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SUM ARY

The objective of this program is to conduct theoretical and experi-

mental research to determine the electromagnetic scattering from hete-

rogeneous dielectric bodies as individual bodies and as a cluster of

bodies. The discrepancies in the literature regarding the singularity

of the electric dyadic Green's functions were resolved. Compact range

scattering measurements at 1 GHz were successfully performed to obtain

measured data to validate the numerical analyses. Extensive computations

were made for a variety of dielectric scatterers, including a one-foot

bird at 1 GHz. The agreements between measurement and computation were

good except for the resonant sphere, for which the calculated resonant

frequencies were shifted by about 20 percent. Various numerical techniques

were investigated successfully for implementation in the volume integral

equation algorithm at Georgia Tech. These techniques include methods to

treat symmetrical scatterers through use of symmetric matrices, and the

use of banded matrices, and virtual memory.

There has been very little research into the problem of scattering

by dielectric objects of complex permittivity. Future research in this

area should include the investigation of the surface integral equation

technique and the exact solution for the dielectric prolate spheroid.
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SECTION I

INTRODUCTION

During the past decade, there has been a rapidly rising interest in

electromagnetic problems involving dielectric objects. The interest in

this area arises from a multitude of military and civilian needs. Human

beings are increasingly more exposed to microwave radiation hazards on

aircraft, ships, military installations and even in their homes. The

electromagnetic scattering from birds, animals, and human beings is

essential to the detection, identification, and interference problems

in radar systems. Biological and medical applications, such as blood

thawing, enzyme inactivation and hyperthermia treatment of cancerous

tissues, also demand accurate knowledge of the electromagnetic fields in

dielectric bodies. Thus, electromagnetic scattering by dielectric bodies

is a fundamental and important problem, and solutions for these scatterers

have wide application.

Since September 1978, Georgia Tech has been supported by the Deputy

for Electronic Technology (RADC/EEC), Air Force Systems Command, under

contract F19628-78-C-0223 to conduct a two-year research program in this

area. The emphasis is focused on analyses and measurements of the scattering

characteristics of heterogeneous dielectric objects as individual bodies

and as a cluster of bodies. Progress to date has included the clarification

of discrepancies in the literature on the singularity of the Green's

function in the source region [1], and measurements and calculations of

the scattering cross-section of dielectric bodies of arbitrary shapes and

complex dielectric constants [2-4]. In addition, various numerical tech-

niques have been investigated and implemented in the existing Volume In-

tegral Equation (VIE) algorithm at Georgia Tech.

Numerical techniques developed in the current research program are

capable of producing fairly accurate data for objects less than one free-

space wavelength long. There are models for which the present technique

is highly accurate, and there are geometries, such as the sphere, for

which the present technique is not quite satisfactory.



The success of compact-range scattering measurements at a frequency

of 1 CHz represents an advance in the state-of-the-art of scattering

measurements using the compact range technique. This extension of the

compact range scattering measurements to lower frequencies demonstrates

the versatility and usefulness of the compact range as a general purpose

EM measurements facility.

2
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SECTION II

RESOLUTION OF THE DISCREPANCIES IN THE
SINGULARITIES OF THE ELECTRIC DYADIC GREEN'S FUNCTIONS

Green's functions of various types are fundamental to the theory of

electromagnetics and have become increasingly important with the recent

progress in numerical analysis. The dyadic Green's function technique

of treating electromagnetic boundary-value problems was first formulated

by Schwinger in the early 1940's in unpublished notes. This subject was

described in several textbooks by Morse and Feshbach [5], Collin [6],

Schwinger and Saxon [7], and Tai [8]. Recently, the usefulness of Green's

functions in electromagnetic theory increased due to the use of high-speed

computers to numerically analyze many problems previously unsolvable.

Computerized analysis often employs an integral equation [9] which evolves

from a Green's function expression for the particular boundary conditions.

However, earlier Green's function expressions have been limited to the

space outside the source region and are deficient when used in the integral

equation formulations. This deficiency was addressed with an increasing

interest in recent literature [1,5,8,10-231. However, some of the results

in the literature appear to be inconsistent (14,17,19-211 with seemingly

conflicting results.

Yaghjian attempted to explain the apparent discrepancy in the sin-

gularities of electric dyadic Green's functions as due to the differences

in the shape of the principal volumes involved in the formulations [19-211.

Unfortunately, the principal volume was apparently not involved at all in

the derivation of the controversial expressions [14,17].
In this section, the source singularity of the electric dyadic Green's

function will be discussed and a more satisfactory view on this subject

will be presented. The authors concur with Yaghjian in that the singularity

of the electric dyadic Green's functions does depend on the principal

volume selected. However, we do not share his view on the necessity or

even correctness of attaching the principal volume to the electric dyadic

Green's function. The principal volume integration is merely a mathematical

1



process taken to deal with the singularity of the electric dyadic Green's

function in the source region. In fact, it may be possible to select a

finite volume to handle the integration without resorting to the principal

volume [23], which must be infinitely small and of a specific shape .

The apparent discrepancy between Tai and Rozenfeld [14] and Yaghjian [15]

has been found to be non-existent and their expressions are mathematically

identical.

A. The Apparent Discrepancies in the Source Singularity of the Electric

Dyadic Green's Functions

A dyadic Green's function has been conventionally defined for a

time-harmonic field in either of the following two ways.

1. Method of Delta Function or Distribution Theory

The dyadic Green's function can be defined [8] as a dyad

G(r,r') that satisfies the complex vector wave equation

V x V x k(') - kQ(,f') = I 6 (rr'), ()

subject to all the boundary conditions, where

V - gradient operator,
k - the wavenumber of the medium,
I - unit dyad,
6 - Dirac delta function, and

E,r' positional vectors of the field and source points, respectively.

The problem is illustrated in Figure 1. This definition was used in

References 5,7,8,13,14,16 and 17.

2. The Integral Formula Method

The dyadic Green's function is defined, in the integral formula

method [24], as a dyad (r,r') that satisfies

E(r) - 1 ((r') " J(r') dv' (2)

where E is the electric field and J is the electric current.

4



Scatterez5
field point Source

k

y

boundary S

Figure 1. A general, electromagnetic boundary-value problem.
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The singular behavior of the dyadic Green's functions can be best

illustrated by its simplest type -- the free-space electric type, for

which

-V e-Jk!. - ! '
k '(-r'') "Jwu°[.L+ e ]  4lr - ' I (3)

k 2 41rIt~ 1

As r - r', the denominator in Equation (3) vanishes and G is singular

at this point. However, when -Q is used in an integral formulation, the

resulting integral is expected to yield a finite value. This problem

is well known to the mathematicians and has been discussed by Van Bladel

[121 with respect to electromagnetic theory. As shown in Figure 2, Van

Bladel placed an infinitesimal volume AV, surrounded by a closed surface

AS, to enclose the field point r'which is located in the source region.

The electric field was then expressed as

((r( ) f Q(r') dv' + f G(r'r') "(r') dv'

f AV _o(rr') . J(f') dv' + E (r) (4)d v - V - U --- (4)

in which E , the correction term, was employed to account for the removal

of AV from the integral, and JV-AV was referred to as the "principal

volume" integration. The E term was not clearly spelled out in Van
-C

Bladel's work, but was later employed by Chen [14] to provide a clearer

picture of the physics involved and this notation is convenient for the

present discussion.

Van Bladel noted that E c(r) does not converge properly if AS is a

circular cylinder, but he found that

E (r) - (5)

6
-c - --------------------° ,



Figure 2. "Principal Volume" integration in the source region.



if AS is chosen to be a sphere. Equation (5), based on a spherical AS,

was employed successfully in numerical analysis in both References 25

and 26.

Recently, Yaghjian [19-21] pointed out the apparent discrepancies

in the literature when other types of dyadic Green's functions and

infinitesimal volumes AV were involved. Rahmat-Samii [17] showed that

-J
E= , (6)

0

for a rectangular cavity without specifying the principal volume, if any,

being involved. For the same problem, Tai and Rozenfeld [14] indicated

-J z
E= , (7)
-c jW0

without specifying the principal volume.

Apparently in an effort to resolve the discrepancy between Equations

(6) and (7), Yaghjian [19-21] carried out an analysis to demonstrate that

E depends on the choice of the shape for the infinitesimal volume AV.--t

Furthermore, he states that the same is true for problems involving bound-

ary surfaces on which tangential E or B are zero. Unfortunately, his

reported results introduced several more discrepancies which added more

confusion in spite of his intended effort to unify and to interpret. For

example, in the rectangular cavity case, Yaghjian offered the following

answer

J
E C if AV is a cube, (8a)

Jz
E z if AV is a pillbox . (8b)-C JWE

While Equation (8b) is similar to Equation f7), Equation (8a) differs from

both Equations (6) and (7). The differences in sign are due to their differences

in the suppressed ejw t or e- jwt chosen in the individual analyses; they can

be ignored.

8



Chen [181 indicated the dependence on the shape of the principal

volume but restricted his discussion to the free space case only.

However, his expression for a circular cylinder AV is, by assuming

J -zJ
z

-J
E - (1 - cos o) (9)

while Yaghjian's formula is

E = [(- cose) Jz; + 1/2 coseoJ] -1 (10)
--c 0 z 0- jWE

where a is shown in Figure 3.
0

The discrepancies in the literature as discussed above are partially

summarized in Table I for ready comparison. As can be seen, no major

disagreement exists in the literature for the free space case. But for

the rectangular cavity and waveguide, there are apparent discrepancies

among various authors.

B. The Uniqueness of a Harmonic Field

The uniqueness theorem for a harmonic field is stated by Harrington

[27] as:

"A field in a lossy region is uniquely specified by the sources within

the region plus the tangential.components of E over the boundary, or the

tangential H over the boundary, or the former over part of the boundary

and the latter over the rest of the boundary".

A similar form of the uniqueness theorem was stated by Richmond [28] as:

"In a region completely occupied with dissipative media, a harmonic

field is determined uniquely by the impressed currents in the region and

the tangential components of the electric or magnetic field intensity on

the surface of the region".

Note that Richmond's version is more stringent in that the region

must be "completely" filled with "dissipative" media. Although these

two conditions for the theorem appear to be severe restrictions, one can

9
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practically apply this theorem to almost any physical problem. It

can be stated from the viewpoint of atomic physics, that all the space

is filled with energy and material, which are "lossy" because of the

necessary transfer of energy involved between the field and the media.

The purely conducting and lossless medium does not exist in reality,

at least not In the electromagnetic problems known to the authors.

In order to extend the uniqueness theorem to a lossless medium,

Harrington [27] indicated that "We (can) consider the field in a

dissipationless medium to be the limit of the corresponding field in

a lossy medium as the dissipation goes to zero". This limiting process

does not add to the usefulness of the uniqueness theorem. In fact, the

method is not strictly correct since there are two or more possible

solutions for lossless media. Examples are the field inside a perfectly

conducting spherical shell illuminated by a plane wave and the surface

waves involved in scattering by a lossless dielectric slab of finite thick-

ness and infinite width under the excitation of a plane wave. Therefore,

one cannot use this limiting process to obtain the approximate solution

for a slightly lossy medium from a solution derived from a lossless medium.

C. The Uniqueness of Green's Functions

The uniqueness of Green's functions can be proved based on their

integral-formula definition of Equation (2). Assume that there are two

Green's functions iI and . for a specific boundary-value problem for which

the excitation and field are unique, we have

1(r) f f jl(jr) - J(r') dv', (11)

V

and

E(r) j 2 2(E,r) J(r') dv'. (12)

V

12



Since 3(r') is arbitrary, we can choose

J )= e 6 (r-r'). (13)

Subtractions between Equations (11) and (12) and substitution of Equation

(13) yield

e [qi(,,) _ (r,)] = 0 (14)

Hence

ql(r,r') = 2(r,r') (15)

This completes the proof for the uniqueness of the Green's function. Note

that the uniqueness of the fields is essential to this proof.

D. The Singularity of the Electric Dyadic Green's Function in the
Source Region

The field E at a singular point as defined in Equation (4) is, in

general, dependent upon the infinitismal volume AV. The integral over

V-AV in Equation (4) is also generally dependent on AV so that the total

field E(r) is uniquely determined at r. In fact, the problem of determining

the integral over V-AV is as important as the problem of "extracting" the

singularity. Merely extracting a:term containing a Dirac-delta function does

not necessarily lead to the extraction of the singularity.

Yaghjian [19-21) apparently overemphasized the importance of the principal

volume and considered it a part of the definition for the Green's function

in the source region. Lee and Law [231 showed that AV in Equation (4) need

not be small and can be finite and of arbitrary shape. As a result of

our investigation, it is shown that a unique Green's function exists

and thus there is no need for a new definition for the electric dyadic

Green's function. The significance of Yaghjian's work is his correct

emphasis on the shape of the principal volume-which affects both the

integrals over AV and V-AV. In dealing with the singularity in the source

13



region, the importance of handling the integral over V-AV has been re-

cognized when one actually computes the field at the singular point

11,22,25,26].

The apparent discrepancy between Tai and Rozenfeld [14] and Rahmat-

Samli [17) for the electric dyadic Green's function for a rectangular

cavity simply does not exist. It will be shown in the next subsection

that their expressions are mathematically identical.

E. Nonexistence of Discrepancy in the Electric Dyadic Green's Function

for the Rectangular Cavity

Recent research activities in the singularity of the electric dyadic

Green's function have been stimulated to a great extent by the apparent

discrepancy in the literature regarding the singularity of the electric

dyadic Green's function for the rectangular cavity [14,17]. This apparent

discrepancy was pointed out by Yaghjian, who developed a new theory in an

attempt to resolve it [19-21]. In the following, it will be proved that the

expressions of Tai and Rozenfeld [14] and Rahmat-Samii [17] are mathematically

identical except for a sign error in the latter. The apparent discrepancy

was probably due to a superficial observation. The term involving the

Dirac-delta function can be easily taken for the singularity while the

overlooked remaining terms may contain singularities concealed in the

innocent-looking series of sinusoidal functions. The electric dyadic Green's

function derived by Tai and Rozenfeld is of the following form:

GT 1 . m' R n n') f
G- k2 Z Z 6(-rl + 1 C

- -2 --2 e 2 --
m,nk

c c m+ -V n n' in (16)

k -- mn k 2 - z k2 -o -o a z

where e-j t is implicit and suppressed, and

, 2 (2-6 0)

mn 226 (17)
abk k sin k C

c g g

14
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. Sinkg(C-Z) S n>zlf =g for z < z' ( 8
Sikz Sink (c-z')

. COSkg(C-Z)Cosk z')I > z

&mn rCs g Co k 9- ' for z < z'(19)

-O Oz  (21)

-0 0

n -- Vtoo (23)

00 Sink xx Sink y (24)

#e= Cosk x Cosk y (25)

k = -- k = -- kz T -- , M,n =0,1,2, .. (26a)
x a y b z c

k [k2  k2  k2  k2] /  (26b)
c x y z

kg [k 2  k k2 1 /2  (26c).{ -
60 1 if i or m or n -0

0 o if k, m, n 0 0 (27)

The expression by Rahmat-Samii had an error in sign resulting from mis-

print or trivial human errors. After correction, his expression reads,
in terms of the e jwt convention chosen by him,

mn, X 2 Csn~rx Cos n~rx' Sin m~ry Sin m"'
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Sin _ Sin £_z' + x L + £ 2 + nn 2 Sn x S n'
SinSin Sia Sin a

b b c c YY+ + 'b

Sin ntx Sin nwx' Sin m Sin Cos -- COS z

a a b b c c

nit mi nn_x ni__x' Si __Co miry' Lirz 2irz'I
a b Cos - Sin - b b Sin miy Cas Sin -Si -- xy

b a a b b c c y

m Sin nrx s n_x' Cos mry Sin my' Sin L1_-z Ssin £_z' y^xb a a a b b c c

tm Sin nwx Sin nm' i m is mry' Sin-Cz as - z
c a a b b c z

I n- Sin nx Sin my Sin C msly' Cssz Siyz ;^
c b a a b b Cos cSin z

Sin n rx Co nrx' Sn mty Si ry' Co u rz Si rz' x

ca a a b b c c

-nir Zit nix nirx' MiTy MiTy' iz r'Cos- Sin - Sin Sin Sin -a Cos - xz (28)

Ii ifm-0
where o f  2 otherwise. (29)

Note that m and n are exchanged between the notations of Equations (16)

and Equation (28). The discrepaucy, according to Yaghjian [20], was that
1 ^^

the term involving the Dirac-delta function was - z z in Equation (16)

of Tai and Rozenfeld, but was - 1I in Rahmat-Sakii's expression of

Equation (28), as shown in Table 1. We will show that Equation (16) is

identical to Equation (28) and therefore no discrepancy exists. We begin

with Equation (24) of Tai and Rozenfeld [14] as follows:

T a-m zSn
G 2 k [mm' Sin kzSink z'

k2

+-- n n' Sink z Sink z'2  -o- o z z
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k 2 (k 2 - k )

+ c Z ' Cos k z Cos k z'k 2  -o-o z
Z z

2
k Kz 2 c (Xn Cos k z Sin k z'

k2  z z

+ n V' Sin k z Cos k z')] (30)-0--0 Z Z

where

K2 = k2 + k2 + k2  (31)x y z

Substitution of Equations (17-27) into Equation (30) yields

T 1 cc cc c 4(2-60)

2 FaFa E 2 2
k n=O m0 =0 abc[k - K

xx(k2- k2 Cask x Cosk x' Sink y Sink y' Sink z Sink z'x x y y z z

2_ 2+ yy(k2 - k y) Sinkxx Sink xx' Coskyy Cosk yy' Sink z Sinkz z'

-2_ 2+ zz(k- kz) .Sinkxx Sink xx' Sinkyy Sink y' COsk z Cosk zz'x^y z Skz'

+ xy(- kx k y) COskxx Sink xx' Sink yy COsk yy Sink z Sink z'

+ yx(- k k )Sink x Csk x' COsk y Sink y Sink z Sink z'
x- • x x y y z z

+ yz(- kz k y) Sink x Sink xx' COsk y Sink yy' Sink zz COsk zz'

+ zy(- kz k y) Sink x Sink xx' Sink y COsk yy' COsk z Sinkz z'
S z(- zk)osx x y yz z

+ xz(- k k ) Cask x Sink x' Sink y Sink y' Sink z Cosk z'
zkx x x y z z

+ zx(- k k ) Sink x Cosk x' Sink y Sink yy' Cosk z Sink z' (32)
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Now

10 (k 2-k 2 Cask xCosk x'Sink ySink y'
2 , E - 2_2 x x x y yk nfO m-0 =0 abc[k -K

Sink zSink z'
z z

00 c 004(2-6 k 2+ k2
6 - ---k 6r-r' I) - E 2 2

k2 k2 ' Z..d-O = abc k2 _ 2k k n=0 m=0 L=0k-

COsk x COsk x' Sink y Sink y' Sink z Sink zz' , (33)

a* a* cc 4(2-60) 2_2

2k2 2 (k-k) Sink x Sink x'
k n- m=0 -O= abc[k-K]

COsk yyCosk yy'Sink zzSink zz'

c _ i 0 4(2-6) k2 + k2

E EE a x z
k 2 k2 n= m-09.-0 abc k 2 _K2n=O m=O £=0-

SinkxxSinkxX'COSkyyCOs zSink z ' (34)

and

I E E 0 (k-k) Sink x Sink x' Sink y Sink y'

k 2 n-O m-0 L-0 abc[k- X X x Y

cc 00 4(2-6)

Cosk z CoSk z' 6 - __k 6(Ir-r'I) - 2L E 1:abc

Z Z k k n0 m-0 jinQ

k2 + k2
~x _ Sink x Sink x' Sink y Sink y' COsk z Cosk z' (35)
2- 2 x x y y z z
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Substitution of Equations (33-35) into Equation (32) yields an
T

expression of Aeidentical to e of Equation (28), with the understanding
-e

that mn and n are exchanged and that

4(2-6)-C E (36)
0 on om ot

if at least two of the three integers, mn, n and iare nonzeros (when two

or more of them are zero, the series term is zero). We can also prove

directly that Equations (16) and (28) are identical either by substituting

only Equation (35) into Equation (32) or by using Equations (33), (34)

and the following relations

E 1 2 Sink z Sink z'

Z-0 I2-k2

(Sink (c-z)Sink z')
kSic 9 1 (37)
gk g Sik9c Sink z Sink (c-z')<)37

cog Cosk z Cosk z'

9= 0 K2 -k'

- C -(Cosk (c-z)Coak z' z > z (38)

k Sink c 1<
g g Cosk z Cosk (c-z')l

k
z2Sink z Cosk zt

{CSi:(c-z)Cosk 9z' o (9
2Sink gc ISnk 9z Cosk 9(c-zs) <

and

k

t -~k Cok zSink z'

c ____ Coak 9(c-z)Sink 9z Z ' (40)
2ikgc ICosk 9zSin(c-z')I <
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which were originally employed by Tai and Rozenfeld [14] and are derived

in the Appendix of this report. This concludes our proof that there is no

contradiction or discrepancy in the electric dyadic Green's function in

and outside the source region.
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SECTION III

COMPACT RANGE SCATTERING MEASURFEENT

A. Compact Range Scattering Measurement Techniques at . GHz.

There has been an increasing amount of interest in the compact range

for antenna and scattering measurements. The compact range technique was

first implemented in X and Ku bands [29], and was recently extended to

30 GHz [301. At frequencies below 2 GHz, a number of technical dif-

ficulties have long been generally recognized. Major obstacles in-

clude the edge diffraction of the reflector, multipath of the illuminating

wave, and precision of the instrumentation. These difficulties have been

overcome and compact range RCS measurements were extended to as low as

I GHz.

The cancellation method [31] was employed in the scattering measute-

ment. Figure 4 shows a block diagram illuminating the principle of the

set up and Figure 5 shows the physical arrangement of the cancellation net-

work. The use of high-precision microwave components and heavy 1/4 inch

semi-rigid cable is essential to obtain a deep null insensitive to temperature

variations and vibration. Even the 1/4 inch semi-rigid cable was sometimes

found to be sensitive to vibration and had to be fastened to the mounting

structure with a damping mechanism. The network was mounted on a plexiglass

board which was seated on a layer of foam as shown in Figure 5. Other shock-

mounting devices were also placed below the tables, the receivers, the

transmitter, the frequency "lock-box", etc. A 1-4 GHz solid-state cavity-

tuned source with an output power of 20 to 200 mw was built for the measure-

ment system. When connected with a lock-box, a frequency stability of 1

part in 106 was maintained. The dual-channel phase and amplitude receiving

system is shown in Figure 6.

The compact range used in this study consists of a 12-foot high by

17-foot wide reflector as shown in Figure 7. The reflector was fed by a

24 in. x 32 1/2 in. rectangular horn, shown in Figure 8, located at a focal

distance of about 12 feet. Both the reflector and horns are fabricated by

standard methods with average mechanical tolerances. Figure 9 shows a

a styrofoam support for the target under test.
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Figure 4 . Block diagram for 1 GHz conmpact range RCS measurement.
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Figure 7. Partial view of the 12-foot high, 16-foot wide reflector
used in the compact range.
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Figure 9. Styrofoam support for the scattering target used in the

compact range.
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At 1 GHz and lower, the multipath propagation, leakage and parasitic

excitation along the source, cable and the components and equipments can

cause severe difficulty. In fact, leakage from the source was initially

found to be only 30 dB below the illuminating field in the quiet zone.

These problems were overcome through careful shielding and the use of

microwave absorbers.

The field in the quiet zone was probed with a dipole, and amplitude

variations of less than +1 dB and phase variations less than +5 degrees

over an area of 5 ft. x 3 ft. were achieved. Since the horn used is an

ordinary rectangular horn, further improvement in the quiet zone illumi-

nation may be achievable by using low-side-lobe feeds such as a corrugated

horn.

The ultimate criterion for the radar cross-section range using the

cancellation method is the stability and depth of the null achievable.

The deeper the null, the smaller echo return the system can detect. Also

a stable null insures accurate and consistent measurements. To achieve

stability and depth for the null, sufficiently high power and frequency V
stability of the source are essential. The sensitivity of the receiver

is usually sufficient since the environmental noise in the range is

usually quite high. In the 1 GHz measurements, we were able to obtain

a null depth of -50 dBSM during the day and -60 dBSM in the night, which

could be maintained for an average duration of 1.5 to 2 minutes.

The sensitivity of the compact range is displayed by measurements

shown in Table 2 on small conducting spheres shown in Figure 10, whose

echo areas are accurately known. The close agreement shows that accurate

measurements can be made for small scatterers with low echo return. Figure

Ila and llb show measurementson a circular cylinder 2.76 wavelengths long

for E and H plane aspect angle. Figure 12a and 12 b show the measured

data for flat conducting plates. Figures 13a and 13b show the measured

data for rectangular conducting boxes. All these measurements are in

good agreement with data in the literature, as can be seen in Figures 10

through 13. However, there is some confusion in the literature concerning the

polarization of the data which remains to be clarified.
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TABLE II

COMPARISON BETWEEN COMPACT RANGE MEASUREMENT
AND EXACT CALCULATIONS FOR CONDUCTING SPHERES

CALIBRATED WITH THE 0.04403X SPHERE

Radius in RCS in dBSM
Wavelengths

Theoretical Measured

.04403 -46.14 -46.1

.05503 -40.41 -40.4

.06054 -37.63 -37.6

.06604 -35.45 -35.5

.07154 -33.42 -33.4

.07705 -31.80 -31.8

.10456 -25.44 -25.4

.11010 -22.82 -22.8
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a) Pattern as a function of elevation angle

Figure 12. Comparison of measured backscattering cross-section of a
square plate versus incident angle e, with other known
data (continued).
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Figure 12. Compact range scattering measurement of a flat square
conducting plates for normally incident plane wave.
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B. Simulation of Biological Bodies

A major difficulty in measurements involving a biological body is the

lack of consistency and stability. A living bird or animal undergoes

physiological changes all the time. They may feed less today, and they

may move during the tests. This difficulty can be very frustrating

and the interested reader may consult reference 32 for methods considered

by Blacksmith and Mack [33].

Since the physical configuration and the dielectric property are

the only parameters involved in the scattering measurements, it is feasible

to perform the test on a simulated model. While the simulation model

removes the inconsistency and instability inherent in real biological

bodies, there exists some degree of uncertainty as to how close the simu-

lation can be realistically accomplished. For example, it is difficult to

simulate the feathers, skin, blood vessels, etc. However, feathers and skin

have low dielectric constants and can sometimes be conveniently ignored.

The blood vessels have high water content but are usually surrounded by muscle

tissues which also contain water.

Simulation techniques for biological bodies were developed by Guy [341,

who employed various chemicals to simulate the complex dielectric constant

of fat, bone, and muscle tissue. His method was used in the fabrication of

bird models in this research program.

Before making the model, a styrofoam mold is constructed to hold and

support the moist jellied "Super-stuff" plastic. Tho mold is derived from

a bird model made of plaster of paris. Figure 14 shows the side and front

views of a sitting bird model made of plaster of paris. Figure 15 shows the

side and front views'of a flying bird model made of plaster of paris. Figure

16 shows the side view of a "Super-stuff" simulated flying Green Wingtail, SB4,

in a styrofoam holder.

The "Supey-stuff" simulated muscle tissue is composed of the following

materials

Saline solution (12g salt/liter) 76.5% (by weight)

Powdered polyethylene 15.2%

Super-stuff 8.4%
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(a) Side view

(b) Front view

Figure 14. Side and front views of a sitting bird made of plaster
of paris.
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(a) Side view

(b) Front view

Figure 15. Side and front views of a flying bird made of plaster

of paris.

39



0

-4

-44

40)



The "Super-stuff" is a jelling agent manufactured by Oil Center Research

Corp. in Laffayette, Louisiana. The mixing process, which was improved

here by trial and error, is critical to the homogeneity of the simulated

tissue. Spectroscopic-grade salt is first added to deionized water in a

blending mixer in an oven. After reaching 200*F the solution is stirred

for about 2 minutes. Fine polyethylene powder is then slowly poured into

the solution which is now being stirred at high speed. After half of the

polyethelene powder is poured in, the rest of the powder is mixed with the

super-stuff and poured into the solution being stirred at high speed. The

temperature and stirring help to remove bubbles and attain homogeneity. The

temperature is then raised to 450*F for two minutes and the mixture is then

allowed to cool.

Although it is usually possible to make a simulation model to meet the

required dimensions, it is not easy to obtain the required complex dielectric

constant with high accuracy. In order to insure reasonable accuracy in the

model, the in-vivo probe measurement technique [35] was used to determine the

complex permittivity of the model. Ordinarilly there is about 5 percent

error in this dielectric constant measurement. In all the simulation models

measured, the disagreements between the anticipated and measured complex

permittivity were mostly within 5 percent of each other.
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SECTION IV

NUMERICAL COMPUTATIONS FOR VARIOUS DIELECTRIC SCATTERERS

An exact solution for three-dimensional dielectric scatterers in free

space exists only for the sphere. For scatterers of arbitrary shapes,

numerical analyses employing the volume integral equation have been con-

ducted [25,26,36,37]. There are other numerical and approximate methods

which are devoted to the estimates of SAR (Specific Absorption Rate) [38],

which is the average power absorbed per unit weight of the biological body.

However, there appears to be little research in the analysis of the scat-

tering cross section of arbitrarily-shaped dielectric and biological bodies.

In this section we discuss the use of the volume integral equation to

compute the scattering cross'section of three-dimensional arbitrarily-shaped

dielectric bodies including rectangular and I-shaped boxes, spheres, finite

circular cylinder , and simulated birds.

The basic volume integral equation has been discussed in detail in

Reference 26. The dielectric body can be replaced by an equivalent volume

current J such that

Jjw (c - c.) E (41)

where w is the angular frequency, E is the electric field, c. and c are

the complex permittivity in free space and the dielectric body, respectively.

The volume integral equation in terms of the unknown J is

G(rr') J (r') dv -- () + ,(r), (42)

where

(rr') - -jw)i(j + VV ) exp (-Jk Ir-r'
k 4wlr-r'l

E_ ( = incident electric field intensity,

f - Principal volume integral excluding the
singular point at r-ri

= unit dyad
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The solution of Equation (42) can be carried out by the method of

moments. The dielectric body, generally heterogeneous, is divided into

rectangular box cells and the equivalent current is expanded into a series

of pulse functions, each of which is unifozm in one cell and vanishes

outside the cell. The Dirac-delta function, defined at the center of

each volume cell, is used as the weighting function. By taking a scalar

product on both sides of equation (42) with a weighting function and inte-

grating over V, we generate a system of linear equations which is then

solved numerically on a computer. The scattering cross section is then

computed in terms of the equivalent current J by numerical integration.

Numerical computations have been conducted for dielectric and bio-

logical bodies of various shapes including cubes, cylinders, spheres,

rectangular and I-shaped boxes, and simulated birds. Good agreements have

been observed for the field distribution inside the dielectric body in

comparison with the data from Michigan State University [26,36,37]. For

scattering calculations, the only data available in the literature were

for spheres and finite circular cylinders. The present calculation showed

correctly the sharp resonance behavior of the back-scatter cross section

as a function of frequency. But the frequencies of resonance were about

20 percent lower than those based on the Mie series computation. This

discrepancy could be due to the reduced apparent size of the sphere in the

simulation using rectangular cells. Agreement with the finite cylinder is

good. These results are presented in detail as follows.

A. Scatterers of Simple Shapes

Figure 17 shows the calculated back-scatter cross section for a finite

dielectric cylinder in comparison with the data from Richmond [39]. Figure 18

shows the geometry of a rectangular box of saline water and the way the

volume cells are divided and numbered. The calculated field distribution

is displayed in Tables 3a, 3b and 3c for the x-component, z-component and

total field of the electric field intensity. They are in good agreement

with Michigan State data [36]. Figure 19 shQws the calculated back-scatter

cross section of this rectangular box of saline water in comparison with

the measured data obtained at the Georgia Tech compact range.
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Figure 17. Comparison between the calculated results and Richmond's data
for a dielectric cylinder.
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TABLE III

ELECTRIC FIELD DISTRIBUTION IN THE 36-CELL RECTANGULMAR BLOCK

Ex-DISTRIBUTION IN THE 36-CELLRECTANGULAR BLOCK

CELL PRESENT MICHIGAN STATE

NO. CALCULATION CALCULATED MEASURED

1 .0510 .0518 .0518

.2 .0600 0573 .0523

3 .0952 .0976 .1632

4 .0816 .0862 .0862

5 0883 .0827 .0832

6 .1040 .1090 .2355

7 .0870 .0935 .0935

8 .1225 .1180 .1180

9 .1355 .1410 .2869

10 .0292 .0339 .0459

11 .1008 .1050 .0878

12 .1611 .1570 .2017

13 .0930 .1020 .1258

14 .1956 .2020 .2020

15 .2546 .2480 .1256

16 .1345 .1460 .1460

17 .2267 .2330 .2330

18 .3294 .3220 .5410
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TABLE III (Continued)

Ez -DISTRIBUTION IN THE 36-CELL
RECTANGULAR BLOCK

CELL PRESENT MICHIGAN STATE

NO. CALCULATION CALCULATED MEASURED

1 .2127 .2140 .2167

2 .1719 .1710 .1647

3 .1326 .1310 ---

4 .0982 .0963 .0963

5 .0955 .0927 .0927

6 .0730 .0698 ---

7 .0930 .0991 .0925

8 .0723 .0783 .0820

9 .0325 .0364 ---

10 .2207 .2230 .2230

11 .1355 .1360 .1456

12 .0554 .0544 ---

13 .0666 .0626 .0626

14 .0330 .0328 .0344

15 .0342 .0348 ---

16 .0964 .1010 .1010

17 .0932 .0963 .0963

18 .0543 .0563 ---

47



TABLE III (Continued)

E -DISTRIBUTION IN THE 36-CELL
RECTANGULAR BLOCK

CELL PRESENT MICHIGAN STATE V
NO. CALCULATION CALCULATED MEASURED

1 .2187 .2202 ---

2 .1821 .1803 ---

3 .1633 .1633 ---

4 .1277 .1292 ---

5 .1301 .1242 ---

6 .1271 .1294 ---

7 .1274 .1362 ---

8 .1422 .1416 ---

9 .1394 .1456 ---

10 .2226 .2256 ---

11 .1689 .1718 ---

12 .1703 .1662 ---

13 .1144 .1137 ---

14 .1984 .2047 ---

15 .2569 .2505 ---

16 .1655 .1775 ---

17 .2451 .2521 ---

18 .3339 .3269 ---
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Figure 20 shows an I-shaped box of saline water under plane wave

excitation. The numbers are the index number for the volume cells.

Tables 4a, 4b and 4c show the calculated x,y and total fields inside

the I-shaped box of saline water. The agreements between the present

calculation and that at Michigan State University (36] are good. Figure

21 shows the comparison between the measured and calculated back-scatter

cross section data generated at Georgia Tech. The disagreement could be

partially due to the acrylic box as indicated in the figure. Good agree-

ments with Michigan State data were observed also for three other cases,

including a cube and two rectangular cylinders, which will not be pre-

sented here.

Computations were also made for the dielectric sphere. Figure 22

shows the back-scatter cross section of a dielectric sphere with a re-

lative permittivity of 2.592. The results deteriorate as Ka becomes

greater than 2. Figures 23 and 24 show the computed results for a dielectric

sphere with a complex dielectric constant of 29.43-jO.158 using 128-cell

and 232-cell, respectively. The results are rather disappointing when

compared with data generated by Burr and Lo [40], as shown in Figures 23

and 24. The resonance frequencies were shifted by 20 percent and the

resonance peaks are off by 30 percent. This failure in predicting re-

sonance phenomena in a dielectric sphere by the volume integral equation

approach is in contrast to the high accuracy achieved for the calculation

of conducting spheres by a surface integral equation approach [41,42].

To explain the lack of adequate accuracy in predicting resonances, we observe

that the point-matching is enforced at the center of the volume cells --

not at the surface of the scatterer. Since the resonance is very sensitive

to the physical size and shape of the object, the failure to project the

accurate size of the object in the computation may be a source of error.

Even more puzzling is that this situation should lead to reduction in

apparent size and shift up the resonance peaks to about ka - 0.63 and

ka - 0.84 in Figure 24, instead of lowering them to 0.52 and 0.72, res-

pectively.
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TABLE IV

ELECTRIC FIELD DISTRIBUTION IN THE 128-CELL BLOCK

E.-DISTRIBUTION IN THE 128-CELL BLOCK

CELL PRESENT MICHIGAN STATE

NO. CALCULATION CALCULATED MEASURED

1 .0545 .C573 ---

2 .0342 .0353 ---

3 .0656 .0676 ---

4 .0279 .0294 ---

5 .0906 .0879

6 .0899 .0887 ---

7 .0787 .0807 ---

8 .0557 .0558

9 .1028 .1071 ---

10 .0165 .0173 ---

11 .1103 .1057 ---

12 .1027 .1018 ---

13 .0775 .0769 .0770

14 .0681 .0681 .0681

15 .0967 .1017 .1017

16 .0393 .0386 .0518
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TABLE IV (Continued)

E.-DISTRIBUTION IN THE 128-CELL BLOCK

CELL PRESENT MICHIGAN STATE

NO. CALCULATION CALCULATED MEASURED

17 .0905 .0853 .0915

18 .0940 .0941 .0766

19 .0562 .0567 ---

20 .0544 .0575 ---

21 .0493 .0517 ---

22 .0951 .0982 ---

23 .0656 .0611 ---

24 .0838 .0823 ---

25 .0426 .0421 ---

26 .0623 .0665

27 .0465 .0431 ---

28 .1440 .1494 ---

29 .0633 .0617 .0617

30 .0651 .0695 .0739

31 .0696 .0661 .0661

32 .1834 .1887 .0766
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TABLE IV (Continued)

E -DISTRIBUTION IN THE 128-CELL BLOCK
y

CELL PRESENT MICHIGAN STATE
NO. CALCULATION CALCULATED MEASURED

1 .0228 .0239 ---

2 .0482 .0501 ---

3 .0467 .0424

4 .0698 .0623 ---

5 .0743 .0681 ---

6 .0497 .0466

7 .0309 .0303

8 .0867 .0858 ---

9 .1254 .1256 ---

10 .1215 .1234 ---

11 .0892 .0912 ---

12 .0490 .0500 ---

13 .0197 .0192 .0243

14 .0450 .0420 .0316

15 .0496 .0423 .0423

16 .0565 .0486 .0486
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TABLE IV (Continued)

E -DISTRIBUTION IN THE 128-CELL BLOCK
y

CELL PRESENT MICHIGAN STATE

NO. CALCULATION CALCULATED MEASURED

17 .0713 .0671 .0547

18 .0567 .0544 ---

19 .0170 .0162 ---

20 .0512 .0485

21 .0957 .0937 ---

22 .1370 .1382 ---

23 .1482 .1506

24 .1131 .1136

25 .0299 .0296 ---

26 .0658 .0641 ---

27 .0580 .0544

28 .0304 .0262 ---

29 .0164 .0162 .0194

30 .0375 .0369 .0371

31 .0355 .0344 .0344

32 .0165 .0157 ---
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TABLE IV (Continued)

E -DISTRIBUTION IN THE 128-CELL BLOCK
t

CELL PRESENT MICHIGAN STATE

NO. CALCULATION CALCULATED MEASURED

1 .05906 .06208 ---

2 .05910 .06123 ---

3 .08048 .07979 ---

4 .07517 .06709

5 .11720 .11119 ---

6 .10280 .10019

7 .08449 .08627 ---

8 .10300 .10235

9 .16220 .16500 ---

10 .12270 .12460 ---

11 .14180 .1396]

12 .11380 .11342 ---

13 .07995 .07926 ---

14 .08163 .08001 ---

15 .10870 .11015 ---

16 .06883 .06206 ---
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TABLE IV (Continued)

E -DISTRIBUTION IN THE 128-CELL BLOCK

t

CELL PRESENT MICHIGAN STATE

NO. CALCULATION CALCULATED MEASURED

17 .11520 .10853 ---

18 .10980 .10869 ---

19 .05870 .05897 ---

20 .07472 .07522

21 .10760 .10702 ---

22 .16680 .16954 ---

23 .16210 .16252 ---

24 .14080 .14030 ---

25 .05210 .05146 ---

26 .09062 .09236

27 .07433 .06940 ---

28 .14720 .15167 ---

29 .06537 .06379 ---

30 .07588 .07870 ---

31 .07810 .07450 ---

32 .18410 .18940 ---
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Figure 21. Comparison between calculated and measured RCS of I-shaped

boxes of saline water.
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On the other hand, the computational accuracy may be improved by

using more volume cells -- subject, of course, to the limitation of the

central memory size of the computer being used. This is indicated in

Figures 23 and 24, in which it is shown that the second resonance appears

after the number of volume cells is increased from 128 to 232.

B. Scattering Computation for 1-foot birds

The Green Wingtail, which is an important migrant bird, was selected

for extensive measurement and computation. This bird is typically 14.75

to 15.50 inches and weighs about a pound. At 1 GHz this bird is about 1

wavelength in length. Figures 14 and 15 show plaster-of-paris models for

a Green Wingtail in sitting and flight positions, respectively.

Four simulation models, SBl through SB4, were generated in this project.

For the first three models, a number of problems developed in the ex-

perimental work. The permittivity was too high or too low or not uniform.

These difficulties and the unsatisfactory data for the sphere directed

the computation toward a more conservative approach. It was then decided

that measurement for the bird should be started with a smaller bird exactly

as the numerical model made of a group of cubic volume cells. With this

principle in mind, SB4 was fabricated. Figure 25 shows the print-out of

the cell centers for the side, front and top views for SB4. Figure 26 shows

the geometry of the coordinate system and a plane wave incident in the x-z

plane, which is the plane of symmetry for the bird. Figures 27 and 28 show

fair agreement between the computdd and measured results. It is noticed

that the agreement is good as long as there is no sharp variation in the

pattern. This difficulty in predicting sharp field variation and resonance

phenomena may explain the use of specific absorption rate (SAR) in dealing

with dielectric scattering problems [38].
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BIRD No. SB-4

AT 1.0 GHZ

VERTICAL POLARIZATION

------ TOP
I , tO, ,

- ...... 'o - ---

20 Nose "
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I III I I

-1so -90 0 90 180
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Figure 27. Back scattering cross section of bird SB4 versus elevation
angle with vertical polarization as shown in Figures 25
and 26.
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Figure 28. Back scattering cross section of bird SB4 versus elevation
angle e with horizontal polarization as shown in Figures 25
and 26.
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SECTION V

IMPROVEMENTS OF COMPUTER ALGORITHM

A number of modifications have been made on the existing Georgia

Tech volume integral equation algorithm to make it more efficient for

the computation of dielectric scatterers. Major improvements included:

(1) the reduction of execution time and central memory requirement by

50% by using symmetrical matrices, and (2) the reduction of execution time

and central memory requirement by 75% for scattering problems with one-

plane symmetry and by 87.5% for scatterers with two-plane symmetry. In

addition, the banded matrix (43,441 and virtual memory [45) techniques

have been implemented successfully for small scatterers.

A. Symmetrical Matrices

It can be shown that the matrix of the volume integral equation al-

gorithm is symmetrical if the following conditions are satisfied.

(1) the dielectric body is homogeneous and has a

constant permittivity

(2) the volume cells are equal in size

(3) the volume cells are identical in shape.

The third condition is not critical and can often be ignored. To prove

this, one can examine the following matrix elements in the algorithm

zn ju.[6k + 1 k2 (-ko r-r'I k
p Jiu dn k2  au auk 4wr-'

0

r (r P) + 2 n
3jw(c(r )-c] 6k p

and

Z J' jwu.6 k 1 2  e-oI!C- ' B W) drI
k2  aukau n T T7 f

0

67



(r ) + 2- r- 6 k 6' (44)

3Jw[( )-co.] n I

where k,n = 1,2,3 or x,y,z

X,p - 1,2,....L; the index number of volume cell,

6 k - the Kronecker delta function,
n

k
B - a pulse function being unity in the Xth volume

cell associated with k (which designates x,y or
z and is merely a dummy index number of no
consequence to the integration).

n
Since the pulse function B restricts the domain of integration to the

p
unit volume, cell I in Equation (43) and cell p in Equation (44),

r -r'j and Ir,-'j are equal. Thus Z Zn and Zpk are equal under the three
-p pk a n
conditions stated.

For a symmetrical matrix, there are standard subroutines to handle its

inversion or solution. The improved Georgia Tech algorithm is given an

acronym "BPWSM" to denote "Biological-Plane-Wave-Symmetrical-Matrix".

This algorithm has been successfully applied in a number of cases with

a resulting 50% reduction in computer central memory and execution time.

B. Symmetrical Scatterers

Two improved algorithms, BHPW2 and BHPW4, have been completed to

handle scattering problems with one-plane and two-plane symmetries with

resulting reductions of 75% and 87.5% in computer time and central memory,

respectively. These are discussed separately as follows.

(1) Scattering problems with one-plane symmetry (BHPW2)

When the direction of propagation of an incident plane wave

is in the plane of symmetry of a conducting scatterer, it is re-

cognized that some symmetric behavior must exist in the induced

current on the surface of the scatterer. Without loss of generality,

Cartesian coordinates can be set up so that the plane of symmetry

coincides with the XZ plane as shown in Figure 29. The polarization

68

________________________________ ~~ 4 ..



of the incident wave is assumed to be either parallel or

perpendicular to the XZ plane. Arbitrary polarization can

be decomposed into two components, one parallel and the other

perpendicular to the XZ plane. The overall scattering problem

can then be treated by superposing the fields due to these two

component incident fields.

At two symmetrical points £ and Z + L/2 in Figure 29, the

components of the induced currents exhibit the following relation-

ships

x x
I k + L/2 '

z z
X I + L/2 , (45)

when the incident E is parallel to the z-axis. In Equation (45),x

a£ denotes, for example, the x component of the induced current in

the Ith cell.

When the incident E is parallel to the y-axis, the induced

current on the scatterer has the following property

x x

t I + L/2

3y .3 yL= t. + L/2

z Z
JX £ + L/2 • (46)

The matrix equation to be solved is
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1 3SJk z~n.v (47)X k v =
Li- k=l pk (

n=1,2,3

p-l,.. .L.

Since the excitation is symmetrical, we have

n nV, = VX + L/2 (48)

Substitution of Equations (45) and (48) into Equation (47)

yields

L/2 3

k z n + z(L/2+t)n lik+1] = Vn

k=i k-i pk pk - p (49)

n=1,2,3
p=1,2,...L/2
for E z

Substitution of Equation (46) and (48) into Equation (47)

yields

L/2 3 k- in (L/2+)n k n
E JL[ZPk + Zpk (-1) 1V n  (50)

Xi- k--l

n-1,2,3

pil,2,...L/2

for _ = y
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Equations (49) and (50) show that the number of equations has

been reduced from 3L to 3(L/2).

(2) two-plane symmetry

Figure 30 shows a scattering problem symmetrical with

respect to the x-z and y-z planes. The directive of propagation

of a plane wave is assumed to be parallel to the z-axis. When

E= z, we have

1 2 3 4Jl =3j =3 =3jigx x x x

3l =_j = _j3 = 4
y y y y (51)

1 2 3 4
Z 2 Z Z

i -.

When E = y, we have

1 2 3 43l = 32 = _j =_j

x x x x

1 1 2 = 3 4 (52)

y y y y

l __j2 =_j3 3 4
z z Z z

In addition, the excitation at cells 1,2,3 and 4 are identical.

The number of Equations in Equation (49) can therefore be reduced

to one-quarter of its original size as follows
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Figure 30. A scattering problem with two-plane symmetry.
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L/4 3 k in k+l [(L/4+k)m (L/2+i)n
E E JiI pk + -) Z Pk  + Z Pk  +

X=i k=l

(3/4 L+Z)n
+ Zpk np5)1

n = 1,2,3

p = 1,2 ......... L/4

when Ei = z .

Substitution of Equations (52) into Equation (47) yields

L/4 3 ( kk(l- 6lk) Z(L/4+Z)n + (l)k(l-6zk) (L/2+)n

F- E 9 pk+ pk pkZ=1 k=l

+ (_l)k(1-6 3k) z (34-~l V n(4(3/4 L+g)n -=fv  (54)

pk p

n = 1,2,3

p = 1,2 ........ L/4

i
when E y. In Equations (54) 6Ju is the Kronecker delta.

C. Banded Matrix Techniques

The banded matrix technique has been previously employed by Ferguson,

et al. (43] and Balestri, et al. [441 in the scattering and radiation of

thin-wire structures. These authors have demonstrated that the banded

matrix technique can reduce the computer execution time in the computation

of thin-wire scattering and radiation involving small matrices. They also

demonstrated that wire-grid problems involving more wire segments than can

be managed in the computer central memory can be solved by the banded matrix

technique after proper numbering of wire segments. The segments are
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numbered such that the difference between sogment numbers for all

neighboring segment pairs is small as compared with the total number

of segments. In this case the large matrix elements are kept close

to the principal diagonal of the matrix.

The basic banded matrix technique has been applied to the Volume

Integral Equation algorithm. However, there are three unknowns in the

nth cell in the Volume Integral Equation approach, while there is only

one unknown in the nth segment in the wire algorithm. Fortunately the

matrix generated in the Volume Integral Equation algorithm has a tendency

to be banded. Figure 31 shows the matrix for the case of a simple cylinder

formed with a linear array of volume cells. It can be seen that a diagonal

band extended to one third of the columns and the rows must be included in

order to include all the nonzero elements. It is also noted that outside

this band all the matrix elements are zero. This phenomenon is due to the

lack of coupling between orthogonal components of the electromagnetic

source and field. For an object of more complex geometry, such as a sphere,

elements throughout the entire matrix can be nonzero except for those re-

lated to the coupling between orthogonal components in the self cell.

Figure 32 shows the matrix for the case of a prolate spheroid of 12 cells,

which is weakly banded with some nonzero elements away from the diagonal

band.

We now define the normalized width of the diagonal band as

Normalized Width of diagonal band - [(number of rows in band)

+ (number of columns in band)] [(total number of rows) x 2] (55)

Numerical tests have been conducted to explore the convergence of the

solutions as a function of the normalized width of the diagonal band.

Figure 33 shows that the error in the solution is reduced as the width of

the diagonal band is increased. The error falls to near zero when the

normalized width of the diagonal band is only 0.6. Note that for a general

matrix the error reaches zero when the normalized width of the diagonal

band approaches unity. It is also noteworthy that the error is only 5%

when the normalized width of the diagonal is 0.15 or larger. Thus, a
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Note: I The size of the shaded area in

the square cell is proportional
to the magnitude of the matrix
element.

Figure 31. A display of the magnitude of matrix elements in a VIE
matrix for an 8-cell dielectric cylinder which is strongly
banded.
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Note: 1 The size of the shaded area in the
square cell is proportional to the
magnitude of the matrix element.]

Figure 32. A display of the magnitude of matrix elements in a VIE

matrix for a 12-cell prolate spheroid which is weakly

banded.
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significant reduction of execution time can be accomplished for a small

scatterer. These numerical tests also strongly indicate that a large

scatter, which can not be handled in the computer central memory, may

be treated using the banded matrix technique.

D. Virtual Memory Techniques

The virtual memory is a software technique, in contrast to the

extended-memory hardware capability, to store data in a digital computer

for rapid and efficient access in computer-aided numerical analyses to

overcome the limitations imposed by the size of the computer central

memory. The basic algorithm had been developed by Carbrey [45] for real-

valued data, and was employed in the present research to expand the

capability of the Volume Integral Equation algorithm to handle large

dielectric scatterers. When using exclusively the computer central

memory to handle the matrix in the computation, the CDC CYBER-74 computer

at Georgia Tech can only deal with matrices of about 38,300 complex

elements, or about 65 volume cells. The use of the virtual memory tech-

nique can potentially make it possible to handle a matrix with 4 x 106

complex elements, or 660 volume cells, which is about ten times the size

of those limited by the computer central memory. A serious disadvantage

of the virtual memory technique is its extremely large execution time,

often ten times more than methods using central core memory alone.

The tasks involved in implementing the virtual memory technique in

the Volume Integral Equation algorithm are twofold; the Carbrey algorithm

must be extended to handle complex data and be integrated into the process

of the moment method solution. Both of these difficulties have been overcome

and successfully tested for small and medium scatterers. For large

scatterers considerably exceeding the central memory, the computational

efficiency is low and needs to be improved.

There are two steps involved in the numerical solution of a system

of linear equations. First the matrix elements involved must be computed

and stored for easy access. Secondly, the matrix equation must be solved

by a certain process using either the central memory alone or the virtual
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memory, which uses both the central memory and disk memory. Both steps

need large computer execution time and the key issue is to reduce the

computer time to a level acceptable for practical computations.

Figure 34 shows that the virtual memory technique requires as much

as 100 times more time to generate and store the entire matrix. This

poor efficiency seriously degrades the practical usefulness of the virtual

memory method. However, we have discovered that by using a local file

storage method the matrix storage time can be drastically reduced. This

method is still being studied and will be discussed in a subsequent report.

In the numerical solution of a matrix equation, it was observed that

the order and sequence of the rows and columns are incompatible between

the Gauss-elimination matrix solution method and the virtual memory

algorithm developed by Carbrey [45]. As a result, the direct row-access

approach used by Carbrey is about ten times less efficient than the fast

column-access method developed at Georgia Tech in this research program,

as shown in Figure 35. However, both of them take considerably more

execution time than the conventional central memory solution method.

The feasibility of the virtual memory technique in dealing with

scatterers too large to be handled in computer central memory has been

demonstrated. However, it is feared that the execution time may increase

with the size of the scatterer so as to render the method impractical. It

is hoped that the local-file manipulation method being explored can be

used to improve the efficiency of the existing virtual memory technique.
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SECTION VI

CONCLUSIONS AND RECOMMENDATIONS

Research has been conducted in the analysis and measurements of three-

dimensional arbitrarily-shaped heterogeneous dielectric and biological

bodies. The discrepancies in the literature regarding the singularity

of the electric dyadic Green's functions were resolved. The discrepancies

were centered at the singularity of the rectangular cavity. It was shown

in this report that the apparent discrepancies simply do not exist and were

probably superficial observations.

Compact range scattering measurements were successfully conducted at

1 GHz. Techniques in fabricating simulation models using the "Super-stuff"

were investigated and several 1-foot birds were made. Extensive numerical

analysis was carried out for dielectric scatterers of various shapes in-

cluding cylinders, rectangular blocks, I-shaped blocks, spheres, and a 1-

foot bird. The accuracy of these computations was good except for the

resonant sphere, for which the resonance frequencies were shifted by about

20 percent.

Various numerical techniques have been investigated. Computer central

memory and execution time were reduced by 50 percent with the symmetrical

matrix technique, by 75 percent for scatterers of one-plane symmetry. Tech-

niques of banded matrix and virtual memory have been implemented in the

Volume Integral Equation algorithm and tested successfully for small scatterers.

It is recommended that the area of research discussed in this report

be continued except for the singularity problem associated with the electric

dyadic Green's function, which appears to have been satisfactorily concluded.

In addition, the Surface Integral Equation approach should be explored to see

whether its numerical convergence is more rapid than the Volume Integral

Equation approach. Exact solution for the dielectric prolate spheroid appears

to be a feasible research subject which should lead to accurate and useful

data for dielectric scattering problems.
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APPENDIX

PROOF FOR THE IDENTITIES (EQUATIONS (37-40))

Equations (37-40) were used by Tai and Rozenfeld [14] and are important

identities in our proof that the expressions of Rahmat-Samii [17] and Tai

and Rozenfeld [14] are identical. These four identities are similar and

it suffices to prove only Equation (38).

By using an identity [R.E. Collin, Field Theory of Guided Waves,

McGraw Hill, New York, 1960, p. 581]

Cosnx - 1 _it Cos (X-Yr) a

n-i n 2-a 2  2a 2  2a Sinira o o<X <2wr (38)

we can derive Equation (38) as follows

2 e ook zCosk z'

K 2-k2

Ilc 2
Wt Cu z+z ') /c + CostIr (z-)/ f for z> zi

Lnl 12-[-k -k 2+ k2  cCoslwrz+z')/c + sizz/x~ ~~~~o y osiz'-)

1i 2  Co[zz) k + .1 W2  Cos(z'-z')-clk

2 2k c Sik 2 2k c Sink c
2 (k c/7r) 2  g Si 2(k c/it) 9

1 c Cook (c-z)Cosk z'
2k 2  2k 9Sink c 9 g

2 2Skc Cask (z-c) Cosk z (39)
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II
Hence,

_- Cosk zCosk z' -Co +2 Cask zCosk z' (40)

,,0 K-k k Z. k -k z

Cok (z-c)Cosk z'
c g

"- k Sink c z < z'

Cosk (z'-c)Cosk z
9 9

This completes the proof for Equation (38). Similarly, Equations (37),

(38) and (40) can be proved by using the series sunations in Collin's

book and the combination of sinusoidal functions.
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