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SUMMARY

The objective of this program is to conduct theoretical and experi-
mental research to determine the electromagnetic scattering from hete-
rogeneous dielectric bodies as individual bodies and as a cluster of
bodies. The discrepancies in the literature regarding the singularity
of the electric dyadic Green's functions were resolved. Compact range
scattering measurements at 1 GHz were successfully performed to obtain
measured data to validate the numerical analyses. Extensive computations
were made for a variety of dielectric scatterers, including a one-foot
bird at 1 GHz. The agreements between measurement and computation were
good except for the resonant sphere, for which the calculated resonant
frequencies were shifted by about 20 percent. Various numerical techniques
were investigated successfully for implementation in the volume integral
equation algorithm at Georgia Tech. These techniques include methods to
treat symmetrical scatterers through use of symmetric matrices, and the
use of banded matrices, and virtual memory.

There has been very little research into the problem of scattering
by dielectric objects of complex permittivity. Future research in this
area should include the investigation of the surface integral equation
technique and the exact solution for the dielectric prolate spheroid.
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SECTION I
INTRODUCTION

During the past decade, there has been a rapidly rising interest in
electromagnetic problems involving dielectric objects. The interest in
this area arises from a multitude of military and civilian needs. Human
beings are increasingly more exposed to microwave radiation hazards on
aircraft, ships, military installations and even in their homes. The
electromagnetic scattering from birds, animals, and human beings is
essential to the detection, identification, and interference problems
in radar systems. Biological and medical applications, such as blood
thawing, enzyme inactivation and hyperthermia treatment of cancerous
tissues, also demand accurate knowledge of the electromagnetic fields in
dielectric bodies. Thus, electromagnetic scattering by dielectric bodies
is a fundamental and important problem, and solutions for these scatterers
have wide application.

Since September 1978, Georgia Tech has been supported by the Deputy
for Electronic Technology (RADC/EEC), Air Force Systems Command, under

contract F19628-78~C-0223 to conduct a two-year research program in this

area. The emphasis is focd;éd on analyses and measurements of the scattering
characteristics of heterogeneous dielectric objects as individual bodies

and as a cluster of bodies. Progress to date has included the clarification
of discrepancies in the literature on the singularity of the Green's

function in the source region [1], and measurements and calculations of

the scattering cross-section of dielectric bodies of arbitrary shapes and
complex dielectric constants [2-~4). In addition, various numerical tech-
niques have been investigated and implemented in the existing Volume In-
tegral Equation (VIE) algorithm at Georgia Tech.

Numerical techniques developed in the current research program are
capable of producing fairly accurate data for objects less than one free-
space wavelength long. There are models for which the present technique
is highly accurate, and there are geometries, such as the sphere, for

which the present technique is not quite satisfactory.
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The success of compact-range scattering measurements at a frequency
of 1 GHz represents an advance in the state-of-the-art of scattering
measurements using the compact range technique. This extension of the
compact range scattering measurements to lower frequencies demonstrates
the versatility and usefulness of the compact range as a general purpose

EM measurements facility.
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SECTION II

RESOLUTION OF THE DISCREPANCIES IN THE
SINGULARITIES OF THE ELECTRIC DYADIC GREEN'S FUNCTIONS

Green's functions of various types are fundamental to the theory of
electromagnetics and have become increasingly important with the recent
progress in numerical analysis. The dyadic Green's function technique
of treating electromagnetic boundary-value problems was first formulated
by Schwinger in the early 1940's in unpublished notes. This subject was
described in several textbooks by Morse and Feshbach [5], Collin [6],
Schwinger and Saxon [7], and Tai [8]. Recently, the usefulness of Green's
functions in electromagnetic theory increased due to the use of high-speed
computers to numerically analyze many problems previously unsolvable.
Computerized analysis often employs an integral equation [9] which evolves
from a Green's function expression for the particular boundary conditions.
However, earlier Green's function expressions have been limited to the
space outside the source region and are deficient when used in the integral
equation formulations. This deficiency was addressed with an increasing
interest in recent literature [1,5,8,10-23]. However, some of the results
in the literature appear to be inconsistent (14,17,19-21] with seemingly
conflicting results.

Yaghjian attempted to explain the apparent discrepancy in the sin-
gularities of electric dyadic Green's functions as due to the differences
in the shape of the principal volumes involved in the formulations [19-21].
Unfortunately, the principal volume was apparently not involved at all in
the derivation of the controversial expressions {14,17].

In this section, the source singularity of the electric dyadic Green's
function will be discussed and a more satisfactory view on this subject
will be presented. The authors concur with Yaghjian in that the singularity
of the electric dyadic Green's functions does depend on the principal
volume selected. However, we do not share his view on the necessity or
even correctness of attaching the principal volume to the electric dyadic

Green's function. The principal volume integration is merely a mathematical




process taken to deal with the singularity of the electric dyadic Green's
function in the source region. In fact, it may be possible to select a
finite volume to handle the integration without resorting to the principal
volume {23], which must be infinitely small and of a specific shape .

The apparent discrepancy between Tai and Rozenfeld [14] and Yaghjian [15]
has been found to be non-existent and their expressions are mathematically
identical.

A. The Apparent Discrepancies in the Source Singularity of the Electric
Dyadic Green's Functions

A dyadic Green's function has been conventionally defined for a
time-harmonic field in either of the following two ways.

1. Method of Delta Function or Distribution Theory

The dyadic Green's function can be defined [8] as a dyad

G(r,r') that satisfies the complex vector wave equation

VxVxG(r') -~ kzg(g,z‘) =134 (r,r"), 1)

subject to all the boundary conditions, where

V = gradient operator,

= the wavenumber of the medium,

unit dyad,

Dirac delta function, and

positional vectors of the field and source points, respectively.

L)
I-muHr

I,

The problem is illustrated in Figure 1. This definition was used in
References 5,7,8,13,14,16 and 17.

2. The Integral Formula Method

The dyadic Green's function is defined, in the integral formula
method [24], as a dyad G(x,r') that satisfies

E(r) = - f G(z,r') + J(z') av' (2)
v

where E is the electric field and J is the electric current.
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Figure 1. A general electromagnetic boundary-value problem.




The singular behavior of the dyadic Green's functions can be best
illustrated by its simplest type -- the free-space electric type, for
which

-jklr - z'|
o - )

. 3)

4njr - 'l

As ¥ + r', the denominator in Equation (3) vanishes and gb is singular
at this point. However, when gb is used in an integral formulation, the
resulting integral is expected to yield a finite value. This problem

is well known to the mathematicians and has been discussed by Van Bladel
[12] with respect to electromagnetic theory. As shown in Figure 2, Van
Bladel placed an infinitesimal volume AV, surrounded by a closed surface
AS, to enclose the field point r'which is located in the source region.

The electric field was then expressed as

E(r) = f (r,r') * J(') dv' + f 6 (r.r") - J(x') dv'
V - AV AV

s

-/v o go(g,s_') « J(x') av! +§c(5_) (4)

in which Ec’ the correction term, was employed to account for the removal

of AV from the integral, and was referred to as the "principal

volume" integration. The Ec teZmAxas not clearly spelled out in Van
Bladel's work, but was later employed by Chen ([14] to provide a clearer
picture of the physics involved and this notation is convenient for the
present discussion.

Van Bladel noted that gc(g) does not converge properly if AS is a

circular cylinder, but he found that

-3(x)
O ° e,

(5)
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if AS is chosen to be a sphere. Equation (5), based on a spherical AS,

was employed successfully in numerical analysis in both References 25
and 26.

Recently, Yaghjian [19-21] pointed out the apparent discrepancies

BT SR ST g

in the literature when other types of dyadic Green's functions and

infinitesimal volumes AV were involved. Rahmat-Samii [17] showed that

-J

E = jweo ’ (6)

for a rectangular cavity without specifying the principal volume, if any,

being involved. For the same problem, Tai and Rozenfeld [14] indicated

-J z
2

Ec = jmeo * @

without specifying the principal volume.

Apparently in an effort to resolve the discrepancy between Equations
(6) and (7), Yaghjian [19-21] carried out an analysis to demonstrate that
gc depends on the choice of the shape for the infinitesimal volume AV.
Furthermore, he states that the same is true for problems involving bound-

ary surfaces on which tangential E or B are zero. Unfortunately, his

o e ey T D T T e TR P TN B AR i

reported results introduced several more discrepancies which added more
confusion in spite of his intended effort to unify and to interpret. For

example, in the rectangular cavity case, Yaghjian offered the following

answer
3
Ec = j3we° if AV is a cube, (8a) !
JzQ
Ec - jweo if AV is a pillbox. (8b) %

While Equation (8b) is similar to Equation (7), Equation (8a) differs from

both Equations (6) and (7). The differences in sign are due to their differences
in the suppressed ejwt ~Jut
be ignored.

or e

chosen in the individual analyses; they can




Chen [18] indicated the dependence on the shape of the principal
volume but restricted his discussion to the free space case only.
However, his expression for a circular cylinder AV {is, by assuming

J=2J,
= z

-J

gc = jweo a1 - coseo) 9)

while Yaghjian's formula is

E_ = [(1-cos8) Jz+1/2 cose J] J—ieo— (10)
where 60 is shown in Figure 3.

The discrepancies in the literature as discussed above are partially
summarized in Table 1 for ready comparison. As can be seen, no major
disagreement exists in the literature for the free space case. But for
the rectangular cavity and waveguide, there are apparent discrepancies

among various authors.

B. The Uniqueness of a Harmonic Field

The uniqueness theorem for a harmonic field is stated by Harrington
[27] as:

"A field in a lossy region is uniquely specified by the sources within
the region plus the tangential components of E over the boundary, or the
tangential H over the boundary; or the former over part of the boundary
and the latter over the rest of the boundary'.

A similar form of the uniqueness theorem was stated by Richmond [28] as:

"In a region completely occupied with dissipative media, a harmonic

field is determined uniquely by the impressed currents in the region and

the tangential components of the electric or magnetic field intensity on
the surface of the region".

Note that Richmond's version is more stringent in that the region
must be "completely" filled with 'dissipative" media. Although these

two conditions for the theorem appear to be severe restrictions, one can
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practically apply this theorem to almost any physical problem. It }
can be stated from the viewpoint of atomic physics, that all the space ;
is filled with energy and material, which are "lossy'" because of the %
necessary transfer of energy involved between the field and the media. ?
The purely conducting and lossless medium does not exist in reality, ?
at least not in the electromagnetic problems known to the authors. . }
In order to extend the uniqueness theorem to a lossless medium, !
Harrington [27] indicated that '"We (can) consider the field in a ;
dissipationless medium to be the limit of the corresponding field in
a lossy medium as the dissipation goes to zero''. This limiting process
does not add to the usefulness of the uniqueness theorem. In fact, the
method 1s not strictly correct since there are two or more possible
solutions for lossless media. Examples are the field inside a perfectly
conducting spherical shell illuminated by a plane wave and the surface
waves involved in scattering by a lossless dielectric slab of finite thick-
ness and infinite width under the excitation of a plane wave. Therefore,
one cannot use this limiting process to obtain the approximate solution

for a slightly lossy medium from a solution derived from a lossless medium.

C. The Uniqueness of Green's Functions

The uniqueness of Green's functions can be proved based on their
integral-formula definition of Equation (2). Assume that there are two
Green's functions g} and g? for a specific boundary-value problem for which

the excitation and field are unique, we have

E(r) = f @ - I av', (11)
v
and
E(r) = fgz(g,g') * J(x') dv'. (12)
v
12
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Since J(r') is arbitrary, we can choose
(') = e § (x-r'). (13)

Subtractions between Equations (11) and (12) and substitution of Equation ff
(13) yield ) 3

[G(r,r') -G (r,r')] =0 (14)
Hence
S (r,r') = G (xr,r") (15)

This completes the proof for the uniqueness of the Green's function. Note

that the uniqueness of the fields is essential to this proof.

D. The Singularity of the Electric Dyadic Green's Function in the
Source Region

The field Ec at a singular point as defined in Equation (4) is, in
general, dependent upon the infinitismal volume AV. The integral over
V-AV in Equation (4) is also generally dependent on AV so that the total
field E(r) is uniquely determined at r. In fact, the problem of determining
the integral over V-AV is as important as the problem of '"extracting" the
singularity. Merely extracting a:term containing a Dirac~delta function does
not necessarily lead to the extraction of the singularity.

Yaghjian [19-21] apparently overemphasized the importance of the principal

volume and considered it a part of the definition for the Green's function

in the source region. Lee and Law [23] showed that AV in Equation (4) need
not be small and can be finite and of arbitrary shape. As a result of

our investigation, it is shown that a unique Green's function exists

and thus there is no need for a new definition for the electric dyadic

Green's function. The significance of Yaghjian's work is his correct

AN, g YT, SRR

emphasis on the shape of the principal volume which affects both the i
integrals over AV and V-AV. In dealing with the singularity in the source
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region, the importance of handling the integral over V-AV has been re-
cognized when one actually computes the field at the singular point
[1,22,25,26].

The apparent discrepancy between Tai and Rozenfeld [14] and Rahmat-
Samii [17] for the electric dyadic Green's function for a rectangular
cavity simply does not exist. It will be shown in the next subsection

that their expressiors are mathematically identical.

E. Nonexistence of Discrepancy in the Electric Dyadic Green's Function
for the Rectangular Cavity

Recent research activities in the singularity of the electric dyadic
Green's function have been stimulated to a great extent by the apparent
discrepancy in the literature regarding the singularity of the electric
dyadic Green's function for the rectangular cavity [14,17]). This apparent
discrepancy was pointed out by Yaghjian, who developed a new theory in an
attempt to resolve it [19-21]. 1In the following, it will be proved that the
expressions of Tai and Rozenfeld [14] and Rahmat-Samii [17) are mathematically
identical except for a sign error in the latter. The apparent discrepancy
was probably due to a superficial observation. The term involving the
Dirac-delta function can be easily taken for the singularity while the
overlooked remaining terms may contain singularities concealed in the
innocent-looking series of sinusoidal functions. The electric dyadic Green's

function derived by Tai and Rozenfeld is of the following form:

: 2
a o~ K
T ___1_ ! * ' B '
Ge-Lrraderh+ B ool (@, a0 g,
m,n k
4 2 2
f
Y o4 Y o Bm X 2fm|  ae
+ 2 &o &o €mn + 2 85 2o 2 =% 3 z
k k 9z k

where e-jwt is implicit and suppressed, and

2 (2-8))
c:m -— 2 an
abk” k sin k C
c g g
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Sink (c-z)Sink z'
g g

IR AP IR _.._--—1-_-—:'. <

£ = for z : z! (18)
M ¥ sink z Sink (c-z')
g 4
1
. 2
Cosk (c-z)Cosk 2z
g = g g for z < 2’ (19)
mm Cosk z Cosk {(c~z')
4 g
= ¢z 21
&0 ¢Oz (21)
= N 22
m o= V¢ ¥z (22)
= 23
LIS (23)
= . . 24
¢, Sink_x Slnkyy (24)
|
= 25 :
¢e Coskxx Coskyy (25)
- mm = DT o Xm -
kx == > ky b’ kz Pl % ,m,n 0,1,2, ... (26a)
. 2,2 2.1/2
kc [k kx ky kz] (26b)
o2 ,2.1/2
k8 [k kc] (26¢)
6 = 1 if Lormorn=20
°© {o if %, m, n#0 (27)

The expression by Rahmat-Samii had an error in sign resulting from mis-
print or trivial human errors. After correction, his expression reads,

in terms of the ejwt convention chosen by him,

gf:""'l‘z'l“‘lr‘'l)-“—— E nzs:o §0 N [k (O:no;zol (nm ) (Zw 2]
{[(m)z (u)]

L |
Cos n:x Sin E%Z_ Sin E%Z_

A i o b s SRR

g amibns o




t A A
sin 2 g3, 2127 4 L 4 [(—-"" )% +(an)? ] Sin BIX gy, ATX'
C [ [ a a a

nT mm i ' ' LIRS
DT BT aog BIX ofp BTX gin X2 gin £72° L0

1 AnA
- Bf o7 Sin nrx Cos LLLES Cos E%X Sin Sin — Sin =— yx

t AA

L LB Sin —= Cos — yz
c

- Sin 2IX gin BTX' oog 1‘%1 Sin

b ¢ a a

t Aan

mny
b
mry
b
mny
b
]
_ &n mn Sin 22X sin XX gin EEX Cos E%X Cos &EE-Sin inz zy
mny
b
mry
b

c b a a c c
1 [] 1 Aa
- A1 _nm Sin LLLP.S Cos nrx Sin oy Sin Cos irz Sin inz zX
c a a a b c c
nw 7 nmx nnx' mny ' Lz Luz'
“a o Cos 2 Sin 2 Sin b Sin sin o Cos c xz; (28)
where eom = 1 ifm=0 (29)
2 otherwise.

Note that m and n are exchanged between the notations of Equations (16)
and Equation (28). The discrepancy, according to Yaghjian [20], was that
the term involving the Dirac-delta function was - —%— ; ; in Equation (16)
of Tai and Rozenfeld, but was - —%— L in Rahmat-Sa%ii's expression of
Equation (28), as shown in Tablekl. We will show that Equation (16) is
identical to Equation (28) and therefore no discrepancy exists. We begin

with Equation (24) of Tai and Rozenfeld [14] as follows:

c
T _mn__ ' '
ge z 1(2 2 [geEeSin kzz Sin kzz
-k
i,m,n
L 2
+—§-—n ' Sink z Sin k z'
k -©— 0 z z

16




+ ——————=— 2 &' Cos k z Cos k z'
00 Z

+n 2' Sin k z Cos k 2'")]
~o—o p 2z

where

=k +k°+k
x y z

2c (n ' Cos k z Sin k z'
—o—o z z

Z

Substitution of Equations (17-27) into Equation (30) yields

ge

{ xx(kz- kz) Cosk x Cosk_x'
X X X

+ yy(kz— k

NN “ N

+ zz(kz- k

+ ;;(- kxky) Coskxx Sinkxx'
+ yx(- k) Sink x Cosk x'
+ yz(- kk) Sink x Sinkx'
+ zy(- kk,) Sink x Sinkx’
+ ;;(- kzkx) Coskxx Sinkxx'

+ zx(- k_ k ) Sink x Cosk x'
z X x x

) Sink x Sink x'
X x

) Sink x Sink x'
x X

- ‘li jEi jga jEE 4(2-6 ) .

n=0 m=0 =0 abc[k

Sinkyy
Coskyy
Sinkyy
Sinkyy
Coskyy
Coskyy
Sinkyy
Sinkyy

Sink
yY

K"]

Sinkyy'
Coskyy'
Sinkyy'
Coskyy'
Sinkyy'
Sinkyy'
Coskyy'
Bink y'

Sink_ y'
yy

Sink 2z
4
Sink z
z
Cosk z
z
Sink z
z
Sink 2z
z
Sink z
z
Cosk z
z
Sink z
z

Cosk 2z
3

Sink 2°'
z .
Sink z'
z
Cosk z'
P
Sink z'
z
Sink z'
z
Cosk z'
z
Sink z'
z
Cosk z'
z

Sink 2'
z

(30)

(3D)

» (32)




Now

1 SIS S 4(2-8)) 2 .2
-5 Z Z Z ——— (k -kx) CoskxxCoskxx'Sinknyinkyy'

Sink zSink z'
2z 2z
oo oo oo 2 2
4(2-6 ) k™ + k
1
e 2 X X 3
k k n=0 m=0 &=0 kS - K
Cosk x Cosk x' Sink y Sink y' Sink z Sink z' , (33)
X X y y z z
o0 ©00 oo
4(2-8 )
BURY o 2.2 ,
] Z Z 3 (k ky) Sinkxx Sinkxx

Cosk yCosk y'Sink zSink z'
y y z z

oo 00 % 2 2
4(2-8 ) kT + k

1 1 z E Z
-7 6(l£7£:l) R abco ; ;

k k- n=0 m=0 =0 k™ - K

Sink xSink x'Cosk yCosk y'Sink_zSink z' , (34)
x X y y z P

and

1 R 42-8)
5~ Z Z — 5~ (k k ) Sink X Sink x' Sink y Sink y
k n=0 mw=0 £=0 abclk -K]

X & = 4(26)

Cosszoskz'-——é(lrr'l)-— Z Z Z

n=0 m=0 =0

242
—12‘———1’—- Sink x Sink x' Sink y Sink y' Cosk z Cosk z' (35)
K K x x y y z z
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Substitut%on of Equations (33-35) into Equation (32) yields an
expression of Qe identical to gz of Equation (28), with the understanding

that m and n are exchanged and that

4(2-60) =g € (36)

[
on om of

if at least two of the three integers, m, n and 2, are nonzeros (when two
or more of them are zero, the series term is zero). We can also prove
directly that Equations (16) and (28) are identical either by substituting
only Equation (35) into Equation (32) or by using Equations (33), (34)

and the following relations

1
Sink z Sink z'
= 2l z z
Sink (c-z)Sink z'
= e g g z7z'
% Sink c Sink z Sink (c-z") < (37)
€
1
2 2 2 Cosk z Coskzz'
=6 Y-« z
- '
L =c Coskg(c z)Coskgz z:z' (38)
kgSinkgc Cosk z Cosk (c-z')
4 4
kz
Sink z Cosk z'
; k> z z
- L
) 281_; Sin(e z)Coskgz z:z. (39)
n gc -Sink z Cosk (c-z')
4 g
and
kz
—=—5 Cosk_zSink 2z'
Z; K-k 2
—Cosk (c-
) c 0s g(c z)Sinkgz z>z' “0)
281ink c ] <
g CoskszSin(c-z )
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&
which were originally employed by Tai and Rozenfeld [14] and are derived
in the Appendix of this report. This concludes our proof that there is no

contradiction or discrepancy in the electric dyadic Green's function in

and outside the source region. i
q
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SECTION III
COMPACT RANGE SCATTERING MEASUREMENT

A. Compact Range Scattering Measurement Techniques at 1 GHz.

There has been an increasing amount of interest in the compact range
for antenna and scattering measurements. The compact range technique was
first implemented in X and Ku bands [29), and was recently extended to
30 GHz [30]. At frequencies below 2 GHz, a number of technical dif-
ficulties have long been generally recognized. Major obstacles in-
clude the edge diffraction of the reflector, multipath of the illuminating
wave, and precision of the instrumentation. These difficulties have been
overcome and compact range RCS measurements were extended to as low as
1 GHz.

The cancellation method [31] was employed in the scattering measure-
ment. Figure 4 shows a block diagram illuminating the principle of the
set up and Figure 5 shows the physical arrangement of the cancellation net-
work. The use of high-precision microwave components and heavy 1/4 inch
semi-rigid cable is essential to obtain a deep null insensitive to temperature
variations and vibration. Even the 1/4 inch semi-rigid cable was sometimes
found to be sensitive to vibration and had to be fastened to the mounting
structure with a damping mechanism. The network was mounted on a plexiglass
board which was seated on a layer of foam as shown in Figure 5. Other shock-
mounting devices were also placed below the tables, the receivers, the
transmitter, the frequency "lock-box", etc. A 1-4 GHz solid-state cavity-
tuned source with an output power of 20 to 200 mw was built for the measure-
ment system. When connected with a lock-box, a frequency stability of 1
part in 10® was maintained. The dual-channel phase and amplitude receiving
system is shown in Figure 6.

The compact range used in this study consists of a 12-foot high by
17-foot wide reflector as shown in Figure 7. The reflector was fed by a
24 in. x 32 1/2 in. rectangular horn, shown in Figure 8, located at a focal
distance of about 12 feet. Both the reflector and horns are fabricated by
standard methods with average mechanical tolerances. Figure 9 shows a

a styrofoam support for the target under test.
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Figure 7.

Partial view of the 12-foot high, 16-foot wide reflector
used in the compact range.
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Figure 9. Styrofoam support for the scattering target used in the
compact range.




At 1 GHz and lower, the

multipath propagation, leakage and parasitic
excitation along the source, cable and the components and equipments can
cause severe difficulty. In fact, leakage from the source was initially
found to be only 30 dB below the illuminating field in the quiet zone.
These problems were overcome through careful shielding and the use of
microwave absorbers.

The field in the quiet zone was probed with a dipole, and amplitude
variations of less than +1 dB and phase variations less than +5 degrees
over an area of 5 ft. x 3 ft. were achieved. Since the horn used is an
ordinary rectangular horn, further improvement in the quiet zcone illumi-
nation may be achievable by using low-side-lobe feeds such as a corrugated
horn.

The ultimate criterion for the radar cross-section range using the
cancellation method is the stability and depth of the null achievable.

The deeper the null, the smaller echo return the system can detect. Also

a stable null insures accurate and consistent measurements. To achieve
stability and depth for the null, sufficiently high power and frequency
stability of the source are essential. The sensitivity of the receiver
is usually sufficient since the environmental noise in the range is
usually quite high. 1In the 1 GHz measurements, we were able to obtain
a null depth of =50 dBSM during the day and -60 dBSM in the night, which
could be maintained for an average duration of 1.5 to 2 minutes.

The sensitivity of the compgct range is displayed by measurements
shown in Table 2 on small conducting spheres shown in Figure 10, whose
echo areas are accurately known. The close agreement shows that accurate
measurements can be made for small scatterers with low echo return. Figure
lla and 11b show measurementson a circular cylinder 2.76 wavelengths long
for E and H plane aspect angle. Figure 12a and 12 b show the measured
data for flat conducting plates. Figures 13a and 13b show the measured
data for rectangular conducting boxes. All these measurements are in
good agreement with data in the literature, as can be seen in Figures 10
through 13. However, there is some confusion in the literature concerning the

polarization of the data which remains to be clarified.
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TABLE 11

COMPARISON BETWEEN COMPACT RANGE MEASUREMENT
AND EXACT CALCULATIONS FOR CONDUCTING SPHERES
CALIBRATED WITH THE 0.04403) SPHERE

Radius in RCS in dBSM
Wavelengths

Theoretical Measured
.04403 -46.14 =46.1
.05503 =40.41 =40.4
.06054 -37.63 -37.6
.06604 =35.45 -35.5
.07154 -33.42 =33.4
.07705 -31.80 -31.8
.10456 =25.44 =25.4
.11010 -22.82 -22.8
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BACK SCATTERING CROSS -SECTION (dB)

10

20

30

1 Figure 12.

ELEVATION ANGLE (DEGREES)

a) Pattern as a function of elevation angle

Comparison of measured backscattering cross-section of a
square plate versus incident angle €, with other known

data (continued).
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Figure 12. Compact range scattering measurement of a flat square ;

conducting plates for normally incident plane wave.
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B. Simulation of Biological Bodies
! A major difficulty in measurements involving a biological body is the

lack of consistency and stability. A living bird or animal undergoes -
i physiological changes all the time. They may feed less today, and they ﬁ
may move during the tests. This difficulty can be very frustrating f
and the interested reader may consult reference 32 for methods considered
by Blacksmith and Mack [33].
) - Since the physical configuration and the dielectric property are
the only parameters involved in the scattering measurements, it is feasible
to perform the test on a simulated model. While the simulation model
removes the inconsistency and instability inherent in real biological
bodies, there exists some degree of uncertainty as to how close the simu-
lation can be realistically accomplished. For example, it is difficult to
simulate the feathers, skin, blood vessels, etc. However, feathers and skin
have low dielectric constants and can sometimes be conveniently ignored.
The blood vessels have high water content but are usually surrounded by muscle
tissues which also contain water.

Simulation techniques for biological bodies were developed by Guy [34],
who employed various chemicals to simulate the complex dielectric constant
of fat, bone, and muscle tissue. His method was used in the fabrication of
bird models in this research program.

Before making the model, a styrofoam mold is constructed to hold and
support the moist jellied "Super-stuff" plastic. Tho mold is derived from
a bird model made of plaster of paris. Figure 14 shows the side and fromt
views of a sitting bird modél made of plaster of paris. Figure 15 shows the
k side and front views‘of a flying bird model made of plaster of paris. Figure

[EV S—

16 shows the side view of a '"Super-stuff’ simulated flying Green Wingtail, SB4,

in a styrofoam holder.

The "Super-stuff' simulated muscle tissue is composed of the following

materials
Saline solution (12g salt/liter) 76.5% (by weight) 1
Powdered polyethylene 15.27
Super-stuff 8.4% .
]
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(a) Side view

(b) Front view

Figure 14. Side and front views of
of paris.

a sitting bird made of plaster
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(a) Side view

(b) Front view

Figure 15. Side and front views of a flying bird made of plaster
of paris.
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The "Super-stuff" is a jelling agent manufactured by 0il Center Research

Corp. in Laffayette, Louisiana. The mixing process, which was improved
[ here by trial and error, is critical to the homogeneity of the simulated
tissue. Spectroscopic-grade salt is first added to deionized water in a L3
blending mixer in an oven. After reaching 200°F the solution is stirred
for about 2 minutes. Fine polyethylene powder is then slowly poured into
| the solution which is now being stirred at high speed. After half of the
polyethelene powder is poured in, the rest of the powder is mixed with the
super~stuff and poured into the solution being stirred at high speed. The
temperature and stirring help to remove bubbles and attain homogeneity. The ;ﬁ
temperature is then raised to 450°F for two minutes and the mixture is then Lf

allowed to cool.

Although it is usually possible to make a simulation model to meet the
required dimensions, it is not easy to obtain the required complex dielectric
constant with high accuracy. In order to insure reasonable accuracy in the

model, the in~vivo probe measurement technique [35] was used to determine the

i

{

complex permittivity of the model. Ordinarilly there is about 5 percent 1

error in this dielectric constant measurement. In all the simulation models 1
!
t

measured, the disagreements between the anticipated and measured complex

permittivity were mostly within 5 percent of each other.
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SECTION IV
NUMERICAL COMPUTATIONS FOR VARIOUS DIELECTRIC SCATTERERS

An exact solution for three~dimensional dielectric scatterers in free
space exists only for the sphere. For scatterers of arbitrary shapes,
numerical analyses employing the volume integral equation have been con-
ducted [25,26,36,37). There are other numerical and approximate methods
which are devoted to the estimates of SAR (Specific Absorption Rate) [38],
which is the average power absorbed per unit weight of the biological body.
However, there appears to be little research in the analysis of the scat-
tering cross section of arbitrarily-shaped dielectric and biological bodies.

In this section we discuss the use of the volume integral equation to
compute the scattering cross'section of three-dimensional arbitrarily-shaped
dielectric bodies including rectangular and I-shaped boxes, spheres, finite
circular cylinders, and simulated birds.

The basic volume integral equation has been discussed in detail in
Reference 26. The dielectric body can be replaced by an equivalent volume

current J such that
J = 3w (e -~ €0) E (41)
where w is the angular frequency, E is the electric field, €, and e are

the complex permittivity in free space and the dielectric body, respectively.

The volume integral equation in terms of the unknown J is

' _€ +2¢ o gd
f; S(LI) & (&) v - o rtr 1 (D " E(®,  (42)

where

G (x,r') = -juu(l + YV )exp (-jk|r-r'}) ,
k 4nlr-r'|

g} (r) = incident electric field intensity,

f = Principal volume integral excluding the
v  singular point at |r-r'|

J = unit dyad
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The solution of Equation (42) can be carried out by the method of
moments. The dielectric body, generally heterogeneous, is divided into
rectangular box cells and the equivalent current is expanded into a series
of pulse functions, each of which is unifoim in one cell and vanishes
outside the cell. The Dirac-delta function, defined at the center of
each volume cell, 1s used as the weighting function. By taking a scalar
product on both sides of equation (42) with a weighting function and inte-
grating over V, we generate a system of linear equations which is then
solved numerically on a computer. The scattering cross section is then
computed in terms of the equivalent current J by numerical integrationm.

Numerical computations have heen conducted for dielectric and bio-
logical bodies of various shapes including cubes, cylinders, spheres,
rectangular and I-shaped boxes, and simulated birds. Good agreements have
been observed for the field distribution inside the dielectric body in
comparison with the data from Michigan State University [26,36,37]. For
scattering calculations, the only data available in the literature were
for spheres and finite circular cylinders. The present calculation showed
correctly the sharp resonance behavior of the back-scatter cross section
as a function of frequency. But the frequencies of resonance were about
20 percent lower than those based on the Mie series computation. This
discrepancy could be due to the reduced apparent size of the sphere in the
simulation using rectangular cells. Agreement with the finite cylinder is

good. These results are presented in detail as follows.

A. Scatterers of Simple Shapes

Figure 17 shows the calculated back-scatter cross section for a finite
dielectric cylinder in comparison with the data from Richmond [39]. Figure 18
shows the geometry of a rectangular box of saline water and the way the
volume cells are divided and numbered. The calculated field distribution
is displayed in Tables 3a, 3b and 3¢ for the x-component, z-component and
total field of the electric field intensity. They are in good agreement
with Michigan State data [36]). Figure 19 shqws the calculated back-scatter
cross section of this rectangular box of saline water in comparison with

the measured data obtained at the Georgia Tech compact range.
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Figure 17. Comparison between the calculated results and Richmond's data
for a dielectric cylinder.
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TABLE III1
ELECTRIC FIELD DISTRIBUTION IN THE 36-CELL RECTANGULAR BLOCK

E,~DISTRIBUTION IN THE 36-CELL
i RECTANGULAR BLOCK

R

Jhe C  aa Dag R ae s B PR il Ry

CELL PRESENT MICHIGAN STATE
NO. | CALCULATION | o\ cuLATED | MEASURED
1 .0510 .0518 .0518
2 .0600 .0573 .0523
3 .0952 .0976 .1632
4 .0816 .0862 .0862
5 .0883 .0827 .0832
6 . 1040 .1090 .2355 i
7 .0870 .0935 .0935
8 .1225 .1180 .1180
9 .1355 .1410 .2869
10 .0292 .0339 .0459
11 .1008 .1050 .0878
12 .1611 .1570 .2017
13 .0930 .1020 .1258
14 .1956 .2020 .2020
15 . 2546 . 2480 .1256
16 .1345 .1460 .1460
17 .2267 .2330 .2330
18 .3294 .3220 .5410
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TABLE III (Continued)

! £, ~DISTRIBUTION IN THE 36-CELL
¥ RECTANGULAR BLOCK i
;
ceLL | PRESENT MICHIGAN STATE
NO. | CALCULATION | ¢} cuLATED | MEASURED
1 .2127 .2140 .2167
2 1719 .1710 .1647
3 .1326 .1310 —-—
4 .0982 .0963 .0963
5 .0955 .0927 .0927
6 .0730 .0698 -——
7 .0930 .0991 .0925 y
8 .0723 .0783 .0820 i
9 .0325 .0364 —_— %
10 .2207 .2230 .2230
11 .1355 .1360 .1456
12 .0554 . 0544 ——
13 .0666 .0626 .0626
14 .0330 .0328 .0344
15 .0342 .0348 —-——
16 . 0964 .1010 .1010
17 .0932 .0963 .0963
18 .0543 .0563 -—




TABLE III (Continued)

E. —DISTRIBUTION IN THE 36-CELL
t " RECTANGULAR BLOCK

CELL PRESENT MICHIGAN STATE
NO. | CALCULATION | cn) cyLaTED | MEASURED
1 .2187 .2202 —
2 .1821 .1803 —
3 .1633 .1633 —
4 .1277 .1292 —
5 .1301 .1242 —
6 21271 .1294 —_
7 L1274 .1362 —
8 .1422 .1416 —
9 .1394 .1456 —
10 .2226 .2256 -—
11 .1689 .1718 -—
12 .1703 .1662 _—
13 L1144 .1137 —
14 .1984 .2047 —
15 .2569 .2505 _—
16 .1655 .1775 —
17 .2451 .2521 —
18 .3339 .3269 —
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Figure 19. Comparison between calculated and measured RCS of
square boxes of saline water shown in Figure 18.




Figure 20 shows an I-shaped box of saline water under plane wave
excitation. The numbers are the index number for the volume cells.
Tables 4a, 4b and 4c show the calculated x,y and total fields inside
the I-shaped box of saline water. The agreements between the present
calculation and that at Michigan State University ([36] are good. Figure
21 shows the comparison between the measured and calculated back-scatter
cross section data generated at Georgia Tech. The disagreement could be
partially due to the acrylic box as indicated in the figure. Good agree-
ments with Michigan State data were observed also for three other cases,
including a cube and two rectangular cylinders, which will not be pre-~
sented here.

Computations were also made for the dielectric sphere. Figure 22
shows the back-scatter cross section of a dielectric sphere with a re-~
lative permittivity of 2.592. The results deteriorate as Ka becomes
greater than 2. Figures 23 and 24 show the computed results for a dielectric
sphere with a complex dielectric constant of 29.43-j0.158 using 128-cell
and 232-cell, respectively. The results are rather disappointing when
compared with data generated by Burr and Lo [40], as shown in Figures 23
and 24. The resonance frequencies were shifted by 20 percent and the
resonance peaks are off by 30 percent. This failure in predicting re-
sonance phenomena in a dielectric sphere by the volume integral equation
approach is in contrast to the high accuracy achieved for the calculation
of conducting spheres by a surfate integral equation approach [41,42].

To explain the lack of adequate accuracy in predicting resonances, we observe
that the point-matching is enforced at the center of the volume cells --

not at the surface of the scatterer. Since the resonance is very sensitive
to the physical size and shape of the object, the failure to project the
accurate size of the object in the computation may be a source of error.

Even more puzzling is that this situation should lead to reduction in
apparent size and shift up the resonance peaks to about ka = 0.63 and

ka = 0.84 in Figure 24, instead of lowering them to 0.52 and 0.72, res-
pectively.
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Figure 20. An I-shaped box of saline water under plane wave excitation
(numbers are the index numbers for the volume cells).
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TABLE IV

ELECTRIC FIELD DISTRIBUTION IN THE 128-CELL BLOCK

EfDlSTRlBUTION IN THE 128-CELL BLOCK

ceLe | PrRESENT MICHIGAN STATE
NO. | CALCULATION] caLcuLATED| MEASURED
1 . 0545 L0573 ——
2 .0342 .0353 —-
3 .0656 0676 -—
4 .0279 .0294 -
5 .0906 .0879 ———
6 .0899 .0887 ~—
7 .0787 .0807 -——
8 .0557 .0558 ———
9 .1028 1071 ——
10 .0165 .0173 -
11 .1103 . 1057 —-——
12 .1027 .1018 —~——
13 0775 .0769 0770
14 .0681 .0681 .0681
15 .0967 .1017 L1017
16 .0393 .0386 .0518
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| TABLE IV (Continued)

| ]
&
E,-DISTRIBUTION IN THE 128-CELL BLOCK t
| cELL | PRESENT MICHIGAN STATE 1
: NO. | CALCULATION] CALCULATED| MEASURED g
17 .0905 .0853 .0915 %

18 .0940 .0941 .0766 %

19 .0562 .0567 —-- §

20 .0544 .0575 -- f

21 .0493 .0517 — f

22 .0951 .0982 _— f

23 .0656 .0611 - 5

24 .0838 .0823 - ?

]

25 .0426 0421 - i

26 .0623 .0665 -

27 0465 .0431 -—- E

28 .1440 ‘ . 1494 - ;

29 .0633 .0617 .0617 |

30 .0651 .0695 .0739
31 .0696 .0661 .0661 _
32 .1834 .1887 .0766 T
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TABLE 1V (Continued)

Ey-DlSTRIBUTION IN THE 128-CELL BLOCK

MICHIGAN STATE

CELL | PRESENT
NO. | CALCULATION| cALCULATED| MEASURED
1 .0228 | .0239 —
2 .0482 .0501 —
3 . 0467 0424 _—
4 .0698 .0623 -—
5 .0743 .0681 _—
6 .0497 .0466 —
7 .0309 .0303 -——
8 .0867 .0858 -;-
9 .1254 1256 _—
10 .1215 1234 _—
11 .0892 .0912 ——
12 .0490 .0500 ——
13 .0197 .0192 .0243
14 .0450 .0420 .0316
15 .0496 .0423 L0423
16 .0565 .0486 .0486
54




TABLE IV (Continued)

EY'DISTRIBUTION IN THE 128-CELL BLOCK

ceLL | PRESENT MICHIGAN STATE

NO. | CALCULATION| caLcULATED| MEASURED

- 17 .0713 .0671 L0547
18 .0567 .0544 -—
19 .0170 .0162 —_—
20 .0512 . 0485 _—
21 ,0957 .0937 _—
22 .1370 .1382 -—
23 L1482 .1506 —-—
24 L1131 .1136 -
25 .0299 .0296 -
26 .0658 L0641 —
27 .0580 .0544 -—
28 .0304 .0262 —-—
2y .0l64 .0162 .0194
30 .0375 .0369 .0371
31 .0355 .0344 0344
32 .0165 .0157 ——
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TABLE IV (Continued)

E,-DISTRIBUTION IN THE 128-CELL BLOCK

t
CELL PRESENT MICHIGAN STATE
NO. CALCULATION CALCULATED| MEASURED
1 .05906 .06208 -
2 .05910 .06123 —
3 .08048 .07979 -_—
4 .07517 .06709 S
5 .11720 .11119 —_—
6 .10280 .10019 -
7 .08449 .08627 -
8 .10300 .10235 _—
9 .16220 .16500 -—
10 .12270 .12460 _—
11 .14180 .13961 -
12 .11380 11342 —
13 .07995 .07926 -—
14 .08163 .08001 —
15 .10870 .11015 -
16 .06883 .06206 -—
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TABLE IV (Continued)

{ Et-DISTRlBUTION IN THE 128-CELL BLOCK
t
| ceLL | PRESENT MICHIGAN STATE
NO. | CALCULATION] cALCULATED| MEASURED
17 .11520 .10853 -
18 .10980 .10869 —
L 19 .05870 .05897 —
j 20 .07472 .07522 N
21 .10760 .10702 —
22 .16680 .16954 —
23 .16210 .16252 —
24 .14080 .14030 —_
25 .05210 .05146 —
26 .09062 .09236 —
27 .07433 .06940 —
28 14720 .15167 -_—
29 .06537 .06379 —
30 .07588 .07870 -—
k)| .07810 .07450 -—
32 .18410 .18940 -
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Comparison between calculated and measured RCS of I-shaped

boxes of saline water.
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Figure 22. Calculation of RCS of a sphere with a dielectric constant
of 2.592 as a function of radius a.
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On the other hand, the computational accuracy may be improved by
using more volume cells -- subject, of course, to the limitation of the
central memory size of the computer being used. This is indicated in
Figures 23 and 24, in which it is shown that the second resonance appears

after the number of volume cells is increased from 128 to 232.

B. Scattering Computation for l-foot birds

The Green Wingtail, which is an important migrant bird, was selected
for extensive measurement and computation. This bird is typically 14.75
to 15.50 inches and weighs about a pound. At 1 GHz this bird is about 1
wavelength in length. Figures 14 and 15 show plaster-of-paris models for
a Green Wingtail in sitting and flight positions, respectively.

Four simulation models, SB1l through SB4, were generated in this project.
For the first three models, a number of problems developed in the ex-
perimental work. The permittivity was too high or too low or not uniform.
These difficulties and the unsatisfactory data for the sphere directed
the computation toward a more conservative approach. It was then decided
that measurement for the bird should be started with a smaller bird exactly
as the numerical model made of a group of cubic volume cells. With this
principle in mind, SB4 was fabricated. Figure 25 shows the print-out of
the cell centers for the side, front and top views for SB4. Figure 26 shows
the geometry of the coordinate system and a plane wave incident in the x-z
plane, which is the plane of symmetry for the bird. Figures 27 and 28 show
fair agreement between the computédd and measured results. It is noticed
that the agreement is good as long as there is no sharp variation in the
pattern. This difficulty in predicting sharp field variation and resonance
phenomena may explain the use of specific absorption rate (SAR) in dealing
with dielectric scattering problems [38].
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BIRD No. SB-4
AT 1.LO GHZ
. VERTICAL POLARIZATION
g
- i
o !
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Figure 27. Back scattering cross section of  bird SB4 versus elevation

angle 8 with vertical polarization as shown in Figures 25
and 26.
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BIRD No. SB-4
AT 10 GHz
HORIZONTAL POLARIZATION
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Figure 28. Back scattering cross section of bird SB4 versus elevation
angle 6 with horizontal polarization as shown in Figures 25
and 26.
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SECTION V
IMPROVEMENTS OF COMPUTER ALGORITHM

A number of modifications Lave been made on the existing Georgia
Tech volume integral equation algorithm to make it more efficient for
the computation of dielectric scatterers. Major improvements included:
(1) the reduction of execution time and central memory requirement by
50X by using symmetrical matrices, and (2) the reduction of execution time
and central memory requirement by 75% for scattering problems with one-
plane symmetry and by 87.5% for scatterers with two-plane symmetry. In
addition, the banded matrix ([43,44] and virtual memory [45] techniques

have been implemented successfully for small scatterers.

A. Symmetrical Matrices

It can be shown that the matrix of the volume integral equation al-
gorithm is symmetrical if the following conditions are satisfied.
(1) the dielectric body is homogeneous and has a
constant permittivity,

(2) the volume cells are equal in size,
(3) the volume cells are identical in shape.

The third condition is not critical and can often be ignored. To prove

this, one can examine the following matrix elements in the algorithm

2 -ik_|r_-r'|
z““wf- jwuo[G: + 32 ] 2P Bi(r') dr’

pk k(2) du_du 41![£p-£']
3 U (43)
3jw[a(5v)-e°] k p
and
pk f n 1 32 e-j‘koILfl._rl n,_, '
Z, " - Juue[§, + ki 3w 9u_ ) 4ETE£’£'| BP(E ) dr
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SIS T2k (44)
ij[e(gl)-eol n £
where k,n = 1,2,3 or x,y,z
£,p = 1,2,....L; the index number of volume cell,

k = the Kronecker delta function,

= a pulse function being unity in the 2th volume
cell associated with k (which designates x,y or
z and is merely a dummy index number of no
consequence to the integration).

n
Since the pulse function Bp restricts the domain of integration to the

unit volume, cell £ in Equation (43) and cell p in Equation (44),
in

pk and Zi§ are equal under the three

r -r'| and |r,-r'| are equal. Thus Z
P - -2 =

conditions stated.

For a symmetrical matrix, there are standard subroutines to handle its
inversion or solution. The improved Georgia Tech algorithm is given an
acronym "BPWSM" to denote "Biological-Plane-Wave-Symmetrical-Matrix".

This algorithm has been successfully applied in a number of cases with

a resulting 507 reduction in computer central memory and execution time.

B. Symmetrical Scatterers
Two improved algorithms, BHPW2 and BHPW4, have been completed to

handle scattering problems with one-plane and two~plane symmetries with
resulting reductions of 75% and 87.5% in computer time and central memory,
respectively. These are discussed separately as follows.
(1) Scattering problems with one~plane symmetry (BHPW2)
When the direction of propagation of an incident plane wave
is in the plane of symmetry of a conducting scatterer, it is re-
cognized that some symmetric behavior must exist in the induced

current on the surface of the scatterer. Without loss of generality,

Cartesian coordinates can be set up so that the plane of symmetry

coincides with the XZ plane as shown in Figure 29. The polarization
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of the incident wave is assumed to be either parallel or
perpendicular to the XZ plane. Arbitrary polarization can
be decomposed into two components, one parallel and the other
perpendicular to the XZ plane. The overall scattering problem
can then be treated by superposing the fields due to these two
component incident fields.

At two symmetrical points £ and % + L/2 in Figure 29, the
components of the induced currents exhibit the following relation-

ships

st

X
Jz L+1/2

y 1Y
Jn Jz + L/2 ,

2 YA
o= w2, 45)

when the incident gf is parallel to the z-axis. In Equation (45),
J; denotes, for example, the x component of the induced current in
the ith cell.

When the incident g} is parallel to the y-axis, the induced

current on the scatterer has the following property

X _ 3

X
o g +1/2 ,

y o Y
Jz Jz + L/2

z __.z
Jo =y w12 . (46)

The matrix equation to be solved is
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1 3
k _&n n
Y Jo oz =V (47)
f=1 k=1 * Pk P
n=1,2,3
p=1,...L.

Since the excitation is symmetrical, we have

n n
Ve = Ve w12 (48)

Substitution of Equations (45) and (48) into Equation (47)
yields

L/2 3
Z Z k  _2n (L/2+)n n
Jolz +2 _q k1] =V
k=1 k=1 % Pk Pk (-1) P> (49)
n=1,2,3

p=1,2,...L/2

for gf =z

Substitution of Equation (46) and (48) into Equation (47)
yields

L/2 3 Kzt g W20
> X Nt tin -1F) =V (50)
g=1 k-=1 P

n=1,2,3

p=1,2,...L/2

for Ef =y
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Equations (49) and (50) show that the number of equations has
been reduced from 3L to 3(L/2).

(2) two-plane symmetry

R S,

-

Figure 30 shows a scattering problem symmetrical with

respect to the x~z and y-z planes. The directive of propagation

of a plane wave is assumed to be parallel to the z-axis. When
E1 = 2z, we have

( Jl = J2 = J3 = J4
X X X X
1 2 4
Jo == =30 = J
\ y y y y (51)
\ J = Ji = J: = J:
1 -
When E° = y, we have
J1 = J2 = ~-J = —J4
x X

1 2 3 4 (52)

In addition, the excitation at cells 1,2,3 and 4 are identical.
The number of Equations in Equation (49) can therefore be reduced

to one-quarter of its original size as follows
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Figure 30. A scattering problem with two~plane symmetry.
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L/4 3 (L/4+2)m (L/2+l)n]
k n - k+1 +
Z Z Iy :zpk+ (-1) [zpk * Ty
=1 =1
(3/4 L+i)n n
n=1,2,3
p=1,2, ... ., L/

i -
when E° = z .

Substitution of Equations (52) into Equation (47) yields

L/4 3 . k(1-6.,) )
Z Jl; zi: + (1) 1k Z(Il;/4+2)n . (—l)k(l sz) 2 IEL/Z-HL)D +
=1 k=1 ¢ p P
+ (—1)k(l-63k) 7 (3/4 L+£)n} = 0 (56)
pk P
n=1,2,3
p=1,2, . . . ., L/4
i -

when E* = y. In Equations (54) dju is the Kronecker delta.

C. Banded Matrix Techniques

The banded matrix technique has been previously employed by Ferguson,
et al. ({43] and Balestri, et al. [44] in the scattering and radiation of
thin~wire structures. These authors have demonstrated that the banded
matrix technique can reduce the computer execution time in the computation
of thin-wire scattering and radiation involving small matrices. They also
demonstrated that wire-grid problems involving more wire segments than can
be managed in the computer central memory can be solved by the banded matrix

technique after proper numbering of wire segments. The segments are
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numbered such that the difference between sogment numbers for all

neighboring segment pairs is small as compared with the total number

of segments. In this case the large matrix elements are kept close
to the principal diagonal of the matrix.

The basic banded matrix technique has been applied to the Volume
Integral Equation algorithm. However, there are three unknowns in the

nth cell in the Volume Integral Equation approach, while there is only

one unknown in the nth segment in the wire algorithm. Fortunately the
matrix generated in the Volume Integral Equation algorithm has a tendency
to be banded. Figure 31 shows the matrix for the case of a simple cylinder
formed with a linear array of volume cells. It can be seen that a diagonal
band extended to one third of the columns and the rows must be included in
order to include all the nonzero elements. It is also noted that outside
this band all the matrix elements are zero. This phenomenon is due to the
lack of coupling between orthogonal components of the electromagnetic
source and field. For an object of more complex geometry, such as a sphere,
elements throughout the entire matrix can be nonzero except for those re-
lated to the coupling between orthogonal components in the self cell.
Figure 32 shows the matrix for the case of a prolate spheroid of 12 cells,
which is weakly banded with some nonzero elements away from the diagonal
band.

We now define the normalized width of the diagonal band as

Normalized Width of diagonal band = [ (number of rows in band)
+ (number of columns in band)] [(total number of rows) x 2] (55)

Numerical tests have been conducted to explore the convergence of the
solutions as a function of the normalized width of the diagonal band. 4

Figure 33 shows that the error in the solution is reduced as the width of

the diagonal band is increased. The error falls to near zero when the
normalized width of the diagonal band is only 0.6. Note that for a general
matrix the error reaches zero when the normalized width of the diagonal
band approaches unity. It is also noteworthy that the error is only 5%
when the normalized width of the diagonal is 0.15 or larger. Thus, a
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Note: [} The size of the shaded area in
the square cell is proportional
to the magnitude of the matrix
element.

Figure 31. A display of the magnitude of matrix elements in a VIE

matrix for an B8-cell dielectric cylinder which is strongly
banded.

76

=i "




10 20 30
..
J a o [] *
2 [ () (3 [ eloie] of o
L] O LJ [ el |
sl le o] |e . olel lalels
o] lo o] lo ol 1o
» L
o * » 3 [] sjolale
ol 1o o] To o] e
] - \J [d Slele 2 e
sl Jo o] |* o] [o
[] o
ol e o] |l
el 1o ol 1@
* U [] 3 L4
FmDan » \ ol [s]ole]e
) [ L e [o
2l ]e el | eiele] (a]®
o] Jo
* [] L4 [ L) ¢
204 1ol o ol lIn sle] lelole D
o] |o [ . DD
L4 o L) slolaiel le D
DRD
el |® ol [0
4 | & O » . »
A0 (A0 [] L)
L] . ] [ ojeisfe
8l® [31JL] L L
o] log D ofele] lefe
ol I sl Jo
0 ajo e L] L] ®
of lo COROND O
o] [eo]e . o] lo
U0 L] (]
o] o o] (¢
8 le [ L) [) J D

Note: [} The sizé of the shaded area in the
square cell is proportional to the
magnitude of the matrix element.

Figure 32. A display of the magnitude of matrix elements in a VIE
matrix for a 12-cell prolate spheroid which is weakly
banded.




Figure 33.

IS

o
1
®

ERROR IN PERCENTAGE (%)

_ | ' e  ®

0 | S|
0 0. 02 03 04 05 06 07
NORMALIZED . WIDTH OF DIAGONAL BAND

Convergence of solution for the case of a 12-cell prolate
spheroid expressed in percentage of error as a function of
the normalized width of diagonal band.

78




Pl

significant reduction of execution time can be accomplished for a small
scatterer. These numerical tests also strongly indicate that a large
} scatter, which can not be handled in the computer central memory, may

be treated using the banded matrix technique.

D. Virtual Memory Techniques

The virtual memory is a software technique, in contrast to the

extended-memory hardware capability, to store data in a digital computer

et e

B S

for rapid and efficient access in computer-aided numerical analyses to :
overcome the limitations imposed by the size of the computer central
memory. The basic algorithm had been developed by Carbrey [45] for real-
valued data, and was employed in the present research to expand the
capability of the Volume Integral Equation algorithm to handle large

dielectric scatterers. When using exclusively the computer central

memoxry to handle the matrix in the computation, the CDC CYBER~74 computer
at Georgia Tech can only deal with matrices of about 38,300 complex
elements, or about 65 volume cells. The use of the virtual memory tech-
nique can potentially make it possible to handle a matrix with 4 x 106
complex elements, or 660 volume cells, which is about ten times the size
of those limited by the computer central memory. A serious disadvantage
of the virtual memory technique is its extremely large execution time,
often ten times more than methods using central core memory alone.

The tasks involved in implementing the virtual memory technique in
the Volume Integral Equation algorithm are twofold; the Carbrey algorithm
wust be extended to handle complex data and be integrated into the process

of the moment method solution. Both of these difficulties have been overceome

and successfully tested for small and medium scatterers. For large
scatterers considerably exceeding the central memory, the computational
efficiency is low and needs to be improved.

There are two steps involved in the numerical solution of a system
of linear equations. First the matrix elements involved must be computed
and stored for easy access. Secondly, the matrix equation must be solved

by a certain process using either the central memory alome or the virtual

B i = o
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memory, which uses both the central memory and disk memory. Both steps
need large computer execution time and the key issue is to reduce the
computer time to a level acceptable for practical computations.

Figure 34 shows that the virtual memory technique requires as much
as 100 times more time to generate and store the entire matrix. This
poor efficiency seriously degrades the practical usefulness of the virtual
memory method. However, we have discovered that by using a local file
storage method the matrix storage time can be drastically reduced. This
method is still being studied and will be discussed in a subsequent report.

In the numerical solution of a matrix equation, it was observed that
the order and sequence of the rows and columns are incompatible between
the Gauss-elimination matrix solution method and the virtual memory
algorithm developed by Carbrey [45]. As a result, the direct row-access
approach used by Carbrey is about ten times less efficient than the fast
column-access method developed at Georgia Tech in this research program,
as shown in Figure 35. However, both of them take considerably more
execution time than the conventional central memory solution method.

The feasibility of the virtual memory technique in dealing with
scatterers too large to be handled in computer central memory has been
demonstrated. However, it is feared that the execution time may increase
with the size of the scatterer so as to render the method impractical. It
is hoped that the local-file manipulation method being explored can be

used to improve the efficiency of the existing virtual memory technique.
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SECTION VI
CONCLUSIONS AND RECOMMENDATIONS

Research has been conducted in the analysis and measurements of three-
dimensional arbitrarily-shaped heterogeneous dielectric and biological
bodies. The discrepancies in the literature regarding the singularity
of the electric dyadic Green's functions were resolved. The discrepancies
were centered at the singularity of the rectangular cavity. It was shown
in this report that the apparent discrepancies simply do not exist and were
probably superficial observations.

Compact range scattering measurements were successfully conducted at
1 GHz. Techniques in fabricating simulation models using the "Super-stuff"
were investigated and several l-foot birds were made. Extensive numerical
analysis was carried out for dielectric scatterers of various shapes in-
cluding cylinders, rectangular blocks, I-shaped blocks, spheres, and a 1-
foot bird. The accuracy of these computations was good except for the
resonant sphere, for which the resonance frequencies were shifted by about
20 percent.

Various numerical techniques have been investigated. Computer central
memory and execution time were reduced by 50 percent with the symmetrical
matrix technique, by 75 percent for scatterers of one-plane symmetry. Tech-
niques of banded matrix and virtual memory have been implemented in the
Volume Integral Equation algorithm and tested successfully for small scatterers.

It is recommended that the aéea of research discussed in this report
be continued except for the singularity problem associated with the electric
dyadic Green's function, which appears to have been satisfactorily concluded.
In addition, the Surface Integral Equation approach should be explored to see
whether its numerical convergence is more rapid than the Volume Integral
Equation approach. Exact solution for the dielectric prolate spheroid appears
to be a feasible research subject which should lead to accurate and useful

data for dielectric scattering problems.
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APPENDIX

PROOF FOR THE IDENTITIES (EQUATIONS (37-40))

Equations (37-40) were used by Tai and Rozenfeld [14] and are important
identities in our proof that the expressions of Rahmat-Samii [17] and Tai
and Rozenfeld [14] are identical. These four identities are similar and
it suffices to prove only Equation (38).

By using an identity [R.E. Collin, Field Theory of Guided Waves,
McGraw Hill, New York, 1960, p. 581]

.
3 Cosmx _ _1 _T_ Cos(x-Ma
a=1 n2_32 2a2 2a  Sinma » ©0<X<2m (38)

we can derive Equation (38) as follows
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This completes the proof for Equation (38). Similarly, Equations (37),
(38) and (40) can be proved by using the series summations in Collin's
book and the combination of sinusoidal functions.
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