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SUMMARY

:kgeveral algorithms have been proposed for the computation of maximum
likelihood estimates for contingency tables. Since multinomial logit
response models can be treated as special versions of loglinear models,
many of these techniques can be used for logit models as well. 1In this
paper we compare, in a qualitative fashion, the relative merits of (i) two
variants of Newton's method developed by Fienberg and Stewart (ii) GLIM,
as developed by Nelder and Wedderburn (iii) the BMDP program for stepwise

logistic regression, and (iv) the widely used method of iterative pro-

portional fitting.j
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1. INTRODUCTION

The analysis of cross-classified categorical data involves statistical
problems where both the explanatory variables (or factors) and response
variables are categorical. Loglinear, logit and multinomial logit response
models are often recommended for the analysis of such data (e.g. see
Bishop, Fienberg and Holland, 1975; Bock, 1975, Fienberg, 1977, Haberman,
1974, 1978). Since logit models are also loglinear models, the computational
methods associated with fitting loglinear models can also be used for logit
models; however, it is often more efficient to use techniques which are
specially designed for analyses using logit or multinomial logit response
models.

In this paper we compare four different computational approaches for
maximum likelihood estimation of parameters and expected cell values in
logit models;

(a) a variant on Newtons's method, as developed by Fienberg and
Stewart (1979), applied in somewhat different forms for the
loglinear and logit formulationms,

(b) 1iteratively reweighted least squares, as implemented in
GLIM (see Nelder and Wedderburn, 1972),

(c) Newton's method, for the logit model, as used in BMDPLR
(see Jennrich and Moore, 1975),

(d) 4iterative proportional fitting (IPF).

Additional comparisons could be made with the Newton-Raphson formulation

of Bock (1975) or Haberman (1978), but are not included here.

2. LOGLINEAR, LOGIT AND MULTINOMIAL LOGIT RESPONSE MODELS

Consider a problem involving a response variable with K categories

and two explanatory variables, with I and J categories respectively.
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The data are counts in the form of an IXJXK table where the totals in

the IxXJ margin, corresponding to the explanatory variables, are taken

as fixed. We assume the sampling model for the counts is product-multinomial
(Bishop, Fienberg and Holland, 1975). Multinomial logit response models,
involving K-1 simultaneous logit equations, are equivalent to loglinear
models that treat the three variables as responses but include in the model
all terms corresponding to main effects and interactions for the explanatory
variables (Fienberg, 1977, Chapter 6). The special case of K=2 yields

the familiar logit model. By using this correspondence, any algorithm

for fitting loglinear models can be used for the logit problem. The dis-
advantage to such an approach is the added number of (unnecessary) para-
meters in the model. In the following sections we discuss some of the
properties of various algorithms and their implementation. The discussion

is briefly summarized in Table 1.

2.1 NEWTON'S METHOD

Fienberg and Stewart (1979) have used a variant of Newton's method
for analyzing both loglinear and multinomial logit response models. Their
first algorithm treats the logit problem as a loglinear model. The estimated
covariance matrix for the parameters is adjusted for the required conditioning
at the end of the computations using formulae available from Haberman (1974).
Their second algorithm proceeds by initially conditioning on the explana~
tory variables, and then using a somewhat different, but closely related,
set of computations. The choice between the algorithms depends upon
the number of categories and structure of the response variables. The

second approach should be more efficient when K 1a large or there are many

response variables. In other words, if the multinomial logit response
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model has considerably fewer parameters than its loglinear equivalent,
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then one should initially condition on the explanatory variables.

Both of these algorithms involve the construction of the upper half
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of a pxp weighted cross product matrix, where p 1is the dimension of

ES

the design manifold. Note that p 1is not the same for the two approaches.
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In both algorithms a sparse n xp design matrix (where n corresponds to
the number of cells in the cross-classification) is generated internally,

but is never actually stored during the computations. The calculations

proceed via Newton's method with variable step length, using a Cholesky
decomposition with pivoting. Extrinsic aliasing (i.e., non-identifiability
3 of certain parameters) is detected by small pivot elements during the
“é decomposition. As the internal parameterization is not readily interpreted, %

u-terms or other desired parameterizations are estimated by direct compu-

tations on the table of fitted values. In this way it is not necessary
to address the statistical consideration of marginality (see discussions é
in Nelder, 1976 and 1977, and in Fienberg, 1977) until the end of the

computations.

2.2 GLIM
The GLIM algorithm, as developed by Nelder and his colleagues, is

designed for analyzing Generalised Linear Models (see Nelder and Wedderburn,

. %

1972). Logit, multinomial logit response, and loglinear models are all
encompassed in the family of generalised linear models, however only logit
and loglinear models are easily fitted in GLIM. 1In order to fit a K > 2
level response variable in GLIM, the user can either fit the associated
loglinear model or treat the problem in an asymmetric fashion, e.g., by ]

the use of continuation ratios (see Fienberg, 1977, Chapter 6). It is also
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posgible to fit the multinomial logit response model directly by using
GLIM's macro and user-defined model capabilities. This approach requires
considerable storage and numerical sophistication on the part of the user,
For many problems fitting the loglinear model is perfectly satisfactory,
but for some problems the number of parameters becomes too large for the

program to handle. The asymptotic covariance matrix is not adjusted for

the appropriate conditioning in this approach for multinomial logits.

GLIM uses Gaussian elimination to sweep out the rows of a weighted
cross-product matrix. In order to preserve the marginality constraints
(i.e., duc to the restriction to hierarchial models) there is no pivoting
during the Gaussian elimination. As indicated in the previous sub-section,
marginality considerations can be satisfactorily addressed at the end of
the computational problem, and the good numerical properites of pivoting

could have been utilized during the Gaussian elimination. GLIM does not

do this. Extrinsic aliasing of parameters is detected when a diagonal
element of the weighted cross~product matrix drops by more than 10"6
in two successive iterations. This procedure may encounter numerical

instabilities, particularly when the program is used for logistic regres-

sion problems.

2.3 BMDP

There are at least two methods of fitting logit models in BMDP.
If the response is binary the stepwise logistic regression program BMDPLR
may be used. Otherwise the iterative proportional fitting (IPF) algorithm

for loglinear models, in BMDP3F, is a possibility. We will confine our

i

comments here to the logistic regression program, defering a discussion

of IPF to the next section.
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The algorithm of BMDPLR is a specialisation of the BMDP nonlinear
regression program, and corresponds to iteratively reweighted least
squares. The description by Jennvich and Moore (1975) indicates that
the algorithm proceeds by explicitly inverting the weighted cross-product
matrix, using the method of Gauss-Jordam elimination. Aliasing is then
determined by small diagonal pivots; however, it appears that marginality
may be violated here. As with GLIM it is possible to fit user defined
models with BMDP. In our multinomial logit response case, this would
involve using BMDP3R, the nonlinear regression program, together with
some Fortran subroutines. Again, considerable expertise on the part of the
user is required.

Although it is not our direct concern here, we comment briefly on
the stepwise aspects of this algorithm. The BMDPLR program is the only
one we reviewed that contains an automated selection procedure. However,
such a structure could easily be implemented in the other algorithms,
particularly GLIM, which has a macro facility. Two stepping procedures
for BMDPLR are outlined in Dixon and Brown (1979). One is based on the
likelihood ratio and uses standard asymptotic results for its justification.
The other is based on an F-statistic approximation, using an estimate of
the asymptotic covariance matrix, which may be of practical use but seems
to lack a theoretical basis. The stepping procedures do preserve marginality,

although this option may be overridden.

2.4 ITERATIVE PROPORTIONAL FITTING

The Iterative Proportional Fitting algorithm (IPF) is especially useful for
fitting loglinear models because of the elementary nature of the iterations.

The algorithm does not directly fit logit or multinomial logit response
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models; these must be fitted in their equivalent loglinear forms. This

is not as severe a restriction as it seems, since the major storage
requirement for IPF is the table itself. Extra model parameters cause only
a very slight increase in storage needs. Of course, the major disadvantages
of IPF are (a) its sometimes very slow rate of convergence and (b) the
lack of covariance estimates for the fitted values. One advantage of

IPF is that when maximﬁm likelihood estimates for the fitted values have

a closed form (i.e., for decomposable models), a version of IPF will

obtain these in one iteration (see Bishop, Fienberg and Holland, 1975, and

Haberman, 1974, p. 191). This 1is not true for any of the Newton algorithms.

3. COMPARISONS

Some of the qualitative aspects of the algorithms in question are
summarized in Table 1. The GLIM and BMDP programs have similar properties.
As GLIM is an interactive program, it is easier to use but pays the price
by being able to analyze only smaller problems. (Depending on the imple-
mentation, the BMDP package can also suffer from a lack of storage space.)
Both algorithms consider the logit response problem as a special case of
logistic regression.

The Fienberg-Stewart algorithms have opted for economy of storage
over efficiency of operation. Thus with similar front-end programs, be
they interactively or batch oriented, one would expect these algorithms
to be able to handle larger problems‘than either GLIM or BMDP, The
Fienberg-Stewart algorithms have the advantage that they are able to
directly fit multinomial logit response models, whereas the other approaches
require that the loglinear equivalent of the model be fitted. Whether

this is an advantage or not depends upon the size of the marginal array
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corresponding to the explanatory variables. When this margin is small,
some advantages may accrue to the loglinear approach.

We have not made direct comparisons here on speed of convergence,
but we note that, when IPF needs to iterate (i.e., for non-decomposable
models), it has linear convergence, while the other algorithms enjoy
quadratic convergence properties. We expect that the "special features"
in the Fienberg-Stewart algorithms should allow for slightly faster conver-
gence than do the GLIM and BMD algorithms, but rate of convergence should

not be a serious distinction among these algorithms.
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