonflat structure

alongall axes and the correlation values are quite low. For

these windows, the causal, semicausal, and noncausal simultaneous

models and the conditional Markov models can be considered.

Since some of the windows (2 and 4 of LP) have nearly equal

values of p(l,O) and p(0,1), the semicausal models can be dropped

out of consideration.

The windows of terrain type PS exhibit flat structure along

the i axis and nonflat structure along the j and k axes. The

semicausal and noncausal simultaneous models in equation (3.12)

and (3.16) possess this structure (see Tables 1, 2, and 5).



As another illustration consider the classical Mercer and

Hall wheat data mentioned in [3]. The data presents the results

of a uniformity trial on wheat. The ACF values of this data

at lower lags is given in Table 15 (taken from [3]) together with

the structure along each axis. Since the structure is nonflat

alonq all axes, our inference method suggests that it is appro-

priate to consider the causal simultaneous models, conditional

Markov models, and MA models. The MA models can be avoided since

the ACF has large values at lags of 3 and 4. So the choice is

between causal simultaneous models and conditional models.

Our conclusion that causal simultaneous models are preferable to

noncausal simultaneous models agrees with Whittle's observation

[3], that unilateral models fit better than the noncausal models.

The final choice between the conditional models and the simul-

taneous models can be made by using the theory developed in [1]

and [6].



5. Discussion

We have considered the correlation structure of some NNRF

models. Specifically, we considered two classes of RF models,

simultaneous models and conditional Markov models. We make a

brief comparison of the models below.

Of the 4-neighbor noncausal simultaneous models (3.13) and

the conditional Markov models (3.21) the former always account

for higher correlations than the latter. Also, the simultaneous

models exhibit a different structure (which is observed in some

real textures) that is not possessed by the conditional Markov

models. Even when the neighbor set is as in (3.22) (four more

diagonal neighbors added), the correlation values are lower

(Table 8) compared to the simultaneous model with four neighbors

(Tables 3 and 4). To account for the same correlations as in a

4-neighbor non-isotropic simultaneous model, a conditional model

which includes the nearest neighbors and 4 additional neighbors

on the east, west, north, and south is required [4]. This

necessitates the use of a 6-parameter model. One of the well-

known rules in model building is to keep the parameters to a

minimum. Thus, the simultaneous model with 4 neighbors is pre-

ferable to the conditional model with 6 parameters.

Secondly, the conditional models defined by the conditional

probability structure (3.15) are subject to some unobvious and

highly restrictive consistency conditions. When these conditions

are enforced, the conditional probability structure becomes



degenerate [14] with respect to the joint probability structure

implicit in the definition of simultaneous models.

Thirdly, the reflection-symmetric condition on the parameters

of the conditional Markov model is not required in the simul-

taneous models.

The conditional models with 4 neighbors have correlation

values between those of the simultaneous models and MA models

with the same neighbor sets. The MA models have a rapidly

decaying ACF, and are appropriate for patterns which have

strong local dependence.

The possible structures of the ACF that can be accounted

for by the simultaneous models are quite varied compared to the

conditional models (see Tables 3, 4, and 5). The particular

flat structure observed in the simultaneous models is due to

the bilateral dependence introduced. When the neighbor set

{(0, 1), (0,-l), (-1,0)} is considered, flat structure only

along the j axis is observed (not tabulated here) for ranges of

parameter values. A similar behavior is shown in Table 5, where

by making particular neighbors strong (high parameter value),

flat structure along the desired axis is obtained. [For no

explicable reasons, the neighbors {(-ii), (+l,-1)} do not

contribute to the flat structure along any axis.] Note that

the causal separable simultaneous model does not possess flat

structure throughout the allowed ranges of the parameter values.

Also, in the semicausal simultaneous model, the structure is



always nonflat along the j axis. The 4-neighbor set conditional

Markov models also possess nonflat structure along all axes as

their continuous counterparts suggest.

The empirical inference method discussed in this paper

for identifying the models is not necessarily exact. It is

inexact, because the question of what types of models occur in

practice and in what circumstances, is a property of the behavior

of the physical world and cannot be decided by purely analytical

argument. However, the preliminary identification commits us to

nothing except to tentatively entertaining a class of plausible

models.

The analysis of ACF structure undertaken here is relevant

to studies of texture. It is known that the rate of falloff of

the ACF is related to the size of tonal primitives (15]. If the

tonal primitives are relatively large, the ACF drops slowly,

while if the tonal primitives are small, the ACF drops quickly.

Also, it is known that tonal primitives of larger size are indi-

cative of coarser textures and tonal primitives of smaller size

are indicative of finer textures. It has been experimentally

verified that there is a very high positive correspondence [16]

between the grading of textures from fine to coarse by human

viewers and the 1 distance of the ACF. Thus, the usefulness of
e

the ACF as an inference tool need not be overemphasized.
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Apendix

We derive equation (3.27). Equation (3.26) can be equiva-

lently written as

Twhere y T {y (1,1) , y (1,2), .. y(1,R),. .y(M, 1), y( ,.

{i(1,I) ... ,w(N,M) and 13(0) is a block circulant motrix

VBB . . B
1,1 1,2 1,M

B 'I PI-1IM B,1 "" 1,M-I

B =(2)

'31,3 ~ 1
LB , -I- - - I~ ,

For example, when N = ((,1),(i,0),(0,-i),(-Io)), we have

B I, = circulant (1,0010 0,1 )

B1 ,2 = circulant( 1 0 0,0 ... ,0)

BIn = circulant (0 1,0,( .... 0)

BI' j = 0 j/1,2,,m
Hence the covariance matrix Q = E(yy T ) can be written as

Q = B(0)BT(0; (3)

From the theory of circulant matrices, the eigenvectors of

13(0) are the Fourier vectors fij' 1 i,j where

f = column(tj,Nit j,. ... 1 t

t. column(l,A. A2  ,jM - )-JJ' j'*....

and ]A \ H(i-)

and the corresponding eigenvectors are



1ij' I ji, jM defined as

Iij i+ E 0 (A [(i-1) m+ (j-1n]} (4)
(m,n)EN m,N

Since Q is a symmetric block-circulant matrix, Q can be

expanded in terms of its eiqenvectors as

Mi jl i i j  2ij (5)

Using (5) and the definition of p(k,t)

qM ie- h+J,M (il+k-l) +jl+- w

qM (i-) +JI'M (il - I ) +Jl

where qi,j denotes the (i,j)th element of Q, we arrive at (3.27).
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0 1 2

k 0 1 2k0 k 0

1 2kU 2kO 2  0

2 ko 2  0 0

where k =(1+402 )-1

Table 9. Lower order correlations of moving average model

in (3.23).
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Fig. 1 Convention for co-ordinate axes.


