AD-A089 382

UNCLASSIFIED

RATTELLE COLUMBUS LABS OH F/6 13/13

STRUCTURAL ANALYSIS VIA GENERALIZED INTERACTIVE GRAPHICS = S$TAG=-ETC(U)

SEP 79 L E HULBERTr N D GHADIALI» F N DEOBOT F33615-76-C-312
AFFOL=TR=79=3074-VOL~3

AFFDL-TR-79-3074
Volume il

LGN
;“ﬁ e
{:;\‘ STRUCTURAL ANALYSIS VIA GENERALIZED
&
Y INTERACTIVE GRAPHICS
o STAGING
< Volume Il — System Manual
-
o L. E. HULBERT
N C. P. SCOFIELD -
BATTELLE COLUMBUS LABORATORIES
505 KING AVENUE
COLUMBUS, OHIO 43201
SEPTEMBER 1979
/ ’
TECHNICAL REPORT AFFDL-TR-79-3074, Volume III ' §FiT G50
Final Report for Period June 1976 — September 1979
Approved for public release; distribution unlimited.
[
’ 9
% AIR FORCE FLIGHT DYNAMICS LABORATORY
2 AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
. wd AIR FORCE SYSTEMS COMMAND
‘ - o WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433
\ i
t C>
{ ~y 0
= b0 9 22 _23%7

g
4

-~

NOTICE

When Government drawings, specifications, or other data are used for any purpose
other than in connection with a definitely related Government procurement operation,
the United States Government thereby incurs no responsibility nor any obligation
whatsoever; and the fact that the government may have formulated, furnished, or in
any way supplied the said drawings, specifications, or other data, is not to be re-
garded by implication or otherwise as in any manner licensing the holder or any
other person or corporation, or conveying any rights or permission to manufacture
use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is
releasable to the National Technical Information Service (NTIS). At NTIS, it will
be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

ATy P el A Léooéwu

Bernard H. Groomes Frederick A. Picchioni, Lt Col, USAF
Project Engineer Chief, Analysis & Optimization Branch

Structures & Dynamics Division

FOR THE COMMANDER

a . ’
Chief, Structures & Dynamics Division

"If your address has changed, if you wish to be removed from our mailing list, or
if the addressee is no longer employed by your organization please notify AFWAL/FIBR ,
W-PAFB, OH 45433 to help us maintain a current mailing list”.

Copies of this report should not be returned unless return is required by security
considerations. -ontractual obligations, or notice on a specific document.

AIR FORCE/36780/29 August 1980 — 100

\,

j

N B

&

A:.

s¢

Unclassified

CURITY CLASSISICATION OF ThlS PAGE (When Duta Frrteredd

GRAPHICS - SIAGING

fio

voLuMF [IT. SYSTEM MANUAL
yaTio

35 JUNE-1976 - SERT-1979

READ INSTRUC FTORS 7
/ /o REPORT DOCUMENTATION PAGE BEFORE ’Cuwl'x.m‘mr‘: FORM
JMBLEQR‘“ N 2. GOVT ACCESSION NO| 3. RECIPIENT'S CATALOG NUMBER
AFFDL, R"79—3P7[0 “VL(/,’ - 2 e AMOZ, 4
T UR T) 5. TYPE OF REPOAT.A u g
_STRUCTURAL ANALYSIS VIA QENERALIZED INTERACTIVE -JECHNLCAL__;-’;’INAL . "f"
’

6. PERFORMING ORG. REPOAT NUMBER

7

AUTHOR(3y

\/

L.

- - !
E. HULBERT, N. D.!/ GHADIALL{" F. N, /DEOBOT -

8. CONTRACT OR GRANT NJMBER(;)

e

:) Fe33615-76-C- 3125 f/

1‘*“

PERFORMING ORGANIZATION NAME AND ADDRESS

Vol

finite element analysis.

9 10. PROGRAM ELEMENT. PROJECT, TASK
BATTELLE, COLUMBUS LABORATORIES AREA & "’°“"ft‘{’ NUMBERS |
505 KING AVENUE 0

SRIL 5
COLUMBUS OHIO 43201 T .

11 CONTROLLING DFFICE NAME AND ADDRESS | I BEPQRI DALE oo er
AIR FORCE FLIGHT DYNAMICS LABORATORY (FBRA) -)| [SEPTEwsmSey79 |
WRIGHT-PATTERSON AIR FORCE BASE TN oveER oF Faces
OHI1O 45433 158

14 MONITORING AGENTY NAME & ADDRESS/ ! ditlerent from Controlling Ollice) 15, SECURITY CLASS. (of this report)

)é";? o UNCLASSTFIED
V-A_«.\ (e t5e8. DECL ASSIFICATION DOWNGRADING
ey o SCHEDULE
IWLES
16. GISTRIBUTION STATEMENT (of this Report) [
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

17 DISTRIBUTION STATEMENT (of the abstract entered 1n Bluck 20, tf different from Report)

18 SUPPLEMENTARY NOTES

13 KEY WORDS /Conrinue on reverse side 1f necessary and ident:fy by block number)

INTERACTIVE GRAPHICS MESH GENERATION

FINITE ELEMENT MODELS COMPUTER AIDED DESIGN

STRUCTURAL ANALYSIS COMPUTER AIDED ANALYSIS
20 ABDSTHACT Cuntinue on reverse gide (f necessary and identify by dlack number)

- }:?ST/\GINC (STructural Analysis via Generalized INteractive Graphics) has been
developed to give engineers an interactive graphics systen
and studying finite element models and for reviewing llu v

Yor constructing
-ults of a

-+ :
{

Volume 11 Lonelsts of a user's guide giving detailed step-bv-step instructions

in how to use STAGING.

| oD 5.5, 1473

FLITICN OF 1 NQV $515 OASOLETE

SECURITY CLASSFICATION Or 105 BAGE (When Darw bniered)

FOREWARD

This final report was prepared by the Columbus Laboratories of
Battelle Memorial Institute, Columbus, Ohio, for the Structures anu
Dynamics Division, Air Force Flight Dynamics Laboratory, Wright-Patterson
Air Force Base, Ohio. The work was performed under Contract No.
F-33615-75-C-3125, which was initiated under Project No. 2401, “Structures

. . R———v
and Dynamics", Task No. 02, "Design and Analysis Methous tor Aerospace
_— . .
Vehicle Structures". Initially, Mr. L. Bernier (FBR) was the AFFL.
project engineer for this effort, after which Mr. B.H. Groomes (FBR, was
assigned the responsibility.

STAGING, as described in this report, represents a three- g o
combined Air Force-Navy effort, with specific support and contrit .t
from Dr. Charles P. Porier, Chief, Scientific Systems Analysis Erarcr,
Computer Center, Wright-Patterson Air Force Base, Ohio, Messers. Jame. ',

McKee and Michael E. Golden, Computation Matnematics anc .« -
Department, Code 1844, Mr. Paul Mayer and Miss Jane A. Fiqulz, “tr .t . .
Department, Code 1730.5, The David W. Tayior Naval Ship re e o
Development Center, Bethesda, Maryland. The technical graphics exper?

of these government researchers are gratefully acknowledgeu.

The report consists of four volumes. Volume 1, "Fin3ai “Turman,
neport", presents an overview of the capabilities ot the S1aGiNe
(STructural Analysis via Generalized INteractive Graphics) system. Vvolume
IT, “"Users Guide", gives detailed instructions on how to use STAGING tor
finite element analysis. Volume III, "System Manual",-describes the

internal structure of STAGING and details procedures for installation anc
; Maintainance of the System on CDC CYBER and 6000 series mainframe
’ computers.s- Volume IV, “Appendices Lo the System Manual", includes lists
‘ of STAGING'procedures, loader directives and cross-referenced tables of
all entry names that occur in STAGING.
The program manager of this development was Dr. L. E. Hulbert of
the Transportation and Structures Department. He was supported by N. O.
} Ghadiali of the same department and by a number of specialists from the
Computer, Information Systems, and Education Department including:

E. Edwards K. Cadmus
D. Kasik C. Scofield
W. Young F. Drobot
Kevin Cadmus was a major contributor to the preparation of this
vo lume.
The work reported herein was conducted during the period of June
28, 1976 through June 1979. Some work on STAGING was carried out under
contract F33615.
The present report was submitted for publication in June, 1979.

I
1
1
1.
1
1

Y H WM -

[AS I AV N

£wnro

TABLE OF CONTENTS

NSTALLATION

STAGING Files
Loading the STAGING Absolute
Loading the Menu Generator Absolute

Loading the Material Property Data Base Management System

Loading Conversion Routine Absolutes

Cataloged Procedures

2.1.1 Introduction

2.1.2 Low-Level Procedures

2.1.3 Running STAGING

2.1.4 Maintenance of STAGING Libraries
2.1.5 Menu Generation

2.1.6

2.1.7

2.1.8

2.

Installation of WPAFB
YIELDFILE Procedures

1.9 Procedure Listings

w

Maintenance of Material Property Data Base

Low-Level System Interface and Utility Routines

Data Handler
STAGING Menu Generation and Management
2.4.1 Introduction

.4.2 Using the Command Tree Generator
Menu Data Base
Menu Generation Software

2
3
4
5
.4.6 Textual Input
TAGING Model Data Base
1 Introduction
2 STAGING Model Data Base Format
3 Change List
4 In-Core Tables and Arrays
5 Model Data Base Handler Routines
NTERTEK Interactive Graphics System
1 Introduction
2 INTERTEK Picture Manipulation
3 INTERTEK Pick Processing
.6.4 INTERTEK Software Overview
TAGING Model Graphics
. Medium-Level Graphics Routines
2 Construction of Model Display
Results Displays
4 Modifying the Picture
Editing the Model
6 Graphical Input
TAGING Material Property Data Base
.8. Introduction
.8.2 MPDB Modification Procedure
.8. MPDB Format

2.4
2.4
2.4
2.4
2.4
STA
2.5
2.5
2.5
2.5.
2.5.
INT
2.6.
2.6.
2.6
2.6
STA
2.7
2.7
2.7
2.7.
2.7.
2.7
STA
2
2
2

I
I
1
3
5
I
1
3

Processing the Command Tree in STAGING Driver

\ IC\STTI ~TC"

2.9 STAGING Code
2.9.1 Overview of STAGING Code !
2.9.2 Program Library Maintenance
2.9.3 Segmentation Strategy

e -y AT

™
) YA b o A i e AT g

P v TN O el YO 2

-

\ vi

LIST OF TABLES

S
-
—

]

STAGING Files

2.4.1 - Menu Generation Software
2.5.2 - Element Attributes

2.5.3 - Element Type Values
2.5.4 - Node Attributes

2.7.1 - View Control Array

— -y

vii

J
{

FIGURES

RO R PO R A P MO R MM N R MM RN MR RN R N R RN N NN D RN DR NN

IR N T e I = N~ S~) N > S o S~ .S o (e (N« S RN C RS I S NS B S RS B A NN S I © R B = S - R
e e e e s e s e e e e e w e s e e s e s e « e« e 4 e e P

O 0 ~N O U B W N~ N0 R W N

—
- O

W O N O N DWW N

[N N e
H W N = O

LIST OF FIGURES

Sample Menu Generator Input Deck
Sample Menu Generator Output (1)
Sample Menu Generator Output (2)
Triplet for Text Editing

More Than Button Picking

Tree Schematic

Menu Data Base Bead Format
Overall Structure of Beads
Format of Data Base Beads

Table Bead Format

Change Bead Format

Change File Header Bead

Filling ELNOD

ILKUP Array with Index INLKUP
Attribute Names

Attribute Index into Bead
Paging Scheme

Information Flow

Display File Construction

DAE Format

Subfile Format

Item Format

Display Item Graphics Instruction Formats
IBUF Format

Extension Format

Category Table

Queue Construction

Wait Queue Entities

Keyboard Event Table

Rectangle Check

Distance Test

Test Pick

3D View Control

viti

1. INSTALLATION

The installation of the STAGING system involves loading files to
disk from the STAGING System Tape and creating several program absolutes.
In the following sections are descriptions of the files on the System Tape
and the procedures for accessing the files and loading the absolutes.

The STAGING System Tape is a 9-track, 1600 bpi tape. A1l files
are copied to the tape using COPYBF. The source program libraries are
copied to tape as source decks in UPDATE input format. The relocatahle
libraries are loaded as sequential libraries created via the RANTOSLQ
command to EDITIB.

1.1.1 STAGING Files

A table of the files in the STAGING system is given in Table 1.1
When the STAGING absolute (STAGINGABS) is loaded, subprograms are
retrieved from five sources:

1. STAGINGLIB

2. SUPPORTLIB

3. INTERTEKLIB

4, MENUTABLE

5. Standard NOS/BE system libraries

STAGINGLIB contains all subroutines on UPDATE program library
STAGINGPL. (The compiled binaries are on STAGINGBIN.) These routines
include the STAGING main program (“DRIVER"), the routines cailed by DRIVER
for menu management, and the subroutines associated with picks of menu
buttons.

SUPPORTLIB contains data base manipulation routines, conversion
routines, and miscellaneous routines for permanent file manipulation,
error recovery, and XY-plot graphics support. The source code for these
SUPPORTLIB routines is maintained on UPDATE program libraries and binaries:

1. DATABASEPL,DATABASEBIN

2. CONVERSIONPL,CONVERSIONBIN

3. PERMFILEPL,PERMFILEBIN

4. RECOVERYPL,RECOVERYBIN
5

XYGRAPHPL, XYGRAPHBIN

i
M_m T o

TABLE 1.1.

STAGING FILES

File Name Format Contents

PROCPTL CCL STAGING procedure file

PROFIL Univ. of Wash. CL STAGING procedure file

STAGINGPL UPDATE High level STAGING routines including

INTERTEKPL UPDATE INTERTEK interactive graphics package

CONVERSIONPL UPDATE Conversion routines

DATABASEPL UPDATE Data base manipulation routines includin.:
Data Handler

XYGRAPHPL UPDATE XY plot support package

PERMFILEPL UPDATE Permanent file manipulation routines

RECOVERYPL UPDATE ERROR recovery package

MENUGENPL UPDATE Menu generation subsystem

STAGINGBIN LGO Result of compiling all routines
STAGINGPL

[NTERTEKBIN LGO Result of compiling all routines
INTERTEKPL

CONVERSTONBIN 1.GO Result of compiling all routines
CONVERSIONPL

DATABASEBIN LGO Result of compiling all routines
DATABASEPL

XYGRAPHBIN LGO Result of compiling all routincs
XYGRAPHPL

PERMFILEBIN LGO Result of compiling all routines
PERMFILEPL

RECOVERYBIN LGO Result of compiling all routines
RECOVERYPL

MENUGENBIN LGO Result of compiling all routines

MENUGENPL

on

on

an

on

on

on

on

on

File Name

STAGINGLILB

INTERTEKLLB

SUPPORTLIB

STAGINCGABS

MENUGENABS

MPDBNEWABS

MPDBADDABS

MPDB

EXECMENUSOURCE

GLOBALMENUSOURCE

DISPLAYMENUSOURCE

PREMENUSOURCE

POSTMENUSOURCE

PRDOMENUDRIVER

GLOBALMENUDRIVER

DISPLAYMENUDRIVER

PREMENUDRIVER

POSTMENUDRIVER

TABLE 1.

Format

EDITLIB

EDITLIB

EDITLIB

ABSOLUTE

ABSOLUTE

ABSOLUTE

ABSOLUTL

Data Handler

Text

Text

Text

Text

Text

FTN

FTN

STAGING FILES (CONTINUED)

From STAGINGBIN

From INTERTEKBIN

From CONVERSTONBIN,

XYGRAPHBIN, PERMFILEBIN,

STACING svstem
Meno generator
MPDB creator

MPDB modifier

Contents

DATABASEBIN,

Material Propertv Data Base

Executive menu definition

Global menu detfinition

AND RECOVERTE N

Display and Edit menu definition

Preprocessor menu definition

Postprocessor menu definition

Switching table
function

Switching table
function

Switching table
function

Switching table
function

Switching table
function

and

and

and

and

and

situation

situation

situation

situation

situation

dependence

dependene

dependencee

dL‘DL‘ndL‘nk‘L‘ i]

do]wnd\"h'v

TABLE 1.1. STAGING FILES (CONTINUED)

File Name Format Contents
EXECMENU Data Handler Run-time meno data base

ﬁ GLOBALMENU Data Handler Run-time menu data base
DISPLAYMENO Data Handler Run-time menu data base

3 PREMENU Data Handler Run-time menu data base
POSTMENU Data Handler Run-time menu data base
MENUTABLE LGO Result of compiling all above

MENUDRIVERs

g~

INTERTEKLIB contains the routines on UPDATE program library
INTERTEKPL (binaries on INTERTEKBIN). These routines support all
interactive graphics used in STAGING (see section 2.3). INTERTEKLIB. like
STAGINGLIB and SUPPORTLIB, are in standard NOS/BE library format suitable
tor maintenance via EDITLIB,

The file MENUTABLE contains 2 binaries for each menu (module) in
STAGING. The first binary is the assembled menu driver containing calls
to each subroutine callable from the menu. It acts as a simple switching
table allowing a menu button pick to activate the appropriate subroutine.
The second binary is the situation dependent decision function (see
section 2.5). Both routines are created by the menu generator system.

The STAGING menu generator absolute (MENUGENABS) is created by
loading the subprograms from UPDATE program library MENUGENPL. (The
binaries are on MENUGENBIN). SUPPORTLIE must be declared as a library.

The source input to the STAGING menu generator are maintained on
files with file names having format:

pref ixMENUSOURCE
where the prefix is EXEC, GLOBAL, DISPLAY, PRE, or POST. The source code
output from the menu generator is cataloged as:

pref ixMENUDRIVER
and the menu data base itself is cataloged as

pref ixMENU.

The maintanance cof the STAGING Material Property Data Base (MPDB)
requires two programs. Absoiute MPDBNEWABS (source MPDBNEW) is used to
create an empty Material Property Data Base in Data Handler format.
Absolute MPDBADDABS (source MPDBADD) is used to revise the contents of the
Material Property Data Base. The source code for these two programs is
maintained on STAGINGPL. File MPDB is the Material Property Data Base.
The absolutes for these programs are generated by the following commands:

ATTACH(PROFIL,ID=STAGING3)

BEGIN,MPDBGENABS, TYPE=NEW.

BEGIN,MPDBGENABS, TYPE=ADD.

See Appendix A for 1istings of these procedures.
The conversion routine source code delivered with the STAGING

system are: 5

NASTRAN: NASCON1
NASCON2
NASCON3
FASTOP: SOPCON1
SOPCON2
SOPCON3
3 FOPCON1
FOPCON3
AXISOL: AXICON1
AXICON2
AXICON3
HONDO : HNDO1
HNDO3
DOASIS: DOASCO1
DOASCO3
ADINA: ADICON1
The source and binaries are maintained on CONVERSIONPL and
CONVERSIONBIN respectively. SUPPORTLIB is to be declared a library prior
to loading a conversion routine absolute.

1.2 Loading the STAGING Absolute

To load the STAGING absolute:
ATTACH(PROFIL, ID=STAGING3)
BEGIN, STAGINGGEN ,MAP=PART.
For installations with CCL (Cyber Control Language) substitute
file PROCFIL for PROFIL. The MAP parameter controls the segloader output
listing. MAP=0N gives a more extensive listing; MAP=0FF suppresses the
listing. STSEG requires the availability of the following files:
PROFIL
MENUTABLE
SEGDIR
STAGINGLIB
' SUPPORTLIB

INTERTEKLIB

See Appendix A for a listing of procedure STAGINGGEN.
f 6

S R T R O 0T TN g ARy i BRI A A

1.3 Loading the Menu Generator Absolute

To load the Menu Generator absolute:

ATTACH(PROFIL,ID=STAGING3)

BEGIN,MENUGENABS.

For installations with CCL (Cyber Control Language), substitute
file PROCFIL for PROFIL.

MENUGENABS requires the availability of the following files:

MENUGENBIN

SUPPORTLIB

See Appendix A for a listing of procedure MENUGENABS.

1.4 Loading the Material Property Data Base Management System

There are two absolutes, MPDBNEWABS and MPDBADDABS, in the
Material Property Data Base Management System. To load them:

ATTACH{PROFIL,ID=STAGING3)

BEGIN,MPDBGENABS,TYPE=NEW,

RETAIN.

BEGIN,MPDBGENABS,TYPE=ADD.

For installations with CCL (Cyber Control Language), substitute
file PROCFIL for PROFIL.

MPDBGENABS requires the availability of the following files:

SUPPORTL IB

STAGINGPL

See Appendix A for a listing of procedure MPDBGENABS.

1.5 Loading a Conversion Routine

Creation of the absolute of a ccnversion routine 1is
straightforward. Only library SUPPORTLIB in needed. As an example, the
' following control cards can be used to create the absolute of NASTRAN
conver,ion program 1:
ATTACH(OLDPL,CONVERSIONPL [ID=STAGING3)
! 7

UPDATE(Q, I=INPUT)
input deck: *ID N1
*C NASCON1
FTIN(I)
ATTACH(LIB,SUPPORTLIB)
LIBRARY(LIB)
LOAD(LGO)
NOGO(ABS)
CATALOG(ABS,NASCON1ABS, ID=STAGING3)
Some of the conversion routines (e.g. for SOP) require large
field lengths for loading and will have to be done in batch mode.

G oo e TRy

2. SYSTEM MAINTENANCE

The maintainer of the STAGING system should become familiar with
the various aspects of STAGING in a particular order. The person shoulg
first become familiar with using the various modules of the system. Next
comes understanding the nature of each file in the system and the purpose
and operation of each cataloged procedure. Before modifying any code 1n
the STAGING system, the maintainer should become aware of the segmentation
strategy used in STAGINs and the unusual problems involved in working in a

segmentation environment. Some familiarity with the Data Handler is a
necessary prerequisite for understanding most of the STAGING code. Then
the foilowing elements of STAGING can be studied independently:

a) STAGING Menu Generation and Management

b) STAGING Model Data Base and Conversion Routines

c¢) INTERTEK Interactive Graphics System.
Any modifications to the GPRIME system should be coordinated with David
Taylor NSRDC.

2.1 STAGING Cataloged Procedures

2.1.1 Introduction

The procedures required to utilize and maintain the STAGING
system are maintained on file PROFIL. These procedures have been
rewritten into CCL format so that they can be used at Wright Patterson Air
Force Base (WPAFB). The corresponding file is PROCFIL.

PROFIL contains procedures for maintaining program libraries and
auxiliary files in the STAGING system. STAGING has the capability of
interactively executing a procedure on. Before such a procedure is
executed, STAGING is swapped out of memory and, at the completion of the
called procedure, STAGING is swapped back into memory with all files
intact. Execution then begins where it left off. The only procedure
currently yielded to from STAGING is XGPRIME which initiates execution of
the GPRIME system.

Complete listings of all procedures on PROFIL and PROCFIL are
given in Appendix A.

2.1.2 Low Level Procedures

The most common step within a catalogued procedure is to ATTACH,
CATALOG, or REQUEST a permanent file. ATTACH and REQUEST require a
pretiminary RETURN of the local file name for safety. CATALOG is
safeguarded against failure due to too many existing cycles--the lowest
cycle is PURGED and the CATALOG retried. For these reasons it was useful
to write three low level procedures to perform the details of these
permanent file functions. These low level procedures (A, C, and R) are on
PROFIL. Since a permanent file name can be 40 characters long but
procedure parameters are limited to 10 characters, there are four
permanent file name parameters passed to these procedures. Execution of
the procedure concatenates the parameters to form the full permanent file
name.

10

Z.1.3 Running STAGING

To execute the STAGING system, simply execute procedure STAGINWG
on file PROFIL. First ATTACH,PROFIL,ID=STAGING3 and then BEGIN,STASING.
{At WPAFB the user should ATTACH,PROCFIL,ID=STAGING3 and BEGIN,STAGING.

2.1.4 Maintenance of STAGING Libraries

The following procedures are used to maintain STAGING iibraries:
UPDATE
NEWLIB
SUPPORTLIB
UPDATE is used to make any changes to source code on any of the STAGI'G
program libraries. The call is

BEGIN,UPDATE,PROFIL,prefix
where prefix is one of the following:

STAGING
INTERTEK
MENUGEN
DATABASE
CONVERS ION
XYGRAPH
RECOVERY

@ PERMF [LE

The changes are to have been placed on file prefixIN before running this

cataloged and the input file emptied. If prefix=STAGING or INTERTEK, then
the corresponding random library is automatically created (see procedure
! NEWLIB below). If prefix=MENUGEN, then a new menu generator absolute is

created (see procedure MENUGENABS discussed in Section 1.3). If prefix-

i 11

-

procedure. A new program library and binary file are automatically

- M

-

DATABASE, CONVERSION, XYGRAPH, RECOVERY, or PERMFILE, then a new
SUPPORTLIB is created (see procedure SUPPORTLIB below). Note that the
STAGING absolute is never regenerated by a call to procedure UPDATE (see
Section 1.2 for discussion of loading the STAGING absolute).

NEWLIB is used by procedure UPDATE to create a new STAGINGLIB or

INTERTEKLIB from the appropriate binary file (STAGINGBIN or INTERTEKBIN).

SUPPCRTLIB is used by procedure UPDATE to create a new SUPPORTLIB. Input

consists of binary files DATABASEBIN, CONVERSIONBIN, XYGRAPHBIN,
RECOVERYBIN, and PERMFILEBIN.

2.1.5 Menu Generation

STAGING menus are created by execution of procedure MENUGEN.
Input to MENUGEN consists of the situation dependent routine (FTN source
code) followed by the coded description of the menu to be generated. This
coded description includes menu hierarchy position, the menu button name,
the subroutines associated with the button, the resultant movement in the
menu tree, and special action indicators. It may alsoc include an option
parameter which indicates that the button is to be displayed only if the
situation dependent function subroutine returns a value of 1.

The menu generation absolute is maintained on file MENUGENABS.
If any changes are needed in the menu generation system, procedure
MENUGENABS may be used to create a new cycle of MENUGENABS.

During execution of MENUGEN, three inquiries will be displayed at
the terminal:

a. DO YOU WANT AN ECHO OF INPUT LINES?

b. TREE GENERATED. WOULD YOU LIKE IT PRINTED?

c. HOW ABOUT A FULL FILE DUMP?
Normally the answers should be NO, YES, NO, respectively. The file dump

option is only useful for debugging the menu generation system. Any

printed output is placed on file OUTPUT. Input to MENUGENABS resides on

file prefixMENUSOURCE where prefix is EXEC, GLOBAL, DISPLAY, PRE, or POST.

The menu database is CATALOGed as file prefixMENU. The subroutine table
12

¢
\

ir¢ si1tuation dependent tunction are in UPDATE input format and are

CATALOGed on file prefixMENUDRIVER, They are compiled in procedure
MENUTABLE to create new load file MENUTABLE.

Z.i.6 Maintenance of Material Property Data Base

Two procedures on PROFIL affect the STAGING Material Property
Jata Base. Procedure MPDBNEW creates an empty MPDB. Procedure MPDBADD
processes additions and revisons to the MPDB. Section 2.4 gives a
detailed description of the preparation of input for procedure MPDBADD.

2.1.7 Installation at WPAFB

[nstallation of the STAGING absolute system at WPAFE is
accomplished by creating a system tape containing all necessary files anc
ioading the tape to disk at WPAFB. Once the files are loaded at WPAFB, it
‘s necessary to create absolutes for STAGING, GPRIME, Menu Generatcr,
“aterial Property Data Base System, and conversion routines as described
'n Section 1.2 through 1.6.

If any difficulties arise due to differences in operatirqg
systems, it is necessary to recreate the PL's, BIN's, and LIB's hv
recompiling the source code supplied on the system tape in UPDATE input
ceck format.

2.1.8 YIELDFILE Procedures

Certain button picks cause STAGING to be swapped out of core anc
a call made to execute a procedure on PROFIL. At completion of the
procedure, STAGING is swapped back into core and begins execution where it
left off. The parameters to the PROFIL procedures are specified in the
default field of the bead in the menu data base corresponding to the
hutton pick.

13

[T URUINN

ryr—

2.1.9 Procedure Listings

Each procedure in the STAGING procedure files is listed in two
formats. First is the University of Washington Control Language format
used at Battelle and until recently at WPAFB. Second is Cyber Control
Language format recently adopted at AFFDL Computer Center. Both formats
for all procedures on PROFIL and PROCFIL are listed in Appendix A.

14

-

2.2 Low-Level System Interface and Utility Routines

Much of the day-to-day maintenance of the STAGING system depends
upon the operating system environment. The code in the package should
transfer readily as the FTN compiler is upgraded because the code is
compiied in OPT=1. The COMPASS file manipulation routines in COPYFL use
the options of system routire CPC and PP routine CI0. Neither routine has
chanaed from a user's point of view in years and should remain constant tc¢
CTAGING as operating systems are changed.

The routines that will cause most problems during
operating-system transitions are Battelle deve.uped routines including:

PERMFIL,RETURN,REQUEST: These routines are FORTRAN-callable

permanent file utilities. RETURN and REQUEST have been guite

stable. PERMFIL has had more difficulities. Error processing
can be unstable because CDC has a tendency to change error

numbers around. The only specific error tested in STAGING is 10.

(note floating point error numbers) which indicates that the file

attached is not in the system. The version of PERMFIL providec

allows catalnging a file without specifying an account (tha
account the user logged-in with is used).

The Battelle PERMFIL routines provide all the permanent file
capabilities needed to ATTACH, CATALOG, EXTEND, REQUEST, etc. a file on
the CDC system.

[PFUT: Puts one more level between the programmer and PERMFIL

by performing the requested function on array PFNAME.
Special case: RENAME puts an infinite retention pericc
on the file to save the user the trouble of entering
that information.

The following routines are in the system to increase the
aesthetics of a display or to make life a bit easier for the programmer:

COPYFL: Copy the left adjusted traiiing zero local file in

parameter 1 to the left adjusted trailing zero loc2?
file in parameter 2. The file is copied until EQI 1<
reached. The files are rewound before and after

copying if parameter3 is omitted or zero. If
15

ICCHR:

IDINF:

MBEAD:

My

IBEAUT:

ICRACK:

INDATA:

parameter3 1s non-zero, the Tile positions are
unaffected before and after the copy.

Take the number input, determine if it is floating or
integer, encode it, and return it left justified with
trail blanks and the number of significant characters.
Parse a packed character array into a lower and upper
bound for a range of values.

Count the number of characters in a Hollerith string
before the trailing blanks in array parameter 1. If
parameter 2 is omitted, parameter 1 is assumed tc bhe
one word long, else the number of words of parameter 1
to scan.

Each item corresponding to a bead in a display contains
the bead address of the data base item. When the item
is picked, the ID is returned and IDINF reconstructs
and returns the bead address from ID (2} and ID (3) in
IDENTS.

Read from an internally connected file and crack into
fields based on "=" and "," characters. Each field can
be of arbitrary length (over 10 characters). The
results are split and returned as character strings,
character counts, and pointers in three arrays in
common block /INPUT/.

Form the ID block out of a bead address. Returned in
ID (1) to ID (3) in IDENTS.

Move a bit string from one word to another. Will cross
word boundaries and up or down arrays.

Entry point

UNPACK -

MBV: Move character string.
Return one character at a time from a packed character
string.

f One of the STAGING functions is to pass control to a separate

independent task or main program. This is similar to a FORTRAN program

calling a subroutine. The subroutine does its job and control is passed
16

Lootne calaing program at o the tirst oesccatabie statement af ter 1

. dhen the called main program has performed its task, the cailin.
cengram is restarted at the first executable statement following the caii,
"wo pieces are needed to make this scheme work. The first piece 19
Swapper {(called IYIELD) that restarts STAGING 2t exactly the same spri v
tes application. The second piece is a routine {called EXEC) which pance

cntrol to a predefined procequre file and makes sure that the ST<0000

ies are intact after execution.

IYIELD is the nseart of the swapping process. It writes 3 Tuo
core image, the exchange jump package, and a small bootstrap program cnt-
1 iocal file (ZZ77Z7XX), passes control to a stack of control carce, =77
restarts STAGING by executing the bootstrap program.

The user is allowed to pass up to 640 characters of control carce
to the routine. The code works on a start, issue, end philoscophy to s2ve
rewrites of the checkpoint file. Thus a contrel card record is begun wi'i
» CALL IYIELDS, added to with a call to IYIELD (string, no. characters
string). and executed by a call to IVIELOE(1l). (The 1 indicates that th-
~23ler is to be restarted upon return). The IYIELDE call issues a request
©, the PP program IAP with a pointer to the card stack. If the proaram -
be restarted, the bootstrap program (Z77Z7XX) is executed.

The control cards to be issuea have the following constraints:

do not call a MUJ job (EDITOR), (2) do not try to LOGOUT ar, (3. oo

\

s

=t 1ssuye a call to another praogram that uses IAP to issue control cards.
{tem (3) poses the only real restriction, and that restriction onl;
prevents automatic restart. A second call to IAP eliminates the stack or
cantrol cards, i.e. eliminates the restart leocation. Thus certar
gtilities cannot be used. Similarly, a routine which calls IYIZLD trom =
program previously yielded to will cause problems because IYIELD calls IAP.
To make YIELDING as easy to use as possibie, all the problems n

dealing with files were eliminated. The user need not worry about what
files are in use, random or sequential, connected or disconnected, open or
‘rqed., The EXECC routine returns all proper files before the procedu--

srecified is executed. Upon return, those files are restored and the

yielding program can continue. Not that the display f.le is also saved
an' restored. The fermat for calling EXECC is:
17

CALL EXECC (String)
Where string is a procedure name followed by optional
parameters and terminated by a period. The string need not be
delimited. Thus

"XYZ". and

"PROC3,PFN=GOLDI, ID=LOCKS."
are both valid inputs. The string must not be greater than 50

characters long.

EXECC then operates on the string to produce

BEGIN,procname,procfile,parameter list.
The procedure name must be on procedure file PROFIL,ID=STAGING3.
Additional control cards can be executed after procname is executed. The
routine in procname can return another stack of control cards to the
yielding program by writing the 1ist on TAPE30.

A shorthand for routine EXECC is provided by routine EXEC for
rapid code integration into the executive menu. EXEC Tooks at the "D="
fields in the menu source to construct the parameter in EXECC. The

importance of this approach is that STAGING does not need to be relcaded
to integrate a new code.

2.3 Data Handler

The Data Handler used in the STAGING system is an implementatinn
of a virtual memory manager for the storage of large data bases. It was
designed to be efficient for interactive applications. It provides for
easy deletion, addition, and modification of data in general digraph
structures. 1t is used in STAGING for the manipulation of data in the
model data base, the display file data base, the menu data bases, and tne
material property data base. The data in these structures are contained
in variable length "beads" each of which is assigned a unique bezd
address. Beads contain pointer fields which contain bead addresses cf
other beads Tlogically related to the given bead.

Beads are grouped into logical blocks for efficient access.
Recently accessed blocks are retained in-core as long a possible to
minimize the transfers to and from mass storage.

The Data Handler can manage up to 8 data base files at one time.
Pointers to in-core block buffers are kept in common block DMTBL which
must be loaded i1n-core at a lower address than any of the buffer arrays.
{Proper operation of the Data Handler requires that no files array index
pe negative). The file names are not to appear in the FTN PROGRANM
statement.

Data Handler Subroutines

OMINIT~- establish data file and in-core block space for a data base
CALL DMINIT(ifile, iblk, iblkl, npru, 1file)
where ifile = file name (1 to 7 characters, left
justified, zero filled)

iblk = dimensioned array for I/0 buffer
iblk1 = length of iblk buffer array
npru = number of PRU's in a file block
(1 PRU = 64 words)
iIfile = logical file 0 to 7 (default 0)
UMGTBD- - allocate space on the file for a specified length bead,

initialize to zero, and return the assigned bead address

CALL DMGTBD !nwords, ibead, 1file)
19

OMSET-~

DMGET -~

DMRLBD--

DMFLSH--

where nwords = number of 60 bit words to allocate
ibead
1file

returned bead address
Togical file 0 to 7 (default 0)

n

store data into a bead

CALL DMSET (icomp,ibead,val)

where icomp = a code defining the placement within the bead
ibead = bead address

val

value or array of values (right-justified)

to be stored in the bead

retrieve a value from a bead

CALL OMGET (icomp,ibead,val)

where icomp = a code defining the field within a bead
ibead = bead address

val

i

value or array of values to receive
the data from the bead
release {delete) a bead from the data base
CALL DMRLBD (ibead)
where ibead = bead address of bead to be returned
to free storage space (returned as zero)
update the mass storage file using the in-core blocks; then
close the data base file and free the buffer space.
CALL DMFLSH (1file)
where 1file = logical file number from 0 to 7 (default 0)

20

e

2.4 Staging Menu Generation and Management

2.4.1 Introduction

The STAGING system 1is constructed around a general purpose
command tree generator system. This system allows a system designer to
express the intended user interaction in a free format language. The meny
generation system processes this language and creates a menu file in Dat=a
Handler format needed during program execution. It also generates the
source of subroutines needed to determine which buttons are displavable

and the appropriate subroutine to be associated with each button.

2.4.2. Using the Command Tree Generator

Each module in the STAGING system requires a command tree cof
menus. A tree generation program, external to the STAGING system.
performs this task. It processes an input file that is composed of
80-column card images.

The card image file is split into three sections. Sectior
consists of two cards telling the generator: ({a) the logical unit n
which the menu data handler file is to be generated (3 if the menus are
global, else 2) (b) the name of the subroutine driver table and the user
supplied situation decision function.

The second section is initiated by a *BEGIN (in column 1) anu
terminated by a *END. This section contains the source code of the
situation dependent decision function which determines whether a menu item
should appear on the screen. The STAGING program retrieves the “opticn®
fieid from the menu data base. This field contains an integer which 1s
passed as a parameter to the situation dependent decision function and
determines which test is to be performed. For example, the ERASE SCREEN
button in Display and Edit tests IF (NUMDAD .EQ. 0). The function must
return nonzero for a displayed button, else zero. See Figure 2.4.1 for a
concrete example.

The decision functions and subroutine driver table must be

compiled and Joaded with the rest of the application. The menu generator
21

EXTABLEIEXDEC
*BEGIN
FUNCTION IEXDEC(KEY)
*CALL DATBAS
*CALL ATTRIB
IEXDEC = 0
IF(XEY.EQ.1)GO TO 1
IF(KEY.EQ.2)CO TO 2

GO To 100

c
C IS THERE AN ACTIVE DATA BASE
C

1 IF(FILES(IUNITD+1).NE.O.) 100,101
C
C IS THERE AN ACTIVE DATA BASE **AND#**
C IS STRESS IN DATA BASE FOR POSTPROCESSING

<

2 IF(FILES(IUNITD+1).EQ.0.) GO TO 101
L=LENATT(3)
IF(L.EQ.0)GO TO 101
DO 20 I=1,L
N=IGATT(I,3)
N=NAMFNM(N, 3)
N=SHIFT(N,-18) .AND. .NOT. MASK(24)
IF(N .EQ. 6R N STR)GO TO 100
20 CONTINUE
Go TO 101
100 IEXDEC = 1
101 RETURN
END
*END
1, L=-1,S=FILATT,A=2,D="PROLOG",
P="ENTER DATA BASE FILE. IF NEW FILE OR ATTACHED AS TAPEO, TYPE SPACE.",
2, L =-1, P = "CHOOSE MAJOR MODULE.",

2, N="PREPROCESSORS", A=2, T=5,
3, L = -1, P = "CHOOSE PREPROCESSOR",
3, N="GPRIME", A=2, T=5,
- 4, L=-1, P="NEW OR RESTART.",
4, N="GPRIME-NEW", A=-1,T=5,S=FXEC,
n="XGPRIME,IN",D="ITIAL.",
3 4, N="GPRIME-RESTART", =-1,T=5,S=FXEC,

N="XGPRIME,RE",D="START.",
N = "OTHER PREPROCFSSORS", A = 2, T = 5, S = PRINIT,
N="RETURN", A=-1,T=5,
N = "RETURN", A = =1, T = 5,
N="DISPLAY AND EDIT", A=2
N="POST PROCESSORS", A=2
N="RETURN", A=-

T=5,S=DEINIT,O0=1,
T=5,S=PPINIT,0=2,
T=5,

N NN W W

. e e e e e

FIGURE 2.4.1 - SAMPLE MENU GENERATOR INPUT DECK

22

P

i - e RO g A 7 AR B g

-

provides these routines in an UPDATE input format which 3is used 1n

procedure MENUTABLE when the new menus are to be loaded into a new STAGING
absolute. This allows the source of the decision function to query
variables in COMDECK's on STAGINGPL.

The third section of the source is the actual set of menu cards.
The only fixed input data field is the level specification. The input
mechanism processes all 80 columns of a card image. No special
continuation marks are needed. The scan will continue until the next
Tevel number is encountered. A1l fields (including the level number) are
delimited by commas. Blanks are insignificant except when enclosed in
quotation marks ("). These fields describe the light button text pick,
prompting messages, and the action to take in the tree. £Each field is
started by a key letter and an '=' sign. The key letters and meanings are:

N = "phrase"--

The light button text to be placed on the screen. A practical

limit for phrase is 25 characters.

L = integer number--

The location on the screen in the y direction at which the button
name will be placed. The integer number is a position from 1 to
20 that will cause relative text placement in increments of 10
rasters. L is generally unused because the generator assigns the
x and y positions automatically. Special case: If L = -1, the
bead is assumed to contain prompting information only.

P = "message"--

The prompting message to appear on the screen when the menu is
displayed. Flagged by L = -1. The message has a practical limit
of 70 characters.

T = integer number--

The button pick type. 5 is a button pick, 6 is a special action
pick. T =6 is unused in this version of the STAGING system.
S = subroutine name--

The subroutine to be called when the button name is picked.
A = integer number--

Action or movement in the tree to be taken after the subroutine

has been called. The action can be overridden by the subroutine
23

-

(which is handy if an error has occurred). The subroutine need
only set variable IER in COMDECK ERROR to the desired value. The
values are interpreted as:

-N: Go up the tree (toward level 1) N levels., If the tree is
at level 17 and A = -2, picking the button in the N field
will return to level 15 of the tree. Used invariably
with a RETURN button.

1: Continue processing picks. The application may need
string, single, or parameter picks. A = 1 yields a call
to the subroutine in the 'S =' field for each new pick
fetched (but not for the button pick). A call to the
subroutine is made to allow the application to clean up
any loose ends. Pick information is returned in COMDECK

IDENTS.
2: Go down one level in the tree.
4: Stay on the same level,

Stay on the same level and redisplay the menu. This
action is used as an error override to reinitiate text
editing properly when problems occur.
0 = anything--
fefault values with ten characters maximum, Up to 50 D values
can be assigned to any one name. Currently, only A = 1 actions
require presence of the D field. If A =1, D will specify the
action to be taken in the tree after the subroutine has been
called.
0 = + integer--
Option in situation decision function. If omitted, the button

will always appear, else the test (based on the integer
parameter) will be executed to determine if the button is
displayable in this situation.

These action fields provide all the information the menu

generator needs to produce the proper files to drive any application. If
an error occurs, the generator ignores the error and continues as well as

24

A i o A

P s—

The fields required to define a bead (light button and associated
data) depend on its type: button name or prompting message. The button
name bead needs the N =, A =, and T = fields to function properly (&
subroutine call is by no means mandatory). A prompting message bead needs
only P =and L = -1.

An example of the input and resultant output is given in Figures
2.4.1, 2.4.2, and 2.4.3.

Two situations arise which may cause confusion in the tree.
First, text editing is a problem because the user must be able to specify
a Subroutine to process this input and the action to be taken in the tree.
The solution is given in Figure 2.4.4. The programmer adds the S and A
fields to a prompting message bead on the same level RETURN woulg
naturally occupy. See Section 2.4.6 for a detailed description of STAGING
text input facilities.

The second situation requires a bit more programmer input. The
program has the need to query and process string, single, or parameter
picks on occasion. The programmer must set up the pick type he is
~cxpecting in COMDECK CATS which contains five categories (ICAT) and
weanings (MEAN) for the categories. The meaning can by any of the
cogitimate actions in INTERTEK. The reason for this specification is to
.p2ed up auxiliary pick processing by telling the DRIVER what to expect
~oxt, This saves much time because the driver does not have to retrieve
single or parameter picks if a string pick is expected. The menu bead for
the A = field is exemplified in Figure 2.4.5. Because the processing
sutiroutine is called only for the non-button picks, some mechanism is
needed to proceed through the tree. The D field supplies the tree action
to be taken, while the A = 1 field contains pick processing strategy.

Output from the generator is two files. The first is the data
nandier file containing the menu tree. The second is the source COMPASS
subprogram that contains the subroutine table of all 'S =' parameters in
the tree and the situation decision function. These two subprograms must
be loaded with the driver and user subroutines when loading the STAGING
absolute. Menu generation and loading are done automatically in
procedures MENUGEN and STAGINGGEN on PROFIL.

25

SURROUTINE TABLE ARD DFCISTON ROUTINES= -

AAF IN
; APECK EXTABLE
i IDENT EXTABLE
FNTRY FXTABLE
t use /swron/
' 1$ BSS 1
18 R3S 1
USE *
FXTABLE RSSZ L
SAL PLIST
LABL RJ =XTEXDEC
SRO i3]
SRO no
rQ NXT
PLIST vim 70 /ONE
ONE DATA
Bssz 1
NXT SAL 1LABL
RX6 X1
SA6 s
SX6 TABLE,
SA6 8
RJ =XSWITCHS
EQ TXTABLE
TABLE. 8SSZ2 1
Je B3+TAB
TAB BSS 0
RJ =XFLLATT
£Q TABLE,
RJ =XFXEC
EQ TABLF.
RJ =XPRINIT
£Q TARLE,
RJ =XDEINIT
FQ TABLE,
RJ «XPPINIT
FQ TABLE.
END
. FIMCTION IRXPEC(KEY)
L *CALL DATBAS
g #CALL ATIRIB
IFXDEC = O
TF(KEY.FQ.1)GO TO 1
1F(KEY.EQ.2)CO TO 2
¢o TO 10C
c
E [4 IS THFRE AN ACTIVE DATA BASE
» [
L 1 IF(FILES(IUNITD+1).NE.0,) 100,101
3 C
' [+ 1S THRERF AN ACTIVE DATA BASE A®AND*#®
c 1S STRFSS IN DATA BASE FOR POSTPROCESSING
[
2 IF(FILFS(IUNITD+1).EQ.0.) GO To 101
1L=LENATT(3)
1F(1..Fy.01G0 To 101
DU 20 L=1,L
N=ICATT(L,)
N=LAMFNM(N, D)
N=ATFT(N, =18} AN, JNOT. MASK(24)
[F(N .E, 6R N STR)CO TO 100
20 CONTINUF
Go To 101
10N IRXDFC = 1
101 RETURN
FND
" FIGURE 2.4,2 - SAMPLE MENU GENERATOR OUTPUT (1)
!
¢ 26

S A S A

.

~ e

4
1

= NOI1J0
= NOIlLdO

LN B BN B B)

<

L L w <

Rouy
WOuL
ROML
210} X ¢
KOdq
KoYl
Wo¥d
KOMd

A(0d-% §

WOud

1A

NV FT NN

(2> 1ndino dOLIVYANTD NNZW FIdWYS - £°%°C 2UNO14

TIAIT
13431
13437
13431
T3N3
13431
TIAIT
T3A41

T3A31

TIALT

13431

oL
oL
034
0oL
oL
01
[
ol

oL

oL

0l

$309

§3ND 1INldd

S305 linidag

§$303

§3090

$309 IINIud

S30y 23Xd

S309 24x3
"LYVLISHEY

$30D

YOSSADOUITUd

§309

*31NA0K BOrvk

§309

LLv11d

ST1Tv0
STV

STIVO
STIVD
S$11V0

NnLIY g
S¥0SSIN0¥E 150d 2
1143 QKV AvVigsia ¢
NEnLlAay ¢
NnI3IY ¢
$¥055300¥d3¥d WIAKIO ¢
L¥VISIN-INTNdD ¥
NIAN~3hIddD 4

U0 MAN ==~s~wmeme-(39v553H ONI1ldhOud) %

dS00HD

dS00HD
STTV)

dilddd ¢

Srmmeemes==(4OVSSIN ON11dW0ud) €

SYOSSAD0Yd3Nd T

ToTmmmess==(30VSSUN ONILdNO¥d) g
(40854004d ONILIQH IX3L)

27

R R

15, N = "ENTER NUMBERS", S = (routine to put up numbers via PUTEDT,
A-2,T=25

16, L = -1, P = "ENTER NUMBERS, THEN ETX.",

wn
]

(process type-in), A = -1,

“
]

16, "RETURN", A = -1, T = 6,

FIGURE 2.4.4. TRIPLET FOR TEXT EDITING

14, N = "CHOOSE BY LIGHTPEN", S = (setup ICAT and MEAN),
A= 2 N T =25 y
15, L = -1, P = "CHOOSE SOMETHING, THEN RETURN.",

15, N = "RETURN", S = (routine to process each pick),

FIGURE 2.4.5. MORE THAN BUTTON PICKING

/.4.3 Menu LCata Base

The menu data base is in the form of a general tree. Through
values provided in the tree, a subroutine is called to process the pick
ind take further action in the tree. The actual format and internal bead
format are given in this section.

The data Structure imposed on the tree requires the use of three
pointers: father (pointing to the next higher level in the tree), son
{pointing to the next level lower in the tree), and link {(pointing to the
brothers of this bead on the same level). Each bead can have only one
reference to each of these pointers. A schematic diagram of the structure
is given in Figure 2.4.6.

The format for the actual beads is given in Figure 2.4.7. The
functions performed by each field is quite straightforward. The links are
held as bead addressess in fields FTR, SON, and LNK. The traverse flag
(TFL) 1is unused in the current versions of both the generator and driver.
It has a potential use a a historical marker if such a feature is added to
the driver.

Other fields are used to indicate construction of the displayed
menu and the action to be taken after the user picks a menu item. There
are twu tynes of disnlayed itews. First, each menu page can be introcuced
by a prompting message (PRM). The prompting message is flagged by PSX =
PSY = 0. Otherwise, PSX, PSY is the location of the pick message (PCM) in
raster units on the screen. The buttons on the screen can have ID blocks
assigned to them for INTERTEK which are only used for special action
picks. The blocks are assigned automatically by the generator for a
special action pick type. A button pick is the only other pick type
needed by the system. The button can be skipped if the option value (OPT)
triggers the proper test in the situation decision function.

The actions taken in the program and tree after a pick has
occurred is controlled by the rest of the bead. These actions are the key
to the control of user interaction with the menu. After a button pick is
received in the driver, a user-specified subroutine is called (RUT).
Access to the routine is through the TBL field, which is an index into the

automatically generated COMPASS subroutine. The user need only supply the
29

30

Word

10
PS=11
PSHPNW

»2

t
PRS+PRN

PCS
PCS+PCN

DVS
DVS+DVN

59 53 35 29

17

5

Bead Address of Father (FTR)

Bead Addrecss of Son (SON}

Traverse Fluag (TFL)

jead Address of Circular Link (LK

Unused [¥ of User Suppliea

Default Values OV Unused

Start in pead u:
Default Valuoe OV3

Option Value (

CPT)

Address ol sup- 1| ‘‘nu

Subroutine to be Called (RUT) routine (TBL)D (5 !
X Position on Screen (PSX) Y Position on Screcen (P37} ‘
Action in Tree Atfter Return Bead Address of Lerinition i
From RUT (ACT) (DEF) |
Unused {7 Characters in Pick § of wWords in Pick Start an Head ot }
Message (PNC) Messare (PLE) Pick Messaoe 09) |
~fUnused ¥ Characters ia Promiyy of ords in Prompt —Tﬁtdrt i Hoad o Tren—d

ting Mewzanze (PRC) Messane (PRN) jIrting Mossaoe (PRS)
AL : i

Unused [Pick Messaze Pice 7 of Words in D start in dead ol

Tvpe (PCT) Block for Pick Mse(PCNYID Words (PTSY i
!
—

Button Pick Mes
(PM)

sage

Prompting Mess
(PRM)

age

ID Info for Butto
(PC)

n Pick

User Assignable Detfa

(DV)

ult Words

FIGURE 2,4,7 - MENU DATA BASE BEAD FORMAT

31

e S o b

name and the generator takes care of the subroutine table creation. After
the proceséing subroutine is called by the driver, the next action in the
tree is taken. The ACT field indicates which level in the tree contains
the next set of buttons seen by the user. Additional values may be
specified in the user-defined values (DV).

The menus operate from a random disk file and require very little
information in core to keep them running smoothly. Only one bead on the
level being displayed is maintained in core. Both the non-GLOBAL and
GLOBAL menu require this bead to be in array ISTART in COMDECK MENBLK.
ISTART(1) contains the non-GLOBAL head and ISTART(2) the GLOBAL head. (By
convention, all non-GLOBAL menus are called MENU 1 and the GLOBAL menu
MENU 2). The generator places the address of the first bead in level 1 of
any menu in the father (FTR) field of the first bead of the file (100008
with unit information attached). Thus, ISTART(1)=IGFTR{2000010000B) will
get the first bead in initializing the driver.

The driver requires that all menu bead addresses on the screen be
saved in array IBEADS in common block MENBLK. The index into the array is
provided by the ITASKC parameter in the GITEM call for each button name.
When switching from NON-GLOBAL to GLOBAL mode, IBEADS must be saved and
restored before returning back to non-GLOBAL mode.

The driver passes information about picks to the called
subroutine using the COMDECK IDENTS. A1l information about the pick is
passed to the subroutine in the IEVENT, ID, and INF arrays. By
convention, a return of ID(1)=0 (in addition to the standard INTERTEK
return of IEVENT=-1) means that no pick has been processed.

2.4.4 Menu Generation Software

The menu generation software is on program library file
MENUGENPL. The absolute for this system is file MENUGENABS which is
created in procedure MENUGENABS. It is invoked by procedure MENUGEN
whenever a new command tree is to be created. The subroutines on
MENUGENPL are listed in Table 2.4.1.

32

,

e e v— T

TABLE 2.4.1 MENU GENERATION SOFTWARE

TMENU

GENTREE

GETSTR

CRKSTR

FINSPC

IFNDH

IGFTR

IGPCKM

TSTUFF

MAKALF

MAKINT

PROUT

SETFTR

SETLN

SETVAL

DISTREE

Main program

Generate menu data base and source code for menu
driver and decision function

Input free format input stream

Crack input stream into proper fields

Look for special action names such as "RETURN"
Generate new special action definition

Get menu data base bead fields using NSRDC Data
Handler

Get other menu data base fields

Look for menu level number on input stream; echo
input stream back to OUTPUT if requested

Encode an alphanumeric string

Convert input display code number to an integer
Generate jump table of routines called from this menu
Put menu data base fields using NSRDC Data Handler
Set special action definition bead

Set special action bead fields

Print a formatted listing of the tree

33

2.4.5 Processing the Command Tree in STAGING Driver

Because of the work done by the command tree, the driver 1s not
much more than a sophisticated computed GO TO processor. The programmer
(although he does not have to explicitly worry about it) has set up 2al!l
the linkage needed to proceed smoothly through the tree. The driver
merely puts the buttons on the screen, then waits for a button pick event.
Upon receipt of the pick, the driver retrieves the subroutine associzted
with the button and processes any intermediate picks (single, string,
parameter, or text editing type events). Each intermediate pick is
processed by the subroutine specified in the button pick name. After
intermediate picks are processed, the routine is called for clean up
operations. If the routine detects an error, the next action in the tree
can be overridden. The tree action is specified during the generation
phase and lets the programmer specify where he wants the user to go next.
Actions are basically go up, go down, and stay on the same level.

The driver also takes care of initialization and abnormal
termination for STAGING. The steps in initialization are:

(1) Initialize the common blocks (GLOINT)

(2) Initialize the recovery package (MARK)

(3) Initialize graphics (GRFNIT)

(4) 1Initialize the Executive and Global trees (MENNIT and
STARTM)

DRIVER then loops through processing all picks. There is never
any need for a subroutine to include a pick processing call (GIBUTN,
GIPARM, GISTRN, GISNGL) outside of DRIVER,

If an abnormal termination is detected, DRIVER and the recovery
package are responsible for either stopping the application or continuing
in a reasonable way. Stopping the application simply returns to INTERCOM
without flushing the user's data base. Restarting reinitializes graphics
(GRFNIT), the GLOBAL menus (MENITG), and deactivates all active beads in
the data base (ERASE).

Routines that are directly related to DRIVER include:

IPPRMT--display prompting message on this level

IGFTR with entry points
34

1GACT, IGDEF
IGDVN, IGDVS, IGLNK,
IGPRS, IGPRW, IGPS,
IPSX, IGPSY, IGRUT
IGSFT, IGSON, IGTBL,
IGTFL, IGOPT
IGPCKM--retrieve pick message
with entries
IGPRMM--prompting message
IGDFV--default values
IGIDM--1D values (special actions)
SWITCH--call subroutine specified in command tree
with entry
SWITCHS--save address of start of subroutine table and
decision function (provided by menu generator)
ISWTCHD--call the situation decision function
GRFNIT--initialize graphics for INTERTEK
MENNIT--initialize the Global and Executive menus by attaching
the proper files, initiating the subroutines, and
drawing the first display
With entry
EXINIT--reinitialize menu DAE and GLOBAL button after a
recovery has been made
GLOINT--initialize common block variables and INTERTEK buffer
EXINIT--initialize the executive menu upon return from a
submodule
STARTM--start up the menu on the specified local file name
(once a command tree is initiated by the Executive
module, it functions as a separate entity until a return
to the Executive is requested by a call to EXINIT).
INDATA--read text input and format it for cracking algorithms
IREAD --read a text string into NVALS in EDITT common block
IPICK -~process button pick
PAGER --wait for user to pick ERASE or REDRAW
ERASEM--erase and redraw
35

ERASER~-erase screen and redraw only minimal DAE's
with entry
ERASEN--erase screen, no redraw

2.4.6 Textual Input

S

Textual input to STAGING is needed for user modification of
fields displayed in the menu area. A general mechanism has been defined
for preparing these areas that simplifies coding.

The number of different entries for text editing throughout
STAGING led to the development of a generalized subroutine for displaying
the items to be edited.

PUTEDT: Display a list in the type-in area for text editing. The
programs can supply up to ten values in one call. The
lTength supplied can be positive or negative. A positive
value indicates that all values in the array should be
displayed even if there was no old value. A negative
value means that blank old values are ignored. This mode
is used primarily when erroneous values are being
redisplayed to let the user correct only those values.
As well as the length of the type-in, tne program must
supply a Hollerith descriptor for the field in array
NAMES in common block EDITT. An old value can be
supplied in array LVALS. These values must also be
Hollerith. PUTEDT takes care of the formatting and
display. The user should set IST in EBITT to the
beginning of the type-in for each block and IEND in EDITT
to the maximum number in the list. PUTEDT causes the
type-in box to be displayed.

As with the name display, the type-in area is limited to ten
items. The same general tactics are used to put up the next sets of
values: an entry point in the routine that put up the first set puts up
subsequent values.

Whenever text is input by the STAGING user, the processing
subroutine must check the validity of the entry as well as performing the

36

o Al

proper action. Each type-in has different requirements for validity, so
the actual checking has to be spread into each processing routine.
Utilities are provided to help decode the values the user types into
NVALs. For each new type-in, NVALS will be non-blank. The usual
construction of the processing routine is:

1. Check to see if all numeric input is correct.

If so, go to step 3.

2. Check to see if any values are special case alpha-numeric
inputs. If no more errors, go to step 3, else, display an
error message, stay on the same level and call PUTEDT again-
to redisplay only the bad values. The loop is continued
until the user 'RETURNS' or succeeds in the type-in.

3. Check to see if more values need to be entered. If so, call
the put up entry point and return control to DRIVER. Note
that the entry point always bumps IST in EDITT.

4. Compact the type-in list so all values are contiguous.

5. Do processing for all collected values.

The practical limit for a single set to be typed in is 30 (the
length of SVALL and SVALH in EDITT). Each correctly decoded value is
stored in these arrays biased by IST so no more than 10 values can be
typed before processing begins. The following routines are used for
processing type-ins:

ICHKED: Check to see if all numeric input is correct. Two modes
are allowed: single value or range type-in. The range
type-in is two numbers separated by the letter 't' or the
word 'to'. If an error occurs, the new value is placed
in LVALS and the function returns a non-zero value.
PUTEDT will than redisplay the erroneous values with no
further programming. The numeric values are always
floating point and stored in SVALL (low) and SVALH (high)
in EDITT,

COMPAC: When all typing is completed, the value can be processed
more conveniently when no searching needs to be done.

COMPAC, therefore, squeezes the type-ins together to
allow a loop index of 1 to IST in EDITT. (Always check
37

if I1ST = 0 for no type-in). NAMES (1-IST) in EDITT
contains the actual location in the Tist at which the
type in was made.

Review of the following routines will aid in understanding the
processing of text input. For routines that can handle more than 10
values, look at routines PUTATT and ASERCH. For a routine that handies
special alphanumeric values, review SVIEWP.

2.5 Staging Model Data Base

2.5.1 Introduction

The STAGING model data base is split into four geometry levels,

each of which contains a description of part of a model. Level 4 (nodes)
describes points in space in terms of (X,Y,Z) coordinates. Level 3
collects nodes into elements, level 2 collects elements into
substructures, and level 1 collects substructures into structures. Each
bead in a level is linked to the bead in front and in back of it. It also
contains pointers to its direct ancestor anc descendent beads, thus
providing a totally cross-referenced directed graph structure. User
values are stored as attributes in a variable length array assigned to
each bead.

An additional level (#5) has been added to the data base to allow
storage of non-geometric data which can be anything from card images to
large arrays of numeric values. FEach array can be given a unique
forty-character name. It is convenient to consider the tables as FORTRAN
arrays: they are created by a conversion routine, can be of 1, 2, or 3
dimensions, and cannot increase dynamically in size.

Utilities are provided at different levels to store and retrieve
information in the data base. The data base handler subroutines provide
diverse functions for manipulation of the data base. Searching for
structures, substructures, and table names is done linearly. However, in
order to allow faster searches, nodes and elements are maintained in
numeric order. Description of the search procedures for nodes and
elements is given in Section 2.5.4.1.

2.5.2 STAGING Model Data Base Format

The overall structure of a STAGING model data base is illustrated
in Figure 2.5.1. Each level in the structure is linked internally within
that level by two-way circular pointers. The left link points to the
element (or node) with the next smallest numeric identifier; the right

link points to the next highest. The structures and substructures are
39

SUvVaY 4O HAUNLONYULS TIVHAAQ = 1°¢*¢ H4ADI4

o © o ~Hr——P

——a 0 0 ¢ agm———

sjusma Ty

§2In39N138qrg

s21n32na3§

unordered but similariy fineed. Another list is tormed on each level that

joins each active bead on that level. This list is unsorted and is built
as new beads an a level are activated. The levels are Joined to the next
higher and lower level, The data base is completely cross-referenced
between levels. If element 2 contains node 6, then node 6 has an up
pointer to element 2. This nelps when a change is made to a node and the
change effects how an element is drawn. No searching is necessary to find
the ancestors.

The goal or all this Tinkage is to minimize search time. The
only time an entire list needs to be searched for a name is for the
relatively short structure and substructure lists. By keeping a partial
table in-core for elements and nodes, a number can be found quickly.
Furthermore, only the address of the starting and ending beads need to be
found if a range of numbers has been entered {for example, if 10 to 50 is
entered all numbers within that range are known immediately because the
Tist is sorted). A detailed description of the table is given in S tion
2.5.4.1

2.5.2.2 Detailed Bead Description

The internal structure of the beads is the same for each level

from 1 to 4. The general format for these beads is given in Fiqure 2.5.2

Figure 2.5.3 shows the format for a level 5 table bead.

The fields in the bead are interpreted as:

Word 1 TYPE (6 bits, sign extended-TYP) - The type or level number (1-4)
of the bead. If TYPE i5 negative, the bead has had some value
changec¢ during editing. Thus, when just concerned with the type,
one must take the absolute value before using the vaiue.

DISPLAY ATTRIBUTE (6 bits, not sign extended - DAC). The
attribute being displayed if the bead is active. If =0, no
attribute is disnlayed; if LENATT(TYPE). the name or number is
displayed. [If DAC is between 0 and LENATT(TYPE), the value is

the location in the attribute list of value shown.

LENGTH (18 bits, not sign extended-LEN). The total number of

words in the bead.
a4

Eb
LPROLG = 7

LPROLG + 1

(DNN-1)/2+1+LPROLG

UPS

(UPN-1)/24UPS
STA

STA+JDEF (TYPE)-1

STA+JDEF (TYPE)

STA+JDEF (TYPE)
+LENATT(TYPE)~1

LENGTH

59 93 47

29 17

’n”mrmq
j“' P TAHRU,L.

] LINGTH

l _ ELEMENT OR NODFE WNUMBER

_LLFT DATA DASE POINTER

LDDA L))f.l (A)L\))

poo m—————-

_120aD #2 (1ap)

L NUMEER OF UP POINTERS (UFN)

‘ .
|

e e -_-_(TAY

SIARY OF UL PUINIERS (Urs) |

START OV ATPSILUTE ffil

\
|
\
|
l
N
1\1(:‘;' I)xl"_""\,l h(” SN \
i
G T o SOLTERS |

e AN

|

LEFT ACTIVE POINTER

RIGHT ACTIVi. POINTER

__DOWN_POTINTER i1

DOKN POINTER #2

DOWN POINTER #DNN-1

DOWN POINTTR #DNN

UP POINTER i1

[EUU W —

UP POINTER {2

UP_POINTER #UPN

NO MAN'S LAND

ATTRIBUTE VALUE #1

ATTRIBUTE VALUE #LENATT(TYPE)

FREE SPACE OF VARIABLE LENGTH

FIGURE 2,5.2 - FORMAT OF DATA BASE BEADS

42

w

LPROLG=7
8

9

10

11

12
13
14
15

16
17
18

.0+ 2LGHIDEF (5) 19
STA 20

LENGTH

Word 59

17

0

TYPE*I

]LENCTH*

unuscd

Left Data Base Pointer*

Start ot Data List=
(STA)

unused

Rivht Data Basce Pointer#

unused

unused

Left Active Pointer* l Right Active Pointer*

Name of Table (NAM)*
[4 Words]

Number of Dimensicns (IDM)

Row Dimensiorn (ROW)

Column Dimension (COL)

Depth Dimension (DEP)

User Supplied Format (TFM)
[3 Words]

Type of Format (FTY)

User Supplied
Data

.

No-
Man '
} L;;d

"Function for setting and getting done by same routine
as Levels 1 through 4,

NDM: the dimensionality of the supplied array.

ROW: number of rows in table, TIf NOM = 1, ROW
is the length of the array.

COL: number of columns in table, If NOM = 1, COL is
zero.

DEP: length of depth in table, If NOM 3, DEP is
zero.

TFM: wvariable format in characters that can be up to
characters long.

FTY: if TFM is of A format, FTY = 0, else 1.

FIGURE 2,5.,3 - TABLE BEAD FORMAT

43

Word 2 If TYPE = 3 or 4, the element or ncde number in integer format.

‘ If TYPE = 1 or 2, the name is stored ir 'NC MAN'S LAND' (word STA

V through STA + 3).

Word 3 LEFT DATA BASE FOINTER (30 bits, not sign extended - LFT). If
TYPE = 3 or 4, bead address of the element or node with first

number less than number in word 2. If TYPE = 1 or 2, bead

address of previously created structure or substructure. If bead

‘ is the head of the list, LFT points to the last bead in the list.

f RIGHT DATA BASE POINTER (30 bits, not sign extended - RIT). If
TYPE = 3 or 4, bead address of the element or node with first
number greater than number in word 2. If TYPE = 1 or 2, bead
address of bead created immediately after this structure or
substructure. If this bead is at the end of the Tevel, RIT
points to the head of the list.

Word 4 IDDAD #1 {30 bits, sign extended - DAD). IDDAD #1 is address of
display items for undeformed plot. If value 1S negative, the
plot is shrunk 80% about its center. If DAD =0, the item is not
drawn. The various drawing routines realize that an item is
already drawn unless DAD=0. A temporary set of DAD to 1 is made

| to tell the drawing software that GUSETP has been called. When
an item is generated, DAD is not the proper value for the
generation. An active-no-draw mode is used in 2D and contour
plotting. In this case, DAD is set to 1 to inhibit drawing.

START OF ATTRIBUTE LIST (3 bits, integer value - STA). Word in

' bead in which first attribute starts.

Word 5 IDDAD #2 (30 bits, sign extended - DAD). Display item address of
deformed picture of entity.

NUMBER OF DOWN POINTERS (30 bits, integer value - DNN). Number
of down points in this bead. This 1ist always starts in word
LPROLG + 1. Nodes have no down pointers,

Word 6 NUMBER OF UP POINTERS (30 bits, not sign extended - UPN). Number
of up pointers in this bead. Structures have no up pointers.
STARTOF UP POINTERS (30 bits, not sign extended - UPS). Start in
bead of up pointers. Keeping this value allows gaps in the bead
between the dovn pointers and up pointers.

¢ 44

i
M ———————————
dintd. - Zha . e

Word 7

LEFT ACTIVE POINTER {30 bits, not sign extended - DLF). If a
bead is activated DLF contains the previously activated bead
address. If this bead is the first active pointer bead on this
level, DLF points to the lTast active bead.

RIGHT ACTIVE POINTER (30 bits, not sign extended - DRT). If a
bead is activated, DRT contains the bead address of the next
active bead. If this bead is the last active bead, DRT points to
the head of the active Tist. To determine if a bead is active,
the right pointer (DRT) needs to be non-zero. The system takes
care to reset the right pointer to zero when a checkpoint or stop
is taken. That insures that that the file is usable at a later
date. When a bead is activated the DAD and DAC paramters are set
properly.

The above 7 words are always present in each bead at each geometric level.
DOWN POINTERS The pointers are bead addresses packed two per

word. The list is of variable length and must be
compact (i.e. no holes in the pointer 1list].
Therefore, when a down pointer is deleted, all of
its successors are moved up a slot and the number
of down pointers decreased. The deletion process
only moves down pointers because the start of the
up pointers (UPS) and attribute list (STA) is
independent of the number of down pointers.
Holes between the down pointer list, the up
pointer list, and the attribute list are possible
because of this.

LIST OF UP POINTERS The up pointer list works exactly the same way as

the down pointer list. It is packed, two-bead
addresses per word, and of variable length.

NO MAN'S LAND This area is a region that serves as a catch-all

for any other types of information needed in any
of the levels. Words are stored and retrieved
through array fetches from the Data Manager
package. Each bead of a praticular case reserves
JDEF(TYPE) words if that area of the system needs

45

additional information. The current
implementation uses JDEF lenghts of four in a
structure, ten in a substructure and zero far
both elements and nodes. In the structure, words
1 through 4 are taken by the forty-character
name. The substructure also keeps the name 1In
words 1 through 4. Words 5 through 7 are tne x,
Y, and Z minimum coordinate values for the entire
structure or substructure while words 3 throuoh
10 contain the X, Y, and Z maximum coordinzate
values.
The JDEF region of no-man's land can be used for
other information as the need arises.
ATTRIBUTE LIST The actual floating point values of the
attributes. The order is pointed to in the
COMMON block ATTRIB which will be describec
later. Each location points to a new value in
the list of possible attributes. The order and
meaning of the attributes is defined by the user
in the conversion routine CNINIT. Additiona:
attributes can be added through later convers:on
routines in a manner transparent to the
programmer. He must merely assign a value to an
attribute not defined in the initial data base,
and that new attribute will be defined for the

data base.

2.5.3 Change List

One of the features of the general data base is the ability to
back up to a previously saved data base if editing does not prove
satisfactory. The change list resides on the same data handler file as
the model data base.

The concept behind the change list is to save only the current
version of each bead in the data base itself. Thus, when, a change is
If this is

i made to a field, the change is rcflected in the bead itself.
\ 46

i
_u LT lmITn s me

the first change made to a bead, an unchanged copy of that bead is placed
on the change list. The bead format for the change 1list is given in
Figure 2.5.4.

Entries are made to the change 1ist only for those fieids that
relate directly to the data base. These fields include LENGTH, NUMBER or
NAME, LEFT or RIGHT DATA BASE POINTERS, START OF ATTRIBUTE or UP POINTERS,
NUMBER OF UP or DOWN POINTERS, and UP or DOWN POINTER, or any ATTRIBUTE
VALUE. The display related fields of DISPLAY ATTRIBUTE, IDDAD, LEFT or
RIGHT ACTIVE POINTER, and MINS and MAXES (substructure beads only) do not
cause entries to the change file. To inhibit searches for changed beads,
the system flags a changed bead by setting TYPE to -TYPE.

The change 1ist does not have to be used unless the ability to
back up is desired. For example, the conversion routines inhibit use of
the change list by setting the header of the list to zero. When the
change list is active, as it is in Display and Edit, the header of the
change list is a bead as formatted in Figure 2.5.5. The user tells the
system that a change file is needed by setting the second parameter in the
data base initiation routine (DBINIT) to zero. The conversion routine
initiator (CNINIT) automatically sets the change file inactive mode. If
the change field is inactive, beads are released whenever possible.

The headers and number of beads are kept to insure that deletinne
or additions to the data base are properly eliminated when backing up to
an old data base.

The change file works for all cases, even when a new bead of
greater length is needed. Because all references to the new bead are also
updated automatically and the old bead is unreleased, the change file need
only rewrite the old beads again. The linkage is thus automatically
restored to its original state. When the change file is 'released' and
the user saves his edited data base, the list is destroyed by making the
last bead in the list the same as the first bead. The change beads
themselves are not released to give a future capability of backing up more
than one step.

The programmer need not worry about using the change file as long
as the mode! data base change routines are used. These routines
automatically dump beads to the change file when necessary.

47

Word

1 Length of Bead

2 Bead Address of Next Bead in List*
3 Bead Address of Original Bead

4

exact copy
of
Bead in address in
Word 3
Before a change
is

Made

Length
"If this is the last bead in the list, next bead
points to the head of the 1list,
FIGURE 2.5.4 - CHANGE BEAD FORMAT
Word
1 Unused
2 Bead Address of Next Bead in List
3 Unused
4 Head of Level 1
5 Head of Level 2
6 Head of Level 3
7 Head of Level 4
8 Number of Beads in Level 1
9 Number of Beads in Level 2
10 Number of Beads in Level 3
_ 11 Number of Beads in Level 4
4 i

FIGURE 2.5,5 - CHANGE FILE HEADER BEAD

i 48

.4 In-Core Tables and Arrays

R
(S

All in-core arrays are in common blocks that are in i F[{/

COMDECK's. These hold the values needed to use the data bases effect: . ;.

“.5.4.1 Searching Tables

The conversion routines used in the construction phase ma:-
veral tables. The user may supply nodes and elenents in any order.
conversion routines keep a table (ELNOD in CNINT) that contains miip oo
elements and node beads by number and associated bead address. ihe tai .
fills from the front for elements and from the rear for nodes as depirted
in Figure 2.5.6. When the table overflows, a copy is written to the
conversion routine scratch file (TAPE77). CNTERM sorts each full tah:-
and links them properly. Obviously, the conversion routines operzte
Taster if the nodes and elements enter in sorted order.

One of the features of the model data base is fast search timec
3 node and element numbers. Because the circular 1ist is kept in
srder, a binary search can be done based on a partial table of entries.
‘he strateqgy is to minimize disk accesses. The number of accesses ace:
~owly as the number of elements and nodes increases by sophisticaiter
% the table in ILKUP and INLKUP in DATBAS. The actual table format o
piven in Figure 2.5.7.

The number of entries in ILKUP depends on the size of the dat:

hase. The number of accesses depends on how close the entry is to the
entry in the ILKUP table. If the number is not in the tablie, a ques< -«
made as to which entry the search number is closes to, thus further
izoreasing search time. For example suppose there are 500 elements an:
500 nodes in the data base, both numbered from 1 to 500 (the numher na
wroiieme will not effect the algorithm at all). Suppose we are lconing too
the brad address corresponding to node 87. The ILKUP table woula by
mtries tor the tenth bead in each list because ILKUP of dimensicon . ™
i <olit into four equal pieces. Node and element numbers 1. 1. 71, |
191 would all have references dirvectly in the table. A Linary scarch o
indicates that 8] is its predecessor in the table. The alqovitrs thoo

¢ 49

ELNOD

PELM(4)—> Bead Address Element Number 1
Bead Address Element Number 2
. °
[] [
° [
Bead Address Element Number N
| v \L
|
Bead Address Node Number N
e °
° .
. [
PNOD (4) —3 Bead Address Node Number 2
Bead Address Node Number 1

FIGURE 2.5.6. FILLING ELNOD

50

‘
....Il..l...l....l..l.....l.Il.l.....I.....l...l.ll.'ﬂﬁﬁnh-nrJ R ST S T e

1LKUP ———
INLKUP (1) Element Number A
INLKUP (1)+INLKUP(3)-1 |] Element Number 2 |
INLKUP (1)+INLKUP(3) Bead Address Corresponding to Element A

;

INLKUP (1)+2*INLKUP(3)-1 Bead Address Corresponding to Element 2
INLKUP (2) Node Number A
INLKUP (2)+INLKUP (4)-1 | Node Number Z _ _
INLKUP (2)+INLKUP (4) Bead Address Correspounding to Node A
INLKUP (2)+2*INLKUP (4)-1 Bead Address Corresponding to Node 7

FIGURE 2.5,7 - ILKUP ARRAY WITH INDEX INLKUP

PR ——

« 51

looks at the successor in the table, in this case 91. A direct comparison
determines that 87 is numerically closer to 91 than 81. A total of three
beads would be fetched (90,89,88) before the hit was made and the fourth
was discovered to be correct. A maximum of five beads need to be checked
to get any one bead for this data base, with averge search time for a bead
not in the table 2-1/2 beads checked. The algorithm is general: all one
has to do to increase speed for huge problems is increase the size of
ILKUP and set the new length in DATBAS variable LELKUP. It should be
noted that 200 words seems quite adequate because not that many searches
are made for name in Display and Edit. The hardwiring of bead addresses
as links greatly speeds up the processing time and seems most adequate.
The conversion routine CNTERM uses the node and element names to generate
up and down pointers. This process has been speeded up by sorting the
down pointers before searching, thus eliminating searches for duplicate
names. The scheme uses core effectively (by not using much) and
eliminates shuffling hash tables in and out of core.

The two links (level links and active links) have a record of the
first bead (the header) and the number of beads in each list. These are
kept in array of length four, with the subscript referring to the data
base level (l=structure, 2=structure, 3=element, 4=node). In common block
DATBAS, array IHEAD refers to the level header and NUMBDS the total number
of beads on the level. In common block ASTSTR, array IHAC is the head and
NAC the number of active beads on each level.

The head and tail of the change file are kept as IHCH and ILCH
{respectively) in common block CHDAT.

2.5.4.2 Attributes

The attributes that can be defined for any data base are
variable. A list of attributes available to the application is maintained
through the variables in common block ATTRIB, ELNAC, and IATTYP.

Common block ATRRIB contains the master table of attribute names
for all four levels. The names are kept in array IATNM. There are
seventy-nine attributes currently available in the data base. The number
of each type is kept in array MAXATT. The first attribute in the packed

52

e

(i.e. no gaps between names) IATNM array for each level is kept in array
INXATT. The total scheme is depicted in Figure 2.5.8.
Each 10 character attribute nama is unique up to seven

characters. The last three characters are reserved for a subscript
ranging brom 1 to 999. In this manner. each attribute can be considered
to be an array that can be accessed by a Seven character mnemonic and a
subscript value. (The treatment of the name implies that 0 is equivalent
to 1, i.e., attribute TEMPERATUR = TEMPERA{Q) = TEMPERA(1). The numbers
are treated as characters internally. Blanks within the numbers are
insignificant (1 1 = 11 = 11 = number 11).

The actual attribute list is order independent between data
bases. Each data base defines its attribute order at initialization by
routine CNINIT. The user supplies the list of which attribute names are
to be assigned with which attribute value. A key is formed from ach
attribute name which is 60 biés /any:

| 59 29 0
,Subscript value pointer to name

The pointer to the name is a pointer to the Hollerith identifier in array
IATNM. The subscript value is the Nth member of the array. Two routines
handle encoding and decoding of the names:

NAMFNM: Make a Hollerith string from a value in the above format

NUMFNM: make a number in the above format from a Hollerith

attribute descriptor.

The actual association list is kept in array INATT. (See Figure
2.5.9). However, INATT can overflow. This condition occurs when LENATT
(LEVEL) is greater than MAXATT(LEVEL). In this case, additional space is
required to store the indices.

IGATT: returns NEh attribute value from array INATT. If this
value is not in INATT already, IGATT fetches the proper page from
memeory.See Figure 2.5.10 for a description of the paging scheme. For
each level, IBXATT(LEVEL) refers to the bead containing the page. FEach
new page adds MAXATT(LEVEL) more words to theiarray. IPATT(LEVEL)
contains the index of the first word of the in-core pége.

53

/
..hIIIIIIIIIlIIIIIIIIIIIIIIIIIIIIIIIlIIIIllllllllllll!ﬁﬁi““”ﬁn:F n st tiare ot 2 R

T

i
{

INXATT(1)
INXATT (1)4+MAXATT (1) -1

INXATT (2)

INXATT (2)+MAXATT (2)-1

INXATT (3)

INXATT (3)#MAXATT (3)~1

INXATT (4)

INXATT (4)+MAXATT (4) -1

TATNM

i

FIGURE 2.5.8 ~ ATTRIBUTE NAMES

54

INYATT (1)

INXATT(1)+
LENATT(1)~1

INXATT(2)

INXATT (2)+
LENATT(2)~-1

INXATT(3)

INKATT(3)+
LENATT(3)-1

INXATT (4)

INXATT (4)+
LENATT (4)-1

LENIAT

INATT

Index of Active Structure Attribute

i,

Index of Active Substructure Attribute

Index of Active Substructure Attribute

Index of Active [Llement Attribute

Index of Active Flement Attribute

i

Index of Active Node Attribute

W

Index of Active Node Attribute

L

Jééé/ i

FIGURE 2.5.9 - ATTRIBUTE INDEX INTO BEAX

(range is
1-MAXATT (TYPE)
for all indices)

T T em———————

IBXATT

format

Copy of entire
set of attribute
associations in

subseript

pointer to name
in JATNM

MAXATT*n

IPATT points to (n - 1) *# MAXATT + 1 where n is the number of

pages needed to store LENATT attributes.

FIGURE 2,5.10 - PAGING SCHEME.

PAGES ARE GENERATED IF

LENATT (LEVEL) > MAXATT (LEVEL) WHEN NEW
ATTRIBUTES ARE GENERATED

56

AR XYL T

The data base remembers internally which attributes are defired
by using the RESTART and DBINIT routines. RESTART dumps the signific:ant
arrays to disk (especially the information about heads of lists, the LKUF

array, and attributes). DBINIT restores the arrays to the same state as
they were when RESTART was called.

The only attribute that must be defined is the TYPE of element.
Twenty-nine different types are available in Display and Edit thus far.
Array TELNAC in COMDECK ELEMEN contains a 10-character name for cacn
element type and a key as to how the element will be drawn in the I[DRWEL
routine,

Display and Edit also allows display of attribute values on the
model itself. To aid in the identification, the IATCOM array in COMDECK
IATTYP contains an abbreviation of the full attribute name. Array [ATORW
contains a flag indication how a particular attribute will be drawn (if a
symbol is available). The drawing i currently restricted to singlie anc
double headed arrows.

2.5.5 Model Data Base Handler Routines

The data base can be accessed from any level desired. ihe
low-level routines are the bread-and-butter routines that store ann
retrieve information from the data base. Higher level routines have been
coded to make retrieval from the data base easier. They use the same
Tow-level routines but provide short cuts to decrease coding for heavily

used concepts.

2.5.5.1 Low-Level Routines

The purpose of the low-level routines is to make each field in
the bead easily accessible. Each field can be set or retrieved. The set
routines check to see if the bead has been changed previously. See the
change file description in Section 2.5.3. AIll retrieving {(except for
arrays) return the value as the function name.

The major idea behind the plethora of names is to insulate the

programmer from the bit manipulating calls of the NSRDC Data Handler. The
57

input that controls the format for each bead is set in data statements in
GLOINT for common block CODES. In order to change the bead format, only
this common block need be modified. Furthermore, this limits the number
of DM- calls to allow easier conversion to another random access package
on another machine.

Each set routine (prefix DB) has a counterpart get routine
{prefix IDB). In the following list, the set routine is listed first.

DBCHA DBATT: Nth attribute (DBATT returns a flocating point valus)
DBRITE - IDBRIT: Right pointer (next bead in Tlist)

DBDAC - IDBDAC: Active attribute (for display purposes)

DBDAD - IDBDAD: Address of bead on screen (for display purposes)
DBOLF - IDBDLF: Left active pointer (for display purposes)

DBDNN - IDBDNN: Number of down pointers

DBONP - IDBDNP: Nth down pointer

DBORT - IDBDRT: Right active pointer (for display purposes)

DBLEFT

IDBLFT: Left pointer (previous bead in 1ist)

DBLEN - IDBLEN: Length of bead in words
DBNAME - IDBNAM: Name of bead
DBSET - IDBGET: Nth word of bead

DBSTAT - IDBSTA: Start of attribute list
DBTYP -~ IDBYTP: Type of bead (1,2,3 or 4)
DBUPN -~ ICSUPN: Number of up pointers
DBUPP - IDBUPP: Nth up pointer
DBUBS -~ IDBUPS: Start of up pointers
DOBARR - IDBARR: Array from no man's land.
The above routines access each field in the data base beads. At
a slightly higher level are routines to perform more complicated tasks.
These include:

DBCHNM: Change the name of an existing bead. This routine
insures that the name is in the proper order for nodes
and elements.

DBUPT: Set or remove the up pointer of the bead listed. The
number of pointers is increased or decreased
appropriately. ODuplicate pointers are ignored.

58

DBONT: Same as DBUPT, but for down pninters

Beads need to be added to or deleted from the data base cn cacp
level.

IDBADB: Add a bead with name in parameter 1 after the bead in
parameter 2 (usually found from IDBFND--see below). If
parameter 2 is a level number (1,2,3,4) and the list is
empty, a new list is started with the new bead as thr
header. Adding a bead sets the proper left and r ;n!
pointers but does not set up or down pointers -
attribute values.

DBDEL: Delete the bead and all references to it including up,
down, left, and right pointers Deleting a bead does nnt
eliminate in-core references to it.

One of the most common tasks is to find a particular name on

level. Function IDBFND provides that capability.

[DBFND: Find the bead address for level in parameter
corresponding to 40-character name (structures anc
substructures) or integer number (elements and nodes..
Structures and substructures have short enough lists to
search linearly. Elements and nodes are stored in sortes
order and indexed by a partial array called ILKUP. A
binary search is performed on ILKUP, and a linear search
thereafter.

DBLKUP: The application will delete and add beads. To clean up
the ILKYP array, DBLKUP will reset the array.

When adding values to a bead, overflow may occur. This can occur
when setting a new value in any of the variable length lists in the bead:
the up and down pointers and the attribute list. The following routine
performs overflow checks:

IDBCAN: Check to see if more wurds can be added to the bead. If
not, IDBCAN obtains more words and changes all references
to the old bead, even those in in-core arrays. The new
bead address is returned. The routine is called
automatically by the routine concerned and is thus
transparent for the most part.

59

EPI
- e— - - e . . .-
P PPy

The change 1ist 1s established as a backup to let the user
retreat to a previous version of his data base., The change list may also
be incorporated into the existing data base. This allows the current data
base to be the permanent data base. The following routines perform this
function:

DBCHBD: Check if the bead i< already on the change list (type is
negative). If not, the bead is copied intact, placed on
the list, and its type set negative to indi—-ate that it
has been changed.

DZRST: Go through the change file, restoring the changed beads
to their original state. DZRST invokes a <<reen erase
because deletes may have been performed on items which
would not be captured correctly on the display. A1)
types are set positive again.

DZSAVE: Save the changed data base by eliminating the change 1ist
and setting all types positive. The entire data base
must be scanned because a new bead may have been added to
replace one that was too short, a fact not reflected on
the change list.

Two utilities scan the attribute Tist for a particular attribute
currently active in a data base. Both return the location in the
attribute 1ist of the stored value if present and zero if the attribute is
not present. The first utility returns immediately, the second will
create a new slot if the attribute has not been defined and then returned.
A third utility checks if an element type is legitimate.

IFATT: Fetch the location of the alphanumeric attribute. If the
attribute is not in the fist, return zero. If the
attribute is active, return its Jlocation. If the
attribute is not active and is on the 1ist, define a
location for it in this data base and return the new
location. If the new location overflows MAXATT, create a
new page for the attribute list.

ISACT: Scan the active attribute 1ist of the level for the name
given.

CNELM: Look at the attribuie types to insure that the parameter

60

passed is a legitimate element type. Zero means an
invalid type, else the element number.

[SACT is the more commonly used routine. IFATT is used
internally to allow a change to be made to any attribute via DBCHA e.en
though the attribute was not originally specified in a conversion routine.
Efficiency dictates that this feature of DBCHA be used sparingly and all
needed attributes be defined in the initial conversion routine.

The following three routines maintain the active lists for
displayed beads on each level.

ACTIVA: Activate a bead on the proper level for display if the
bead is not active already. The routine modifies thre
appropriate pointers and generates a new list if
previously empty.

DELETE Deactive (remove from active list) and erase the picture
from the screen,

ICKACT: Check if bead is active. The current version merely
checks if an active right pointer (DBDRT) is present.

Specific low-level routines are available to set and retrieve
information from the table. The actual formatting of the tables is done
in conversion routine CNTABL, so the only specific setting is on a single
word basis via:

DBTGET: returns the value of the {I,J,K) entry in the table,

Entry point
DBTSET: set the (I,J,K) value in the bead to the input
value
Individual fields can be retrieved by:

IDBTFM: retrieve format of the table
Entry points
IDBROW: retrieve row dimension
IDBCOL: retrieve column dimension
[DBDEP: retrieve depth dimension
IDBFTY: retrieve format type (A or numeric)

IDBNDM: retrieve the number of subscripts.

2.5.5.2 Higher Level Data Base Routines

handler routines.
GETCEN:

GETCES:

GETCOR:

GETCSS:

GETLIM:

ELNCHK:

[CKATT:

ICKRNG:

The routines in this section have been written specifically for
Display and Edit. Their function is easily generalized to other modules.
A1l deal directly with the data base and make calls directly to data base

Determine the center of an element by summing the node
coordinates and dividing the results by the number of
nodes. The value is returned in XC, YC, ZC in LIMIT.
Determine center of a structure by averaging the display
space filled by a substructure. Value is in XC, YC, ZC
of LIMIT.

Get the coordinate of this node. The value is converted
to cartesian coordinates, displaced if retrieving for a
deformed plot, and checked against the current mins and
maxes (CMIN and CMAX in LIMIT) to be used by the 'FILL
SPACE' option. The coordinate locations are pointed to
by IATLOC in LIMIT. The coordinate is returned in X, Y,
Z of LIMIT. If shrink mode is enable, the X, Y, Z
coordinate is returned properly as long a GETCEN was
called first.

Get center of substructure by averaging the cisplay
space. The routine is currently unused in Display and
Edit.

Get the limits of the display from any substructure bead.
The limits are set to the largest space filled by the
model. The values are returned in the parameter Tlist,
Check if the new X, Y, Z of a node is outside the display
space limits., If so, update the Timits in the
substructure beads. The input is X, Y, Z in LIMIT.

Check if the values in a bead are within range
(SVALL(NAMES(I1)) to SVALH({NAMES(I1)), I=1,IST. AN
variables are in common EDITT and set in text editing
[CKATT is returned zero if not within tolerances.

Check if a type-in value is in the data base. If a range

62

i1s typed-in, the nearest neighbors are returned to avoii

confusion. Zero indicates a single number that was not
found.

ICKSL: Check if a displacement slice is active in the data base.
Zero indicates slice not present.

NEXTIN: Traversing the data base can be done in its entirety cr
by substructure. NEXTIN looks at the number of active
substructures and traverses the level properly. If
NEXTIN=0, nothing is on the level. Entry NEXTB gets the
next bead in the chain until the list is exhausted. When
done, the function returns zero. Any data base level can
be traversed by setting IACTYP in PERMEN to the level
number and performing the following sequence:

IB=NEXTIN(O)
10 IF (IB .EQ. 0) (Done)

. work on IB,

IB=NEXT(0)

GO TO 10
If there are substructures active (NAC(2) greater than G
in COMDECK ACTSTR), all elements or nodes are looked at
for those substructures only. Otherwise, all the beads
on that level are traversed.

2.5.5.3 Conversion Routines

The main purpose of STAGING is to permit a user to interact with
finite element data stored in the general data base. Several subroutines
have been generated to aid in moving information to and from the general
data base. Three different programs must be written when adding a new
analysis program to the STAGING system. Figure 2.5.11 illustrates the
flow of information.

The initial data base for a model is constructed by conversion
program 1. The data may then be viewed and corrected using STAGING. When

63

RS vvemutiie4 S IR]

CONVERSION
PROGRAM
1

GENERATO

DISPLAY
AND
EDIT

ANALYSI
PROGRAM
ORKRECTED
DATA CONVERSION
CARDS PROGRAM
2

CONVERSION
PROGRAM
3

ANALYSIS

OUTPUT
PROGRAM

RESULTS
FILE

FIGURE 2.5,11 - INFORMATION FLOW

-

64

the engineer is satisfied with the model, conversion program 2 is used to
retrieve data from the general data base and write a formatted input file
for processing by the analysis program. The analysis program is executed
in the batch environment yielding the output results data. Conversion
program 3 then reads the resultant output data and adds it to the existing
general data base file. STAGING may then be used to aid in tl.o
interpretation of the results. Please note the closed circle of programs
which invokes the general data base, conversion programs 2 and 3, and the
analysis program. The engineer may iterate as many times as is necessary
to obtain a satisfactory solution.

High-level user-oriented subroutines have been developed to aic
in the generation of conversion routines. Each of the three categories is
described and example programs are provided. A "cook book" approach is
recommended--start with the sample program and modify it.

When errors are detected (i.e., a node is attached to a
non-existent element) an error message will be issued on the output file
and processing will continue. The user may then use the Display and Edit
module to correct the errors.

To reduce the programming effort, a set of utility subroutines
have been generated. They provide for the initialization of the data
base, creation of information at each of the four levels and completion of
the data base. CNINIT, the initialization routine must be executed before
any other routines are called. CNTERM, the completion routine, must be
the last routine called. The other subroutines CNSTR, CNSUB, CNELEM,
CNODE, and CNTABL, may be called in the order most convenient to the user.

CNINIT - Initialize the Data Handler data base, define and save
active attributes and (CNINI2) set up internal arrays. Set up attribute
entries for CNINIT. Tables 1, 2, and 3 list the attributes that are
currently available in the STAGING system. New attributes will be added
as they are identified. The list is quite long and most applications
require only a small subset of the possible values.

Table 2.5.2 lists the element attributes currently defined in the
system. The full name, the 10-character attribute name and an
abbreviation are given. When you request an attribute display using
Display and Edit, the abbreviations will be presented as identifiers.

The first 7 characters of each attribute name are unigque. A

TABLE 2.5.2 ELEMENT ATTRIBUTES

Attribute
No. Full Name Name Abbreviation
1 Type TYPE * TYP
2 Material Identifier MATERIAL MAT
3 Area Cross-Section AREA-CRSST CSA
4 Area Moment X**Direction X AREA MOM XAM
5 Area Moment Y Direction Y AREA MOM YAM
6 Area Moment Z Direction Z AREA MOM ZAM
7 Torsional Constant TORSIONAL TOR
8 Mass/Length MASS /LENGT MPL
9 Membrane Thickness MEM THICK MTH
10 Mass/Area MASS/AREA MPA
11 Flexual Thickness FLEX THICK FTH
12 Material Property A MAT~PROP-A PRA
13 Pressure PRESSURE PRE
14 Temperature TEMPERATUR TEM
15 Critical Load CRIT LOAD CLD
16 Design Criterion DES CRIT DCR
17 Construction Code CONSTRCODE CCD
18 Geometry Class GEOMCLASS GCL
19 Geometry Sub=-Class SGEOMCLASS SGC
20 Angle Between Prop~Axes &
Side I=-T BETA BET
21 Tension Allowable Stress TEN ALWSTR TAL
22 Compression Allowable Stress CMP ALWSTR SAL
23 Shear Allowable Stress SHR ALWSTR SAL
24 Minimum Size MIN SIZE MIN
25 Maximum Size MAX SIZE MAX
26 Allowable Class ALOWCLASS ALC
27 Allowable Sub-Class SALOWCLASS SCN
28 Average Stress Concentration
Ratio STRCNSTR STC

29 Original Thickness ORIG THICK OTH
30 Excluded Element EXCLUD ELM EXE
31 Non-Optimum Weight Factor NOPTWTFAC NPW
32 Normal Stress X (Centroid) X N STRESS XNS
33 Normal Stress Y (Centroid) Y N STRESS YNS
34 Normal Stress Z (Centroid) Z N STRESS ZNS
35 Shear Stress X (Centroid) X S STRESS XSS
36 Shear Stress Y (Centroid) Y S STRESS YSS
37 Shear Stress Z (Centroid) Z S STRESS AT
38 Maximum Principal Stress MAX STRESS MXS
39 Intermediate Principal Stress LNT STRESS INS
40 Minimum Principal Stress MIN STRESS MNS
41 Equivalent Stress EQU STRESS EQS

*See Table 2,5.3,
#%XYZ - GLOBAL Cartesian Coordinate System

66

T eI wsn

Y

subscripting capability, not unlike that in FORTRAN, has been provided to
allow any node or element attribute to assume multiple values. For
example, a time dependent analysis may wich to define 5 different normal
stress (X N STRESS) values. This would be accomplished by specifying a
10-character field, the first 7 characters of which are the fir=st 7
characters of the attribute name (X N STR) followed by up to 3 digits
defining subscript. For example:

IATELM(1) = 10HX N STR 1
(2) = 10HX N STR 2
(3) = 10HX N STR 3
4) = 10HX N STR 4
(5) = 1I0HX N STR 6

(Note: The parameters 10HX N STRESS, 10HX N STR 0, and 10HX N

STR 1 all refer to the same attributes.)

Table 2.5.3 lists the element types available in STAGING. Table
2.5.4 describes the NODE attributes. When CNINIT is called, it will
reserve space for each attribute activated. WNew attributes may be
activated at any time. However, the most efficient method of operation 1is
to activate as many attributes as possible in the initial conversion
routine. If there is indecision on about whether an attribute will be
used, it is better to leave the attribute undefined until later.

CALLING PARAMTERS:

CALL CNINIT (IATNOD, NATNOD, IATELM, NATELM)

where:
IATNOD - NODE attribute array
NATNOD - Number of NODE attributes defined
IATELM - ELEMENT attribute array
NATELM - Number of ELEMENT attributes defined

The conversion routine CNINIT uses CNINIZ to specify both the
attributes to be used and their relative locations. This is accomplished
by using two parameters for the two Tower levels in the data base. For
example, NATELM specifies the total number of active element attributes.
The order in which names are provided fixes their relative locations for
subsequent calls to CNELEM (create an element item) and also in the
general data base.

To elaborate, assume the user wants to specify MATERIAL, TYPE,
67

TABLE 2.5.3. ELEMENT TYPE VALUES ARE EITHER THE NUMBERS
(IN FLOATING POINT) OR SHORTHAND NAME
TYPE -
NO. FULL NAME SHORTHAND NAME
1l 12 Rod ROD
2 I Straight Beam STR BEAM
3
3 1&2 Membrane Triangle MEM TRIA
L 3
4 N R Membrane Quadrilateral MEM QUAD
) Same as 3 Plate Triangle PLATE TRIA
6 Same as 4 Plate Quadrilateral PLATE QUAD
7 Sare as 3 General Triangle GEN TRIA
8 Same as 4 General Quadrilateral GEN QUAD
9 Same as 3 Ring Triangle RING TRIA
10 Same as 4 Ring Quadrilateral RING QUAD
11 Same as 4 Shear Panel SHER PANEL
12 Same as 4 Twist Panel TWIS PANEL
6 2 5
13 12:,_\ 2 General Triangle(2) GEN TRIA2
4
y 7 3
14 S.E:;;::}G General Quadrilateral(2) CEN QUAD2
1 2
15 Same as 13 Ring Triangle(2) RING TRIA2
16 Same as 14 Ring Quadrilateral(2) RING QUAD2
2
17 3 Curved Beam CURVE BEAM
1
18 Same as 17 Ring Shell RING SHELL
‘ 19 1 . 2 Ring Conical RING CNICL

TABLE 2.5.3. ELEMENT TYPE VALUES ARE EITHER THE NUMBERS (IN
FLOATING POINT) OR SHORTHAND NAME (CONTINUED)

TvpE
FULL NAME SHORTHAND NAME
4
1 Tetrahedral Solid TETR SOLID
S i
4 5
21 A s Wedge Solid WEDG SOLID
- == i
T 1 2
| |
5 8 1
t
22 D 7 Hexahedral Solid HEXA SOLID
RAN
> 3
S l«% 'B~15
23 4P vl 20 Node Brick. BRICK20
1810
YU .
2710 3
24 1 pg—— 2 Axial Spring AXIAL SPRG
25 1 1S 2 Torsional Spring TORSN SPR(
26 2 Mass MASS
27 l—p— 2 Damper DAMPER
k
28 i 1 Warped Quadrilateral WARP QUAD
/
\\J
warped quadrilateral
J
i . .
29 Hinge exists at node Hinged Beam HINGE BEAM

j on Z& axis

JRT R R L P

Auv

WILL ANIVIHd WA L sanjeaadua] L1
(1 °*S4As P10o0) [Ed0]| 021 Qd00D=dS1ld walsiy a3euIpavo) uswade]dsi(91
Aue 0¥z NOILVIO¥=~Z uotrjeioy 2 91
Lue OdA NOILV1Od-& uor3e3Ioy A 71
Lue 04X NOILYIO¥-X uotieloy X €1
fue 1ma IM Ve 3y319M 9duelRyg Al
a1 °s&s piop 18007 004 @400~32¥04 wa3sAg 3JBUIPIOO) 3D104 11
Aue OnZ INTNOR~-2Z JUBWOl Z (8
Lue OWA INTHOR=A JusSWOR A 6
fue OWX INAWOK-X Juswol X 8
Aue 04z 40¥04-7 adi104 7 L
Lue 04A 40904-4 CLECERDS 9
Lue 04X 40404 -X ad104 X <
(£1u0 @g¢)1eoFasydg=¢
(ag)1eatapurihn(az)ieiod=¢
ueysajied=| S0D WISAS~Q¥0D wa3sdg a3eUTpIOO) Y
H?m A aQ300-Z 93BUIpPIOO) Z €
ﬂ?m X aQd00=A IJeuipioo) A <
H?m X q409-X 33BUTPI0O) X 1
] saniep uoilerAaaqqy $33NqTaA3I3Y sweN 1104 *ON
: SALNGTYLIIV 4QON %°§°Z 19Vl
|
1
r | L i
S o saacaisdedRINNE sttt asia . -

70

BTN a4 U GWTG a0 ur e a0 1 oo (sdody oy 1o fsuet jrpees prol fsoadeas apou) s

I1IpUOS 859y Jo
‘WalSAS IIRUTPIOCD

Auy fsdors Awiy a0 s

LS o) il peotaoad gy

RINSE .m@&ﬁ;m Ipow Uay 0y dr ooy A4 UED saAnes R '
volA oty auTo(pou Sy wod] sidauoorjds vliap odr saeioty uccEmomﬁam:‘, B

I3y P

,rN

*(suelpel) @ ‘¢

pur (suvipex) @ ‘¢ “y ST | 93anqrazay ‘(jeorasayds) Q¢ ST WISAS-(duy puve papinsoad sae y ‘4 ‘Y 31 °8Sed uels
-=334UD A3 Ul SB 7 ST ¢ 930qIa33y ‘([ed1apuliad) popraoad sae z ‘i ‘N JI CSuelpeld ul paansedw @ g 93Inglaily
pue y ST [2Ingralyy ‘(avjog) paprnoad aae p pue ¥ AJuo puv @'z S! WISAS-Qy0D 31 *8deds ul $33BUIPIOOD

ae y CL Y C(UBISAlIER)Y (°T ST WISAS-U¥OD JI *H 23INQGTI3dy o3 Sulipiodoe salaea 7z ‘A ‘Y 30 uorlelsadisiug

1
N.Em aiz avot z pROT Z 8¢
NZ:. atla avol A peol A Lz
m?m a1x avol X peoT X 9¢
m..am Wz AA0W Z adeys 3poy z (94
N?m WA AA0H X adeys apon A V14 =
m?m WX AAOH X adeygs apol X 194
m?m saz dsiq z Jjuawaoe1dsiq Z 4/
N?m SAx dsiq A juswaoe[dsIq A 12
m,ém Sax dsig X Jjuswaoe1dsiqg X 0t
Aue qud TANSSAAd 9inssaag 61
Aue SHO SSYR=-0NOO SSel paIBIIUIUOY 81
saniep uotielAdIqqy sa3nqlijy sueN (11nd *ON

(panutiuo)) H*¢'g A4V

PRESSURE, TEMPERATURE, and MEMBRANE THICKNESS as element attributes.
Remember this will fix the order in which they will be provided in
subsequent calls to CNELEM. Referring to Table 1 we find the appropriate
attribute names. To accomplish this goal, the parameters NATELM, IATELM
supplied to the initialization routine CNINIT would contain the following
values.

NATELM = 5 (5 attributes activated)
IATELM (1) = 10HMATERIAL

IATELM (2) = 10HTYPE

[IATELM (3) = 10HPRESSURE

IATELM (4) = 10HTEMPERATURE

IATELM (5) =]1OHMEMTHICK

CNSTR --Create structure bead with a 40-character name and store
substructure linkage into general data base.

CALLING PARAMETERS:

CALL CNSTR (NUM, SUBS, NSUB)
where:

NUM - Substructure name (40 character)

SUBS - Array containing the names of substructures that belong

to this structure (4 words per name)

NSUB - Number of substructure names supplied in SUBS
CNSUB --Create substructure bead with a 40~character name and store
element linkage into general data base.

CALLING PARAMETERS:

CALL CNSUB (NUM, IELEM, NELEM)

where:
NUM - Substructure name (40 characters)
IELEM - Array containing the element numbers that belong to
this substructure (integer format)
NELEM - Number of element names supplied in IELEM.

CNELEM--Create element with positive integer name, store attributes and
node linkage into general data base.
CALLING PARAMETERS:
CALL CNELEM (NUM, NODE, NMODE, ATT, NATT)
72

Y ——— .

where:
NUM - Element name (1 word; integer format)
NODE - Array containing the node numbers that belong to
this element (integer format)
NMODE - Number of nodes supplies in NODE
ATT - Attribute array
NATT - Number of attributes supplies

Elements must supply the TYPE attribute.

CNNODE--Create node with positive integer name and store attributes.
CALLING PARAMETERS:
CALL CNNODE (NUM, ATT, NATT)

where:
NUM - Node Number (integer format)
ATT - Attribute array (optional)
NATT - Number of attributes supplies (optional)

gt

CNTABL--The CNELEM and CNNODE routines allow the user to store element and
node data into the general data base. The subroutine CNTABL supports the
storage, retrieval, and revision of tabular information. The user
provides a unique name for the block of data, its format and
dimensionality. This subroutine is used by the conversion routines to
store data not associated with elements or nodes, i.e., material
properties, analysis code options, etc.

CALL PARAMETERS:

CALL CNTABL (NAME,ARRAY NR,NC,ND,FORMAT)

where:
NAME - Block data name (40 characters)
ARRAY - Array containing the dataa to be stored
NR - Rrw Dimension
NC - Column Dimension
ND - Depth Dimension

FORMAT- Up to 3C characters FORTRAN format specification
(i.e., 4H(I5) Default is 4H8A10).
NOTE - For a single dimensioned array the call can be reduced
to:
CALL CNTABL (NAME,ARRAY,NR,FORMAT)
N 73

Since subscripting is done ala FORTRAN (storage by row), the
dimensions of the array for a 2 or 3 dimension table must be the same as
the dimensions passed to CNTABL. This essentially implies that the column
(in the 2D case) and column and depth (in the 3D case) be exactly the same
as the dimensions indicated in the DIMENSION statement to insure correct
retrieval.New tables can be added during any conversion phase with CNTABL.
Certain functions in these routines have been broken into separate
subroutines to make the larger routines easier to follow.

They are:
CNINIZ: Sets up attribute entries for CNINIT.
ICPART: It is possible for the user's list of down pointers and
attributes to overflow the internal scratch array.
Therefore, routine ICPART will flush the array before it
is overflowed and restart the filling process.

CNTER : The most time consuming part of conversion is inserting
the up and down pointers. The down pointers are the only
ones provided, and they are names rather than bead
address. Therefore, CNTERN queues the down pointers
names and sorts them in CNTER to minimize search times
before setting the up pointers. The 1list is then
re-sorted to assign the bead addresses of the down
pointers. X.B. if there is an error in the list of down
pointers, no down pointers will be assigned.

CNSORT: Does the <ort for CNTER as a hash sort on the low order
30-bits of the word.

Three utilities are present to print out features of the data

base. These are:

CNPRT : Print a bead and its up and down pointers.

CNPRTA: Print a bead and its attributes.

DPRT : Dump the data base and attribute arrays.

Additional conversion routines have been coded to speed the
cnoding process for conversion phases two and three. These routines do not
~apport addition of new beads to the data base. It is assumed that those
tasks will be accomplished in preprocessors of Display and Edit.

*TfPN--Complete conversion process.
74

FTT——

CALLING SEQUENCE:

CALL CNTERM
This routine consumes 75% of the conversion processing. It first places
into ascending order the out-of-order elements and nodes, sets up the
ILKUP array, assigns all up and down pointers (probably the most time
consuming process--refer to CNTER and CNSORT for more details), generates
a default structure and substructure if no CNSTR or CNSUB calls were made.
assigns the plot limits (saved by CNNODE) to all substructures, flushes
the proper arrays (RESTART), and reinitializes the EDITT COMDECK {EDITTI;.

2.5.5.3.2 Conversion Program 2

Once the user has corrected and optimized his model using Display
and Edit, he will be ready to execute an analysis program. Conversion
Program 2 will be used to transfer information from the general data base
to a card image file suitable for processing the analysis program.
Conversion Program 2 is the exact inverse of Conversion Program 1. The
utility subroutines used are similar in appearance and structure.

NCINIT - Initialize the conversion programs and define the
attributes that are to be retrieved from the data base. The method of
definition and handling of parameters for Conversion Program 2 is
identical to Conversion Program 1. Since attributes cannot be retreived
from the general data base that have not been created, we recommend
repeating the initialization code used by Program 1 in Program 2. Note
the order in which you specify the attributes is the order in which they
will be returned to you. This order does not have to be the same as in
conversion routine 1. If a new attribute is mentioned, space will te
assigned automatically.

CALLED PARAMETERS:

CALL NCINIT (IATNOD, NATNOD, IATELM, NATELM)

where:
IATNOD - Node attribute array
NATNOG - Number of NOOE attributes activated
IATELM - Element attribute array
NATELM - Number of ELEMEENT attributes activated

75

NCINIT uses
NCSTUF: set up 1ist of attributes for this level. The user can
then retrieve information from a data base in one of two
ways. (A1l routines listed are entry points into
subprogram NCELEM).

1. Work on the entire list on a level. In this case,
the get routines return the entity names as well as
attributes:

NCSTR : get next structure name (40 characters),
attributes, (40 characters each) all
substructures names and number of
substructures.

NCSUB : get next substructure name (40 characters),
attributes, all element numbers (integers),
and number of elements.

NCELEM: get next element number, attributes, all
node numbers, (integers), and number of
nodes.

NCNODE: get next node number and attributes. These
routines return a O for the next number if
the list is exhausted. Thus, the Toop
10 CALL NCELEM(NUM,ATT ,NODE ,NNODE)

IF (NUM .EQ. 0) Done
do something here
GO TO 10
will loop through all elements.

2. Each entity can be worked on individually. This
assumes that the programmer knows the names he is
after. The routines return the same information as
(1).

NCGSTR: get info from given structure
NCGSUB: get info from given substructure
NCGELM: get info from given element
NCGNOD: get info from given node

¢ 76

s [Tt ,
R N e PRI e ————

EREIR N -y

i
y

The user can reset the attributes. The "do something
here" portion of the above example will often
manipulate information in the attributes array and
then replace that information by:

NCSSTR: reset attributes in given structure

NCSSUB: reset attributes in given substructure
NCSELM: reset attributes in given element

NCSNOD: reset attributes in given node.

NCSTR --Retrieve structure and substructure linkage from general data base.
CALLING PARAMETERS:
CALL NCSTR (Num, ATT, SUBS, NSUB)

where:
NUM -

ATT -
SuBS

NSUB -

Structure name (40 characters or 4 words) NOTE: Each
call to NCSTR will return a new structure name until the
list has been exhausted, then NUM(1) will be set to zero.
Dummy parameter

Array of names of substructures attached to this

structure (4 words per name)

Number of substructure names supplied in SUBS

NCSUB --Retrieve substructure and element linkage from the general data

base.

CALLING PARAMETERS:
CALL NCSUB (NUM, ATT, IELEM, NELEM)

where:
NUM -

ATT -
TELEM-

NELEM-

Substructure name (40 characters or 4 words) Note: each

call to NCSUB will return a new substructure name until

the 1ist has been exhausted, then NUM will be set to zero.

Dummy parameter

Array of element numbers attached to this substructure
(Integer format)

Number of element numbers supplied in IELEM

NCELEM--Retrieve elements, attributes and modes linkage from general data

base.

CALLING PARAMETERS:
CALL NCELEM (IELEM, ATT, NODE, NNODE)

77

where:

IELEM- Element number (integer format) Note: ©Each call to
NCELEM will return a new element number until the)ists
is exhausted, then IELEM will set to zero. The element
numbers are returned in ascending order.

ATT - Element attribute array

NODE - Array of node numbers attached to this element {integer
format)

NNODE- Number of nodes numbers supplied in NODE.

NCNODE--Retrieve nodes and attributes from general data base.

CALLING PARAMETERS:

CALL NCNODE (NODE, ATT)

where:

NODE - Node number (Integer format) Note: Each call to NCNODE
will return a new NODE number until the list is
exhausted, then NODE will be set to zero. The node
numbers are returned in ascending order.

ATT - Node attribute array

To get or reset information in an existing table:
NCTABS: Set the (I,J,K) element in the table name to a new value
Entry points

XNCTABG: Get the (I,J,K) element in the tabile
NCROW : Get the row dimension (set by CNTABL)
NCCOL : Get the column dimension (set by CNTABL)

NCDEP : Get the depth dimension (set by CNTABL)
NCFORM : Get the format of the table (set by CNTABL)

The format specification appears mysterious at first glance. The
format is defined as a variable format in FORTRAN as a Hollerith string.
It serves a twofold purpose. First, a set of conversion routines can set
up various table formats as part of the table itself. This can let
different input formats be accommodated with variable formats. The second
use is internal. Tables are most convenient as application dependent
storage, in which case the data is of A format. However, in the X-Y plot
package in Display and Edit, one does not really want to draw data cards.
Therefore, the format also determines if the table is plottable or not.

78

{
!

An A format says do not plot, else the values are legitimate. The user

must beware if using integer values because the “get" routines are real
unless declared integer.
NCASU --Activate substructure for retrieval. 1If the engineer using
Display and Edit has created several substructures and wishes to perform
an analysis on specific substructures, NCASU provides that capability. If
NCASU 1is called, only the elements and nodes belonging to the listed
substructures will be available to the engineer in subsequent calls to
NCELEM and NCNODE. If NCASU is not called, all information in the general
data base will be available to the user. Note NCASU may be called at
anytime after NCINIT and may be called as often as desired. However, only
those substructures Tisted in the latest call will be active.

CALLING PARAMETERS:

CALL NCASU (SUBS, NSUBS)

where:
SUBS -~ Substructure names (40 characters or 4 words each)
NSUBS - Number of substructure names supplied in SUBS
NUMC --Return the number of items within a level. This utility function

is useful in obtaining information about the data base.
CALLING PARAMETERS:
NUM = NUMC (TYPE)

where:
ITYPE - data base level
= 1 - Structure
= 2 - Substructure
= 3 - Element
= 4 - Node
NUM - number of items present in data base

XNCTABG-Function NXCTABG is used to obtain block data stored by the
subroutine NCTABL.

CALLED PARAMETERS:

VAL = XNCTABG(NAME,IR)
where:

NAME - 40-character name

IR - entry in array desired

VAL - data returned to user

79

NCFORM--Subroutine NCFORM is used to obtain the FORMAT stored for a
specific block data table.

CALLING PARAMETERS:

CALL NCFORM(NAME,FORMAT)
where:

NAME - 40-character name

FORMAT - Format as supplied by user, up to 30 characters
NCTERM--The counterpart of CNTERM for the retrieval routines is NCTERM,
This must be the last NC routine called.

CALLING PARAMETERS:

CALL NCTERM

Terminate conversion program two or three. The user's data base is

automatically extended if it is a permanent file. WARNING: if the user

is resetting information in conversion program two or three and his
program bombs, his data base may be destroyed.

A control card safety play is:
ATTACH,T,data base.
REQUEST,TAPEOQ,*PF.
COPYBF,T,TAPEO.,

Run conversion routine two or three.
PURGE,T.

CATALOG,TAPEO,data base.

2.5.5.3.3 Conversion Program 3

This is the last conversion program of the sequence. It is used
to add the output results from an analysis to an existing data base.
Another set of conversion subroutines have been generated to aid in this
.ask. They are similar in concept and function to those used in
conversion programs one and two. At each tevel in the data base they are
used to add or modify information in an existing data base.

NCINIT--Initialize the conversion subroutines and identify the attributes
you wish to add or modify in the data base. This subroutine is the same
one described under Section 2.5.5.3.2. Now you will be specifying the
order in which you will be supplying results data.

80

CALLING PARAMETERS:
CALL NCINIT (IATNOD, NATNOD, IATELM, NATELM)
where:

IATNOD - Node attribute array

NATNOD - Number of node attributes activated
IATELM - Element attribute array

NATELM - Number of element attributes activated

NCSELM--Set element attributes.
CALLING PARAMETERS:
CALL NCSELM (NUMBER, ATT)
where:
NUMBER - element number (integer format)
ATT - attribute array
NCSNOD--Set node attributes.
CALLING PARAMETERS:
CALL NCSNOD (NUMBER,ATT)
where:
NUMBER - node number (integer format)
ATT - attribute array
NCTABS--Set a value in a table.
CALL NCTABS (NAME,VAL,IR)
where:
NAME is the 40-character name of the table
VAL is the new value to insert into the array
NCTERM--Terminate the conversion subroutines and extend the permanent file
TAPEQ.
CALLING PARAMETERS:
CALL NCTERM

2.5.5.4 Initialization and Termination

A1l of the features of each individual data base bead are
maintained in core resident tables. These tables are also stored in the
user's data base and are restored during file initialization. Termination
of a user session requires the same arrays to be saved before the data

81

handler file is flushed. If no changes are made to the datud base during a
run, there is no need to flush the arrays before exiting.

Subroutines used here are:

DBINIT - Initialize the file name provided by reading in the
arrays stored by RESTART. A change file is initiated
if desired, otherwise overflowed beads are released.
If the file is not a proper data base file, DBINIT
returns zero.

RESTART - Store significant arrays in this data base. The
routine checks if the file has been used before and
releases existing space if possible and calls DMFLSH 5
when done.

GLOINT - Contains DATA statements to set up initial guesses
for all attribute array sizes in this data base.
These values can be changed before RESTART is called
to make increases in size. Most common is to
increase the size of NO MAN'S LAND in each bead (JDEF
array in COMDECK ATTRIB). Also contains DATA
statements for data base file and element names.

EDITTI - Initialize the EDITT common block which is used as a
scratch common block by other modules (most notably

the conversion routines).
FILATT - Checks type-in for a good permanent file name and
tries to attach it. If the file is (a) not
' catalogued, (b) illegally typed, or (c) an illegal
data handler file, FILNAM is called again to retry
the type in. If the type-in is a success, the file
is attached and copied. DBINIT initializes the file
and DEINIT1 initializes the proper Display and Edit
variables.

.

82

-

2.6 INTERTEK Interactive Graphics Package

2.6.1 Introduction

The "display file" of an interactive computer graphics system
consists of:
1. An ordered set of instructions for displaying graphic
entities on a physical display device.
2. A set of identifiers and attributes associated with the
graphic entities in the display file.
A graphic entity or segment is a collection of graphic primitives such as
dots, vectors, and alphanumeric characters, which are typically generated
by the display device.
INTERTEK is a series of FTN subprograms call-modeled on 777/1GS
V2.1 and designed to enhance the interactive capability of a Tektronix
4010 Series Direct View Storage Tube. INTERTEK runs on CDC 6000 series
mainframes under NOS/BE. It is written for the CDC FTN compiler and uses
the NSRDC Data Handler, Battelle developed file manipulation utilities,
and the graphics driver COMPIO.

2.6.2 INTERTEK Picture Manipulation

INTERTEXK routines handlie display file construction and
modification, as well as picture scaling, translating, and clipping. It
also supports general pick processing of pictures on the terminal screen.

The basic drawing information is contained in the STAGING display
file as a data structure with hierarchy illustrated in Figure 2.6.1. The
three major components of the display file are:

1. Display item

2. Subfile

3. Display area entity

A display item is the basic picture building block. It is the
smallest unit which can be created, modified, or picked. Each display
item contains the display commands for generating a graphic entity as well
as control information for pick processing. The display items in the
STAGING display file are maintained on Data Handler file DISFILE.

83

DAE 1 e S DAE 2 —_— s e ——p DAE n ?
1
3 !
(’ SF 1 SFm
$ Pl sr2

Ttem 1 L
$ Item n+l

Item 2 *
-

...‘—

Item n Item m

\/

FIGURE 2.6.1 -~ DISPLAY FILE CONSTRUCTION

84

-y

Al

M’m
et Syt B ES o i S

N osubfile is a linear linked list of display items heaaed Ly 1
subfile entity which is maintained as a 6-word block in array IAZL/, in
common block GCGI. Items of a subfile may be manipulated collectively.

A display area entity (DAE) represents a complete virtual

picture. It contains information defining the display device coordinates
of the rectangular boundary of the virtual picture. The DAE also contains
information defining which of its subfiles are currently visible. ~
subfile may be owned by more than one DAE. Thus a picture can
displayed in several areas on the terminal screen. This capab:lity
facilitates the split-screen function in the STAGING system. Each PAE in
STAGING is maintained as a 6-word block in array IAREA in common block
GCGI.

The formats of the DAE's and subfile entities in INTERTEK are
shown in Figures 2.6.2 and 2.6.3. The display item Data Handler beac
format is illustrated in Figure 2.6.4. The actual display information
within a display item consists of instructions in the formats shown in
Figure 2.6.5.

An item is created by calls to INTERTEK subroutines with prefix
GU. Each call to one of these routines causes drawing information to be
packed into array IBUF in COMMON block DRAWBUF (external to the INTERTEEK
package). The format of IBUF is shown in Figure 2.6.6. When the program
reaches a full IBUF or the end of a display item, GITEM is called to
generate a disk copy and to generate the first drawing of the picture. If
the item overflows IBUF, the user calls GITEM, packs more information intn
IBUF, and calls GIXTND to extend the item. The result is a chain of beads
on the Data Handler file that comprise the whole item. The format of an
extension bead is shown in Figure 2.6.7. The bead list is terminated by
an extend bead set to zero.

2.6.3 INTERTEK Pick Processing

Pick processing is controlled by INTERTEK by user definahle

assignment of event types to categories. There are five event types in
INTERTEK:
button

Word

DAE format

59 44 29 14 0
Type = 1
X min clip |Y min clip| X max clip | Y max clip
(XWC)X window center (ch)window center
(SCALE) scale factor (zoom level)
Lubfile 1) Subfile 2} SF 3 SF 4 SF 5
SF 6 SF 7 SF SF 9 | Subfile 10
where Type is the entity type

Clipping limits for X',Y' are in screen coordinates
(~2048 { val (2048).

Each coordinate is scaled and centered by X'=X/Scale+XWC

Y'=Y/Scale+YWC

Sfl...5fn are the subfiles shown in the area

FIGURE 2.6.2 - DAE FORMAT

Subfile Format

1 Type = 2
2 left item pointer right item pointer
3 Cat | Cat
1 2
4 Cat
20
-
5
DAE 1 DAE 2
6 DAE 10

where Type is the entity type

Left pointer is the last item in the subfile (if empty,
this is the subfile)

Right pointer is the first item in the subfile (1if
empty, this is the subfile)

Cat 1...Cat 20 are the categories to which the item
in the subfile belong

DAE 1...DAE 10 are the DAE's in which this subfile
is shown

FIGURE 2.6.,3 - SUBFILE FORMAT

AD-A089 382

UNCLASSIFIED

RATTELLE COLUMBUS LABS OH F/6 13/13

STRUCTURAL ANALYSIS VIA GENERALIZED INTERACTIVE.GRAPHICS = STAG==ETC(U)
SEP 79 L E HULBERT: N D GHADIALI* F N DEOBOT F33615-76=C=3125
AFFDL=TR=79=3074-VOL=3

1
Subfile owner of (SF) Length of bead (LEN)
Item
2
bead address of extension (EXTB)
3 left item pointer right item pointer
4 X MIN Y MIN
> X HMAX Y MAX
6 ITASKC
LPROLG =7! # of 1ID # of (LACT) CAT CAT | CAT | CAT CAT
{L1D) words | categories 1 2 3 4 5
ID 1 if #ID words >0
ID n

LPROLC+n+1

absolute b2am move

drawing instructions

where

SF is the subfile cowner of this item (used only in return
on a pick and when assigning the categories in a subfile).

LEN is the total length of the bead

EXTB is the bead address of the first extension, if=0,
no extension.

Left-Right: preceding and succeeding items.

XMIN,YMIN XMAX,YMAX: lower left and upper right corners

cf area containing item. Used when determining if item piclked.

ITASKC: task word (user supplied)

LID and IDy...JMDn: number of ID words (may be zero) and user
supplied ID woerds

LCAT and CATl...CATn: number of pick categories and up to
5 user supplied categories

FIGURE 2,6.4 - ITEM FORMAT

R iyt o]

MR cama g T o TR R R A T v m———

Long Relative Vector (created by GULIN)

59 0
[oP l STY I—é l‘ REL X L REL Y AJ
FIELD BITS DESCRIPT1ON

oP 59-58
STY 57-55
B 54

RELX 53-27
RELY 26-0

Short Relative

Opcode of 00y for long relative vector
Linestyle (0O=solid, l=short dash, 2=long dash)
Beam (0=0ff, l=on)

Relative X beam move

Relative Y beam move

Vector (created by GULIN)

FIELD BITS

29
[OEAJ STY | B J; REL X 4[7 REL Y

o

DESCRIPTION

oP 29-28
STY 27-25
B 24

RELX 23-12
RELY 11-0

Opcode of 01, for short (halfword) relative vector
Linestyle (0=solid, l=short dash, 2=long dash)
Beam (O=off, l1=on)

Relative X beam move

Relative Y beam move

Absolute Vector (each item must begin with this instruction created by GUSETP)

l__jo

59
torJelzl | wsx

FIELD BITS

]W ABS Y
DESCRIPTION

op 59-58
v 57
Z 56
ABSX 53-27
ABSY 26-0

Opcode of 10, for absolute vector
Pickable flag (O=nonpickable, l=pickable)
Zoomable flag (O=nonzoomable, l=zoomable)
Absolute X coordinate of item origin
Absolute Y-coordinate of item origin

Text (created by GUTEXT)

59
T;?NT¥S[ZE L, NC 1; CHi J} CH2 AJ """ (may extend over multiple words)

FIELD BITS
or 59-58
SIZE 57-54
NC 33-42

CHi 41-

DESCRIPTION

Opcode of 11, for text output

Character size from smallest (0) to largest (3)
Number of characters in string

Display code characters of string

FIGURE 2.6.5. DISPLAY ITEM GRAPHICS INSTRUCTION FORMATS

89

e il

P P

1 Current x (CX) Current y (CY)
2 unused bit count (UBC) ;
3
XMIN YMIN :
J
4 XMAX YMAX
5
drawing instructions
from GU-routines.
MBYTE/3

where CX,CY is the current beam positions
UBC is the number of bits left in the NBYTEth word

XMIN, YMIN are the coordinates of the lower left
corner of the item in the item's coordinate scale

XMAX,YMAX are the coordinates of the upper
right corner of the item

FIGURE 2,6.6 - IBUF FORMAT

90

Length

extension bead (EXTB)

Drawing instruction

where:

Length is the total bead length

EXTB is the next bead in an extension.
If EXTB=0, this is end of extension.

FIGURE 2.6.7 - EXTENSION FORMAT

91

ignore

single

string

parameter

Categories O to 63 may be assigned any of the above event types.
Keyboard keys may be assigned to a single category. Pick processing is
done by calling GIBUTN which turns on the crosshairs and waits for a pick.

If the pick is a single pick, string pick, or parameter pick, an entry is
made on the proper queue for later retrieval.

Each display item contains information about the action to be
taken when the item is picked. The information consists of from 1 to 5
categories each of which is stored as an index into the category table in
array ICATS in common block GCGI. The format of the category table is
shown in Figure 2.6.8. Each entry in the table is a string of 6 bits
indicating whether any of the following six actions are to be taken:

BIT ACTION

1 Not implemented

Single pick
String pick
Parameter pick
Button pick

A W N

Not implemented
A button pick is the expected response to a call to subroutine GIBUTN.
The pick of a selection from a STAGING menu is the typical use of a button
pick. When pausing for a button pick, other types of picks may occur.
Each non-button pick is placed on the queue corresponding to the indicated
action. Single picks always replace what was there. String picks
normally add the pick to the end of the string queue. However, if an
occurrence of the pick already resides in the queue, it is deleted rather
than added to the queue. Each parameter pick always adds a new entry to
the end of the queue. Each of the three queues has a pointer to the head
(IHLIST(1)) and a pointer to the tail (ITLIST(1)) as shown in Figure
2.6.9. Each queue entity holds information about the item selected in the
format shown in Figure 2.6.10.

The programmer can also assign one category to each key on the

92

o

ICATS (1)

(2)

3

(4)

(5)

(6)

)

where

ATR:

SPA:

CAT | CAT CAT

CAT

CAT
63

Each CAT Entry is a series of 6 bits

S B P S

Ba 2| &R|T

A

R

if all bits are zero, the event is an ignore.
each bit indicates the type of action

Otherwise,

attract (in this version, this is a no-op)

single pick
string pick
parameter pick
button pick

special action (in this version, this is a no-op)

FIGURE 2,6,8 - CATEGORY TABLE

93

i
{

IHLIST(1)=ITLIST(1)

Single queue

IHLIST(2) ITLIST(2)

Pt m——— T B

String queue

IHLIiT(3) ITLIST(3)

. g
F—at0 & s P
Parameter

queue \\\\\‘> i

FIGURE 2.6.9. QUEUE CONSTRUCTION

94

L Length of bead

2 Next bead in queue

3 ITASKC

4 IDDAD of picked item

> SUBFILE owner of picked item '
6 DAE in which picked item resides

7 X location of pick

8 Y location of pick

? Character struck to generate pick
10 Number of categories
11 Number of ID words

b 12 + LCAT Categories to which item belongs
12 + LCAT + 1 ID words of item (if any) |

FIGURE 2.6.10. WAIT QUEUE ENTITIES

-

)

Tektronix keyboard. These categories are stored in array KEYCAT in COMMON
block GCGI as shown in Figure 2.6.11. Only a button may be generated.
Such a button pick is generated only if the crosshairs are not positioned
on a displayed item.

2.6.4. INTERTEK Software Overview

INTERTEK is modular in construction. Six major functions have
been identified:

o initialization and termination

¢ construction of picture

o construction of display file

o display file processing

0 event processing

o utility routines

The routines in these areas rarely overlap in function. Instead,
most are small and single purpose. This section will examine and classify
INTERTEK rcoutines, while briefly describing their functions.

2.6.4.1 Initialization and Termination

Initialization of two types occurs in INTERTEK. Before any other
INTERTEK routine can be called, the programmer must call:

GINIT : set up INTERTEK. This includes all terminal dependent
constants and the display file in its "empty"
condition, i.e. only the default DAE and subfile are
present

The user must supply a buffer as transient storage for graphics
information. After calling GINIT, he must tell INTERTEK where and how
long this buffer is:

GUBUF : define buffer for packing graphics information.

A1l non-transient data in common blocks is set up by a block data
subroutine called GPRESET. There is no executable code in GPRESET. The
application can leave a blank screen by calling:

GIRLS : return the display file and erase the screen.

96

e

KEYCAT (1)

(2)

3)

(4)

(5)

(€)

(7)

CAT | CAT | CAT | CAT | CAT |CAT CAT | CAT | CAT |cCAT
. A B C D E F G H I i
|
CAT
’

Each key can have one category assigned to it and nu
ID words.

The categories are associated and detected if there is
no pick on an item. Furthermore, only a button pick can
be generated.

FIGURE 2.6.11. KEYBOARD EVENT TABLE

97

V 2.6.4.2 Picture Construction

The routines the user sees for constructing the picture are the
GU-routines:

GUSETP : set up the absolute beam Tocation, lightpen

sensitivity, and zoomability

GULIN : move the beam to the new location with beam on or off

GUPNT : draw an * (there is no point generator on the Tektronix)

GUTEXT : put a text string on the screen.

As the buffer is packed, the GU-routines keep track of the last
beam position and the rectangular area (lower left and upper right
corners) containing the item. The area is used during pick processing to
eleminate items form consideration quickly.

GCUPXY : updates the current beam position and rectangular area

fields of IBUF.

Actual) packing into and out of IBUF is handled by COMPASS
routines for speed:

with entry points:
1 GCSET fill the next available byte in IBUF
GCSETW : Entry point set the Nth word in IBUF
: GCSETI : set a field in word N or IBUF for IL bits
- GCGET get bits from the 60 bit parameter (this
routine is used as an unpack for all of
INTERTEK)
with entry point:
GCGETW : Entry point get bits from the Nth word of
IBUF.
Parameters to GCGET and GCSET are passed through common block
GCBUF. It is the start bit of the get or set (60 -- 1), IL is the length
of the string to get or set, ISEXT is a flag set non-zero if the result is
' to be sign extended (get only).
!
i 98

2.6.4.3 Display File Construction and Manipulation

Three basic entities comprise the display file. FEach is created
by a different GI-routine:
GIDAE : create a display area entity
with entry point:
GIDAE] : reset zoom, window, and clip limits
GISUBF : create a subfile entity
GITEM : create a display item
Each routine merely stores the proper data items away. All use
GCRESI to reserve a Data Handler bead or incore block of the information.
The three are differentated by a call to FUNCTION GCGTYP.
Items are more complicated to work with because they are Data
Handler beads. The basic task of GITEM is to transfer the contents of
IBUF into the bead. Special purpose routines are available to get and set
information in the bead via Data Handler.

GCSSF @ set the subfile to which the item belongs
Entry Points:
GCGSF : get the subfile of the item

GCGLEN : get the length of the item

GCSLFT : set the left pointer of the subfile or item

GCGLFT : get the left pointer of the subfile or item

GCSRIT : set the right pointer of the subfile or item

GCGRIT : get the right pointer of the subfile or item

GCSONE : set the nth word of the item

GCGONE : get the nth word of the item

GCGLID : get the length of the ID block of the item
Bulk information (i.e., the contents of the displayable
information) is passes into and out of the item by:

GCGARR : get an array of information from the item
with entry point:
GCSARR : Entry point set an array into an item

In addition to setting up information in the item, GITEM is responsible
for updating the category list in the subfile. This category information
is used at pick processing time to see if any of the items are in a

99

processable category. The update is done by:

GCUPSF : scan the subfile of the item and add any new categories
to the list. Up to twenty categories can be in any one
subfile.

An item can be extended. This is especially useful when IBUF would
otherwise overflow:

GIXTND : extend the given item. (Note: -extensions are valid
only for the current working item; the next relative
move depends on the beam position information in IBUF).

Linkage of a subfile and its item is done at item creation. Subfiles and
DAE's are linked and unlinked by:

GISHOW : turn a subfile on or off in a DAE.

Two small routines are used to unpack and pack subfile and DAE arrays.
These arrays are the cross referenced subfile-DAE lists and the subfile
category list.

GCUNPK : unpack the list for a subfile or DAE into individual

words

Entry Point:

GCUNPC : when subfile categories are being checked,
they too need to be unpacked. GCUNPC
accomplishes this task.

GCPKSD : Pack a new subfile or DAE into the proper
Tocation (used by GISHOW).

As the display file is constructed, the programmer can modify it
in a number of ways. DAE's can be modified by:

GIZOOM : reset zoom window, clip limits in specified DAE.
Subfiles cannot be actively modified; there is nothing to modify except
the item list. The user can find out which items are in the list by:

GIRDSF : go through the subfile and return the IDDADS of the
items in it

An item can be modified in several ways:

GIALT : change set up information about the item (pickability,
zoomability, absolute position)

GIDUP : duplicate an existing item and link it into the same or
a different subfile. With GIALT this routine can
reduce the cost of copying.

100

RSPRTAY SAUuE Sy Pt SranuPathf | .o

3 GIRECH : items can be totally restructured by reclaiming them
into different subfiles or into a different order.
Two utilities apply to any IDDAD:
" GIENST : returns the type of IDDAD. If IDDAD is an item
additional information is returned
GIDELT : entity deletion. 1If IDDAD is a subfile, all items in
the subfile are also deleted. The current version of
INTERTEK doe not release item disk space to speed up
the process. Rather, it "“forgets" about the linkage
and keeps the display file growing from the rear.
Since the file is a scratch disk file, the approach is
reasonable. The code is easy to modify if the
alternate release-when-deleted strategy is desired.

2.6.4.4 Display File Processing

The use never sees the real display file processing routines in
his code. The structure of these routines is hierarchical: information
is formatted for one base working routine (GCWORK). When some cnart of
display file processing is needed a call is made to:

GCORAW : figure out what is being processed and how the
processing is to occur. GCDRAW handles:
1. A buffer of display commands already in core.
GITEM and GIXTND use this feature to avoid
reloading the array from a bead. This is
particularly valuable in GIXTND because the first
part of the item need not be redrawn.

2. Any individual IDDAD. The entity is always
redrawn. That the parameter is an IDDAD rather
than an array is flagged by a length parameter
ofl. If the IDDAD is a subfile, the user must 4
supply the DAE in which the subfile is to be ’
drawn (used by GISHOW). Otherwise, the entity is
: reinterpreted. F
! 3. If the LEN parameter is -1 or 0, the entire i
display file is redrawn.

101

4 The second phase (how full display file processing
occurs) applies only to Step 3. If the LEN paramter is
P 0, the display file is redrawn. If it is -1, the
display file is reinterpreted (but not redrawn) to
check if a crosshair input is on a visible line.
As GCDRAW works on a DAE or an individual subfile, it first loads
the clip limits, scale, and window center with:
GCOLIM : get iimits from DAE into common GCDR. It them
transfers control to:
GGDSF : interpret all items in a subfile.
Items, in turn, are processed by
GCDRIT : Interpret all display commands in an item.
Because items are really on disk, GCORIT attempts to optimize its
work by:
GCFILL : 1load array ISCR (common block GCGI) in increments of
LSCR. This applies to an extended item--as many of the
extensions as possible are loaded at one time.
A1l of these preliminaries set the stage for the worker of
INTERTEK:
GCWORK : interpret the contents of the array passed in.

The interpretation is based on the display 'language' described
in Figure 2.6.5. Much of the work is spent figuring out what type of
commands are in the buffer. The two major components of GCWORK (the draw
module and the pick interpreter) require further description.

The draw module is comprised of two pieces: a line drawer and a

text output routine. The line drawer is fairly simple. An initial point
is assumed. Each new coordinate is added. When the beam is off, the new
location is merely bumped. Else, the two points define a line. The
endpoints are scaled and translated to the DAE limits and then c¢lipped for
drawing purposes.
The text routine is a bit more complicated. First, text commands
can stretch over a split buffer. In other words, ISCR may be filled
f before all text in a string has been output. This requires some care to
retain the proper pointers when GCWORK is reentered with the rest of the
string. The hardware text is clipped by calculating the rectangle which

t 102

- v

the string occupies. A determination is made to see which characters are
actually visible. Finally, zoomed text is a problem because the original
character size is retained. The caiculated envelope of the character
string is much larger when the string is zooméd up, even though the string
is the same size. Therefore, the string is centered in its theoretical
envelope to retain some integrity.

The pick interpreter can ignore much of the clipping work. It
must find out if the point input lies on a Tine or in a text string. A
line must be visible for a strike to occur on it. A tolerance is assigned
so a user does not have to position the crosshairs directly on a line.
The software checks to see if the input points lies within the area of the
line. (Figure 2.6.12). 1If so, a check is made to see if the distance
from the point to the line is within tolerance through

d=Axg + Byg + C

(A2 + B2) 1/2

where Ax + By + C is the equation of the line in question and (Xq,Yq) is
the point in question (see Figure 2.6.13). The picked point must merely
lie within the rectangle of the text to be pickable (see Figure
2.6.14). GCWORK uses

GCC : see if point is clippable in this area
and COMPIO : low-level driver for asynchronous I1/0 to a Tektronix

4010 series direct view storage tube terminal.

2.6.4.5 Pick Processing

Pick processing is controlled by user definable categories. The
categories are numbered from 0-63 and take on meanings for various types
of picks. These categories are then used when determining if a pick is
legal or not. Each pickable item must be assigned a category when the
item is created by GITEM.

GICAT : assign an event type to a category. Legal types in
INTERTEK are ignore, single, string, parameter, and
button.

GCRCAT : retrieve the meanings assigned to a category

GCUCAT : unpack the categories to which this item belongs.

103

- e p——

-
Xp,Yp

FIGURE 2.6.12. RECTANGLE CHECK

Xz ’Yz

If Xp,Yp lies within the rectangle, the test

in Figure 2.6.13 is made.

X1,Y1

FIGURE 2.6.13. DISTANCE TEST

X2,¥2

d is measured after the line equation through

(Xl’Yl) and (XZ’YZ) is formed.

-—-————~—u——-——*_-

| TEXT STRING
L——-——-——-—-~———-——J
©
Xp,Yp

FIGURE 2.6.14. TEST PICK

Xp,Yp must only lie within the text envelope.

164

Creasm W e

AR T

in auuition to items, keyboard keys can be assigned to a single category
with
GIASID : Assign the category to the display code construct
given. No ID block can be assigned. A key press pi-:
can only by done if no display item was picked.
Furthermore, the pick will only be honored if the
category is a button pick type.
The actual pick processing is done by
GIBUTN : turn on the crosshairs and wait for a button pick. If
the pick is not a button pick, an entry is made on the
proper gueue (single, string, parameter) for later
retrieval. The actual processing of the pick is done
by GCORAW (0,1).
The other types of picks are retrieved from calls to:
GISNGL : format IEVENT, INF, ICAT, and ID for the pick on the
single queue.
Entry points: GISTR: retrieve next string pick information
from the string queue.
GIPARM: retrieve next parameter pick information
from parameter queue.
Each queue is maintained separately. If the queues have not been
emptied, the program can eleminate additional picks by
GICLRQ : eliminate single, string, and parameter queues.
Internally, much more work is done in processing picks than meets the eye.
Much effort has been made to make the pick processing as rapid as
possible. Two utilities aid in this process:
GCCHMM : see if the picked point lies within the rectangle
occupied by an item,
GCGMM : grab the minumum and maximum Timits (forming a
rectangle) from either DAE or an item,
The picked point itself is retrieved by:
GCINPC : return X and Y of picked point and the key struck to
generate the pick. X and Y are returned to 4096X4096
space.

105

A1l of this effort in pick processing is summarized by examining the
techniques for actual det~rmination of a legitimate pick as the display
file is interpreted.

1. Get next DAE in list. [If last DAE, pick not found.

2. Get clip limits. If picked point (PP) is not inside clip
limits, go to 1.

Get next subfile in DAE. If no more subfiles, go to 1.
Get categories to which the items in this subfile belong
(these categories are assigned to the subfile as items
are linked in). If there are no categories or if all the
categories are ignored, go to 3.

Get next item in subfile, If no more items, go to 3.

Get the categories for the item. If not in any category,
or if all categories are ignored, go to 5.

7. Get lightpen sensitivity flag. If 0, item is not
pickable, so go to 5.

8. See if PP is within the limits of the rectangular area
within which the item lies (this information is collected
as the item is being constructed.). If not in the area,
go to 5.

9. Begin item interpretation with GCWORK using the scheme
described in Section 3.4 If PP is not found go to 5;
else, found so we can quit.

The strategy behind this algorithm is to eliminate large areas as quickly
as possible. The display file can therefore be termed "area organized"
because its component parts (down to individual lines and text strings)
are looked at on an area-by-area basis before any attempt is made to
calculate actual distance to a line. In complicated displays, this proves
to be a distinct advantage over the test-it-all-because-its-there approach.

An adjunct to event processing is figuring out where the

crosshairs were when an event was generated.

GIFETS : return the coordinates of the last location of the

crosshairs,

An event need not be generated to use the crosshairs.

Occasionally, it is necessary to put the crosshairs up and let the user

106

saotion them to return some location on the screen as repositioning
nfaormation or the like,
GITRAK : turns the crosshairs on in a DAE for return by
GIFETS. The crosshairs will reappear on the screen . f
the user positions the crosshairs outside the DAE.

7.o.4.6 Text Input

wew

The technique for text input cannot be a true event in INTERTEK.
| ‘ne only mechanism is to use a read of some sort from the terminal. The
orogrammer can use a standard FTN READ statement or

GIRDTX : Returns a text string and the number of characters
input. GIRBTX reads from an internally connected file.
¢.6.4.7 Utility and Miscellaneous Routines

Because the Tektronix is a DVST, the screen must be erased.
GIDFON : erase the screen and redraw the display file if so
specified.
An audible tone will prompt (or wake up) a user:
GIALRM : issue a beep
Useful constants regarding terminal type are returned by
GCHIGH : return character height in 4096X4096 space.
Entry Points: GCWIDE: return character width
GCXMIN: return absolute XMIN for screen in
4096X4096 space
GCYMIN: return absolute YMIN
GCXMAX: return absolute XMAX
GCYMAX: return absolute YMAX
IMIN, YMIN) and (XMAN, YMAX) are needed because the number of raster on
~ne rectanglar Tektronix scope differs between the 4010-4012 and 4014.
Errors are reported in INTERTEK on file QUTPUT.
GIERR : prints the error from the number provided.
GITRACE: prints a traceback of where an error occurred.

107

2.7 STAGING Model Graphics

2.7.1. Medium-Level Graphics Routines

A series of routines have been written to insulate the
application from the perils of graphics programming using INTERTEK. This
adds some execution overhead for repeated subroutine calls, but saves much
re-coding and isolates graphics dependent code. Another set of Tow-leve!l
routines interface the INTERTEK paccage with the XY plotting package. The
final set that is graphics-oriented takes care of scaling for INTERTEK
based on zoom level.

2.7.1.1 Checks for INTERTEK

INTERTEK contains a buffer that may overflow. The buffer is the
graphics information collection buffer (IBUF in DRAWBUF). When large
display items are being constructed, this buffer is checked for overflow.
The following subroutine performs this activity.

ICKBYT : Check if the IBUF will be overfiowed. If so, generate

an item if the first pass, otherwise extend the item.
Normally only a call to ICKBYT need be made before a
GU- call.

ICKBYT automatically generates an item and saves the IDDAD if the
IBUF buffer is overflowed. Every time a buffer as filled or flushed, a
new item is generated or an old item extended by:

MITEM : Generates an item. The item will have the bead address
of the owner if the owner is a bead address. [t is
placed in the category for that bead level (ICATS
(IACTYP) in CATS. IACTYP is in common block PERMEN).

MEXTN : Extends an existing item.

2.7.1.2 Interface with XY Plotting Package

The XY-plotting package in STAGING is call-modeled on 4060 IGS.
Several routines have been changed to interface the plotting package with

108

INTERTEK. These routines allow normal high-level calls and lets the
programmer decide which pictures he wants in different items. This is
accomplished by variable IDDADI in ccmmon block IGSIGS. Setting IDDADI to
zero initiates a new item and a CALL METAZZ(0) terminates it. The program
can then do what it wants with IDDADI before resetting it to zero to
continue plotting. All features of IGS are pretty much standard except
the default object space has been set to 40696X4069 rather than 4096X3072
to take advantage of all of the screen. The mode array Z(118) can be
conveniently used through common block IGSCOM. A1l of the routines now
call ICKBYT to insure that IBUF in not overflowed. XY Plot routines:
ERRZZ : Just a RETURN statement to save core.
LINZZ : A new routine which draws a Tine with beam on or beam
off with GULIN.
METAZZ : Low-Level driver which formats all plot commands.
MODESG : Only calls RSETMG to initialize mode array.
RSETMG : Initiates mode array and scaling interface with the
Display and Edit scalers by setting AMIN and AMAX in
LIMIT to 4096X4096 and calling SCALST to set up the
scale factors.
SETSMG : Recoded to eliminate unused mode sets thus saving much
core.

2.7.1.3 Scaling and Coordinate Transformations

One of the more difficult tasks in INTERTEK is scaling because so
much depends on the zoom level. Therefore, a series of utilities which
communicate through common block LIMIT have been developed. The routines
which initiate scaling are:

SET1 : Gets the display space for the model from a substructure

SCALST : Set up a 1-1(-1) display space with the largest

dimension just fitting on the screen and the other

dimension(s) adjusted so they are centered. The
calculation is based on the zoom level {IZL in PIC) and
the scale stored in SCALE and the offset in OFFSET in
LIMIT.

109

Before a coordinate is displayed, it must be converted to the
cartesian system and scaled into rasters. For completeness the converse
for each routine is also provided.

CNVTOC : Convert the polar, cylindrical, or spherica)

coordinates in X, Y, Z in LIMIT to cartesian, replacing
X, ¥, 2.

UTORAS : Scale X, Y, Z in LIMIT user coordinates to rasters in
IX, 1Y, IZ in LIMIT. 1If in 3D mode, to the projection
before scaling by translating the point to the
original, rotating to align the eye, and dividing by
the perspective distance.

Entry UTORAT: Transfer the argument to X,Y,Z in LIMIT
before scaling.

CNVTOU : Convert cartesian coordinates in Z, Y, Z to user space.

RASTOU : Unscale rasters to user space. This converse works
only for two-space because the inverse projection is
not done.

Character sizes also depend on zoom level:

GETSIZ : Determine the size of a character depending on zoom
level to be the smallest character visible. The
calculation is returned in ITX1, ITX2, ITX3 in PIC.

As a model is drawn,the min and max coordinate values are traced
to allow utilization of the largest possible picture. GETCOR does the
actual trace while

UNSCAL : Sets current mins and maxes (CMIN and CMAX in LIMIT) to
ridiculous values (CHIGH and CLOW in EDITT).

2.7.2 Construction of Model

The primary concern in constructing a display in this system is
1imiting the amount of information on the screen as quickly as possible.
As the STAGING menu is traversed in this limiting mode, most of the
routines set up mechanisms by which the user can select portions of the
model to be displayed.

110

<w -.n-\ak'g%‘

[, C e e ,_.—_. ‘,._ ; L —

2.7.2.1 Initialization and Termination

The user must define what type of model he wishes ta display.
This can be two dimensions (2D), or three dimensions (3D). This
distinction between 2D and 3D is straightforward. However, the software
is sophisticated and permits any model to be displayed in either mode.
This total flexibility allows the user to look at his model any way he
wants to.

The following subroutines perform this activity:

INIT2D : Initialize 2D drawing mode.

INIT3N : Initialize 3D drawing mode.

The next step in Timiting the problem is to select the data base
ievel of interest. The following subroutines perform this activity:

STRACT : Set structures as the level to work on.

SSTACT : Set substructures mode.

ELEACT : Set elements mode.

NODACT : Set nodes mode.

These routines merely set TACTYP in PERMEN to 1, 2, 3, or 4.
Termination of a picture is user-controlied: The screen must be erased by
picking the ERASE SCREEN button. The following subroutine performs this
activity:

ERASE : Resets the screen to its initial blank status (except
for menus and the prompting message) by deleting the
subfiles assigned to the display for each level (array
IDSFM in common block PERMEN). The active mode and
element beads are deactivated. If the mode switches
from 2D to 3D or vice versa, a new display area entity
(IDAEM in PERMEN) is generated. Finally, a quess is
made for the initial scale by setting the scale to the
boundaries of the model. (NNTE: The screen may be
erased and the node or element beads not deactivated if
an X-Y or contour plot will be generated. The erase

i process is controlled by variable IERASE in PERMEN).

DA B

111

-

MJ STEL AERCE R

2.7.2.2 Construction and Destruction of a Picture

The contents of any bead on any level of the data base can be
displayed. Various mechanisms are available which activate the bead for
display. Elements and nodes are drawn immediately, while substructures
and structures require additional input. The base mechanisms for
activation include:

ALLON : Activate all beads on a level.

Entry point
ALLSON : Activate all nodes or elements in active
substructure(s) only.

ASERCH : Scan all beads for those that in active substructures

only fall within the typed-in range.
Entry point
ASERCHA: Search all beads on a level for the
attribute(s) falling within the typed-in range.

RNGORW : Oraw all elements or nodes from the user's typed-in

number range(s).

ASUBS : Activate structures or substructures in response to a

menu pick of names displayed.

Displays can be constructed from information already on the
screen. These techniques allow the user to draw all elements attached to
any one node or all nodes attached to any one element. The following
subroutines perform this activity:

. NODE : Draw all elements that own all the nodes on the screen.

LFNODE : Draw all elements that own each node picked by the user.

LFNOD : Make the call to IDRW for LANODE and LFNODE.

NODAEL : Draw all nodes owned by all elements on the screen,

NODFEL : Draw all nodes for each element picked by the user.

Drawing an attribute is a two-step procedure. The user must
define which attribute value is to be displayed and then which pieces of
the picture should have the attribute displayed. The followirg
subroutines perform this activity:

ACTATT : Save the attribute number from the attribute name

112

DRWATA :

DRWATT

picked in variable IACATT in ACTSTR.

Draw the attribute for all beads on this Tlevel that are
active.

Draw the attribute for each bead picked.

As well as drawing beads on a level, pieces of the display can be

removed and deactivated. Deactivating a bead does not delete it from the

data base. The analogous situation in which all but the picked items is

also legal. Obviously, erase is the way to delete the picture en masse.

ALLOFF :
DELPIC :
SSAQFF

SSOFF

RNGDEL :

RETAIN :

RETAIS

Delete and deactivate all beads on a level.
Delete and deactivate all picked beads on a level.
Deactivate all substructures or structures.

Deactivate substructures or structures from the list of
active names.

Delete and deactivate all beads corresponding to the
element or node numbers typed-in.

Jelete and deactivate all beads on a level except those
that are picked.

Initialize the RETAIN process.

2.7.2.3 Drawing a Bead

The actual drawing process is performed by functions oriented

about each level of the data base. A single routine, IDRW, will draw any

bead supplied by branching to the proper drawing routine. The following

subroutines perform drawing operations:

IDRW

The drawing controller. This routine will draw any
arbitrary bead if it is not currently displayed (a
non-zero IDDAD). If there is no picture, the prope:
drawing routine is called based on JACTYP ir PERMEN.
Once the picture is completed, the IBUF is flushed to
generate or extend the item corresponding to the bead.
A positive or zero value is returned by IDRW if no
errcr has occurred in the draw.

113

IDRWST : Draw a structure beat by drawing ail
substructures associated with it,

IDRWSS : Draw a substructure bead by drawing all elements
associated with it. This routine is ripe for
modification because repeated lines are drawn. Each
element is drawn independently but placed in the same
item,

IORWEL : The work horse of drawing. The bead is checked for a
proper number of down pointers. The routine then
checks if this elemént is an extension to an existing
[BUF (i.e. part of a structure or substructure). If
the element is to be shrunk, its center is obtained
(GETCEN). The actual display is generated from the
element type irrespective of the number of nodes. This
means that 'ROD' element can contain 50 nodes and stil)
be drawn properly. More complicated elements are drawn
using a connectivity array set up by routine ICON. The
drawing algorithms is contained in the second column of
array TELNAC in ELEMEN.

[CON : Used by IORWEL to set up a connectivity array far
complex solid elements. Other element types can be
added by expanding IELNAC and implementing the proper
drawing algorithm.

IDRWLN : Construct a line to (IX,IY,IZ} in LIMIT using the
INTERTEK software with either beam on or off. The
routine makes GULIN and the ICKBYT calls transparent to
IDRWEL.

IDRWND : Draw the node symbol specified. No checks ~~2ds to be
made on the IBUF length because only two GU calls are

present.
As well as drawing the physical model for any of the beads,
specific values can be displayed for any of the attributes present. The
following subroutines perform this function,

-

114

ARROW

IARSET :

IGETCH :

IDRWAT : Draw the bead (with routine IDRW) and
add the attribute value specified in
variable TACATT in ACTSTR. Each
attribute is drawn centered in the bead

(obviously, the center of a node is the
X, Y, Z coordinate, and the attribute
value is placed above the node symbol).
By convention, if IACATT is zero, any
drawn attribute is deleted and if IACATT
is greater than LENATT(IACTYP) (the
number of attributes in the list), the
name is drawn. Some nodal attributes
require graphical displays of arrows.
These are determined from array IATDRW
in IATTYP.
To ease the confusion of multiple attributes on the
same picture, an abbreviation for the attribute name is
displayed. Names and element types, are conventionally
uniabeled. If a graphics display is to be made, 1GETCH
puts the start and end coordinates of the arrow in PMIN
in PLANE.
Pack into IBUF with GULIN, draws an arrow that begins
and ends at the points specified. The direction
(towards or away form 0,0,0) is specified by the third
parameter. The arrow can be oriented arbitrarily in
space because the IARSET description is rotated to
align properly.
Define the points and connectivity for a single or
double headed arrow that is centered at 0,0,0 and
points along the X-axis.

Once a display is constructed, the picture needs to be redrawn
! occasionally to change plot limits, shrink members, or reflect changes

from editing.

The following subroutines perform the redraw activity:

115

DRWACN :

DRWARR :

DRWONE :

DRWNOC :

DRWSS

3

2.7.3. Results Displays

DRWACT :

Redraw all beads on the level specified
by IACTYP in PERMEN that are on the
screen. The basic technique is to
delete all active items for that level,
and then redraw them. This routine is
called by the Modify Picture routines
when required.

Entry Points

Draws all active beads but does not erase them
first, Used by deformed plot routines to
superimpose a deformed plot.

Draws all beads from the array specified in the
parameter list. Used by editing routines when
a series of up pointers are queued as being
affected by a change. For example, if a node
position changes, all elements owning it are
redrawn with DRWARR.

Draw the one bead in the parameter list used by
editing routines when a change effects the
display of that bead.

Draw all active bead even if there is no
display currently on the screen, Usecd
initially by DYFILM to insure that the active
structures and substructures are drawn.

Draw all active structure or substructures.
Callied from command tree 'DRAW PICTURE' button
in structures or substructures mode.

Four different results displays are available. Deformed and

of various kinds can be mo}

dynamic plots show how X, Y, Z displacements affect the model. Attributes

ded into X-Y plots or contour plots.

116

2.7.3.1 Deformed and Dyanamic Plots

The philosophy behind deformed plot mode is to set flags and 1t
the standard model drawing routines do the dirty work. Most prominent of
the flags is IDFLAG in DEFORM. If IDFLAG is greater than O, a time
dependent plot is generated through routine GETCOR. The time dependent
plot looks at step n (ISTEP in DEFORM) and accumulates the displacement
from steps 0 through n before plotting. If IDFLAG is less than 0, a mode
shape or load condition at step n is generated which adds only the
displacement at that one step. If IDFLAG =0, and undeformed plot is in
order.

Initialization and termination of deformed mode are handied by:

DYUNDE : Set undeformed mode (solid lines, IDFLAG=0).

Entry Point
DYDEF : Set deformed mode (dashed lines, IDFLAG=-1)
Deformed mode stays in effect until the user sets undeformed mode again.

When drawing the deformed plot, the IDDAD of the last display
drawn (deformed mode) stays active. The only way to remove the original
undeformed plot is to ERASE the screen. The actual deformed plot is drawn
from all active bead with:

DYDRDE : Draw deformed plot for all active beads.

The other deformed routines set up user type-ins.

DYLOAD : Put up the LOAD STEP type-in for deformed plots.

Entry points
DYMODE : Put up MODE SHAPE.
DYTIMS : Put up TIME STEP.
The processing routines allow the user to set:
DYSFPR : (entry to DYSFPU) Set variables SFACT or TIME in
DEFORM based on a flag stored in NAMES(2) in EDITT.

DYSSTP : Set ISTEP in DEFORM.

Dynamic plots are somewhat more complicated than deformed plots.
The user again sets up parameters before initiating the plot procedure.
These parameters include:

117

L eSS : v ~—-

DYSFPR (entry into DYSFPU): Set up SFACT or TIME in DEFORM,
DYSLIP (entry into DYSLIC): The user can extend the dynamic plot
to inciude all steps between IST and
IEND in EDITT, DYSLIP assigns those
values.
DYSLIC : Put up range for dynamic plot steps.
When dynamic mode is completed, undeformed mode is reset.

2.7.3.2 X-Y Plots

X-Y plots are ultimately produced with routines on XYGRAPHPL
which are call-modelled on IGSA060. These routines draw X-Y plots from
arbitrary data sets. The routines in this section do little more than
setting parameters in the mode array and collecting the data to be plotted.

As in other results displays, the user can select the piece of
the data base for which the display will be generated by constructing the
model on the screen. The following routines perform screen erase and
initialization for the X-Y plot node:

INITXY : Begin X-Y plot mode by setting default plot parameters

and erasing screen.

XYERAS : Erase the screen, but leave all active beads active by
setting IERASE in PERMEN and calling ERASE. The
parameter also sets a special activate-but-do-not-draw
when the user activates more data for plotting.

Entry points

XYRET : When in the X-Y plot moduie, the user can erase
the plot he has just constructed. To retain
consistency, all active nodes and elements are
deactivated but the activate-no-draw mode stays
in effect.

XYRET1 : Leaving X-Y plot mode erase the screen,
deactivates active nodes and elements, and

returns to activate and draw mode for nodes and
elements.
118

Reatianbdsaamea e iaag i ok oo

The user actually activates data with the same tree and the same

—p—

routines as he does in constructing the model. He must then select whirh
attributes he wants drawn on the X and Y axes. When he picks the
attribute, the following routines are used:

GETDAT : Collects the data from the attribute selected for the
proper axis from all active beads of that type. If it
is the X-axis, the values are sorted into increasing
order.

PROCXA : Selects the X-axis for data collection.

Entry point
PROCYA : Selects the Y-axis for data collection.

TABRDR : Redraw one line on graph.

REPXY : Replots an X-Y piot to reflect new plotting options
selected later.

RSCXY : Rescales the X-Y plot for the absolute min and max for
all curves displayed and redraws it.

SORTXY : Sort the X- or Y- data in ascending or descending order.
When working with tabular data, a different set of routines is
responsible for activating data. The major processing routines (GETDAT
and PROCXA) have modifications in them to retrieve from a single table
rather then geometry-oriented data.
TABACT : Determines which tables are plottable
(from IDBFTY)
Entry points
TABACX : put up table names for choice as x-axis |
TABAXY : put up table names for choice as y-axis
TABPRC : Process table pick and put up type-in box for user
selection of pertinent data to plot.
TABDM : Process type-in for part of table to plot.
TABVAL : Lets user retrieve values from table
TABIND : Treats pertinent array as subscript values. Useful

when plotting a singly dimensional array.
Entry point

{
\ 119

TABVAL : Use the table as values.

The user has control over a large number of features about graph
style as well as its contents. These choices include grid style (full or
tick marks), titles (X and Y axes and graph), scaling mode (linear/linear,
linear/log, log/linear, log/log) and plot style (solid, short or long
dashed lines, point plot, or connected point plot). These parameters are
set initially and can be reset through:

INTFLG : Set up initial plot style to be linear/linear, tick

marks, XTITLE, YTITLE, GRAPH TITLE, solid line plot,
Entry Points
GSFUL : Set full grid.
GSGXGY : Set linear/linear.
GSGXLY : Set linear/log.
GSLXGY : Set log/linear.
GSLXLY : Set log/log.
GSTIC : Set tick marks.
LSLDH : Set long dash plot.
LSPLN : Set point and line plot.
LSPNT : Set point only plot.
LSSDH : Set short dash plot.
LSOLD : Set solid line plot.

PROCCHR: Set new plot character from type-in.

PROCTIT: Set new X and Y axis and graph titles from type-in.

QTITLE : ODisplay old X and Y axis and graph titles

PROCTIT: Set new X and Y axis and graph titles from type-in.

The user can set new limits for his plot that will be constant
until changed. The term AUTO means that Display and Edit will
automatically scale the data as it is retrieved.

TABXYP : Process type-in of new XMIN, YMIN, and XMAX, YMAX

The sort order (in SORTXY) can also be changed by

TABXI : Sort X increasing

Entry Points
TABYI : Sort Y increasing (default)
120

TABXD : Sort X decreasing
TABYD : Sort Y decreasing
TABYN : Do not sort X
TABYN : Do not sort Y (default)
Individual lines in the plot can be changed as well:
TABPEN : Activate lines on graph for pick
TABLIN : Work on the line picked
The line style of the curve can be changed by the entry points of
INTFLG or with:
PROCCHR: Change plot character
Every nth point can be plotted:
PROFAC : Set new repeat factor
The picked line can be deleted:
TABDEL : Delete line and squeeze other down.
The scale/offset of each line can be changed. This is useful if
looking at tables with data in different units (i.e Volts/mullivolts). ;
TABSCL : Change scale/offset 5

2.7.3.3 Contour Plots

The contour plotter in the STAGING system is limited to

contouring an attribute value at points in the Z=0 plane defined at nodes
or element centroids. Currently a maximum of 128 points may be contoured.
The following routines do the work:

CNTINT-- Initialize contouring default values in common block
CNTDE.

GETCNT-~ Fetch the attribute data from the data base from the
activated nodes and elements. The data is stored in
common block CNTDE. [Integer data is converted to
floating point. Mins and Maxs are calculated.

CNTPRD-- Put up current contour parameters for user modification
via type-in.

CNTPRE-~ Edit and accept typed-in parameters.

121

AL A A A

CNTOR -- Main contouring subroutine which calls
the routines below.

CONHUL-- Determine convex hull of points in plane to be
contoured.

TMESH?2-- Create triangular mesh over the convex hull.

TMESH3-- Iteratively improve triangulation by using other
quadrilateral diagonal if it increases the minimum
angle between triangle edges.

TRIORD-- Perform a reordering of the line indices so that
attribute value at initial point is less than or equal
to attribute vaiue at terminal point.

SCAN -- Trace through the triangular grid to extend contour
lines for each requested value.

The user has control over number of contour levels, the values of

the contour levels, contour plot labeling, and using scale factors on the
contour value labels,

2.7.4 Modifying the Picture

Various mechanics are available for modification of a constructed
picture. This section will discuss“these functions in the order in which
they occur in the command tree.)

MORDRW : General redraw of active beads.

2.7.4.1 Split Screen

The user can generate up to a four-way split screen. The number
of splits active at one time is kept in NUMSPL in PERMEN. When SPLIT
SCREEN is picked, the working DAE is moved to occupy a smaller area. The
following routines perform this activity:

MOSPLT : Decrease the zoom of IDAEM (if necessary) to fit the

next split on the screen. The routine creates a new
DAE for the split information. Then erase the screen.
122

* o i it

[f NUMSPL = 4, the request is ignored.
SETWZ : Reset the virtual window and picture limits to existing
DAL with GIZOOM.
The user can generate a free or frozen copy of the working DAE
(IDAEM). A free left side shows the existing subfiles in the blank DAE.
This means that any modification to the display in IDAEM (except local
modification) will be reflected in the new DAE. A frozen left side copies
all shown items, making them impossible to change. The following routines
support this activity:
MOFRZ : Show all subfiles in the new DAE (IDAEM (NUMSPL) in
PERMEN).
MOFRE : Copy all items in IDAEM to IDAEM (NUMSPL).
The following routine deactivates the split screen mode: 1
MOSOS : Delete all DAE's and subfiles except the working DAE
(IDAEM IN PERMEN) and subfiles (IDSFM (1-4) in PERMEN).
Then erase the screen.

Erasing the screen only erases the working area. The remainder of the
: image.is left intact in the display file.

2.7.4.2 Shrink Members

A shrink capability allows each element to be drawn at 80% of its
normal size. This generates a slot in which adjacent element boundaries
will not overlap in either 2D or 3D. The following routines perform this
activity:

MOSSHK - Set shrink mode (SHRINK = .8 in LIMIT)

Entry Point
MOUSHK : Termination from this segment. Sets SHRINK
vack 1.0.
MOASHK : Shrink all members on the screen. If a substructure is
drawn, all elements in the substructure will be shrunk.
i MOISHK : Shrink only the members picked.

123

/
_‘ L , i i

2.7.4.3 Change Plot Limits

The user can enter new plot limits in three coordinates systems,
The picture will then be rescaled to the new limits. For entering the new
limits from the keyboard:
MOREC : Sets rectangular entry mode.
MOCYL : Sets polar or cylindrical entry mode.
MOSPH : Sets spherical coordinate mode.
The user can also fill the space up from a constructed model with:
MOFILL : Rescale the picture to the current mins and maxes (CMIN
and CMAX in LIMIT) seen since the last screen erase.
This means that CMIN and CMAX are not readjusted if
items have been deleted from the screen without erasing
the entire screen.
The actual work is done by:
MODRW : Redraw the picture if the limits have really been
changed.

2.7.4.4 Restore Original Picture

The following subroutine is used to restore the oriéinal picture:

MOZSRS : Restore original picture by (1) restoring the working
DAE to full screen and its initial zoom and virtua)
window and (2) unshrinking all shrunk members. The
current perspective and rotation is kept.

124

2.7.4.5 Perspective View

This feature applies only to 3D mode. The user can change the
ten word view control array (VU and VU3D) by typing in new values for eye
position, point looked at, and projection plane.

SVIEW : Process the typed-values. A null type-in restores to

the current view, thus eliminating any rotation.

SETVU : Calculate the new view. Calculate a perspective or

orthogonal rotation menu.

Table 2.7.1 and Figure 2.7.1 illustrate the meaning of the
various viewing parameters. The user can display a 3D model in 2D mode.
In this manner, the user can change with lightpen in the X-Y, X-Z, or Y-Z
planes. The new projections are done with:

FRONTVU: Set X-Y plane
SIDEFU : Set Y-Z plane
TOPVU : Set X-Z plane

2.7.4.6 3D Axes

In 3D mode, axes centered at (0,0,0) of the display and oriented
along the user's X, Y, Z coordinate system can be drawn.

MOAXES : Draw the axes with ARROW and label them with MOLAX.
The item IDDAD is stored in IERASE in PERMEN. (IERASE
is a (-,0,+) switch exclusively; an IDDAD is always +).
The axes are arbitrarily placed in IDSFM(1). Picks to
MOAXES act as an on/off switch. If the axes are there,
they are deleted, and vice versa.

MOLAX : Label 3D axes with the characters X, Y, and Z.

2.7.4.7 Rotate

In 3D mode, the user can type in new values for angles. They are
processed by:

SROTET : Rotate image from host.
125

TABLE 2.7.1.

THE VIEW CONTROL ARRAY

NAME

MEANING

PERMISSIBLE VALUES
(Any Numeric Type~in is in the
User's Coordinates)

X LOOK AT
Y LOOK AT
Z LO0K AT
X EYE
Y EYE

Z EYE

PROJ PLANE

(FRONT CUT

BACK CUT

CONST INT

CONST INT

X, Y, Z Coordinates of the
point you wish to look at

on the model. Only mean-

ingful when a perspective

Projection

X, Y, Z Coordinates of your
eye. If none specified at
infinity, a perspective
projection is made.

The projection plane for
the closer the projection
plane to the point looked
at, the larger the picture.

A distance from the point
looked at that controls the
cutoff planes. The front
cut is the distance along
+Z, the back cut along -Z.
If both are zero, the

const int parameter takes
over. A depth cut between
FRONT and BACK is generated

otherwise constant intensity

from parameter CONST INT is
used,

Constant intensity

an X, Y, Z in the model. 1If
the character Clenter] is
entered, the center of the
model is calculated as the
point looked at.

An X, Y, Z outside the volume
occupied by the model. An
entry of +1 or 1 yields in an
orthogonal +» and -1, -,
Clenter] means the same as for
point looked at.

A distance from the point
looked at. 1If 0, a distance
halfway between the point
looked at and the eye is
calculated.

Any positive value.

1-16 (not implemented in Tek-
tronix version of STAGING)

126

. o vasm— - . ' N
@y - T
= - Ve e v i—m e e —— e
i > PPV -

(XEYE, YEYE, ZEYE)

Back Cut

X

[X LOOK AT, Y LOOK AT, Z LOOK AT}

FIGURE 2.7.1. 3D VIEW CONTROL

The current rotation angles are displayed by

SROTST : Put up current rotation angles and a.. for increments.
2.7.4.8 Zoom

A general zooming capability is provided by the following
routines:

MOBOTH : Reset zoom and virtual window for IDAEM to its initial
(value of IZL, IWX, IWY in common block PIC.

MOZPLS : Zoom one level more (enlarge).
Entry
MOZMIN: Zoum one Tevel less {(compact).

MOZCRS : Zoom around crosshairs.

MORCNT : Recenter display file around crosshairs.

2.7.5 Editing the Model

The editing portion of STAGING is general in nature for the user
contrclled variables in the data base: attributes, down pointers, and up
pointers. Complications occur in the code because changing one piece of
the data base may effect several different images on the screen. Most
notably, changing a nodal coordinate will affect the display of all
elements that own it. Deleting parts of the data base has the same
tendency to change the display of its owners. Creating new beads on any
level will not effect the display until Tinked into the data base with up
and/or down pointers. A1l editing routines use data base routines to
incorporate the changes.

2.7.5.1 1Initialization and Utility

The key to editing is the same as for displaying. The user must

activate specific beads on a unique level to edit. The following routines
are called when 'CHANGE FEATURES' is entered.
128

(g —— —y ™

-

EDINIT : Sets no beads active for editing (all
beads of this level on the screen) if
this is a change in data base levels
(i.e. NODES to ELEMENTS) or the first
time editing has been entered for the

level. Otherwise, the currently active
beads for editing remain active until
'ACTIVATE FOR EDITING' is picked.
ECHNIT : Eliminate the active for editing list when 'ACTIVATE
FOR EDITING' is picked.
The active for editing list is kept as two lists (IACTL and

)
IACTH) in CREATR. These lists, both of length LACT, hold the left and
right ends of a list that is scanned (IACTL(I) to IACTH(Il) for I=1 to
IACTPT) during the actual editing phase. The user can construct these
*

limits through:
ESLOT : The base routines for activation. The routine fills
IACTL and IACTH until LACT is overflowed.

EACTPN : Activate a bead from a pick on a displayed item.
Entry Point
EACTP : Activate a bead from a displayed structure or
substructure name.
EALLS : Activate all beads on the screen.
Entry Points
EALLD : Activate all beads for this data-base level
EALLSS : Activate all beads in the active substrutures.

ETYPSV : Activate all node or element numbers typed in.

When a change is made to a bead that affects its owners, the edit
module will redraw all those owners which are displayed to provide
immediate visual feedback of the change. The up pointers are saved in
groups of 20 to minimize the number of times a bead is redrawn by:

EQUEUP : Saves the up pointers for a bead. Each up pointer can

occur only once in the list. A parameter of zero
' flushes and redraws the up pointer list,

Because different modes are available for activating beads for

129

editing, the following higher level traverser is used when more than one
bead must be changed:
IENEXT : Returns the next bead in the string by managing the

IACTL and IACTH lists. The links are followed hased on
ICFLAG in CREATR, which is set during activation for
editing.
Entry point
IENIT Initializes TENEXT

2.7.5.2 Changing Fields in a Bead

The user hac access to the attribute 1ist and up and down
pointers in any bead. In the edit phase, he can change attributes for
more than one bead. He is constrained to work on only one bead when
changing up and down pointers.

2.7.5.2.1 Changing Attributes

Two modes of operation are allowed. The multiple bead mode
(where more than one is active for editing) allows the user to change any
or all attributes to a new value. The single bead mode allows the user to
change any field (including the name) from a Tist of current values in the
bead. The same routine handles both modes:
EATS : Start the display of attributes for changing by calling
EATF.
Entry point
EATCH : ODoes the actual work of changing attributes.
If a currently displayed attribute is
changed, the bead is redrawn. If a node
point is changed, all displayed elements that
own the node and the node itself are redrawn.
Changing an element type also triggers a
redraw.
A special editing mode is available for 2D displays. [f one node

130

[RTVRS PN 'J

!

is active for editing or newly created, a new (X,Y) value can be assigned
by moving the crosshairs:

MXYI : Initiate tracking.

MXYp : Process the move by getting the coordinates of the
tracking symbol, converting them to user coordinates,
and redrawing affected nodes and elements.

TRKOFF : Turn tracking off (crosshairs).

Entry Point
TRKON : Turn tracking on.

EMOVE : Put up centroid of node, element, or substructure.
Entry Point
EMOVEP : Process move.

EUPPNT : Do work updating pointer(s) in node, element, or
substructure,

2.7.5.2.2 Adding and Deleting Up and Down Pointers

Modifications to up and down pointers are limited to one bead at
a time. This constraint has been chosen to simplify user interaction.
The main mechanism for the user to specify up and down pointers is by use
of the crosshairs. He may select any bead currently displayed on the
screen or choose from a list of numbers or names. As a last alternative
he may also type in values. Subroutines DBUPT and DBDNT do the majority
of the word. A1l routines take care of cross-linkage automatically. For
example, if a down pointer is removed from a bead, the bead is removed
from the up list of the owned bead. The following subroutines are used:
ECHOND : Initiate down pointer mode.
Entry Point
ECHONU : Initiate up pointer mode
EADOWN : Add down pointers from a lightpen pick of a displayed
item. The picture is redrawn for the bead after all
picks are processed.
Entry Point
EAUP : Same as EADOWN, but for up pointers.
131

s Prratiamdoplh, J

Entr
ERDD

_ ERDO

ERDU

ERD

ENDOWN :

ERNDLD :

Adding ele

ERDOWD Set parameters for ERD to remove a down

pointer from a name or number displayed.
Used on structure and element levels.

y Points
Same as ERDOWN except remove is for a displayed
item. Used on structure, substructure, and
element levels.

WU : Same as ERDOWN except remove is for up

pointers. Used on substructure, element, and
node levels,
Same as ERDOWN except remove is for a displayed
item's up pointers. Used on substructures,
elements, and node levels.
Remove up or down pointer. Checks are made to insure
that the pointer is legitimate befor the removal is
attempted.
Add down pointers by picking the name of down
pointer. Used for adding to structures.
Entry Point
ENUP Add up pointer by picking the name of
the up pointer. Used for adding to
substructures and elements.
Delete down pointers from a structure or element from
a list of the down pointers.
Entry Points
ERNADD : Add down pointers to structures from the
list of the available down pointers.
ERNADU : Add up pointers to substructures or
elements from the list of available up
pointers.
ments to substructures provides the user more

mechanisms than the set listed above. Included in the repertoire of

i substructuring techni

ques are collecting elements with certain attributes

or within a specified geometric region through:
132

PLINIT :

PONPEN :

ESERCH : Look for elements that have particular
attributes and add them to the active

substructure.
Set up initial volume to search which is bounded by the
limits of the current display.

In 2D mode, the user can position a rectangle with

crosshairs over the desired region.

Entry Point

PCOLL : Reads up the coordinates of the rectangie
after positioning.

PTYPE : In 3D space, the user can type-in the coordinates of the volume

which are processed by this routine.

PORG : Do actual search and add operation for elements totaliy within
the volume bounded by PMIN and PMAX in PLANE.
Quite often a user has made an error in the node list of

elements. In this case, he may substitute one node for another by:

ELREPL :

Process type-in for nodal replacement.

2.7.5.2.3 Creating New Beads

A user can create new entities on any level and define attributes

and up and down pointers with the tools in the previous section. The

actual processing and creation operations are done with:

ECREAN :
ECPROC :

TECPRC

Initiating name type-in for creation.

Process name type-in. A new slot is created with this
name if there is no occurrence.

Does check to see if typed in name is in the data base.

Substructures and structures can be merged to provide a newly created bead

on either level containing the down pointers from both. The technique

looks at the down pointers of the other substructures with:

EMERGE :

Add down pointers from each structure or substructure
picked to the newly created bead.

133

2.7.5.2.4 Deleting from the Data Base

When a bead is deleted, all beads on the level above it are
affected. Therefore, up pointers are queued with EQUEUP as well as the
actual deletion operation in:

EQPEN : Delete the bead corresponding to the displayed items.

Entry Point
EQPENN : Delete the bead corresponding to the
displayed name (substructures and structures).

EQNUM : Delete the bead corresponding to the displayed number

(element or node) typed in.

134

[
i
!

2.7.6 Graphical Input

The user is allowed to pick items on the screen other than the
menu generated from the command three. In general, these are variables
dependent on the data base and displayed in pictorial form as a wire frame
model or as textual information in the form of attribute names or bead
name.

2.7.6.1 BASICS

The picking mechanics allow the program to selectively turn the
"pickable" attribute on and off for different parts fo the model. Each
level of the data base displayed belongs to a different category (ICAT in
CATS). Each category may have a different pick meaning (MEAN in CATS).
Only pickable displayed text resides in CATS(5) and MEAN(5). These arrays
allow different parts of the display to be pickable an any one time. The
pickability is initiated by setting a member of CATS to an event type
other than ignore with:

SETCAT : Set the category for the data base tevel (1-4) or text

(5) to the event type specified.

2.7.6.1.2 Picking Displayed Data Base Beads

The usual means of activating the crosshairs on allows the items

on a level to be string pick sensitive with:

ONPEN : Make all items on this level (IACTYP in PERMEN)
pickable. If none are currently displayed, issue an
error message.

Entry Points
ONPENA : Turn on all beads as single picks.

ONPENE : Turn on elements as string picks (for
activating nodes by elements).
ONPENN : Turn on node as string pick (for activating

135

Hiaiiie 2% T L PO

elements by nodes).

ONPENP : Unused.

ONPENS : Turn on all beads as string pick.
NODON : Check if nodes are pickable before ONPENN is called.
EONPEN : Turn on crosshairs in editing.
EONPND : Activate crosshairs for next level down in the data

base.
The processing routine then works on the picked items until the
string is exhausted (ID(1) in IDENTS is zero).

2.7.6.3 Picking Text Items

Picking text items requires construction of the 1ist of names
before picking can occur. Utilities are available for putting various
types of text on the screen.

The same problem occurs here as it does in text-editing. There
may be too much information to display at once. In this case, an
auxilliary entry point is provided for the processing routine to call when
the last ID of the set is processed. The second entry point checks to see
if there is more to display and puts it up if needed. A flag is returned
to the processor indicating that there may be more picks from the new
information. The IER flag in ERROR is then set to override the command
tree action so the command tree stays where it is rather than taking its
normal action.

The two basic routines put up bead names or attribute names:

TYPNAM : Display the names of the beads in NAMES (IST-IEND) in

EDITT in the menu area as string picks. The ID block

of each item corresponds to the bead address.

Entry Point

TYPVAL : Display the alphanumeric string in NAMES.
SELATT : Display the attribute names with a NAME or NUMBER

descriptor and a DELETE ATTRIBUTE choice. The ID for

each attribute is its position in the attribute list.

136

The items are set up as single picks.

Entry Points
SELATC : Continue 1ist is LENATT(IACTYP) is greater
than MAXSCR until list is exhausted.
SELAT1 : Used in X-Y and contour plots to display all of
the above except the DELETE ATTRIBUTE choice
when choosing data for an axis.

2.8 Material Property Data Base (MPDB)

2.8.1 Introduction

The MPDB 1is split into two levels - a master bead and a number of
specific material beads. It is in Data Handler format. The file
informatidn and the format of the beads are described below.

2.8.2 MPDB Modification Procedure

The STAGING material property data base (MPDB), accessed by the
user in the pre-processor module, can be reconstructed, changed, or
modified using the following cataloged procedures. These procedures are
available on file PROFIL, ID = STAGING3. See Appendix A for procedure
listings.

Create
Procedure Name: MPDBNEW
Input: - None
Output: - PFN = MPDB, ID = STAGING (automatic catalog)
The created file is a basic skeleton MPDB and does not contain
any materials. New materials are then added using procedure MPDBADD.
Add or Revise:
Procedure Name: MPDBADD
Input: LFN = TAPEl - formatted input of material (see below).
1fn=MATER, pfn=MPDB, id=STAGING (automatic ATTACH and
EXTEND)
Output: Modified MPDB
Print file output
Input Instructions for Tape 1
Adding to or revising the STAGING Material Property Data Base
(MPDB) consists of preparing a formatted input file (1fn = TAPEl) and
running the procedure MPDBADD. The following describes the card formats
of TAPEL.

138

Control Card - {15)
NOR - Number of Requests (Addition + Revisions)

The following group of cards must be supplied for each of
requests.
Material Identification - (2Al-, I5, F10.5)
GENI - Generic Name of Material, e.g. STEEL, ALUMINUM
SPCI - Specific Type of Material, e.g. $S307, 6061,T6
NPT - Number of different temperatures for which properties
are defined (maximum 10).
RO - Mass Density of Material
Material Property (4F10.5) - One Card for each temperature
TEMP - Temperature

E - Young's Modulus
- Poisson's Ratio
- Coef of Thermal Expansion

2.8.3 MPDB Format

File Name = MATER
Logical file number = 5
Buffer = IBK in common block MATDB
Buffer length = 160
Block size = 2 PRU's
Bead Format =
1. MASTER BEAD - 21 words
2. SPECIFIC MATERIAL BEADS - 45 words
MASTER BEAD
Word 1 - No. of Generic Names - Integer

Word 2 -
to 10 - Generic Names - Alpha
Word 11 - Unused
Word 12
to - Address to specific Material - 0
Word 21 - Bead

139

SPECIFIC MATERIAL BEAD

Word
word
Word
Word
Word
Word
Word
Word
Word
Word

Word

-y

1

W 00 v O o A w

—
(o)

E-3
[Sa

Specific Name

Bead Address for Next Specific Material Bead

Unused

Material Density

No. of Temp. Points

Temperature (Tj) - Real
Young's Modulus at T3 -
Poisson's Ratio at T -
Coff. of Thermal Expansion at Tj
Temp. (Tp)

Coeff. of thermal exp at Tjqg

140

- Alpha~numeric

2.9 STAGING Code

2.9.1 Overview of STAGING Code

Two concepts were used to make the STAGING system as versatile as
possible. First, a top-down strategy was employed. Secondly, many
concessions were made to make the code as easy to add to (or delete from)
as possible.

The top-down strategy dictates that routines be as modular as
possible. STAGING has a proliferation of routines that serve one purpose
only. In this way, much code does not have to be rewritten to change the
way it functions. This will simplify future modification greatly.
Generally, only low-level routines will need to be changed if the current
technique does not appear adequate. When similar strategies are employed,
rcutines are grouped with entry points and switch settings. The entry
points are named similarly to the main subroutine name to help locate
them. Again, this should make modification of tow-level algorithms much
easier.

Code modification is a traditional problem is working with large
systems. Constraints abound that are hardwired to a specific constant.
For example, a buffer may be defined to be 100 words Tong and every time
that length is used the programmer has written '100'. When the buffer
needs to be increased or decreased in sizes, all those references to '100'
must be changed. This problem can cause large amounts of time to be
wasted because there is invariably one more reference that was not found.

To avoid this problem, STAGING uses many variables to indicate
lengths of important pieces. The only hardwired constants in the code
refer to the data-base levels of l=structure, 2=substructure, 3=element,
4=node and 5=tables. This concept of geometric grouping through the data
base has proved to be most flexible for the problems thus far encountered.
The five levels are the most fixed concept in the entire system and the
code Tooking at the levels uses constants throughout, especially when
differentiating between the low levels of elements and nodes and the high
levels of structures and substructures. Other instances of 'hard-wired'

141

il

code may exist, but the general rule is that the code uses variables
throughout. All of these variable are set up in common blocks (with
UPDATE COMDECK's) and initialized in one of the block data routines or
assigned in the initialization routine for that module.

Variable names are as mnemonically descriptive as possible. To
assist in figuring out the meanings, comments are provided with each
'COMDECK' listing the meaning of each variable. Names generally follow
the FORTRAN naming conventions. When a variable needs an 'INTEGER'
specification, it is contained in the COMDECK for that variable. New
routines will never need to make a COMMON variabie INTEGER or REAL.

File manipulation is handled through FORTRAN callable
subroutines. A1l local files that need to be attached are returned hefore
use to prevent system errors caused by illegal permanent file utilization,
The systems programmer needs to be aware of the following local files:

OQUTPUT - Location of errors from NSRDC Data Handler and

conversion routines. Can be connected or disconnected
before execution. The file is not returned or rewound
before use.

TAPEO - The permanent file for the user's data base.

DESKRCH- To prevent system failure from destroying TAPEQ, the

user really works on local file DESKRCH, which is a
literal copy of TAPEO.

DANDE - File for menus for DISPLAY and EDIT.
GLOBAL -~ File for menus for GLOBAL commands.

EXEC - File for menus for EXECUTIVE.

PREP - File for menus for PREPROCESSOR commands.
POST - File for menus for POSTPROCESSOR commands.

MATER - Material Property Data Base

The code in all routines is FORTRAN with the exception of a few
specialized routines for character manipulation and permanent file
utilization written in COMPASS.

The code is written to utilize the CDC segmentation loader. This
implies that only constants are initialized by DATA statements. When a
constant could change, the variable must reside in a COMMON block that is

142

‘ ‘saved' in the segmentation environment. The FORTRAN trick of putting a
DATA statement in to initialize a switch does not work in the segmentation

environment without the COMMON save feature.

A concession was made for core savings because the FTN compiler
uses quite a large amount of space for argument lists. Because of this,
argument lists are short and used only when needed. Many values are
passed through COMMON blocks. Functions are also used extensively,
especially when a single value is to be returned.

The code uses the INTERTEK and NSRDC Data Handler packages
extensively. In order to allow code to be transported to other devices,
{ as much centralization of routines which use these packages has been done
as is practical.

One of the features of STAGING is the ability to recover from
unexpected errors. These errors can be internal in the program (such as a
mode error), or caused by the user (user abort). The same general
technique is used to recover all errors.

The error recovery package uses system PP routine RPV to i
guarantee that STAGING cannot be aborted easily. The recovery procedure
i5 initiated by a call to routine MARK, which is part of the Battelle
error recovery package. MARK flags the location where the recovery
package will return when an execution termination condition is detected.

Once recovery in initiated, the fateful question 'DO YOU WISH TO
CONTINUE (TYPE Y OR N)? is asked. If the answer is 'N' or ‘'NO', the
system returns to INTERCOM command mode.

Typing anything else resumes execution. The internal STAGING
recovery process is straightforward. The general cause of an abort will
be during construction of a display. The user can abort a long running
display construction manually by typing %*A. The reaction is the same in !
ail cases.

[

The menus are picked up at the same spot where they left off.
The ERASE routine sets up the proper subfiles and DAE's to allow another
picture to be constructed. The ERASE mode is kept constant as beads will
not be deactivated if the X-Y or contour plot modules are being executed.
143

-~

As an aid to the system programmer, the options of DMP and DMPX
are available at recovery even through they are not advertized to the
user, Three listings are handy at this point. First, a listing of
STAGING with the FTN R=1 cross-reference map is adequate. This allows
rapid access to specific variables relative to the start of any one
subroutine. Second, a segload with a partial map lists the start of all
subroutines in the application. Third, a listing of the appropriate
command tree is mandatory of find out what routine was called for a
particular button.

Logic errors do occur. They can be easily traced, however, with
the proper Tisiings. The most effective technique is to abort the
program. This invokes the recovery package and core can be examined at
ieisure with the DMP option. The Alphanumeric dump feature is imperative
for finding out what segment is in core at any one tire. The R=1
cross-reference map will then give the proper pointer to the variagble(s)
in question.

Mode errors can also occur. These automatically invoke the
recovery package. Mode 1 errors are generally caused by incorrect
segmentation. The problem areas must be traced through the recovery
package OMP option. The usual reaction is one of shock to find a
particular segment in core. Mode 2 errors generally result from undefined
variables in the data base. Using the DMPX feature of the recovery
package, the UNDEFined flag in STAGING can be looked for in an X register.
The unique value is 40007654321076543218.

[f necessary, intermediate prints can be placed into the proper
routine. Entry point PUTLIN in routine GETPUT can be used to display
debugging messages on the terminal screen. OUTPUT 1is generally
disconnected and contains system errors from FTN and Data Handler.

The most helpful hint to be given for STAGING is in the
construction of a brand-new data base. It is somewhat counter-productive
to rely on the conversion routines and then work with the data base
because it is often desirable to work on the data base as it is
constructed. To that end, it is much more convenient to create a "dummy”

144

.

data base, and then use the data base handler routines for the rest.

The dummy data base need only consist of two nodes and one
element. The structure and substructure are defined automatically. This
also allows a convenient mechanism for initial definition of the attribute
Tist.

For example, the following routines can initialize, add to, and
terminate a data base.

SUBROUTINE DBIN

DIMENSION IATN(3).ATT(3).node(2)

C set up element attribute as type

[AT =1
C set up node attributes as X-Y-Z coordinates

IATN(1) =1

IATN(2) = 2

IATN(3) = 3

CALL CNINIT(IATN,3,I1AT,1,0,0,0,0)

o define dummy nodes

NODE(1) = 9999999

ATT(1) = ATT(2) = ATT(3) =0

CALL CNNODE (NODE,ATT,3)

NODE(2) = 9999998

CALL CNNODE(NODE(2),ATT,3)

C and dummy element
ATT = 3HROD
CALL CNELEM(9999999,NODE,2,ATT,1)
c end the process and re-open the data handler field

CALL CNTERM

CALL DBINIT(SHTAPEO)

RETURN

END

Code to add a new element or node is similar. An example of a
node add follows. It is assumed that the nodes start at one and are
incremented for each new node. X is an array of length 3 containing the
new X-Y-Z location.

145

SUBROUTINE ADNODE(X)

DIMENSION X(3), IATLOC(3)
*CALL DATBAS

DATA NODNUM/C/

for first node, initialization must be done

IF (NODNUM .NE. 0) GO TO 10

IATLOC(1) = ISACT(6HX-CORD,4)
IATLOC(2) = ISALT(6HY-CORD,4)
IATLOC(3) = ISALT(6HZ-CORD,4)

1}

find the previous pointer in the list

IPREV = IDBLFT(IHEAD(4))

get the new bead

10 NODNUM = NODNUM + 1
IPREV = IDBADB(NODNUM, IPREV)

¢ aghaiimat

insert X,Y,Z and make sure limits of substructure are maintained

D iodeas L o

D0 20 1 =1,3
CALL DBCHA(IPREV,IATLOC(I),X(I))
20 CALL ECHKL(I,X(I))
RETURN
END
The element add must put in up and down pointers. The pair
CALL DBDNT(I1PREV,NODBED)
CALL DBUPT(NODBED,IPREV)
will cross reference the nodes and elements, where IPREV is the current
element and NODBED is the bead corresponding to the node number. The
146

—

substructure cross-reference is done by

CALL DBUPT(IPREV,IHEAD(2))

CALL DNDNT(IHEAD(2),IPREV))
where IHEAD(2) is obtained from COMDECK DATBAS and IPREV is the current
element.

To terminate, one must merely get rid of the dummy beads and set
the LKUP array for later use.

147

B S kit o

2.9.2 Program Library Maintenance

A1)l update to STAGING source code is done using cataloged
procedures described in Section 2.1.

2.9.3 Segmentation Strategy

The STAGING system is dependent on the (DC segmentation loader.
This strategy was chosen because it offers far greater flexibility than
the traditional overlay mechanisms. For this flexibility we pay the price
of difficulty in segmenting a very large system into a restricted core
k size without impairing run-time efficiency. Many errors can be caused by
| certain combinations of segmenting methods and coding methods. A

subprogram may work correctly only if never swapped out of memory. No
local variable values are saved but DATA statements reload initial values.

Good programming practice will ensure that the routine functions correctly
even if swapped out between calls. This allows the segmentation directive
designer to work independently of the code. He needs to know only the
tree of who calls who and some rough idea of frequency and order of calls.
As a matter of practice, all routines should be included in the
segmentation directives. The defaults for segments for undeclared
subroutines are often insufficient and fregquently illegal. Particular
care must be given to ensuring that common block contents are swapped out

to disk so that the contents are saved when brought back into memory.
Care is needed to ensure that common blocks are in core when routines
needing them are executing. (The segmentation loader will not
automatically reload the necessary common blocks).

The STAGING segmentation scheme has six segment levels:

1: Root

2: Swappable Common Blocks

3: Application Subroutines

4: Miscellaneous Subroutines

5: Graphics Subroutines

148

6: System and Data Handler Subroutines

The integrity of the segmentation scheme depends on structuring
the directives so that no routine calls another routine which is closer to
the root. Thus routines in level 3 may call routines in level 5 but may
not call routines in Tevel 1. Similar restrictions occur within the trees
in the individual levels.

The root level contains the DRIVER(STAGING main program), the
error recovery main subroutine (RCOVER), the menu tables, and many common
blocks. Level 2 is necessary because of the large size of the common
blocks used only in the contouring package. Level 3 contains most of the
routines called directly from the menus. It is divided into separate
trees corresponding to the major modules of STAGING. Level 4 contains
menu management routines as well as routines called from more than one
major module. Level 5 contains INTERTEK and various other graphics
routines. Level 6 contains system routines (Record Manager and FTN
library), Data Handler routines, and various ubigquitous general utility
routines.

The STAGING segloader directives for the six levels are listed in
Appendix B.

149

‘U.S.Government Printing Office: 1980 ~ 657-084/69

