" AD=A089 351

UNCLASSIFIED

los |

STANFORD UNIV CA SYSTEMS OPTIMIZATION LAB F/6 1272
MINOS/AUGMENTED USER'S MANUAL. (U}

JUN 80 B A MURTAGHs» M A SAUNDERS DAAG29-79=C~0110
SOL-80-14 NL

TN Systems

Optimization
— Laboratory

BT Py
il -
e
TN Y
Y

A AGBYSH]

2
"T A\ T
W |
% ‘ ;
i \
N
Th:ﬂ A ———— l
- o P e TN —— .
: N s
10T F” e o LOioved
i PO
e Dn . s
" Lolieet
e

FILE COPY.

s Department of Operations Research
= Stanford University
&3 Stanford, CA 94305

R - e

SYSTEMS OPTIMIZATION LABORATORY
DEPARTMENT OF OPERATIONS RESEARCH
STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305

MINOS/AUGMENTED
USER’S MANUAL

by
Bruce A. Murtagh and !Mdichael A. Saunders

TECHNICAL REPORT SOL 80-14
June 1980

Research and reproduction of this report were supported by the Department of
Energy Contract DE-AC03-76SF00326, PA No. DE-AT03-7T6ER72018; National
Science Foundation Grants MCS-7926009 and ENG77-06761; the Office of Naval
Research Contract N00014-75-C-0267; and the U.S. Army Research Office Con-
tract DAAG29-79-C-0110.

Reproduction in whole or in part is permitted for any purposes of the United
States Government.

{0 H 13 00

MINOS/AUGMENTED
User’s Manual

Bruce A. Murtagh

' Department of Industrial Engineering
3 The University of New South Wales
Kensington, New South Wales, Australia 2033

Michael A. Saunders

- Systems Optimization Laboratory

¥ Department of Operations Research

4 Stanford University
Stanford, CA 94305

ABSTRACT

MINOS/AUGMENTED is a general purpose nonlinear programming system,
designed to solve large-scale optimization problems involving sparse linear and
nonlinear constraints. Any nonlinear functions appearing in the objective or the
constraints must be continuous and smooth. Users specify these functions and
their gradients using two Fortran subroutines. The remaining constraint infor-
mation is specified in standard MPS format, as for regular linear programming
models.

MINOS/AUGMENTED (alias MINOS Version 4.0) employs a projected aug-
mented Lagrangian algorithm to solve problems with nonlinear constraints. This
involves a sequence of sparse, linearly constrained subproblems, which are solved
by a reduced-gradient algorithm as implemented in the earlier version of MINOS.

This manual supplements Report SOL 77-9, the MINOS User’s Guide.

© 1980 Bruce A. Murtagh and Michael A. Saunders

CONTENTS 1
1. INTRODUCTION 1 ‘
1.1 Scopeofthe Manvwal 1
1.2 Linear Programming 1]
1.3 Nonlinear Objective 1]
1.4 Nonlinear Constraints 1 :
1.5 Additional User-supplied Information 2
1.8 Problem Formulation 2
1.7 Restrictions 3 ‘
2. NONLINEAR CONSTRAINTS 5 '
2.1 Statement of the Problem 5
2.2 Solution Technique 5
23 Choiceof)\, 6
24 Choiceof p L 6
2.5 Convergence Conditions 7
3. FUNCTIONROUTINES 8
3.1 Subroutine CALCFG 8
3.2 Subroutine CALCON 9
3.3 Reserved COMMONBlocks 12
3.4 Reserved Subroutine Names 12
4. THESPECSFILE 13
41Keywords L 14
5. THEMPSFILE e Re—— AN
5.1 The ROWS Section ;.20 ¥y 24
5.2 The COLUMNS Section [Livweed . o .o . . . 24 7
5.3 The RHS Section _ j9Justidic.iier 77 . 25 :
5.4 The RANGES Section 1 |
5.5 The BOUNDS Section LTI T L L. 26 !
5.5 Comment Cards AR e 29 ?
6. BASIS FILES S 0]
6.1 Cold Start CEpaliei. « 30 !
6.2 Warm Start | .. oL ... 30 }
T. EXAMPLES QY0 oo 8l ;
7.1 Test Problem MHW4D | L. T O | ‘-
7.2 Test Problem MANNE1O 37 :
REFERENCES 48

INDEX oo 49

§1 INTRODUCTION 1

1. INTRODUCTION

1.1 Scope of the Manual

“"“The scope of this manual is restricted to matters additional to those covered
in the MINOS User’s Guide [2]. We assume that you are either already familiar
with that manual, or at least have a copy at hand to refer to.

Y.

1.2 Linear Programming

. \ Unless nonlinearities are specified, MINOS/AUGMENTED solves the standard
linear programming problem, using a reliable implementation of the revised
simplex method. (A sparse LU factorization of the basis matrix is computed
using the “bump and spike” algorithm of Hellerman and Rarick, and this is
updated in a stable manner by the method of Bartels and Golub.)/,\

1.3 Nonlinear Objective

Similarly, unless some nonlinear constraints are specified in the SPECS file, the
system will use a reduced-gradient algorithm to solve the linearly constrained
nonlinear programming problem, as in the earlier version of MINOS [2],[3].

1.4 Nonlinear Constraints

When nonlinear constraints exist, the optimization procedure used by MINOS/
AUGMENTED is one that treats linear constraints and bounds specially, but
does not necessarily satisfy the nonlinear constraints until an optimal point is
reached. This means that functions involved in the constraints may need to be
defined outside the region of interest.

The nature of the solution process itself can be summarized as follows. A
sequence of “major iterations” is performed, each one requiring the solution of
a linearly constrained subproblem. The subproblems contain the original linear
constraints and bounds, as well as linearized versions of the nonlinear constraints.

It is safe to assume that the objective function will never be evaluated at a
point z unless that point satisfies the linear constraints and the bounds on the
variables.

Similarly, the constraint functions will almost never be evaluated unless the
linear constraints and bounds are satisfied. The principal exception to this rule
i3 the very first point zo (which may optionally be specified by the user). The
nonlinear constraint functions will be evaluated at zo regardless of feasibility.

[P

2 MINOS/AUGMENTED §1

These matters must be borne in mind during the formulation of a nonlinear
program (see below). The main point to remember is that the nonlinear con-
straints may be violated during the solution process.

1.5 Additional User-supplied Information

Most of the data for a problem is provided by means of the MPS file. This
contains linear objective and constraint data in a format that is compatible with
existing mathematical programming systems.

If the problem has a nonlinear objective function, the user provides a Fortran
subroutine, CALCFG, to compute the function and its gradient.

Similarly, if the problem has any nonlinear constraints, the user provides a
Fortran subroutine, CALCON, to compute the nonlinear terms and their gradients.

Input data is processed in the following order:

e The SPECS file

e The MPS file

e A basis file (optional)

e Data read by CALCON on its first entry
e Data read by CALCFG on its first entry
e Data read by CALCFG on its last entry
e Data read by CALCON on its last entry

This order is important if all the data is stored in the same input stream. For
large problems the MPS data will usually be in a file of its own. Three types of
basis file may be input (and output), and again, any that is used will normally
be on a file of its own.

1.6 Problem Formulation

In general, it is worthwhile expending considerable prior analysis to make your
constraints as near to linear as possible. Sometimes a simple transformation
will suffice. For example, a pipeline optimization problem has pressure drop
constraints of the form

K, K3

2 2
d§-314+d;'8“+.” < Pr—Pq

where d; are the design variables (pipe diameters) and the other terms are
constant. These constraints are highly nonlinear, but by re-defining the decision
variables to be z; = 1/d#81* we can make the constraints linear. %ven if the
objective function becomes more nonlinear by such a transformation, and this

Fe T

L N

B et

81 INTRODUCTION 3

usually happens, the advantages of having linear constraints greatly outweigh
this.

Similarly, it is important not to take nonlinearities out of the objective
function into the constraints. Thus, we would not replace

minimize f°(z)

by
minimize z subject to f°(z) —z =0.

Scaling is a very important matter during problem formulation. A general
rule is to scale both the data and the variables to be as close to 1.0 as possible.
When conflicts arise, one should again sacrifice the objective function in favor of
the constraints. Real-world problems tend to have a natural scaling within each
constraint, as long as the variables are expressed in consistent physical units.
Hence it is often sufficient to apply a scale factor to each row.

Finally, upper and lower bounds on the variables (and on the constraints)
are extremely useful in confining the region over which optimization has to be
performed. If sensible values are known, they should always be used. They are
also important for avoiding singularities in the problem functions. For safety
when such singularities exist, the initial point zo discussed above should lie
within the bounds.

1.7 Restrictions

The algorithm used in MINOS/AUGMENTED is designed to find solutions that
are locally optimal. The nonlinear functions in a problem must be smooth, and
their first derivatives must be computable. The functions need not be separable.
Integer restrictions cannot be imposed directly.

A certain region is defined by the linear constraints in a problem and by
the bounds on the variables. If the nonlinear objective and constraint functions
are convex within this region, any optimal solution obtained will be a global
optimum. Otherwise there may be several local optima, and some of these may
not be global. In such cases the chances of finding a global optimum are usually
increased by choosing a starting point that is “sufficiently close”, but there is
no general procedure for determining what “close” means, or for verifying that
a given local optimum is indeed global.

MINOS/AUGMENTED uses one large array of main memory for most of
its working storage. The length of this array may need to be adjusted to
suit a particular problem, but otherwise the implementation places no intrinsic
limitation on problem size.

Nevertheless, some a priori knowledge of a particular application should
indicate whether or not the algorithm is likely to be efficient. Suppose there

4 MINOS/AUGMENTED §1

are m general constraints and n + m variables (including m “slacks®), with
upper and lower bounds on all variables. In an optimal solution there will be
m “basic® variables and s “superbasic” variables that are strictly between their
bounds. (The remaining “nonbasic” variables will be equal to one of their
bounds.) Ideally s should be small. If it seems likely that s will be larger
than about 200, some aggregation or reformulation of the problem should be
considered.

Note that s will never be larger than the number of variables that occur
nonlinearly in the problem. More importantly, s is often very much less than
this upper bound. The question to ask is “How many variables, including slacks,
are likely to be equal to one of their bounds in the optimal solution?” Subtracting
this number from n will give the required estimate of s. (This value should
then be specified by both the SUPERBASICS LIMIT and the HESSIAN DIMENSION
keywords in the SPECS file.)

T

§2 NONLINEAR CONSTRAINTS 5

2. NONLINEAR CONSTRAINTS

2.1 Statement of the Problem

The problem to be solved must be expressed in the following standard form:

minimise f%(z) + Tz +dTy (1)
subject to f(z) + A1y = by, (2)
Azz + Aa!l = b2: (3)
lsm$m @
where
fi(z)
fy=| :
fm™(z)

and the functions f%(z) are smooth and have known gradients. The components
of z are called the nonlinear variables, and they must be the first set of unknowns.
Similarly, constraints (2) are called the nonlinear constraints and they must
appear before the linear constraints (3).

All types of inequality are allowed in the general constraints. Thus, the “="
sign in (2) and (3} may mean “<” or “>” or “free” for individual rows.

Upper and lower bounds (4) may be specified for all variables, and similar
bounds (ranges) may be defined for the general constraints.

2.2 Solution Technique

The solution process [4],[5] consists of a sequence of “major iterations.” At the
start of each major iteration, the nonlinear constraints are linearized at the
current point zx. This just means that f(z) in equation (2) is replaced by the
approximation

f(z,zx) = f(za) + J(z)(z — 22),
which we shall write as

=1+ Iz — z2). (5)

Here, J(z) is the Jacobian matrix whose ij-th element is 8 f(z)/6z;.

had 1

6 MINOS/AUGMENTED §2

The objective function is also modified, giving the following subproblem:

minimize f°(z) + Tz +dTy — N (f — N + %P(f —-HTsr—=hn ®

subject to [+ Ajy = by, M
A2z + Asy = by, (8
1< [:] <u

The objective function (6) is called an augmented Lagrangian. The vector A\, is
an estimate of the Lagrange multipliers for the nonlinear constraints, and the
term involving p is a modified quadratic penalty function.

Using (5), we can see that the linear constraints (7) and (8) take the form

G-

Since MINOS takes advantage of sparsity within the constraint matrix, it is clear
that a sparse Jacobian matrix J; can be handled efficiently.

2.3 Choice of)\,

Two choices of \; are allowed, according to the LAGRANGIAN keyword in the
SPECS file. The choice LAGRANGIAN = NO sets both Ay = 0 and p = 0, and
corresponds to simple sequential linearization of the nonlinear constraints, with
no modification to the original objective function. This choice is not usually
recommended, since convergence cannot be guaranteed in general.

The preferred option is LAGRANGIAN = YES. In this case A\ will be set to the
first m; “simplex multipliers” from the previous subproblem (except \g is zero,
or may be specified by the user). The vectors A\x should converge to the Lagrange
multipliers for the original nonlinear constraints. The final Ax will appear in the
ROWS section of the printed solution under the heading DUAL ACTIVITY.

2.4 Choice of p

When LAGRANGIAN = YES, the penalty parameter p may also be specified, and
this may be essential to obtain convergence. Some advice for setting p is given
under PENALTY PARAMETER in section 4.1. In many cases, p = 0 will give the
most rapid rate of convergence, but for highly nonlinear problems a positive
value is recommended.

§2 NONLINEAR CONSTRAINTS 7

2.5 Convergence Conditions

Broadly speaking, if z) is an optimal solution to the k-th subproblem, and if it
satisfies the nonlinear constraints sufficiently well, then z; 3 (the solution to the
next subproblem) will probably be an optimal solution to the original nonlinear
program.

More precisely, let (z;,\;) be the final solution and multiplier estimates
that result from solving the k-th subproblem. The next subproblem is defined in
terms of z; and A\, and will terminate at some point (241, A\x+1). Convergence
is assumed to have occurred if the following conditions are true:

z) is an optimal solution to its subproblem;

zj satisfies the nonlinear constraints to within a specified tolerance ¢,;

A\ is not substantially different from Mz —1;

Zy+1 is an optimal solution to its subproblem;

a basis change did not occur during solution of subproblem k - 1;

the reduced gradient did not increase significantly during solution of that
subproblem.

If all these conditions hold, (zx+1, \k+1) Will be accepted as an optimal solution
to the original problem.

The point to remember here is that z; is checked for feasibility and then the
final point zx4 1 is checked for optimality. Normally, very few minor iterations
will occur on the last subproblem (ideally none). Hence the last two subproblem
solutions zx and zx4; will be virtually identical, and therefore the tests for
feasibility and optimality will have been applied to essentially the same point.

8

MINOS/AUGMENTED §3

8. FUNCTION ROUTINES

3.1 Subroutine CALCFG

This subroutine is provided by the user to calculate the objective function f°(z)
and its gradient ¢°(z). It remains essentially the same as in the earlier version
of MINOS, but an option now exists for allowing MINOS to calculate some of

; the components of ¢°(z) by finite differences.

MODE

b 4¢.)

CALCFG is not needed if the objective function is entirely linear.

Specification:

SUBROUTINE CALCFG(MODE, N, X, F, G, NSTATE, NPROB)
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION X(N), G(N)

(The IMPLICIT statement should not be used on machines for which single-
precision floating-point is adequate; e.g. Burroughs and CDC.)

Parameters;

(Input) If DERIVATIVE LEVEL=1 or 3, the value of MODE can be ignored;
it will always be 2. You have undertaken to compute all gradient
components. (This is highly recommended.)

If DERIVATIVE LEVEL=0 or 2, there are two relevant input values, and
you must test MODE to decide what to do:

If MODE=2, compute the objective value F, and as many components
of G as you can.

If MODE=0, compute the objective value F, but do not alter any of
the components of G.

(Output) If for some reason you wish to terminate solution of the
current problem, set MODE to a negative value, e.g. -1.

(Input) The number of variables involved in f°(z). These must be the
first N variables in the problem.

(Input) An array of dimension N containing the current values of the
nonlinear variables z.

(Output) The computed value of f9(z).

§3

G(N)

NSTATE

NPROB

CALCON 9

(Output) The computed gradient vector ¢g°(z). For each relevant j,
G(7) should contain the partial derivative 8f°/8z; (except if MODE=0
— see above).

(Input) If NSTATE=0, there is nothing special about the current call to
CALCFG.

If NSTATE=1, this is the first call to CALCFG. Some data may need to be
input or computed and saved in local or COMMON storage, for use in the
present and subsequent calls to CALCFG.

If NSTATE=2, the current solution in X has been determined to be
optimal. You may wish to perform some additional computation on
this solution. (This case will not arise unless the CALL keyword is
used in the SPECS file.)

(Input) An integer that can be set by a card of the form PROBLEM
NUMBER 7 in the SPECS file.

3.2 Subroutine CALCON

This subroutine is provided by the user to compute the nonlinear constraint
functions f(z) and the corresponding Jacobian matrix J(z). Recall that the j-th
column of J(z) is defined to be df/dz;.

CALCON may be coded in two different ways, depending on the method used
for storing the Jacobian.

JACOBIAN = DENSE

Specification:

SUBROUTINE CALCON(MODE, M, N, NJAC, X, F, G, NSTATE, NPROB)
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION X(N), F(M), G(M,N)

Parameters:

MODE

(Input) Options not implemented.

(Output) If for some reason you wish to terminate solution of the
current problem, set MODE to a negative value, e.g. -1.

(Input) The number of nonlinear constraints, not counting the objective
function. These must be the first M constraints in the problem.

10 MINOS/AUGMENTED §3

N (Input) The number of variables involved in f(z). These must be the
first N variables in the problem.

NJAC (Input) The value M*N. (This may or may not be useful.)

XN (Input) An array of dimension N containing the current values of the
nonlinear variables z.

FQM) (Output) The computed value of the constraint vector f(z).

G(M,N) (Output) The computed Jacobian matrix J(z). The j-th column of
J(z) should be stored in the j-th column of the 2-dimensional array G.
Equivalently, the gradient of the ¢-th constraint should be stored in the
:-th row of G. Any constant elements that were specified in the MPS
file need not be reset here. This includes elements that are identically
zZero.

Caution: Even if an element J;; is constant (and nonzero), it still
enters into the calculation of the #-th constraint. In fact, the value
G(¢,7)*X(s) should be added to F(2).

NSTATE (Input) If NSTATE=0, there is nothing special about the current call to
CALCON.

If NSTATE=1, this is the first call to CALCON. Some data may need to be
input or computed and saved in local or COMMON storage, for use in the
present and subsequent calls to CALCON.

If NSTATE=2, the current solution in X has been determined to be

optimal. You may wish to perform some additional computation on
: this solution. (As with subroutine CALCFG, this case will not arise
1 unless the CALL keyword appears in the SPECS file.)

NPROB (Input) An integer that can be set by a card of the form PROBLEM
NUMBER n in the SPECS file.

JACOBIAN = SPARSE

Specification:

SUBROUTINE CALCON(MODE, M, N, NJAC, X, F, G, NSTATE, NPROB)
IMPLICIT REAL*8(A-H,0-2)
DIMENSION X(N), F(M), G(NJAC)

This is the same as for JACOBIAN = DENSE, except for the declaration of
i G(NJAC).

§3 CALCON 11

Parameters:

NJAC (Input) The number of nonzero elements in the Jacobian matrix J(z).
This is exactly the number of entries in the MPS file that referred to
nonhinear rows and nonlinear Jacobian columns.

Usually NJAC will be less than M*N. The actual value of NJAC may not
be of any use when coding CALCON, but in all cases, any expression
involving G(¢) should have the subscript ¢ between 1 and NJAC.

G(NJAC) (Output) The computed elements of the Jacobian matrix. These ele-
ments must be stored into G in exactly the same position as implied
by the MPS “le. There is no internal check for consistency (except in-
directly via the VERIFY CONSTRAINT GRADIENTS option), so great care
1s essential.

If any element of the Jacobian is constant, and if the correct value was
entered in the MPS3 file, the corresponding element G(:) need not be
reassigned. (However, one of the elements of F requires a term of the
form G(2)*X(s).)

The other parameters are the same as for JACOBIAN = DENSE.

3.8 Reserved COMMON Blocks

When the above subroutines are coded, certain care must be exercised to avoid
conflict with the coding of MINOS. In particular, the following labeled COMMON
blocks are used internally by MINOS:

ALCOM1 DJCCM INVCOM PARMCM
ALCOM2 EPSCOM I0COMM PRCCOM
BGCOM FILES ITNLOG PRCCM2
CGCOM FREQS ITNLG2 RGTCLS
CONVCM FXCOM LPCOM SOLNCM
CORE FXcow2 LUFILE TOLS

CYCLCM INTCOM MPSCOM WORDSZ

These COMMON blocks must not be overwritten.

In general we recommend that blank COMMON should not be overwritten
either. This is because MINOS needs one large array for workspace, and in some
installations it may be convenient to store this array in blank COMMON (e.g. to
allow core to be allocated at run-time).

Note that on some computer systems (e.g. the Burroughs B6700), local data
created by a subroutine may need to be saved in a COMMON block to ensure that
the data won’t “disappear” ou exit from the subroutine. In this case it is easy
to avoid conflict with the reserved names.

12 MINOS/AUGMENTED §3

Occasionally it may be convenient to use data that is stored in the reserved

COMMON blocks. In particular, the declaration
COMMON /I0COMM/ IREAD,IPRINT

provides access to two integer variables that define the standard Fortran reader
and printer files. When MINOS was originally compiled on your computer sys-
tem, IREAD and IPRINT will have been assigned the appropriate values (typically
5 and 6). These may be used in I/O statements if you wish; an example is given
in section 7.2.

3.4 Reserved Subroutine Names

MINOS/AUGMENTED contains the subroutines listed below. These names
must not be used for any auxiliary user routines.

ADDCOL DELCOL LOADB R1ADD
ALAUX DOT LOADN R1MOD
BTRANL DRIVER LPITN R1PROD
BTRANU DUMPN LSOUTC R1SUB
BUMPS FACTOR MINOS SAVEB
CALCFG FGMOD MKLIST SEARCH
CALCG FORMC MODLU SETJAC
CALCON FTRANL MPS SETPI
cG FTRANU MPSIN SETX

CHKDIR FUNGRD NMSRCH SOLN
CHKGRD FUNJAC PACKLU SOLPRT

CHKJAC GETGRD PRICE SPECS
CHUZQ GETPIC PRTJAC SPECS2
CHUZR GO PUNCH STATE
COMDFP HASH P3 TRNSVL
COPYA INITLZ P4 UNPACK
COPYD INSERT RESETR
COPYH INVERT RGITN
CRASH ITERQOP RTRSOL

In addition,
GETCOR

is used in the Burroughs version of MINOS, and
MATMOD MKCOL MODBND MODELM

are the subroutines defined in reference [6).

——

§4 KEYWORDS 13

4. THE SPECS FILE

The SPECS file is supplied by the user; it contains a list of keywords and values
to define various run-time parameters. The following keywords apply specifically
to problems containing nonlinear constraints:

COMPLETION PARTIAL or FULL
JACOBIAN DENSE or SPARSE
LAGRANGIAN YES or NO

MAJOR ITERATIONS

MINOR ITERATIONS

NONLINEAR CONSTRAINIS
NONLINEAR O0BJECTIVE VARIABLES
NONLINEAR JACOBIAN VARIABLES
PENALTY PARAMETER

PRINT LEVEL

RADIUS OF CONVERGENCE

RO¥W TOLERANCE

The next section describes the way these keywords should be used. Also described
are the following:

BACKUP BASIS FILE

CALL FUNCTION ROUTINES WHEN OPTIMAL
CRASH OPTION

CYCLE LIMIT

DERIVATIVE LEVEL

DIFFERENCE INTERVAL

MULTIPLE PRICE

PHANTOM COLUMNS

PIVOT TOLERANCE

PRINT SPIKE PATTERN

START and STOP gradient verification
SUPPRESS PARAMETERS

VERIFY GRADIENTS

Some of these keywords are new. The remainder were recognized by the earlier
version of MINOS but have had their meaning expanded.

Remember that the first three characters of a keyword are always significant,
and in some cases the first four characters of the next word are also significant.
For example, in the SPECS card

NONLINEAR CONSTRAINTS 100
both NON and CONS are significant.

14 MINOS/AUGMENTED §4

4.1 Keywords

BACKUP BASIS FILE k (default £ =0)

This is intended as a safeguard against losing the results of a long run.
Suppose that a NEW BASIS FILE is being saved every 100 iterations, and that
MINOS is about to save such a basis at iteration 2000. It is conceivable that
the run may time-out during the next few milliseconds (i.e. in the middle of the
save), or the host computer could unexpectedly crash. In this case the basis file
will be corrupted and the run will have been essentially wasted.

To eliminate this risk, both a NER BASIS FILE and a BACKUP BASIS FILE
may be specified. The following would be suitable for the above example:

OLD BASIS FILE 10 (or 0)
NE¥ BASIS FILE 10
BACKUP BASIS FILE 11
SAVE FREQUENCY 100

The current basis will then be saved every 100 iterations, first on file 10 and then
immediately on file 11. If the run is interrupted at iteration 2000 during the save
on file 10, there will still be a useable basis on file 11 (corresponding to iteration
1900).

Note that a NEW BASIS will be saved at the end of a run if it terminates
normally, but there is no need for a further BACKUP BASIS. In the above example,
if an optimum solution is found at iteration 2050 (or if the iteration limit is 2050),
the final basis on file 10 will correspond to iteration 2050, but the last basis saved
on file 11 will be the one for iteration 2000.

CALL FUNCTION ROUTINES WHEN OPTIMAL

This requests a final call to subroutine CALCFG and/or subroutine CALCON
(in that order) when an optimal solution is reached. This is the means by which
the parameter value NSTATE=2 is obtained. See the specification of CALCFG and
CALCON for further details.

COMPLETION PARTIAL
COMPLETION FULL (default)

This determines whether subproblems should be solved accurately (full com-
pletion), or whether each one should be terminated somewhat earlier (partial
completion). MINOS effects this by using two sets of convergence tolerances for
the subproblems.

Use of partial completion may reduce the work during early major iterations
(unless the MINOR ITERATIONS limit is active). The optimal set of basic and

§4 KEYWORDS 15

superbasic variables will probably be determined for any given subproblem, but
the reduced gradient may be larger than it would have been with full completion.

An automatic switch to full completion occurs when it appears that the
sequence of major iterations is converging. The switch is made when the con-
straint error is reduced below 100¢, (where ¢, is specified by the ROW TOLERANCE
keyword).

Full completion tends to give better Lagrange-multiplier estimates and may
lead to fewer major iterations.

CRASH OPTION k (default k =1)
If a starting basis is not specified, a triangular basis will be selected from
certain columns of the constraint matrix A, depending on the value of k.

k Meaning

0 The all-slack basis is set up.

1 All columns of A are considered.

2 Only the columns of A corresponding to the linear variables y will be
considered. Linear programming will then be used to optimize y as
much as possible, before the nonlinear variables z are altered from
their initial values. This is an important option.

3 Nonlinear objective variables will be excluded from the initial basis.

4 Nonlinear Jacobian variables will be excluded from the initial basis.

In all cases, CRASH will refrain from selecting variables that were made super-
basic by means of an FX indicator in the INITIAL bounds set.

CYCLE LIMIT !
CYCLE PRINT p
CYCLE TOLERANCE t

These keywords are documented elsewhere (Preckel [6]). They refer to a
facility for constructing and solving a sequence of related problems. Modules are
provided for modifying the constraint data internally, using information obtained
from the previous problem.

16 MINOS/AUGMENTED §4

DERIVATIVE LEVEL d (defauit d = 3)

This specifies which nonlinear function gradients are known analytically
and will be supplied to MINOS by the user subroutines CALCFG and CALCON. The
values planned for implementation are as follows.

d Meaning
3 All objective and constraint gradients are known.
2 All constraint gradients are known, but some or all of the objective

gradients are unknown.

1 All objective gradients are known, but some or all of the constraint
gradients are unknown.

(o] Some of the objective gradients are unknown and some of the constraint
gradients are unknown.

The value d = 3 should be used whenever possible. It is the most reliable and
will usually be the most efficient.

If d =2, MINOS will estimate the missing objective gradients by finite
differences. This may be convenient if most of the gradient elements are known
and are computed by subroutine CALCFG. However, a special call to CALCFG is
required for each missing element (this could be expensive), and in general the
option is not entirely reliable. If the nonlinear variables are not well scaled, it
may be necessary to specify a nonstandard DIFFERENCE INTERVAL (see below).

Note: In the present implementation, all constraint gradients must be pro-
vided by subroutine CALCON. Hence, the options d =0 and d =1 must not be
used unless the constraints are entirely linear.

DIFFERENCE INTERVAL h (default h = 2v/e)

This may be used to alter the finite-difference interval A that is used in the
following circumstances:
1. In the initial (“cheap”) phase of verifying the objective gradients.
2. For verifying the constraint gradients.
3. For estimating missing objective gradient elements.
In the last two cases, a derivative with respect to z; is estimated by perturbing
that component of z to the value z; + h(1 + |z;|), and then evaluating f(z) or
f%(z) at the perturbed point. Judicious alteration of A may sometimes lead to
greater accuracy. The machine precision, ¢, should always be borne in mind.

j Sovnre ¥ [90y, O v §

[S T Hyn ¥

A

§4 KEYWORDS 17

JACOBIAN DENSE
JACOBIAN SPARSE (default)

This determines the manner in which the constraint gradients are evaluated
and stored. It affects the MPS file and subroutine CALCON.

The DENSE option is convenient if there are not too many nonlinear con-
straints or variables. It requires storage for three dense matrices of order m; X n;.
(One of these is J; which forms part of the constraint matrix in equation (9). If
Ji is large and dense, the basis factorization may contain an unnecessarily large
“bump” and a large number of “spikes”.)

When DENSE is specified, the MPS file may contain any number of Jacobian
entries. Usually this means no entries at all, or else just ones that remain constant
for all values of the nonlinear variables.

For efficiency, the SPARSE option is preferable in all nontrivial cases. The
MPS file must then specify the position of all nonzero Jacobian elements. See
section 5.2 for details.

LAGRANGIAN YES (default)
LAGRANGIAN NO

This determines the form of the objective function used for the linearized
subproblems. The default value YES is highly recommended. The PENALTY
PARAMETER value is then also relevant.

If NO is specified, subroutine CALCON will be called only once per major
iteration. Hence this option may be useful if the nonlinear constraint functions
are very expensive to evaluate. However, in general there is a great risk that
convergence may not occur.

MAJOR ITERATIONS k (default k = 20)

This is the maximum number of major iterations allowed. It is intended to
guard against an excessive number of linearizations of the constraints, since in
some cases the sequence of major iterations may not converge.

For preliminary runs on a new problem, a fairly low MAJOR ITERATIONS
limit should be specified (e.g. 10 or 20). See the advice given under PENALTY
PARAMETER.

MINOR ITERATIONS k (default k = 40)

This is the maximum number of iterations allowed between successive linear-
izations of the nonlinear constraints, not counting infeasible iterations. A mod-
erate value (e.g. 10 < k < 50) prevents excessive effort being expended on early
major iterations, but allows later subproblems to be solved to completion.

e e e e LA G el i 8 3 A AT ANt ot i I B - Sttt

18 MINOS/AUGMENTED §4

In general it is unsafe to specify a value as small as k =1 or 2. (Even when
an optimal solution has been reached, a few minor iterations may be needed for
the corresponding subproblem to be recognized as optimal.)

Note that an independent limit on total iterations should be specified by
the ITERATIONS keyword as usual. If the problem is linearly constrained, this is
the only limit (i.e. the MINOR ITERATIONS keyword is ignored).

MULTIPLE PRICE k (default k =0)

This option should be considered whenever an initial point is not specified.
If the default value of zero is used, only one variable will be selected by each
pricing operation to become superbasic. Hence in general, if few or no values
are specified in the INITIAL bounds set, or if an OLD BASIS FILE contains very
few superbasics, MULTIPLE PRICE 10 or 20 may be beneficial (assuming the
problem is nonlinear enough to have a large number of superbasic variables at
its solution).

A full description of MULTIPLE PRICE is given in the MINOS User’s Guide.

NONLINEAR CONSTRAINTS my (default my; =0)
NONLINEAR VARIABLES ny (default n, =0)
NONLINEAR OBJECTIVE VARIABLES n (default n, =0)
NONLINEAR JACOBIAN VARIABLES n!] (default n{ =0)

These keywords define the parameters M and N in subroutines CALCFG and
CALCON. For example, M in CALCON will take the value m,, if m; > 0.

If the objective function and the constraints involve the same set of nonlinear
variables z, then NONLINEAR VARIABLES n; is the simplest way to set N to be
the same value for both subroutines. Otherwise, the NONLINEAR OBJECTIVE and
NONLINEAR JACOBIAN keywords should be used to specify n, and n/ separately.

Remember that the nonlinear constraints and variables must always be the
first ones in the problem. It is usually best to place Jacobian variables before
objective variables, so that n! < n) (unless n| = 0). This affects the way the
function subroutines should be programmed, and the order in which variables
should be placed in the COLUMNS section of the MPS file.

PENALTY PARAMETER P (default p = 100.0/m;)
This is the value of p in the modified augmented Lagrangian (equation (8)
in section 2.2). It is used only if LAGRANGIAN YES is specified.

. S

§4 KEYWORDS 19

For early runs on a problem with unknown characteristics, something like
the default value should be specified. In general, a positive value of p may be
necessary to ensure convergence, but on the other hand, if the value is too large,
the rate of convergence may be slow.

If the objective function and the constraints are known to be convex, a
zero penalty is best (specify PENALTY PARAMETER 0.0). This value may also be
satisfactory in the non-convex case, if the functions are not highly nonlinear.

In general, if several related problems are to be solved, the following strategy
for setting the PENALTY PARAMETER may be useful:

1. Initially, use a moderate value of p, such as the default, and a reasonably low
MAJOR ITERATIONS and/or (total) ITERATIONS limit.

2. If successive major iterations appear to be terminating with radically different
solutions, the penalty parameter should be increased.

3. If there appears to be little progress between major iterations, the penalty
parameter could be reduced.

PHANTOM COLUMNS ¢
PHANTOM ELEMENTS
See Preckel [6].

PIVOT TOLERANCE t (default t = V/¢)

This allows the pivot tolerance to be altered if necessary. (The tolerance
is used to prevent columns entering the basis if they would cause the basis to
become almost singular.) The default value of ¢ is the square root of the machine
precision (roughly 10—2 for double precision on IBM systems). This should be
satisfactory in most circumstances.

PRINT LEVEL p (default p =1)
This varies the amount of information that will be output to the printer file.
It is independent of the LOG FREQUENCY. Typical values are
PRINT LEVEL 1
which gives normal output for linear and nonlinear problems, and
PRINT LEVEL 11
which in addition gives the values of the nonlinear variables z, at the start of
each major iteration, for problems with nonlinear constraints.
In general, the value being specified is best thought of as a binary number
of the form
PRINT LEVEL JFLXI
where each letter stands for a digit that is either 0 or 1. The quantities referred
to are:

20 MINOS/AUGMENTED §4

I INVERT statistics, i.e. information relating to the basis matrix when-
ever it is refactorized.

X zx, the nonlinear variables involved in the objective function or the
constraints.

L A\i, the Lagrange-multiplier estimates for the nonlinear constraints.
(Suppressed if the option LAGRANGIAN NO is specified, since Ay = 0
then.)

F f(zx), the values of the nonlinear constraint functions.

J J(z}), the Jacobian matrix.

To obtain output of any item, set the corresponding digit to 1, otherwise to 0.

If J=1, the Jacobian matrix will be output column-wise at the start of each
major iteration. Column j will be preceded by the value of the corresponding
variable z; and a key to indicate whether the variable is basic, superbasic or
nonbasic. (Hence if J=1, there is no reason to specify X=1 unless the objective
contains more nonlinear variables than the Jacobian.) A typical line of output
is

3 1.250000D+01 BS 1 1.00000E+00 4 2.00000E+00

which would mean that z3 is basic at value 12.5, and the third column of the
Jacobian has elements of 1.0 and 2.0 in rows 1 and 4.

PRINT LEVEL O may be used to suppress most output, including page ejects
between major iterations. (Error messages will not be suppressed.) This print
level should be used only for production runs on well-understood models. A high
LOG FREQUENCY may also be appropriate for such cases, e.g. 100 or 1000. (For
convenience, LOG FREQUENCY O may be used as shorthand for LOG FREQUENCY
99999.)

PRINT SPIKES

This invokes an option for displaying the bump and spike structure of the
basis matrix each time it is refactorized.

RADIUS OF CONVERGENCE r (default r =0.01)

This determines when the penalty parameter p will be reset to zero (if ini-
tialized to a positive value). Both the nonlinear constraint error (see ROWERR
below) and the relative change in consecutive Lagrange multipler estimates must
be less than r at the start of a major iteration before p is set to zero. Thereafter
the sequence of major iterations should converge quadratically to an optimum.

§4 KEYWORDS 21

RO¥ TOLERANCE €y (default ¢, =1.0E-6)

This specifies how accurately you want the nonlinear constraints to be
satisfied. (Both ROW and TOLE are significant on this data card.) The default
value of 1.0E-6 is usually appropriate, since the MPS file usually contains data
to about that accuracy.

Let ROWERR be defined as the maximum component of the residual vector
f(z) + A1y — b1, normalized by the size of the solution. Thus,

ROWERR = ||f(z) + A1y — b1lloo/I(Z, ¥l oo-

The solution (z, y) is regarded as acceptably feasible if ROWERR < ,.

If some of the data in your problem is known to be of low accuracy, a larger
RO¥ TOLERANCE may be appropriate. Bear in mind, however, that non-convex
problems may need a nonzero PENALTY PARAMETER p, and that p is automatically
reset to zero if ROWERR < 100¢,).

b

START OBJECTIVE CHECK AT VARIABLE
START CONSTRAINT CHECK AT VARIABLE

bl

STOP OBJECTIVE CHECK AT VARIABLE l
STOP CONSTRAINT CHECK AT VARIABLE l

These keywords may be used to abbreviate the verification of gradient
elements computed by subroutines CALCFG and CALCON. For example:

1. It the first 100 objective gradients appeared to be correct in an earlier run,
and if you have just found a bug in CALCFG that ought to fix up the 101-th
component, then you might as well specify

START OBJECTIVE VERIFICATION AT VARIABLE 101 .
Similarly for columns of the Jacobian matrix.

2. If the first 100 variables occur nonlinearly in the constraints, and if the next
50 variables are nonlinear only in the objective, then CALCFG must set the first
100 components of G(*) to zero, but these hardly need to be verified. The above
data card would again be appropriate.

For a normai verification (at the first feasible point), these keywords are
effective only if a positive VERIFY LEVEL is specified. The default values are
k =1 and [= n,, the appropriate number of nonlinear variables.

For an emergency verification (at the end of a run in which the linesearch
procedure appears to have failed), all objective and constraint gradients will be
checked, unless a negative VERIFY LEVEL was specified. An exception is if the
“cheap” objective check proves to be satisfactory; in this case the specified k£ and
{ will be used for checking individual objective gradients.

f 22 MINOS/AUGMENTED §4

TARGET OBJECTIVE VALUE t
This option is no longer supported.

SUPPRESS PARAMETERS

Normally MINOS prints the SPECS file as it is being read, and then prints
a complete list of the available keywords and their final values. The SUPPRESS
PARAMETERS option tells MINOS not to print the full list. (Both SUP and PARA
are significant.)

VERIFY OBJECTIVE GRADIENTS
VERIFY LEVEL 1

VERIFY CONSTRAINT GRADIENTS
VERIFY LEVEL 2

] VERIFY YES
: VERIFY GRADIENTS
VERIFY LEVEL 3

VERIFY NO
VERIFY LEVEL O (default)

VERIFY LEVEL -1

The VERIFY keyword refers to a finite-difference check on the computed
gradient components in the objective function or the nonlinear constraints. The
various options should be self-explanatory. For example, the nonlinear objective
gradients (if any) will be verified if either VERIFY OBJECTIVE or VERIFY LEVEL
1 is specified. Similarly, both the objective and the constraint gradients will be
verified if VERIFY YES or VERIFY LEVEL 3 or just VERIFY is specified.

Gradients will be verified at the first point reached that satisfies the linear
constraints and the upper and lower bounds. The current linearization of the
nonlinear constraints must also be satisfied. Unfortunately, if the programmed
gradients are seriously incorrect, there may not be any point at all that satisfies
the resulting (incorrect) linearized constraints. In this case an emergency gradient
check is performed before MINOS terminates the current problem. If the non-
linear functions are not well defined at the final (infeasible) point, a fatal error
may result.

§4 KEYWORDS 23

An emergency gradient check will also occur if MINOS is about to terminate
because of a linesearch failure.

If you do not want an emergency check in either of these situations, you
should specify VERIFY LEVEL -1 .

Verification of the objective gradient occurs in two stages. An inexpensive
test on all components is first performed, using two calls to subroutine CALCFG.
A more reliable test then occurs on individual gradient components, within the
ranges specified by the START and STOP keywords. A key of the form “0K” or
“BAD” indicates whether or not each component appears to be correct.

kL i A

24 MINOS/AUGMENTED §5

§. THE MPS FILE

This file specifies most of the constraint data for a particular problem, in the so-
called MPS format common to commercial mathematical programming systems.
A commercial matrix generator may be used to construct the file, whether or
not there are any nonlinear constraints.

5.1 The ROWS Section

The names of the nonlinear constraints must be listed first in the ROWS section,
and their order must be consistent with the computation of the components of
f(z) and J(z) in subroutine CALCON.

Note that the objective function is not included in this list. If the objective
contains some linear terms (cTz + dTy in equation (1)), then ¢ and d should be
specified in an objective row, and the name of this row should appear somewhere
after the list of nonlinear row names. For simplicity we suggest that objective
rows be listed last in the ROWS section.

If the objective function is nonlinear and defined wholly by subroutine
CALCFG, there need not be any objective row in the MPS file.

5.2 The COLUMNS Section

Recall that the constraint matrix is of the form

[Jk Al]
A; Ag

where J is the Jacobian matrix. The variables associated with Jx and A, must
appear first in the COLUMNS section, and their order must be consistent with
the array X in subroutines CALCFG and CALCON.

Similarly, entries belonging to J; must appear in an order that is consistent
with their calculation in subroutine CALCON (as stored in the parameter G).

For convenience, let the first n; columns of the constraint matrix be

[Jk}_ J'xja---jm]
Az G182...0q, ’

where j; is the first column of Jx and a, is the first column of A>. The coefficients
of 71 and a; must appear before the coefficients of j; and az (and so on for all
columns). Usually, those belonging to j; will appear before any in a,, but this
is not essential. (If certain linear constraints are made nonlinear at a later date,

§5 MPS FILE 25

this means that entries in the COLUMNS section will not have to be reordered.
The corresponding row names will need be moved towards the top of the ROWS
section, but this is more easily accomplished.)

If JACOBIAN = DENSE, the elements of Jx need not Le specified in the MPS
file. If JACOBIAN = SPARSE, all nonzero elements of J, must be specified. Any
variable coefficients should be given a dummy value, such as zero. These dummy
entries will be reset by subroutine CALCON, but they serve to identify the location
of the elements.

In either case (JACOBIAN = DENSE or SPARSE), if some of the Jacobian
elements are constant, their correct values may be specified in the COLUMNS
section and then they need not be reset by subroutine CALCON. This includes
values that are identically zero — such elements do not have to be specified
anywhere (neither in the MPS file nor in CALCON). In other words, Jacobian
elements are assumed to be zero unless specified otherwise.

Note that X may not be the same length in subroutines CALCFG and CALCON
(i.e. the parameter N may differ), in the event that different numbers are specified
by the NONLINEAR OBJECTIVE and NONLINEAR JACOBIAN keywords. However the
shorter set of nonlinear variables must of course be the same as the beginning
of the longer set, and the ordering of variables in the COLUMNS section must
match both sets.

A nonlinear objective function will often involve variables that occur only
linearly in the constraints. In this case we recommend that these objective
variables be placed after the Jacobian variables in the COLUMNS section, since
this will keep the Jacobian as small as possible.

5.3 The RHS Section

The vectors by and b in (7) and (8) may be regarded as a normal right-hand-side
vector b. Only the nonzero coefficients of b need to be specified. They may
appear in any order.

The MPS file may contain several RHS vectors. A particular one may be
specified in the SPECS file. Otherwise the first RHS will be used; in this case,
if the name field is blank, the vector will be given the name RHS.

If b =0, a card with RHS in columns 1-3 must appear as usual, but no rhs
coefficients need follow. A dummy vector will be constructed, and again it will
be given the name RHS.

Speeifying \o.
The name LAGRANGE is reserved for a special RHS vector whose entries will be
used to define Lagrange-multiplier estimates for the nonlinear constraints. These

26 MINOS/AUGMENTED 85

will be used as Ao in the objective function for the first major iteration. This
facility should be used whenever possible, since the accuracy of the multiplier
estimates can often have a significant effect on the rate of convergence of the
optimization process. For any given constraint, if you happen to know that the
optimal multiplier is going to be negative (say), an entry of -1.0 will probably
be better than the default value of zero.

Entries in the LAGRANGE RHS may be interspersed with entries for the true
RHS. Any appearing in linear rows will be counted but otherwise ignored.

Note that LAGRANGE estimates will be used to define A\g even if a starting
basis is provided. (This is in contrast to entries in an INITIAL bounds set (section
5.5), which will be used only for a cold start.) It is therefore important to revise
the MPS file whenever new information comes to hand, e.g. from the solution
obtained at the end of an earlier run.

5.4 The RANGES Section

Nonlinear rows may be ranged in the same manner as linear rows. Since the
method for specifying ranges is difficult to remember, the following example will
ve useful. If the first constraint is called CON1 and is of the form

I < Y z)+aTy < uy,

one way of specifying it in the MPS file is as follows:

RO¥S
L CONi
RHS
RES1 CON1 Uy
RANGES
RNG1 CON1 ug —

Note that ranges typically make a problem easier to solve, since they confine the
solution to a smaller region. Strangely enough, they are not often used by linear
programmers even when reasonable values are known in advance. For nonlinear
programs, we recommend that range constraints be used whenever possible.

§5 MPS FILE 27

5.5 The BOUNDS Section

Again we recommend very strongly that upper and lower bounds be placed on
variables whenever sensible values are known. Even if they are not essentijal
(e.g., to avoid singularities in some of the functions fi(z)), they can only help
by reducing the size of the feasible region.

In many cases it is very easy to place meaningful bounds on all variables. For
example, if you know that all components of z and y lie in the range (—100, 100),
you should put

LOWER BOUND -100.0
UPPER BOUND 100.0

in the SPECS file. Similarly, uniform bounds of the form z; > 10—5 may be
necessary to avoid evaluating log z; at zero (say), and there will always be some
reasonable upper bound on the variables, such as z; < 1000. In this case,

LOWER BOUND 1.0E-5
UPPER BOUND 1000.0

will suffice. If some of the elements of z and y are bounded differently, suitable
values can be specified in a bounds set in the MPS file.

Specifying (zo, yo)-

The name INITIAL is reserved for a special bounds set, which may be used to
specify a starting point (zg, yo) (or some of its components) when no basis file is
available.

Remember that several bounds sets may exist in the MPS file, and if an
INITIAL bounds set exists, it must be the last.

MINOS/AUGMENTED allows both linear and nonlinear variables to be
initialized. Also, those specified with an FX indicator will become superbasic at
the specified values, whether or not the values are feasible with respect to the
upper and lower bounds. (These points relax two restrictions on page 29 of the
MINOS User’s Guide.)

The best set of variables to initialize depends, of course, on the application.
In some cases, as many nonlinear variables as possible should be initialized
(especially Jacobian variables — see below). However, this should not be at the
expense of forming a very large set of superbasic variables. Bear in mind that the
SUPERBASICS LIMIT and the HESSIAN DIMENSION should always be larger than
the number of FX indicators. Hence for very large problems, Jacobian variables
should be given first preference, followed by any “critical” nonlinear objective
variables, followed perhaps by some important linear variables.

For Jacobian variables, the values specified are particularly important be-
cause they will be used to evaluate the initial constraint functions and gradients,

o3 dnsheadi it

28 MINOS/AUGMENTED 85

regardless of feasibility. Suppose the first 5 variables XJAC1, XJAC2, ..., XJACS
are involved in the nonlinear constraints, and that their upper and lower bounds
have previously been specified to be 2 < XJACj < 25. The data cards

FX INITIAL XJAC1 10.0
LO INITIAL XJAC2 20.0
UP INITIAL XJAC3 30.0

will have an effect that can be summarized as follows: the numerical values specify
a point zp which defines the first subproblem, while the indicators determine a
starting point for solving that subproblem. (These points would be the same if
FX were used for all Jacobian variables.)

In this case:

1. zg is the point {10, 20, 30, 2, 2). This will be used in the first call to subroutine
CALCON to evaluate f(zo) and J(zo), and these quantities will be used (along with
No) to define the first subproblem (5)—(8). Note that the functions must be well
defined, even though the value for XJAC3 lies above its upper bound.

2. The FX indicator means that XJAC1 should retain its value of 10 at the
beginning of iteration 1. It will initially be superbasic at this value.

3. The LO indicator means that XJAC2 will be moved to its lower bound, 2, at
the start of the first iteration. However, it may be selected by one of the CRASH
options to become basic, and in this case its initial value is unpredictable. (If
this arbitrariness sounds troublesome, use CRASH OPTION 2, 4 or 0.)

4. The UP indicator means that XJAC3 will be moved {o its upper bound, 25, but
again it may be selected by CRASH to become basic at an unpredictable value.

5. XJAC4 and XJACS take default values as described below.

The main point about Jacobian variables is that all numerical values are
relevant, whether specified explicitly by the FX, LO and UP indicators or by
default. For other variables, only the values on FX cards are used.

If the number of FX cards has reached the SUPERBASICS LIMIT, any further
FX indicator will be treated as an UP or a LO, depending on which bound is closer
to the specified numerical value.

By default, any variables not specified in the INITIAL bounds set will be
made nonbasic at their upper or lower bounds (the smallest in absolute value),
or at gero if a variable is free. Ties are broken in favor of lower bounds.

§5 MPS FILE 29

5.6 Comment Cards

Any card in the MPS file may contain the characters “¢ ” in columns 1-4 (i.e.
an asterisk followed by three blanks), and arbitrary data in columns 5-12, 15-22
and 40-47. Such cards will be treated as comments. They will appear in the
input listing but will otherwise be ignored.

Restriction: Columns 25-36 and 50-61 should preferably be blank. If not, they
must contain valid numerical data whenever non-comment cards would do so.
(This is a limitation of portable Fortran; data cannot be read under one format
and then re-read under another.)

e b & ek e s

30 MINOS/AUGMENTED §5

8. BASIS FILES

6.1 Cold Start

If there are no basis files available, any values specified in the INITIAL bounds set
of the MPS file will be loaded (see section 5.5), the corresponding initial Jacobian
will be evaluated, and then one of the CRASH options will be used to obtain a
starting basis.

For large problems, CRASH OPTION 2 is often to be recommended. As many
variables as possible (particularly nonlinear variables) should be assigned values
by means of FX indicators in the INITIAL bounds set. They will then be held
temporarily at the specified values, and eflicient linear-programming iterations
will be used to optimize any remaining linear variables as much as possible.
There will be no calls to the nonlinear function subroutines during this phase.

If you happen to know that your problem is not particularly nonlinear (so
there will not be many superbasic variables in the optimal solution), it may be
preferable to use CRASH OPTION 1.

The remaining CRASH options have been implemented only for complete-
ness. They may be useful in special circumstances.

8.2 Warm Start

A solution may be saved on a NEW BASIS FILE as described in the User’s Guide
[2], and this may be used as an OLD BASIS FILE to start a subsequent run,
as long as the dimensions of the problem have not changed. When nonlinear
constraints are present, the list of superbasic variables at the end of a NEW BASIS
FILE is extended to include all basic nonlinear variables. (This is the set of values
J, z; on page 61 of the User’s Guide.) The final Jacobian matrix can then be
reconstructed exactly for a restart.

PUNCH and INSERT files may be used as documented in the User’s Guide.
(They already include values for basic nonlinear variables.) Similarly for DUMP
and LOAD files.

§7 EXAMPLE1 31

7. EXAMPLES

Two example problems are described here to illustrate the subroutines and data
required to specify a nonlinear program, and the corresponding output produced
by MINOS/AUGMENTED.

The first example is small, dense and highly nonlinear; it shows how the
Jacobian matrix may be handled most simply when there are very few nonlinear
constraints or variables. The second example has both linear and nonlinear
constraints, and illustrates most of the features that will be present in large-scale
applications where it is essential to treat the Jacobian as a sparse matrix.

7.1 Test Probiem MHWA4D (Wright [8], example 4, starting point D)

Statement of problem:

minimize (z1 — 1) + (21 — 22)® + (22 — 23)° + (23 — z4)* + (24 — z5)*

subject to z:+ zg + zg =3vV2+ 2,
zg—z§+z4=2\/§——2,

T1Zs = 2.

Starting point: zo =(—1,2,1,—2,—2)

Notes:

1. The subroutines below happen to include code for a second problem (Wright
(8], example 9). The parameter NPROB is used to branch to the appropriate
calculations.

2. In subroutine CALCFG, F is the value of the objective function and G contains
the corresponding 5 partial derivatives.

3. In subroutine CALCON, F is an array of constraint function values and the rows
of G contain the derivatives for each constraint. In this example the Jacobian
is best treated as a dense matrix, so G is a two-dimensional array. Note that
several elements of G are actually zero; they do not need to be explicitly set.

4. Subroutine CALCON will be called before subroutine CALCFG. The parameter
NSTATE is used to print a message on the very first entry to CALCON. This is just
a matter of good practice, since it is often convenient to compile MINOS and
the function routines into an executable code file, and it is easy to forget which
particular function routines were used.

i et St AR ALt 1. 341 13 RN 52l

32 MINOS/AUGMENTED §7

5. The SPECS file shown contains keywords that should in general be specified
for small, dense problems (i.e. ones whose default values would not be ideal).

6. The MPS file should follow the SPECS file in the normal input stream, since
it is not specified to be on any other file.

7. The COLUMNS section of the MPS file contains only the names of the vari-
ables, since they are all “nonlinear”, and because there are no linear constraints.

8. The RHS section should, if possible, include estimates of the Lagrange
multipliers. The more nonlinear a problem, the more valuable they are.

9. The BOUNDS section specifies only the initial point. (Uniform bounds on
the variables are given in the SPECS file.)

10. Since FX indicators are used for the INITIAL bounds, the SUPERBASICS
LIMIT needs to be at least 5 in this case.

11. This example has several local minima, and the performance of MINOS/
AUGMENTED is very dependent on the initial point zo. See [4] or [8] for
computational details.

"

§7

EXAMPLE 1 33

(Example 1) Computation of the objective function:

[eNeNe]

OO0

500

1

1

SUBROUTINE CALCFG(MODE,N,X,F,G,NSTATE,NPROB)
IMPLICIT REAL*8 (A~-H,0-2)

REAL#8

MHW 4

X(N),G(N)

IF (NPROB .NE. 4) GO TO 500
Tl = X(1) - 1.0
T2 = X(1) ~ X(2)

T3

TS

[}

~~

N

A
"B NN N

G(l) =
G(2) =

G(3) =
G(4) =
G(5) =
RETURN
END OF
END

= X(2) - X(3)
T4 = X(3) - X(4)
= X(4)

X(5)

T1%%2 + T2%%2 + T3%%3 + T4Ak4 + T5%%4
2.0%(T1 + T2)

-2.0%T2 + 3.0%T3*x%2

~3.0*%T3%%2 + 4.0%T4%*3

=4 Q*T4%%3 + 4, 0*T5%%3

~4.0*T5%%3

DSIN(X(5) - X(3))
DCOS (X(5) - X(3))
L10.0*X(1)*X(4) + X(1)**3 * X(2) - 6.0%X(2)*%2 * X(3)
+ 9.0*%T1 + X(2)**3 * X(4)*%2 * X(5)**4
10.0*X(4) + 3.0%X(1)**2 * X(2)
X(1)**3 =~ 12.0%X(2)*X(3)
+ 3.0%K(2)%*%2 * X(4)%%2 * X(5)**4
-6.0%X (2)%%2 —~ 9,0%*T2
10.0%X(1) + 2.0%X(2)*%*3 * X(4) * X(5)*%4
9.0%T2 + 4.0%X(2)**3 * X(4)*%%2 * X(5)%*3

CALCFG FOR MHW4ANDS

LN A

DA S

T A g (e o o

s

34 MINOS/AUGMENTED

(Example 1) Computation of the constraint functions:

OO0

500

1000

SUBROUTINE CALCON(MODE,M,N,NJAC,X,F,G,NSTATE,NPROB)
IMPLICIT

REAL*8

MHW 4

REAL*8 (A-H,0-2)
X(N),F(M),G(M,N)

IF (NSTATE .EQ. 1) WRITE(6, 1000) NPROB
IF (NPROB .NE. 4) GO TO 500

F(1)

G(1,1)
G(1,2)
G(1,3)

F(2)

G(2,2)
G(2,3)
G(2,4)

F(3)

G(3,1)
G(3,5)
RETURN

MHW 9

F(1)

G(1,1)
G(1,2)
G(1,3)
G(1,4)
G(1,5)

F(2)
G(2,1)
G(2,3)
G(2,4)
G(2,5)

F(3)

G(3,1)
G(3,2)
G(3,4)
G(3,5)
RETURN

X(1) + X(2)**2 + X(3)**3

1.0

2.0%X(2)

3.0*X(3)**2

X(2) - X(3)**%2 + X(4)
1.0

-2.0%X(3)

1.0

X(1)*X(5)

X(5)

X(1)

X(1)*%2 + X(2)*%2 + X(3)**%2 + X(4)**2 + X(5)*%*2
2.0*X(1)
2.0%*X(2)
2.0*X(3)
2.0%X(4)
2.0*X(5)

X(1)*%*2*X(3) + X(4)*X(5)
2.0*X(1)*X(3)

X(1)**2

X(5)

X(4)

X(2)**%2*X(4) + 10.0*X(1)*X(5)
10.0*X(5)
2.0%X(2)*X(4)
X (2)**2
10.0%X(1)

FORMAT (/ 36H THIS IS PROBLEM MHW4ANDY9. NPROB =, 13)
END OF CALCON FOR MHW4AND9Y
END

§7

yae—
[-

bl)

§7
(Example 1) The SPECS file and the MPS file:

BEGIN MHW 4D
MINIMIZE
ROWS 20
COLUMNS 20
ELEMENTS 50
UPPER BOUND 5.0
LOWER BOUND =5.0
NCNLINEAR CONSTRAINTS 3
NONLINEAR VARIABLES s
PROBLEM NO. 4
JACOBIAN DENSE
MAJOR ITERATIONS 15
MINOR ITERATIONS 20
PENALTY PARAMETER 10.0
PRINT LEVEL (JFLXI) 1010
SUPERBASICS 6
HESSIAN DIMENSION 6
LINESEARCH TOLERANCE G.1

VERIFY OBJECTIVE GRADIENT
VERIFY CONSTRAINT GRADIENTS

CRASH OPTION 1
ITERATIONS 100
END

NAME MEW 4D

RHS
RHS CON1 6.24263
RHS CON2 0.82842
RHS CON3 2.6
BOUNDS
FX INITIAL X1 -1
FX INITIAL X2 2
FX INITIAL X3 1
FX INITIAL X4 -2
FX INITIAL XS -2

ENDATA

EXAMFLE 1

35

A .,

e T ——

36 MINOS/AUGMENTED

(Example 1) Solution obtained by MINOS/AUGMENTED:

PROBLEM NAME MHW 4D

OBJECTIVE VALUE

STATUS OPTIMAL SOLN ITERATION 21
OBJECTIVE (MIN)

RHS RHS

RANGES

BOUNDS

SECTION 1 - ROWS

NUMBER ...ROW.. AT ...ACTIVITY...

7 CONl1 EQ 6.24263
8 CON2 EQ 0.82842
9 CON3 EQ 2.00000

SECTION 2 ~ COLUMNS

NUMBER .COLUMN. AT ...ACTIVITY...

1 XxI BS -1.27305
2 X2 SBS 2.41035
3 x3 BS 1.19486
& X4 BS -0.15424
5 X5 SBS -1.57103
A 6 RHS EQ -1.00000

SLACK ACTIVITY

ocooCQ
)
o000

«0BJ GRADIENT.

-11.91292
11.799%05
5.38957
1.55378
-11.37559
0.0

2.7871880860D+01

SUPERBASICS

- -LOWER LIMIT.

6.24263
0.82842
2.00000

+ LOWER LIMIT.

-5.00000
-5.00000
-5.00000
-5.00000
-5.00000
-1.00000

2

. +UPPER LIMIT.

6.24263
0.82842
2.00000

« .UPPER LIMIT.

5. 00000
5.00000
5.00000
5.00000
5.00000
-1.00000

«DUAL ACTIVITY

2.12527
1.55378
8.93568

«REDUCED COST.

-0.00000
-0.00000
0.00000
0.0
-0.00000
~32.42579

87

M+J

A= BRI VR

e o -

§7 EXAMPLE 2 37

7.2 Test problem MANNE10 (Manne [1), 7 = 10)

Statement of problem.

T
maximize Z Belog Cy

t=1

subject to K i’ >Ci+ Iy, 1<t<T, (nonlinear constraints)
Kiys < Ki+ It 1<t<T, (linear constraints)
gKr < Ir,

with various ranges and bounds.

The wvariables here are K, C; and I, representing capital, consumption and
investment during T time periods. This problem is described more fully in [4],
where results are given for the case T = 100.

Notes:

1. For efficiency, the Jacobian variables X; are made the first 7 components of
z, followed by the objective variables C;. Since the objective does not involve
K, subroutine CALCFG must set the first 7 components of the objective gradient
to zero. The parameter N will have the value 27. Verification of the objective
gradients may as well start at variable 7 +- 1.

2. For subroutine CALCON, N will be 7. The Jacobian matrix is particularly
simple in this example; in fact J(z) has only one nonzero element per column
(i.e. it is diagonal). The parameter NJAC will therefore be T also. It is used only
to dimension the array G.

3. NSTATE enables B, AT and BT to be initialized on the first entry to CALCON, for
subsequent use in both of the function subroutines. (Remember that the first
call to CALCON occurs before the first call to CALCFG.) The name chosen for the
labeled COMMON block holding these quantities must be different from the other
COMMON names used by MINOS, as listed in section 3.3.

4. The COMMON block IOCOMM s one of the blocks used by MINOS.

5. NSTATE is also used to produce some output on the final call to CALCON, at
the optimal solution.

6. The SPECS file uses keywords that you should become familiar with before
running large problems. Other values will be appropriate for other applications.

7. The MPS file specifies a sparse T by T Jacobian in the top left corner of
the constraint matrix. An arbitrary value of 0.1 has been used for the nonzero
variable coeflicients. A zero or blank numeric field would be equally good.

. Vr"
&

;

i
b
s
|
i

38 MINOS/AUGMENTED

(Example 2) Calculation of the objective function:

SUBROUTINE CALCFG(MODE,N,X,F,G,NSTATE,NPROB)
IMPLICIT REAL#*8 (A-H,0-2)

REAL*8 X(N),G(N)

COMMON /MANNE / B,AT(100),BT(100)

NT = N/2
F = 0.0
DO 50 J = 1, NT
XCON = X (NT+J)
F = F + BT (J)*DLOG (XCON)
G(J) = 0.0
G(NT+J) = BT (J)/XCON
50 CONTINUE
RETURN

X
F
0

C END OF CALCFG FOR MANNE
END

§7

§7

e Supti . ,__._“....M

EXAMPLE 2 39

(Example 2) Calculation of the constraint functions:

OO0

[eNe!

OO0

10

100

150

1000
2000

SUBROUTINE CALCON(MODE,M,N,NJAC,X,F,G,NSTATE,NPROB)
IMPLICIT REAL*8 (A-H,0-2)

REAL*8 X(N),F(M),G(NJAC)

COMMON /IOCOMM/ IREAD,IPRINT

COMMON /MANNE / B,AT(100),BT(100)

NT = N
IF (NSTATE .NE. 1) GO TC 100

ONE = 1.0
GROW = 0.03
BETA = 0.65
XKO = 3.0
Xco = 0.95
XIO = 0.05
B = 0.25
BPROB = NPROB

IF (NPROB .NE. 1) B = BPROB/100.0
WRITE (IPRINT, 1000) B

A = (XCO + XI0)/XK0**B
GFAC = (ONE + GROW)**(ONE ~ B)
AT(1) = A*GFAC

BT (1) = BETA
bo 10 J = 2, NT
AT(J) = AT (J-1)*GFAC
BT(J) = BT(J-1)*BETA
CONTINUE
BT(NT) = BT(NT)/(ONE - BETA)

NORMAL ENTRY
DO 150 J = 1, NT
XKAP = X(J)
FJ = AT (J)*XKAPA*B
F(J) = FJ
G(J) = B*FJ/XKAP
CONTINUE
IF (NSTATE .NE. 2) RETURN

FINAL ENTRY
WRITE (IPRINT, 2000) (F(J), J = 1, NT)
RETURN

FORMAT (// 30H THIS IS PROBLEM MANNE. B =, F8.3)
FORMAT (// 32H FINAL NONLINEAR FUNCTION VALUES / (5F12.5))
END OF CALCON FOR MANNE

END

40 MINOS/AUGMENTED §7

(Example 2) The SPECS file:

BEGIN MANNEI10
MAXIMIZE
NONLINEAR CONSTRAINTS 10
NONLINEAR JACOBIAN VARS 10
NONLINEAR OBJECTIV VARS 20

OBJECTIVE = CALCFG

PROBLEM NUMBER 1

MPS FILE 5

ROWS 100

COLUMNS 100

ELEMENTS 200

UPPER BOUND 100.0

COMPLETION FULL

JACOBIAN SPARSE

LAGRANGIAN YES !
MAJOR ITERATIONS 10 ;
MINOR ITERATIONS 20 g
PENALTY PARAMETER 0.1 '
FEASIBILITY TOL 1.0E-6

DJ TOLERANCE 1.0E-6

ROW TOLERANCE 1.0E-6

RADIUS OF CONVERGENCE .01

SUPERBASICS 10

HESSIAN DIMENSION 10

LINESEARCH TOLERANCE 0.1

VERIFY GRADIENTS

START OBJECTIVE GRADIENT CHECK AT VARIABLE 11
STOP CONSTRAINT GRADIENT CHECK AT VARIABLE 5

CRASH OPTION 1 {
ITERATIONS 100
MULTIPLE PRICE 5
PRINT LEVEL (JFLXI) 101
SOLUTION YES
CALL FUNCTION ROUTINES WHEN OPTIMAL
END MANNEIO

amth e S Ak, a7t < A ot o kiah e A et i kbt 9w MOt s MM L S

o e mae el e S P T A g 4 1 T S e o

§7 EXAMPLE 2 41
! (Example 2) The MPS file: ;
i
NAME MANNE10
ROWS
G MONOO1
G MONO0O2
G MON0O3
G MONOO4
G MONOOS
G MONOO06
G MONOO7
G MONOO8
G MON009
G MONO10
L CAP002
L CAP0O3
L CAPOO4
L CAP0OS
L CAP0O6
L CAPOO7
L CAP0OS
L CAPO009
L CAPOlO
L TERMINV
COLUMNS
KAPQO1 MONOO1 .1 CAPOO1 1.0
KAPOO1 CAP002 -1.0
KAPOD2 MONOO2 .1 CAP002 1.0
KAP0O2 CAP003 -1.0
KAPOO3 MONOO3 .1 CAP003 1.0.
KAPOO3 CAP004 -1.0
KAPOO4 MONOO4 .1 CAP004 1.0
KAPOO4 CAPO0S -1.0
KAPOO5 MONOOS5 .1 CAP0O5 1.0
KAPOOS5 CAPOO6 -1.0
KAPOO6 MONOOG6 .1 CAP006 1.0
KAPOO6 CAPOO7 -1.0
KAPOO7 MONOO7 .1 CAP0O7 1.0
KAPOO7 CAP008 -1.0
KAPOO8 MONOOS .1 CAPOO8 1.0
KAPQO8 CAP009 -1.0
KAPO09 MONOO9 .1 CAP009 1.0
KAPOO3 CAPOIO ~1.0
1 KAP010 MONO10 .1 CAP010 1.0
KAPO10O TERMINV .03
CONOO1 MONOO1 -1.0
CONOO2 MON0O2 -1.0
CONGO3 MONOO3 -1.0
CONOD4 MONOO4 -1.0
CONOO5 MONOOS -1.0
CONOO6 MONOO6 -1.0
CONOO7 MONOO7 -1.0
CONOO8 MONOOS -1.0
CONOO9 MONOO9 -1.0
CONOIO MONOIO -1.0
INVOO1 MONOO1 -1.0 CAP002 -1.0
INVO02 MON002 -1.0 CAP003 -1.0
INVOO3 MON0O3 -1.0 CAP004 -1.0
INVOO4 MONOO4 -1.0 CAP005 -1.0 ,
INVOOS MONOOS -1.0 CAP006 -1.0 :
INV006 MONOG6 ~1.0 CAP0O7 -1.0 4
INVOO7 MONOO7 -1.0 CAPOOS -1.0 {
INVOO8S MONOOS -1.0 CAP009 -1.0
INV009 MON009 -1.0 CAPO10 -1.0 4
INVOI0 MONO1O -1.0 CAPO11 -1.0 :

INVOIO TERMINV -1.0

PRI NS i e

42 MINOS/AUGMENTED

The MPS file, continued:

RHS
*
*
*

THE RHS

LAGRANGE

RANGES

RANGE!

BOUNDS

FX

BOUNDI
BOUND1
BOUND1
BOUNDI
BOUND1
BOUND1
BOUND1
BOUND1
BOUND1
BOUND1
BOUND1
BOUNDI1
BOUND]
BOUND1
BOUNDI
BOUNDI
BGUNDI
BOUNDI1
BOUND]
BOUND1
BOUNC 1
BOUND |
BOUND1
BOUNDI
BOUND]
BGUND 1
BOUNDI
BOUND]
BOUND1
BOUND]
BOUND1}
BOUNDI
BOUNDI1
INITIAL
INITIAL
INITIAL
INTTIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL

ENDATA

IS ZERO

MONOO1

MONOL O

KAPOG1
KAPOO2
KAP0OO3
KAPOO4
KAPOOS5
KAPOO6
KAPOO7
KAPOO8
KAPOOS
KAPC10
CONDG 1
CONO0Q?2
CONOO3
CONOO4
CONOGS
CONOO6
CONCO 7
CONOOS
CONCOY
CONO10
INVOO1
INVOG2
INVCO3
INVGO4
INVOOS
INVOOS
INVOOT
INVOOS
INVGOS
INVOIG
INVOOS
INVOOS
INVOLO
KAPGO2
KAPQO3
KAPOO4
KAPOOS
KAPOO6
KAPGO7
KAPOOS
KAPOO9
KAPO10

3.05
3.05
3.05
3.05
3.05
3.05
3.05
3.05
3.05
3.05
.95
.95
.95
+95
.95
«95

.95
+ 95
.95
<05
«C5
<05
<05
.05
+ 05
+05
.05
.05
«05
1i2
114

s e e »
—
o

W W W W W W
.

.
(V-2 - BRI, SRV N

MONO10

TERMINV

10.0

20.0

§7

e

PO

§7

PROBLEM SPECIFICATIONS

VERSION 4.0 MAY 1580

0000. BEGIN MANNE)Q

0COlL . MAXINIZE

0002, MONLINEAR CONSTRAINTS 10

0003. NONLINEAR JACOPIAN YARS 10

0004, NONLINEAR OBJECTIV VARS 20

0005.

€006, OBJECTIVE = CALCFC

0007. PROBLEM NUMBER |

0007,)

0007.2 MPS FILE 5

0009. ROWS 100

0010. COLUKNS 100

0011, ELEMENTS 200

0012. UPPER BOUND 100.0

0013,

00l4. COMPLETION FULL

0015. JACOBIAN SFARSE

0016, LAGRAMGIAN YES

0017, PAJOR ITERATIONS 10

0016, MINOR 1TERATIONS 26

001§. PENALTY PARAMETER 0.1

0020.

0021, FEASIBILITY TOL 1. 0E~-6

0022. DJ TOLERANCE 1.CE~6

0023. ROW TOLERARCE 1.0E-8

0024. RALIUS GF CONVERGENCE G-}

0025.

0026. SUPERBASICS 10

0027. KESS1AN DIMENSION 10

002e. LINESEARCH TOLERANCE C.1

002¢. VERIFY CRADIENTS

0025.1 START OBJECTIVE CRADIENT CHECK AT VARIABLEL 11
0029.2 STOP CONSTRAINT GRAUIENT CHECK AT VARIABLE 5
003¢.

0031. CRASH OPTION 1

0032. TTERATIONS 100

0033, MULTIPLE PRICE 5

0034. PRINT LEVEL (JFLXI) 161

0035. SOLUTION YES

0035.1 CALL FUNCTION ROUTINES WHEN OPTIMAL

0036. END MANNELQ

PARAMETERS

MPS IKPUT DATA.

RCh LIMIT. crenes 100 LIST LIMIT..

COLUMNK LINIT.. PEEREN 100 ERROR MESSAGE LInMiT.
ELEMENTS LIMIT (COEFFS) 200 PHANTOM ELEMENTS..e....
FILES.

KPS FILE (INPLT FILE).. b OLD BASIS FILE (MAP)
SOLUTION FILE. [NEW BASIS FILE (MAP)...
INSERT FILE. [BACKUP BASIS FILE......
PUNCH FILE.. [LOAD FILE.uiruuns
FREQUENCIES.

LOC ITERATIONS.... 1 CHECK ROW ERROR.......0
SAVE MEW BASIS MAP. 100 FACTORIZL (INVERT)

LP PARAMETERS.

ITERATIONS LIMIT.. 100 FEASIBILITY TOLLRANCE..
LRASH OPTION.. 1 DJ TOLERANCE.

WEIGHT OK OBJECIIVE.... (.0 PIVOT JOLERANCE........
NONLINEAR PROSLENMS.

NONLINEAR CONSTRAINTS.. 1c SUPERBASICS LIMIT......
NONLINEAR JACOBIAN VARS 10 HESSIAN DIMEKSION.
NUNLINEAR OBJECTIV VAKS 20 LINESEARCh 10D ERANCE.

PROBLEM NUMBER.........
AUGMENTEL LAGRANGIAN.

LAGRARCIAN.
PENALIY PARAMETER.

MISCRLLANEOUS .

LL ROV TOLERAMCE..
LL couf. TOLERANCE.
Lt WD TOLFRANCE..

1.00D0-03
€. 100060
G, 40000

RELUCLD=CRALIENT 101...

MAJUK TTERATIONS I IMIT.
MINGN TTERATIONS LIMIT,
COMPLITION

PHINT LEVEL..(JFLX1).u
DEBUC LEVFL..

KUMBER (F bORDS OF CUNE AVATIANLE POR WURRSFAL # +204

(Example 2) Output from MINOS/AUGMENTED:

cocoo

28

1.00D-06
1.000-06
1.45p-08

EXAMPLE 2

LOWER BOUND DEFAULT....
UPPER BOUND DEFAULT.
AlJ TOLERANCE...s...

{CARD READER)
(PRINTER)....
{SCRAICH FILE).
DUNP FILE...

CYCLE LIMIT.....
CYCLE TOIERANCE.

PARTIAL PRICE FACTOR...
MULTIPLE PRICL..

CORJUGATE-GRADRT METHOD

RADIUS OF CONVERCEMCE..
ROW TOLERANCE...0nevaos

IKBED. v v euas .
PRIKT SFIKES.... aen

O ®own

2
3
2.58L-08
1

1.000-02
1.0600-06

YES
L)

43

T .,

ik i,

44 MINOS/AUGMENTED §7

Output, continued:

INPUT LISTING

23 COLLMNS

MANMEIC

XXXX WARMNING - NO LINFAR OBJECT1IVE FUNCTIGM PULNL

XXXX KON-EXISTENT KO SPECIFILD -~ CAPLUL -~ ENTRY 1GNORFD IM LINE 24
XXXX WNON-EXISTENT ROW SPECIFIED —~ CAPCII -- ENTRY JGNORED IN LINE 63

65 RHS

66 »

67 » THE KHS IS ZERO

68 .

70 RANGES

72 BOUNDS

ns ENDATA

NAMES SELECTED

OBJECTIVE CALCFG
RHS RHS.

RANGES RANGE 1
BOUNDS BOLND!

MATRIX STATISTICS

NO. OF MATRIX ELEMENTS
NG. OF REJECTED COEFFS

(MAX) (7
[
2
P
NORMAL FREF FIXED BOUNDED
1e] 0 2
¢ 0 1 26
59 DENSITY 5.51¢

ATJTOL }.CON00E-10

0
BIGGEST AND SMALLEST COEFFS 1.00000E+00 3.00000E-02 (EXCLUDING OBJ AND RHS)

XXXX TOTAL NO. OF ERRORS DURIKG IRPUT 2

LENGTH OF ROW-NAME HASH TABLE 211
COLLISIONS DURING TABLE LOOKUP]
NO. OF JACOBIAN ENTRIES SPECIFIED 10
NO. OF LAGRANCE MULTIPLIERS SPECIFIED 2
NO. OF INITIAL BOUNDS FROCESSED 9

NO. OF SUPERBASICS SPECIFIED

§7 EXAMPLE2 45

Output, continued:

ETERATIONS
CRASH OPTION 1
FREE ROWS [FREE COLS [PASS2 (E ROWS} 0 PASS? 20 REMAINDER [
THIS 1S PROBLEM MANNE. B = 0.250
MULTIPLIER ESTIMATES
1.G000000D+00 0.0 0.0 0.0 0.0
0.¢ 0.0 0.0 0.0 1.06C0000D+01
FACTORIZE 1| CEMAND 0 ITERATION 0 INFEAS ! OBJECTY 0.0
SLACKS 0 LINEAR 10 MONLIKEAR 10 ELEMS 30 DENSITY 7.5
P4 BUMPS 0 SPIKES C CORE REQD 579 L LIMIT 1864 U LIMIT 3728
LU BUMPS 0 SPIXES © AIJELENS 20 L ELEMS 21 U ELEMS } F ELEXS 6 0.0
ITS 0 -- INFEASIBLE. KUM = 1 SUM = 9.599965429D-04
1TK PH PP NOPT DJ/RG +5BS -SBS =-BS STEP PIVOT NSPK L U NINF - SINF/OBJECTIVE NFGC NSB RIM H-CONDN CONV
1 4 0 0 0.0 © 16 30 1.1D400 -3.00-02 O 21 ! I 5.599565430-04 1 8 100.0 777
IT8 | —- FEASIBLE SOLUTION. OBJECTIVE = 2.668996414D+00
VERIFICATION OF QBJECTIVE GRADIENTS RETURNED BY SUBROUTINE CALCFG.
COMPUTED GTP VIA CALCFG 4.5730452£089D-0) £.285448803950-01
DIFFERENCE APPROXIMATION 4.573049161520-01 8.28544568426D-01
OBJECTIVE GRADIENTS SEEM TO BE ON.
J x(4) oX [{8))] DIFFERENCE APPROXN
11 .766500000-01 1.13D~05 9.72712833D-01 9.72707224D-01 0K
12 9.53940674D-01 1.14D-05 9.46075581D-01 $.46069919D-01 OK
11 §.86152356D-01 1.19D~05 £.69414305D-01 €.694050660-01 OK
16 1.01907706D400 1.23D-05 7.§9258683D-01 7.99253841D-01 ©OK
15 1.05273325D400 1.26D-05 7.35020854D-0} 7.350163E£3D-01 0K
16 1.607145720400 1.33D-05 6.76166796D-01 6.36162674D-01 OK
17 1.12233674D400 1.537D-05 6.22217209D-01 6.22213412D-01 OK
% 18 1.158326200400 1.41D-05 5.727405330-C1 5.727370410-0) OK
19 1.22847402D+00 1.47D-05 5.13034322D-01 5.13031256D-01 0K
20 1.212952050400 2.05D-06 $.66425645D+00 9.8642481E0400 OK
OBJECTIVE GRADIFNTS 11 THRU 20 SEEM TO BE OK. i
3
3
VERIFICATION OF CONSTRAINT GRADIENTS KETURNEG BY SUBRGUTINE CALCOK.
P- CoLUmN x 24 ELEMENT NO. ROW JACOBIAN VALUE DIFFERENCE APPROXN
I 3.030000190400 1.210-07 1 1 E.41516617D-02 B.41516640D-02 OK
2 3.1000003ED+00 1.220-07 2 I B.49951617D-02 £.49951616D-02 OK
3 3.199999810400 1.250-07 3 3 £.4B556901D-02 6.48556898D-02 OK
4 3.30000019D400) .28D-07 4 4 £.47785295D-02 8.47785311D-02 OK
5 3.29999962D+00 1.310-07 s 5 6.475583E6D-C2 K.47598334D-02 OK
CONSTRAINT GRADIENTS | THRU S SEEM TO BE OK.

CHOLESKY FACTOR CF HESSIAN RESET TO 1.,
0

2 4 6 0 2.%-02 [¢ 4.70=01 0.0 § 21 4 0 2.66973324D400 4 & & & 2,3D+00 TTFF
1 2 4 0 0 1.50-02 G 211 1.50-01 1.0D+00) 2 4 0 2.66982983D+00 5 722 2.30400 TIFF
4 4 0 O 9.:0-03 ¢ L] 0 1.0p40C 0.0 2 21 ? 0 2.67002887D400 6 7T 4 4 2.50400 TTIF
G TOLS REDVCED. TOLRC = 1.501D-05
-
3 4 0 0 4.5p-C) [] 0 6.50-0) ¢C.0 2 bl 7 0 2.67007306D+00 & 7 & & 3.00400 PFFF
6 & 0 0 2.60-03 7 0 0 1.0D+00 0.0 2 21 1 0 2.67005168D400 9 7 4 4 1.0D+00 FFFF
7 4 0 0 1.30-0) o] 0 1.00400 O.C 2 n 7 0 2.670100070400 1] 1T & 4 3,10400 FFFF
8 4 6 0 i,;0-03 G [O 2.2p400 0O.C 2 21 7 0 2.670103520400 12 i 4 & 3.20400 FFFF
9 4 6 O 7.30-04 n L] 0 1.60400 0.0 2 21 7 0 2.670111260+400 14 74 4 3.30400 FFFF
10 4 0 0 %605 a [] 0 1.00400 0.0 p) 21 i 0 2.¢7011231L400 15 1 & & 3.4D400 FFFF
I & 0 0 7.:5-06 o] L 1.20+00 0.C 2 H i 0 2.670112320400 [k 7 & &).5D400 TFIF
12 4 ¢ 0 4.mp-07 1] [0 1.0D400 U.LC 2 N ? 0 2.¢70112220400 e T 4 4 3.4D400 TTTT
BICGEST LJ 0.0 NORM RC o 4.3 70-07 KGRM Pl = L. 452Detn) NOWM X = 3. 9000400 1

ERD OF MAJOR ITA 1 - OPTIMAL SULN AT MINOR 1TK 12 = T(MAL ITKS » 12

48 MINOS/AUGMENTED §7

Output, continued:

START OF MAJOR ITN 2 - PENALIY PARAMLTER » 1.6on-01

RULTIPLIER ESTIMATES
1.0110493D400 5.2184685D-01 £.5895%730-01 7.S1829£20-01 7.29958500-01
6.2289923D-01 6.2024576D-~01 5.7164659D-01 5.26763310-01 9.£6425650400

ROW ERROR AFTER RELINEARIZATION = 2.3493D-U6
RELATIVL CHANGE IN MULTTPLIERS = 3.2283D-0)

FACTORIZE 2 DEMAND] ITERATION 12 INFEAS 0 OBJECTV 2,€70112318D+00

SLACKS (] LINEAR 4 NONLINEAR 1) ELEMS 33 DENSITY £.2

P4 BUMPS [SP1KES Q CORE REQD 580 L LIMIT 4196 U LIm1T 1398

LU BUMPS] SPIKES [AlJ ELEMS 3 L ELEMS 21 U ELEMS 1 F ELEMS [0.L

ITN 12 -- FEASIBLE SOLUTION. OBJECTIVE = 2.670095339D+00

ITN PR PP NOPT DJ/RG +SBS -SBS ~BS STEP PIVOT NSPK i U NINF SINF/OBJECTIVE NFC NSB RIM H-CONPN CONV
13 4 0 ¢ 2.00-05 [¢ 0 1.0D+00 0.0 0 21 1 0 2.67009598D+00 21 7 4 4 3.30400 TTPT

RC TOLS REDUCED. TOLRG = 1.493D-0%

14 4 0 0 8.70-07] [0 1.00400 0.0] 21 1 0 2.67009599D+00 22 7 4 4 3.3D+00 FFIT
BIGGEST DJ = 0.0 NORM RG = B.687D-07 NORM P1 = 1,4530401 NORM X = 3.867D+00
END OF MAJOR ITN 2 - OPTIMAL SOLN AT MINOR ITN 2 - TOTAL 1TNS » 14
f
START OF MAJOR ITN 3 - PENALTY PARAMETER = 1.00D-01

MULTIPLIER ESTIMATES
1.0106338D+00 9.3193104D-0! 8.5926408D-01 7.5216711D-01 7.3020976p-0)
6.7299356D~01 6.20151300-01 S.7134097C~01 5.2624756D-01 9.£6433030+00

)

ROW ERROR AFTER RELINEARIZATION = 5.6570D-06
RELATIVE CHANGE IR MULTIPLIERS = 1.64135D-04

PENALTY PARAMETER DECREASED TO 0.0

FACTORIZE 3 DEMAND 0 UTERATION I INFEAS [OBJECTV 2.£70095985D+00 ;
SLACKS [LINEAR 9 NOKLINEAR 11 ELEMS 33 DENSTTY 8.2

P4 BUNPS 0 SPIRES ° CORE REQD 580 L LIMIT 4663 U LINIT 932

LU BUMPS [4 SPIKES 0 AlJ ELEMS 13 L ELEMS 21 U ELEMS 1 F ELEMS ¢ 0.0

ITN)4 -~ FEASIBLE SOLUTION. OBJECTIVE = 2.670096032D400
NORM RG 1S ALREADY SMALL 9.6790+07 -=-- RETURN TO PHASE 3. NORM P) « 1.4930+401

A
: BIGGEST DJ = 0.0 NORM RGC = 9.679D-07 NORM P1 = 1.483p401 NORM X » 3.8670+00
d END OF MAJOR ITN 3 - OPTIMAL SOLN AT MINOR ITN © ~ TOTAL ITNS = 14
EXI1T -~ OPTIMAL SOLUTION FOUND.
NO. OF ITERATIONS 14 OBJECTIVE VALUE 2.67009603190770400 b
NO. OF MAJOR ITERATIONS 3 LINEAR OBJECTIVE 0.6
OBJECTIVE FUNCN AND GRADIENT CALLS 21 NONLINEAR OBJECTIVE 2. 6200960319027D+00 !
CONSTRAINT FUNCN AND GRADIENT CALLS 24 PENALTY PARAMETER 0.0 .ﬁ
NORN OF X 3, E67D40D NORM OF P 1.4930401 ‘
NO. OF SUPERBASICS 7 NORM OF REDUCED GRADIENT 9.679D-07 "
; |
FINAL NOWLINEAR FUNCTION VALUES i
1.02665 $.05620 1.0873¢ 1.11942 115233 !
l.1s612 1.22078 1.25632 1.29231 1.32994 :
1
!
|

§7

Output, continued:

PROBLEN NANE RANNE]O

STATUS OPTIMAL
OBJECTIVE CALCFG
RES [T
RANGES RANGE)
B0UNDS BOUNE !
SECTION 1 - ROWS
NUMBER ... RON., AT
32 woN0O1 178
33 HONQO2 |2 %
34 MOWOO) L1
35 WMOWOOA LL
36 MONOOS L
37 NMONOO6 Lo
38 NONOO? LL
39 MOR0OB L
40 MONOOS 1L
41 MONOIO 1L
42 CAPOO2 UL
43 CAPOO3 UL
44 CaPOOL UL
45 CAPOOS uL
46 CAPOOS UL
47 CAPOO? u
48 CAPOOS UL
49 CAPO09 uL
50 caP0lo uL
51 TERMINV UL
SECTION 2 - COLUMNS
NUMBER .COLUMK. AT
I KAPOOl EQ
2 KAP0O2 | 13
3 KAPOO3 SBS
& KAPOOL SBS
5 MAPCOS SBS
6 XAPOOS SBS
7 KAPWO) SBS
8 KAPOOS SBS
9 KAPOOY SBS
10 XAPOIO BS
11 coN0Ol LL
12 CONOOZ BS
13 CONGO3 BS
14 CONOOA BS
13 CONOO5S BS
16 CONOO6 BS
17 CONOO? BS
18 CONOOB BS
19 CONOOS 8S
20 ConOLO Bs
21 INvOOl S
22 1av002 8s
23 INV00I BS
26 INVOOS BS
23 INVOO0S [13
26 1MV006 S
21 IWV00? BS
28 INVOOE B8
29 INVO09 s
30 INVOIO0 uL
A 31 mEs £Q

OBJECTIVE VALUE

SOLN ITEKATION 14
(MAX)
+0 ACTIVITY... SLACK ACTIVITY

°9
oo

e

0DO0CO0OOO0D0O0C OO
OO0 ODC00BO0ONOOO O

oo ACTIVITY...

3.05000
3.,12665
3.214463
3.30400
3.39522
3.48788
3.58172
3.6764)
3.77158
1.86667
0.95000
0.96842
0.99780
1.02820
1.05967
1.09227
1.12608
1.16116
1.19763
1.213%
0.07665
0.08778
0.08957
0.09122
0.09266
0.09383
0.09471
0.09515
0.09508
0. 11600
-1.00000

0000000000000 DO0D 00O
OO0 000000OCONO0ORE S

«OBJ GRADIENT.

©.00000
0400000
0.00000
0.00000
0.00000
0.00000
0, 00000
0,00000
0,00000
0.00000
1.00000
0.931%3
0.85926
0.79217
0. 373021
0.67299
0.62015
0.57134
0.52625
9.66433
0.

oooco9oCc00
enooco0oo0o0R

2.6700960319D+00

SUPERBASICS

++LOWER LIMIT.

pooooooooe
[N-N-R-N-X-N-N NN

NONE
NONE
NONE
NONE
NONE
NOKE
NONE
NONE
NONE
-20. 00000

v LOWER LIMIT.

3.05000
3.05000
3.05000
3.05000
3.¢5000
3.05000
3.05000
3.05000
3.05000
3.05000
0.95000
0.95000
0.95000
0.95000
0.55000
0.95000
0.9506G0
0.95000
0.%5000
0,$5000
€. 05000
0.05000
0.05000
€. 05000
0.4:5000
0.C3000
0.05000
0.05000
0.0%000
0.65000
-1.00000

?

~-UPPER LIMIT.

BONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE

««UPPER LINIT.

3.05000
100, 00000
100, 00000
100.00000
100, 00000
100.00000
100, 00000
100, 00000
100. 00000
100.00000
100, 060000
100, 00000
100.00000
100.00000
100.00000
100. 00000
100.00000
100, 00000
100. 00000
100. 00000
100. 00000
100.00000
100. 00000
100.00000
100. 00000
£00. 00000
100, 00000

0.11200

0.11400

0. 11600

=1.00000

EXAMPLE 2

-DUAL ACTIVITY

1.01063
0.93193
0.85926
0.792117
6.373021
0.67299
0.620i5
0.57134
0.52625
9.86433
=1.01063
~0.$3153
—0.85926
~0.79217
-0.23021
-0-€7299
-0.62015
~0.57134
-0.52625
-10.73212

+REDUCED COST.

1.09568
0. 00000
0.00000
0.00000
0.00000
0.0000C
~0. 00000
-0.0000C
=0.00000
0.00000
-0.01063

ocnhoocOOOD0O00NCOOO0

D00 OCO00O0COD0000000 00
o
~
-
3

om

47

48 MINOS/AUGMENTED

REFERENCES

(1] Manne, A. S. (1979). Private communication.

[2] Murtagh, B. A. and Saunders, M. A. (1977). MINOS User’s Guide, Report
SOL 77-9, Department of Operations Research, Stanford University.

[3] Murtagh, B. A. and Saunders, M. A. (1978). Large-scale linearly constrained
optimization, Math. Prog. 14, pp. 41-72.

[4] Murtagh, B. A. and Saunders, M. A. (1980). The implementation of a
Lagrangian-based algorithm for sparse nonlinear constraints, Report SOL
80-1, Department of Operations Research, Stanford University.

[5] Robinson, S. M. (1972). A quadratically convergent algorithm for general
nonlinear programming problems, Math. Prog. 3, pp. 145-156.

(6] Preckel, P. V. (1980). Modules for use with MINOS/AUGMENTED in solv-
ing sequences of mathematical programs, Report SOL 80-15, Department
of Operations Research, Stanford University.

[7] Saunders, M. A. (1977). MINOS System Manual, Report SOL 77-31, Depart-
ment of Operations Research, Stanford University.

[8] Wright, M. H. (1976). Numerical Methods for Nonlinearly Constrained Opt-
imization, Ph. D. Thesis, Stanford University.

N N R g Yy ey e e

—— eems Sumd DB S B =

INDEX

INDEX

Accuracy for satisfying nonlinear constraints, 21
Augmented Lagrangian, definition, 6

BACKUP BASIS FILE, 14
Basis files, 14, 30
Bounds, choice of, 3
specification of default values, 27
BOUNDS section of MPS file, 27

CALCFG, subroutine specification, 8
consistency with MPS file, 24
examples, 33, 38

CALCON, subroutine specification, 9-11
consistency with MPS file, 18, 24
examples, 34, 39

CALL FUNCTIONS WHEN OPTIMAL, 14

Cold start, 30

Column ordering, implicit, 24

COLUMNS section of MPS file, 24

Comment cards in MPS file, 29

COMMON blocks, reserved, 11

COMPLETION option, 14

Convergence conditions, 7

CRASH options, 15

CYCLE options, 15

Data, input sequence, 2

Default values for SPECS file keywords, 13-23
Dense Jacobian matrix, 9, 17

DERIVATIVE LEVEL, 8, 16

DIFFERENCE INTERVAL, 16

Difference approximation to derivatives, 8, 16

Equality constraints, 5
Error checks (on computed gradients), 22-23
Example problems, 31-36, 37-47

F, parameter of CALCFG, 8

F(*), parameter of CALCON, 9-10

Feasible points, evaluation of functions at, 1
Formulation of nonlinear problems, 2

Full completion (accurate solution of subproblems), 14

49

o e

P e e e i

50 MINOS/AUGMENTED

G(*), parameter of CALCFG, 8-9
G(*), parameter of CALCON, 9-11
Global optima, 3

HESSIAN DIMENSION, 4

Inequality corstraints, 5

Infeasible problems, see §4.2 of [4]

Initial point zy, 1, 27-28

INITIAL bounds set in MPS file, 27-28
sequence of data, 2

Input to MINOS, examples of, 35, 40-42

Jacobian matrix, definition, 5
computation of, 9-11
constant coefficients, 10, 11, 25
sparsity pattern, 17, 24-25
JACOBIAN option (DENSE or SPARSE), 9-11, 17

Lagrange multipliers \g, 6

initial estimate Ao, 6, 25-26
LAGRANGE rhs vector in MPS file, 25-26
LAGRANGIAN option (YES or NO), 6, 17
Linear approximation to nonlinear constraints, 5
Linear programming, 1
Local optima, 3

Major iterations, 5
MAJOR ITERATIONS limit, 17
MINOR ITERATIONS limit, 17-18
MODE, parameter of CALCFG and CALCON, 8, 9
MPS file, 2, 24-29
examples, 35, 41-42
MULTIPLE PRICE option, 18

NJAC, parameter of CALCON, 10, 11

Nonlinear constraints, 5

Nonlinear variables, 5

NONLINEAR CONSTRAINTS and VARIABLES, 18
NPROB, parameter of CALCFG and CALCON, 9, 10
NSTATE, parameter of CALCFG and CALCON, 9, 10

Optimum solutions, local and global, 3
Ordering of constraints and variables, 5, 18, 24-25
Output from MINOS, examples, 36, 43-47

INDEX

Partial completion, 14

Penalty parameter p, 6

PENALTY PARAMETER, 18

PIVOT TOLERANCE, 19

PRINT LEVEL options, 19-20

PRINT S8PIKES option, 20

Problem forms solved by MINOS, 3-5
Problem formulation, 2-3

PROBLEM NUMBER, 9, 10

RADIUS OF CONVERGENCE, 20

Ranges on general constraints, 5, 26
RANGES section of MPS file, 26

Restarting previous runs, 30

Restrictions on problem characteristics, 3—4
RHS section of MPS file, 25

RO¥ TOLERANCE, 21

RO¥S section of MPS file, 24

Scaling of data and variables, 3
Scope of manual, 1
Sparse Jacobian matrix, 6, 10, 17
SPECS file, 2, 13

examples, 35, 40
Standard form for problems, 5
START and STOP gradient verification, 21, 23
Subproblem, definition, 6
Subroutine names, reserved, 12
Superbasic variables, 4
SUPERBASICS LIMIT, 4
Suppression of output, 19, 22
SUPPRESS PARAMETERS option, 22

TARGET OBJECTIVE VALUE, 22
Test problems, 31-36, 37-47
Transformation of variables, 2-3

VERIFY options for checking gradients, 22-23
Warm start, 30

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Bntored)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

/| A0$T 354

@ ; SOL»; 14 1./

. GOVY ACCESSION NO.

3. RECIPIENT'S CATALOG NUMBER

. |& TVTLE (and Subtitte) g
- #_______ﬂ o 3

MINOS/AUGMENTED USER'S_MANUAL .

- 1

3, TYPE OF AEROAT &

Ny

Technical)fe .
geddV)

'RIOD COVERED

6. PERFORMING ORNG. REPORT NUMBER

N AUTHOR(n)

oars A e ¥
~ rm—ar

CONTRACT OR GRANT NHMBER(®)

DAAG29-79-C-0110
N00014-75-C-p267

. PERFORMING ORGANIZATION NAME AND ADDIESS
Department of Operations Research - SOL
Stanford University
Stanford, CA 94305

7
7D ruce A] MURTAGH e Michael A/SAUNDERS | B
e
9

AREA & WORK UNIT NUMB!

AM ELEMENT. PROJECT, TASK

Department of the Navy
800 N. Quincy Street
Arlington, VA 22217

11. CONTROLLING OFFICE NAME AND ADDRESS ’ 12, REROAT-DAYTE
U.S. Army Research Office 1] - Jungwl®s()
P.0. Box 1221 13 NUMBER OF PAGES
Research Triangle Park, NC 27709 51
1S. SECURITY CLASS. (of this report)
Office of Naval Research UNCLASSIFIED

15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report) i

jts distribution is unlimited.

This document has been approved for public release and sale;

17.

DISTRIBUTION STATEMENT (of the abstract entered in Block 20, I dilferent from Report)

. SUPPLEMENTARY NOTES

19.

KEY WORDS (Continue on reverse side if necessary and identity by block number)

AUGMENTED LAGRANGIAN NONLINEAR PROGRAMMING
FORTRAN CODE OPTIMIZATION
LARGE-SCALE OPTIMIZATION PROJECTED LAGRANGIAN
NONLINEAR CONSTRAINTS SPARSE MATRIX

. ABSTRACT (Continue on reverse side if necessary and identity by block number)

SEE ATTACHED

DD , A W73

E0ITION OF | NOV 68 1S OSSOLETE (\ W &

5O is

. SECORITY CLASHIFICATION OF THIZ PAGE (When Date Entered)

SNt TR 3y

SECURITY CLASSIFICATION OF THIS PAGE(When Dela Entered)

ABSTRACT

MINOS/AUGMENTED is a general purpose nonlinear programming system,
designed to solve large-scale optimization problems involving sparse linear and
nonlinear constraints. Any nonlinear functions appearing in the objective or the
constraints must be continuous and smooth. Users specify these functions and
their gradients using two Fortran subroutices. The remaining constraint infor-
mation is specified in standard MPS format, as for regular linear programming
models.

MINOS/AUGMENTED (alias MINOS Version 4.0) employs a projected aug-
mented Lagrangian algorithm to solve problems with nonlinear constraints. This
involves a sequence of sparse, linearly constrained subproblems, which are solved
by areduced-gradient algorithm as implemented in the earlier version of MINOS.

This manual supplements Report SOL 77-9, the MINOS User’s Guide.

SECURITY CLASBIFICATION OF Tu'® PAGR(WRs: are Entered)

