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SUMMARY

,S everal algorithms have been proposed for the computation of maximum

likelihood estimates for contingency tables. Since multinomial logit

response models can be treated as special versions of loglinear models,

many of these techniques can be used for logit models as well. In this

paper we compare, in a qualitative fashion, the relative merits of (i) two

variants of Newton's method developed by Fienberg and Stewart (ii) GLIM,

as developed by Nelder and Wedderburn (iii) the BMDP program for stepwise

logistic regression, and (iv) the widely used method of iterative pro-

portional fitting.
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1. INTRODUCTION

The analysis of cross-classified categorical data involves statistical

problems where both the explanatory variables (or factors) and response

variables are categorical. Loglinear, logit and multinomial logit response

models are often recommended for the analysis of such data (e.g. see

Bishop, Fienberg and Holland, 1975; Bock, 1975, Fienberg, 1977, Haberman,

1974, 1978). Since logit models are also loglinear models, the computational

methods associated with fitting loglinear models can also be used for logit

models; however, it is often more efficient to use techniques which are

specially designed for analyses using logit or multinomial logit response

models.

In this paper we compare four different computational approaches for

maximum likelihood estimation of parameters and expected cell values in

logit models;

(a) a variant on Newtons's method, as developed by Fienberg and

Stewart (1979), applied in somewhat different forms for the

loglinear and logit formulations,

(b) iteratively reweighted least squares, as implemented in

GLIM (see Nelder and Wedderburn, 1972),

(c) Newton's method, for the logit model, as used in BMDPLR

(see Jennrich and Moore, 1975),

(d) iterative proportional fitting (IPF).

Additional comparisons could be made with the Newton-Raphson formulation

of Bock (1975) or Haberman (1978), but are not included here.

2. LOGLINEARI LOGIT AND MULTINOMIAL LOGIT RESPONSE MODELS

Consider a problem involving a response variable with K categories

and two explanatory variables, with I and 3 categories respectively.
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The data are counts in the form of an IXJXK table where the totals in

the IxJ margin, corresponding to the explanatory variables, are taken

as fixed. We assume the sampling model for the counts is product-multinoujal

(Bishop, Fienberg and Holland, 1975). Multinomial logit response models,

involving K-i simultaneous logit equations, are equivalent to loglinear

models that treat the three variables as responses but include in the model

t all terms corresponding to main effects and interactions for the explanatory

variables (Fienberg, 1977, Chapter 6). The special case of K-2 yields

the familiar logit model. By using this correspondence, any algorithm

for fitting loglinear models can be used for the logit problem. The dis-

advantage to such an approach is the added number of (unnecessary) para-

meters in the model. In the following sections we discuss some of the

properties of various algorithms and their implementation. The discussion

is briefly summarized in Table 1.

2. 1 NEWTON'S METHOD

Fienberg and Stewart (1979) have used a variant of Newton's method

for analyzing both loglinear and multinomial logit response models. Their

first algorithm treats the logit problem as a loglinear model. The estimated

covariance matrix for the parameters is adjusted for the required conditioning

at the end of the computations using formulae available from Haberman (1974).

Their second algorithm proceeds by initially conditioning on the explana-

tory variables, and then using a somewhat different, but closely related,

set of computations. The choice between the algorithms depends upon

the number of categories and structure of the response variables. The

second approach should be more efficient when K is large or there are many

response variables. In other words, if the multinomial logit response
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model has considerably fewer parameters than its loglinear equivalent,

then one should initially condition on the explanatory variables.

Both of these algorithms involve the construction of the upper half

of a pxp weighted cross product matrix, where p is the dimension of

the design manifold. Note that p is not the same for the two approaches.

In both algorithms a sparse n xp design matrix (where n corresponds to

the number of cells in the cross-classification) is generated internally,

but is never actually stored during the computations. The calculations

proceed via Newton's method with variable step length, using a Cholesky

decomposition with pivoting. Extrinsic aliasing (i.e., non-identifiability

of certain parameters) is detected by small pivot elements during the

decomposition. As the internal parameterization is not readily interpreted,

u-terms or other desired parameterizations are estimated by direct compu-

tations on the table of fitted values. In this way it is not necessary

to address the statistical consideration of marginality (see discussions

in Nelder, 1976 and 1977, and in Fienberg, 1977) until the end of the

computations.

2.2 GLIM

The GLIM algorithm, as developed by Nelder and his colleagues, is

designed for analyzing Generalised Linear Models (see Nelder and Wedderburn,

1972). Logit, multinomial logit response, and loglinear models are all

encompassed in the family of generalised linear models, however only logit

and loglinear models are easily fitted in GLIM. In order to fit a K > 2

level response variable in GLIM, the user can either fit the associated

loglinear model or treat the problem in an asymmetric fashion, e.g., by

the use of continuation ratios (see Fienberg, 1977, Chapter 6). It is also
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possible to fit the multinomial logit response model directly by using

GLIM's macro and user-defined model capabilities. This approach requires

considerable storage and numerical sophistication on the part of the user.

For many problems fitting the loglinear model is perfectly satisfactory,

but for some problems the number of parameters becomes too large for the

program to handle. The asymptotic covariance matrix is not adjusted for

the appropriate conditioning in this approach for multinomial logits.

GLIM uses Gaussian elimination to sweep out the rows of a weighted

cross-product matrix. In order to preserve the marginality constraints

(i.e., due to the restriction to hierarchial models) there is no pivoting

during the Gaussian elimination. As indicated in the previous sub-section,

marginality considerations can be satisfactorily addressed at the end of

the computational problem, and the good numerical properites of pivoting

could have been utilized during the Gaussian elimination. GLIM does not

do this. Extrinsic aliasing of parameters is detected when a diagonal

element of the weighted cross-product matrix drops by more than 10-6

in two successive iterations. This procedure may encounter numerical

instabilities, particularly when the program is used for logistic regres-

sion problems.

2.3 BMDP

There are at least two methods of fitting logit models in BMDP.

If the response is binary the stepwise logistic regression program BNDPLR

may be used. Otherwise the iterative proportional fitting (IPF) algorithm

for loglinear models, in BMDP3F, is a possibility. We will confine our

coments here to the logistic regression program, defering a discussion

of IPF to the next section.
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The algorithm of BMDPLR is a specialisation of the B1DP nonlinear

regression program, and corresponds to iteratively reweighted least

squares. The description by Jennvich and Moore (1975) indicates that

the algorithm proceeds by explicitly inverting the weighted cross-product

matrix, using the method of Gauss-Jordam elimination. Aliasing is then

determined by small diagonal pivots; however, it appears that marginality

may be violated here. As with GLIM it is possible to fit user defined

models with BMDP. In our multinomial logit response case, this would

involve using BMDP3R, the nonlinear regression program, together with

some Fortran subroutines. Again, considerable expertise on the part of the

user is required.

Although it is not our direct concern here, we comment briefly on

the stepwise aspects of this algorithm. The BMDPLR program is the only

one we reviewed that contains an automated selection procedure. However,

such a structure could easily be implemented in the other algorithms,

particularly GLIM, which has a macro facility. Two stepping procedures

for BMDPLR are outlined in Dixon and Brown (1979). One is based on the

likelihood ratio and uses standard asymptotic results for its justification.

The other is based on an F-statistic approximation, using an estimate of

the asymptotic covariance matrix, which may be of practical use but seems

to lack a theoretical basis. The stepping procedures do preserve marginality,

although this option may be overridden.

2.4 ITERATIVE PROPORTIONAL FITTING

The Iterative Proportional Fitting algorithm (IPF) is especially useful for

fitting loglinear models because of the elementary nature of the iterations.

The algorithm does not directly fit logit or multinomial logit response
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models; these must be fitted in their equivalent loglinear forms. This

is not as severe a restriction as it seems, since the major storage

requirement for IPF is the table itself. Extra model parameters cause only

a very slight increase in storage needs. Of course, the major disadvantages

of IPF are (a) its sometimes very slow rate of convergence and (b) the

lack of covariance estimates for the fitted values. One advantage of

IPF is that when maximum likelihood estimates for the fitted values have

a closed form (i.e., for decomposable models), a version of IPF will

obtain these in one iteration (see Bishop, Fienberg and Holland, 1975, and

Haberman, 1974, p. 191). This is not true for any of the Newton algorithms.

3. COMPARISONS

Some of the qualitative aspects of the algorithms in question are

summarized in Table 1. The GLIM and BMDP programs have similar properties.

As GLIM is an interactive program, it is easier to use but pays the price

by being able to analyze only smaller problems. (Depending on the imple-

mentation, the BMDP package can also suffer from a lack of storage space.)

Both algorithms consider the logit response problem as a special case of

logistic regression.

The Fienberg-Stewart algorithms have opted for economy of storage

over efficiency of operation. Thus with similar front-end programs, be

they interactively or batch oriented, one would expect these algorithms

to be able to handle larger problems than either GLIM or BMDP. The

Fienberg-Stewart algorithms have the advantage that they are able to

directly fit multinomial logit response models, whereas the other approaches

require that the loglinear equivalent of the model be fitted. Whether

this is an advantage or not depends upon the size of the marginal array
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corresponding to the explanatory variables. When this margin is small,

some. advantages may accrue to the loglinear approach.

We have not made direct comparisons here on speed of convergence,

but we note that, when IPF needs to iterate (i.e., for non-decomposable

models), it has linear convergence, while the other algorithms enjoy

quadratic convergence properties. We expect that the "special features"

in the Fienberg-Stewart algorithms should allow for slightly faster conver-

gence than do the GLIM and BID algorithms, but rate of convergence should

not be a serious distinction among these algorithms.

AL
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