
. A08C9 382 RATTELLE COLUMBUSILABS ON FiS 13/13

ISTRUCTURAL ANALYSIS V IA GENERALIZED INTERACTIVE GRAPHICS - STAG--ETCeW)

ISEP 79 L E HULBERT, N D GHAOIAL I' F N DEOBOT F33615-76-C-312S
UNCLASSIFIED AFFL-TR-79-374-VOL-3 NL

2000000 1fffffffffff
I llffffl...lf

EEEE~hhhhsoE

AFFDL-TR-79-3074 ..
Volume Ill

STRUCTURAL ANALYSIS VIA GENERALIZED
INTERACTIVE GRAPHICS

STAGING
(a) Volume III - System Manual

9 L. E. HULBERT

C C. P. SCOFIELD

BATTELLE COLUMBUS LABORATORIES
505 KING A VENUE
COL UMBUS, OHIO 43201

SEPTEMBER 1979

TECHNICAL REPORT AFFDL-TR-79-3074, Volume III '3 :1
Final Report for Period June 1976 - September 1979

Approved for public release; distribution unlimited.

'>
< AIR FORCE FLIGHT DYNAMICS LABORATORY
C4. AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
LL AIR FORCE SYSTEMS COMMAND

. WRIGHT-PATrERSON AIR FORCE BASE, OHIO 45433

80 9 22"A237

*J

-ii

Am

NOTICE

when Government drawings, specifications, or other data are used for any purpose

other than in connection with a definitely related Government procurement operation,
the United States Government thereby incurs no responsibility nor any obligation

whatsoever; and the fact that the government may have formulated, furnished, or in
any way supplied the said drawings, specifications, or other data, is not to be re-

garded by implication or otherwise as in any manner licensing the holder or any

other person or corporation, or conveying any rights or permission to manufacture
use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is
releasable to the National Technical Information Service (NTIS). At NTIS, it will
be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

Bernard H. Groomes Frederick A. Picchioni, Lt Col, USAF
Project Engineer Chief, Analysis & Optimization Branch

Structures & Dynamics Division

FOR THE COMMANDER

Ralph L. KusterJrC -
Chief, Structures & Dynamics Division

"If your address has changed, if you wish to be removed from our mailing list, or
if the addressee is no longer employed by your organization please notifyAFWAL/FIBR ,
W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security
considerations, :ontractual obligations, or notice on a specific document.

AIR FORCE/56730/2g August 1960- 100

Sff-URIO r CLAS IIC ATION OF T.IS PAGF I P us F'o. r'le.0I

HiAII INS I HUl I IONS
//REPORT DOCUMENTATION PAGE EF.IORV u1'IIC -H.

k ~i~ hL& ---- -- -.-- 1 2.IOVT ACCESSION N~O. 3, RECIPIENT'S CAT ALO. IIIIUH

AFFDL.LR 9- 3P74 -116;- 2'V Id

5. TYPE OF REPORTA FI5

"M STRUTRAL ANALYSIS VIA QENERALIZED INTERACTIVE CUIXAL-INL.>

GRAPHICS - STAGING, VOLUME F SYSTEM MANUAL &;S 4UNW.-1976 - SEPT 19791
-- 6. PERFORMING ORG, REPORIT NU ABER

7 AU THOR(si 8. CONTRACT OH GRANT N'JMBER()

L.E. HULBERT, N. D.)GHADIALI(F. N. ,DEOBOT / F-336l5-76-C-3l25

9 PERNFORMING ORC.ANIZATION NAME AND ADDRESS 10. PROGqAM ELEMENT. PROJECT. TASK(

BATTELLE, COLUMBUS LABORATORIESARE&WOKUINMBS
505 KING AVENUE S/~/'
COLUMBUS OHIO 43201

I I CCNI ROLLING OFFICE NAME AND ADDRESS '0OTfl .

AIR FORCE FLIGHT DYNAMICS LABORATORY (FBRA) .. SEP mm 79
WRIGHT-PATTERSON AIR FORCE BASE > 13. NUMBER OF PAfES

O111O 45433 158
-F4 ICNI

T
)RIN5 3 ENCY N AME A ADERESSII diferCent from, Cn.rtlbrin Off,,) IS SECURITY CLASS (0f115 h- 1I

.$ i; /UNCLASSIFIED
IS&. OECLASSIFICATION DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

17 DISTRIBUTION ST ATEMENT (of the abnsrct entered in Block 20. it different from, Report)

IS SJPPLEMENTARY NOTES

I9 KEY WORDS ILCI-lue on reverSe side fivircessary and Idernly by block number)

INTERACTIVE GRAPHICS MESH GENERATION

FINITE ELEMENT MODELS COMPUTER AIDED DESIGN

STRUCTURAL ANALYSIS COMPUTER AIDED ANALYSIS

20 AR [TIACT '1in-tnu.on~e~~ side It nec.-1 cry And Ident.ly fi, bl-1, -iuteberl

- STAGING (STructural Analysis via Generalized INteractive (riphics) h1as been

developed to give engineers an interactive graphics systt1i tor constructing

a~nd studying finite clement models and for reviewing thl t,Il of a1

f inite eleimont an.alysis. V>K.

Voluime 11 consists of a user's guide giving detailed stIep-ilv-stclp instructions
in how to uSe STAGING.

D D I A '1, 1473 FLTILN4 OF 1 NOV1 1 IS OBSOLEETE:

SECJURITY Ct.ASSIF (iCI O , O 7,,rIS1HAF I,l.r orI

FOREWARD

This final report was prepared by the Columbus Laboratories of

Battelle Memorial Institute, Columbus, Ohio, for the Structures anu

Dynamics Division, Air Force Flight Dynamics Laboratory, Wright-Patterson

Air Force Base, Ohio. The work was performed under Contract No.

F-33615-75-C-3125, which was initiated under Project No. 2401, "Structures

and Dynamics", Task No. 02, "Design ano Analysis Methoos for Aerospace

Vehicle Structures". Initially, Mr. L. Bernier (FBR; was the AFFr,_

project engineer for this effort, after which Mr. S.H. Groomes (FBP, ..c

assigned the responsibility.

STAGING, as described in this report, represents a tttr,-t ,

combined Air Force-Navy effort, with specific support and contr.t -T

from Dr. Charles P. Porier, Chief, Scientific Systems Analysiv. !tir,-t,,

Computer Center, Wright-Patterson Air Force Base, Ohio, Messet-s .):,t

McKee and Michael E. Golden, Computation Mathematics an'

Department, Code 1844, Mr. Paul Mayer and Miss Jane A. Fiqul-., 't,

Department, Code 1730.5, The David W. Taylor Naval Qhp -r . .

Development Center, Bethesda, Maryland. The technical graphics exr

of these government researchers are gratefully acknow.ledqeu.

The report consists of four volumes. Volume I, "F rl -, ii

. eport", presents an overview of the capabilities ot the, uI,

(STructural Analysis via Generalized INteractive Graphics) system. Vo IAme

II, "Users Guide", gives detailed instructions on how to use STAGING tor

finite element analysis. Volume I1, "System Manual",-describes the

internal structure of STAGING and details procedures for installation anc

Maintainance of the System on CDC CYBER and 6000 series mainframe

computers.t. Volume IV, "Appendices to the System Manual", includes lists

of STAGING procedures, loader directives and cross-referenced tables of

all entry names that occur in STAGING.

The program manager of this development was Dr. L. E. Hulbert of

the Transportation and Structures Department. He was supported by N. D.

Ghadiali of the same department and by a number of specialists from the

Computer, Information Systems, and Education Department including:

~iii

E. Edwards K. Cadmus

D. Kasik C. Scofield

W. Young F. Drobot

Kevin Cadmus was a major contributor to the preparation of this

volume.

The work reported herein was conducted during the period of June

28, 1976 through June 1979. Some work on STAGING was carried out under

contract F33615.

The present report was submitted for publication in June, 1979.

iv

iv

TABLE OF CONTENTS

1. INSTALLATION
1.1 STAGING Files
1.2 Loading the STAGING Absolute
1.3 Loading the Menu Generator Absolute
1.4 Loading the Material Property Data Base Management System
1.5 Loading Conversion Routine Absolutes

2. 2.1 Cataloged Procedures
2.1.1 Introduction
2.1.2 Low-Level Procedures
2.1.3 Running STAGING
2.1.4 Maintenance of STAGING Libraries
2.1.5 Menu Generation
2.1.6 Maintenance of Material Property Data Base
2.1.7 Installation of WPAFB
2.1.8 YIELDFILE Procedures
2.1.9 Procedure Listings

2.2 Low-Level System Interface and Utility Routines
2.3 Data Handler
2.4 STAGING Menu Generation and Management

2.4.1 Introduction
2.4.2 Using the Command Tree Generator
2.4.3 Menu Data Base
2.4.4 Menu Generation Software
2.4.5 Processing the Command Tree in STAGING Driver
2.4.6 Textual Input

2.5 STAGING Model Data Base
2.5.1 Introduction
2.5.2 STAGING Model Data Base Format
2.5.3 Change List
2.5.4 In-Core Tables and Arrays
2.5.5 Model Data Base Handler Routines

2.6 INTERTEK Interactive Graphics System
2.6.1 Introduction
2.6.2 INTERTEK Picttre Manipulation
2.6.3 INTERTEK Pick Processing
2.6.4 INTERTEK Software Overview

2.7 STAGING Model Graphics
2.7.1 Medium-Level Graphics Routines
2.7.2 Construction of Model Display
2.7.3 Results Displays
2.7.4 Modifying the Picture
2.7.5 Editing the Model
2.7.6 Graphical Input

2.8 STAGING Material Property Data Base
2.8.1 Introduction
2.8.2 MPDB Modification Procedure
2.8.3 MPDB Format

v

2.9 STAGING Code
2.9.1 Overview of STAGING Code
2.9.2 Program Library Maintenance
2.9.3 Seqmentation Strategy

vi

LIST OF TABLES

1.1 - STAGING Files

2.4.1 - Menu Generation Software

2.5.2 - Element Attributes

2.5.3 - Element Type Values

2.5.4 - Node Attributes

2.7.1 - View Control Array

vii

f

LIST OF FIGURES

FIGURES

2.4.1 - Sample Menu Generator Input Deck

2.4.2 - Sample Menu Generator Output (1)

2.4.3 - Sample Menu Generator Output (2)

2.4.4 - Triplet for Text Editing

2.4.5 - More Than Button Picking

2.4.6 - Tree Schematic

2.4.7 - Menu Data Base Bead Format

2.5.1 - Overall Structure of Beads

2.5.2 - Format of Data Base Beads

2.5.3 - Table Bead Format

2.5.4 - Change Bead Format

2.5.5 - Change File Header Bead

2.5.6 - Filling ELNOD

2.5.7 - ILKUP Array with Index INLKUP

2.5.8 - Attribute Names

2.5.9 - Attribute Index into Bead

2.5.10 - Paging Scheme

2.5.11 - Information Flow

2.6.1 - Display File Construction

2.6.2 - DAF Format

2.6.3 - Subfile Format

2.6.4 - Item Format

2.6.5 - Display Item Graphics Instruction Formats

2.6.6 - IBUF Format

2.6.7 - Extension Format

2.6.8 - Category Table

2.6.9 - Queue Construction

2.6.10 - Wait Queue Entities

2.6.11 - Keyboard Event Table

2.6.12 - Rectangle Check

2.6.13 - Distance Test

2.6.14 - Test Pick

2.7.1 - 3D View Control

viii

I. INSTALLATION

The installation of the STAGING system involves loading files to

disk from the STAGING System Tape and creating several program absolutes.

In the following sections are descriptions of the files on the System Tape

and the procedures for accessing the files and loading the absolutes.

The STAGING System Tape is a 9-track, 1600 bpi tape. All files

are copied to the tape using COPYBF. The source program libraries are

copied to tape as source decks in UPDATE input format. The relocatahle

libraries are loaded as sequential libraries created via the RANTOSEQ

command to EDITIB.

1.1.1 STAGING Files

A table of the files in the STAGING system is given in Table 1.1

When the STAGING absolute (STAGINGABS) is loaded, subprograms are

retrieved from five sources:

i. STAGINGLIB

2. SUPPORTLIB

3. INTERTEKLIB

4. MENUTABLE

5. Standard NOS/BE system libraries

STAGINGLIB contains all subroutines on UPDATE program library

STAGINGPL. (The compiled binaries are on STAGINGBIN.) These routines

include the STAGING main program ("DRIVER"), the routines called by DRIVER

for menu management, and the subroutines associated with picks of menu

buttons.

SUPPORTLIB contains data base manipulation routines, conversion

routines, and miscellaneous routines for permanent file manipulation,

error recovery, and XY-plot graphics support. The source code for these

SUPPORTLIB routines is maintained on UPDATE program libraries and binaries:

1. DATABASEPL,DATABASEBIN

2. CONVERSIONPL,CONVERSIONBIN

3. PERMFILEPL,PERMFILEBIN

4. RECOVERYPL,RECOVERYBIN

5. XYGRAPHPL,XYGRAPHBIN
1

TABLE 1.1. STAGING FILES

I i Ic Namne Format Conten11ts

I'ROCFTL CCL STAGING procedure file

PRoFJL Univ. of Wash. CL STAGING procedure file

S rA(GINCGPL UPDATE High level STAGING routines includio~ n IV

INTFERTEKPL UPDATE INTERTEK interactive graphics packagw

CONVERS IONPL, UPDATE Conversion routines

DATABASEPL UPDATE Data base manipulation routines icui>

Data Handler

XYGRAPHPL UPDATE XY plot support package

PERIMFILEPL, UPDATE Permanent file manipulation routines

RECOVERYPE, UPDATE ERROR recovery package

MENUGENPL UPDATE Menu generation subsystem

S;TAAGNGBIN LGO Result of compiling all routines on
STAGINGPL,

[NTERTEKBIN LGO Result of compiling all routines ,n
INTERTEKPL

CONVERSIONBIN LGO Result of compiling all routines on

CON VERS IONPL,

DATABASEBIN LGO Result of compiling all routines on
DATABASEPL,

XYGRAPHBIN LGO Result of compiling all routines on
XYGRAPHPL,

PERMFILEBIN LGO Result of compiling all routines on
PERMFILEPL,

RECOVERYBIN LGO Result of compiling all routines on
RECOVERYPL f

MENUGENBIN LGO Result of compiling all routines on
MENUGENPL

2

IlABLE t 1. STAG ING F I iES (CO NT INULED)

Fi tu N Lille Fo rtlio t Contents

STAG ING LI b EDTITL 1. B From STA INGB IN

I NTEBF TEKL 1.1B EDITL TB 1:ro()m I NTE RTEKB1I N

S UP1 PO RTL IlB ED1)ITL.I B From CONVERS IONB1N, I)ATABASEB IN,
XYGRAPHB TN, PER1'I1l lI1l3IN, AND ~ ii

ST A C; I IN EAB s ABSOLUTE STAG INC s's tern

MENL'GENABS ABSOLUTE Moeno generator

MI'BNEABSABSOLUTE MPI)B creator

NPDBADDABS ABSoLUIT MPI)B modi fier

MPDB Data Handler Material Propertv Data Base

EXECMENUSOURCE Text Executive menu de fi nit ion

r;I.BAI.NENUSOURCE T e xt Global menu definition

DI SPLAYMENUSOURCE Text Display and Edit menu definition

:F!1iMENSOURCE Text Preprocessor menu de fin it ion

%O11NNUSMURCE Text 1'os tprocessor menu doefin it ion

.X(MNU)RIVIR FTN Switching table and sit uat ion dpnc

funct ion

;I2ALENDRI VER FTN Sw itch ing table and s ituat ion dcpen den c
funct ion

1) SPIYMNI) IX'RFiN Sw itch ing tablIe and situoat ion dep Cn den c't
funct ion

PRI-MENUDRI VER 1:1N Swi tcbhing table and situa-tion dependence-
funet ion

1'OSTMEMIDRI VER FTN Sw it ching table ind situation dependt-ict
11111L ion[

---------- ---- -- --- ------- --- --3

f ,

TABLE 1.1. STAGING FILES (CONTINUED)

File Name Format Contents

EXECMENU Data Handler Run-time meno data base

GLOBALMENU Data Handler Run-time menu data base

DISPLAYMENO Data Handler Run-time menu data base

PREMENU Data Handler Run-time menu data base

POSTMENU Data Handler Run-time menu data base

MENUTABLE LGO Result of compiling all above
MENUDRIVERs

47

4- "

NIERTEKLIB contains the routines on UPDATE program Iibrary

INTERTEKPL (binaries on INTERTEKBIN) . These routines support all

interactive graphics used in STAGING (see section 2.3). INTERTEKLIB. like

STAGINGLIB and SUPPORTLIB, are in standard NOS/BE library format suitable

for maintenance via EDITLIB.

The file MENUTABLE contains 2 binaries for each menu (module) in

STAGING. The first binary is the assembled menu driver containing calls

to each subroutine callable from the menu. It acts as a simple switching

table allowing a menu button pick to activate the appropriate subroutine.

The second binary is the situation dependent decision function (see

section 2.5). Both routines are created by the menu generator system.

The STAGING menu generator absolute (MENUGENABS) is created by

loading the subprograms from UPDATE program library MENUGENPL. (The

binaries are on MENUGENBIN). SUPPORTLIE must be declared as a library.

The source input to the STAGING menu generator are maintained on

files with file names having format:

prefixMENUSOURCE

where the prefix is EXEC, GLOBAL, DISPLAY, PRE, or POST. The source code

output from the menu generator is cataloged as:

prefixMENUDRIVER

and the menu data base itself is cataloged as

prefixMENU.

The maintanance of the STAGING Material Property Data Base (MPDB)

requires two programs. Absolute MPDBNEWABS (source MPDBNEW) is used to

create an empty Material Property Data Base in Data Handler format.

Absolute MPDBADDABS (source MPDBADD) is used to revise the contents of the

Material Property Data Base. The source code for these two programs is

maintained on STAGINGPL. File MPDB is the Material Property Data Base.

The absolutes for these programs are generated by the following commands:

ATTACH(PROFIL,ID=STAGING3)

BEGIN,MPDBGENABS,TYPE=NEW.

BEGIN,MPDBGENABS,TYPE=ADD.

See Appendix A for listings of these procedures.

The conversion routine source code delivered with the STAGING

system are: 5

NASTRAN: NASCON1

NASCON2

NASCON3

FASTOP: SOPCON1

SOPCON2

SOPCON3

FOPCONI

FOPCON3

AXISOL: AXICONI

AXICON2

AXICON3

HONDO: HNDO1

HND03

DOASIS: DOASCOI

DOASCO3

ADINA: ADICONI

The source and binaries are maintained on CONVERSIONPL and

CONVERSIONBIN respectively. SUPPORTLIB is to be declared a library prior

to loading a conversion routine absolute.

1.2 Loading the STAGING Absolute

To load the STAGING absolute:

ATTACH(PROFIL,ID=STAGING3)

BEGIN,STAGINGGEN,MAP=PART.

For installations with CCL (Cyber Control Language) substitute

file PROCFIL for PROFIL. The MAP parameter controls the segloader output

listing. MAP=ON gives a more extensive listing; MAP=OFF suppresses the

listing. STSEG requires the availability of the following files:

PROFIL

MENUTABLE

SEGDIR

STAGINGLIB

SUPPORTLIB

INTERTEKLIB

See Appendix A for a listing of procedure STAGINGGEN.

6

M\

1.3 Loading the Menu Generator Absolute

To load the Menu Generator absolute:

ATTACH(PROFIL,ID=STAGING3)

BEGIN,MENUGENABS.

For installations with CCL (Cyber Control Language), substitute

file PROCFIL for PROFIL.

MENUGENABS requires the availability of the following files:

MENUGENBIN

SUPPORTLIB

See Appendix A for a listing of procedure MENUGENABS.

1.4 Loading the Material Property Data Base Management System

There are two absolutes, MPDBNEWABS and MPDBADDABS, in the

Material Property Data Base Management System. To load them:

ATTACH(PROFIL,ID=STAGING3)

BEGINMPDBGENABS,TYPE=NEW.

RETAIN.

6EGIN,MPDBGENABS,TYPE=ADD.

For installations with CCL (Cyber Control Language), substitute

file PROCFIL for PROFIL.

MPDBGENABS requires the availability of the following files:

SUPPORTLIB

STAGINGPL

See Appendix A for a listing of procedure MPDBGENABS.

1.5 Loading a Conversion Routine

Creation of the absolute of a conversion routine is

straightforward. Only library SUPPORTLIB in needed. As an example, the

following control cards can be used to create the absolute of NASTRAN

conversion program 1:

ATTACH(OLDPLCONVERSIONPLID=STAGING3)

7

UPDATE(Q,I=INPUT)

input deck: *ID NI
*C NASCON1

FTN(I)

ATTACH(LIB,SUPPORTLIB)

LIBRARY(LIB)

LOAD(LGO)

NOGO(ABS)

CATALOG(ABS,NASCONIABS,ID=STAGING3)

Some of the conversion routines (e.g. for SOP) require large

field lengths for loading and will have to be done in batch mode.

8

2. SYSTEM MAINTENANCE

The maintainer of the STAGING system should become familiar with

the various aspects of STAGING in a particular order. The person shoulc

first become familiar with using the various modules of the system. N ext.

comes understanding the nature of each file in the system and the purpose

and operation of each cataloged procedure. Before modifying any code in

the STAGING system, the maintainer should become aware of the segmentation

strategy used in STAGING and the unusual problems involved in working in a

segmentation environment. Some familiarity with the Data Handler is a

necessary prerequisite for understanding most of the STAGING code. Then

the following elements of STAGING can be studied independently:

a) STAGING Menu Generation and Management

b) STAGING Model Data Base and Conversion Routines

c) INTERTEK Interactive Graphics System.

Any modifications to the GPRIME system should be coordinated with David

Taylor NSRDC.

9

2.1 STAGING Cataloged Procedures

2.1.1 Introduction

The procedures required to utilize and maintain the STAGING

system are maintained on file PROFIL. These procedures have been

rewritten into CCL format so that they can be used at Wright Patterson Air

Force Base (WPAFB). The corresponding file is PROCFIL.

PROFIL contains procedures for maintaining program libraries and

auxiliary files in the STAGING system. STAGING has the capability of

interactively executing a procedure on. Before such a procedure is

executed, STAGING is swapped out of memory and, at the completion of the

called procedure, STAGING is swapped back into memory with all files

intact. Execution then begins where it left off. The only procedure

currently yielded to from STAGING is XGPRIME which initiates execution of

the GPRIME system.

Complete listings of all procedures on PROFIL and PROCFIL are

given in Appendix A.

2.1.2 Low Level Procedures

The most common step within a catalogued procedure is to ATTACH,

CATALOG, or REQUEST a permanent file. ATTACH and REQUEST require a

preliminary RETURN of the local file name for safety. CATALOG is

safeguarded against failure due to too many existing cycles--the lowest

cycle is PURGED and the CATALOG retried. For these reasons it was useful

to write three low level procedures to perform the details of these

permanent file functions. These low level procedures (A, C, and R) are on

PROFIL. Since a permanent file name can be 40 characters long but

procedure parameters are limited to 10 characters, there are four

permanent file name parameters passed to these procedures. Execution of

the procedure concatenates the parameters to form the full permanent file

name.

10

2.i.3 Running STAGING

To execute the STAGING system, simply execute procedure STAGir,'

on file PROFIL. First ATTACH,PROFIL,ID=STAGING3 and then BEGIN,)3 :',J.

At WPAFB the user should ATTACH,PROCFIL,ID=STAGING3 and BEGIN,STAGING.

2.1.4 Maintenance of STAGING Libraries

The following procedures are used to maintain STAGING Hbrares:

UPDATE

NEWLIB

SUPPORTLIB

UPDATE is used to make any changes to source code on any of the STGI"IG

program libraries. The call is

BEGIN, UPDATE,PROFIL,prefix

where prefix is one of the following:

STAGING

INTERTEK

MENUGEN

DATABASE

CONVERSION

XYGRAPH

RECOVERY

PERMFILE

The changes are to have been placed on file prefixlN before running this

procedure. A new program library and binary file are automatically

cataloged and the input file emptied. If prefix=STAGING or INTERTEK. ther

the corresponding random library is automatically created (see procedure
NEWLIB below). If prefix=MENUGEN, then a new menu generator absolute is

created (see procedure MENUGENABS discussed in Section 1.3). If prefix=

i 11

DATABASE, CONVERSION, XYGRAPH, RECOVERY, or PERMFILE, then a new

SUPPORTLIB is created (see procedure SUPPORTLIB below). Note that the

STAGING absolute is never regenerated by a call to procedure UPDATE (see

Section 1.2 for discussion of loading the STAGING absolute).

NEWLIB is used by procedure UPDATE to create a new STAGINGLIB or

INTERTEKLIB from the appropriate binary file (STAGINGBIN or INTERTEKBIN).

SUPPORTLIB is used by procedure UPDATE to create a new SUPPORTLIB. Input

consists of binary files DATABASEBIN, CONVERSIONBIN, XYGRAPHBIN,

RECOVERYBIN, and PERMFILEBIN.

2.1.5 Menu Generation

STAGING menus are created by execution of procedure MENUGEN.

Input to MENUGEN consists of the situation dependent routine (FTN source

code) followed by the coded description of the menu to be generated. This

coded description includes menu hierarchy position, the menu button name,

the subroutines associated with the button, the resultant movement in the

menu tree, and special action indicators. It may also include an option

parameter which indicates that the button is to be displayed only if the

situation dependent function subroutine returns a value of 1.

The menu generation absolute is maintained on file MENUGENABS.

If any changes are needed in the menu generation system, procedure

MENUGENABS may be used to create a new cycle of MENUGENABS.

During execution of MENUGEN, three inquiries will be displayed at

the terminal:

a. DO YOU WANT AN ECHO OF INPUT LINES?

b. TREE GENERATED. WOULD YOU LIKE IT PRINTED?

c. HOW ABOUT A FULL FILE DUMP?

Normally the answers should be NO, YES, NO, respectively. The file dump

option is only useful for debugging the menu generation system. Any

printed output is placed on file OUTPUT. Input to MENUGENABS resides on

file prefixMENUSOURCE where prefix is EXEC, GLOBAL, DISPLAY, PRE, or POST.

The menu database is CATALOGed as file prefixMENU. The subroutine table

12

About-

: r situation d]ependent tunction are in UPDArE input format and ar,

LATALOGed on file prefixMENUDRIVER. They are compiled in procedure

t'IENUTABLE to create new load file MENUTABLE.

2.1.6 Maintenance of Material Property Data Base

Two procedures on PROFIL affect the STAGING Material Property

Jata Base. Procedure MPDBNEW creates an empty MPDB. Procedure MPDBA2D

processes additions and revisons to the MPUB. Section 2.4 gives a

detailed description of the preparation of input for procedure MPDBADD.

2.1.7 Installation at WPAFB

Installation of the STAGING absolute system at WPAFE is

accomplished by creating a system tape containing all necessary files ani

loading the tape to disk at WPAFB. Once the files are loaded at WPAFB, it

's necessary to create absolutes for STAGING, GPRIME, Menu Generatcr,

. tprial Property Data Base System, and conversion routines as describe,:

-n Section 1.2 through 1.6.

If any difficulties arise due to differences in operatire

systems, it is necessary to recreate the PL's, BIN's, and LIB's hy

recompiling the source code supplied on the system tape in UPDATE inp:.t

deck format.

2.1.8 YIELDFILE Procedures

Certain button picks cause STAGING to be swapped out of core art,

a call made to execute a procedure on PROFIL. At completion of the

procedure, STAGING is swapped back into core and begins execution where it

left off. The parameters to the PROFIL procedures are specified in the

default field of the bead in the menu data base corresponding to the

button pick.

13

2.1.9 Procedure Listings

Each procedure in the STAGING procedure files is listed in two

formats. First is the University of Washington Control Language format

used at Battelle and until recently at WPAFB. Second is Cyber Control

Language format recently adopted at AFFDL Computer Center. Both formats

for all procedures on PROFIL and PROCFIL are listed in Appendix A.

14

2.2 Low-Level System Interface and Utility Routines

Much of the day-to-day maintenance of the STAGING system depends

upon the operating system environment. The code in the package should

transfer readily as the FTN compiler is upgraded because the code is

compiled in OPT=I. The COMPASS file manipulation routines in COPYFL use

the options of system routine CPC and PP routine CIO. Neither routine hac

channed from a user's point of view in years and should remain constant tc

ZTAGING as operating systems are changed.

The routines that will cause most problems durinq

operating-system transitions are Battelle deve uped routines including:

PERMFIL,RETURN,REQUEST: These routines are FORTRAN-callable

permanent file utilities. RETURN and REQUEST have been quite

stable. PERMFIL has had more difficulities. Error processing

can be unstable because CDC has a tendency to change error

numbers around. The only specific error tested in STAGING is 10.

(note floating point error numbers) which indicates that the file

attached is not in the system. The version of PERMFIL providec

allows catalnging a file without specifying an account (the

account the user logged-in with is used).

The Battelle PERMFIL routines provide all the permanent file

capabilities needed to ATTACH, CATALOG, EXTEND, REQUEST, etc. a file nn

the CDC system.

IPFUT: Puts one more level between the programmer and PERMFIL

by performing the requested function on array PFNAME.

Special case: RENAME puts an infinite retention periec

on the file to save the user the trouble of enterinq

that information.

The following routines are in the system to increase the

aesthetics of a display or to make life a bit easier for the programmer:

COPYFL: Copy the left adjusted trailing zero local file in

parameter 1 to the left adjusted trailing zero loci'

file in parameter 2. The file is copied until E0I

reached. The files are rewound before and after

copying if parameter3 is omitted or zero. If

15

parameter3 is non-zero, the file positions are

unaffected before and after the copy.

IBEAUT: Take the number input, determine if it is floating or

integer, encode it, and return it left justified with

trail blanks and the number of significant characters.

ICRACK: Parse a packed character array into a lower and upper

bound for a range of values.

ICCHR: Count the number of characters in a Hollerith strinq

before the trailing blanks in array parameter 1. If

parameter 2 is omitted, parameter 1 is assumed to he

one word long, else the number of words of parameter I

to scan.

IOINF: Each item corresponding to a bead in a display contains

the bead address of the data base item. When the item

is picked, the ID is returned and IDINF reconstructs

and returns the bead address from 10 (2) and ID (3) in

IDENTS.

INDATA: Read from an internally connected file and crack into

fields based on "=" and "," characters. Each field can

be of arbitrary length (over 10 characters). The

results are split and returned as character strings,

character counts, and pointers in three arrays in

common block /INPUT/.

MBEAD: Form the ID block out of a bead address. Returned in

ID (1) to ID (3) in IDENTS.

MV: Move a bit string from one word to another. Will cross

word boundaries and up or down arrays.

Entry point

MBV: Move character string.

UNPACK: Return one character at a time from a packed character

string.

One of the STAGING functions is to pass control to a separate

independent task or main program. This is similar to a FORTRAN program

calling a subroutine. The subroutine does its job and control is passed

16

q preg> : at t t i §;t. ,ic tab e stat ,irerit af t,.t Ir

when the cal led main program has performed its task, the ca n,

.,'V ram is restarted at t 1c first executa le statpment fo liowinq t!,r c,

xvo pieces are needed to make this scheme work. The first pice v<,

s epper ,cal ed I Y I ELU) that restarts STAGING at oxac t ly the r c ,

,'> applicat ion. The second piece is a routine rcaIled EXEC) which ra,'

-, ,,o 1 to a predef i ned procedure fl1 & and mak-rs sure that t -,T '.

-s are intact after execution.

IYIELD is the :eart of the swapping process. it vt ites a

core image, the exchange jump package, and a small bootstrap program (,r,T

iocal file (ZZZZZXX) , passes control to a stack of control cares

restarts STAGING by executing the bootstrap program.

The user is allowed to pass up to 640 characters of control carr>-

.o the routine. The code works on a start, issue, end philosophy to :avr

rewrites of the checkpoint file. Thus a control card record is hegun
CALL JYIES, added to with a call to IYIELD (string, no. characters

Ltring), and executed by a call to IYIELDE(l). (The i indicates that >,

I ler is to be restarted upon return). The IYIELDE call issues a reQt>,7

the PP program lAP with a pointer to the card stack. If the cronrar

he restarted, the bootstrap program (ZZZZZXX) is executed.

The control cards to be issueo have the following constrain,:

do not call a MUJ job (EDITOR), (2) do not try to LOGOUT or, (3'

issue a call to another program that uses IAP to issue control car>.

item (3) poses the only real restriction, and that restriction nl%

prevents automatic restart. A second tall to IAP eliminates the stack of

csmntrol cards, i.e. eliminates the restart location. Thus cer wr

jtilities cannot be used. Similarly, a routine which calls IYIELD rr

program previously yielded to will cause problems because IYIELD calls TAP.

To make YIELDING as easy to use as possible, all the problems in

dealing with files were eliminated. The user need not worry about: what

files are in use, random or sequential, connected or disconnected, open r

-,ed. The EXECC routine returns all proper files before the proce(I;"

s cfled is executed. Upon return, those files ire restored and the

yielding program can continue. Not that the display fle is also saver

in' restored. The frcrmat for calling EXECC is:

17

CALL EXECC (String)

Where string is a procedure name followed by optional

parameters and terminated by a period. The string need not be

delimited. Thus

"XYZ". and

"PROC3,PFN=GOLDI,ID=LOCKS."

are both valid inputs. The string must not be greater than 50

characters long.

EXECC then operates on the string to produce

BEGIN,procname,procfile,parameter list.

The procedure name must be on procedure file PROFIL,ID=STAbING3.

Additional control cards can be executed after procname is executed. The

routine in procname can return another stack of control cards to the

yielding program by writing the list on TAPE30.
A shorthand for routine EXECC is provided by routine EXEC for

rapid code integration into the executive menu. EXEC looks at the "D="

fields in the menu source to construct the parameter in EXECC. The

importance of this approach is that STAGING does not need to be reloaded

to integrate a new code.

18

II_

2.3 Data Handler

The Data Handler used in the STAGING system is an implementation

of a virtual memory manager for the storage of large data bases. It was

designed to be efficient for interactive applications. It provides for

easy deletion, addition, and modification of data in general digraph

structures. It is used in STAGING for the manipulation of data in the

model data base, the display file data base, the menu data bases, and the

material property data base. The data in these structures are ccntained

in variable length "beads" each of which is assigned a unique beac)

address. Beads contain pointer fields which contain bead addresses cf

other beads logically related to the given bead.

Beads are grouped into logical blocks for efficient access.

Recently accessed blocks are retained in-core as long a possible to

minimize the transfers to and from mass storage.

The Data Handler can manage up to 8 data base files at one time.

Pointers to in-core block buffers are kept in common block DMTBL which

must be loaded in-core at a lower address than any of the buffer arrays.

\Proper operation of the Data Handler requires that no files array index

re negative). The file names are not to appear in the FTN PROGRAY

statement.

Data Handler Subroutines

DMINIT-- establish data file and in-core block space for a data base

CALL DMINIT(ifile, iblk, iblkl, npru, Ifile)

where ifile = file name (1 to 7 characters, left

justified, zero filled)

iblk = dimensioned array for I/O buffer

iblkl = length of iblk buffer array

npru = number of PRU's in a file block

(I PRU = 64 words)

Ifile = logical file 0 to 7 (default 0)

DMGTBD-- allocate space on the file for a specified length heac,

initialize to zero, and return the assigned bead address

CALL DMGTBD (nwords, ibead, Ifile)

19

i

where nwords = number of 60 bit words to allocate

ibead = returned bead address

Ifile = logical file 0 to 7 (default 0)

DMSET-- store data into a bead

CALL DMSET (icomp,ibead,val)

where icomp = a code defining the placement within the bead

ibead = bead address

val = value or array of values (right-justified)

to be stored in the bead

DMGET-- retrieve a value from a bead

CALL DMGET (icomp,ibead,val)

where icomp = a code defining the field within a bead

ibead = bead address

val = value or array of values to receive

the data from the bead

DMRLBD-- release (delete) a bead from the data base

CALL DMRLBD (ibead)

where ibead = bead address of bead to be returned

to free storage space (returned as zero)

DMFLSH-- update the mass storage file using the in-core blocks; then

close the data base file and free the buffer space.

CALL DMFLSH (Ifile)

where Ifile logical file number from 0 to 7 (default 0)

20

hil

2.4 Staging Menu Generation and Management

2.4.1 Introduction

The STAGING system is constructed around a general purpose

command tree generator system. This system allows a system designer t(.

express the intended user interaction in a free format language. Ihe nr.

generation system processes this language and creates a menu file in Data

Handler format needed during program execution. It also generatis thr

source of subroutines needed to determine which buttons are displayable

and the appropriate subroutine to be associated with each button.

2.4.2. Using the Command Tree Generator

Each module in the STAGING system requires a command tree cf

menus. A tree generation program, external to the STAGING system,

performs this task. It processes an input file that is composed rf

SO-column card images.

The card image file is split into three sections. Sectiar

consists of two cards telling the generator: (a) the logical unit ,

vwich the menu data handler file is to be generated (3 if the menus are

global, else 2) (b) the name of the subroutine driver table and the user

%upplied situation decision function.

The second section is initiated by a *BEGIN (in column I) and

terminated by a *END. This section contains the source code of the

,ituation dependent decision function which determines whether a menu item

should appear on the screen. The STAGING program retrieves the "opticn

field from the menu data base. This field contains an integer which is

passed as a parameter to the situation dependent decision function and

determines which test is to be performed. For example, the ERASE SCREEN

button in Display and Edit tests IF (NUMDAD .EQ. 0). The function must

return nonzero for a displayed button, else zero. See Figure 2.4.1 for a

concrete example.

The decision functions and subroutine driver table must be

compiled and loaded with the rest of the application. The menu generator-

21

FXTABLEIEXDEC

*BEG IN

FUNCTION IEXT)EC(KEY)
*CALL DATBAS.
*CALL~ ATTRIB

IEXDEC = 0
IF(KEY.EQ.1)GO TO 1
IF(KEY.EQ.2)GO TO 2
Go TO 100

C
C IS THERE AN ACTIVE DATA BASE
C

I IF(FILES(IUNITD+1).NE.O.) 100,101
C
C IS THERE AN ACTIVE DATA BASE **AND**
C IS STRESS IN DATA BASE FOR POSTPROCESSINC

2 IF(FILES(IUNITD+1).EQ.0.) GO TO 101

L=LENATT(3)
IF(L.EQ.0)GO TO 101
DO 20 I=1,L
N=IGATT(I, 3)
N=NANFNM (N, 3)
N=SHIFT(N,-18).AND. .NOT. MASK(24)
IF(N .EQ. 6R N STR)GO TO 100

20 CONTINUE
GO TO 101

100 IEXDEC = I
101 RETURN

END
*END
1, L=-l,S=FILATT,A=2,D="PROLOG",
P="ENTER DATA BASE FILE. IF NEW FILE OR ATTACHED AS TAPEO, TYPE SPACE.",
2, L = -1, P = "CHOOSE MAJOR MODULE.",
2, N="PREPROCESSORS", A=2, T=5,
3, L = -1, P = "CHOOSE PREPROCESSOR",
3, N="GPRIME", A=2, T=59
4, L=-1, P="NEIJ OR RESTART.",
4, N="GPRIME-NEW", A=-l,T=5,S=EXEC,

TD-"XG PRIIE ,IN", D=" ITIAL.",
4, N="GPRIME-RRSTART", A=-1 ,T=5, S=EXEC,

TD="XG PRIME, RE" ,D=" START.",
3, N = "OTHER PREPROCESSORS", A - 2, T = 5, S PRINIT,
4, N="RFTIJRN", A=-1,T=5,
3, N = "RETURN", A = -1, T = 5,
2, N-"DISPLAY AND EDIT", A=2, T=5,S-DEINIT,0=1,
2, N="POST PROCESSORS", A=2, T=5,S=PPINIT,O=2,
2, N="RETURN", A=-1,T=5,

FIGURE 2.4.1 -SAMPLE MENU GENERATOR INPUT DECK

22

prov ide s t he se rou t ines i n an UPDATE i nput f ormat wh ich i s used i n

procedure MENUTABLE when the new menus are to be loaded into a new STAGING

absolute. This allows the source of the decision function to query

variables in COMDECK's on STAGINGPL.

The third section of the source is the actual set of menu cards.

The only fixed input data field is the level specification. The input

mechanism processes all 80 columns of a card image. No special

continuation marks are needed. The scan will continue until the next

level number is encountered. All fields (including the level number) are

delimited by commas. Blanks are insignificant except when enclosed in

quotation marks ("). These fields describe the light button text pick,
prompting messages, and the action to take in the tree. Each field is

started by a key letter and an =1sign. The key letters and meanings are:

N = "phrase"--

The light button text to be placed on the screen. A practical

limit for phrase is 25 characters.

L = integer number-

The location on the screen in the y direction at which the button

name will be placed. The integer number is a position from 1 to

20 that will cause relative text placement in increments of 10(.
rasters. L is generally unused because the generator assigns the

x and y positions automatically. Special case: If L = -1, the

bead is assumed to contain prompting information only.

P = "message"-

The prompting message to appear on the screen when the menu is

displayed. Flagged by L = -1. The message has a practical limit

of 70 characters.

T = integer number-

The button pick type. 5 is a button pick, 6 is a special action

pick. T = 6 is unused in this version of the STAGING system.

S = subroutine name--

The subroutine to be called when the button name is picked.

A = integer number-

Action or movement in the tree to be taken after the subroutine

has been called. The action can be overridden by the subroutine
23

(which is handy if an error has occurred). The subroutine need

only set variable IER in CQMDECK ERROR to the desired value. The

values are interpreted as:

-N: Go up the tree (toward level 1) N levels. If the tree is

at level 17 and A = -2, picking the button in the N f ield
will return to level 15 of the tree. Used invariably

with a RETURN button.

1: Continue processing picks. The application may need

string, single, or parameter picks. A = 1 yields a call

to the subroutine in the 'S =' field for each new pick
fetched (but not for the button pick). A call to the

subroutine is made to allow the application to clean upj
any loose ends. Pick information is returned in COMOECK
IDENTS.

2: Go down one level in the tree.

4: Stay on the same level.

5: Stay on the same level and redisplay the menu. This

action is used as an error override to reinitiate text
editing properly when problems occur.

o = anything--

Default values with ten characters maximum. Up to 50 0 values

can be assigned to any one name. Currently, only A 1 actions
require presence of the D field. If A = 1, 0 will specify the

action to be taken in the tree after the subroutine has been

call ed.

0 = + integer--

Option in situation decision function. If omitted, the button

will always appear, else the test (based on the integer

parameter) will be executed to determine if the button is
displayable in this situation.
These action fields provide all the information the menu

generator needs to produce the proper files to drive any application. If

an error occurs, the generator ignores the error and continues as well as
possible.

24

The fields required to define a bead (light button and associated

data) depend on its type: button name or prompting message. The button

name bead needs the N =, A =, and T = fields to function properly (a

subroutine call is by no means mandatory). A prompting message bead needs

only P = and L -1.

An example of the input and resultant output is given in Figures

2.4.1, 2.4.2, and 2.4.3.

Two situations arise which may cause confusion in the tree.

First, text editing is a problem because the user must be able to specify

a subroutine to process this input and the action to be taken in the tree.

The solution is given in Figure 2.4.4. The programmer adds the S and A

fields to a prompting message bead on the same level RETURN would

naturally occupy. See Section 2.4.6 for a detailed description of STAGING

text input facilities.

The second situation requires a bit more programmer input. The

program has the need to query and process string, single, or parameter

picks on occasion. The programmer must set up the pick type he is

i pecting in COMDECK CATS which contains five categories (ICAT) and
>zeanings (MEAN) for the categories. The meaning can by any of the

,ititmate actions in INTERTEK. The reason for this specification is to

.o~ed up auxiliary pick processing by telling the DRIVER what to expect

Yt. This saves much time because the driver does not have to retrieve

Sng le or parameter picks if a string pick is expected. The menu bead for

the A = field is exemplified in Figure 2.4.5. Because the processing

s;troutine is called only for the non-button picks, some mechanism is

needed to proceed through the tree. The D field supplies the tree action

to ue taken, while the A = 1 field contains pick processing strategy.

Output from the generator is two files. The first is the data

handler file containing the menu tree. The second is the source COMPASS

subprogram that contains the subroutine table of all 'S =' parameters in

the tree and the situation decision function. These two subprograms must

be loaded with the driver and user subroutines when loading the STAGING

absolute. Menu generation and loading are done automatically in

procedures MENUGEN and STAGINGGEN on PROFIL.

25

SIII)RKIII I NE rAK1.1' A;41) SlCl S UN RUTI5 -

I IWNT r XTABLE
FN !RY VXTAIILE

I B RSS 1
USE5

FXTARlY R15S/S 1
SAT I 'LIST

LABL RIJ -XI F\DEEC
F110 BO

q8 9o
1,(, N XT

PlIST 551 M 6/ONE

ONE D)A A I
BSS/. I

liST SAT I ABL
BX6 x I
SA6 is
RX6 TABLE.

SA6 IBI
RJ. -XSWITCIIS
EQ rKEABLE

TABLE. lBSSz 1
JP B3*TAB

TAB RSS 0
RJ -XFILATT
EQ "ABLE.
RJ -XEKXEC
EQ TABLE.
RJ -XPRINIT
Eq TABL.E.
Ri -XDEI N IT
F0 TABLE.
Ri .XPIPINIT
EQ TABLE.
END

ESINCTTON TIEEDEC(Kf.Y)
*CALL IIATRAS
*CALL ATrRIS

TfEC 0

TF(KLY.FQ.T)CO TO I
IF(KEY.EQf.2)CO To 2
GO TO 100

c
C IS TUERF AN ACTIVE DATA BASE

I XE(FILES(IUT4ITII+I).NE.D.) 100.101

C IS T)hERE AN ACTIVE DATA BASF. **AND**

c IS STRESS IN DATA BASE FOR POST)'ROCESSING
c

2 TE(FETIES(IUNtTD+l).FQ.O.) CO TO l0t
L.-LFIIArm()
TEI..Fij.OIGO To 101
Do 20 1-1.1,
N-1r.ATT(T,l)

IF(11 .;:,I. 6B N SrR)C') TO) 100
20 coNTINOiE

GO To) 101
i00 irSBOEC - I
101 RETURN

FIGURE 2.4.2 -SAMPLE MENU GENERATOR OUTPUT (1)

26

00

00

> >

0 0 0 0

0 fl

w CA~ CdEnInN
In 0 0)-3-

0

I-D 0 W UW

~ - w) I

W C.2-2

cdA ~ -

0 27

15, N = "ENTER NUMBERS", S = (routine to put up numbers via P'UTEDT),

A- 2, T 5

16, L = -1, P = "ENTER NUMBERS, THEN ETX.",

S = (process type-in), A =-1,

16, N = "RETURN", A = -1, T 6,

FIGURE 2.4.4. TRIPLET FOR TEXT EDITING

14, N = "CHOOSE BY LIGHTPEN", S = (setup ICAT and MEAN),

A = 2, T- 5,

15, L = -1, P = "CHOOSE SOMETHING, THEN RETURN.",

15, N = "RETURN", S = (routine to process each pick),

A = 1, D = -1,

FIGURE 2.4.5. MORE THAN BUTTON PICKING

28

.4.3 Menu Eata Base

The menu data base is in the form of a general tree. Throuqh

values provided in the tree, a subroutine is called to process the piCk

and take further action in the tree. The actual format and internal bead

format are given in this section.

The data structure imposed on the tree requires the use of three

pointers: father (pointing to the next higher level in the tree), son

(pointing to the next level lower in the tree), and link (pointing to the

brothers of this bead on the same level). Each bead can have only one

reference to each of these pointers. A schematic diagram of the structure

is given in Figure 2.4.6.

The format for the actual beads is given in Figure 2.4.7. The

functions performed by each field is quite straightforward. The links are

held as bead addressess in fields FTR, SON, and LNK. The traverse flag

(TFL) is unused in the current versions of both the generator and driver.

It has a potential use a a historical marker if such a feature is added to

the driver.

Other fields are used to indicate construction of the displayed

menu and the action to be taken after the user picks a menu item. There

are twu ty'ies of displayed itews. First, each menu page can be introcuced

by a prompting message (PRM). The prompting message is flagged by PSX =

PSY = 0. Otherwise, PSX, PSY is the location of the pick message (PCM) in

raster units on the screen. The buttons on the screen can have ID blocks

assigned to them for INTERTEK which are only used for special action

picks. The blocks are assigned automatically by the generator for a

special action pick type. A button pick is the only other pick type

needed by the system. The button can be skipped if the option value (OPT)

triggers the proper test in the situation decision function.

The actions taken in the program and tree after a pick has

occurred is controlled by the rest of the bead. These actions are the key

to the control of user interaction with the menu. After a button pick is

received in the driver, a user-specified subroutine is called (RUT).

Access to the routine is through the TBL field, which is an index into the

automatically generated COMPASS subroutine. The user need only supply the
29

A

C-,

H

C-C

(-C
Cl)

C-C
Cl,

C-']

-4 a] -~

-Ca] C']
30 ___

a]
a]

Word 59 53 35 29 17 5 0
1 Bead Addres of Father (FTR) Bead Address of Son (sON)

Traverse Fh1a (TFL) Bead Address of Circular Link (I,,

3 Addrcss o u-
Subroutine to be Cal led (RUT) routine (TBL,'
X Position on Screen (PSX) Y Position on Screen (J';Y)

5 Action in Tree After Return Bead Address of Dcf n t fn
Frcm RUT (ACT) (DEF)

6 Unused Characters il ?ick ol ,ordFs in Pick Start In d,, II
______Messa~e (P"NC) Mlessna'e (P7.') ;PieR. Mt' '.>'_': })

Unused Characters in Prona ,: of .1: d. in Poupt .sturt : .
____t inaz M<.n.--e (PEG\) Melc.sa :e (PEN,) rptirng.!,2s- P ,,P>:S x

8 Unuscd l'ic ";a 'icz u of 'ords in i!) tart i) La r t-
_______,.'e (PC T) Pjlock for Pick M-sc(PUN r- . ,

9 dnused of User Suppliec Unused Start in I a,-"d
.__ Default Values (DVN) U dDefault ",2,-

10 Option Value (C'T)
S I Button Pick Message

ISA N6 (PM)

Pp\S Prompting Message
RS+PRN (PRM)

P CS ID info for Button Pick
PCS+PCN (PC)

DVS User Assignable Default Words
DVS+DVN (DV)

FIGURE 2.4.7 - MENU DATA BASE BEAD FORMAT

31

I3

name and the generator takes care of the subroutine table creation. After

the processing subroutine is called by the driver, the next action in the

tree is taken. The ACT field indicates which level in the tree contains

the next set of buttons seen by the user. Additional values may be

specified in the user-defined values (DV).

The menus operate from a random disk file and require very little

information in core to keep them running smoothly. Only one bead on the

level being displayed is maintained in core. Both the non-GLOBAL and

GLOBAL menu require this bead to be in array ISTART in COMDECK MENBLK.

ISTART(1) contains the non-GLOBAL head and ISTART(2) the GLOBAL head. (By

convention, all non-GLOBAL menus are called MENU 1 and the GLOBAL menu

MENU 2). The generator places the address of the first bead in level I of

any menu in the father (FTR) field of the first bead of the file (IO000B

with unit information attached). Thus, ISTART(1)=IGFTR(2000010000B) will

get the first bead in initializing the driver.

The driver requires that all menu bead addresses on the screen be

saved in array IBEADS in common block MENBLK. The index into the array is

provided by the ITASKC parameter in the GITEM call for each button name.

When switching from NON-GLOBAL to GLOBAL mode, IBEADS must be saved and

restored before returning back to non-GLOBAL mode.

The driver passes information about picks to the called

subroutine using the COMDECK IDENTS. All information about the pick is

passed to the subroutine in the IEVENT, ID, and INF arrays. By

convention, a return of ID(1)=O (in addition to the standard INTERTEK

return of IEVENT=-1) means that no pick has been processed.

2.4.4 Menu Generation Software

The menu generation software is on program library file

MENUGENPL. The absolute for this system is file MENUGENABS which is

created in procedure MENUGENABS. It is invoked by procedure MENUGEN

whenever a new command tree is to be created. The subroutines on

MENUGENPL are listed in Table 2.4.1.

32

TABLE 2.4.1 MENU GENERATION SOFTWARE

TMENU Main program

GENTREE Generate menu data base and source code for menu
driver and decision function

GETSTR Input free format input stream

CRKSTR Crack input stream into proper fields

FINSPC Look for special action names such as "RETURN"

IFNDH Generate new special action definition

IGFTR Get menu data base bead fields using NSRDC Data

Handler

IGPCKM Get other menu data base fields

TSTUFF Look for menu level number on input stream; echo
input stream back to OUTPUT if requested

MAKALF Encode an alphanumeric string

MAKINT Convert input display code number to an iteger

PROUT Generate jump table of routines called from this menu

SETFTR Put menu data base fields using NSRDC Data Handler

SETLN Set special action definition bead

SETVAL Set special action bead fields

DISTREE Print a formatted listing of the tree

33

1=, -T!

2.4.5 Processing the Command Tree in STAGING Driver

Because of the work done by the command tree, the drive,- is rit

much more than a sophisticated computed GO TO processor. The proqramr nr

(although he does not have to explicitly worry about it) has set up alI

the linkage needed to proceed smoothly through the tree. 1he driv.r

merely puts the buttons on the screen, then waits for a button pick event.

Upon receipt of the pick, the driver retrieves the subroutine associ2t

with the button and processes any intermediate picks (single, string,

parameter, or text editing type events). Each intermediate pick is

processed by the subroutine specified in the button pick name. After

intermediate picks are processed, the routine is called for clean up

operations. If the routine detects an error, the next action in the tree

can be overridden. The tree action is specified during the generation

phase and lets the programmer specify where he wants the user to qo next.

Actions are basically go up, go down, and stay on the same level.

The driver also takes care of initialization and abnorma)

termination for STAGING. The steps in initialization are:

(1) Initialize the common blocks (GLOINT)

(2) Initialize the recovery package (MARK)

(3) Initialize graphics (GRFNIT)

(4) Initialize the Executive and Global trees (MENNIT and

STARTM)

DRIVER then loops through processing all picks. There is never

any need for a subroutine to include a pick processing call (GIBUTN,

GIPARM, GISTRN, GISNGL) outside of DRIVER.

If an abnormal termination is detected, DRIVER and the recovery

package are responsible for either stopping the application or continuing

in a reasonable way. Stopping the application simply returns to INTERCOM

without flushing the user's data base. Restarting reinitializes graphics

(GRFNIT), the GLOBAL menus (MENITG), and deactivates all active beads in

the daLa base (ERASE).

Routines that are directly related to DRIVER include:

IPPRMT--display prompting message on this level

IGFTR with entry points
34

IGACTIGDEF

IGDVN, IGDVS, IGLNK,

IGPRS, IGPRW, IGPS,

IPSX, IGPSY, IGRUT

IGSFT, IGSON, IGTBL,

IGTFL, IGOPT

IGPCKM--retrieve pick message

with entries

IGPRMM--prompting message

IGDFV--default values

IGIDM--ID values (special actions)

SWITCH--call subroutine specified in command tree

with entry

SWITCHS--save address of start of subroutine table and

decision function (provided by menu generator)

ISWTCHD--call the situation decision function

GRFNIT--initialize graphics for INTERTEK

MENNIT--initialize the Global and Executive menus by attaching

the proper files, initiating the subroutines, and

drawing the first display

With entry

EXINIT--reinitialize menu DAE and GLOBAL button after a

recovery has been made

GLOINT--initialize common block variables and INTERTEK buffer

EXINIT--initialize the executive menu upon return from a

submodule

STARTM--start up the menu on the specified local file name

(once a command tree is initiated by the Executive

module, it functions as a separate entity until a return

to the Executive is requested by a call to EXINIT).

INDATA--read text input and format it for cracking algorithms

IREAD --read a text string into NVALS in EDITT common block

IPICK --process button pick

PAGER --wait for user to pick ERASE or REDRAW

ERASEM--erase and redraw

35

ERASER--erase screen and redraw only minimal DAE's

with entry

ERASEN--erase screen, no redraw

2.4.6 Textual Input

Textual input to STAGING is needed for user modification of

fields displayed in the menu area. A general mechanism has been defined

for preparing these areas that simplifies coding.

The number of different entries for text editing throughout

STAGING led to the development of a generalized subroutine for displaying

the items to be edited.

PUTEDT: Display a list in the type-in area for text editing. The

programs can supply up to ten values in one call. The

length supplied can be positive or negative. A positive

value indicates that all values in the array should be

displayed even if there was no old value. A negative

value means that blank old values are ignored. This mode

is used primarily when erroneous values are being

redisplayed to let the user correct only those values.

As well as the length of the type-in, the program must

supply a Hollerith descriptor for the field in array

NAMES in common block EDITT. An old value can be

supplied in array LVALS. These values must also be

Hollerith. PUTEDT takes care of the formatting and

display. The user should set IST in EDITT to the

beginning of the type-in for each block and lEND in EDITT

to the maximum number in the list. PUTEDT causes the

type-in box to be displayed.

As with the name display, the type-in area is limited to ten

items. The same general tactics are used to put up the next sets of

values: an entry point in the routine that put up the first set puts up

subsequent values.

Whenever text is input by the STAGING user, the processing

subroutine must check the validity of the entry as well as performing the

36

iI

'i

proper action. Each type-in has different requirements for validity, so

the actual checking has to be spread into each processing routine.

Utilities are provided to help decode the values the user types into

NVALs. For each new type-in, NVALS will be non-blank. The usual

construction of the processing routine is:

1. Check to see if all numeric input is correct.

If so, go to step 3.

2. Check to see if any values are special case alpha-numeric

inputs. If no more errors, go to step 3, else, display an

error message, stay on the same level and call PUTEDT again.

to redisplay only the bad values. The loop is continued

until the user 'RETURNS' or succeeds in the type-in.

3. Check to see if more values need to be entered. If so, call

the put up entry point and return control to DRIVER. Note

that the entry point always bumps IST in EDITT.

4. Compact the type-in list so all values are contiguous.

5. Do processing for all collected values.

The practical limit for a single set to be typed in is 30 (the

length of SVALL and SVALH in EDITT). Each correctly decoded value is

stored in these arrays biased by IST so no more than 10 values can be

typed before processing begins. The following routines are used for

processing type-ins:

ICHKED: Check to see if all numeric input is correct. Two modes

are allowed: single value or range type-in. The range

type-in is two numbers separated by the letter 't' or the

word 'to'. If an error occurs, the new value is placed

in LVALS and the function returns a non-zero value.

PUTEDT will than redisplay the erroneous values with no

further programming. The numeric values are always

floating point and stored in SVALL (low) and SVALH (high)

in EDITT.

COMPAC: When all typing is completed, the value can be processed

more conveniently when no searching needs to be done.

COMPAC, therefore, squeezes the type-ins together to

allow a loop index of 1 to IST in EDITT. (Always check

37

if 1ST = 0 for no type-in). NAMES (I-IST) in EDITT

contains the actual location in the list at which the

type in was made.

Review of the following routines will aid in understanding the

processing of text input. For routines that can handle more than 10

values, look at routines PUTATT and ASERCH. For a routine that handles

special alphanumeric values, review SVIEWP.

38

2.5 Staging Model Data Base

2.5.1 Introduction

The STAGING model data base is split into four geometry levels,
each of which contains a description of part of a model. Level 4 (nodes)
describes points in space in terms of (X,Y,Z) coordinates. Level 3

collects nodes into elements, level 2 collects elements i nt o
substructures, and level 1 collects substructures into structures. Each
bead in a level is linked to the bead in front and in back of it. It also

contains pointers to its direct ancestor an, descendent beads, thus
providing a totally cross-referenced directed graph structure. User

values are stored as attributes in a variable length array assigned to
each bead.

An additional level (#5) has been added to the data base to allow
storage of non-geometric data which can be anything from card images to
large arrays of numeric values. Each array can be given a unique

f orty-character name. It is convenient to consider the tables as FORTRAN
arrays: they are created by a conversion routine, can be of 1, 2, or 3
dimensions, and cannot increase dynamically in size.

Utilities are provided at different levels to store and retrieve
information in the data base. The data base handler subroutines provide
diverse functions for manipulation of the data base. Searching for

structures, substructures, and table names is done linearly. However, in

order to allow faster searches, nodes and elements are maintained in
numeric order. Description of the search procedures for nodes and
elements is given in Section 2.5.4.1.

2.5.2 STAGING Model Data Base Format

The overall structure of a STAGING model data base is illustrated
in Figure 2.5.1. Each level in the structure is linked internally within
that level by two-way circular pointers. The left link points to the

element (or node) with the next smallest numeric identifier; the right
link points to the next highest. The structures an~d substructures are

39

0

40

uncrderd but 1'mi am y 0 . Another list is formed on each level that

joins each active bead on that level. This list is unsorted and is built

as new beads on a level arp activated. The levels are joined to the next

higher and lower level. The data base is completely cross-referen:ed

between levels. If element 2 contains node 6, then node 6 has an up

pointer to element 2. This helps when a change is made to a node and the

change effects how an element is drawn. No searching is necessary to find

the ancestors.

The goal of all this linkage is to rninimize search time. The

only time an entire list needs to be searched for a name is for the

relatively short structure and substructure lists. By keeping a partial

table in-core for elements and nodes, a number can be found quickly.

Furthermore, only the address of the starting and ending beads need to be

found if a range of numbers has been entered (for example, if 10 to 50 is

entered all numbers within that range are known immediately because the

list is sorted). A detailed description of the table is given in S tion

2.5.4.1

2.5.2.2 Detailed Bead Description

The internal structure of the beads is the same for each level

from I to 4. The general format for these beads is given in Figure 2.5.2

Figure 2.5.3 shows the format for a level 5 table bead.

The fields in the bead are interpreted as:

Word I TYPE (6 bits, sign extended-TYP) - The type or level number (1-4)

of the bead. If TYPE is negative, the bead has had some value

changed during editing. Thus, when just concerned with the type,

one must take the absolute value before using the value.

DISPLAY ATTRIBUTE (6 bits, not sign extended - DAC). The

attribute being displayed if the bead is active. If =0, no

attribute is disolayed; if LENATT(TYPE). the name or number is

displayed. If DAC is between 0 and LENATT(TYPE), the value is

the location in the attribute list of value shown.

LENGTH (18 hits, not sign extended-LEN). The total number of

words in the bead.

19 YJ 4 29 17

2 _____ ____ ELEMENT O OENME

3 ___ L Dl IATA BASE POINTER, -1\1cll" 21V Ijl'f l 2X2 I)

4 L~~i).\IJ ~STAr OF ''21; 55

4 IDDAID 112K 4 JAD

5 - __

6 .NUKLEP Or UP3 POINTERS (IJPN) SATOFL' l'u I01N I RS (Lit'S)

LPROLG 7 LEFTACTIVE POIlNTER RIGHT ACTJVi, POINTER

LPROLG + 1 DO-l)WN POINTER'F ftl DO0 ,.N Po1 NTER P~2

(DNN-1)/2+1+LPROLG DOWN POINTER liDNN-1 DOWN POINTER #DNN

UPS UP1 -POINT-ER l'i. UP POINTER #t2

(UP'N-1)/2+UPS UP POINTER #UPN
STA

NO MAN'S LAND
STA+JD'EF (TYPE) -1 ______________________________

STA+JDEF (TYPE) ATTRIBUTE VALUE #1

STA+JDEF (TYPE) ATTRIBUTE VALUE ILENATT(TYPE)
+LENATT (TYPE)-1

FREE SPACE OF VARIABLE LENGTH
LENGTH_____________________________ __

FIGURE 2.5.2 -FORMAT OF DATA BASE BEADS

42

Word 59 17 0

1 TYPE* LENGTH{*

2 _______________unused _______

3 Left Data Base Pointer* R' i 'ht D-ita B i -e Poiit -

4 unusedStart OL 1) ta List*
4 unused(STA)

5 unused

6 ______________ unused

LPROLG=7 Le~ft Active Pointer* F Right Active Pointer*
8
9 Name of Tablo (N4AM)*

10 [4 Words]
11 ___________

12 Number of Dimensions (NDIM) No-

13 Row Dimension (ROW) Mi

La'

14 Column Dimension (COL)

15 Depth Dimension (DEP)

16 User Supplied Format (TEM)
17 [3 words]

S LftDaa G+sDEF(5) 19 PoiTer*_,httype of Fort:at (FTY)

STA 20

User Supplied

Data

LENGTH _________________ ____________

Function for setting and getting done by same routine
as Levels 1 through 4.

NTDM: the dimensionality of the supplied array.
ROW: number of rows in table, If NOM =I, ROW

is the length of the array.
COL: number of columns in table. If NO N 1, COL is

zero.
DEP: length of depth in table. If NOM 3, DEP is

zero.
TEN: variable format in characters that can be up to 30

characters long.
FTY: if TFN is of A format, FTY =0, else 1.

FIGURE 2.5.3 TABLE BEAD FORMAT

43

Word 2 If TYPE = 3 or 4, the element or ncdte number in integer format.

If TYPE = 1 or 2, the name is stored ir, 'NO MAN'S LAND' (word STA

through STA + 3).

Word 3 LEFT DATA BASE POINTER (30 bits, not sign extended - LFT). If

TYPE = 3 or 4, bead address of the element or node with first

number less than number in word 2. If TYPE = I or 2, bead

address of previously created structure or substructure. If bead

is the head of the list, LFT points to the last bead in the list.

RIGHT DATA BASE POINTER (30 bits, not sign extended - RIT). If

TYPE = 3 or 4, bead address of the element or node with first

number greater than number in word 2. If TYPE 1 1 or 2, bead

address of bead created immediately after this structure or

substructure. If this bead is at the end of the level, RIT

points to the head of the list.

Word 4 IDDAD #1 (30 bits, sign extended - DAD). IDDAD #1 is address of

display items for undeformed plot. If value is negative, the

plot is shrunk 80% about its center. If DAD =0, the item is not

drawn. The various drawing routines realize that an item is

already drawn unless DAD=O. A temporary set of DAD to I is made

to tell the drawing software that GUSETP has been called. When

an item is generated, DAD is not the proper value for the

generation. An active-no-draw mode is used in 2D and contour

plotting. In this case, DAD is set to I to inhibit drawing.

START OF ATTRIBUTE LIST (3 bits, integer value - STA). Word in

bead in which first attribute starts.

Word 5 IDDAD #2 (30 bits, sign extended - DAD). Display item address of

deformed picture of entity.

NUMBER OF DOWN POINTERS (30 bits, integer value - DNN). Number

of down points in this bead. This list always starts in word

LPROLG + 1. Nodes have no down pointers.

Word 6 NUMBER OF UP POINTERS (30 bits, not sign extended - UPN). Number

of up pointers in this bead. Structures have no up pointers.

STARTOF UP POINTERS (30 bits, not sign extended - UPS). Start in

bead of up pointers. Keeping this value allows gaps in the bead

between the do'n pointers and up pointers.

/44

A,

Word 7 LEFT ACTIVE POINTER (30 bits, not sign extended - DLF). If a

bead is activated DLF contains the previously activated bead

address. If this bead is the first active pointer bead on this

level, DLF points to the last active bead.

RIGHT ACTIVE POINTER (30 bits, not sign extended - DRT). If a

bead is activated, DRT contains the bead address of the next

active bead. If this bead is the last active bead, DRT points to

the head of the active list. To determine if a bead is active,

the right pointer (DRT) needs to be non-zero. The system takes

care to reset the right pointer to zero when a checkpoint or stop

is taken. That insures that that the file is usable at a later

date. When a bead is activated the DAD and DAC paramters are set

properly.

The above 7 words are always present in each bead at each geometric level.

DOWN POINTERS The pointers are bead addresses packed two per

word. The list is of variable length and must be

compact (i.e. no holes in the pointer list).

Therefore, when a down pointer is deleted, all of

its successors are moved up a slot and the number

of down pointers decreased. The deletion process

only moves down pointers because the start of the

up pointers (UPS) and attribute list (STA) is

independent of the number of down pointers.

Holes between the down pointer list, the up

pointer list, and the attribute list are possible

because of this.

LIST OF UP POINTERS The up pointer list works exactly the same way as

the down pointer list. It is packed, two-bead

addresses per word, and of variable length.

NO MAN'S LAND This area is a region that serves as a catch-all

for any other types of information needed in any

of the levels. Words are stored and retrieved

through array fetches from the Data Manager

package. Each bead of a praticular case reserves

JDEF(TYPE) 4ords if that area of the system needs

45

ad d i t i o n a 1I n f arm a t i o n T te c ut r r c n t

implementation uses JDEF lenghts of four in a

structure, ten in a substructure and zero f;r

both elements and nodes. In the structure, words

I through 4 ire taken by the forty-chararter

name. The substructure also keeps the name in

worIs I through 4. Words 5 throuqh 7 are the X,

Y, and Z minimum coordinate values for the Pr 0ref

structure or substructure while words thyr.iri,

10 contain the X, Y, and Z maximum coordinato

values.

The JOEF region of no-man's land can be used for

other information as the need arises.

ATTRIBUTE LIST The actual floating point values of the

attributes. The order is pointed to in the

CO1MON block ATTRIB which will be described

later. Each location points to a new value in

the list of possible attributes. The order and

meaning of the attributes is defined by the usc,

in the conversion routine CNINIT. Additiona7

attributes can be added through later converson

routines in a manner transparent to the

programmer. He must merely assign a value to an

attribute not defined in the initial data base,

and that new attribute will be defined for the

data base.

2.5.3 Change List

One of the features of the general data base is the ability to

back up to a previously saved data base if editing does not prove

satisfactory. The change list resides on the same data handler file as

the model data base.

The concept behind the change list is to save only the current

version of each bead in the data base itself. Thus, when, a change is

made to a field, the change is rcflected in the bead itself. If this is

46

the first change made to a bead, an unchanged copy of that bead is placed

on the change list. The bead format for the change list is given in

Figure 2.5.4.

Entries are made to the change list only for those fieids that

relate directly to the data base. These fields include LENGTH, NUMBER or

NAME, LEFT or RIGHT DATA BASE POINTERS, START OF ATTRIBUTE or UP POINTERS,

NUMBER OF UP or DOWN POINTERS, and UP or DOWN POINTER, or any ATTRIBUTE

VALUE. The display related fields of DISPLAY ATTRIBUTE, IDDAD, LEFT or

RIGHT ACTIVE POINTER, and MINS and MAXES (substructure beads only) do not

cause entries to the change file. To inhibit searches for changed beads,

the system flags a changed bead by setting TYPE to -TYPE.

The change list does not have to be used unless the ability to

back up is desired. For example, the conversion routines inhibit use of

the change list by setting the header of the list to zero. When the

change list is active, as it is in Display and Edit, the header of the

change list is a bead as formatted in Figure 2.5.5. The user tells the

system that a change file is needed by setting the second parameter in the

data base initiation routine (DBINIT) to zero. The conversion routinp

initiator (CNINIT) automatically sets the change file inactive mode. If

the change field is inactive, beads are released whenever possible.

The headers and number of beads are kept to insure that deletinnc

or additions to the data base are properly eliminated when backing uP to

an old data base.

The change file works for all cases, even when a new bead of

greater length is needed. Because all references to the new bead are also

updated automatically and the old bead is unreleased, the change file need

only rewrite the old beads again. The linkage is thus automatically

restored to its original state. When the change file is 'released' and

the user saves his edited data base, the list is destroyed by making the

last bead in the list the same as the first bead. The change beads

themselves are not released to give a future capability of backing up more

than one step.

The programmer need not worry about using the change file as long

as the model data base change routines are used. These routines

automatically dump beads to the change file when necessary.

47

.:Z "*

. Word

1 Length of Bead

2 Bead Address of Next Bead in List*

3 Bead Address of Original Bead

4

exact copy

of

Bead in address in

Word 3

Before a change

is

Made

Length

If this is the last bead in the list, next bead

points to the head of the list.

FIGURE 2.5.4 - CHANGE BEAD FORMAT

Word

1 Unused

2 Bead Address of Next Bead in List

3 Unused

4 Head of Level 1

5 Head of Level 2

6 Head of Level 3

7 Head of Level 4

8 Number of Beads in Level 1

9 Number of Beads in Level 2

10 Number of Beads in Level 3

11 Number of Beads in Level 4

FTGURE 2.5.5 - CHANGE FILE HEADER BEAD

48

I .4 In-Co-e Tables and Arrays

All in-core arrays are in common blocks that are ;n F{:-

COMDECK's. These hold the values needed to use the data bases effect .i

2.5.4.1 Searching Tables

The conversion routines used in the construction phase i i.

:veral tables. The user may supply nodes and elettents in any orde,.

onversion routines keep a table (ELNOD in CNINT) that contains mp ,

elements and node beads by number and associated bead address. ihe t

fills from the front for elements and from the rear for nodes as depicted

in Figure 2.5.6. When the table overflows, a copy is written to the

conversion routine scratch file (TAPE77). CNTERM sorts each full tah,,

and links them properly. Obviously, the conversion routines opetr-

faster if the nodes and elements enter in sorted order.

One of the features of the model data base is fast sparch t,-,

node and element numbers. Because the circular list is kept r '

,!der, a binary search can be done based on a partial table of ent,7.

"e strategy is to minimize disk accesses. The number of accesses icr-

,0,;,i, as the number of elements and nodes increases by sophist ic(-to'

- the table in ILKUP and INLKUP in DATBAS. The actual table for-o ,

;0,en in Figure 2.5.7.

The number of entries in ILKUP depends on the size of the ('at

hase. The number of accesses depends on how close the entry is to th,-

entry in the ILKUP table. If the number is not in the table, a nuc.,

cade as to which entry the search number is closes to, thus f irt

e::reasinq search time. For example suppose there are 500 elernents r,:

-)50 nodes in the data base, both numbered from I to 500 (the r ,mhe, 'ra

rheme wi Il not effect the algorithm at all). Suppose we are Iooh nt

me bead address corresponding to node 87. The ILKUP table 'o 7.:

,,tr ies fnr the tenth bead in each list because ILKUP of dimension

,piit into four equal pieces. Node and element numbers 1, 11, ,1.....

191 would all have references directly in the table. A binary scarc ,

; indicates that 81 is its predecessor in the table. The alqo,'it ,r
L /49

~ - -

ELNOD 1 2

PELM(4)---> Bead Address Element Number 1

Bead Address Element Number 2

Bead Address Element Number N

ifi

Bead Address Node Number N

PNOD(,)--- Bead Address Node Number 2

Bead Address Node Number 1

FIGURE 2.5.6. FILLING ELNOD

50

________ ________ I LKU P _ _ _ _ _

INLKUP (I) Element Numnber A

TNLKUP(l)+INLKUP(3)-l Elem en t Number 2
1YLKUP(l)+INLKJP(3) -Bead Address Corresponding to E-loment A

INLKUP(l)+?2*INLKTP(3)-1 Beaid Address _____ j~j.~ to Elemont Z
INLKUP (2) Node Number A

INl~lKUP(2)±INLKUP(4)-1 Node Number Z
INLKUP(2)+INLKUP(4) Bead Address Corresponding to Node A

INLKUP(2)+2*INLKUP(4)-l Bead Address Corresponding to Node

FIGURE 2.5.7 -ILKUP ARRAY WITH INDEX INLKUP

51

I.

looks at the successor in the table, in this case 91. A direct comparison

determines that 87 is numerically closer to 91 than 81. A total of three

beads would be fetched (90,89,88) before the hit was made and the fourth

was discovered to be correct. A maximum of five beads need to be checked

to get any one bead for this data base, with averge search time for a bead

not in the table 2-1/2 beads checked. The algorithm is general: all one

has to do to increase speed for huge problems is increase the size of

ILKUP and set the new length in DATBAS variable LELKUP. It should be

noted that 200 words seems quite adequate because not that many searches

are made for name in Display and Edit. The hardwiring of bead addresses

as links greatly speeds up the processing time and seems most adequate.

The conversion routine CNTERM uses the node and element names to generate

up and down pointers. This process has been speeded up by sorting the

down pointers before searching, thus eliminating searches for duplicate

names. The scheme uses core effectively (by not using much) and

eliminates shuffling hash tables in and out of core.

The two links (level links and active links) have a record of the

first bead (the header) and the number of beads in each list. These are

kept in array of length four, with the subscript referring to the data

base level (1=structure, 2=structure, 3=element, 4=node). In common block

DATBAS, array IHEAD refers to the level header and NUMBDS the total number

of beads on the level. In common block ASTSTR, array IHAC is the head and

NAC the number of active beads on each level.

The head and tail of the change file are kept as IHCH and ILCH

(respectively) in common block CHDAT.

2.5.4.2 Attributes

The attributes that can be defined for any data base are

variable. A list of attributes available to the application is maintained

through the variables in common block ATTRIB, ELNAC, and IATTYP.

Common block ATRRIB contains the master table of attribute names

for all four levels. The names are kept in array IATNM. There are

seventy-nine attributes currently available in the data base. The number

of each type is kept in array MAXATT. The first attribute in the packed

52

(i.e. no gaps between names) IATNM array for each level is kept in array

INXATT. The total scheme is depicted in Figure 2.5.8.

Each 10 character attribute nama is unique up to seven

characters. The last three characters are reserved for a subscript

ranging brom 1 to 999. In this manner. each attribute can be considered

to be an array that can be accessed by a seven character mnemonic and a

subscript value. (The treatment of the name implies that 0 is equivalent

to 1, i.e., attribute TEMPERATUR = TEMPERA(O) = TEMPERA(1). The numbers

are treated as characters internally. Blanks within the numbers are

insignificant (I 1 = 11 = 11 = number 11).

The actual attribute list is order independent between data

bases. Each data base defines its attribute order at initialization by

routine CNINIT. The user supplies the list of which attribute names are

to be assigned with which attribute value. A key is formed from ach

attribute name which is 60 &*c's ly.

5929 11)
,Subscript value pointer to name

The pointer to the name is a pointer to the Hollerith identifier in array

IATNM. The subscript value is the Nth member of the array. Two routines

handle encoding and decoding of the names:

NAMFNM: Make a Hollerith string from a value in the above format

NUMFNM: make a number in the above format from a Hollerith

attribute descriptor.

The actual association list is kept in array INATT. (See Figure

2.5.9). However, INATT can overflow. This condition occurs when LENATT

(LEVEL) is greater than MAXATT(LEVEL). In this case, additional space is

required to store the indices.

IGATT: returns Nth attribute value from array INATT. If this

value is not in INATT already, IGATT fetches the proper page from

memeory.See Figure 2.5.10 for a description of the paging scheme. For

each level, IBXATT(LEVEL) refers to the bead containing the page. Each

new page adds MAXATT(LEVEL) more words to the -array. IPATT(LEVEL)

contains the index of the first word of the in-core page.

53

IATNH
INKATT(1)

INXATT (1)-IMAXATT (1)- 1

I NXATT (2)

INXATT(2)+MAkXATT (2)-i

INXATT(3)___________________

INXATT (3)+MAXATF (3)-i

INXATT (4)

INXA*TT (4)-iMXATT (4) -1

Unused

FIGURE 2.5.8 -ATTRIBUTE NAMES

54

INATT
INXATT(1) Index of Active Structure Attribute (range is

INXATT (1)+
1-MAXATT (TYPE)

LENArT(1)-l
for all indices)

1NXATT(2) Index of Active Substructure Attribute

IN:XATTr (2)+
Index of Active Substructure AttributeLEN,%TT (2)-1

/ 7, /

INXATT(3) Index of Active Element Attribute

INXATT(3)+ Index of Active Element AttributeI.ENATT (3) -l

1/Jiffi0ffMLb -r L 74711/MJ
!NXATT(4) Inde: of Active Node Attribute

IN-XATT(4)+ Index of Active Node Attribute

LENATT (4)- -I

LEN IAT I
FIGURE 2.5.9 - ATTRIBUTE INDEX INTO BEA)

55

IBXATT

Copy of entire
set of attribute
associations in
format

subsript pointer to name

MAXATT*n~______________

IPATT points to (n - 1) * KAXATT + 1 where n is the number of
pages needed to store LENAIT attributes.

FIGURE 2.5.10 -PAGING SCHEME. PAGES ARE GENERATED IF
LENATT (LEVEL) >MAXATT (LEVEL) WHEN NEW
ATTRIBUTES ARE GENERATED

56

The data base remembers internally which attributes are def red

by using the RESTART and DBINIT routines. RESTART dumps the signif icnt

arrays to disk (especially the information about heads of lists, the LKbP

array, and attributes). DBINIT restores the arrays to the same state as

they were when RESTART was called.

The only attribute that must be defined is the TYPE of element.

Twenty-nine different types are available in Display and Edit thus far.

Array IELNAC in COMDECK ELEMEN contains a 10-character name for each

element type and a key as to how the element will be drawn in the IDRWEL

routi ne.

Display and Edit also allows display of attribute values on the

model itself. To aid in the identification, the IATCOM array in COMDECK

IATTYP contains an abbreviation of the full attribute name. Array IATDRW

contains a flag indication how a particular attribute will be drawn (if a

symbol is available). The drawing i:; currently restricted to single and

double headed arrows.

2.5.5 Model Data Base Handler Routines

The data base can be accessed from any level desired. Te

low-level routines are the bread-and-butter routines that store an

retrieve information from the data base. Higher level routines have been

coded to make retrieval from the data base easier. They use the same

low-level routines but provide short cuts to decrease coding for heavily

used concepts.

2.5.5.1 Low-Level Routines

The purpose of the low-level routines is to make each field in

the bead easily accessible. Each field can be set or retrieved. The set

routines check to see if the bead has been changed previously. See the

change file description in Section 2.5.3. All retrieving (except for

arrays) return the value as the function name.

The major idea behind the plethora of names is to insulate the

programmer from the bit manipulating calls of the NSRDC Data Handler. The
57

input that controls the format for each bead is set in data statements in

GLOINT for common block CODES. In order to change the bead format, only

this common block need be modified. Furthermore, this limits the number

of DM- calls to allow easier conversion to another random access package

on another machine.

Each set routine (prefix DB) has a counterpart get routine

(prefix IDB). In the following list, the set routine is listed first.

DBCHA - DBATT: Nth attribute (DBATT returns a floating point valus)

DBRITE - IDBRIT: Right pointer (next bead in list)

DBDAC - IDBDAC: Active attribute (for display purposes)

DBDAD - IDBDAD: Address of bead on screen (for display purposes)

DBDLF - IDBDLF: Left active pointer (for display purposes)

DBDNN - IDBDNN: Number of down pointers

DBDNP - IDBDNP: Nth down pointer

DBDRT - IDBDRT: Right active pointer (for display purposes)

DBLEFT - IDBLFT: Left pointer (previous bead in list)

DBLEN - IDBLEN: Length of bead in words

DBNAME - IDBNAM: Name of bead

DBSET - IDBGET: Nth word of bead

DBSTAT - IDBSTA: Start of attribute list

DBTYP - IDBYTP: Type of bead (1,2,3 or 4)

DBUPN - I3UPN: Number of up pointers

DBUPP - IDBUPP: Nth up pointer

DBUBS - IDBUPS: Start of up pointers

DBARR - IDBARR: Array from no man's land.

The above routines access each field in the data base beads. At

a slightly higher level are routines to perform more complicated tasks.

These include:

DBCHNM: Change the name of an existing bead. This routine

insures that the name is in the proper order for nodes

and elements.

DBUPT: Set or remove the up pointer of the bead listed. The

number of pointers is increased or decreased

appropriately. Duplicate pointers are ignored.

58

DBDNT: Same as DBUPT, but tor aown pointers

Beads need to be added to or deleted from the data base ,

level.

IDBADB: Add a bead with name in parameter I after the tQon!,

parameter 2 (usually found from IDBFND--see below). If

parameter 2 is a level number (1,2,3,4) and the list is

empty, a new list is started with the new head a,,

header. Adding a bead sets the proper left and ,

pointers but does not set up or down pointert

attribute values.

DBDEL: Delete the bead and all references to it includinq uF,

down, left, and right pointers Deleting a bead does net

eliminate in-core references to it.

One of the most common tasks is to find a particular name on

level. Function IDBFND provides that capability.

IDBFND: Find the bead address for level in paraet r'

corresponding to 40-character name (structures 11)C

substructures) or integer number (elements and nodes,.

Structures and substructures have short enough lists to

search linearly. Elements and nodes are stored in sorte-

order and indexed by a partial array called ILKUP. ,

binary search is performed on ILKUP, and a linear searah

thereafter.

DBLKUP: The application will delete and add beads. To clean up

the ILKUP array, DBLKUP will reset the array.

When adding values to a bead, overflow may occur. This can occur

when setting a new value in any of the variable length lists in the bead:

the up and down pointers and the attribute list. The following routine

performs overflow checks:

IDBCAN: Check to see if more urds can be added to the bead. If

not, IDBCAN obtains more words and changes all references

to the old bead, even those in in-core arrays. The new

bead address is returned. The routine is called

automatically by the routine concerned and is thus

transparent for the most part.

t 39

The change list is established as a backup to let the user

retreat to a previous version of his data base. The change list may also

be incorporated into the existing data base. This allows the current data

base to be the permanent data base. The following routines perform this

function:

DBCHBD: Check if the bead is already on the change list (type is

negative). If not, the bead is copied intact, placed on

the list, and its type set negative to indi ate that it

has been changed.

DZRST: Go through the change file, restoring the changed beads

to their original state. DZRST invokes a Fcreen erase

because deletes may have been performed on items which

would not be captured correctly on the display. All

types are set positive again.

DZSAVE: Save the changed data base by eliminating the change list

and setting all types positive. The entire data base

must be scanned because a new bead may have been added to

replace one that was too short, a fact not reflected on

the change list.

Two utilities scan the attribute list for a particular attribute

currently active in a data base. Both return the location in the

attribute list of the stored value if present and zero if the attribute is

not present. The first utility returns immediately, the second will

create a new slot if the attribute has not been defined and then returned.

A third utility checks if an element type is legitimate.

IFATT: Fetch the location of the alphanumeric attribute. If the

attribute is not in the list, return zero. If the

attribute is active, return its location. If the

attribute is not active and is on the list, define a

location for it in this data base and return the new

location. If the new location overflows MAXATT, create a

new page for the attribute list.

ISACT: Scan the active attribute list of the level for the name

given.

CNELM: Look at the attribute types to insure that the parameter

60

,<

passed is a legitimate element type. Zero means an

invalid type, else the element number.

ISACT is the more commonly used routine. IFATT is used

internally to allow a change to be made to any attribute via DBCHA een

though the attribute was not originally specified in a conversion routine.

Efficiency dictates that this feature of DBCHA be used sparingly and all

needed attributes be defined in the initial conversion routine.

The following three routines maintain the active lists for

displayed beads on each level.

ACTIVA: Activate a bead on the proper level for display if the

bead is not active already. The routine modifies the

appropriate pointers and generates a new list if

previously empty.

DELETE Deactive (remove from active list) and erase the picture

from the screen.

ICKACT: Check if bead is active. The current version merely

checks if an active right pointer (DBDRT) is present.

Specific low-level routines are available to set and retrieve

information from the table. The actual formatting of the tables is done

in conversion routine CNTABL, so the only specific setting is on a sinqle

word basis via:

DBTGET: returns the value of the (I,J,K) entry in the table.

Entry point

DBTSET: set the (I,J,K) value in the bead to the input

value

Individual fields can be retrieved by:

IDBTFM: retrieve format of the table

Entry points

IDBROW: retrieve row dimension

IDBCOL: retrieve column dimension

IDBDEP: retrieve depth dimension

IDBFTY: retrieve format type (A or numeric)

IDBNDM: retrieve the number of subscripts.

61

2.5.5.2 Higher Level Data Base Routines

The routines in this section have been written specifically for

Display and Edit. Their function is easily generalized to other modules.

All deal directly with the data base and make calls directly to data base

handler routines.

GETCEN: Determine the center of an element by summing the node

coordinates and dividing the results by the number of

nodes. The value is returned in XC, YC, ZC in LIMIT.

GETCES: Determine center of a structure by averaging the display

space filled by a substructure. Value is in XC, YC, ZC

of LIMIT.

GETCOR: Get the coordinate of this node. The value is converted

to cartesian coordinates, displaced if retrieving for a

deformed plot, and checked against the current mins and

maxes (CMIN and CMAX in LIMIT) to be used by the 'FILL

SPACE' option. The coordinate locations are pointed to

by IATLOC in LIMIT. The coordinate is returned in X, Y,

Z of LIMIT. If shrink mode is enable, the X, Y, Z

coordinate is returned properly as long a GETCEN was

called first.

GETCSS: Get center of substructure by averaging the Lisplay

space. The routine is currently unused in Display and

Edit.

GETLIM: Get the limits of the display from any substructure bead.

The limits are set to the largest space filled by the

model. The values are returned in the parameter list.

ELNCHK: Check if the new X, Y, Z of a node is outside the display

space limits. If so, update the limits in the

substructure beads. The input is X, Y, Z in LIMIT.

ICKATT: Check if the values in a bead are within ranQe

(SVALL(NAMES(1)) to SVALH(NAMES(1)), I=I,IST. All

variables are in common EDITT and set in text editing

ICKATT is returned zero if not within tolerances.

ICKRNG: Check if a type-in value is in the data base. If a range

62

,I

is typed-in, the nearest neighbors are returned to avo, '

confusion. Zero indicates a single number that was riot

found.

ICKSL: Check if a displacement slice is active in the data basr.

Zero indicates slice not present.

NEXTIN: Traversing the data base can be done in its entirety or

by substructure. NEXTIN looks at the number of active

substructures and traverses the level properly. Tf

NEXTIN=O, nothing is on the level. Entry NEXTB gets the

next bead in the chain until the list is exhausted. When

done, the function returns zero. Any data base level can

be traversed by setting IACTYP in PERMEN to the level

number and performing the following sequence:

IB=NEXTIN(O)

10 IF (IB .EQ. 0) (Done)

work on IB.

IB=NEXT(O)

GO TO 10

If there are substructures active (NAC(2) greater than 0

in COMDECK ACTSTR), all elements or nodes are looked at

for those substructures only. Otherwise, all the beads

on that level are traversed.

2.5.5.3 Conversion Routines

The main purpose of STAGING is to permit a user to interact with

finite element data stored in the general data base. Several subroutines

have been generated to aid in moving information to and from the general

data base. Three different programs must be written when adding a new

analysis program to the STAGING system. Figure 2.5.11 illustrates the

flow of information.

The initial data base for a model is constructed by conversion

program 1. The data may then be viewed and corrected using STAGING. When

63

p pq M WIWI

DIGITIZER

CONVERSION

GENERATO PROGRAM

CARDS

DISPLAY
AND
EDIT GENERAL

DATA
BASE

N LYSI
PROGRAM

ORRE TED

DATA CONVERSION

CARDS PROGRAM
2

CONVERSION
PROGRAM

ANALYSIS OUTPUT
3

PROGRAM RESULTS
FILE

FIGURE 2.5.11 INFORMATION FLOW

64

-M m 1 7-, -. ,1

the engineer is satisfied with the model, conversion program 2 is used to

retrieve data from the general data base and write a formatted input file

for processing by the analysis program. The analysis program is executed

in the batch environment yielding the output results data. Conversion

program 3 then reads the resultant output data and adds it to the existino

general data base file. STAGING may then be used to aid in tL!,

interpretation of the results. Please note the closed circle of programs

which invokes the general data base, conversion programs 2 and 3, and the

analysis program. The engineer may iterate as many times as is necessary

to obtain a satisfactory solution.

High-level user-oriented subroutines have been developed to aid

in the generation of conversion routines. Each of the three categories is

described and example programs are provided. A "cook book" approach is

recommended--start with the sample program and modify it.

When errors are detected (i.e., a node is attached to a

non-existent element) an error message will be issued on the output file

and processing will continue. The user may then use the Display and Edit

module to correct the errors.

To reduce the programming effort, a set of utility subroutines

have been generated. They provide for the initialization of the data

base, creation of information at each of the four levels and completion of

the data base. CNINIT, the initialization routine must be executed before

any other routines are called. CNTERM, the completion routine, must be

the last routine called. The other subroutines CNSTR, CNSUB, CNELEM,

CNODE, and CNTABL, may be called in the order most convenient to the user.

CNINIT - Initialize the Data Handler data base, define and save

active attributes and (CNINI2) set up internal arrays. Set up attribute

entries for CNINIT. Tables 1, 2, and 3 list the attributes that are

currently available in the STAGING system. New attributes will be added

as they are identified. The list is quite long and most applications

require only a small subset of the possible values.

Table 2.5.2 lists the element attributes currently defined in the

system. The full name, the 10-character attribute name and an

abbreviation are given. When you request an attribute display using

Display and Edit, the abbreviations will be presented as identifiers.

The first 7 characters of each attribute name are unique. A

65

TABLE 2.5.2 ELEMENT ATTRIBUTES

Attribute
No. Full Name Name Abbreviation

I Type TYPE * TYP
2 Material Identifier MATERIAL MAT
3 Area Cross-Section AREA-CRSST CSA
4 Area Moment X**Direction X AREA MOM XAM
5 Area Moment Y Direction Y AREA MOM YAM
6 Area Moment Z Direction Z AREA MOM ZAM
7 Torsional Constant TORSIONAL TOR
8 Mass/Length MASS/LENGT MPL
9 Membrane Thickness MEM THICK MTH

10 Mass/Area MASS/AREA MPA
11 Flexual Thickness FLEX THICK FTH
12 Material Property A MAT-PROP-A PRA
13 Pressure PRESSURE PRE
14 Temperature TEMPERATUR TEM
15 Critical Load CRIT LOAD CLD
16 Design Criterion DES CRIT DCR
17 Construction Code CONSTRCODE CCD
18 Geometry Class GEOMCLASS GCL
19 Geometry Sub-Class SGEOMCLASS SGC
20 Angle Between Prop-Axes &

Side I-T BETA BET
21 Tension Allowable Stress TEN ALWSTR TAL
22 Compression Allowable Stress CMP ALWSTR SAL
23 Shear Allowable Stress SHR ALWSTR SAL
24 Minimum Size MIN SIZE MIN
25 Maximum Size MAX SIZE MAX
26 Allowable Class ALOWCLASS ALC
27 Allowable Sub-Class SALOWCLASS SCN
28 Average Stress Concentration

Ratio STRCNSTR STC
29 Original Thickness ORIG THICK OTH
30 Excluded Element EXCLUD ELM EXE
31 Non-Optimum Weight Factor NOPTWTFAC NPW
32 Normal Stress X (Centroid) X N STRESS XNS
33 Normal Stress Y (Centroid) Y N STRESS YNS
34 Normal Stress Z (Centroid) Z N STRESS ZNS
35 Shear Stress X (Centroid) X S STRESS XSS
36 Shear Stress Y (Centroid) Y S STRESS YSS
37 Shear Stress Z (Centroid) Z S STRESS ZSS
38 Maximum Principal Stress MAX STRESS MXS
39 Intermediate Principal Stress INT STRESS INS
40 Minimum Principal Stress MIN STRESS MNS
41 Equivalent Stress EQU STRESS EQS

*See Table 2.5.3.
,,XYZ - GLOBAL Cartesian Coordinate System

66

subscripting capability, not unlike that in FORTRAN, has been provided to

allow any node or element attribute to assume multiple values. For

example, a time dependent analysis may wich to define 5 different norrnaj

stress (X N STRESS) values. This would be accomplished by specifying a

10-character field, the first 7 characters of which are the first 7

characters of the attribute name (X N STR) followed by up to 3 diqits

defining subscript. For example:

IATELM(1) = 1OHX N STR I

(2) = 1OHX N STR 2

(3) = IOHX N STR 3

(4) = 1OHX N STR 4

(5) = IOHX N STR 5

(Note: The parameters 1OHX N STRESS, 1OHX N STR 0, and 1OHX N

STR 1 all refer to the same attributes.)

Table 2.5.3 lists the element types available in STAGING. Table

2.5.4 describes the NODE attributes. When CNINIT is called, it will

reserve space for each attribute activated. New attributes may be

activated at any tirmie. However, the most efficient method of operation is

to activate as many attributes as possible in the initial conversion

routine. If there is indecision on about whether an attribute will be

used, it is better to leave the attribute undefined until later.

CALLING PARAMTERS:

CALL CNINIT (IATNOD, NATNOD, IATELM, NATELM)

where:

IATNOD - NODE attribute array

NATNOD - Number of NODE attributes defined

IATELM - ELEMENT attribute array

NATELM - Number of ELEMENT attributes defined

The conversion routine CNINIT uses CNINI2 to specify both the

attributes to be used and their relative locations. This is accomplished

by using two parameters for the two lower levels in the data base. For

example, NATELM specifies the total number of active element attributes.

The order in which names are provided fixes their relative locations for

subsequent calls to CNELEM (create an element item) and also in the

general data base.

To elaborate, assume the user wants to specify MATERIAL, TYPE,

67

- C--

TABLE 2.5.3. ELEMENT TYPE VALUES ARE EITHER THE NUMBERS
(IN FLOATING POINT) OR SHORTHAND NAME

TYPE
NO. FULL NAME SHORTHAND Na'IE

1 1 -2 Rod ROD

2 - 2 Straight Beam STR BEAM
3

3 1 / 2 Mcmbrane Triangle MEM TRIA

4 3

4 I f 2 Membrane Quadrilateral HEM QUAD

5 Same as 3 Plate Triangle PLATE TRIA

6 Same as 4 Plate Quadrilateral PLATE QUAD

7 Sare as 3 General Triangle GEN TRIA

8 Same as 4 General Quadrilateral GEN QUAD

9 Same as 3 Ring Triangle RING TRIA

10 Same as 4 Ring Quadrilateral RING QUAD

11 Same as 4 Shear Panel SHER PANEL

12 Same as 4 Twist Panel TWIS PANEL

6 5
13 1i._ 2 General Triangle(2) GEN TRIA2

£4

'47 3

14 8. 3.6 General Quadrilateral(2) GEN QUAD2

15 Same as 13 Ring Triangle(2) RING TRIA2

16 Same as 14 Ring Quadrilateral(2) RING QUAD2

17 3 Curved Beam CURVE BEAM

18 Same as 17 Ring Shell RING SHELL

19 1- @2 Ring Conical RING CNICL

68

TABLE 2.5.3. ELEMENT TYPE VALUES ARE EITHER THE NUMBERS (IN

FLOATING POINT) OR SHORTHAND NAME (CONTINUED)

TYPE-- -

NO. FULL NAME SHORTHAND NAME

'4

20 Tetrahedral Solid TETR SOLID

S

4 6
21 Wedge Solid WEDG SOLID

1 2

22 Hexahedral Solid HEXA SOLID

3

16 8

23 17 20 Node Brick. BRICK20

24 I-AS-- 2 Axial Spring AXIAL SPRG

25 1-TS- 2 Torsional Spring TORSN SPRC

26 1------ 2 Mass MIASS

27 1 D 2 Damper DAMPER

k

28 i-l Warped Quadrilateral WARP QUAD

warped quadrilateral

9inge exists at node Hinged Beam HIN;" BICAN
29 on Zk axis

Z)

69

-U---

-4

C:

~-4-d C-j

cu~

4))4 -4~ i
-4 -4- cu 0 L

11,' 1- z 0
cd ca ca ~-4 C1 4l) u a u m t c ca m o

4-

- ~ E/ -4 0.4 C 0 .C

>5 Q) N5U C ~ > 5 > 5 > >4 N X5 > >4 5 U ~

.n Cu C 111 C u C C u 0 u El Cu < u <

< N >4 N O >5 5>4 E

E-

Cu,)

0t

zG
0 Z ~ 41

4) >1 0 0 C

.0E ., 00 4-) [j F -
*.-4 41 4. 4J -,4 C- C) F

C:l ri o 0 4J 0 0 0 0 E -~

,a M a cI 0 C: C * * 0 41 Li u C,~

- ~ < N H N U 4 N >4 N r.. >4 H N

HN m Irr 0 a 4 ci c l c I

-4 -4-1.

70,

crr.

U) El V) - ca

x0

Q) U)

4)4

D ~ ~ ~ ~ ~ ~ ~ U a4 a -u L : C L

u) U) *'--4 0

CC -

(v w) Q) U) cu Ct cu)) C
0) 0i 0. .

a) ~ ~ ~ ~ ~ ~ U EnU)U c 0m m a 0C

40 >.- Uj cu L

Qo U) U -

_4 _n. . - a

V~~ .4 4 r- C CT~~.

-WJ . M

- 0 V C
00~~~4 ON 0>0 n I r)c -
- ~ ~ ~ ~ ~ ~ ~ ~ ~ .-4 rq0iCA C1 C1 Cl ci ci CjC

(1) 0 71

PRESSURE, TEMPERATURE, and MEMBRANE THICKNESS as element attributes.

Remember this will fix the order in which they will be provided in

subsequent calls to CNELEM. Referring to Table I we find the appropriate

attribute names. To accomplish this goal, the parameters NATELM, IATELM

supplied to the initialization routine CNINIT would contain the following

values.

NATELM = 5 (5 attributes activated)

IATELM (1) = 1OHMATERIAL

IATELM (2) = 1OHTYPE

IATELM (3) = IOHPRESSURE

IATELM (4) = 1OHTEMPERATURE

IATELM (5) = IOHMEMTHICK

CNSTR --Create structure bead with a 40-character name and store

substructure linkage into general data base.

CALLING PARAMETERS:

CALL CNSTR (NUM, SUBS, NSUB)

where:

NUM - Substructure name (40 character)

SUBS - Array containing the names of substructures that belong

to this structure (4 words per name)

NSUB - Number of substructure names supplied in SUBS

CNSUB --Create substructure bead with a 40-character name and store

element linkage into general data base.

CALLING PARAMETERS:

CALL CNSUB (NUM, IELEM, NELEM)

where:

NUM - Substructure name (40 characters)

IELEM - Array containing the element numbers that belong to

this substructure (integer format)

NELEM - Number of element names supplied in IELEM.

CNELEM--Create element with positive integer name, store attributes and

node linkage into general data base.

CALLING PARAMETERS:

CALL CNELEM (NUM, NODE, NMODE, ATT, NATT)

72

where:

NUM Element name (1 word; integer format)

NODE - Array containing the node numbers that belong to

this element (integer format)

NMODE - Number of nodes supplies in NODE

ATT - Attribute array

NATT - Number of attributes supplies

Elements must supply the TYPE attribute.

CNNODE--Create node with positive integer name and store attributes.

CALLING PARAMETERS:

CALL CNNODE (NUM, ATT, NATT)

where:

NUM - Node Number (integer format)

ATT - Attribute array (optional)

NATT - Number of attributes supplies (optional)

CNTABL--The CNELEM and CNNODE routines allow the user to store element and

node data into the general data base. The subroutine CNTABL supports the

storage, retrieval, and revision of tabular information. The user

provides a unique name for the block of data, its format and

dimensionality. This subroutine is used by the conversion routines to

store data not associated with elements or nodes, i.e., material

properties, analysis code options, etc.

CALL PARAMETERS:

CALL CNTABL (NAME,ARRAY,NR,NC,ND,FORMAT)

where:

NAME - Block data name (40 characters)

ARRAY - Array containing the dataa to be stored

NR - Rrw Dimension

NC - Column Dimension

ND - Depth Dimension

FORMAT- Up to 30 characters FORTRAN format specification

(i.e., 4H(15) Default is 4H8A!O).

NOTE - For a single dimensioned array the call can be reduced

to:

CALL CNTABL (NAME,ARRAY,NR,FORMAT)

73

Since subscripting is done ala FORTRAN (storage by row), the

uimensions of the array for a 2 or 3 dimension table must be the same ac

the dimensions passed to CNTABL. This essentially implies that the column

(in the 2D case) and column and depth (in the 3D case) be exactly the same

as the dimensions indicated in the DIMENSION statement to insure correct

retrieval.New tables can be idded during any conversion phase with CNTABL.

Certain functions in these routines have been broken into separate

subroutines to make the larger routines easier to follow.

They are:

CNINI2: Sets up attribute entries for CNINIT.

ICPART: It is possible for the user's list of down pointers anc

attributes to overflow the internal scratch array.

Therefore, routine ICPART will flush the array before it

is overflowed and restart the filling process.

CNTER : The most time consuming part of conversion is inserting

the up and down pointers. The down pointers are the only

ones provided, and they are names rather than bead

address. Therefore, CNTERN queues the down pointers

names and sorts them in CNTER to minimize search times

before setting the up pointers. The list is then

re-sorted to assign the bead addresses of the down

pointers. N.B. if there is an error in the list of down

pointers, no down pointers will be assigned.

CNSORT: Does the tort for CNTER as a hash sort on the low order

30-bits of the word.

Three utilities are present to print out features of the data

base. These are:

CNPRT : Print a bead and its up and down pointers.

CNPRTA: Print a bead and its attributes.

DPRT : Dump the data base and attribute arrays.

Additional conversion routines have been coded to speed the

coding process for conversion phases two and three. These routines do not

--jpport addition of new beads to the data base. It is assumed that those

tisks will be accomplished in preprocessors of Display and Edit.

'' PN--Complete conversion process.

74

CALLING SEQUENCE:

CALL CNTERM

This routine consumes 75% of the conversion processing. It first places

into ascending order the out-of-order elements and nodes, sets up the

ILKUP array, assigns all up and down pointers (probably the most time

consuming process--refer to CNTER and CNSORT for more details), generates

a default structure and substructure if no CNSTR or CNSUB calls were made.

assigns the plot limits (saved by CNNODE) to all substructures, flushes

the proper arrays (RESTART), and reinitializes the EDITT COMDECK (EDITTI).

2.5.5.3.2 Conversion Program 2

Once the user has corrected and optimized his model using Display

and Edit, he will be ready to execute an analysis program. Conversion

Program 2 will be used to transfer information from the general data base

to a card image file suitable for processing the analysis program.

Conversion Program 2 is the exact inverse of Conversion Program 1. The

utility subroutines used are similar in appearance and structure.

NCINIT - Initialize the conversion programs and define the

attributes that are to be retrieved from the data base. The method of

definition and handling of parameters for Conversion Program 2 is

identical to Conversion Program 1. Since attributes cannot be retreived

from the general data base that have not been created, we recommend

repeating the initialization code used by Program 1 in Program 2. Note

the order in which you specify the attributes is the order in which they

will be returned to you. This order does not have to be the same as in

conversion routine 1. If a new attribute is mentioned, space will ne

assigned automatically.

CALLED PARAMETERS:

CALL NCINIT (IATNOD, NATNOD, IATELM, NATELM)

where:

IATNOD - Node attribute array

NATNOD - Number of NODE attributes activated

IATELM - Element attribute array

NATELM - Number of ELEMEENT attributes activated

75

NCINIT uses

NCSTUF: set up list of attributes for this level. The user can

then retrieve information from a data base in one of two

ways. (All routines listed are entry points into

subprogram NCELEM).

1. Work on the entire list on a level. In this case,

the get routines return the entity names as well as

attributes:

NCSTR : get next structure name (40 characters),

attributes, (40 characters each) all

substructures names and number of

substructures.

NCSUB : get next substructure name (40 characters),

attributes, all element numbers (integers),

and number of elements.

NCELEM: get next element number, attributes, all

node numbers, (integers), and number of

nodes.

NCNODE: get next node number and attributes. These

routines return a 0 for the next number if

the list is exhausted. Thus, the loop

10 CALL NCELEM(NUM,ATT,NODE,NNODE)

IF (NUM .EQ. 0) Done

do something here

GO TO 10

will loop through all elements.

2. Each entity can be worked on individually. This

assumes that the programmer knows the names he is

after. The routines return the same information as

(1).

NCGSTR: get info from given structure

NCGSUB: get info from given substructure

NCGELM: get info from given element

NCGNOD: get info from given node

76

The user can reset the attributes. The "do something

here" portion of the above example will often

manipulate information in the attributes array and

then replace that information by:

NCSSTR: reset attributes in given structure

NCSSUB: reset attributes in given substructure

NCSELM: reset attributes in given element

NCSNOD: reset attributes in given node.

NCSTR --Retrieve structure and substructure linkage from general data base.

CALLING PARAMETERS:

CALL NCSTR (NUM, ATT, SUBS, NSUB)

where:

NUM - Structure name (40 characters or 4 words) NOTE: Each

call to NCSTR will return a new structure name until the

list has been exhausted, then NUM(1) will be set to zero.

ATT - Dummy parameter

SUBS - Array of names of substructures attached to this

structure (4 words per name)

NSUB - Number of substructure names supplied in SUBS

NCSUB --Retrieve substructure and element linkage from the general data

base.

CALLING PARAMETERS:

CALL NCSUB (NUM, ATT, IELEM, NELEM)

where:

NUM - Substructure name (40 characters or 4 words) Note: each

call to NCSUB will return a new substructure name until

the list has been exhausted, then NUM will be set to zero.

ATT - Dummy parameter

IELEM- Array of element numbers attached to this substructure

(Integer format)

NELEM- Number of element numbers supplied in IELEM

NCELEM--Retrieve elements, attributes and modes linkage from general data

base.

CALLING PARAMETERS:

CALL NCELEM (IELEM, ATT, NODE, NNODE)

77

where:

IELEM- Element number (integer format) Note: Each call to

NCELEM will return a new element number until the lists

is exhausted, then IELEM will set to zero. The element

numbers are returned in ascending order.

ATT - Element attribute array

NODE - Array of node numbers attached to this element (integer

format)

NNODE- Number of nodes numbers supplied in NODE.

NCNODE--Retrieve nodes and attributes from general data base.

CALLING PARAMETERS:

CALL NCNODE (NODE, ATT)

where:

NODE - Node number (Integer format) Note: Each call to NCNODE

will return a new NODE number until the list is

exhausted, then NODE will be set to zero. The node
numbers are returned in ascending order.

ATT - Node attribute array

To get or reset information in an existing table:

NCTABS: Set the (I,J,K) element in the table name to a new value

Entry points

XNCTABG: Get the (I,J,K) element in the table

NCROW : Get the row dimension (set by CNTABL)

NCCOL : Get the column dimension (set by CNTABL)

NCDEP : Get the depth dimension (set by CNTABL)

NCFORM : Get the format of the table (set by CNTABL)

The format specification appears mysterious at first glance. The

format is defined as a variable format in FORTRAN as a Hollerith string.

It serves a twofold purpose. First, a set of conversion routines can set

up various table formats as part of the table itself. This can let

different input formats be accommodated with variable formats. The second

use is internal. Tables are most convenient as application dependent

storage, in which case the data is of A format. However, in the X-Y plot

package in Display and Edit, one does not really want to draw data cards.

Therefore, the format also determines if the table is plottable or not.

78

it

An A fnrmat says do not plot, else the values are legitimate. The user

must beware if using integer values because the "get" routines are real

unless declared integer.

NCASU --Activate substructure for retrieval. If the engineer using

Display and Edit has created several substructures and wishes to perform

an analysis on specific substructures, NCASU provides that capability. If

NCASU is called, only the elements and nodes belonging to the listed

substructures will be available to the engineer in subsequent calls to

NCELEM and NCNODE. If NCASU is not called, all information in the general

data base will be available to the user. Note NCASU may be called at

anytime after NCINIT and may be called as often as desired. However, only

those substructures listed in the latest call will be active.

CALLING PARAMETERS:

CALL NCASU (SUBS, NSUBS)

where:

SUBS - Substructure names (40 characters or 4 words each)

NSUBS - Number of substructure names supplied in SUBS

NUMC --Return the number of items within a level. This utility function

is useful in obtaining information about the data base.

CALLING PARAMETERS:

NUM = NUMC (TYPE)

where:

ITYPE - data base level

= I - Structure

= 2 - Substructure

= 3 - Element

= 4 - Node

NUM - number of items present in data base

XNCTABG-Function NXCTABG is used to obtain block data stored by the

subroutine NCTABL.

CALLED PARAMETERS:

VAL = XNCTABG(NAME,IR)

where:

NAME - 40-character name

IR - entry in array desired

VAL - data returned to user

79

NCFORM--Subroutine NCFORM is used to obtain the FORMAT stored for a

specific block data table.

CALLING PARAMETERS:

CALL NCFORM(NAME,FORMAT)

where:

NAME - 40-character name

FORMAT - Format as supplied by user, up to 30 characters

NCTERM--The counterpart of CNTERM for the retrieval routines is NCTERM.

This must be the last NC routine called.

CALLING PARAMETERS:

CALL NCTERM

Terminate conversion program two or three. The user's data base is

automatically extended if it is a permanent file. WARNING: if the user

is resetting information in conversion program two or three and his

program bombs, his data base may be destroyed.

A control card safety play is:

ATTACH,T,data base.

REQUEST,TAPEO,*PF.

COPYBF,T,TAPEO.

Run conversion routine two or three.

PURGE,T.

CATALOG,TAPEO,data base.

2.5.5.3.3 Conversion Program 3

This is the last conversion program of the sequence. It is used

to add the output results from an analysis to an existing data base.

Another set of conversion subroutines have been generated to aid in this

uask. They are similar in concept and function to those used in

:onversion programs one and two. At each level in the data base they are

used to add or modify information in an existing data base.

NCINIT--Initialize the conversion subroutines and identify the attributes

you wish to add or modify in the data base. This subroutine is the same

one described under Section 2.5.5.3.2. Now you will be specifying the

order in which you will be supplying results data.

80

CALLING PARAMETERS:

CALL NCINIT (IATNOD, NATNOD, IATELM, NATELM)

where:

IATNOD - Node attribute array

NATNOD - Number of node attributes activated

IATELM - Element attribute array

NATELM - Number of element attributes activated

NCSELM--Set element attributes.

CALLING PARAMETERS:

CALL NCSELM (NUMBER, ATT)

where:

NUMBER - element number (integer format)

ATT - attribute array

NCSNOD--Set node attributes.

CALLING PARAMETERS:

CALL NCSNOD (NUMBER,ATT)

where:

NUMBER - node number (integer format)

ATT - attribute array

NCTABS--Set a value in a table.

CALL NCTABS (NAME,VAL,IR)

where:

NAME is the 40-character name of the table

VAL is the new value to insert into the array

NCTERM--Terminate the conversion subroutines and extend the permanent file

TAPEO.

CALLING PARAMETERS:

CALL NCTERM

2.5.5.4 Initialization and Termination

All of the features of each individual data base bead are

maintained in core resident tables. These tables are also stored in the

user's data base and are restored during file initialization. Termination

of a user session requires the same arrays to be saved before the data

81

handler file is flushed. !f no changes are made to the datd base during a

run, there is no need to flush the arrays before exiting.

Subroutines used here are:

DBINIT - Initialize the file name provided by reading in the

arrays stored by RESTART. A change file is initiated

if desired, otherwise overflowed beads are released.

If the file is not a proper data base file, DBINIT

returns zero.

RESTART - Store significant arrays in this data base. The

routine checks if the file has been used before and

releases existing space if possible and calls DMFLSH

when done.

GLOINT - Contains DATA statements to set up initial guesses

for all attribute array sizes in this data base.

These values can be changed before RESTART is called

to make increases in size. Most common is to

increase the size of NO MAN'S LAND in each bead (JDOEF

array in COMDECK ATTRIB). Also contains DATA

statements for data base file and element names.

EDITTI - Initialize the EDITT common block which is used as a

scratch common block by other modules (most notably

the conversion routines).

FILATT - Checks type-in for a good permanent file name and

tries to attach it. If the file is (a) not

catalogued, (b) illegally typed, or (c) an illegal

data handler file, FILNAM is called again to retry

the type in. If the type-in is a success, the file

is attached and copied. DBINIT initializes the file

and DEINITI initializes the proper Display and Edit

variables.

82

2.6 INTERTEK Interactive Graphics Package

-,.6.1 Introduction

The "display file" of an interactive computer graphics system

consists of:

1. An ordered set of instructions for displaying graphic

entities on a physical display device.

2. A set of identifiers and attributes associated with the

graphic entities in the display file.

A graphic entity or segment is a collection of graphic primitives such as

dots, vectors, and alphanumeric characters, which are typically generated

by the display device.

INTERTEK is a series of FTN subprograms call-modeled on 777/IGS

V2.1 and designed to enhance the interactive capability of a Tektronix

4010 Series Direct View Storage Tube. INTERTEK runs on CDC 6000 series

mainframes under NOS/BE. It is written for the CDC FTN compiler and uses

the NSRDC Data Handler, Battelle developed file manipulation utilities,

and the graphics driver COMPIO.

2.6.2 INTERTEK Picture Manipulation

INTERTEK routines handle display file construction and

modification, as well as picture scaling, translating, and clipping. It

also supports general pick processing of pictures on the terminal screen.

The basic drawing information is contained in the STAGING display

file as a data structure with hierarchy illustrated in Figure 2.6.1. The

three major components of the display file are:

1. Display item

2. Subfile

3. Display area entity

A display item is the basic picture building block. It is the

smallest unit which can be created, modified, or picked. Each display

item contains the display commands for generating a graphic entity as well

as control information for pick processing. The display items in the

STAGING display file are maintained on Data Handler file DISFILE.

83

DAE I DAE 2 IDAE n

E l IE
Item I

Item 2

FIGURE 2.6.1 - DISPLAY FILE CONSTRUCTION

84 4"
- =--

, subfile is a linear linked list of display items heaced !,j

subfile entity which is maintained as a 6-word block in array IAK;. :

common block GCGI. Items of a subfile may be manipulated collectively.

A display area entity (DAE) represents a complete virtuai

picture. It contains information defining the display device coordinates

of the rectangular boundary of the virtual picture. The DAE also contains

information defining which of its subfiles are currently visible.

subfile may be owned by more than one DAE. Thus a picture can V

displayed in several areas on the terminal screen. This capability

facilitates the split-screen function in the STAGING system. Each DAE in

STAGING is maintained as a 6-word block in array IAREA in common block

GCGI.

The formats of the DAE's and subfile entities in INTERTEK are

shown in Figures 2.6.2 and 2.6.3. The display item Data Handler beac

format is illustrated in Figure 2.6.4. The actual display information

within a display item consists of instructions in the formats shown 'n

Figure 2.6.5.

An item is created by calls to INTERTEK subroutines with prefIx

GU. Each call to one of these routines causes drawing information to be

packed into array IBUF in COMMON block DRAWBUF (external to the INTERTEK

package). The format of IBUF is shown in Figure 2.6.6. When the program

reaches a full IBUF or the end of a display item, GITEM is called to

generate a disk copy and to generate the first drawing of the picture. If

the item overflows IBUF, the user calls GITEM, packs more information into

IBUF, and calls GIXTND to extend the item. The result is a chain of beads

on the Data Handler file that comprise the whole item. The format of an

extension bead is shown in Figure 2.6.7. The bead list is terminated by

an extend bead set to zero.

2.6.3 INTERTEK Pick Processing

Pick processing is controlled by INTERTEK by user definable

assignment of event types to categories. There are five event types in

INTERTEK:

button

DAE format

Word 59 44 29 14 0
1 Type1

2 X min clip Y min clip X max clip Y max clip

3 (XWC) X window center (YWC)indo center

4 (SCALE) scale factor (zoom level)

5 ubfilelI Subfile 2 SF 3 SF 4 SF 5

6 SF 6 SF 7 SF SF 9 Subfilel10

where Type is the entity type

Clipping limits for X',Y' are in screen coordinates

(-2048 (val (2048).

Each coordinate is scaled and centered by X'=X/Scale+XWC
Y '=Y/Scale+YWC

Sf1.. .Sfn are the subfileq shown in the area

FIGURE 2.6.2 - DAE FORMAT

86

Subfile Format

Type = 2

2 left item pointer right item pointer

Cat Cat
12 1

4 ICat
20

DAE 1 DAE 2

6 DAE 10

where Type is the entity type

Left pointer is the last item in the subfile (if empty,

this is the subfile)

Right pointer is the first item in the subfile (if

empty, this is the subfile)

Cat 1.. .Cat 20 are the categories to which the item
in the subfile belong

DAE 1.. .DAE 10 are the DAE's in which this subfile
is shown

FIGURE 2.6.3 - SUBFILE FORMAT

87

AD-AGAR 382 RATTELLE COLUMBUS LAOS OH F/ _!3/13
STRUCTURAL ANALYSIS VIA GENERALIZED INTERACTIVE GRAPHICS - STAG ETC(U)
SEP 79 L E HULGER T, N 0 GHAD IALI, F N DEOSOT F33615-7A-C-3125

UNCLASSIFIED AFFL TR79-3074-VOL3 3 NL97fffflllllffff
s flllllll.fffff

EhhihEhh
EE~~hE~hEhhI

10

Subfile owner of (SF) Length of bead (LEN)
Item

bead address of extension (EXTB)

left item pointer right item pointer

X MIN Y MIN

X RiAX Y MAX

6 ITASKC

LPROLG 7 # of ID # of (LACT) CAT CAT CAT CAT CAT
(LID) words categoi 2 3 4 5

ID 1 if #ID words >0

ID n

LPROLC+n+l absolute beam move

drawing instructions

where

SF is the subfile owner of this item (used only in return
on a pick and when assigning the categories in a subfile).

LEN is the total length of the bead

EXTB is the bead address of the first extension. if=O,
no extension.

Left-Right: preceding and succeeding items.

XM1N,1YIN.XMAX,YMAX: lower left and upper right corners
cf area containing item. Used when determining if item picked.

ITASKC: task word (user supplied)

LID and 14... .,Dn: number of ID words (may be zero) and user
supplied II) wT.rds

LCAT and CATl...,CATn: number of pick categories and up to
5 user supplied categories

FIGURE 2.6.4 - ITEM FORMAT

88

Long Relative Vector (created by CULIN)

59 0

OP STY EB REL X REL Y

FIELD BITS DESCRIPTION
OP 59-58 Opcode of 002 for long relative vector

STY 57-55 Linestyle (O=solid, l=short dash, 2=long dash)
B 54 Beam (O=off, l=on)
RELX 53-27 Relative X beam move
RELY 26-0 Relative Y beam move

Short Relative Vector (created by GULIN)

29 0

OP STY B REL X REL Y

FIELD BITS DESCRIPTION
OP 29-28 Opcode of 012 for short (halfword) relative vector

STY 27-25 Linestyle (O=solid, l=short dash, 2=long dash)

B 24 Beam (O=off, l=on)

RELX 23-12 Relative X beam move

RELY 11-0 Relative Y beam move

Absolute Vector (each item must begin with this instruction created by GUSETP)

59 0

iOPI P -Z 1 ABS X ABS Y

FIELD BITS DESCRIPTION
OP 59-58 Opcode of 102 for absolute vector

P 57 Pickable flag (O=nonpickable, l=pickable)

56 Zoomable flag (O=nonzoomable, l=zoomable)
ABSX 53-27 Absolute X coordinate of item origin
AbSY 26-0 Absolute Y-coordinate of item origin

Text (created by CUTEXT)

59

OP SIZE NC CHi CH2 (may extend over multiple words)

FIELD BITS DESCRIPTION
OP 59-58 Opcode of 112 for text output

SIZE 57-54 Character size from smallest (0) to largest (3)

NC 53-42 Number of characters in string

C(i 41- Display code characters of string

FICURE 2.6.5. DISPLAY ITEM GRAPHICS INSTRUCTION FORMATS

89

•

1F

Current x (CX) Current y (CY)

unused bit count (UBC)

3
XMIN YMIN

XMAX YMAX

5

drawing instructions
from GU-routines.

MBYTE/3

where CX,CY is the current beam positions

UBC is the number of bits left in the NBYTEth word

XMIN, YMIN are the coordinates of the lower left
corner of the item in the item's coordinate scale

)MAX,YMAX are the coordinates of the upper
right corner of the item

FIGURE 2.6.6 - IBUF FORMAT

90

Length

extension bead (EXTB)

Drawing instruction

where:

Length is the total bead length

EXTB is the next bead in an extension.
If EXTB=O, this is end of extension.

FIGURE 2.6.7 - EXTENSION FORMAT

91

ignore

single

string

parameter

Categories 0 to 63 may be assigned any of the above event types.

Keyboard keys may be assigned to a single category. Pick processing is

done by calling GIBUTN which turns on the crosshairs and waits for a pick.

If the pick is a single pick, string pick, or parameter pick, an entry is

made on the proper queue for later retrieval.

Each display item contains information about the action to be

taken when the item is picked. The information consists of from 1 to 5

categories each of which is stored as an index into the category table in

array ICATS in common block GCGI. The format of the category table is

shown in Figure 2.6.8. Each entry in the table is a string of 6 bits

indicating whether any of the following six actions are to be taken:

BIT ACTION

1 Not implemented

2 Single pick

3 String pick

4 Parameter pick

5 Button pick

6 Not implemented

A button pick is the expected response to a call to subroutine GIBUTN.

The pick of a selection from a STAGING menu is the typical use of a button

pick. When pausing for a button pick, other types of picks may occur.

Each non-button pick is placed on the queue corresponding to the indicated

action. Single picks always replace what was there. String picks

normally add the pick to the end of the string queue. However, if an

occurrence of the pick already resides in the queue, it is deleted rather

than added to the queue. Each parameter pick always adds a new entry to

the end of the queue. Each of the three queues has a pointer to the head

(IHLIST(1)) and a pointer to the tail (ITLIST(1)) as shown in Figure

2.6.9. Each queue entity holds information about the item selected in the

format shown in Figure 2.6.10.

The programmer can also assign one category to each key on the

92

! /

ICATS (1) CAT CAT CAT CAT
0 1 2 9T

(2)

(3)

(4)

(5)

(6)

(7)
CAT
63

Each CAT Entry is a series of 6 bits

where

S PA B P A S T R ISN G A

if all bits are zero, the event is an ignore. Otherwise,

each bit indicates the type of action

ATR: attract (in this version, this is a no-op)

SNG: single pick

STR: string pick

PAR: parameter pick

BUT: button pick

SPA: special action (in this version, this is a no-op)

FIGURE 2.6.8 - CATEGORY TABLE

93

-- i r ,

9d

IHLIST(1)=ITLIST(1)

Single queue

IHLIST(2) ITLIST(2)

String queue ___

IHLIT(3)ITLIST(3)

Parameter z- iiz ,

FIGURE 2.6.9. QUEUE CONSTRUCTION

94

1 Length of bead

2 Next bead in queue

ITASKC

4 IDDAD of picked item

5 SUBFILE owner of picked item

6 DAE in which picked item resides

7 X location of pick

8 Y location of pick

9 Character struck to generate pick

10 Number of categories

Number of ID words

12 + LCAT Categories to which item belongs

12 + LCAT + 1 ID words of item (if any)

FIGURE 2.6.10. WAIT QUEUE ENTITIES

95L _

Tektronix keyboard. These categories are stored in array KEYCAT in COMMON

block GCGI as shown in Figure 2.6.11. Only a button may be generated.

Such a button pick is generated only if the crosshairs are not positioned

on a displayed item.

2.6.4. INTERTEK Software Overview

INTERTEK is modular in construction. Six major functions have

been identified:

o initialization and termination

o construction of picture

o construction of display file

o display file processing

o event processing

o utility routines

The routines in these areas rarely overlap in function. Instead,

most are small and single purpose. This section will examine and classify

INTERTEK routines, while briefly describing their functions.

2.6.4.1 Initialization and Termination

Initialization of two types occurs in INTERTEK. Before any other

INTERTEK routine can be called, the programmer must call:

GINIT : set up INTERTEK. This includes all terminal dependent

constants and the display file in its 'empty"

condition, i.e. only the default DAE and subfile are

present

The user must supply a buffer as transient storage for graphics

information. After calling GINIT, he must tell INTERTEK where and how

long this buffer is:

GUBUF : define buffer for packing graphics information.

All non-transient data in common blocks is set up by a block data

subroutine called GPRESET. There is no executable code in GPRESET. The

application can leave a blank screen by calling:

GIRLS : return the display file and erase the screen.

96

KEYCAT (1) CAT CAT CAT CAT CAT CAT CAT CAT CAT CAT

A B C D E F G H

(2)

(3)

(4)

(5)

(6)

(7) JCAT

Each key can have one category assigned to it and n ,
ID words.

The categories are associated and detected if there is
no pick on an item. Furthermore, only a button pick can

be generated.

FIGURE 2.6.1. KEYBOARD EVENT TABLE

97

2.6.4.2 Picture Construction

The routines the user sees for constructing the picture are the

GU-routines:

GUSETP : set up the absolute beam location, lightpen

sensitivity, and zoomability

GULIN : move the beam to the new location with beam on or off

GUPNT : draw an * (there is no point generator on the Tektronix)

GUTEXT : put a text string on the screen.

As the buffer is packed, the GU-routines keep track of the last

beam position and the rectangular area (lower left and upper right

corners) containing the item. The area is used during pick processing to

eleminate items form consideration quickly.

GCUPXY : updates the current beam position and rectangular area

fields of IBUF.

Actual packing into and out of IBUF is handled by COMPASS

routines for speed:

with entry points:

GCSET : fill the next available byte in IBUF

GCSETW : Entry point set the Nth word in IBUF

GCSETI : set a field in word N or IBUF for IL bits

GCGET : get bits from the 60 bit parameter (this

routine is used as an unpack for all of

INTERTEK)

with entry point:

GCGETW : Entry point get bits from the Nth word of

IBUF.

Parameters to GCGET and GCSET are passed through common block

GCBUF. It is the start bit of the get or set (60 -- 1), IL is the length

of the string to get or set, ISEXT is a flag set non-zero if the result is

to be sign extended (get only).

98

- ~~m m 2

2.6.4.3 Display File Construction and Manipulation

Three basic entities comprise the display file. Each is created

by a different GI-routine:

GIDAE : create a display area entity

with entry point:

GIDAE1 : reset zoom, window, and clip limits

GISUBF create a subfile entity

GITEM : create a display item

Each routine merely stores the proper data items away. All use

GCRESI to reserve a Data Handler bead or incore block of the information.

The three are differentated by a call to FUNCTION GCGTYP.

Items are more complicated to work with because they are Data

Handler beads. The basic task of GITEM is to transfer the contents of

IBUF into the bead. Special purpose routines are available to get and set

information in the bead via Data Handler.

GCSSF : set the subfile to which the item belongs

Entry Points:

GCGSF : get the subfile of the item

GCGLEN : get the length of the item

GCSLFT : set the left pointer of the subfile or item

GCGLFT : get the left pointer of the subfile or item

GCSRIT : set the right pointer of the subfile or item

GCGRIT : get the right pointer of the subfile or item

GCSONE : set the nth word of the item

GCGONE : get the nth word of the item

GCGLID : get the length of the ID block of the item

Bulk information (i.e., the contents of the displayable

information) is passes into and out of the item by:

GCGARR : get an array of information from the item

with entry point:

GCSARR : Entry point set an array into an item

In addition to setting up information in the item, GITEM is responsible

for updating the category list in the subfile. This category information

is used at pick processing time to see if any of the items are in a

99

....... "

processable category. The update is done by:

GCUPSF : scan the subfile of the item and add any new categories

to the list. Up to twenty categories can be in any one

subfile.

An item can be extended. This is especially useful when IBUF would

otherwise overflow:

GIXTND : extend the given item. (Note: extensions are valid

only for the current working item; the next relative

move depends on the beam position information in IBUF).

Linkage of a subfile and its item is done at item creation. Subfiles and

DAE's are linked and unlinked by:

GISHOW : turn a subfile on or off in a DAE.

Two small routines are used to unpack and pack subfile and DAE arrays.

These arrays are the cross referenced subfile-DAE lists and the subfile

category list.

GCUNPK : unpack the list for a subfile or DAE into individual

words

Entry Point:

GCUNPC : when subfile categories are being checked,

they too need to be unpacked. GCUNPC

accomplishes this task.

GCPKSD : Pack a new subfile or DAE into the proper

location (used by GISHOW).

As the display file is constructed, the programmer can modify it

in a number of ways. DAE's can be modified by:

GIZOOM : reset zoom window, clip limits in specified DAE.

Subfiles cannot be actively modified; there is nothing to modify except

the item list. The user can find out which items are in the list by:

GIRDSF : go through the subfile and return the IDDADS of the

items in it

An item can be modified in several ways:

GIALT : change set up information about the item (pickability,

zoomability, absolute position)

GIDUP : duplicate an existing item and link it into the same or

a different subfile. With GIALT this routine can

reduce the cost of copying.

100

GIRECH items can be totally restructured by reclaiming them

into different subfiles or into a different order.

Two utilities apply to any IDDAD:

GIENST : returns the type of IDDAD. If IDDAD is an item

additional information is returned

GIDELT : entity deletion. If IDDAD is a subfile, all items in

the subfile are also deleted. The current version of

INTERTEK doe not release item disk space to speed up

the process. Rather, it "forgets" about the linkage

and keeps the display file growing from the rear.

Since the file is a scratch disk file, the approach is

reasonable. The code is easy to modify if the

alternate release-when-deleted strategy is desired.

2.6.4.4 Display File Processing

The use never sees the real display file processing routines in

his code. The structure of these routines is hierarchical: information

is formatted for one base working routine (GCWORK). When some fort of

display file processing is needed a call is made to:

GCDRAW : figure out what is being processed and how the

processing is to occur. GCDRAW handles:

1. A buffer of display commands already in core.

GITEM and GIXTND use this feature to avoid

reloading the array from a bead. This is

particularly valuable in GIXTND because the first

part of the item need not be redrawn.

2. Any individual IDDAD. The entity is always

redrawn. That the parameter is an IDDAD rather

than an array is flagged by a length parameter

ofl. If the IDDAD is a subfile, the user must

supply the DAE in which the subfile is to be

drawn (used by GISHOW). Otherwise, the entity is

reinterpreted.

3. If the LEN parameter is -1 or 0, the entire

display file is redrawn.

101

The second phase (how full display file processing

occurs) applies only to Step 3. If the LEN paramter is

0, the display file is redrawn. If it is -1, the

display file is reinterpreted (but not redrawn) to

check if a crosshair input is on a visible line.

As GCDRAW works on a DAE or an individual subfile, it first loads

the clip limits, scale, and window center with:

GCOLIM : get limits from DAE into common GCDR. It them

transfers control to:

GGDSF : interpret all items in a subfile.

Items, in turn, are processed by

GCDRIT : Interpret all display commands in an item.

Because items are really on disk, GCDRIT attempts to optimize its

work by:

GCFILL : load array ISCR (common block GCGI) in increments of

LSCR. This applies to an extended item--as many of the

extensions as possible are loaded at one time.

All of these preliminaries set the stage for the worker of

INTERTEK:

GCWORK : interpret the contents of the array passed in.

The interpretation is based on the display 'language' described

in Figure 2.6.5. Much of the work is spent figuring out what type of

commands are in the buffer. The two major components of GCWORK (the draw

module and the pick interpreter) require further description.

The draw module is comprised of two pieces: a line drawer and a

text output routine. The line drawer is fairly simple. An initial point

is assumed. Each new coordinate is added. When the beam is off, the new

location is merely bumped. Else, the two points define a line. The

endpoints are scaled and translated to the DAE limits and then clipped for

drawing purposes.

The text routine is a bit more complicated. First, text commands

can stretch over a split buffer. In other words, ISCR may be filled

before all text in a string has been output. This requires some care to

retain the proper pointers when GCWORK is reentered with th-e rest of the

string. The hardware text is clipped by calculating the rectangle which

102

/

the string occupies. A determination is made to see which characters are

actually visible. Finally, zoomed text is a problem because the original

character size is retained. The calculated envelope of the character

string is much larger when the string is zoomed up, even though the string

is the same size. Therefore, the string is centered in its theoretical

envelope to retain some integrity.

The pick interpreter can ignore much of the clipping work. It

must find out if the point input lies on a line or in a text string. A

line must be visible for a strike to occur on it. A tolerance is assigned

so a user does not have to position the crosshairs directly on a line.

The software checks to see if the input points lies within the area of the

line. (Figure 2.6.12). If so, a check is made to see if the distance

from the point to the line is within tolerance through

d = Axo + Byo + C

(A2 + B2) 1/2

where Ax + By + C is the equation of the line in question and (Xo,Y o) is

the point in question (see Figure 2.6.13). The picked point must merely

lie within the rectangle of the text to be pickable (see Figure

2.6.14). GCWORK uses

GCC see if point is clippable in this area

and COMPIO low-level driver for asynchronous I/0 to a Tektronix

4010 series direct view storage tube terminal.

2.6.4.5 Pick Processing

Pick processing is controlled by user definable categories. The

categories are numbered from 0-63 and take on meanings for various types

of picks. These categories are then used when determining if a pick is

legal or not. Each pickable item must be assigned a category when the

item is created by GITEM.

GICAT : assign an event type to a category. Legal types in

INTERTEK are ignore, single, string, parameter, and

button.

GCRCAT retrieve the meanings assigned to a category

GCUCAT unpack the categories to which this item belongs.

103

JII

I I
I I
I I

I I

XpypI

I .. X2 ,Y2

FIGURE 2.6.12. RECTANGLE CHECK

If Xp,Yp lies within the rectangle, the test

in Figure 2.6.13 is made.

X2,Y2

FIGURE 2.6.13. DISTANCE TEST

d is measured after the line equation
through

(XI,Y1) and (X2 ,Y2) is formed.

TEXT STRING

L ,. .4
0

Xp ,Yp

FIGURE 2.6.14. TEST PICK

Xp,Yp must only lie within the text envelope.

104

.ri addition to items, keyboard keys can be assigned to a single category

with

GIASID : Assign the category to the display code construct

given. No ID block can be assigned. A key press

can only by done if no display item was picked.

Furthermore, the pick will only be honored if the

category is a button pick type.

The actual pick processing is done by

GIBUTN : turn on the crosshairs and wait for a button pick. if

the pick is not a button pick, an entry is made on the

proper queue (single, string, parameter) for later

retrieval. The actual processing of the pick is done

by GCDRAW (0,1).

The other types of picks are retrieved from calls to:

GISNGL : format IEVENT, INF, ICAT, and ID for the pick on the

single queue.

Entry points: GISTR: retrieve next string pick information

from the string queue.

GIPARM: retrieve next parameter pick information

from parameter queue.

Each queue is maintained separately. If the queues have not been

emptied, the program can eleminate additional picks by

GICLRQ : eliminate single, string, and parameter queues.

Internally, much more work is done in processing picks than meets the eye.

Much effort has been made to make the pick processing as rapid as

possible. Two utilities aid in this process:

GCCHMM : see if the picked point lies within the rectangle

occupied by an item.

GCGMM : grab the minumum and maximum limits (forming a

rectangle) from either DAE or an item.

The picked point itself is retrieved by:

GCINPC : return X and Y of picked point and the key struck to

generate the pick. X and Y are returned to 4096X4096

space.

105

All of this effort in pick processing is summarized by examining the

techniques for actual determination of a legitimate pick as the display

file is interpreted.

1. Get next DAE in list. If last DAE, pick not found.

2. Get clip limits. If picked point (PP) is not inside clip

limits, go to 1.

3. Get next subfile in DAE. If no more subfiles, go to 1.

4. Get categories to which the items in this subfile belong

(these categories are assigned to the subfile as items

are linked in). If there are no categories or if all the

categories are ignored, go to 3.

5. Get next item in subfile. If no more items, go to 3.

6. Get the categories for the item. If not in any category,

or if all categories are ignored, go to 5.

7. Get lightpen sensitivity flag. If 0, item is not

pickable, so go to 5.

8. See if PP is within the limits of the rectangular area

within which the item lies (this information is collected

as the item is being constructed.). If not in the area,

go to 5.

9. Begin item interpretation with GCWORK using the scheme

described in Section 3.4 If PP is not found go to 5;

else, found so we can quit.

The strategy behind this algorithm is to eliminate large areas as quickly

as possible. The display file can therefore be termed "area organized"

because its component parts (down to individual lines and text strings)

are looked at on an area-by-area basis before any attempt is made to

calculate actual distance to a line. In complicated displays, this proves

to be a distinct advantage over the test-it-all-because-its-there approach.

An adjunct to event processing is figuring out where the

crosshairs were when an event was generated.

GIFETS : return the coordinates of the last location of the

crosshairs.

An event need not be generated to use the crosshairs.

Occasionally, it is necessary to put the crosshairs up and let the user

106

it on them to return some location on the screen as repositioning

nformation or the like.

GITRAK : turns the crosshairs on in a DAE for return by

GIFETS. The crosshairs will reappear on the screen ;f

the user positions the crosshairs outside the DAE.

.4.6 Text Input

The technique for text input cannot be a true event in INTERI K.

ne onIy mechanism is to use a read of some sort from the terminal. The
2rogrammer can use a standard FTN READ statement or

GIRDTX Returns a text string and the number of characters

input. GIRDTX reads from an internally connected file.

z.6.4.7 Utility and Miscellaneous Routines

Because the Tektronix is a DVST, the screen must be erased.

GIDFON : erase the screen and redraw the display file if so

specified.

An audible tone will prompt (or wake up) a user:

GIALRM : issue a beep

Useful constants regarding terminal type are returned by

GCHIGH : return character height in 4096X4096 space.

Entry Points: GCWIDE: return character width

GCXMIN: return absolute XMIN for screen in

4096X4096 space

GCYMIN: return absolute YMIN

GCXMAX: return absolute XMAX

GCYMAX: return absolute YMAX

XMIN, YMIN) and (XMAN, YMAX) are needed because the number of raster on

"he rectanglar Tektronix scope differs between the 4010-4012 and 4014.

Errors are reported in INTERTEK on file OUTPUT.

GIERR : prints the error from the number provided.

GITRACE: prints a traceback of where an error occurred.

107

2.7 STAGING Model Graphics

2.7.1. Medium-Level Graphics Routines

A series of routines have been written to insulate the

application from the perils of graphics programming using INTERTEK. This

adds some execution overhead for repeated subroutine calls, but saves much

re-coding and isolates graphics dependent code. Another set of low-level

routines interface the INTERTEK paccage with the XY plotting package. The

final set that is graphics-oriented takes care of scaling for INTERTEK

based on zoom level.

2.7.1.1 Checks for INTERTEK

INTERTEK contains a buffer that may overflow. The buffer is the

graphics information collection buffer (IBUF in DRAWBUF). When large

display items are being constructed, this buffer is checked for overflow.

The following subroutine performs this activity.

ICKBYT : Check if the IBUF will be overflowed. If so, generate

an item if the first pass, otherwise extend the item.

Normally only a call to ICKBYT need be made before a

GU- call.

ICKBYT automatically generates an item and saves the IDDAD if the

IBUF buffer is overflowed. Every time a buffer as filled or flushed, a

new item is generated or an old item extended by:

MITEM : Generates an item. The item will have the bead address

of the owner if the owner is a bead address. It is

placed in the category for that bead level (ICATS

(IACTYP) in CATS. IACTYP is in common block PERMEN).

MEXTN : Extends an existing item.

2.7.1.2 Interface with XY Plotting Package

The XY-plotting package in STAGING is call-modeled on 4060 IGS.

Several routines have been changed to interface the plotting package with

108

INTERTEK. These routines allow normal high-level calls and lets the

programmer decide which pictures he wants in different items. This is

accomplished by variable IDDADI in ccmmon block IGSIGS. Setting IDDADI to

zero initiates a new item and a CALL METAZZ(O) terminates it. The program

can then do what it wants with IDDADI before resetting it to zero to

continue plotting. All features of IGS are pretty much standard except

the default object space has been set to 4096X4069 rather than 4096X3072

to take advantage of all of the screen. The mode array Z(118) can be

conveniently used through common block IGSCOM. All of the routines now

call ICKBYT to insure that IBUF in not overflowed. XY Plot routines:

ERRZZ : Just a RETURN statement to save core.

LINZZ : A new routine which draws a line with beam on or beam

off with GULIN.

METAZZ : Low-Level driver which formats all plot commands.

MODESG : Only calls RSETMG to initialize mode array.

RSETMG : Initiates mode array and scaling interface with the

Display and Edit scalers by setting AMIN and AMAX in

LIMIT to 4096X4096 and calling SCALST to set up the

scale factors.

SETSMG : Recoded to eliminate unused mode sets thus saving much

core.

2.7.1.3 Scaling and Coordinate Transformations

One of the more difficult tasks in INTERTEK is scaling because so

much depends on the zoom level. Therefore, a series of utilities which

communicate through common block LIMIT have been developed. The routines

which initiate scaling are:

SET1 : Gets the display space for the model from a substructure

SCALST : Set up a 1-1(-l) display space with the largest

dimension just fitting on the screen and the other

dimension(s) adjusted so they are centered. The

calculation is based on the zoom level (IZL in PIC) and

the scale stored in SCALE and the offset in OFFSET in

LIMIT.
109

Before a coordinate is displayed, it must be converted to the

cartesian system and scaled into rasters. For completeness the converse

for each routine is also provided.

CNVTOC : Convert the polar, cylindrical, or spherical

coordinates in X, Y, Z in LIMIT to cartesian, replacing

X, Y, Z

UTORAS Scale X, Y, Z in LIMIT user coordinates to rasters in

IX, IY, IZ in LIMIT. If in 3D mode, to the projection

before scaling by translating the point to the

original, rotating to align the eye, and dividing by

the perspective distance.

Entry UTORAT: Transfer the argument to X,Y,Z in LIMIT

before scaling.

CNVTOU : Convert cartesian coordinates in Z, Y, Z to user space.

RASTOU Unscale rasters to user space. This converse works

only for two-space because the inverse projection is

not done.

Character sizes also depend on zoom level:

GETSIZ : Determine the size of a character depending on zoom

level to be the smallest character visible. The

calculation is returned in ITX1, ITX2, ITX3 in PIC.

As a model is drawn,the min and max coordinate values are traced

to allow utilization of the largest possible picture. GETCOR does the

actual trace while

UNSCAL : Sets current mins and maxes (CMIN and CMAX in LIMIT) to

ridiculous values (CHIGH and CLOW in EDITT).

2.7.2 Construction of Model

The primary concern in constructing a display in this system is

limiting the amount of information on the screen as quickly as possible.

As the STAGING menu is traversed in this limiting mode, most of the

routines set up mechanisms by which the user can select portions of the

model to be displayed.

110

K

2.9.2.1 Initialization and Termination

The user must define what type of model he wishes to disp)ay.

This can be two dimensions (2D), or three dimensions (3D). This

distinction between 2D and 3D is straightforward. However, the software

is sophisticated and permits any model to be displayed in either mode.

This total flexibility allows the user to look at his model any way he

wants to.

The following subroutines perform this activity:

INIT2D : Initialize 2D drawing mode.

INIT3N : Initialize 3D drawing mode.

The next step in limiting the problem is to select the data base

level of interest. The following subroutines perform this activity:

STRACT : Set structures as the level to work on.

SSTACT : Set substructures mode.

ELEACT : Set elements mode.

NODACT : Set nodes mode.

These routines merely set IACTYP in PERMEN to 1, 2, 3, or 4.

Termination of a picture is user-controlled: The screen must be erased by

picking the ERASE SCREEN button. The following subroutine performs this

activity:

ERASE : Resets the screen to its initial blank status (except

for menus and the prompting message) by deleting the

subfiles assigned to the display for each level (array

IDSFM in common block PERMEN). The active mode and

element beads are deactivated. If the mode switches

from 2D to 3D or vice versa, a new display area entity

(IDAEM in PERMEN) is generated. Finally, a quess is

made for the initial scale by setting the scale to the

boundaries of the model. (NOTE: The screen may be

erased and the node or element beads not deactivated if

an X-Y or contour plot will be generated. The erase

process is controlled by variable IERASE in PERMEN).

~111

-kLrL-

2.7.2.2 Construction and Destruction of a Picture

The contents of any bead on any level of the data base can be

displayed. Various mechanisms are available which activate the bead for

display. Elements and nodes are drawn immediately, while substructures

and structures require additional input. The base mechanisms for

activation include:

ALLON : Activate all beads on a level.

Entry point

ALLSON : Activate all nodes or elements in active

substructure(s) only.

ASERCH Scan all beads for those that in active substructures

only fall within the typed-in range.

Entry point

ASERCHA: Search all beads on a level for the

attribute(s) falling within the typed-in range.

RNGDRW : Draw all elements or nodes from the user's typed-in

number range(s).

ASUBS : Activate structures or substructures in response to a

menu pick of names displayed.

Displays can be constructed from information already on the

screen. These techniques allow the user to draw all elements attached to

any one node or all nodes attached to any one element. The following

subroutines perform this activity:

'NODE : Draw all elements that own all the nodes on the screen.

LFNODE : Draw all elements that own each node picked by the user.

LFNOD : Make the call to IDRW for LANODE and LFNODE.

NODAEL : Draw all nodes owned by all elements on the screen.

NODFEL : Draw all nodes for each element picked by the user.

Drawing an attribute is a two-step procedure. The user must

define which attribute value is to be displayed and then which pieces of

the picture should have the attribute displayed. The followirg

subroutines perform this activity:

ACTATT : Save the attribute number from the attribute name

112

66

picked in variable IACATT in ACTSTR.

DRWATA : Draw the attribute for all beads on this level that are

active.

DRWATT : Draw the attribute for each bead picked.

As well as drawing beads on a level, pieces of the display can be

removed and deactivated. Deactivating a bead does not delete it from the

data base. The analogous situation in which all but the picked items is

also legal. Obviously, erase is the way to delete the picture en masse.

ALLOFF Delete and deactivate all beads on a level.

DELPIC : Delete and deactivate all picked beads on a level.

SSAOFF : Deactivate all substructures or structures.

SSOFF : Deactivate substructures or structures from the list of

active names.

RNGDEL : Delete and deactivate all beads corresponding to the

element or node numbers typed-in.

RETAIN : Delete and deactivate all beads on a level except those

that are picked.

RETAIS : Initialize the RETAIN process.

2.7.2.3 Drawing a Bead

The actual drawing process is performed by functions oriented

about each level of the data base. A single routine, IDRW, will draw any

bead supplied by branching to the proper drawing routine. The following

subroutines perform drawing operations:

IDRW : The drawing controller. This routine will draw any

arbitrary bead if it is not currently displayed (a

non-zero IDDAD). If there is no picture, the propei

drawing routine is called based on IACTYP ir PERMEN.

Once the picture is completed, the IBUF is flushed to

generate or extend the item corresponding to the bead.

A positive or zero value is returned by IDRW if no

error has occurred in the draw.

113

IDRWST Draw a structure bead by draw nr a)

substructures associated with it.

IDRWSS Draw a substructure bead by drawing all elements

associated with it. This routine is ripe for

modification because repeated lines are drawn. Each

element is drawn independently but placed in the same

item.

IDRWEL The work horse of drawing. The bead is checked for a

proper number of down pointers. The routine then

checks if this element is an extension to an existing

IBUF (i.e. part of a structure or substructure). If

the element is to be shrunk, its center is obtained

(GETCEN). The actual display is generated from the

element type irrespective of the number of nodes. This

means that 'ROD' element can contain 50 nodes and stil)

be drawn properly. More complicated elements are drawn

using a connectivity array set up by routine ICON. The

drawing algorithms is contained in the second column of

array IELNAC in ELEMEN.

ICON Used by [ORWEL to set up a connectivity array for

complex solid elements. Other element types can be

added by expanding IELNAC and implementing the proper

drawing algorithm.

IDRWLN : Construct a line to (IX,IYIZ) in LIMIT using the

INTERTEK software with either beam on or off. The

routine makes GULIN and the ICKBYT calls transparent to

IDRWEL.

IDRWND : Draw the node symbol specified. No checks ,-?ds to he

made on the IBUF length because only two GU calls are

present.

As well as drawing the physical model for any of the beads,

specific values can be displayed for any of the attributes present. The

following subroutines perform this function.

114

IDRWAT Draw the bead (with routine IDRW) and

add the attribute value specified in

variable IACATT in ACTSTR. Each

attribute is drawn centered in the bead

(obviously, the center of a node is the

X, Y, Z coordinate, and the attribute

value is placed above the node symbol).

By convention, if IACATT is zero, any

drawn attribute is deleted and if IACATT

is greater than LENATT(IACTYP) (the

number of attributes in the list), the

name is drawn. Some nodal attributes

require graphical displays of arrows.

These are determined from array IATDRW

in IATTYP.

IGETCH To ease the confusion of multiple attributes on the

same picture, an abbreviation for the attribute name is

displayed. Names and element types, are conventionally

unlabeled. If a graphics display is to be made, IGETCH

puts the start and end coordinates of the arrow in PMIN

in PLANE.

ARROW Pack into IBUF with GULIN, draws an arrow that begins

and ends at the points specified. The direction

(towards or away form 0,0,0) is specified by the third

parameter. The arrow can be oriented arbitrarily in

space because the IARSET description is rotated to

align properly.

IARSET : Define the points and connectivity for a single or

double headed arrow that is centered at 0,0,0 and

points along the X-axis.

Once a display is constructed, the picture needs to be redrawn

occasionally to change plot limits, shrink members, or reflect changes

from editing. The following subroutines perform the redraw activity:

115

DRWACT Redraw all beads on the level specified

by IACTYP in PERMEN that are on the

screen. The basic technique is to

delete all active items for that level,

and then redraw them. This routine is

called by the Modify Picture routines

when required.

Entry Points

DRWACN Draws all active beads but does not erase them

first. Used by deformed plot routines to

superimpose a deformed plot.

DRWARR Draws all beads from the array specified in the

parameter list. Used by editing routines when

a series of up pointers are queued as being

affected by a change. For example, if a node

position changes, all elements owning it are

redrawn with DRWARR.

DRWONE Draw the one bead in the parameter list used by

editing routines when a change effects the

display of that bead.

DRWNOC Draw all active bead even if there is no

display currently on the screen. Used

initially by DYFILM to insure that the active

structures and substructures are drawn.

DRWSS Draw all active structure or substructures.

Called from command tree 'DRAW PICTURE' button

in structures or substructures mode.

2.7.3. Results Displays

Four different results displays are available. Deformed and

dynamic plots show how X, Y, Z displacements affect the model. Attributes

of various kinds can be molded into X-Y plots or contour plots.

a 116

L ,,

.4

2.7.3.1 Deformed and Dyanamic Plots

The philosophy behind deformed plot mode is to set flags and 1,t

the standard model drawing routines do the dirty work. Most prominent of

the flags is IDFLAG in DEFORM. If IDFLAG is greater than 0, a time

dependent plot is generated through routine GETCOR. The time dependent

plot looks at step n (ISTEP in DEFORM) and accumulates the displacement

from steps 0 through n before plotting. If IDFLAG is less than 0, a mode

shape or load condition at step n is generated which adds only the

displacement at that one step. If IDFLAG =0, and undeformed plot is in

order.

Initialization and termination of deformed mode are handled by:

DYUNDE : Set undeformed mode (solid lines, IDFLAG=O).

Entry Point

DYDEF : Set deformed mode (dashed lines, IDFLAG=-I)

Deformed mode stays in effect until the user sets undeformed mode again.

When drawing the deformed plot, the IDDAD of the last display

drawn (deformed mode) stays active. The only way to remove the original

undeformed plot is to ERASE the screen. The actual deformed plot is drawn

from all active bead with:

DYDRDE : Draw deformed plot for all active beads.

The other deformed routines set up user type-ins.

DYLOAD : Put up the LOAD STEP type-in for deformed plots.

Entry points

DYMODE : Put up MODE SHAPE.

DYTIMS : Put up TIME STEP.

The processing routines allow the user to set:

DYSFPR : (entry to DYSFPU) Set variables SFACT or TIME in

DEFORM based on a flag stored in NAMES(2) in EDITT.

DYSSTP : Set ISTEP in DEFORM.

Dynamic plots are somewhat more complicated than deformed plots.

The user again sets up parameters before initiating the plot procedure.

These parameters include:

117 -A

DYSFPR (entry into DYSFPU): Set up SFACT or TIME in DEFORM.

DYSLIP (entry into DYSLIC): The user can extend the dynamic plot

to include all steps between IST and

IEND in EDITT, DYSLIP assigns those

values.

DYSLIC : Put up range for dynamic plot steps.

When dynamic mode is completed, undeformed mode is reset.

2.7.3.2 X-Y Plots

X-Y plots are ultimately produced with routines on XYGRAPHPL

which are call-modelled on IGSAO60. These routines draw X-Y plots from

arbitrary data sets. The routines in this section do little more than

setting parameters in the mode array and collecting the data to be plotted.

As in other results displays, the user can select the piece of

the data base for which the display will be generated by constructing the

model on the screen. The following routines perform screen erase and

initialization for the X-Y plot node:

INITXY : Begin X-Y plot mode by setting default plot parameters

and erasing screen.

XYERAS Erase the screen, but leave all active beads active by

setting IERASE in PERMEN and calling ERASE. The

parameter also sets a special activate-but-do-not-draw

when the user activates more data for plotting.

Entry points

XYRET : When in the X-Y plot module, the user can erase

the plot he has just constructed. To retain

consistency, all active nodes and elements are

deactivated but the activate-no-draw mode stays

in effect.

XYRET1 : Leaving X-Y plot mode erase the screen,

deactivates active nodes and elements, and

returns to activate and draw mode for nodes and

elements.

118

The user actually activates data with the same tree and the same

routines as he does in constructing the model. He must then select whi-h

attributes he wants drawn on the X and Y axes. When he picks the

attribute, the following routines are used:

GETDAT : Collects the data from the attribute selected for the

proper axis from all active beads of that type. If it

is the X-axis, the values are sorted into increasing

order.

PROCXA Selects the X-axis for data collection.

Entry point

PROCYA : Selects the Y-axis for data collection.

TABRDR : Redraw one line on graph.

REPXY Replots an X-Y plot to reflect new plotting options

selected later.

RSCXY : Rescales the X-Y plot for the absolute min and max for

all curves displayed and redraws it.

SORTXY Sort the X- or Y- data in ascending or descending order.

When working with tabular data, a different set of routines is

responsible for activating data. The major processing routines (GETDAT

and PROCXA) have modifications in them to retrieve from a single table

rather then geometry-oriented data.

TABACT : Determines which tables are plottable

(from iDBFTY)

Entry points

TABACX : put up table names for choice as x-axis

TABAXY : put up table names for choice as y-axis

TABPRC : Process table pick and put up type-in box for user

selection of pertinent data to plot.

TABDM : Process type-in for part of table to plot.

TABVAL : Lets user retrieve values from table

TABIND : Treats pertinent array as subscript values. Useful

when plotting a singly dimensional array.

Entry point

119

TABVAL Use the table as values.

The user has control over a large number of features about graph

style as well as its contents. These choices include grid style (full or

tick marks), titles (X and Y axes and graph), scaling mode (linear/linear,

linear/log, log/linear, log/log) and plot style (solid, short or long

dashed lines, point plot, or connected point plot). These parameters are

set initially and can be reset through:

INTFLG : Set up initial plot style to be linear/linear, tick

marks, XTITLE, YTITLE, GRAPH TITLE, solid line plot.

Entry Points

GSFUL : Set full grid.

GSGXGY : Set linear/linear.

GSGXLY : Set linear/log.

GSLXGY : Set log/linear.

GSLXLY : Set log/log.

GSTIC : Set tick marks.

LSLDH : Set long dash plot.

LSPLN : Set point and line plot.

LSPNT : Set point only plot.

LSSDH : Set short dash plot.

LSDLD : Set solid line plot.

PROCCHR: Set new plot character from type-in.

PROCTIT: Set new X and Y axis and graph titles from type-in.

QTITLE : Display old X and Y axis and graph titles

PROCTIT: Set new X and Y axis and graph titles from type-in.

The user can set new limits for his plot that will be constant

until changed. The term AUTO means that Display and Edit will

automatically scale the data as it is retrieved.

TABXYP : Process type-in of new XMIN, YMIN, and XMAX, YMAX

The sort order (in SORTXY) can also be changed by

TABXI : Sort X increasing

Entry Points

TABYI : Sort Y increasing (default)

120

TABXD : Sort X decreasing

TABYD Sort Y decreasing

TABYN : Do not sort X

TABYN Do not sort Y (default)

Individual lines in the plot can be changed as well:

TABPEN : Activate lines on graph for pick

TABLIN : Work on the line picked

The line style of the curve can be changed by the entry points of

INTFLG or with:

PROCCHR: Change plot character

Every nth point can be plotted:

PROFAC : Set new repeat factor

The picked line can be deleted:

TABDEL : Delete line and squeeze other down.

The scale/offset of each line can be changed. This is useful if

looking at tables with data in different units (i.e Volts/mullivolts).

TABSCL : Change scale/offset

2.7.3.3 Contour Plots

The contour plotter in the STAGING system is limited to

contouring an attribute value at points in the Z=O plane defined at nodes

or element centroids. Currently a maximum of 128 points may be contoured.

The following routines do the work:

CNTINT-- Initialize contouring default values in common block

CNTDE.

GETCNT-- Fetch the attribute data from the data base from the

activated nodes and elements. The data is stored in

common block CNTDE. Integer data is converted to

floating point. Mins and Maxs are calculated.

CNTPRD-- Put up current contour parameters for user modification

via type-in.

CNTPRE-- Edit and accept typed-in parameters.

121

III IF' -- lll ,. ,.

CNTOR -- Main contouring subroutine which calls

the routines below.

CONHUL-- Determine convex hull of points in plane to be

contoured.

TMESH2-- Create triangular mesh over the convex hull.

TMESH3-- Iteratively improve triangulation by using other

quadrilateral diagonal if it increases the minimum

angle between triangle edges.

TRIORD-- Perform a reordering of the line indices so that

attribute value at initial point is less than or equal

to attribute value at terminal point.

SCAN -- Trace through the triangular grid to extend contour

lines for each requested value.

The user has control over number of contour levels, the values of

the contour levels, contour plot labeling, and using scale factors on the

contour value labels.

2.7.4 Modifying the Picture

Various mechanics are available for modification of a constructed

picture. This section will discuss these functions in the oraer' in which

they occur in the command tree.

MORDRW : General redraw of active beads.

2.7.4.1 Split Screen

The user can generate up to a four-way split screen. The number

of splits active at one time is kept in NUMSPL in PERMEN. When SPLIT

SCREEN is picked, the working DAE is moved to occupy a smaller area. The

following routines perform this activity:

MOSPLT Decrease the zoom of IDAEM (if necessary) to fit the

next split on the screen. The routine creates a new

DAE for the split information. Then erase the screen.

122

If NUMSPL 4, the request is ignored.

SETWZ : Reset the virtual window and picture limits to existing

DAE with GIZOOM.

The user can generate a free or frozen copy of the working DAE

(IDAEM). A free left side shows the existing subfiles in the blank DAE.

This means that any modification to the display in IDAEM (except local

modification) will be reflected in the new DAE. A frozen left side copies

all shown items, making them impossible to change. The following routines

support this activity:

MOFRZ : Show all subfiles in the new DAE (IDAEM (NUMSPL) in

PERMEN).

MOFRE : Copy all items in IDAEM to IDAEM (NUMSPL).

The following routine deactivates the split screen mode:

MOSOS : Delete all DAE's and subfiles except the working DAE

(IDAEM IN PERMEN) and subfiles (IDSFM (1-4) in PERMEN).

Then erase the screen.

Erasing the screen only erases the working area. The remainder of the

imdg.,iS left intact in the display file.

2.7.4.2 Shrink Members

A shrink capability allows each element to be drawn at 80% of its

normal size. This generates a slot in which adjacent element boundaries

will not overlap in either 2D or 3D. The following routines perform this

activity:

MOSSHK Set shrink mode (SHRINK = .8 in LIMIT)

Entry Point

MOUSHK : Termination from this segment. Sets SHRINK

oack 1.0.

MOASHK : Shrink all members on the screen. If a substructure is

drawn, all elements in the substructure will be shrunk.

MOISHK : Shrink only the members picked.

L23

2.7.4.3 Change Plot Limits

The user can enter new plot limits in three coordinates systems.

The picture will then be rescaled to the new limits. For entering the new

limits from the keyboard:

MOREC : Sets rectangular entry mode.

MOCYL : Sets polar or cylindrical entry mode.

MOSPH : Sets spherical coordinate mode.

The user can also fill the space up from a constructed model with:

MOFILL : Rescale the picture to the current mins and maxes (CMIN

ard CMAX in LIMIT) seen since the last screen erase.

This means that CMIN and CMAX are not readjusted if

items have been deleted from the screen without erasing

the entire screen.

The actual work is done by:

MODRW : Redraw the picture if the limits have really been

changed.

2.7.4.4 Restore Original Picture

The following subroutine is used to restore the original picture:

MOZSRS : Restore original picture by (1) restoring the working

DAE to full screen and its initial zoom and virtual

window and (2) unshrinking all shrunk members. The

current perspective and rotation is kept.

124 /

2.7.4.5 Perspective View

This feature applies only to 3D mode. The user can change the

ten word view control array (VU and VU3D) by typing in new values for eye

position, point looked at, and projection plane.

SVIEW : Process the typed-values. A null type-in restores to

the current view, thus eliminating any rotation.

SETVU . Calculate the new view. Calculate a perspective or

orthogonal rotation menu.

Table 2.7.1 and Figure 2.7.1 illustrate the meaning of the

various viewing parameters. The user can display a 3D model in 2D mode.

In this manner, the user can change with lightpen in the X-Y, X-Z, or Y-Z

planes. The new projections are done with:

FRONTVU: Set X-Y plane

SIDEFU : Set Y-Z plane

TOPVU : Set X-Z plane

2.7.4.6 3D Axes

In 3D mode, axes centered at (0,0,0) of the display and oriented

along the user's X, Y, Z coordinate system can be drawn.

MOAXES Draw the axes with ARROW and label them with MOLAX.

The item IDDAD is stored in IERASE in PERMEN. (IERASE

is a (-,0,+) switch exclusively; an IDDAD is always +).

The axes are arbitrarily placed in IDSFM(1). Picks to

MOAXES act as an on/off switch. If the axes are there,

they are deleted, and vice versa.

MOLAX : Label 3D axes with the characters X, Y, and Z.

2.7.4.7 Rotate

In 3D mode, the user can type in new values for angles. They are

processed by:

SROTET : Rotate image from host.

125

TABLE 2.7.1. THE VIEW CONTROL ARRAY

PERNISSIBLE VALUES

(Any Numeric Type-in is in the
NAME MEANING User's Coordinates)

X LOOK AT X, Y, Z Coordinates of the an X, Y, Z in the model. If
point you wish to look at the character C[enter] is

Y LOOK AT on the model. Only mean- entered, the center of the
ingful when a perspective model is calculated as the

Z LOOK AT Projection point looked at.

X EYE X, Y, Z Coordinates of your An X, Y, Z outside the volume
eye. If none specified at occupied by the model. An

Y EYE infinity, a perspective entry of +1 or I yields in an
projection is made. orthogonal +- and -I, --.

Z EYE C[enter] means the same as for

point looked at.

PROJ PLANE The projection plane for A distance from the point
the closer the projection looked at. If 0, a distance
plane to the point looked halfway between the point
at, the larger the picture, looked at and the eye is

calculated.

FRONT CUT A distance from the point Any positive value.
looked at that controls the

BACK CUT cutoff planes. The front
cut is the distance along

+Z, the back cut along -Z.

If both are zero, the

const int parameter takes
over. A depth cut between
FRONT and BACK is generated

CONST INT otherwise constant intensity

from parameter CONST INT is

used.

CONST INT Constant intensity 1-16 (not implemented in Tek-

tronix version of STAGING)

126

(XEYE. YEYE, ZEYE] OJ PLANE Y

Front

- - - =Cut

x

Z [X LOOK AT, Y LOOK AT, Z LOOK AT]

FIGURE 2.7.1. 3D VIEW CONTROL

127

The current rotation angles are displayed by

SROTST : Put up current rotation angles and a.. for increments.

2.7.4.8 Zoom

A general zooming capability is provided by the following

routi nes:

MOBOTH : Reset zoom and virtual window for IDAEM to its initial

(value of IZL, IWX, IWY in common block PIC.

MOZPLS : Zoom one level more (enlarge).

Entry

MOZMIN: Zouo one level less (compact).

MOZCRS : Zoom around crosshairs.

MORCNT : Recenter display file around crosshairs.

2.7.5 Editing the Model

The editing portion of STAGING is general in nature for the user

controlled variables in the data base: attributes, down pointers, and up

pointers. Complications occur in the code because changing one piece of

the data base may effect several different images on the screen. Most

notably, changing a nodal coordinate will affect the display of all

elements that own it. Deleting parts of the data base has the same

tendency to change the display of its owners. Creatina new beads on any

level will not effect the display until linked into the data base with up

and/or down pointers. All editing routines use data base routines to

incorporate the changes.

2.7.5.1 Initialization and Utility

The key to editing is the same as for displaying. The user must

activate specific beads on a unique level to edit. The following routines

are called when 'CHANGE FEATURES' is entered.

128

EDINIT Sets no beads active for editing (all

beads of this level on the screen) if

this is a change in data base levels

(i.e. NODES to ELEMENTS) or the first

time editing has been entered for the

level. Otherwise, the currently active

beads for editing remain active until

'ACTIVATE FOR EDITING' is picked.

ECHNIT : Eliminate the active for editing list when 'ACTIVATE

FOR EDITING' is picked.

The active for editing list is kept as two lists (IACTL and

IACTH) in CREATR. These lists, both of length LACT, hold the left and

right ends of a list that is scanned (IACTL(I) to IACTH(I) for 1=1 to

IACTPT) during the actual editing phase. The user can construct these

limits through:

ESLOT : The base routines for activation. The routine fills

IACTL and IACTH until LACT is overflowed.

EACTPN : Activate a bead from a pick on a displayed item.

Entry Point

EACTP : Activate a bead from a displayed structure or

substructure name.

EALLS : Activate all beads on the screen.

Entry Points

EALLD : Activate all beads for this data-base level

EALLSS : Activate all beads in the active substrutures.

ETYPSV : Activate all node or element numbers typed in.

When a change is made to a bead that affects its owners, the edit

module will redraw all those owners which are displayed to provide

immediate visual feedback of the change. The up pointers are saved in

groups of 20 to minimize the number of times a bead is redrawn by:

EQUEUP : Saves the up pointers for a bead. Each up pointer can

occur only once in the list. A parameter of zero

flushes and redraws the up pointer list.

Because different modes are available for activating beads for

129

III I -- -- m~ m
'i

..... ==-;
=

:,i 7 , "

i F

editing, the following higher level traverser is used when more than one

bead must be changed:

IENEXT : Returns the next bead in the string by managing the

IACTL and IACTH lists. The links are followed based on

ICFLAG in CREATR, which is set during activation for

editing.

Entry point

IENIT : Initializes IENEXT

2.7.5.2 Chan ging Fields in a Bead

The user hae access to the attribute list and up and down

pointers in any bead. In the edit phase, he can change attributes for

more than one bead. He is constrained to work on only one bead when

changing up and down pointers.

2.7.5.2.1_ Changing Attributes

Two modes of operation are allowed. The multiple bead mode

(where more than one is active for editing) allows the user to change any

or all attributes to a new value. The single bead mode allows the user to

change any field (including the name) from a list of current values in the

bead. The same routine handles both modes:

EATS : Start the display of attributes for changing by calling

EATF.

Entry point

EATCH : Does the actual work of changing attributes.

If a currently displayed attribute is

changed, the bead is redrawn. If a node

point is changed, all displayed elements that

own the node and the node itself are redrawn.

Changing an element type also triggers a

redraw.

A special editing mode is available for 2D displays. If one node

130

bib,

is active for editing or newly created, a new (X,Y) value can be assigned

by moving the crosshairs:

MXYI : Initiate tracking.

MXYP : Process the move by getting the coordinates of the

tracking symbol, converting them to user coordinates,

and redrawing affected nodes and elements.

TRKOFF Turn tracking off (crosshairs).

Entry Point

TRKON : Turn tracking on.

EMOVE : Put up centroid of node, element, or substructure.

Entry Point

EMOVEP : Process move.

EUPPNT Do work updating pointer(s) in node, element, or

substructure.

2.7.5.2.2 Adding and Deleting Up and Down Pointers

Modifications to up and down pointers are limited to one bead at

a time. This constraint has been chosen to simplify user interaction.

The main mechanism for the user to specify up and down pointers is by use

of the crosshairs. He may select any bead currently displayed on the

screen or choose from a list of numbers or names. As a last alternative

he may also type in values. Subroutines DBUPT and DBDNT do the majority

of the word. All routines take care of cross-linkage automatically. For

example, if a down pointer is removed from a bead, the bead is removed

from the up list of the owned bead. The following subroutines are used:

ECHOND Initiate down pointer mode.

Entry Point

ECHONU : Initiate up pointer mode

EADOWN : Add down pointers from a lightpen pick of a displayed

item. The picture is redrawn for the bead after all

picks are processed.

Entry Point

EAUP : Same as EADOWN, but for up pointers.

131

ERDOWD : Set parameters for ERD to remove a down

pointer from a name or number displayed.

Used on structure and element levels.

Entry Points

EROD : Same as ERDOWN except remove is for a displayed

item. Used on structure, substructure, and

element levels.

ERDOWU : Same as ERDOWN except remove is for up

pointers. Used on substructure, element, and

node levels.

ERDU : Same as ERDOWN except remove is for a displayed

item's up pointers. Used on substructures,

elements, and node levels.

ERD : Remove up or down pointer. Checks are made to insure

that the pointer is legitimate befor the removal is

attempted.

ENDOWN : Add down pointers by picking the name of down

pointer. Used for adding to structures.

Entry Point

ENUP Add up pointer by picking the name of

the up pointer. Used for adding to

substructures and elements.

ERNDLD Delete down pointers from a structure or element from

a list of the down pointers.

Entry Points

ERNADD Add down pointers to structures from the

list of the available down pointers.

ERNADU Add up pointers to substructures or

elements from the list of available up

pointers.

Adding elements to substructures provides the user more

mechanisms than the set listed above. Included in the repertoire of

substructuring techniques are collecting elements with certain attributes

or within a specified geometric region through:

132

ESERCH Look for elements that have particular

attributes and add them to the active

substructure.

PLINIT Set up initial volume to search which is bounded by the

limits of the current display.

PONPEN In 2D mode, the user can position a rectangle with

crosshairs over the desired region.

Entry Point

PCOLL : Reads up the coordinates of the rectangle

after positioning.

PTYPE : In 3D space, the user can type-in the coordinates of the volume

which are processed by this routine.

PORG Do actual search and add operation for elements totally within

the volume bounded by PMIN and PMAX in PLANE.

Quite often a user has made an error in the node list of

elements. In this case, he may substitute one node for another by:

ELREPL : Process type-in for nodal replacement.

2.7.5.2.3 Creating New Beaas

A user can create new entities on any level and define attributes

and up and down pointers with the tools in the previous section. The

actual processing and creation operations are done with:

ECREAN : Initiating name type-in for creation.

ECPROC : Process name type-in. A new slot is created with this

name if there is no occurrence.

IECPRC : Does check to see if typed in name is in the data base.

Substructures and structures can be merged to provide a newly created bead

on either level containing the down pointers from both. The technique

looks at the down pointers of the other substructures with:

EMERGE : Add down pointers from each structure or substructure

picked to the newly created bead.

133

2.7.5.2.4 Deleting from the Data Base

When a bead is deleted, all beads on the level above it are

affected. Therefore, up pointers are queued with EQUEUP as well as the

actual deletion operation in:

EQPEN : Delete the bead corresponding to the displayed items.

Entry Point

EQPENN : Delete the bead corresponding to the

displayed name (substructures and structures).

EQNUM : Delete the bead corresponding to the displayed number

(element or node) typed in.

134

2.7.6 Graphical Input

The user is allowed to pick items on the screen other than the

menu generated from the command three. In general, these are variables

dependent on the data base and displayed in pictorial form as a wire frame

model or as textual information in the form of attribute names or bead

name.

2.7.6.1 BASICS

The picking mechanics allow the program to selectively turn the
"pickable" attribute on and off for different parts fo the model. Each

level of the data base displayed belongs to a different category (ICAT in

CATS). Each category may have a different pick meaning (MEAN in CATS).

Only pickable displayed text resides in CATS(5) and MEAN(5). These arrays

allow different parts of the display to be pickable an any one time. The

pickability is initiated by setting a member of CATS to an event type

other than ignore with:

SETCAT : Set the category for the data base level (1-4) or text

(5) to the event type specified.

2.7.6.1.2 Picking Displayed Data Base Beads

The usual means of activating the crosshairs on allows the items

on a level to be string pick sensitive with:

ONPEN : Make all items on this level (IACTYP in PERMEN)

pickable. If none are currently displayed, issue an

error message.

Entry Points

ONPENA : Turn on all beads as single picks.

ONPENE : Turn on elements as string picks (for

activating nodes by elements).

ONPENN : Turn on node as string pick (for activating

135

V iw .
Win=

elements by nodes).

ONPENP : Unused.

ONPENS : Turn on all beads as string pick.

NODON : Check if nodes are pickable before ONPENN is called.

EONPEN : Turn on crosshairs in editing.

EONPND : Activate crosshairs for next level down in the data

base.

The processing routine then works on the picked items until the

string is exhausted (ID(1) in IDENTS is zero).

2.7.6.3 Picking Text Items

Picking text items requires construction of the list of names

before picking can occur. Utilities are available for putting various

types of text on the screen.

The same problem occurs here as it does in text-editing. There

may be too much information to display at once. In this case, an

auxilliary entry point is provided for the processing routine to call when

the last ID of the set is processed. The second entry point checks to see

if there is more to display and puts it up if needed. A flag is returned

to the processor indicating that there may be more picks from the new

information. The IER flag in ERROR is then set to override the command

tree action so the command tree stays where it is rather than taking its

normal action.

The two basic routines put up bead names or attribute names:

TYPNAM : Display the names of the beads in NAMES (IST-IEND) in

EDITT in the menu area as string picks. The ID block

of each item corresponds to the bead address.

Entry Point

TYPVAL : Display the alphanumeric string in NAMES.

SELATT : Display the attribute names with a NAME or NUMBER

descriptor and a DELETE ATTRIBUTE choice. The ID for

each attribute is its position in the attribute list.

f 136

i/

The items are set up as single picks.

Entry Points

SELATC Continue list is LENATT(IACTYP) is greater

than MAXSCR until list is exhausted.

SELATI Used in X-Y and contour plots to display all of

the above except the DELETE ATTRIBUTE choice

when choosing data for an axis.

137

2.8 Material Property Data Base (MPDB)

2.8.1 Introduction

The MPDB is split into two levels - a master bead and a number of

specific material beads. It is in Data Handler format. The file

informati6n and the format of the beads are described below.

2.8.2 MPDB Modification Procedure

The STAGING material property data base (MPDB), accessed by the

user in the pre-processor module, can be reconstructed, changed, or

modified using the following cataloged procedures. These procedures are

available on file PROFIL, ID = STAGING3. See Appendix A for procedure

listings.

Create

Procedure Name: MPDBNEW

Input: None

Output: PFN = MPDB, ID = STAGING (automatic catalog)

The created file is a basic skeleton MPDB and does not contain

any materials. New materials are then added using procedure MPDBADD.

Add or Revise:

Procedure Name: MPOBADD

Input: LFN = TAPE1 - formatted input of material (see below).

lfn=MATER,pfn=MPDB, id=STAGING (automatic ATTACH and

EXTEND)

Output: Modified MPDB

Print file output

Input Instructions for Tape 1

Adding to or revising the STAGING Material Property Data Base

(MPDB) consists of preparing a formatted input file (Ifn TAPEI) and

running the procedure MPDBADD. The following describes the card formats

of TAPEI.

138

Control Card - (15)

NOR - Number of Requests (Addition + Revisions)

The following group of cards must be supplied for each of

requests.

Material Identification - (2A1-, 15, F10.5)

GENI - Generic Name of Material, e.g. STEEL, ALUMINUM

SPCI - Specific Type of Material, e.g. SS307, 6061,T6

NPT - Number of different temperatures for which properties

are defined (maximum 10).

RO - Mass Density of Material

Material Property (4FI0.5) - One Card for each temperature

TEMP - Temperature

E - Young's Modulus

- Poisson's Ratio

- Coef of Thermal Expansion

2.8.3 MPDB Format

File Name = MATER

Logical file number = 5

Buffer = IBK in common block MATDB

Buffer length = 160

Block size = 2 PRU's

Bead Format :

1. MASTER BEAD - 21 words

2. SPECIFIC MATERIAL BEADS - 45 words

MASTER BEAD

Word 1 - No. of Generic Names - Integer

Word 2 -

to 10 - Generic Names - Alpha

Word 11 - Unused

Word 12

to - Address to specific Material - 0

Word 21 - Bead

139

*

i

SPECIFIC MATERIAL BEAD

Word 1 - Specific Name Alpha-numeric

word 2 - Bead Address for Next Specific Material Bead

Word 3 - Unused

Word 4 - Material Density

Word 5 - No. of Temp. Points

Word 6 - Temperature (T1) - Real

Word 7 - Young's Modulus at T1 -

Word 8 - Poisson's Ratio at TI -

Word 9 - Coff. of Thermal Expansion at TI

Word 10 - Temp. (T2)

Word 45 - Coeff. of thermal exp at T10

140

2.9 STAGING Code

2.9.1 Overview of STAGING Code

Two concepts were used to make the STAGING system as versatile as

possible. First, a top-down strategy was employed. Secondly, many

concessions were made to make the code as easy to add to (or delete fromr)

as possible.

The top-down strategy dictates that routines be as modular as

possible. STAGING has a proliferation of routines that serve one purpose
only. In this way, much code does not have to be rewritten to change the

way it functions. This will simplify future modification greatly.

Generally, only low-level routines will need to be changed if the current
technique does not appear adequate. When similar strategies are employed,

routines are grouped with entry points and switch settings. The entry

points are named similarly to the main subroutine name to help locate

them. Again, this should make modification of low-level algorithms much

easi er.

Code modification is a traditional problem is working with large
systems. Constraints abound that are hardwired to a specific constant.

For example, a buffer may be defined to be 100 words long and every time

that length is used the programmer has written '100'. When the buffer

needs to be increased or decreased in sizes, all those references to '100'

must be changed. This problem can cause large amounts of time to be

wasted because there is invariably one more reference that was not found.

To avoid this problem, STAGING uses many variables to indicate

lengths of important pieces. The only hardwired constants in the code

refer to the data-base levels of 1=structure, 2=substructure, 3=element,

4=node and 5=tables. This concept of geometric grouping through the data

base has proved to be most flexible for the problems thus far encountered.

The five levels are the most fixed concept in the entire system and the

code looking at the levels uses constants throughout, especially when

differentiating between the low levels of elements and nodes and the high

levels of structures and substructures. Other instances of 'hard-wired'

141

I O MI

code may exist, but the general rule is that the code uses variables

throughout. All of these variable are set up in common blocks (with

UPDATE COMDECK's) and initialized in one of the block data routines or

assigned in the initialization routine for that module.

Variable names are as mnemonically descriptive as possible. To

assist in figuring out the meanings, comments are provided with each

'COMDECK' listing the meaning of each variable. Names generally follow

the FORTRAN naming conventions. When a variable needs an 'INTEGER'

specification, it is contained in the COMDECK for that variable. New

routines will never need to make a COMMON variable INTEGER or REAL.

File manipulation is handled through FORTRAN callable

subroutines. All local files that need to be attached are returned before

use to prevent system errors caused by illeaal permanent file utilization.

The systems programmer needs to be aware of the following local files:

OUTPUT - Location of errors from NSRDC Data Handler and

conversion routines. Can be connected or disconnected

before execution. The file is not returned or rewound

before use.

TAPEO - The permanent file for the user's data base.

DESKRCH- To prevent system failure from destroying TAPEO, the

user really works on local file DESKRCH, which is a

literal copy of TAPEO.

DANDE - File for menus for DISPLAY and EDIT.

GLOBAL - File for menus for GLOBAL commands.

EXEC - File for menus for EXECUTIVE.

DREP - File for menus for PREPROCESSOR commands.

POST - File for menus for POSTPROCESSOR commands.

MATER - Material Property Data Base

The code in all routines is FORTRAN with the exception of a few

specialized routines for character manipulation and permanent file

utilization written in COMPASS.

The code is written to utilize the CDC segmentation loader. This

implies that only constants are initialized by DATA statements. When a

constant could change, the variable must reside in a COMMON block that is

142

I

'saved' in the segmentation environment. The FORTRAN trick of putting a

DATA statement in to initialize a switch does not work in the segmentation

environment without the COMMON save feature.

A concession was made for core savings because the FTN compiler

uses quite a large amount of space for argument lists. Because of this,

argument lists are short and used only when needed. Many values are

passed through COMMON blocks. Functions are also used extensively.

especially when a single value is to be returned.

The code uses the INTERTEK and NSRDC Data Handler packages

extensively. In order to allow code to be transported to other devices,

as much centralization of routines which use these packages has been done

as is practical.

One of the features of STAGING is the ability to recover from

unexpected errors. These errors can be internal in the program (such as a

mode error), or caused by the user (user abort). The same general

technique is used to recover all errors.

The error recovery package uses system PP routine RPV to

guarantee that STAGING cannot be aborted easily. The recovery procedure

is initiated by a call to routine MARK, which is part of the Battelle

error recovery package. MARK flags the location where the recovery

package will return when an execution termination condition is detected.

Once recovery in initiated, the fateful question 'DO YOU WISH TO

CONTINUE (TYPE Y OR N)? is asked. If the answer is 'N' or 'NO', the

system returns to INTERCOM command mode.

Typing anything else resumes execution. The internal STAGING

recovery process is straightforward. The general cause of an abort will

be during construction of a display. The user can abort a long running

display construction manually by typing %A. The reaction is the same in

ail cases.

The menus are picked up at the same spot where they left off.

The ERASE routine sets up the proper subfiles and DAE's to allow another

picture to be constructed. The ERASE mode is kept constant as beads will

not be deactivated if the X-Y or contour plot modules are being executed.

143

As an aid to the system programmer, the options of DMP and DMPX

are available at recovery even through they are not advertized to the

u s er. Three listings are handy at this point. First, a listing of

STAGING with the FTN R=1 cross-reference map is adequate. This allows

rapid access to specific variables relative to the start of any one
subroutine. Second, a segload with a partial map lists the start of all
subroutines in the application. Third, a listing of the appropriate

command tree is mandatory of find out what routine was called for a

particular button.

Logic errors do occur. They can be easily traced, however, with

the proper lisLings. The most effective technique is to abort the
program. This invokes the recovery package and core can be examined at

leisure with the DMP option. The Alphanumeric dump feature is imperative

for finding out what segment is in core at any one tire. The R=1

cross-reference map will then give the proper pointer to the variable(s)
in question.

Mode errors can also occur. These automatically invoke the

recovery package. Mode 1 errors are generally caused by incorrect

segmentation. The problem areas must be traced through the recovery

package OMP option. The usual reaction is one of shock to f ind a

particular segment in core. Mode 2 errors generally result from undefined

variables in the data base. Using the DMPX feature of the recovery

package, the UNDEFined flag in STAGING can be looked for in an X register.
The unique value is 4000765432107654321B.

If necessary, intermediate prints can be placed into the proper

routine. Entry point PUTLIN in routine GETPUT can be used to display

debugging messages on the terminal screen. OUTPUT is generally

disconnected and contains system errors from FTN and Data Handler.

The most helpful hint to be given for STAGING is in the

construction of a brand-new data base. It is somewhat counter- product ive
to rely on the conversion routines and then work with the data base

because it is often desirable to work on the data base as it is

constructed. To that end, it is much more convenient to create a "dummy"

144

data base, and then use the data base handler routines for the rest.

The dummy data base need only consist of two nodes and one

element. The structure and substructure are defined automatically. This

also allows a convenient mechanism for initial definition of the attribute

list.

For example, the following routines can initialize, add to, and

terminate a data base.

SUBROUTINE DBIN

DIMENSION IATN(3).ATT(3).node(2)

c set up element attribute as type

IAT = 1

c set up node attributes as X-Y-Z coordinates

IATN(1) = 1

IATN(2) = 2

IATN(3) = 3

CALL CNINIT(IATN,3,IAT,1,0,O,O,O)

c define dummy nodes

NODE(1) = 9999999

ATT(1) = ATT(2) = ATT(3) = 0

CALL CNNODE (NODE,ATT,3)

NODE(2) = 9999998

CALL CNNODE(NODE(2),ATT,3)

c and dummy element

ATT = 3HROD

CALL CNELEM(9999999,NODE,2,ATT,I)

c end the process and re-open the data handler field

CALL CNTERM

CALL DBINIT(5HTAPEO)

RETURN

END

Code to add a new element or node is similar. An example of a

node add follows. It is assumed that the nodes start at one and are

incremented for each new node. X is an array of length 3 containing the

new X-Y-Z location.

145

SUBROUTINE ADNODE(X)

DIMENSION X(3), IATLOC(3)

*CALL DATBAS

DATA NODNUM/O/

C

C for first node, initialization must be done

C

IF (NODNUM .NE. 0) GO TO 10

IATLOC(1) = ISACT(6HX-CORD,4)

IATLOC(2) = ISALT(6HY-CORD,4)

IATLOC(3) = ISALT(6HZ-CORD,4)

C

C find the previous pointer in the list

C

IPREV = IDBLFT(IHEAD(4))

C

C get the new bead

C

10 NODNUM = NODNUM + 1

IPREV IDBADB(NODNUM,IPREV)

C

C insert X,Y,Z and make sure limits of substructure are maintained

C

DO 20 I = 1,3

CALL DBCHA(IPREV,IATLOC(I),X(I))

20 CALL ECHKL(I,X(I))

RETURN

END

The element add must put in up and down pointers. The pair

CALL DBDNT(IPREV,NODBED)

CALL DBUPT(NODBED,IPREV)

will cross reference the nodes and elements, where IPREV is the current

element and NODBED is the bead corresponding to the node number. The

146

IkL -- 0 Awim"

substructure cross-reference is done by

CALL DBUPT(IPREV,IHEAD(2))

CALL DNDNT(IHEAD(2),IPREV))

where IHEAD(2) is obtained from COMDECK DATBAS and IPREV is the current

element.

To terminate, one must merely get rid of the dummy beads and set

the LKUP array for later use.

147

• qt

2.9.2 .Program Library Maintenance

AllI update to STAGING source code is done using cataloged

procedures described in Section 2.1.

2.9.3 Segmentation Strategy

The STAGING system is dependent on the CDC segmentation loader.

This strategy was chosen because it offers far greater flexibility than

the traditional overlay mechanisms. For this flexibility we pay the price

of difficulty in segmenting a very large system into a restricted core

size without impairing run-time efficiency. Many errors can be caused by

certain combinations of segmenting methods and coding methods. A

subprogram may work correctly only if never swapped out of memory. No

local variable values are saved but DATA statements reload initial values.

Good programming practice will ensure that the routine functions correctly

even if swapped out between calls. This allows the segmentation directive

aec 1gner to work independently of the code. He needs to know only the

tree of who calls who and some rough idea of frequency and order of calls.

As a matter of practice, all routines should be included in the

segmnentation directives. The defaults for segments for undeclared

subroutines are often insufficient and frequently illegal. Particular

care must be given to ensuring that common block contents are swapped out

to disk so that the contents are saved when brought back into memory.

Care is needed to ensure that common blocks are in core when routines

needing them are executing. (The segmentation loader will not

automatically reload the necessary common blocks).

The STAGING segmentation scheme has six segment levels:

1: Root

2: Swappable Common Blocks

3: Application Subroutines

4: Miscellaneous Subroutines

5: Graphics Subroutines

148

6: System and Data Handler Subroutines

The integrity of the segmentation scheme depends on structuring

the directives so that no routine calls another routine which is closer to

the root. Thus routines in level 3 may call routines in level 5 but may

not call routines in level 1. Similar restrictions occur within the trees

in the individual levels.

The root level contains the DRIVER(STAGING main program), the

error recovery main subroutine (RCOVER), the menu tables, and many common

blocks. Level 2 is necessary because of the large size of the common

blocks used only in the contouring package. Level 3 contains most of the

routines called directly from the menus. It is divided into separate

trees corresponding to the major modules of STAGING. Level 4 contains

menu management routines as well as routines called from more than one

major module. Level 5 contains INTERTEK and various other graphics

routines. Level 6 contains system routines (Record Manager and FTN

library), Data Handler routines, and various ubiquitous general utility

routines.

The STAGING segloader directives for the six levels are listed in

Appendix B.

149

* U.S.Government Printing Office: 1980 - 657-084/69

