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SUMMARYj1 i Explicit formulae are given for the stress discontinuities radiated by a suddenly starting
two-dimensional crack under tension, in an ideal elastic body. These formulae also give,
with a change in sign, the stress discontinuities radiated by a suddenly stopping crack,

and, with a geometrical deformation, those radiated by a three-dimensional crack. The
stress in the primary radiation due to short crack-jumps is thus shown to vary in essentially
the same manner as does the crack speed during the jump. The diffraction of the primary
radiation from one tip of a centre-crack by the other tip produces a secondary radiation,
whose properties depend mainly on the nature of the surface wave associated with the
primary radiation. Since this first diffraction can lead to crack extension, further diffrac-
tions would be difficult to study analytically. If it is possible to isolate the primary radiation
experimentally, however, it should give directly the essential characteristics of the source.
This could be used to separate source-characteristics from specimen and transducer effects
in acoustic emission studies of fatigue cracking, or stress-corrosion cracking.
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I. INTRODUCTION

The technique of non-destructive testing which relies on detccting the acoustic emission
(or stress-wave emission) from a structure under load does not yet use all the information
contained in the emission. This emission is usually detected by piezo-electric transducers attached
to the structure, and the major aim of current research is to derive a more accurate interpretation
of the recorded electrical signals, so as to improve upon the pragmatic approach which simply
associates an increasing intensity of signals with a deterioration of the structure. In particular,
this approach does not discriminate between the several sources of emission which may be
active, although their respective emissions may in fact show different characteristics, and thus
be separable (see, for example, [I]). We shall be concerned in this paper with the distinguishing
features of the emission from growing cracks.

The basic theoretical result is that a sudden change in crack speed gives rise to stress dis-
continuities in the radiated body-waves. Explicit formulae for the discontinuities due to the
sudden starting of a two-dimensional crack, under tension (Mode I), are given in section 2*.
In section 3 we consider the surface wave on the crack faces due .:o the motion of one tip of a
centre-crack, and the secondary radiation due to the diffraction of that wave by the other crack
tip. A detailed derivation of the results given in sections 2 and 3 would be lengthy, but since
it is not required for understanding these results, only the main steps are recorded here, in an
appendix. The emphasis is placed instead on the proper use of the results in practice, for the
theoretical models are, necessarily, very idealized.

In section 4 we show how Keller's geometrical theory of diffraction [31 can be used to
derive the stress discontinuities radiated by three-dimensional cracks, starting from the two-
dimensional results. Madariaga has recently performed an elaborate numerical analysis of the
radiation from circular shear-cracks [4], and has subsequently shown [5] that the dominant
features could be obtained quite simply from the relevant two-dimensional radiation patterns
(modes 11 and IIl), by using Keller's theory: indeed, that approach led him to some sharper
insights into his numerical results. This makes it unnecessary to undertake the laborious numerical
calculations for the analogous tensile cracks.

The theoretical results given in section 2 pertain to the primary body-wave radiation. It
would be difficult in practical applications to monitor only this primary radiation, but this can
be done in laboratory experiments, if certain precautions are observed. It would be preferable
to capture this radiation at normal incidence, since a simple model can then be used for deter-
mining the response of the piezo-electric transducer (section 5). We discuss in section 6 what the
results of such an experiment are likely to be. Although we concentrate there on the longitudinal
component of the radiation, it should be noted that the results given in earlier sections are based
on exact solutions of the equations of elasticity, satisfying the proper boundary conditions on
the crack faces (by contrast to [61, where these boundary conditions are not satisfied).

2. THE RADIATION FROM TWO-DIMENSIONAL CRACKS (Mode I)

The Starting Phase

Consider first the familiar two-dimensional idealization for a centre-cracked plate under
tension (plane strain): the plate is assumed to be of infinite extent: the crack is taken to lie on
the x-axis, say with crack tip A at x = 0, and tip B at x -I; the stress at infinity reduces
to a uni-axial tension a parallel to the y-axis. The crack is open, but in equilibrium. The static
stress intensity factor is given by Ko = a(7rf/2)4-see, for example, [7]. Now suppose that at

* Freund [2] discussed briefly the jump in average stress across the longitudinal wavefront,

but there appears to be an error in the numerical results.



time t 0 tip A begins to move with speed v. The radiation due to this motion will be called
the starting phase, following [5]. The associated wavefronts are shown in Figure ]a, where we
use the notation P for the longitudinal wave, S for the transverse wave, R for the surface (Ray-
leigh) wave, and SP for the head-wave. The stress discontinuities across the P- and S-wavefronts
are most conveniently specified in terms of polar coordinates r, 0. Using [arr]p to denote the
jump in the normal stress arr at the P-wavefront, we find (Appendix, §2) that

[arrp= - (I - v)Ko v DO
2(7rr)l CL- v cos 0O

{(CLICT) 2 - 2 COS 0} (I + cos 0)'
- (CL/CR) + COS 01 S (cos OICL)

where CL, CT, CR are the longitudinal, transverse and Rayleigh wavespeeds; v is Poisson's ratio;
and the function S involves an integral which has to be evaluated numerically (see Appendix,
equation (A.4)). The following list of S (cos 0/CL), for values of cos 0 between I and - I, at
intervals of 0.2, would enable the reader to reconstruct the plots in Figure lb, with the help
of only a pocket calculator: 0-85, 0-84, 0.83, 0-81, 0-79, 0-76, 0-73, 0-68, 0-62, 0-51, 0-22.
These values, and all the numerical results given subsequently, hold for Poisson's ratio ' = 1/3,
which is a typical value for metals.

The important features of the result are:
(i) The strength of the discontinuity shows a decay proportional to r ', which is charac-

teristic of cylindrical waves.
(ii) The angular dependence is best considered as the product of two factors: the first

leads to a focussing of intensity directly ahead of the crack which becomes more
pronounced for larger values of r,: the second factor, Q(O), is independent of v-it
depends only on Poisson's ratio, and there is little variation for V in the usual range
of interest, 0-2 • v - 0-4. Both factors are positive for 6A < 7r, with Q -* 0 as 0-* r.

Thus, [arr]p is negative. We also have [Ou0]p = {V/(I - )} [arr]p. The shear stress
are, on the other hand, is continuous at the P-wavefront.

(iii) When the crack begins to grow, the stress intensity factor changes discontinuously
from the value Ko to the dynamic value Kd = k(r)Kn. The velocity factor k(v), first
derived by Freund [8], is approximately given by k(tr) = (I - I'/CR) (I - 0"95V/or),

([9], p. 802). Thus, [arr]P could have been related to the change in stress intensity
factor [K ] - {1 - k(v)}Ko, rather than to K0, but this would have complicated the
appearance of equation (I).

At the S-wavefront it is are which is discontinuous, while the norrial stress components

Urr, C190 are continuous. In the region 01 < cos '(-T/CL) = 01, the jump in are is given by
(Appendix, §2)

(1 - v)Ko v
4(irr)" CT- V cos 6 A(6), (3)

A (0) = sin 20 (CT/CL - - cos 0)'

(CT/CR + cos 0) S (cos O/CT) (4)

The angular factor A(O) is positive for 16 < T/
2, .zero for 10 n J/2, and negative for 77/2 <;01 < Oc.

In the region 10J > 0,, a head-wave (denoted by SP in Fig. la) precedes the S-wavefront.

It contributes a logarithmic stress-discontinuity at the S-wavefront which may be derived from

equations (A.10, II). We shall not examine in detail the behaviour in this region, because it is

usual in laboratory studies to monitor the acoustic emission ahead of the crack.

Figure Ib shows the relative magnitude of [arr]p and [are]s (for 101 <0) when the crack

speed 11 = 0-5 CT, with the normalization (I - v)Ko/{2(irr)' = I. The radiation patterns are

symmetrical with respect to y 0, so only one half of each is shown. The maximum value

of [re]s, which occurs at 6 - ±400, is less than one-fourth the maximum value of [ar,]p, which

occurs at 0 - ±85'. The difference in the magnitude of these stress discontinuities is even more
marked in the region [01 <30'.
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2.2 Short Crack-jumps

A stopping phase has the same pattern of wavefronts, and the stress discontinuity across
these has the same angular variation as for a starting phase, but the opposite sign. This was
shown to be the case for an anti-plane crack (mode 11) by Eshelhy [10]; it can be proved for
the tensile case (mode I), as Madariaga [5] has done for shear cracks (mode i), on the basis
of Kostrov's general solution for two-dimensional crack problems [II]. Thus, equations (1)
and (3), without the first minus sign, also hold for a stopping phase, but v now denotes the
crack's speed just before it stops, and Ko must be replaced by a factor K* which depends on
the precise history of the crack's motion (cf. [12], §2). In practice one is often concerned with
crack jumps which are much shorter than the current crack length, and it is then a reasonable
approximation to take K* equal to the static stress intensity factor for the current crack length.

There is no need to consider in detail what happens behind the wavefronts if one is only
interested in short crack-jumps: for practical purposes, the variation of the compressive stress
in the P-pulse (and of the shear stress in the S-pulse, ahead of the crack) is approximately the
same as the variation in crack speed during the jump. For example, if the crack both starts
and stops abruptly, the radiation ahead of the crack will consist of two approximately rectangular
stress-pulses, whose duration will depend on the length of the jump, and whose amplitude will
depend on K0 and the crack speed t during the jump. It can be expected that in practice the
pulses will not be that sharp, for at least two reasons: first, changes in crack speed are more
likely to be only "effectively discontinuous", relative to an appropriate time-scale, rather than
strictly discontinuous; and secondly, in the two-dimensional idealization all points on a straight
crack-front move together, whereas in practice it is more likely that different portions of the
crack front move at different speeds, and even at different times.

In spite of these smoothing effects, the body-wave radiation from growing cracks can still
be expected to show "effective discontinuities" in stress, due to "relatively sudden" variations
in crack speed, which occur typically when a crack begins to grow, or when a growing crack stops.

2.3 Correlation with the Stress Intensity Factor

The theoretical results for moving cracks show that the stress variation across a radiated
wavefront is essentially the same as the variation of the stress intensity factor at the time of
generation of the wave (cf. section 2.1 (iii)). This is also true for stationary cracks. For example,
when a tensile load is suddenly applied to a centre-cracked plate, the stress intensity factor K
increases in direct proportion with It, if the loading step-pulse strikes the crack at normal incidence
at time t 0. (K continues to increase until the diffracted wave from either tip reaches the other,
when it begins to decrease, and then to oscillate about its eventual static value, [13].) It can be
shown that now the radiated (or "diffracted") wavefronts, from the crack tip at x = 0, carry
a change in stress which is initially proportional to T!, if r denotes the time elapsed since the
arrival of the P- or S-wavefront at any given point (r, 9) ahead of the crack ( ! <77/2, r=(f-rcL)
or (t-roC) respectively). It is sufficient in fact to verify that this is the case for a semi-infinite
crack, by starting from the results given in [14], §9.6.3.

Notice that in this case, with a stationary crack tip, K does not show a step-discontinuity,
even though the incident pulse is discontinuous. It follows that if the starting phase, or the
stopping phase, from one crack is diffracted by another neighbouring crack, the stress across
the diffracted wavefronts will be continuous. Thus, stress discontinuities (or "effective discon-
tinuities") are distinguishing features of the radiation from growing cracks.

3. THE DIFFRACTION OF THE STARTING PHASE

Figure 2 shows the displacement of the lower half of the crack surface when the P-wavefront
of the starting phase from crack tip A has just reached tip B. which we suppose to have remained
stationary. The only prominent feature is a small hump travelling to the left with speed CR;

even that is discernible only because we have assumed that tip A moves at the relatively high
speed v 0"5 cia (see Appendix, §3).

The question now is to determine the variation AK) of the stress intensity factor at B due
to the diffraction of the starting phase. This will give as well the stress variation across the
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diffracted wavefront radiated from B, according to the general result explained in section 2.3.
The answer applies also to the case where both tips A and B start to move and stop shortly
after, before the starting phase from either tip has reached the other. We find that

AKilt v - K0 g(u)/(l/cR - u) du, (5)

where g(u) is a regular positive function (Appendix, §4). Thus, AKB 0 until t = I/CL, when
the P-wavefront from A reaches B; it then takes a negative value, of gradually increasing magni-
tude, and tends logarithmically to a negatively-infinite value as t approaches I/oC, the arrival
time of the surface wave associated with the starting phase. This singular behaviour is due to
the existence of a surface wave. Quite a different behaviour would be predicted for the corres-
ponding anti-plane problem, where there is only one type of body-wave and no surface wave.
There, the theoretical result is that AKB - 0 until t I/e'r. and then it increases smoothly
and monotonically-see (A.19).

With the tensile crack, the stress intensity factor at B falls to zero when 4KB = -Ko
(i.e. before t = iCR). The crack is then effectively closed in the neighbourhood of B. The theore-
tical result is not valid beyond that time, for it would predict that the crack faces press against
one another, whereas in its derivation it is supposed that this does not happen. However, this
difficulty does not arise for the diffraction of a stopping phase, and the theoretical prediction
then is that AK will increase logarithmically to a positively-infinite value. According to the theory
of quasi-brittle fracture (see [7]), the crack will begin to extend at tip B if KB exceeds the
fracture toughness. It may stop shortly after, if the driving force is then below the critical value.
Thus, a stopping phase from one tip can lead to a sequence of secondary radiation, due to the
diffraction of successive stopping phases. This would be difficult to keep track of analytically.

The theoretical results, however, reflect the idealizations of the model. In addition to those
discussed in section 2.2, there is the idealization that the crack faces are perfectly smooth: the
surface wave then propagates unattenuated. In practice, the crack faces are rough, and will scatter
the high-frequency component of the surface wave, converting it into body-wave radiation. We
note also that the logarithmic approach to infinity is, in mathematical terms, less singular than
the "inverse square-root" singularity reported by Freund [15] (see also [16]. equation (35)) for
the case where point-forces are suddenly applied to the faces of a crack. Freund [15] showed
that the singularity is subdued, and virtually disappears, if the forces are applied gradually. One
can expect a similar smoothing to occur if the crack accelerates gradually to the speed v, but
the result in the present case cannot be obtained by a simple convolution: it requires a detailed
tracking of the location of the crack tip at various retarded times (cf. [12], §4, for a similar
anti-plane problem).

Although it is not possible. on purely theoretical grounds, to determine precisely what will
happen in practice, it should be emphasized that the surface wave associated with the starting
phase is not a theoretical artifact, but a real phenomenon. In particular, it is noted by Shmuely
et al. [17] as being responsible for the seemingly premature crack-arrest observed for certain
geometrical configurations. in their experiments.

4. THE RADIATION FROM A CIRCULAR CRACK

Suppose that at time t 0 a circular crack appears on the plane z 0, in a field of uniform
tension parallel to the z-axis. The crack grows with constant speed r from zero-radius to a
radius a, and then suddenly stops. For the purpees of illustration, it will be sufficient to consider
only the longitudinal component of the radiation. The variation of stress immediately behind
the spherical P-wavefront generated by the appearance of the crack is the same as it would be
if the crack did not stop but continued to grow with speed '. It can be verified, from the known
solution for the self-similar circular crack (see, for example. [18]), that the normal stress com-
ponents are proportional to r, the time elapsed since the arrival of the wavefront.

The dominant feature of the radiation, however, is the stress discontinuity carried by the
stopping phase, as it is clearly shown by Madariaga's work for the analogous shear crack [5].
The manner in which this discontinuity is registered at any point may be derived from Keller's
geometrical theory of diffraction [3] as follows. We imagine that each infinitesimal element of
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the crack front generates, on stopping, a fan of rays in a plane normal to that element. With
a circular front, only two of these rays pass through any given field-point Q: they come from
that point on the front which is closest, and that which is furthest, from Q (Fig. 3). The ray
from the closest point carries the step-discontinuity

(I K) KAM (6)
2{7RI(I RI/pI)OP C1- VCos pl(6)

which is derived from the two-dimensional result given in equation (I) by making the following
substitutions, using the notation shown in Figure 3:

(i) K0 is replaced by K, which is approximately equal to the static stress intensity factor
for a circular crack of radius a (cf. [5], §8);

(ii) 0 is replaced by g;
(iii) r i is replaced by {RJ(I - R,/pl)} ', with p = a/cos ft.
The last change is the most important one, and it amounts to a geometrical deformation

to account for the curvature of the crack front. For large R, the amplitude of the discontinuity
decays as R 1, as it would for a spherical wave. The difference in sign between equations (I)
and (6) is due to the fact that we are now considering a stopping phase. The stress component
denoted by u in (6) is the normal stress parallel to the ray; the discontinuity in the normal stress
at right-angles to the ray is also given by (6) but with (I - v) replaced by v (cf. the relation
between arr and aoe in section 2.1). Since Keller's theory is valid asymptotically for high frequ-
encies, it can be expected to give accurately the values of these step-discontinuities, and it is
evident from Madariaga's work that this is indeed the case. The discontinuity carried by the ray
from the furthest point is derived in a similar manner, but with 0 replaced by (7T - y). The
delay between these two rays gives a useful measure of the effective width of the P-pulse of the
primary radiation (except for a= r/2, where there is a caustic). In the far field, i.e. for R > a,
this delay is approximately equal to (2a cos M/CL).

The diffraction of the stopping phase will give rise to a secondary radiation, whose amplitude
can again be derived on the basis of Keller's theory (because the symmetry of the present model
implies that the energy redistributes itself uniformly, after the rays cross the caustic at the origin),
but this will lead to the same problems of interpretation as were dealt with in the previous
section. Also, the detailed calculations for the transverse component of the primary radiation
will be complicated in the region where the head-wave precedes the S-wavefront.

The suddenly stopping circular crack may be considered as an idealized model for the
fracture of brittle inclusions. Its most serious idealization is that the whole crack front stops
simultaneously and suddenly. In practice, it is more likely that the fracture initiates near the
inclusion/matrix interface, so that different portions of the crack front come to rest at different
times. The implication here, as in sections 2 and 3, is that the radiation from the model has
sharper features (viz. stress discontinuities), and a larger amplitude, than what is likely to be
observed in practice. Nevertheless, the theoretical results can provide a useful guide in designing
experiments and interpreting their results (see section 6).

5. THE RESPONSE OF A PIEZO-ELECTRIC TRANSDUCER TO A NORMALLY
INCIDENT P-PULSE

There is a simple one-dimensional model for determining the response of a piezo-electric
transducer to a normally incident, plane P-pulse. Although the model has been known for some
time (see [19]), its potential usefulness appears to have been overlooked. It consists of an elastic
slab, of uniform thickness d, sandwiched between two elastic half-spaces. The slab gives rise
to a voltage proportional to the relative normal displacement of its faces: thus, the voltage is
proportional to the integral of the normal strain, and also to the integral of the normal stress,
across the thickness of the slab. The essential parameters are the acoustic impedances, which
will be denoted by W0 for the slab, W1 for the half-space in which the pulse originates, and W2

for the backing (to conform with the notation of [19]. p. 116). In applying the model to a parti-
cular transducer, W0 is taken to be equal to poco, where po is the density of the piezo-electric
material, and co is the speed of longitudinal waves across the thickness; the value for PZT 5A,
which may be considered as typical, is Wo = 34 (kg m-3 x km s-1 )*.

* I am indebted to Mr i. G. Scott for supplying this information.
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W1 is the acoustic impedance of the specimen; for example, W, = 17 (kg m- x km s-1) for
aluminiam. It is usually the case that the impedance W2 of the backing material is less than W1,
so that there is reflection with a change of sign at the back interface. This leads to the charac-
teristic ring-down of the recorded voltage in response to short pulses (see [19], Fig. 1.118, in
which Wo/W2 = 9).

To use the model we need its impulse response 1(t). This is not given in [19], but it is not
difficult to show that it can be represented analytically by the following convolution product
(denoted by an asterisk):

l(t) = kTf* (Ri R2)" 8 [(cot/2d) - n)] (7)

n 0

T = 2 Wo/( Wo + W1),

I, 0 < I < d/co,

f(t) = R l, dco < i < 2d/co,

0, t < 0, t > 2d/co,

R,= (W, - Wo)/(Wo + W), R 2 = (W 2 - Wo)/(Wo± W2).

8 denotes the Dirac delta-function. k denotes the dynamic piezo-electric constant; its actual
value is not required for reconstructing the shape of the incident pulse. The step response A (t),
which is the integral of I(t), is an oscillating function which approaches asymptotically the
limiting value kT(l + R2)/(I - R1R2), as shown in Figure 4. The response to a rectangular
pulse of unit amplitude and duration At is A (t) - A (t - At).

The model can be expected to give accurately only the initial response of a transducer,
because the finite dimensions of the transducer, and the cross-coupling in piezo-electric materials,
will play an increasingly important role in determining the response. Conversely, given an actual
transducer output, one can expect to reconstruct accurately only the beginning of the stress
pulse. But this is often sufficient to identify the source, as noted in [I], p. 98. Also, if the duration
of the pulse is not much greater than the transit time d/co (which is typically 0.5 uis), one can
expect to reconstruct the whole pulse accurately, and for this it is sufficient to retain only the
first few terms of the series in equation (7). Figure 4 only required the first four terms, this
should be sufficient in practice. The reconstruction involves a de-convolution which generally
has to be performed numerically. This may be done directly in the time-domain (as in [I]), or
in the frequency-domain, where de-convolution is equivalent to a division, by using the recently
developed Fast Fourier Transform algorithm [20].

The experimental results shown in Figure 15 of [I] suggest that the model can in fact be
useful for stress pulses of much longer duration than d/co. That figure shows the surface dis-
placement as measured by a capacitive transducer, and the response of a piezo-electric transducer,
due to a normally incident pulse. The overall shape of the displacement/time record is close
to that of a ramp-function, with a rise-time of 30 /Ls; if it were precisely a ramp-function, the
corresponding stress pulse would be rectangular and of 30 tis duration. The response of the
piezo-electric transducer is in fact similar to that shown in our Figure 4; indeed, one can account
for the finer details of the initial response by taking into account more precisely the actual stress
variation.

It is important to note that the model assumes perfect acoustic contact between the trans-
ducer and the specimen. This is usually ensured in practice by applying a slight pressure to the
transducer in attaching it to the surface. Also, it is not difficult to allow for the presence of a
viscous couplant between the transducer and the specimen, within the framework of a one-
dimensional model. The essential point is that while a proper modelling of the long-term response
of a piezo-electric transducer would be complicated, its initial response to a normally incident
pulse can be determined satisfactorily from a simple model. This can be used to advantage in
designing experiments, as illustrated in the next section.

6. DISCUSSION

To simplify the discussion we shall consider a particular specimen, shown in Figure 5a, and
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concentrate on the emission from one increment of crack growth. For example, with a fatigue
crack, it would be convenient to isolate the emission produced by an increase in the maximum
load for one cycle, after a steady-state has been reached under constant amplitude loading.

(There are differences of opinion on whether the acoustic emission from fatigue cracks is
due mainly to crack growth or to dislocation sources (cf. [21, 22]), or even whether the crack
growth occurs near the peak of the loading half of the cycle or during unloading (cf. [23, 24]).
The point of view adopted here may be summarized as follows. Consider an actual compact
tension specimen, and an ideally elastic model of it. Let the crack length in the model be adjusted
according to the plastic-zone correction for small-scale yielding (see [71, §3.12, [25]). Then,
during the early part of the overload cycle, the elastic stress field beyond a small region surround-
ing the crack tip will be the same in the specimen as in: the model. To maintain the correspondence
as the peak-load is approached, one must extend the crack in the model. What is not known
in advance is the variation in crack speed during this extension which will give the best corres-
pondence between the theoretical and the actual radiation. Once that is determined experi-
mentally, one has a macroscopic characterization of the source which does not call into question
the microscopic mechanisms of deformation and rupture which are responsible for the actual
emission.)

In actual experiments, care should be taken to absorb as much as possible of the primary
radiation when it reaches the edge of the specimen, especially the surface wave discussed in
section 3 when it reaches the corners C in Figure 5a, at least until the primary radiation is well
understood. We suppose that the experiment is set up to reco.-d this primary radiation, say
at an angle of 30' to the direction of the crack. The specimen in Figure 5a is a compact tension
specimen (like that used in [22]), but with one corner cut off so that the transducer at location A
receives the radiation at normal incidence. The specimen is supposed to be sufficiently thick to
accommodate fully that transducer.

The normal stress arr carried by the P-pulse can now be reconstructed from the response
of a piezo-electric transducer at A, by using the model of section 5, or the corresponding normal
surface displacement at A can be monitored by using a capacitive transducer, as in [1]. In either
case, the properties of the P-pulse should be sufficient to characterize the source, for short
crack-jumps (cf. section 2.2).

The transducer at B is placed. as usual, on one of the broad faces of the specimen, say
the face lying in the plane z - h, the other face lying in the plane z - -h. It would be difficult
to predict the response at B, and what follows is only a qualitative discussion of what can be
expected there if the P-pulse registered at A is a narrow rectangular pulse, approaching an
impulse. The first difficulty is that the results of section 2 are valid only if a state of plane strain
prevails throughout the specimen, but this is not the case on the faces z = ±h. The most
important modification which must be made is to cancel the stress aZ (= v (rrr -- a0)), pre-
dicted by the plane-strain solution, over an expanding quasi-annular region, representing the
intersection of the two-dimensional circular wavefronts of the P-pulse with the surfaces Z = ±h.
The expected normal displacement uz on z = h shown in Figure 5b was obtained by smoothing
the singularities of the theoretical solution for uz due to an expanding circular ring-load on a
half-space [26], but retaining a sense of the relative magnitudes of the various components
of this surface "bulge". It is not called a surface wave because the leading edge clearly travels
with the speed of longitudinal waves, which, in metals, is approximately twice the speed CR of
surface waves. On the other hand, it is also clear from Figure 5b that the major hump does
travel with speed cR, and it can properly be called a surface wave: in particular, there would be
the characteristic retrograde-elliptical particle motion associated with that hump (cf. [14], §5.11).
The response of a piezo-electric transducer at B will depend critically on the manner in which
it is attached to the surface, for example on whether it is perfectly bonded to the surface, or
kept at a certain distance from it due to the use of a couplant. Whatever the precise conditions
may be, we can anticipate that:

(i) the apparent duration of the pulse will depend on the size of the transducer, being
longer for a larger transducer;

(ii) unlike the P-pulse, the surface bulge will not be narrow, and indeed its width will
increase with distance from the source, since the leading edge travels faster than the
surface wave component:

(iii) in using the theoretical solution for a ring-load on a half-space, we have ignored the

7



reflections back and forth between the faces z = ±h, which will further contribute to
the apparent broadening of the pulse; and

(iv) if B is sufficiently far from the crack tip, the body-waves generated by cancelling azz

on -h will reach B before the surface wave travelling on z = h.
These comments also apply to the response of a capacitive transducer at B.
The crux of the discussion is this: with the transducer at A we are dealing with an essentially

two-dimensional situation; with the transducer at B we are inextricably in a difficult three-dimen-
sional situation. Although in the practical application of acoustic emission monitoring the
transducer will generally be in location B, in laboratory experiments an additional transducer
can be used in location A. This should allow one to reconstruct the P-pulse of the primary
body-wave radiation, which should characterize the source and thus provide a secure basis for
the interpretation of the signals registered at B. In particular, this could be used to separate
source-characteristics from specimen and transducer effects in acoustic emission studies of fatigue
cracking, or stress-corrosion cracking.
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APPENDIX

I. Introduction. Notation

The problems to be considered below are solved by integral transform methods: the basic
techniques are explained in [14], chapters 7 and 9; the major innovation required here is due to
Kostrov [I 1]. We shall adopt the notation used in our previous work [16], subsequently referred
to as I. In particular, a circumflex is used to denote a Laplace transform over time, with para-
meter s, and the corresponding capital letter is used when the transformation over time is followed
by a bilateral Laplace transformation over x, with parameter sx. a, b, c, d denote the reciprocals
I/CL, I/CT, I/cR, 1/v; A, 1A the Lam6 constants. The crack problems may be reduced to mixed
boundary-value problems for a half-space (y > 0), and the condition of symmetry (oY(y=O)=0)
leads to the relation (1: (7))

Uy(x, o, s) -K {M(X)/s) 2 yy(X, o, s), (A.1)

0 (- Olt/, (A.2)

on the boundary (y = 0) of the half-space. In the solution of crack problems it is necessary to

factorize the kernel M (X) as follows (1, §4):

M - M+.M-, M-(X) = M+(-X),

M+I(X) = (a + x)1/{(c + x) S (X)}, (A.3)

I fp b 14u2 (u 2 - a 2 )1 (b2- u2)' du 1
S Q) expI -~ art (A.4)

[_ a (2U2 - b2)2  Ju + x]

A supercript + attached to a function of X indicates that the function is "analytic to the right",
and consequently its inverse is identically zero for x < 0.

2. The starting phase

The appropriate boundary conditions are:

Oy(o < x < vt, o, t > o) = -Ko/(27rx)1 ,

qyu(x < o, 0, t) = 0,

u(x > vt, o, t) = 0.

Notice that we are using only the singular part of the prior static field ahead of the crack: this
simplifies considerably the expression for the dynamic stress field generated by the motion
(cf. the discussion of the static factor K* in [12], §2), but it gives accurately the stress step-
discontinuities at the wavefronts.

The main steps are the following:
(i) First, the double transform of Kostrov's pseudo-stress P (X, s), defined in 1: (52), is

derived. This proves to be the same as the double transform of the actual stress for
the corresponding anti-plane problem (cf. (5), §4).

(ii) From this we find the double transform of the actual stress on y = 0 to be

Eyy(x, o, s) = P (x, s)/{(b + X)l MI(Q)}, (by definition),

= -K/{/2 s3 2(d + X) M(X)} . (A.5)

(iii) Using the equations

S2
0 (X, o, s) = -(K/b 2 ) (y/a) MEvj,(X, o, s), (A.6)



(X, o, s) = -(2Xt/V,) 0 (X, o, s), (A.7)

(where a denotes a branch of (a 2 - X2)1 with positive real part, y = (2X2 - b2), cf. 1:

(6)), we can derive the double transforms of the displacement potentials 0, jl and
proceed to perform their inversion by the Cagniard-de Hoop technique ([14], §7.9).
With the notation

= -(tlr) cos 0 + i {(tr)2- a2}1 sin 0,

where C is the value of x along the Cagniard contour in the upper half-plane, and
(r, 0) are the polar coordinates of the point (x, y), we have

,t = i(a2- 2)i/(t12- a2 r2)i,

Im 14X,t]=_ = (t 2 - a2 r2)i Re [",O ]x,

so that the inversion integral with respect to sx is brought into the form

q (r, 9, s) = s - 52 (,41r) f f(rt 0, ) e -8 t dt, (A.8)
f (t 2 _ a2 r2)i

where A (K/b2) (Ko/v2), andf(r, 0, t) is the value of Re [s512 cOrO/A] along the Cagniard
contour x = t. A similar expression can be derived for 0s (r, 0, s) in the region 90! <0,.

(iv) The inversion with respect to s now proceeds by using the convolution theorem. It is
more convenient to carry out this inversion for the time derivatives O,tt, ,tt, because
these show directly the stress variation at the wavefront (see below). We find that

,t (r, , r) = Ar
- 3/2  f f(r, , u) du

Jar (u
2 - a2 r2)f (t - u)'

so that, by virtue of the result

f{u( -u)}- =du 7r

which holds for all 7, and in particular for - --> 0+, #,u is found to have a step-dis-
continuity at the P-wavefront, given by

[',,tt]p = {A/(2-ar)1}f(r, 0, ar). (A.9)

It will be noticed that f(r, 0, ar), which gives the angular variation of the discontinuity,
is in fact equal to

Re [s5/2 cjO/A I = Re [yM-(x)I(d + X)],

evaluated at the point X = a cos 0 where the Cagniard contour intersects the real
axis. This angular variation is the same as that given in equations (I) and (2) of the
main text.

(v) The inversion for #,jt proceeds in the same manner for 101 <0,, but for 101 > 0, the
Cagniard contour must be deformed around a branch cut on the real axis (cf. [14],
Fig. 7.12). The angular variation of the discontinuity in O,tt across the circular part
of the S-wavefront is then obtained by evaluating Re [s2P''] at the point where the
Cagniard contour meets the branch cut in the upper half-plane (A denotes a branch of
(b2 - X2). with positive real part). Also, the part of the inversion contour around the
branch cut gives rise to a head-wave, which precedes the S-wavefront, and it contri-
tributes a logarithmic discontinuity given by

(i'-)K0 v
4ifM(Irr)E I -b Vcos L(O) log It - br I, (A.10)

L(O) = {sin 20 (a/b + cos O)I/(c + b cos 0)} Im [11S (b cos 0)]. (A.i !)



(vi) The stress discontinuities can now be derived from the relations between the stress
components and the displacement potentials ([14], §3.13), by using the operator
identity Ibr = -(1/c) /t, which holds at the wavefronts ([14], §4.5.3; c = CL, CT at
the P and S-wavefronts respectively). Thus, for the normal stress arr at the P-wavefront,
we have

rr = (A + 2 A)a2",. - (Aa/r) O,t + r - 2 ,e,

since 0/ = 0 before the S-wavefront arrives. In view of the wavefront expansion given
for 0,t in (A.9), it is clear that the wavefront behaviour of art is dominated by the
step-discontinuity in the term (A + 21L) a2 0,tu. This leads to the result given in equations
(I) and (2) of the main text. The behaviour of the other stress components is deduced
by similar considerations.

3. Displacement of the crack faces

From (A.I) and (A.5) we have

UY(x, o,s) = 
S

5'2 CM-(X)/(d + X), (A.12)

with C = KKo/ /2. The inversion with respect to sx is easily carried out for x > 0: the inversion
contour can be closed to the left, and the value of the integral is simply the residue at x = -d.
Thus,

ay(X, o, s) = S-312 CM-(-d) e- 8dz,

and hence, by using the convolution theorem for the inversion over s, we find

uy(x > o, , t) - 27r - CM+(d) (t - xd)', xd < t, (A.13)

sine M-(-d) = M+(d).

The inversion for x < 0 is more complicated: the inversion contour is deformed to the right
onto the branch cut, and the resulting integral has to be evaluated numerically. This is not easy
because of the term S in the kernel (cf. (A.3), (A.4)). One can use a rational approximation for
S (e.g. [13], Appendix), but we have preferred instead to use the approximation introduced
in I; this leads to an inversion in closed form. The idea is to replace (A.3) by

M+(X) = (h + x)-/(c + X). (A.14)

The best choice for h is discussed in 1: for practical purposes one can take h = 095b. When
the inversion contour is deformed on to the branch cut we now obtain

ay(X < 0, 0, s) = S-312 (C/r) (- h eLf x d6.

Jh (d + 6) (~-c)
The inversion over s leads to

uy(x < o, o, t) = 2C( x/ir)- F,

where F is a convolution integral which can be evaluated in closed form by turning it into a
contour integral around a closed loop L surrounding a branch cut between h !xj and t

I "(t - ))(hIX!-
F 2ffiJ(C + Ix~d) (C - clx1) C

If the loop is deformed into a circle about the origin of radius r -* o, the value of the integral
can be derived from the residues at cixi, -lxld, o, when t < cjxj. For t > c lx the pole at
4 = clxl is not crossed in the process of deforming the contour of integration: the residues
at - Ixd and oo then lead to the Cauchy principal value of F. We thus find, with

R, = (c - h)1 (cjx - t)','{(c + d) 1xilA ,

Rd (h 4- d)' (t 4 IxId)'/{(c 4- d) xl1},

Ro = -I,



that

uy(-t/c < x < 0,0,t) = 2C(xj/,)' (R + Rd + R-D), (A.15)

uy(- th < x < -tc, o, t) = 2C (Ix I/ijl (Rd + R). (A.16)

Now, to determine the actual displacement of the crack faces, we must add the displacement
given by (A.13, A.15, A.16) to the prior static crack opening, given by (see [7])

uy(-I <x <o,o,t <0) = {o(l - Y)lp} (-x (I + x)}J

(Note that 2C = a(7ri)i (I - v)/,u ) .

4. The diffraction of the starting phase

To study this problem it is more convenient to suppose that it is the crack tip at x = 0
which remains stationary, and the one at x = -I which moves to the left with speed v. From I:
(30) we have

AK(s)= -V o1y(-u, s) th I(u, s) du.

Using the formula for the Laplace transform of a product, and equation (A.5) for EVY (allowing
for a shift of origin), we obtain

f M+(-x) e-lex
s (AK/Ko) = B (d + X) M(X)dX

The inversion contour B is deformed to tie right on to the branch cut to give

s (AKKo) = W IM [M-(6)] e-lO df,
V a (d + f) M+(f)

and the inversion over s then leads to

AKo(t at) =Kf Im [M-(u/I)] du. (A.17)J al(U + Id) M+(u/i)

The essential feature is a pole in the integrand; it is more clearly evident if we use the
approximate kernel (A.14), which gives

Ko f t (u+ Ic)(u-h)- du.
JK(:h) Q ~ _> hhldk)d)i- (A. 18)

7r hl U +Id u+hl] ic--u

For the corresponding anti-plane problem we can similarly derive the result

AK (t > bl) Kot (u + (u + bl('
j bl u-- bi)

d~
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Fig. 1: (a) The pattern of wavefronts associated with the starting phase.
I 

(b)Radial plots of the step-discontinuity in ar at the P-
wavefront (top), and in ae at the S-wavefront (bottom), for
V =O05CT and v = 1/3.



Fig. 2: The displacement of the lower half of the crack surface,
U= _ uY (x, y - 0-, t = I/CL). The dashed curve shows theinitial crack opening. A' is the current position of tip A. The
depth of the crack relative to its length was determined by
setting a(1 -v)/ 2

= 1.
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( Fig. 3: Co-ordinates and notation for the radiation from a circular
crack. r -(xy)0 a



0*30

Fig. 4: The step response A(t) for the model of a piezo-electric
transducer, with W./W, = 2, W./Wg = 9.
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Fig. 5: (a) The specimen considered in Sectioi. 6, showing the
location of transducers A and B. (b) A schematic representation
of the normal surface displacement along a radial line
(0 = 300) on z = h, when a narrow rectangular P-pulse is
radiated by the crack.

kI



DISTRIBUTION

Copy No.
AUSTRALIA

Department of Defence

Central Office
Chief Defence Scientist 1
Deputy Chief Defence Scientist 2
Superintendent, Science and Technology Programs 3
Australian Defence Scientific and Technical Representative (U.K.) 4
Counsellor, Defence Science 5
Joint Intelligence Organisation 6
Defence Library 7
Assistant Secretary, D.I.S.B. 8-23

Aeronautical Research Laboratories
Chief Superintendent 24
Library 25
Superintendent. Materials Division 26
Materials Divisional File 27
Author: L. R. F. Rose 28

Materials Research Laboratories
Library 29

Defence Research Centre, Salisbury
Library 30

Central Studies Establishment
Information Centre 31

Engineering Development Establishment
Library 32

RAN Research Laboratory
Library 33

Defence Regional Office
Library 34

Navy Office
Naval Scientific Adviser 35

Army Office
Royal Military College, Library 36

Air Force Office
Air Force Scientific Adviser 37

Statutory, State Authorities and Industry
Australian Atomic Energy Commission, Director 38
CSIRO National Measurement Laboratory, Chief 39
CSIRO Materials Science Division, Director 40
Qantas, Library 41
Trans Australia Airlines, Library 42



p
Ansett Airlines of Australia, Library 43

Applied Engineering Pty. Ltd. 44
Australian Paper Manufacturers, Dr Norman 45
BHP Central Research Laboratories, NSW 46
BHP Melbourne Research Laboratories 47
Commonwealth Aircraft Corporation, Manager 48
Victorian Brown Coal Council, Dr H. K. Worner 49
ICI Australia Ltd., Library 50
H. C. Sleigh Ltd., Library 51

Universities and Colleges
Adelaide Barr Smith Library 52
Flinders Library 53
James Cook Library 54
Latrobe Library 55
Melbourne Engineering Library 56
Monash Library 57
Newcastle Library 58
New England Library 59
Sydney Engineering Library 60
N.S.W. Physical Sciences Library 61
Queensland Library 62
Tasmania Engineering Library 63
Western Australian Library 64
R. M.I.T. Library 65

CANADA
Aluminium Laboratories, Ltd., Library 66
International Civil Aviation Organization, Library 67
Physics and Metallurgy Research Laboratories, Dr A. Williams 68
NRC National Aeronautical Establishment, Library 69
Gas Dynamics Laboratory, Mr R. A. Tyler 70

Universities and Colleges
McGill Library 71
Toronto Institute for Aerospace Studies 72

FRANCE
AGARD, Library 73
ONERA, Library 74
Service de Documentation, Technique de I'Aeronautique 75

GERMANY
ZLDI 76

INDIA
CAARC Co-ordinator Materials 77
Civil Aviation Department. Director 78
Defence Ministry, Aero. Development Establishment, Library 79
Hindustan Aeronautics Ltd., Library 80
Indian Institute of Science, Library 81
Indian Institute of Technology, Library 82
National Aeronautical Laboratory, Director 83

INTERNATIONAL COMMITTEE ON AERONAUTICAL FATIGUE
Per Australian ICAF Representative 84-108

ISRAEL
Technion-Israel Institute of Technology, Professor J. Singer 109



JAPAN
National Aerospace Laboratory, Library 110

Universities
Tohoku (Sendai) Library 111

NETHERLANDS

Central Organiz. for Applied Science Res. TNO, Library 112
National Aerospace Laboratory (NLR) Library 113

NEW ZEALAND
Defence Scientific Establishment, Library 114

Universities
Canterbury Library 115

SWEDEN
Aeronautical Research Institute 116
Chalmers Institute of Technology, Library 117
Kungliga Tekniska Hogskolan 118
Research Institute of the Swedish National Defence 119

UNITED KINGDOM
Aeronautical Research Council, Secretary 120
C.A.A.R.C., Secretary 121
Royal Aircraft Establishment, Library, Farnborough 122
Royal Aircraft Establishment, Library, Bedford 123
National Physical Laboratory, Library 124
British Library, Science Reference Library 125
British Library, Lending Division 126
Fulmer Research Institute Ltd., Research Director 127
Ricardo II. Co.. Manager 128
Science Museum Library 129

Universities and Colleges
Bristol Library, Engineering Department 130
Cambridge Library, Engineering Department 131
Nottingham Library 132
Southampton Library 133
Strathclyde Library 134
Cranfield Institute

of Technology Library 135
Imperial College The Head 136

Professor B. G. Neal, Struct. Eng. 137

UNITED STATES OF AMERICA
NASA Scientific and Technical Information Facility 138
Sandia Group Research Organisation 139
American Institute of Aeronautics and Astronautics 140

The John Crera- Library 141
Allis Chalmers Inc., Director 142
Cessna Aircraft Co., Executive Engineer 143
Esso Research Laboratories, Director 144

Texas Instrument Co., Director 145
Battelle Memorial Institute. Library 146
Calspan Corporation 147
Westinghouse Laboratories, Dicector 148

SIl



Universities and Colleges
Harvard Dr S. Goldstein 149

Iowa State Dr G. K. Serory, Mechanical Eng. 150

Polytechnic Institute
of New York Library, Polytech. Aero. Lab. 151

California Institute
of Technology Library, Guggenheim Aero. Lab. 152

153-162
Spares


