
AA-A009 351 STANFORD UNIV CA SYSTEMS OPTIMIZATION LAB F61/
I ~ I UMNIMSJI TED USER'S MANUAL(U

IJM 80 8 A ATAGM. M A SAUNDERS DAAG2-79 C-0110

I UNCLASSIFIED SOL-80-4 N

U IIII/II//I/I niimuuu-mE~lEllEE
-EEIII-EI~

[Systems
Optimization

Laboratory

L

-4

C Department of Operations Research
g Stanford University
9 Stanford, CA 94305

SYSTEMS OPTIMIZATION LABORATORY
DEPARTMENT OF OPERATIONS RESEARCH

STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305

MINOS/AUGMENTED
USER'S MANUAL

by

Bruce A. Murtagh and r4ichael A. Saunders

TECHNICAL REPORT SOL 80-14
June 1980

Research and reproduction of this report were supported by the Department of
Energy Contract DE-AC03-76SF00326, PA No. DE-AT03-76ER72018; National
Science Foundation Grants MCS-7926009 and ENG77-06761; the Office of Naval
Research Contract N00014-75-C-0267; and the U.S. Army Research Office Con-
tract DAAG29-79-C-0110.

Reproduction in whole or in part is permitted for any purposes of the United
States Government.

MINOS/AUGMENTED
User's Manual

Bruce A. Murtagh

Department of Industrial Engineering
The University of New South Wales

Kensington, New South Wales, Australia 2033

Michael A. Saunders

Systems Optimization Laboratory
Department of Operations Research

Stanford University
Stanford, CA 94305

ABSTRACT

MINOS/AUGMENTED is a general purpose nonlinear programming system,
designed to solve large-scale optimization problems involving sparse linear and
nonlinear constraints. Any nonlinear functions appearing in the objective or the
constraints must be continuous and smooth. Users specify these functions and
their gradients using two Fortran subroutines. The remaining constraint infor-
mation is specified in standard MPS format, as for regular linear programming
models.

MINOS/AUGMENTED (alias MINOS Version 4.0) employs a projected aug-
mented Lagrangian algorithm to solve problems with nonlinear constraints. This
involves a sequence of sparse, linearly constrained subproblems, which are solved
by a reduced-gradient algorithm as implemented in the earlier version of MINOS.

This manual supplements Report SOL 77-9, the MINOS User's Guide.

o 1980 Bruce A. Murtagh and Michael A. Saunders

1. INTRODUCTION 1
1.1 Scope of the Manual 1
1.2 Linear Programming 1
1.3 Nonlinear Objective 1
1.4 Nonlinear Constraints. 1
1.5 Additional User-supplied Information. 2
1.6 Problem Formulation. 2
1.1 Restrictions. 3

2. NONLINEAR CONSTRAINTS 5
2.1 Statement of the Problem. 5
2.2 Solution Technique. 5
2.3 Choice of Xk 6
2.4 Choice of p. 6
2.5 Convergence Conditions. 7

3. FUNCTION ROUTINES. 8
3.1 Subroutine CALCFG 8
3.2 Subroutine CALCON. 9
3.3 Reserved COMMON Blocks. 12
3.4 Reserved Subroutine Names. 12

4. THE SPECS FILE. 13
4.1 Keywords 14

5. THE MPS FILE 24
5.1 The ROWS Section.....D . .. 2
5.2 The COLUMNS Section 24
5.3 The RHS Section25

5.4 The RANGES Section. 25
5.5 The BOUNDS Section .- 26
5.5 Comment Cards . 29

6. BASIS FILES .' 30
6.1 Cold Start.. Pipt,30

6.2 Warm Start 30

7. EXAMPLES 31
7.1L Test Problem MHW4D). 31
7.2 Test Problem MANNE20. 37

INDEX 49

§1 INTRODUCTION 1

1. INTRODUCTION

1. Scope of the Manual

he scope of this manual is restricted to matters additional to those covered
in the MINOS User's Guide [2]. We assume that you are either already familiar
with that manual, or at least have a copy at hand to refer to. \

)

1.2 Linear Programming

Unless nonlinearities are specified, MINOS/AUGMENTED solves the standard
linear programming problem, using a reliable implementation of the revised
simplex method. (A sparse LU factorization of the basis matrix is computed
using the "bump and spike" algorithm of Hellerman and Rarick, and this is
updated in a stable manner by the method of Bartels and Golub.)

1.3 Nonlinear Objective

Similarly, unless some nonlinear constraints are specified in the SPECS file, the
system will use a reduced-gradient algorithm to solve the linearly constrained
nonlinear programming problem, as in the earlier version of MINOS [2],[3].

1.4 Nonlinear Constraints

When nonlinear constraints exist, the optimization procedure used by MINOS/
AUGMENTED is one that treats linear constraints and bounds specially, but
does not necessarily satisfy the nonlinear constraints until an optimal point is
reached. This means that functions involved in the constraints may need to be
defined outside the region of interest.

The nature of the solution process itself can be summarized as follows. A
sequence of "major iterations" is performed, each one requiring the solution of
a linearly constrained subproblem. The subproblems contain the original linear
constraints and bounds, as well as linearized versions of the nonlinear constraints.

It is safe to assume that the objective function will never be evaluated at a
point z unless that point satisfies the linear constraints and the bounds on the
variables.

Similarly, the constraint functions will almost never be evaluated unless the
linear constraints and bounds are satisfied. The principal exception to this rule
is the very first point zo (which may optionally be specified by the user). The
nonlinear constraint functions will be evaluated at Zo regardless of feasibility.

2 MINOS/ AUGMENTED §

These matters must be borne in mind during the formulation of a nonlinear
program (see below). The main point to remember is that the nonlinear con-
straints may be violated during the solution process.

1.5 Additional User-supplied Information

Most of the data for a problem is provided by means of the MPS file. This
contains linear objective and constraint data in a format that is compatible with
existing mathematical programming systems.

If the problem has a nonlinear objective function, the user provides a Fortran
subroutine, CALMF, to compute the function and its gradient.

Similarly, if the problem has any nonlinear constraints, the user provides a
Fortran subroutine, CALCON, to compute the nonlinear terms and their gradients.

Input data is processed in the following order:

* The SPECS file
* The MPS file
e A basis file (optional)
a Data read by CALCON on its first entry
e Data read by CALCFG on its first entry
e Data read by CALMF on its last entry
* Data read by CALCON on its last entry

This order is important if all the data is stored in the same input stream. For
large problems the MPS data will usually be in a file of its own. Three types of
basis file may be input (and output), and again, any that is used will normally
be on a file of its own.

1.5 Problem Formulation

In general, it is worthwhile expending considerable prior analysis to make your
constraints as near to linear as possible. Sometimes a simple transformation
will suffice. For example, a pipeline optimization problem has pressure drop
constraints of the form

K1 K 2 + <p 2
_ p2

d4. 14 +4.814 -T 0

where di are the design variables (pipe diameters) and the other terms are
constant. These constraints are highly nonlinear, but by re-defining the decision
variables to be zi = 1/484we can make the constraints linear. Even if the
objective function becomes more nonlinear by such a transformation, and this

§1INTRODUCTION 3

usually happens, the advantages of having linear constraints greatly outweigh
this.

Similarly, it is important not to take nonlinearities out of the objective
function into the constraints. Thus, 'we would not replace

minimize f0 (z)

by
minimize z subject to f0 (z) - z = 0.

Scaling is a very important matter during problem formulation. A general
rule is to scale both the data and the variables to be as close to 1.0 as possible.
When conflicts arise, one should again sacrifice the objective function in favor of
the constraints. Real-world problems tend to have a natural scaling within each
constraint, as long as the variables are expressed in consistent physical units.
Hence it is often sufficient to apply a scale factor to each row.

Finally, upper and lower bounds on the variables (and on the constraints)
are extremely useful in confining the region over which optimization has to be
performed. If sensible values are known, they should always be used. They are
also important for a-voiding singularities in the problem functions. For safety
when such singularities exist, the initial point z0 discussed above should lie
within the bounds.

1.T Restrictions

The algorithm used in MINOS/AUGMENTED is designed to find solutions that
are locally optimal. The nonlinear functions in a problem must be smooth, and
their first derivatives must be computable. The functions need not be separable.
Integer restrictions cannot be imposed directly.

A certain region is defined by the linear constraints in a problem and by
the bounds on the variables. If the nonlinear objective and constraint functions
are convex within this region, any optimal solution obtained 'will be a global
optimum. Otherwise there may be several local optima, and some of these may
not be global. In such cases the chances of finding a global optimum are usually
increased by choosing a starting point that is "sufficiently close", but there is
no general procedure for determining what "close" means, or for verifying that
a given local optimum is indeed global.

MINOS/AUGMENTED uses one large array of main memory for most of
its working storage. The length of this array may need to be adjusted to
suit a particular problem, but otherwise the implementation places no intrinsic
limitation on problem size.

Nevertheless, some a priori knowledge of a particular application should
indicate whether or not the algorithm is likely to be efficient. Suppose there

4 MINOS/AUGMENTED §I

are m general constraints and n + m variables (including m "slacks'), with
upper and lower bounds on all variables. In an optimal solution there will be
m 'basic" variables and a "superbasic" variables that are strictly between their
bounds. (The remaining "nonbasic" variables will be equal to one of their
bounds.) Ideally a should be small. If it seems likely that a will be larger
than about 200, some aggregation or reformulation of the problem should be
considered.

Note that a will never be larger than the number of variables that occur
nonlinearly in the problem. More importantly, a is often very much less than
this upper bound. The question to ask is "How many variables, including slacks,
are likely to be equal to one of their bounds in the optimal solution?" Subtracting
this number from n will give the required estimate of a. (This value should
then be specified by both the SUPERBASICS LIMIT and the HESSIAN DIMENSION
keywords in the SPECS file.)

SI

<'

12 NONLINEAR CONSTRAINTS 5

2. NONLINEAR CONSTRAINTS

2.1 Statement of the Problem

The problem to be solved must be expressed in the following standard form:

minimize f°(z) + eTz + dTV (1)

subject to f(z)+AiV=b1, (2)

A2 z + AY= b2, (3)
,< [] _U, (4)

where

1(z) = •

and the functions fi(z) are smooth and have known gradients. The components
of z are called the nonlinear variables, and they must be the first set of unknowns.
Similarly, constraints (2) are called the nonlinear constraints and they must
appear before the linear constraints (3).

All types of inequality are allowed in the general constraints. Thus, the "--

sign in (2) and (3) may mean "<" or ">" or "free" for individual rows.
Upper and lower bounds (4) may be specified for all variables, and similar

bounds (ranges) may be defined for the general constraints.

2.2 Solution Technique

The solution process [41,[5] consists of a sequence of 'major iterations." At the
start of each major iteration, the nonlinear constraints are linearized at the
current point zk. This just means that f(z) in equation (2) is replaced by the
approximation

f(z, z,) = I(Zh) + J(zk)(z - X0,

which we shall write as
= + Jk(z- zh). (5)

Here, J(z) is the Jacobian matrix whose ij-th element is Ofi(z)/Ozj.

6 MINOS/AUGMENTED 52

The objective function is also modified, giving the following subproblem: 4

minimize f°(z) + cTz + d Ty- X(f -) + p(f- j)T(f- f) (6)
2

subject to 1 +Aly = bi, (7)

A2 + A3Y = b2 , (8)

The objective function (6) is called an augmented Lagrangian. The vector Xk is
an estimate of the Lagrange multipliers for the nonlinear constraints, and the
term involving p is a modified quadratic penalty function.

Using (5), we can see that the linear constraints (7) and (8) take the form

[J; A1]1[z1]= [b1 + xA-.]
[A2 AsJ [Y b2 r 9

Since MINOS takes advantage of sparsity within the constraint matrix, it is clear
that a sparse Jacobian matrix J4 can be handled efficiently.

2.3 Chice of Xk

Two choices of Xk are allowed, according to the LAGRANGIAN keyword in the
SPECS file. The choice LAGRANGIAN = NO sets both Xj = 0 and p = 0, and
corresponds to simple sequential linearization of the nonlinear constraints, with
no modification to the original objective function. This choice is not usually
recommended, since convergence cannot be guaranteed in general.

The preferred option is LAGRANGIAN = YES. In this case Xk will be set to the
first m, "simplex multipliers" from the previous subproblem (except Xc is zero,
or may be specified by the user). The vectors X1 should converge to the Lagrange
multipliers for the original nonlinear constraints. The final Xk will appear in the
ROWS section of the printed solution under the heading DUAL ACTIVITY.

2.4 Choice of p

When LAGRANGIAN = YES, the penalty parameter p may also be specified, and

this may be essential to obtain convergence. Some advice for setting p is given
under PENALTY PARAMETER in section 4.1. In many cases, p = 0 will give the
most rapid rate of convergence, but for highly nonlinear problems a positive
value is recommended.

I
12 NONLINEAR CONSTRAINTS 7

2.5 Convergence Conditions

Broadly speaking, if zk is an optimal solution to the k-th subproblem, and if it
satisfies the nonlinear constraints sufficiently well, then zh+ i (the solution to the
next subproblem) will probably be an optimal solution to the original nonlinear
program.

More precisely, let (zk,)) be the final solution and multiplier estimates
that result from solving the k-th subproblem. The next subproblem is defined in

terms of zk and X,, and will terminate at some point (z+,, XA,+i). Convergence

is assumed to have occurred if the following conditions are true:

x is an optimal solution to its subproblem;
zk satisfies the nonlinear constraints to within a specified tolerance c,;
Xk is not substantially different from Xk.-;
Zk+l is an optimal solution to its subproblem;
a basis change did not occur during solution of subproblem k + 1;
the reduced gradient did not increase significantly during solution of that
subproblem.

If all these conditions hold, (zk+1, Xk+1) will be accepted as an optimal solution
to the original problem.

The point to remember here is that zk is checked for feasibility and then the
final point Zh+l is checked for optimality. Normally, very few minor iterations

will occur on the last subproblem (ideally none). Hence the last two subproblem

solutions zx and z +1 will be virtually identical, and therefore the tests for
feasibility and optimality will have been applied to essentially the same point.

8 MINOS/AUGMENTED §3

3. FUNCTION ROUTINES

8.1 Subroutine CALCFG

This subroutine is provided by the user to calculate the objective function f°(z)
and its gradient g°(z). It remains essentially the same as in the earlier version
of MINOS, but an option now exists for allowing MINOS to calculate some of
the components of g°(z) by finite differences.

CALCFG is not needed if the objective function is entirely linear.

Specification:

SUBROUTINE CALCFG(MODE, N, X, F, G, NSTATE, NPROB)
IMPLICIT REAL*8 (A-H, O-Z)
DIMENSION X(N). G(N)

(The IMPLICIT statement should not be used on machines for which single-
precision floating-point is adequate; e.g. Burroughs and CDC.)

Parameters:

MODE (Input) If DERIVATIVE LEVEL=1 or 3, the value of MODE can be ignored;
it will always be 2. You have undertaken to compute all gradient
components. (This is highly recommended.)

If DERIVATIVE LEVEL=O or 2, there are two relevant input values, and
you must test MODE to decide what to do:

If MODE=2, compute the objective value F, and as many components
of G as you can.

If MODE=O, compute the objective value F, but do not alter any of

the components of G.

(Output) If for some reason you wish to terminate solution of the
current problem, set MODE to a negative value, e.g. -1.

N (Input) The number of variables involved in f°(z). These must be the
first N variables in the problem.

X(N) (Input) An array of dimension N containing the current values of the
nonlinear variables z.

F (Output) The computed value of f 0 (z).

F §3 CALCON 9

G(N) (Output) The computed gradient vector g°(z). For each relevant j,
G(j) should contain the partial derivative 8f0f/x (except if MODE=O
- see above).

NSTATE (Input) If NSTATE=O, there is nothing special about the current call to
CALCFG.

If NSTATE=I, this is the first call to CALCFG. Some data may need to be
input or computed and saved in local or COMMON storage, for use in the
present and subsequent calls to CALCFG.

If NSTATE=2, the current solution in X has been determined to be
optimal. You may wish to perform some additional computation on
this solution. (This case will not arise unless the CALL keyword is
used in the SPECS file.)

NPROB (Input) An integer that can be set by a card of the form PROBLEM
NUMBER n in the SPECS file.

3.2 Subroutine CALCON

This subroutine is provided by the user to compute the nonlinear constraint
functions f(z) and the corresponding Jacobian matrix J(z). Recall that the j-th
column of J(z) is defined to be 9f /0zy.

CALCON may be coded in two different ways, depending on the method used
for storing the Jacobian.

JACOBIAN = DENSE

Specification:

SUBROUTINE CALCON(MODE, M, N, NJAC, X, F, G, NSTATE, NPROB)
IMPLICIT REAL*8 (A-H, O-Z)
DIMENSION X(N), F(M), G(MN)

Parameters:

MODE (Input) Options not implemented.

(Output) If for some reason you wish to terminate solution of the
current problem, set MODE to a negative value, e.g. -1.

M (Input) The number of nonlinear constraints, not counting the objective
function. These must be the first M constraints in the problem.

10 MINOS/AUGMENTED §3

N (Input) The number of variables involved in f(z). These must be the
first N variables in the problem.

NJAC (Input) The value M*N. (This may or may not be useful.)

X(N) (Input) An array of dimension N containing the current values of the
nonlinear variables z.

F(M) (Output) The computed value of the constraint vector f(z).

G(M.N) (Output) The computed Jacobian matrix J(x). The j-th column of
J(x) should be stored in the j-th column of the 2-dimensional array G.
Equivalently, the gradient of the i-th constraint should be stored in the
i-th row of G. Any constant elements that were specified in the MPS
file need not be reset here. This includes elements that are identically
zero.

Caution: Even if an element Jij is constant (and nonzero), it still
enters into the calculation of the i-th constraint. In fact, the value
G (i , j) *X (j) should be added to F (i).

NSTATE (Input) If NSTATE=O, there is nothing special about the current call to
CALCON.

If NSTATE=i, this is the first call to CALCON. Some data may need to be
input or computed and saved in local or COMMON storage, for use in the
present and subsequent calls to CALCON.

If NSTATE=2, the current solution in X has been determined to be
optimal. You may wish to perform some additional computation on
this solution. (As with subroutine CALCFG, this case will not arise
unless the CALL keyword appears in the SPECS file.)

NPROB (Input) An integer that can be set by a card of the form PROBLEM
NUMBER n in the SPECS file.

JACOBIAN = SPARSE

Specification:

SUBROUTINE CALCON(MODE, M. N, NJAC, X, F, G, NSTATE. NPROB)
IMPLICIT REAL*8 (A-H, O-Z)
DIMENSION X(N), F(M), G(NJAC)

This is the same as for JACOBIAN = DENSE, except for the declaration of
G(NJAC).

§3 CALCON I1

Parameters:

NJAC (Input) The number of nonzero elements in the Jacobian matrix J(z).
This is exactly the number of entries in the MPS file that referred to
nonlinear rows and nonlinear Jacobian columns.

Usually NJAC will be less than M*N. The actual value of NJAC may not
be of any use when coding CALCON, but in all cases, any expression
involving G(i) should have the subscript i between 1 and NJAC.

G(NJAC) (Output) The computed elements of the Jacobian matrix. These ele-
ments must be stored into G in exactly the same position as implied
by the MPS rile. There is no internal check for consistency (except in-
directly via the VERIFY CONSTRAINT GRADIENTS option), so great care
is essential.

If any element of the Jacobian is constant, and if the correct value was
entered in the MPS file, the corresponding element G(i) need not be
reassigned. (However, one of the elements of F requires a term of the
form G(i)*X(j).)

The other parameters are the same as for JACOBIAN = DENSE.

3.3 Reserved COMMON Blocks

When the above subroutines are coded, certain care must be exercised to avoid
conflict with the coding of MINOS. In particular, the following labeled COMMON
blocks are used internally by MINOS:

ALCOM1 DJCOM INVCOM PARMCM

ALCOM2 EPSCOM IOCOMM PRCCOM

BGCO FILES ITNLOG PRCCM2
CGCOM FREQS ITNLG2 RGTCLS
CONVCM FXCOM LPCOM SOLNCM
CORE FXCOM2 LUFILE TOLS
CYCLCM INTCOM MPSCOM WORDSZ

These COMMON blocks must not be overwritten.
In general we recommend that blank COMMON should not be overwritten

either. This is because MINOS needs one large array for workspace, and in some
installations it may oe convenient to store this array in blank COMMON (e.g. to
allow core to be allocated at run-time).

Note that on some computer systems (e.g. the Burroughs B6700), local data
created by a subroutine may need to be saved in a COMMON block to ensure that
the data won't "disappear" on exit from the subroutine. In this case it is easy
to avoid conflict with the reserved names.

12 MINOS/AUGMENTED §3

Occasionally it may be convenient to use data that is stored in the reserved
COMMON blocks. In particular, the declaration

COMMON /IOCOMM/ IREADIPRINT
provides access to two integer variables that define the standard Fortran reader
and printer files. When MINOS was originally compiled on your computer sys-
tem, IREAD and IPRINT will have been assigned the appropriate values (typically
5 and 6). These may be used in I/O statements if you wish; an example is given
in section 7.2.

3.4 Reserved Subroutine Names

MINOS/AUGMENTED contains the subroutines listed below. These names
must not be used for any auxiliary user routines.

ADDCOL DELCOL LOADB R1ADD
ALAUX DOT LOADN RIMOD
BTRANL DRIVER LPITN R1PROD
BTRANU DUMPN LSOUTC RISUB
BUMPS FACTOR MINOS SAVEB
CALCFG FGMOD MKLIST SEARCH
CALCG FORMC MODLU SETJAC
CALCON FTRANL MPS SETPI
CG FTRANU MPSIN SETX
CHKDIR FUNGRD NMSRCH SOLN
CHKGRD FUNJAC PACKLU SOLPRT
CHKJAC GETGRD PRICE SPECS
CHUZQ GETPTC PRTJAC SPECS2
CHUZR GO PUNCH STATE
COMDFP HASH P3 TRNSVL
COPYA INITLZ P4 UNPACK
COPYD INSERT RESETR
COPYH INVERT RGITN
CRASH ITEROP RTRSOL

In addition,

GETCOR

is used in the Burroughs version of MINOS, and

MATMOD MKCOL MODBND MODELM

are the subroutines defined in reference [6].

§4KEYWORDS 13

4. THE SPECS FILE

The SPECS file is supplied by the user; it contains a list of key-words and values
to define various run-time parameters. The following key-words apply specifically
to problems containing nonlinear constraints:

COMPLETION PARTIAL or FULL
JACOBIAN DENSE or SPARSE
LAGRANGIAN YES or NO

MAJOR ITERATIONS
MINOR ITERATIONS

NONLINEAR CONSTRAINTS
NONLINEAR OBJECTIVE VARIABLES

NONLINEAR JACOBIAN VARIABLES

PENALTY PARAMETER
PRINT LEVEL
RADIUS OF CONVERGENCE
ROW TOLERANCE

The next section describes the way these keywords should be used. Also described
are the following:

BACKUP BASIS FILE
CALL FUNCTION ROUTINES THEN OPTIMAL
CRASH OPTION

CYCLE LIMIT

DERIVATIVE LEVEL

DIFFERENCE INTERVAL

MULTIPLE PRICE
PHANTOM COLUMNS
PIVOT TOLERANCE

PRINT SPIKE PATTERN

START and STOP gradient verification
SUPPRESS PARAMETERS
VERIFY GRADIENTS

Some of these keywords are new. The remainder were recognized by the earlier
version of MINOS but have had their meaning expanded.

Remember that the first three characters of a key-word are always significant,
and in some cases the first four characters of the next word are also significant.
For example, in the SPECS card

NONLINEAR CONSTRAINTS 100

both NON and CONS are significant.

14 MINOS/AUGMENTED §4

4.1 Keywords

BACKUP BASIS FILE k (default k = 0)
This is intended as a safeguard against losing the results of a long run.

Suppose that a NEW BASIS FILE is being saved every 100 iterations, and that
MINOS is about to save such a basis at iteration 2000. It is conceivable that
the run may time-out during the next few milliseconds (i.e. in the middle of the
save), or the host computer could unexpectedly crash. In this case the basis file
will be corrupted and the run will have been essentially wasted.

To eliminate this risk, both a NEW BASIS FILE and a BACKUP BASIS FILE
may be specified. The following would be suitable for the above example:

OLD BASIS FILE 10 (or 0)
NEW BASIS FILE 10
BACKUP BASIS FILE 11
SAVE FREQUENCY 100

The current basis will then be saved every 100 iterations, first on file 10 and then
immediately on file 11. If the run is interrupted at iteration 2000 during the save
on file 10) there will still be a useable basis on file 11 (corresponding to iteration
1900).

Note that a NEW BASIS will be saved at the end of a run if it terminates
normally, but there is no need for a further BACKUP BASIS. In the above example,
if an optimum solution is found at iteration 2050 (or if the iteration limit is 2050),
the final basis on file 10 will correspond to iteration 2050, but the last basis saved
on file 11 will be the one for iteration 2000.

CALL FUNCTION ROUTINES WHEN OPTIMAL
This requests a final call to subroutine CALCFG and/or subroutine CALCON

(in that order) when an optimal solution is reached. This is the means by which
the parameter value NSTATE=2 is obtained. See the specification of CALCFG and
CALCON for further details.

COMPLET ION PART IAL
COMPLETION FULL (default)

This determines whether subproblems should be solved accurately (full com-
pletion), or whether each one should be terminated somewhat earlier (partial
completion). MINOS effects this by using two sets of convergence tolerances for
the subproblems.

Use of partial completion may reduce the work during early major iterations
(unless the MINOR ITERATIONS limit is active). The optimal set of basic and

§4 KEYWORDS 15

superbasic variables will probably be determined for any given subproblem, but
the reduced gradient may be larger than it would have been with full completion.

An automatic switch to full completion occurs when it appears that the
sequence of major iterations is converging. The switch is made when the con-
straint error is reduced below 100c, (where c, is specified by the ROW TOLERANCE
keyword).

Full completion tends to give better Lagrange-multiplier estimates and may
lead to fewer major iterations.

CRASH OPTION k (default k = 1)
If a starting basis is not specified, a triangular basis will be selected from

certain columns of the constraint matrix A, depending on the value of k.

k Meaning

0 The all-slack basis is set up.

1 All columns of A are considered.

2 Only the columns of A corresponding to the linear variables y will be
considered. Linear programming will then be used to optimize y as
much as possible, before the nonlinear variables z are altered from
their initial values. This is an important option.

3 Nonlinear objective variables will be excluded from the initial basis.

4 Nonlinear Jacobian variables will be excluded from the initial basis.

In all cases, CRASH will refrain from selecting variables that were made super-
basic by means of an FX indicator in the INITIAL bounds set.

CYCLE LIMIT L
CYCLE PRINT p
CYCLE TOLERANCE t

These keywords are documented elsewhere (Preckel [6]). They refer to a
facility for constructing and solving a sequence of related problems. Modules are
provided for modifying the constraint data internally, using information obtained
from the previous problem.

16 MINOS/AUGMENTED §4

DERIVATIVE LEVEL d (default d = 3)
This specifies which nonlinear function gradients are known analytically

and will be supplied to MINOS by the user subroutines CALCFG and CALCON. The
values planned for implementation are as follows.

d Meaning

3 All objective and constraint gradients are known.

2 All constraint gradients are known, but some or all of the objective
gradients are unknown.

1 All objective gradients are known, but some or all of the constraint
gradients are unknown.

0 Some of the objective gradients are unknown and some of the constraint
gradients are unknown.

The value d = 3 should be used whenever possible. It is the most reliable and
will usually be the most efficient.

If d = 2, MINOS will estimate the missing objective gradients by finite
differences. This may be convenient if most of the gradient elements are known
and are computed by subroutine CALCFG. However, a special call to CALCFG is
required for each missing element (this could be expensive), and in general the
option is not entirely reliable. If the nonlinear variables are not well scaled, it
may be necessary to specify a nonstandard DIFFERENCE INTERVAL (see below).

Note: In the present implementation, all constraint gradients must be pro-
vided by subroutine CALCON. Hence, the options d = 0 and d - 1 must not be j
used unless the constraints are entirely linear.

DIFFERENCE INTERVAL A(default h = 2V/7)
This may be used to alter the finite-difference interval hthat is used in the

following circumstances:
1. In the initial ("cheap") phase of verifying the objective gradients.
2. For verifying the constraint gradients. r
3. For estimating missing objective gradient elements.
In the last two cases, a derivative with respect to zj is estimated by perturbing
that component of z to the value zj + h(1 + Iz, 1), and then evaluating f (x) or
f O(x) at the perturbed point. Judicious alteration of h may sometimes lead to
greater accuracy. The machine precision, e, should always be borne in mind.

§4KEYWORDS 17

JACOBIAN DENSE
JACOBIAN SPARSE (default)

This determines the manner in which the constraint gradients are evaluated
and stored. It affects the MPS file and subroutine CALCON.

The DENSE option is convenient if there are not too many nonlinear con-
straints or variables. It requires storage for three dense matrices of order m, X n'1.
(One of these is Jk which forms part of the constraint matrix in equation (9). If
Jk is large and dense, the basis factorization may contain an unnecessarily large
"bump" and a large number of "spikes".)

When DENSE is specified, the MPS file may contain any number of Jacobian
entries. Usually this means no entries at all, or else just ones that remain constant
for all values of the nonlinear variables.

For efficiency, the SPARSE option is preferable in all nontrivial cases. The
MPS ifie must then specify the position of all nonzero Jacobian elements. See
section 5.2 for details.

LAGRANGIAN YES (default)
LAGRANG IAN NO

This determines the form of the objective function used for the linearized
subproblems. The default value YES is highly recommended. The PENALTY
PARAMETER value is then also relevant.

If NO is specified, subroutine CALCON will be called only once per major
iteration. Hence this option may be useful if the nonlinear constraint functions
are very expensive to evaluate. However, in general there is a great risk that
convergence may not occur.

MAJOR ITERATIONS k (default kc = 20)
This is the maximum number of major iterations allowed. It is intended to

guard against an excessive number of linearizations of the constraints, since in
some cases the sequence of major iterations may not converge.

For preliminary runs on a new problem, a fairly low MAJOR ITERATIONS
limit should be specified (e.g. 10 or 20). See the advice given under PENALTY
PARAMETER.

MINOR ITERAT IONS kc (default k -40)
This is the maximum number of iterations allowed between successive linear-

izations of the nonlinear constraints, not counting infeasible iterations. A mod-
erate value (e.g. 10 < kc < 50) prevents excessive effort being expended on early
major iterations, but allows later subproblems to be solved to completion.

18 MINOS/AUGMENTED 54

In general it is unsafe to specify a value as small as k = I or 2. (Even when
an optimal solution has been reached, a few minor iterations may be needed for
the corresponding subproblem to be recognized as optimal.)

Note that an independent limit on total iterations should be specified by
the ITERATIONS keyword as usual. If the problem is linearly constrained, this is
the only limit (i.e. the MINOR ITERATIONS keyword is ignored).

MULTIPLE PRICE k (default k =0)
This option should be considered whenever an initial point is not specified.

If the default value of zero is used, only one variable will be selected by each
pricing operation to become superbasic. Hence in general, if few or no values
are specified in the INITIAL bounds set, or if an OLD BASIS FILE contains very
few superbasics, MULTIPLE PRICE 10 or 20 may be beneficial (assuming the
problem is nonlinear enough to have a large number of superbasic variables at
its solution).

A full description of MULTIPLE PRICE is given in the MINOS User's Guide.

NONLINEAR CONSTRAINTS m1 (default m1 =0)

NONLINEAR VARIABLES ni (default n =O)

NONLINEAR OBJECTIVE VARIABLES nv (default n' =0)

NONLINEAR JACOBIAN VARIABLES n! (default n" =0)
These keywords define the parameters M and N in subroutines CALCFG and

CALCON. For example, M in CALCON will take the value ml, if mi > 0.
If the objective function and the constraints involve the same set of nonlinear

variables z, then NONLINEAR VARIABLES n, is the simplest way to set N to be
the same value for both subroutines. Otherwise, the NONLINEAR OBJECTIVE and
NONLINEAR JACOBIAN keywords should be used to specify n and n1 separately.

Remember that the nonlinear constraints and variables must always be the
first ones in the problem. It is usually best to place Jacobian variables before
objective variables, so that n! _ n1 (unless n, = 0). This affects the way the
function subroutines should be programmed, and the order in which variables
should be placed in the COLUMNS section of the MPS file.

PENALTY PARAMETER p (default p = 100.0/mi)
This is the value of p in the modified augmented Lagrangian (equation (8)

in section 2.2). It is used only if LAGRANGIAN YES is specified.

14KEYWORDS i

For early runs on a problem with unknown characteristics, something like
the default value should be specified. In general, a positive value of p may be
necessary to ensure convergence, but on the other hand, if the value is too large,
the rate of convergence may be slow.

If the objective function and the constraints are known to be convex, a
zero penalty is best (specify PENALTY PARAMETER 0.0). This value may also be
satisfactory in the non-convex case, if the functions are not highly nonlinear.

In general, if several related problems are to be solved, the following strategy
for setting the PENALTY PARAMETER may be useful:
1. Initially, use a moderate value of p, such as the default, and a reasonably low
MAJOR ITERATIONS and/or (total) ITERATIONS limit.
2. If successive major iterations appear to be terminating with radically different
solutions, the penalty parameter should be increased.
3. If there appears to be little progress between major iterations, the penalty
parameter could be reduced.

PHANTOM COLUMNS c
PHANTOM ELEMENTS e

See Preckel [6].

PIVOT TOLERANCE t (default t =V')
This allows the pivot tolerance to be altered if necessary. (The tolerance

is used to prevent columns entering the basis if they would cause the basis to
become almost singular.) The default value of t is the square root of the machine
precision (roughly 10-8 for double precision on IBM systems). This should be
satisfactory in most circumstances.

PRINT LEVEL p (default p - i)
This varies the amount of information that will be output to the printer file.

It is independent of the LOG FREQUENCY. Typical values are
PRINT LEVEL 1

which gives normal output for linear and nonlinear problems, and
PRINT LEVEL 11

which in addition gives the values of the nonlinear variables zt at the start of
each major iteration, for problems with nonlinear constraints.

In general, the value being specified is best thought of as a binary number
of the form

PRINT LEVEL JFLXI
where each letter stands for a digit that is either 0 or 1. The quantities referred
to are:

20 MINOS/AUGMENTED §4

I INVERT statistics, i.e. information relating to the basis matrix when-
ever it is refactorized.

X zk, the nonlinear variables involved in the objective function or the
constraints.

L Xt, the Lagrange-multiplier estimates for the nonlinear constraints.
(Suppressed if the option LAGRANGIAN NO is specified, since Xk = 0
then.)

F f(zt), the values of the nonlinear constraint functions.

J J(zx), the Jacobian matrix.

To obtain output of any item, set the corresponding digit to 1, otherwise to 0.
If J=1, the Jacobian matrix will be output column-wise at the start of each

major iteration. Column j will be preceded by the value of the corresponding
variable zj and a key to indicate whether the variable is basic, superbasic or
nonbasic. (Hence if J=1, there is no reason to specify X=1 unless the objective
contains more nonlinear variables than the Jacobian.) A typical line of output
is

3 1.250000D+01 BS 1 1.00000E+00 4 2.00000E00

which would mean that z3 is basic at value 12.5, and the third column of the
Jacobian has elements of 1.0 and 2.0 in rows 1 and 4.

PRINT LEVEL 0 may be used to suppress most output, including page ejects
between major iterations. (Error messages will not be suppressed.) This print
level should be used only for production runs on well-understood models. A high
LOG FREQUENCY may also be appropriate for such cases, e.g. 100 or 1000. (For
convenience, LOG FREQUENCY 0 may be used as shorthand for LOG FREQUENCY
99999.)

PRINT SPIKES
This invokes an option for displaying the bump and spike structure of the

basis matrix each time it is refactorized.

RADIUS OF CONVERGENCE r (default r = 0. 01)
This determines when the penalty parameter p will be reset to zero (if ini-

tialized to a positive value). Both the nonlinear constraint error (see ROWERR
below) and the relative change in consecutive Lagrange multipler estimates must
be less than r at the start of a major iteration before p is set to zero. Thereafter
the sequence of major iterations should converge quadratically to an optimum.

I
§4 KEYWORDS 21

ROW TOLERANCE C, (default c, - 1. OE-6)
This specifies how accurately you want the nonlinear constraints to be

satisfied. (Both ROW and TOLE are significant on this data card.) The default
value of 1. OE-6 is usually appropriate, since the MPS file usually contains data
to about that accuracy.

Let ROWERR be defined as the maximum component of the residual vector
f(z) + Aly - b1, normalized by the size of the solution. Thus,

ROWERR = If(z) + Aly - billlo/l(zx, y)ll1.

The solution (z, y) is regarded as acceptably feasible if ROWERR < ,.

If some of the data in your problem is known to be of low accuracy, a larger
ROW TOLERANCE may be appropriate. Bear in mind, however, that non-convex
problems may need a nonzero PENALTY PARAMETER p, and that p is automatically
reset to zero if ROWERR < 100,).

START OBJECTIVE CHECK AT VARIABLE k
START CONSTRAINT CHECK AT VARIABLE k

STOP OBJECTIVE CHECK AT VARIABLE 1
STOP CONSTRAINT CHECK AT VARIABLE I

These keywords may be used to abbreviate the verification of gradient
elements computed by subroutines CALCFG and CALCON. For example:

1. It the first 100 objective gradients appeared to be correct in an earlier run,

and if you have just found a bug in CALCFG that ought to fix up the 101-th
component, then you might as well specify

START OBJECTIVE VERIFICATION AT VARIABLE 101
Similarly for columns of the Jacobian matrix.

2. If the first 100 variables occur nonlinearly in the constraints, and if the next
50 variables are nonlinear only in the objective, then CALCFG must set the first
100 components of G(*) to zero, but these hardly need to be verified. The above
data card would again be appropriate.

For a normal verification (at the first feasible point), these keywords are
effective only if a positive VERIFY LEVEL is specified. The default values are
k = 1 and I = ni, the appropriate number of nonlinear variables.

For an emergency verification (at the end of a run in which the linesearch

procedure appears to have failed), all objective and constraint gradients will be
checked, unless a negative VERIFY LEVEL was specified. An exception is if the
Mcheap" objective check proves to be satisfactory; in this case the specified k and
I will be used for checking individual objective gradients.

4
t ~ ..

22 MINOS/AUGMENTED 54

TARGET OBJECTIVE VALUE t
This option is no longer supported.

SUPPRESS PARAMETERS
Normally MINOS prints the SPECS file as it is being read, and then prints

a complete list of the available key-words and their final values. The SUPPRESS
PARAMETERS option tells MINOS not to print the full list. (Both SUP and PARA
are significant.)

VERIFY OBJECTIVE GRADIENTS
VERIFY LEVEL 1

VERIFY CONSTRAINT GRADIENTS
VERIFY LEVEL 2

VERIFY YES
VERIFY GRADIENTS
VERIFY LEVEL 3

VERIFY NO
VERIFY LEVEL 0 (default)

VERIFY LEVEL -1
The VERIFY key-word refers to a finite-difference check on the computed

gradient components in the objective function or the nonlinear constraints. The
various options should be self-explanatory. For example, the nonlinear objective
gradients (if any) will be verified if either VERIFY OBJECTIVE or VERIFY LEVEL
1 is specified. Similarly, both the objective and the constraint gradients 'Will be
verified if VERIFY YES or VERIFY LEVEL 3 or just VERIFY is specified.

Gradients will be verified at the first point reached that satisfies the linear
constraints and the upper and lower bounds. The current linearization of the
nonlinear constraints must also be satisfied. Unfortunately, if the programmed
gradients are seriously incorrect, there may not be any point at all that satisfies
the resulting (incorrect) linearized constraints. In this case an emergency gradient
check is performed before MINOS terminates the current problem. If the non-
linear functions are not well defined at the final (infeasible) point, a fatal error
may result.

14 KEYWORDS 23

An emergency gradient check will also occur if MINOS is about to terminate
because of a linesearch failure.

If you do not want an emergency check in either of these situations, you
should specify VERIFY LEVEL -1

Verification of the objective gradient occurs in two stages. An inexpensive
test on all components is first performed, using two calls to subroutine CALCFG.
A more reliable test then occurs on individual gradient components, within the
ranges specified by the START and STOP keywords. A key of the form "OK" or
"BAD" indicates whether or not each component appears to be correct.

Ir

24 MINOS/AUGMENTED §5

5. THE MPS FILE

This file specifies most of the constraint data for a particular problem, in the so-
called MPS format common to commercial mathematical programming systems.
A commercial matrix generator may be used to construct the file, whether or
not there are any nonlinear constraints.

5.1 The ROWS Section

The names of the nonlinear constraints must be listed first in the ROWS section,
and their order must be consistent with the computation of the components of
f (z) and J(z) in subroutine CALCON.

Note that the objective function is not included in this list. If the objective
contains some linear terms (cTz + dTy in equation (1)), then c and d should be
specified in an objective row, and the name of this row should appear somewhere
after the list of nonlinear row names. For simplicity we suggest that objective
rows be listed last in the ROWS section.

If the objective function is nonlinear and defined wholly by subroutine
CALCFG, there need not be any objective row in the MPS file.

5.2 The COLUMNS Section

Recall that the constraint matrix is of the form

where J4 is the Jacobian matrix. The variables associated with J. and A 2 must
appear first in the COLUMNS section, and their order must be consistent with
the array X in subroutines CALCFG and CALCON.

Similarly, entries belonging to Jk must appear in an order that is consistent
with their calculation in subroutine CALCON (as stored in the parameter G).

For convenience, let the first n, columns of the constraint matrix beA l 2 .jl,
A2 J L aa2 ... a,

where j, is the first column of Jt and a, is the first column of A 2 . The coefficients
of j1 and a, must appear before the coefficients of j and a2 (and so on for all
columns). Usually, those belonging to j' will appear before any in a,, but this
is not essential. (If certain linear constraints are made nonlinear at a later date,

§5 MPS FILE 25

this means that entries in the COLUMNS section will not have to be reordered.
The corresponding row names will need be moved towards the top of the ROWS
section, but this is more easily accomplished.)

If JACOBIAN = DENSE, the elements of Jk need not be specified in the MPS
file. If JACOBIAN = SPARSE, all nonzero elements of Jk must be specified. Any
variable coefficients should be given a dummy value, such as zero. These dummy
entries will be reset by subroutine CALCON, but they serve to identify the location
of the elements.

In either case (JACOBIAN = DENSE or SPARSE), if some of the Jacobian
elements are constant, their correct values may be specified in the COLUMNS
section and then they need not be reset by subroutine CALCON. This includes
values that are identically zero - such elements do not have to be specified
anywhere (neither in the MPS file nor in CALCON). In other words, Jacobian
elements are assumed to be zero unless specified otherwise.

Note that X may not be the same length in subroutines CALCFG and CALCON
(i.e. the parameter N may differ), in the event that different numbers are specified
by the NONLINEAR OBJECTIVE and NONLINEAR JACOBIAN keywords. However the
shorter set of nonlinear variables must of course bq the same as the beginning
of the longer set, and the ordering of variables in the COLUMNS section must
match both sets.

A nonlinear objective function will often involve variables that occur only
linearly in the constraints. In this case we recommend that these objective
variables be placed after the Jacobian variables in the COLUMNS section, since
this will keep the Jacobian as small as possible.

5.3 The RHS Section

The vectors b, and b2 in (7) and (8) may be regarded as a normal right-hand-side
vector b. Only the nonzero coefficients of b need to be specified. They may
appear in any order.

The MPS file may contain several RHS vectors. A particular one may be
specified in the SPECS file. Otherwise the first RHS will be used; in this case,
if the name field is blank, the vector will be given the name RHS.

If b = 0, a card with RHS in columns 1-3 must appear as usual, but no rhs
coefficients need follow. A dummy vector will be constructed, and again it will
be given the name RHS.

Speclfying Xo.
The name LAGRANGE is reserved for a special RHS vector whose entries will be
used to define Lagrange-multiplier estimates for the nonlinear constraints. These

I

26 MINOS/AUGMENTED §5

will be used as Xo in the objective function for the first major iteration. This
facility should be used whenever possible, since the accuracy of the multiplier
estimates can often have a significant effect on the rate of convergence of the
optimization process. For any given constraint, if you happen to know that the
optimal multiplier is going to be negative (say), an entry of -1.0 will probably
be better than the default value of zero.

Entries in the LAGRANGE RHS may be interspersed with entries for the true
RHS. Any appearing in linear rows will be counted but otherwise ignored.

Note that LAGRANGE estimates will be used to define X0 even if a starting
basis is provided. (This is in contrast to entries in an INITIAL bounds set (section
5.5), which will be used only for a cold start.) It is therefore important to revise
the MPS file whenever new information comes to hand, e.g. from the solution
obtained at the end of an earlier run.

5.4 The RANGES Section

Nonlinear rows may be ranged in the same manner as linear rows. Since the
method for specifying ranges is difficult to remember, the following example will
be useful. If the first constraint is called CONI and is of the form

11 < fl(x) + aTy : Ul,

one way of specifying it in the MPS file is as follows:

ROWS
L CONI

RHS
RHS1 CONI U1

RANGES
RNG1 CONI ul - 11

Note that ranges typically make a problem easier to solve, since they confine the
solution to a smaller region. Strangely enough, they are not often used by linear
programmers even when reasonable values are known in advance. For nonlinear
programs, we recommend that range constraints be used whenever possible.

15 MPS FILE 27

5.5 The BOUNDS Section

Again we recommend very strongly that upper and lower bounds be placed on
variables whenever sensible values are known. Even if they are not essential
(e.g., to avoid singularities in some of the functions fi(z)), they can only help
by reducing the size of the feasible region.

In many cases it is very easy to place meaningful bounds on all variables. For
example, if you know that all components of z and y lie in the range (-100, 100),
you should put

LOWER BOUND -100.0
UPPER BOUND 100.0

in the SPECS file. Similarly, uniform bounds of the form zj _! i0 - 5 may be
necessary to avoid evaluating log xy at zero (say), and there will always be some
reasonable upper bound on the variables, such as zj !5 1000. In this case,

LOWER BOUND i.OE-5
UPPER BOUND 1000.0

will suffice. If some of the elements of z and y are bounded differently, suitable
values can be specified in a bounds set in the MPS file.

Specifying (z 0 , Yo).
The name INITIAL is reserved for a special bounds set, which may be used to
specify a starting point (zo, yo) (or some of its components) when no basis file is
available.

Remember that several bounds sets may exist in the MPS file, and if an
INITIAL bounds set exists, it must be the last.

MINOS/AUGMENTED allows both linear and nonlinear variables to be
initialized. Also, those specified with an FX indicator will become superbasic at
the specified values, whether or not the values are feasible with respect to the
upper and lower bounds. (These points relax two restrictions on page 29 of the
MINOS User's Guide.)

The best set of variables to initialize depends, of course, on the application.
In some cases, as many nonlinear variables as possible should be initialized
(especially Jacobian variables - see below). However, this should not be at the
expense of forming a very large set of superbasic variables. Bear in mind that the
SUPERBASICS LIMIT and the HESSIAN DIMENSION should always be larger than
the number of FX indicators. Hence for very large problems, Jacobian variables
should be given first preference, followed by any "critical" nonlinear objective
variables, followed perhaps by some important linear variables.

For Jacobian variables, the values specified are particularly important be-
cause they will be used to evaluate the initial constraint functions and gradients,

28 MINOS/AUGMENTED §5

regardless of feasibility. Suppose the first 5 variables XJAC1, XJAC2, ... , XJAC5
are involved in the nonlinear constraints, and that their upper and lower bounds
have previously been specified to be 2 < XJACj _ 25. The data cards

FX INITIAL XJAC1 10.0

La INITIAL XJAC2 20.0

UP INITIAL XJAC3 30.0

will have an effect that can be summarized as follows: the numerical values specify
a point z0 which defines the first subproblem, while the indicators determine a
starting point for solving that subproblem. (These points would be the same if
FX were used for all Jacobian variables.)

In this case:

1. zo is the point (10, 20,30, 2, 2). This will be used in the first call to subroutine
CALCON to evaluate f(zo) and J(zo), and these quantities will be used (along with
X0) to define the first subproblem (5)-(8). Note that the functions must be well
defined, even though the value for XJAC3 lies above its upper bound.

2. The FX indicator means that XJAC1 should retain its value of 10 at the
beginning of iteration 1. It will initially be superbasic at this value.

3. The LO indicator means that XJAC2 will be moved to its lower bound, 2, at
the start of the first iteration. However, it may be selected by one of the CRASH
options to become basic, and in this case its initial value is unpredictable. (If
this arbitrariness sounds troublesome, use CRASH OPTION 2, 4 or 0.)

4. The UP indicator means that XJAC3 will be moved to its upper bound, 25, but
again it may be selected by CRASH to become basic at an unpredictable value.

5. XJAC4 and XJAC5 take default values as described below.

The main point about Jacobian variables is that all numerical values are
relevant, whether specified explicitly by the FX, LO and UP indicators or by
default. For other variables, only the values on FX cards are used.

If the number of FX cards has reached the SUPERBASICS LIMIT, any further
FX indicator will be treated as an UP or a LO, depending on which bound is closer
to the specified numerical value.

By default, any variables not specified in the INITIAL bounds set will be
made nonbasic at their upper or lower bounds (the smallest in absolute value),
or at zero if a variable is free. Ties are broken in favor of lower bounds.

I

MPS FILE 29

5.6 Comment Cards

Any card in the MPS file may contain the characters '* in columns 1-4 (i.e.
an asterisk followed by three blanks), and arbitrary data in columns 5-12, 15-22
and 40-47. Such cards will be treated as comments. They will appear in the
input listing but will otherwise be ignored.
Restriction: Columns 25-36 and 50-61 should preferably be blank. If not, they
must contain valid numerical data whenever non-comment cards would do so.
(This is a limitation of portable Fortran; data cannot be read under one format
and then re-read under another.)

30 MINOS/AUGMENTED §5

6. BASIS FILES

6.1 Cold Start

If there are no basis files available, any values specified in the INITIAL bounds set
of the MPS file will be loaded (see section 5.5), the corresponding initial Jacobian
will be evaluated, and then one of the CRASH options will be used to obtain a
starting basis.

For large problems, CRASH OPTION 2 is often to be recommended. As many
variables as possible (particularly nonlinear variables) should be assigned values
by means of FX indicators in the INITIAL bounds set. They will then be held
temporarily at the specified values, and efficient linear-programming iterations
will be used to optimize any remaining linear variables as much as possible.
There will be no calls to the nonlinear function subroutines during this phase.

If you happen to know that your problem is not particularly nonlinear (so
there will not be many superbasic variables in the optimal solution), it may be
preferable to use CRASH OPTION i.

The remaining CRASH options have been implemented only for complete-
ness. They may be useful in special circumstances.

6.2 Warm Start

A solution may be saved on a NEW BASIS FILE as described in the User's Guide
[2], and this may be used as an OLD BASIS FILE to start a subsequent run,
as long as te dimensions of the problem have not changed. When nonlinear il
constraints are present, the list of superbasic variables at the end of a NEW BASIS
FILE is extended to include all basic nonlinear variables. (This is the set of values
j", zj on page 61 of the User's Guide.) The final Jacobian matrix can then be
reconstructed exactly for a restart.

PUNCH and INSERT files may be used as documented in the User's Guide.
(They already include values for basic nonlinear variables.) Similarly for DUMP
and LOAD files.

7 EXAMPLE I 31

T. EXAMPLES

Two example problems are described here to illustrate the subroutines and data
required to specify a nonlinear program, and the corresponding output produced
by MINOS/AUGMENTED.

The first example is small, dense and highly nonlinear; it shows how the
Jacobian matrix may be handled most simply when there are very few nonlinear
constraints or variables. The second example has both linear and nonlinear
constraints, and illustrates most of the features that will be present in large-scale
applications where it is essential to treat the Jacobian as a sparse matrix.

7.1 Test Problem MHW4D (Wright [8], example 4, starting point D)

Statement of problem:

minimize (z1 - 1)2 + (ZI - Z2) 2 + (Z2 - z3) + (Z3 - z4)' + (z4 -Z)

subject to l+z 2 + 3 = 3V2+ 2,

2 - z3 + X4 = 2v - 2,

Z1Z 5 = 2.

Starting point: Zo (-1, 2,1,-2,-2)

Notes:
1. The subroutines below happen to include code for a second problem (Wright

[8], example 9). The parameter NPROB is used to branch to the appropriate
calculations.

2. In subroutine CALCFG, F is the value of the objective function and G contains
the corresponding 5 partial derivatives.

3. In subroutine CALCON, F is an array of constraint function values and the rows
of G contain the derivatives for each constraint. In this example the Jacobian
is best treated as a dense matrix, so G is a two-dimensional array. Note that
several elements of G are actually zero; they do not need to be explicitly set.

4. Subroutine CALCON will be called before subroutine CALCFG. The parameter
NSTATE is used to print a message on the very first entry to CALCON. This is just
a matter of good practice, since it is often convenient to compile MINOS and
the function routines into an executable code file, and it is easy to forget which
particular function routines were used.

32 MINOS/AUGMENTED §7

5. The SPECS file shown contains keywords that should in general be specified
for small, dense problems (i.e. ones whose default values would not be ideal).

6. The MPS file should follow the SPECS file in the normal input stream, since
it is not specified to be on any other file.

7. The COLUMNS section of the MPS file contains only the names of the vari-
ables, since they are all "nonlinear", and because there are no linear constraints.

8. The RHS section should, if possible, include estimates of the Lagrange
multipliers. The more nonlinear a problem, the more valuable they are.

9. The BOUNDS section specifies only the initial point. (Uniform bounds on
the variables are given in the SPECS file.)

10. Since FX indicators are used for the INITIAL bounds, the SUPERBASICS
LIMIT needs to be at least 5 in this case.

11. This example has several local minima, and the performance of MINOS/
AUGMENTED is very dependent on the initial point zo. See [4] or [8] for
computational details.

17EXAMPLE 1 33

(Example 1) Computation of the objective function:

SUBROUTINE CALCFG(IODE,N,X,F,G,NSTATE,NPROB)
IMPLICIT REAL*8 (A-H,0-z)IREAL*8 X(N),G(N)

C
C MHW 4

C
IF (NPROB .NE. 4) GO TO 500

Ti - X(1) - 1.0
T2 - X(1) - X(2)
T3 -X(2) - X(3)
T4 = X(3) - X(4)

IT5 - X(4) - X(5)

F =T1**2 + T2**2 + T3**3 +T4**4 +T5**4
G(1) =2.0*(T1 + T2)
G(2) - 2.0*T2 + 3.0*T3**2

G(3) = 0.0*X(4)2 + .0*x(1**2 X2

G(4) - -. 0*X(2**2 + 4.0*T**
G(5) - 0.0*X() + 2.*()*3*X()*X()*

C END 9FCLF O H4~D

50 T E D SNX5 -X()

T2-IO((5 ()
FI 00XI*()+X1** ()-60X2*2 X3

34 MINOS/ALYGMENTED §7

(Example 1) Computation of the constraint functions:

SUBROUTINE CALCON(MODE,M,N,NJAC,X,F,G,NSTATE,NPROB)
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 X(N),F(M),G(M,N)

C
C MHW 4
C

IF (NSTATE .EQ. 1) WRITE(6, 1000) NPROB
IF (NPROB .NE. 4) GO TO 500
F(1) = X(1) + X(2)**2 + X(3)**3j
G(1,1) = 1.0
G(1,2) = 2.O*X(2)
G(1,3) = 3.0*X(3)**2

C
F(2) = X(2) - X(3)**2 +X(4)
G(2,2) =1.0
G(2,3) - -2.0*X(3)
G(2,4) = 1.0

C
F(3) - X(1)*X(5)
G(3,1) - X(5)
G(3,5) = X(1)
RETURN

C
C MHW 9
C

500 F(1) - X(1)**2 + X(2)**2 + X(3)**2 + X(4)**2 + X(5)**2
G(1,1) = 2.O*X(1)
G(1,2) = 2.0*X(2)
G(1,3) - 2.O*X(3)
G(1,4) - 2.O*X(4)
G(1,5) - 2.O*X(5)

C
F(2) - X(1)**2*X(3) + X(4)*X(5)
G(2,1) - 2.O*X(1)*X(3) -

G(2,3) -X(1)**2
G(2,4) - X(5)
G(2,5) - X(4)

F(3) - X(2)**2*X(4) + 1O.O*X(1)*X(5)

0(3,1) - 1O.O*X(5)
0(3,2) - 2.O*X(2)*X(4)
G(3,4) - X(2)**2
0(3,5) - 1O.O*X(1)
RETURN

1000 FORMAT(/ 36H THIS IS PROBLEM MHW4AND9. NPROB -,13)

C END OF CALCON FOR MHW4AND9

END

57 EXAMPLE 1 35

(Example 1) The SPECS file and the MPS file:

BEGIN MHW 4D
MINIMIZE
ROWS 20
COLUMNS 20
ELEMENTS 50
UPPER BOUND 5.0
LOWER BOUND -5.0

NONLINEAR CONSTRAINTS 3
NONLINEAR VARIABLES 5
PROBLEM NO. 4

JACOBIAN DENSE
MAJOR ITERATIONS 15
MINOR ITERATIONS 20
PENALTY PARAMETER 10.0
PRINT LEVEL (JFLXI) 10101

SUPERBASICS 6
HESSIAN DIMENSION 6
LINESEARCH TOLERANCE 0.1
VERIFY OBJECTIVE GRADIENT
VERIFY CONSTRAINT GRADIENTS

CRASH OPTION 1
ITERATIONS 100

END

NAME MhW 4D
ROWS
E CONI
E CON2
E CON3

COLUMNS
Xl
X2
X3
X4
X5

RHS
RHS CONI 6.24263
RHS CON2 0.82842
RHS CON3 2.0

BOUNDS
FX INITIAL XI -1.c
FX INITIAL X2 2.0
FX INITIAL X3 1.0
FX INITIAL X4 -2.0
FX INITIAL X5 -2.0
ENDATA

38 MINOS/AUGMENTED §7

(Example 1) Solution obtained by MINOS/AUGMENTED:

PROBLEM NAME M'1 4D OBJECTIVE VALUE 2.7871880860D+01

STATUS OPTIMAL SOLN ITERATION 21 SUPERBASICS 2

OBJECTIVE (MIN)
R31s RHS
RANGES
BOUNDS

SECTION I - ROWS

NUMBER ... ROW.. AT .. ACTIVITY... SLACK ACTIVITY ..LOWER LIMIT. ..UPPER LIMIT. .DUAL ACTIVITY ..I

7 CONI EQ 6.24263 0.0 6.24263 6.24263 2.12527 1
8 CON2 EQ 0.82842 0.0 0.82842 0.82842 1.55378 2
9 CON3 EQ 2.00000 0.0 2.00000 2.00000 8.93568 3

SECTION 2 - COLUMNS

NUMBER .COLUMN. AT .. .ACTIVITY... .OBJ GRADIENT. * .LOIER LIMIT. ..UPPER LIMIT. .REDUCED COST. M+J

I X1 BS -1.27305 -11.91292 -5.00000 5.00000 -0.00000 4
2 X2 SbS 2.41035 11•79905 -5.00000 5.00000 -0.00000 5
3 X3 ES 1.19486 5.38957 -5.00000 5.00000 0.00000 6
4 X4 ES -0.15424 1.55378 -5.00000 5.00000 0.0 7
5 X5 SBS -1.57103 -11.37559 -5.00000 5.00000 -0.00000 8

A 6 RHS EQ -1.00000 0.0 -1.00000 -1.00000 -32.42579 9

17 EXAMPLE 2 37

7.2 Tast problem MANNE1O (Manne [11, T = 10)

Statement of problem.

T

maximize E log Ct

subject to atKt Ct I, 1 < t < T, (nonlinear constraints)

Kt+i _< Kt j- +I, 1 < t < T, (linear constraints)

9KT < IT,

with various ranges and bounds.

The variables here are Kt, Ct and h, representing capital, consumption and
investment during T time periods. This problem is described more fully in [4],
where results are given for the case T = 100.

Notes:

1. For efficiency, the Jacobian variables Kt are made the first T components of
z, followed by the objective variables Ct. Since the objective does not involve
Kt, subroutine CALCFG must set the first T components of the objective gradient
to zero. The parameter N will have the value 2T. Verification of the objective
gradients may as well start at variable T + 1.

2. For subroutine CALCON, N will be T. The Jacobian matrix is particularly
simple in this example; in fact J(x) has only one nonzero element per column
(i.e. it is diagonal). The parameter NJAC will therefore be T also. It is used only
to dimension the array G.

3. NSTATE enables B, AT and BT to be initialized on the first entry to CALCON, for
subsequent use in both of the function subroutines. (Remember that the first
call to CALCON occurs before the first call to CALCFG.) The name chosen for the
labeled COMMON block holding these quantities must be different from the other
COMMON names used by MINOS, as listed in section 3.3.

4. The COMMON block IOCOMM is one of the blocks used by MINOS.

5. NSTATE is also used to produce some output on the final cal) to CALCON, at
the optimal solution.

6. The SPECS file uses key-words that you should become familiar with before
running large problems. Other values will be appropriate for other applications.

7. The MPS file specifies a sparse T by T Jacobian in the top left corner of
the constraint matrix. An arbitrary value of 0. 1 has been used for the nonzero
variable coefficients. A zero or blank numeric field would be equally good.

38 MINOS/AUGMENTED §7

(Example 2) Calculation of the objective function:

SUBROUTINE CALCFG(MODE,N,X,F,G,NSTATE,NPROB)
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 X(N),G(N)
COMMON /IANNE / B,AT(100),BT(100)

C
NT =N/2
F - 0.0
DO 50 J = 1, NT

XCON = X(NT4J)
F - F 4 BT(J)*DLOG(XCON)
G(J) = 0.0
G(NT+J) = BT(J)/XCON

50 CONTINUE
RETURN

C
C END OF CALCFG FOR MA1NNE

END

17 EXAMPLE2 3

(Example 2) Calculation of the constraint functions:

SUBROUTINE CALCON(MODE,M,N,NJAC,X,F,G,NSTATE,NPROB
IMPLICIT REAL*8 (A-H,O-Z)

REAL*8 X(N),F(M),G(NJAC)
COMMON /IOCOMM/ IREAD,IPRINT
COMMON /MANNE / B,AT(100),BT(100)

C
NT = N
IF (NSTATE -NE. 1) GO TO 100

C
C FIRST ENTRY
C -- - - - -

ONE = 1.0
GROW = 0.03
BETA =0.95
XKO = 3.0
XCO = 0.95
XIO = 0.05
B = 0.25
BPROB =NPROB
IF (NPROB .NE. 1) B =BPROB/100.0

WRITE(IPRINT, 1000) B
C

A = (XCO + XIO)/XKO**B
GFAC = (ONE + GROW)**(ONE - B)
AT(1) = A*GFAC
BT(1) = BETA
DO 10 J =2, NT

AT(J) =AT(J-1)*GFAC

BT(J) =BT(J.-1)*BETA

10 LONTINUE
BT(NT) = BT(NT)I(ONE - BETA)

C
C NORMAL ENTRY
C - - - - - -

100 DO 150 J =1, NT
XKAP =X(J)

FJ AT(J)*XKAP**B
F(J) =FJ

G(J) =B*FJ/XKAP

150 CONTINUE
IF (NSTATE .NE. 2) RETURN

C
C FINAL ENTRY

C- - - - -I WRITE(IPRINT, 2000) (F(J), J 1, NT)
RETURN

I1000 FORMAT(// 30H THIS IS PROBLEM MAN'NE. B -,F8.3)

2000 FORMAT(// 32H FINAL NONLINEAR FUNCTION VALUES / (SF12.5))
C END OF CALCON FOR MANNE

END

40 MINOS/AUGMENTED 57

(Example 2) The SPECS file:

BEGIN MANNE10

MAXIMIZE
NONLINEAR CONSTRAINTS 10
NONLINEAR JACOBIAN VARS 10
NONLINEAR OBJECTIV VARS 20

OBJECTIVE - CALCFG
PROBLEM NUMBER 1

MPS FILE 5
ROWS 100
COLUMNS 100
ELEMENTS 200
UPPER BOUND 100.0

COMPLETION FULL
JACOBIAN SPARSE
LAGRANGIAN YES
MAJOR ITERATIONS 10
MINOR ITERATIONS 20
PENALTY PARAMETER 0.1

FEASIBILITY TOL 1.OE-6
DJ TOLERANCE i.OE-6
ROW TOLERANCE 1. OE-6
RADIUS OF CONVERGENCE 0.01

SUPERBASICS 10

HESSIAN DIMENSION 10
LINESEARCH TOLERANCE 0.1
VERIFY GRADIENTS

START OBJECTIVE GRADIENT CHECK AT VARIABLE 11
STOP CONSTRAINT GRADIENT CHECK AT VARIABLE 5

CRASH OPTION 1 Ii
ITERATIONS 100
MULTIPLE PRICE 5
PRINT LEVEL (JFLXI) 101
SOLUTION YES
CALL FUNCTION ROUTINES WHEN OPTIMAL

END MANNE10

I
I

17 EXAMPLE 2 41

(Example 2) The MPS file:

NAME MANNE10
ROWS

G MONOOI
G MON002
G MON003
G MON004
G MON005
G MON006
G MON007
G MON008
G MON009
G MON010
L CAP002
L CAPO03
L CAP004
L CAP005
L CAP006
L CAP007
L CAPO08
L CAP009
L CAPOO
L TERMINV

COLUMNS
KAPQO1 MONOO .1 CAPOOl 1.0
KAPOOI CAPO02 -1.0
KAP002 MON002 .1 CAPO02 1.0
KAP002 CAP003 -1.0
KAP003 MON003 .1 CAP003 1.0.
KAP003 CAPO04 -1.0
KAP004 MON004 .1 CAP004 1.0
KAP004 CAP005 -1.0
KAP005 MON005 .1 CAP005 1.0
KAP005 CAP006 -1.0
KAP006 MON006 .1 CAP006 1.0
KAP006 CAP007 -1.0
KAP007 MON007 .1 CAP007 1.0
KAP007 CAP008 -1.0
KAP008 MON008 .1 CAP008 1.0
KAPO08 CAPO09 -1.0
KAP009 MON009 .1 CAPO09 1.0
KAP009 CAPOlO -1.0
KAPOO MON010 .1 CAPOO 1.0
KAPO1O TERMINV .03
CONOO MON001 -1.0
CON002 MON002 -1.0
CONO03 MON003 -1.0
CON004 MON004 -1.0
CON005 MONO05 -1.0
CON006 MON006 -1.0
CON007 MON007 -1.0
CON008 MON008 -1.0

CON009 MON009 -1.0
CONOIO MONOlO -1.0
INVOOI MONOO -1.0 CAP002 -1.0

INV002 MON002 -1.0 CAPO03 -1.0
INV003 MON003 -1.0 CAP004 -1.0
INVO04 MON004 -1.0 CAPOO5 -1.0
INV005 MON005 -1.0 CAP006 -1.0
INV006 MON006 -1.0 CAP007 -1.0
INV007 MON007 -1.0 CAPOO8 -1.0
INVO08 MON008 -1.0 CAP009 -1.0

INVO09 MON009 -1.0 CAPOO -1.0
INVO1 0 1401410 -1.0 CAPO1 -1.0
INVOO TERMINV -1.0

42 MINOS/AUGMENTED §7

The MPS file, continued:

RHS

* THE RHS IS ZERO

LAGRANGE MONOO1 1.0 MONOIO 10.0

RANGES
RANGEI MONO1 10.0 TERIINV 20.0

BOUNDS
FX BOUNDI KAPOO1 3.05
LO BOUND1 KAPO02 3.05
LO BOUNDI KAPO03 3.05
LO BOUNDI KAPO04 3.05

LO BOUNDI KAPO05 3.05
LO BOUNDI KAPO06 3.05
LO BOUNDI KAPO07 3.05

LO BOUNDI KAPO08 3.05
LO BOUNDI KAPOO9 3.05
LO BOUNDI KAPCIO 3.05
LO BOUND) CONOOI .95
LO BOUNDI CONOO2 .95
LO BOUNDI CONOO3 .95
LO BOUNDI CONO04 .95
LO BOUNDI CONOG5 .95
LO BOUNDI CONO06 .95
LO BOUNDI CONO07 .95
LO BOUNDI CONOO .95
LO BOUNDI CONGO9 .95
LO BOUNDI CONOIO .95
LO BOUNDI INVOOI .05
LO BOUNDI INV0C2 .05
LO BOUNDI INVGO3 .05
LO BOUNDI INVGO04 .05
LO BOUNDI INO05 .05
LO BOUNDI INlOO .05
LO BOUNDI INVO0) C5
LO BOUND] INVOOS .05
LO BOUNDI N009 .05
LO BOUNDI INVOIC .05

UP BOUND! INsO0 .1,2
UP BOUND] IN%100q .114
UP BOUND! INVOIO .116
FX INITIAL KAPG02 3.
FX INITIAL KAPO03 3."
FX INITIAL KAPOO4 3.3

FX INITIAL KAPO05 3.4
FX INITIAL KAPO06 3.5
FX INITIAL KAPOO7 3.t
FX INITIAL KAPO08 3.?
FX INITIAL KAPO09 3.8

FX INITIAL KAPOIO 3.9
ENDATA

I
§7 EXAMPLE 2 43

(Example 2) Output from MINOS/AUGMENTED:

I
1111405S --- VERSION 4.0 MAY 1060

POBLM4 SPECIPICATIONS

0000. BEGIN MANHE I0

0001. hA3IMI7.E

0002. NONLINEAR CONSTRAINTS 10

0003. NOMLINEAB JACOB]AW ,ANS 30
0004. NONLINEAR OBJECTIV %ARS 20
0005.
COOS. OBJECTIVE - CALCFG

0007. PROBLEM NOMRE I

000007.2 MPS FILE

0009. ROWS 100
0010. COLIUNS 100

001. ELEMENTS 2000 1:3
0012. CPPER BOUND JO0.O

00)3.
014. COMPLETION FULL
0075. JACOB IAN SPARSE
0070. LAGRANGIAN YES
0017. KAJOR ITERATIONS 10

0016. MINOR ITERATIONS 20

OOIS. PENALTY PARAMETER 0.1
0020.

0027. FEASIBILITY TOL I.0E-N
0022. DJ TOLERANCE I.OE-6
0023. BOW TOLERANCE I.OE-6
0024. RADIUS OF CONtERGENCE G.010025.

0026. SUPERBASICS 70

0027. HESSIAN DIMENSION 10
0020. LIVESEARCH TOLERANCE 0.1
0020. VER IFY GRADI ENTS

0029.1 START OBJECTIVE GRADIENT CHECK AT VANIABLE II

0029.2 STOP CONSTRAINT GRADIENT CHECK AT IARIABLE 5
0030C.
0031. CRASH OPTION I
0032. ITERATIONS 100
033. MULTIPLE PRICE 5
0034. PRINT LEVEL ,JFLXI) 101

0035. SOLUTION YES
001.1 CALL FUNCTION ROUTINES WNEN OPTIMAL

00TH. EMD fANNElS

PA APET S

BPS INPUT DATA.

RE, LINIT O0 LIST LIMIT 0 LOKER BOUND DEFAULT 0.0
COLU PN LIMIT I00 ERHOt MESSAGE LIMIT it UPPER SOUND DEFAULT E.00E.02

ELIETS LIMIT (COEFFS) 200 PHANTOM ELEMENTS 0 AIJ TOLERANCE I.OOE-O

FILES.
6PS FILE (INPLT FILE)- S OLD BASIS FILE (AP).., 0 (CARD BEARER) 5
SOLUTION PILE . NUB BASIILE LE IMP) 0 (PRINTER) H
INSERT FILE G BACKUP BASIS FILE 0 (S RATCH FILE) I

PUNCH FILE 0 LOAD FILE 0 DUMP FILE

SFREUENC IES.

LOG ITERATION I CHECK ROW ERROR 50 CYCLE LIMIT I
SAVE NEW BASIS MAP 0... 0 FACTORIZE (INVERT) bU CYCLE TOlERANCE 00

LP PARAME TRS
ITERATIONS LIMIT 30 FEASIBILIIY TOLERANCE.. .OD-6 PARTIAL PRICE FACTOR...
LASH OPTION I DJ TOLERANCE 7.OD-O MULTIPLE PRICEL 5

HEIGHT OR OBJECTIVE.... G.6 PIVOT IOLERANCE |.4ND-Os

NONLINEAR PROBLEMS.

MONLINLAB CONSTRAIhTS.. IC TUPERBASIC LIMIT 10 BERIVATIVE LEVEL

"ONLIhLA JACOBIAN VARS 10 NESSIAN DIMENSIO . I VEBIFY LRVEL 3
MUNLINEAR OJ£CTIN DAHS 2, LINESAMEN 101ERANE... O,000I DIFFERENCE INTERNAL . 2.VR-0R

PROBLEM NUMBER I RILCLLD-CPA0IENY 1O.... D.2000 CONJUGAIE-GRABDT NF1HOD I

AUGMET Et LAGRANGIAN.

JAOBIAN PABI MAJOR IIERA1IOS IlIMIT. 10 RADIUS OF CONVERGECE.. IOOD-02
LALRARCIAB V HS MINOR ITERAIION LII1 2E low 1OLERANGE I.DOD-ON
PENALI, O. COFPTF PE

J ~ ~M IOL.L .AME0KES.

LL IO. TOLEBAE.. . . -01 P14A5 LEVL.JLI). (INNEr VYEB
LL 10V1 TOLERANC. . 10000 RIRI'(LEL YES..... U PRIM? SHIKS
LE A R AC TOLERANLI. CLOV... . RIONT

NUNBIM IF 6(4*1 OF LONI AAI.ANI FO B RSPAI F P7OI
I

44 MINOS/AUGMENTED 57

Output, continued:

IhPUI LIST I N-

I NAME ANNEI.
2 tO6S
23 COLUMNS

X0X5X ARKIN; - NO LINFAR ObJLCIISE FI(lh,N FULN

XXX NON-ESISTENT IOU SPECIFILD -- (APOUL -- EN IGNR0 IN LIFE 24

XXX NU-EXISIKNT RON SPEIIFIED - LAPLII -- UNIRN IGNORED IN LINE 63
A5 RIMS
66 *
67 * THE OHS IS ZERO
68

70 RANGES
?2 BOUNDS

laX ENDATA

NAMES SELECTED

ONJECTIVE CALCFG (AX) U
BHS RHS G

RANGES ANGE I 2
BOUNDS BOUNDI

MATRIX STATISTICS

TOTAL NORMAI. FRUE FIXED BOUNDEDROWS 20 1 e 0 0
COLUMNS 30 0 0 1 2I

NO. OR PATRIX E.LEHENTS 56 DENSITY I.516
NO. OP REJECTED COEFFS 0 AIJTOL .GOOOOE-I
BIGGEST AND SMALLEST COEFFS I.OOODEO 3.OOOOOE-O2 IEXCLUDINC OBJ AND RNS)

XXXX TOTAL NO. OF ERROR5 DURING INPUT 2

LENGTH OF RON-NAME HASH TABLE 211
COLLISIONS DURING TABLE LOOKUP

NO. OP JACOBIAN ESTRIES SPECIFIED 10
NO. OF LAGRANGE NULTIPLIEBS SPECIFIED 2

NO. OF INITIAL BOUNDS IROCESSfD 9
NO. OF SUPERASICS SPECIFIED

1.*

I'

17 EXAMPLE 2 45

Output, continued:

I
I ITERATIONS

CRAS5O33 N
FREE IONS 0 FREE OLS D PASS2 CE ROWS) 0 PASS3 20 REMAINDER 0
TIS S POBLEM PANNE. B - 0250

MLLTIPLIER ESTIMATES

I.00OOODUOO 0 0.0 O:O 0 0.0

0.0 0. 00 0,0 1 0000000D+0

FACTORIZE I CEDAND 0 ITERATION 0 INFLAS I OJ8CTS 0.0
SLACKS 0 LINEAR 10 NONLINEAR I0 LEDS 10 DENSITY 1.5
P4 MUNPS 0 SPIRES C COE REQ 579 L LIMIT 1864 U LINII 3128
LU BLIMPS 0 SPILS 0 AIJ ELEIS 20 L CLEPS 21 U ELEIS I F ELEDS 0 0.0ITN 0 -- INFEASIBLL. HUM . I SUM - 9.S9996542SD-04

I ITH PH PP HOPT DJiRG +$85 -SiS -BS STEP PIVOT NSPK L U NIMP SINP/OBJECTIVE MEG NSI 11 -CONDR COV
4 A U 0 .0 0 IC 30 I.ID400 -3.0D-02 0 21 1 1 5.99986543D-04 I H 1 U 0.0 TTTT

SITN I -- FEASIBLE SOLUTION. OBJECTIVE - 2.668996414D40

VERIFICATION OP OBJECIIVE GRADIENTS RETURNED BY SUBROUTINE CALCFG.

COMPUTED GTP VIA CALCFG 4.57304926089D-0) P.2854A 0395D-01
DIFFERENCE APPROXIMATION 4.57304916192D-01 8.22544668426D-01

OBJECIVE G ADIENTS SEEM TO SE S).

J 1i21 US C(J) DIFFEENCE APPROXN

It 9.766'3O00-01 I. 13D-05 9.12712833D-0 9.7270722D-01 OK

12 9.5394067'0-0 1.14D-05 9.46075581D-01 9.46069919D-01 O0
1I 9.86152359-IO 1.1 9D-05 H.69414305D-01 L.69409066D0 OK

1 .I9USO6D44O 1.23D-05 7.99258683D-01 ;.99253415-UI 01
is 1.05273325D+00 1.26D-O5 i.35020854D-I 2.350163,D0- UE16 1.EP714572D.+00. 1.33D-O5 6.76166796D-01 6.61L2674D-I OE17 I. 1223H3674 0.0 1.37D-05 6.22217209D-01 6.22213412O-01 OK

::1• 321200+00 141D-0 .1 214053TU-G 5.7273104ID-OI0 O4
II C.22L47402D.0 1 .47D-05 5.1034322D-01 5.13031256D-01 OR

20 1.213952050,00 2.05D-06 i.H642564 D+00 9.F642411D400 OR

OHJEC"IVE GRADIENTS 11 TORU 20 SEEM TO BE Ok.

VERIFICATION OF CONSTRAINT GRADEINTS HRETLUSC By SUBROUTINE CALCOE.

COLUMN X 01 ELEMENT NO. RUN JACOLIAN VALUE DIFFERENCE APPROXD

I 3.05UUEOILI040 1.21D-07 I I E.41516611D-02 8.41S166OD-02 OR

2 3. IO,0038DD.00 1.22D-07 2 2 6.49951617D-02 6.49951616D-02 OR

3 3.19999981 +0 1 .250-07 3 3 E.4855690ID-U2 6.48556898D-02 OK

A 3.30000019DO00 .28.-07 4 E.477852950-02 8.47785311D-02 OK

5 3.399999620U0 1.'2I-01 5 5 H.A75983E6D-G2 8.4759831D-02 OK

CONSTRAINT GRADIENTS I TLRL 5 SEEM TO BE OK.

CLOLESRY FACTOR OP HESSIAN RESET TO 1.
2 A 0 U 2.So-02 C 0 0 A.)D.-0 0.0 C 21 A 0 2.669713321D"0 A A .3040 TTM
2 0 0 1.• 0-02 0 2 11 1.35-01 I.O00 C 11 A U 2.H96898D30+00 5 1 2 2 2.3D0.0 TTF

S O .,D-O0 O O 1.0C 0.0O 21 2 2.67002688D400 6 4 4 2.5D40O0 TTIF

PC TOL LEDULCED. TOLRC 1.50ID-OS

A 0 : : 2.6..-0S 0 0 0 .D400 0.0 2 23 1 0 l.H U0 .1O 9 I A 3.00."0 FIF
:3D -0 D*3 (' C 0 2.2'O 0. 1 I1 05 O . |5D400 1 .24OFF

I .20-0h 0 0 L13.20.O0 U.C 2 23 1 0 l.N3012.270 0 I 4 C A .3.00.00 TFTP

4.4 0 '. ;.-01p C 0 0 1.0006 b.C 2 1 0 2.8F711.?2D400 IF 7 A 4 3. 4000 TTTTIi RIGEST J - 0.0 ORM PC M ,.5i70-o hRM PH * I.A2D.4Il NOaH x * 3*.00D400

ENS 08 KAC II I - OPTIHAI SI-Il AT MINOR 115 12 - 111iAI l NS * 12

I

48 MINOS/AUGMENTED 17

Output, continued:

START OF MAJOR ITN 2 - PENAL1Y PARAMSOLR - .CO0-3

MULTIPLIER ESTIMATES

1.0JO493D-O0 6.TIOA6ARO- F. 5R959875-O3 3. 038291120-O3 7.2995R50-0,
74289923D-01 6.20A676D-03 S.736469E -OI , 7633D-0 . A2 50"0

600 ERROR AFTER RELI0ARIZAIIO - 2.3493O-6

ELATIVE CRACE IN MULTIPLIERS - 3.3233D-03

FACTORIZE 2 DEMAND 0 ITERATION 12 INFEAS 0 OBJECTV 2.00112316D0OO

SLACKS 0 LINEAR 9 NONOIINEAR IJ £LE1S 33 DENSITY f.3

P4 BURIES 0 SPIRES 0 CORE M033 5bO L LIMIT 4196 U LIM11 1398
LU BUNPS 0 SPIRES 0 AIJ ELENS 33 I. ELES 21 U ELMS I F ELE $ G 0.0
ITN I2 -- FEASIBLE SOLUTION. OBJECTIVE - 2.670095339D00

1TN P" PP NO DJ/O TSS -SRS -B$ STEP PIVOT NSP 1. U NINE SIhF/ORJECEIvE 884 NSR aIR R-CONRFR 00V

J3 A 0 0 2.00-05 0 0 0 I.O0.00 0.0 0 21 I 0 2.670095980 OO 23 ? V 4 3.3D.00 TITP

60. TOLS REDUCED. TOLBG - 1.4930-05

14 4 0 0 8.7D-01 0 0 0 I.OD00 0.0 0 21 1 0 2.67009599000 22 1 4 3.3 +00 FFIT

BIGGEST DJ - 0.0 No4 RG - 8.6M20-07 NO1 PI . 1.493D.01 NORM X * 3.8670+00

END OF MAJOR ITN 2 - OPTIMAL SL AT MINOR ITN 2 - TOTAL ITNS - 14

START OF NAJOR ITN 3 - PENALTY FARAMIETER - I.OOD-l

NULTIPLIER ESTIMATES

3.010633RD00 9.3193104D-OI 8.5926408D-01 :S21671D-O 7 3020976D-01
6. 72993S6"-0 6.2015130D-03 5.31340971E01 5. 262 56D-03 9.66433030+00

RON ERROR AFTER RELI3EAMIZATION 5.5570D-06

RELATIVE CRANGL I MULTIPLIERS - 1.4115D-04

PENALTY PARAMETER DECREASED TO 0,0

FACTORIZE 3 DEMAND 0 ITERATION 34 INFFAS 0 ORJECTV 2.670095985D+00

5L0CX$0 0 LINEAR 0 NONLINEAR II EL66S 33 DENSITY 6.3
66 ROMPS 0 SPIKES 6 CORE RED 380 L LIRM1 A663 U LIIT 932

LO UOMS 0 SPIRES 0 AIJ ELEMS 33 L ELE1S 21 U ELEMS I F ELEMS 0 0.0
IT 34 -- EAI6RLC SOLUTION. ObJECTIVE , 2.670096032D+00
8OR38 80 IS ALREADY SMALL 9.619073 -- 6EU6N TO PHASE 3. 606M1 P - 1.493D401

BIGGEST DJ - 6.6 NORM BC . 9.679D-07 NOR1 PI - 1..930.01 NORM X . 3.867D400

END Of MAJOR IT 3 - OPTIMAL SOLN AT MINOR IN 0 - TOTAL ITNS - 14

EXIT -- OPTIMAL SOLUTION FOUND.

PD. Of ITERATIONS 1 OBJECTIVE VALUE 2.E00960319077D00

80. Of MAJOR ITERATIONS 3 LIEAR OBJECTIVE O.C

OBJECTIVE PUNC AND GRADIENT CALLS 21 NONLINEAR OBJECTIVE 2.67009R0319037D.O0

CONSTRAINT PUCN AND GRADINT CALLS 24 PENALTY PARAMETER 0.0

NO or o 3.8676.00 7or3 OF PI 1.693001

NO. OF SPURASICS N 6OW OP RED6CE GRADIENT 9.679D-07

FINAL NONLINEAR FUICTION VALUES
1.02665 1.03620 3.0873! 1..1962 1.13233
.IRI? 1.22678 1.25632 4.2921 .31A99

V -

I
57 EXAMPLE 2 47

Output, continued:

I
J PROSL H MAKE IAJEIO OBJECTIVE VALUE 2.6700960319D0O0

STATUS OPTIMAL SOlM ITERATION IA IOPERASICS 7

ORJEC7IVE CALCFC (MAX)
MS 3S

IANGES &ANGE I
SOUNDS BOUS I

SECTION I - ROUS

NUMBR51 ... Ro., AT .. ACTIVITY... SLACK ACTIVITY .. LOWERL LIMIT. .. UPPER LIMIT. DOUAL ACTIVITY .. 1

32 ONOO I LL 0.0 0.0 0.0 WOME 1.01063 I

33 "00(002 LL 0.0 0.0 0.0 NOSE 0.93193 2
34 KV0003 CL 0.0 0.0 0.0 NONE 0. 05926 3
35 NONO4 LL 0.5 0.0 0.0 NONE 0.3921 A

36 00005 LL 0.5 0.0 0.0 NOSE 0.33021 536 MONOON LL 0.0 0.0 0.0 NONE 0.67299 U
38 100007 LL 0.c 0.0 0.0 NOSE 0.62015 1
39 MoNOO6 LL 0.0 0.0 0.0 NOSE 0.5,13 0
40 0ON009 LL 0.0 0.0 0.0 NOME 0.3262 9
41 MONOlO LL 0.0 0.0 0.0 10.00000 9.6, 033 10

42 CAPOO2 UL 0.0 0.0 SONL 0.0 -1.01063 1
43 CAPOO3 UL 0.0 0.0 NONE 0.0 -0.$3153 12
4 CAP00A UL 0.0 0.0 NONE 0.0 -0.05926 13
A5 CAP005 UL 0.0 0.0 NONE 0.0 -0.79213 IA

46 CAPO6 EL 0.0 0.0 NOSE 0.0 -0.73021 15
A7 CAP007 UL 0.0 0.0 NONE 0.0 -0-67299 16
A8 CAPOS CL 0.0 0.0 NONE C. -0.62015 13

49 CAP009 UL 0.0 0.0 NOSE 0.0 -0. 57134 8
50 CAPOIO UL 0,0 0.0 NOSE 0.0 -0.32625 I9

51 TE4I 3V UL 0.0 0.0 -20.00000 0O -10.73212 20

SLIOS 2 - COLUMMS

NUME5R .COLMSN. Al .. ACTV OSJ GR-A1IENT. ..LOIEM LIMIT. .UPPER LIMIT. .REDUCED COST. N.J

I APOOI EDQ 3.05000 0,00000 3.05000 3,05000 1.09566 21

RAP 002 MS 3.12665 0,0000 3.05000 300 00000 0.00000 22
3 RAP00 SS 3.21443 0.00000 3.05000 100.00000 0.00000 3
SKAP004 SS 3.3000 0.00000 3.05000 10.0000 0.00000 2A

3 LAPO 5S 3.39522 (0.00000 3.05000 300.00000 O.OOOO 25

6 KAPO6 5S 358788 0.00000 3.05000 100.00000 0.00000 26

7 UAPO7 SAS 3.58172 0.00000 3.05000 100.00000 -0 00000 2
SRAP00A SMS 3.67643 0.00000 3.05000 300.00000 -0.00000 2F

9 KAP009 5S 3.77158 0. 00000 3.05000 100.0000 -0 00000 29
10 SAPOIO 0S . 6661 0.00000 3.05000 300.00000 0.00000 30
11 (N0003 LL 0.95000 1,.00000 0.93000 100.000 -0.01063 33
12 C0002 BS 0.9682 0.93163 0.95000 100.00000 0.0 32

J3 CO5003 S 0.99700 0.05926 0.95000 1 0000000 0.0 33

IA CON004 BS 1.02120 0.!9217 0.95000 100.00000 0.0 30
I5 CON05 MO 1.05967 0.3021 0.95000 100.00000 0.0 35
16 COR006 MS 1.09227 0.67299 0.95000 100. 00000 0.0 36
SCON007 0 1.12606 0.620135 0.95000 100.00000 O.C 33

I@ C00 1.16116 0 5134 0.95000 100.00000 0.0 31
19 1ON009 MS 1.19763 0. 32625 0.$5000 100.00000 0.0 30
20 C6OO 0 5S 1.2139A 9.66433 0.95000 100.00000 0.0 40

21 IVOI 5S 0.07665 0.0 0.05000 J10.00O00 0.0 A)
22 099002 RI 0.09738 0.0 0.05000 300.00000 0.0 62
21 INVOO 50 0.00933 0.0 0.05000 300.00000 0.0 03

26 AOOA MO 0.09022 0. 0 E. 05000 100.00000 0.0 66

25 IVO05 Ms 0.09266 0.0 0.45000 300.00000 0.0 05

26 INV 35 0.0939 0 .E 0.05000 300.00000 0.0 AU
211007 A5 003 0 0OOO 30.00 0.0 4

20 IV006 MM 0.09451 0 0.05000 0. 1200 0.0 66

29 IV09 55 0.095 0.0 0.05000 0 11600 0.0 09
30 INV UL01. O. 0.15 00 0.11600 O.66779 50

A 31 INS EQ -1.00000 0.0 -1.00000 -3.00000 0.U 53

I

48 MINOS/AUGMENTED

REFERENCES

[1] Manne, A. S. (1979). Private communication.

[2] Murtagh, B. A. and Saunders, M. A. (1977). MINOS User's Guide, Report
SOL 77-9, Department of Operations Research, Stanford University.

[3] Murtagh, B. A. and Saunders, M. A. (1978). Large-scale linearly constrained
optimization, Math. Prog. 14, pp. 41-72.

[4] Murtagh, B. A. and Saunders, M. A. (1980). The implementation of a
Lagrangian-based algorithm for sparse nonlinear constraints, Report SOL
80-1, Department of Operations Research, Stanford University.

[5] Robinson, S. M. (1972). A quadratically convergent algorithm for general
nonlinear programming problems, Math. Prog. 3, pp. 145-156.

[6] Preckel, P. V. (1980). Modules for use with MINOS/AUGMENTED in solv-
ing sequences of mathematical programs, Report SOL 80-15, Department
of Operations Research, Stanford University.

[7] Saunders, M. A. (1977). MINOS System Manual, Report SOL 77-31, Depart-
ment of Operations Research, Stanford University.

[8] Wright, M. H. (1976). Numerical Methods for Nonlinearly Constrained Opt-
imization, Ph. D. Thesis, Stanford University.

I.

L --

INDEX 49

INDEX

Accuracy for satisfying nonlinear constraints, 21
Augmented Lagrangian, definition, 6

BACKUP BASIS FILE, 14
Basis files, 14, 30
Bounds, choice of, 3

specification of default values, 27
BOUNDS section of MPS file, 27

JCALCFG, subroutine specification, 8
consistency with MPS file, 24
examples, 33, 38

CALCON, subroutine specification, 9-11
consistency with MPS file, 18, 24
examples, 34, 39

CALL FUNCTIONS WHEN OPTIMAL, 14
Cold start, 30
Column ordering, implicit, 24
COLUMNS section of MPS file, 24
Comment cards in MPS file, 29
COMMON blocks, reserved, 11
COMPLETION option, 14
Convergence conditions, 7
CRASH options, 15
CYCLE options, 15

Data, input sequence, 2
Default values for SPECS file keywords, 13-23
Dense Jacobian matrix, 9, 17
DERIVATIVE LEVEL, 8, 16
DIFFERENCE INTERVAL, 16
Difference approximation to derivatives, 8, 16

Equality constraints, 5
Error checks (on computed gradients), 22-23
Example problems, 31-36, 37-47

F, parameter of CALCFG, 8
F (*), parameter of CALCON, 9-10
Feasible points, evaluation of functions at, 1
Formulation of nonlinear problems, 2
Full completion (accurate solution of subproblems), 14

Li 0e

50 MINOS/AUGMENTED

G(*), parameter of CALCFG, 8-9
G(*), parameter of CALCON, 9-11
Global optima, 3

HESSIAN DIMENSION, 4

Inequality constraints, 5
Infeasible problems, see §4.2 of [41
Initial point zo, 1, 27-28
INITIAL bounds set in MPS file, 27-28

sequence of data, 2
Input to MINOS, examples of, 35, 40-42

Jacobian matrix, definition, 5
computation of, 9-11
constant coefficients, 10, 11, 25
sparsity pattern, 17, 24-25

JACOBIAN option (DENSE or SPARSE), 9-11, 17

Lagrange multipliers Xk, 6
initial estimate Xo, 6, 25-26

LAGRANGE rhs vector in MPS file, 25-26
LAGRANGIAN option (YES or NO), 6, 17
Linear approximation to nonlinear constraints, 5
Linear programming, 1
Local optima, 3

Major iterations, 5
MAJOR ITERATIONS limit, 17
MINOR ITERATIONS limit, 17-18
MODE, parameter of CALCFG and CALCON, 8, 9
MPS file, 2, 24-29

examples, 35, 41-42
MULTIPLE PRICE option, 18

NJAC, parameter of CALCON, 10, 11
Nonlinear constraints, 5
Nonlinear variables, 5
NONLINEAR CONSTRAINTS and VARIABLES, 18
NPROB, parameter of CALCFG and CALCON, 9, 10
NSTATE, parameter of CALCFG and CALCON, 9, 10

Optimum solutions, local and global, 3
Ordering of constraints and variables, 5, 18, 24-25
Output from MINOS, examples, 36, 43-47

I
INDEX 51

Partial completion, 14
Penalty parameter p, 6
PENALTY PARAMETER, 18
PIVOT TOLERANCE, 19
PRINT LEVEL options, 19-20
PRINT SPIKES option, 20
Problem forms solved by MINOS, 3-5
Problem formulation, 2-3
PROBLEM NUMBER, 9, 10

RADIUS OF CONVERGENCE, 20
Ranges on general constraints, 5, 26
RANGES section of MPS file, 26
Restarting previous runs, 30
Restrictions on problem characteristics, 3-4
RHS section of MPS file, 25
ROW TOLERANCE, 21
ROWS section of MPS file, 24

Scaling of data and variables, 3
Scope of manual, 1
Sparse Jacobian matrix, 6, 10, 17
SPECS file, 2, 13

examples, 35, 40
Standard form for problems, 5
START and STOP gradient verification, 21, 23
Subproblem, definition, 6
Subroutine names, reserved, 12
Superbasic variables, 4
SUPERBASICS LIMIT, 4
Suppression of output, 19, 22
SUPPRESS PARAMETERS option, 22

TARGET OBJECTIVE VALUE, 22
Test problems, 31-36, 37-47
Transformation of variables, 2-3

VERIFY options for checking gradients, 22-23

Warm start, 30

UNCLASSI FIED
SECURITY CLASSIFICATION OF THI1S P169 (3hOR ONOWe.0 READ____ INSTRUCTIONS_____

REPORT DOCUME1TA.TION PAGE BEFORE COMPLEVhO FORM

*TITLE (end hSutie) TYja~.QL&0 0 CVEE

MINOS/AUGMENTED USER'S MANUAL Technical iepwtr

*AUTI4OR(s) CONTRACT OR GRANTJ~Sta

Bruce AeMUTGH* Michael A -ANESI DAAG29-79-C-cfllO

9. PERFORMING ORGANIZATION NAME AND ADDRESS go AM ELEMENT. PROJECT, TASK

Stanford University
Stanford, CA 94305

11. CNRLIGOFCNAEADADDRESS

U.S.ArmyResearch Office uw 8
P.O. Bo 2113.* NUMBER OF PAGES

RsacTragePrNC 27709 51
Is. SECURITY CLASS. (of this report)

Office of Naval Research UCASFE
Department of the Navy - ~.~ ~ UCASFE

800~~ N.Qic tetI Oa ECL ASSI F1CATION/ DOWN4GRAOIN G

16 .STIBU MU TAERsachMEONTCESONN.3 RCPETSCT.7::EE

This document has been approved for public release and sale;
its dsrbtoisunlimited.

17. DISTRIBUTION STATEMENT (of Owe abstract entered In Block 20, It diferent how, Res~)

18. SUPPLEMENTARY NOTES

III. KEY WORDS (Continue ant reverse side it necessay and Identify by block nm~ber)

AUGMENTED LAGRANGIAN NONLINEAR PROGRAMMING
FORTRAN CODE OPTIMIZATION
LARGE-SCALE OPTIMIZATION PROJECTED LAGRANGIAN
NONLINEAR CONSTRAINTS SPARSE MATRIX

20. ASSTRACT (Continue an reverse side It nocoesmv end Identify by block number)

SEE ATTACHED

DO 1ARN5 1473 EDITION OF' I NOVO IS 1 OBSOLETE c

~ () / ~' (~5__ JCII CLASSFICATION OF 1THIS PACE (When Date Enteve

SECURITY CLASSIFICATION OF THIS PAGErPhen Dole EttorIod)

ABSTRACT

MINOS/AUGMENTED is a general purpose nonlinear programming system,
designed to solve large-scale optimization problems involving sparse linear and
nonlinear constraints. Any nonlinear functions appearing in the objective or the
constraints must be continuous and smooth. Users specify these functions and
their gradients using two Fortran subroutines. The remaining constraint infor-
mation is specified in standard MPS format, as for regular linear programming
models.

MINOS/AUGMENTED (alias MINOS Version 4.0) employs a projected aug-
mented Lagrangian algorithm to solve problems with nonlinear constraints. This
involves a sequence of sparse, linearly constrained subproblems, which are solved
by a reduced-gradient algorithm as implemented in the earlier version of MINOS.

This manual supplements Report SOL 77-9, the MINOS User's Guide.

I

SECURITY CiL WI~CAYlOU OF 'u"e PA@Sr~lh.. .f. Enlueo

LI

